OPTIMIZATION OF SQL QUERIES FOR PARALLEL MACHINES

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

By
Waqar Hasan
December, 1995
© Copyright 1996 by Waqar Hasan
All Rights Reserved
I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Gio Wiederhold
(Principal Adviser)

I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Hector Garcia-Molina

I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Ravi Krishnamurthy

I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Rajeev Motwani

I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Jeffrey D. Ullman

Approved for the University Committee on Graduate Studies:

Dean of Graduate Studies
Abstract

Parallel execution offers a solution to the problem of reducing the response time of SQL queries against large databases. As a declarative language, SQL allows users to avoid the complex procedural details of programming a parallel machine. A DBMS answers a SQL query by first finding a procedural plan to execute the query and subsequently executing the plan to produce the query result. We address the problem of parallel query optimization which is: Given a SQL query, find the parallel plan that delivers the query result in minimal time.

We develop optimization algorithms using models that incorporate the sources of parallelism as well as obstacles to achieving speedup. One obstacle is inherent limits on available parallelism due to parallel and precedence constraints between operators and due to data placement constraints that essentially pre-allocate some subset of operators. Another obstacle is that the overhead of exploiting parallelism may increase total work thus reducing or even offsetting the benefit of parallel execution. Our experiments with NonStop SQL, a commercial parallel DBMS, show communication of data across processors to be a significant source of increase in work.

We adopt a two-phase approach to parallel query optimization: join ordering and query rewrite (JOQR), followed by parallelization. The JOQR phase minimizes the total work to compute a query. The parallelization phase extracts parallelism and schedules resources to minimize response time. We make contributions to both phases. Our work is applicable to queries that include operations such as grouping, aggregation, foreign functions, intersection and set difference in addition to joins.

We develop algorithms for the JOQR phase that minimize total cost while accounting for the communication cost of repartitioning data. Using a model that abstracts physical characteristics of data, such as partitioning, as colors, we devise tree coloring algorithms that are efficient and guarantee optimality.

We model the parallelization phase as scheduling a tree of inter-dependent operators with computation and communication costs represented as node and edge weights. Scheduling a weighted operator tree on a parallel machine poses a class of novel multi-processor scheduling problems that
differ from the classical in several ways.

We develop and compare several efficient algorithms for the problem of scheduling a pipelined operator tree in which all operators run in parallel using inter-operator parallelism. Given the NP-hardness of the problem, we assess the quality of our algorithms by measuring their performance ratio which is the ratio of the response time of the generated schedule to that of the optimal. We prove worst-case bounds on the performance ratios of our algorithms and measure the average cases using simulation.

We address the problem of scheduling a pipelined operator tree using both pipelined and partitioned parallelism. We characterize optimal schedules and investigate two classes of schedules that we term symmetric and balanced.

The results in this thesis enable the construction of SQL compilers that can effectively exploit parallel machines.
Acknowledgements

I express my gratitude to the people and organizations that made this thesis possible. Gio Wiederhold was a constant source of intellectual support. He encouraged me to learn and use a variety of techniques from different areas of Computer Science. Rajeev Motwani helped enhance my understanding of theory and contributed significantly to the ideas in this thesis. Jeff Ullman was a source of useful discussions and I thank him for his helpful and incisive comments. Ravi Krishnamurthy served as a mentor and a source of interesting ideas and challenging questions. Hector Garcia-Molina provided helpful advice. Jim Gray helped me understand the realities of parallel query processing.

My thesis topic grew out of work at Hewlett-Packard Laboratories and was supported by a fellowship from Hewlett-Packard. I express my gratefulness to Hewlett-Packard Company and thank my managers Umesh Dayal, Dan Fishman, Peter Lyngbaek and Marie-Anne Neimat for management, intellectual and moral support.

I thank Tandem Computers for providing access to a parallel machine, to the NonStop SQL/MP parallel DBMS, and permitting publication of experimental results. I am grateful to Susanne Englert, Ray Glasstone and Shyam Johari for making this possible and for helping me understand Tandem systems.

The following friends and colleagues were a source of invaluable discussions and diversions: Sang Cha, Surajit Chaudhuri, Philippe DeSmedt, Mike Heytens, Curt Kolovson, Stephanie Leichner, Sheralyn Listgarten, Arif Merchant, Inderpal Mumick, Pandu Nayak, Peter Rathmann, Donovan Schneider, Arun Swami, Kevin Wilkinson, Xiaolei Qian.

This thesis would not have been possible without the support and understanding of my family. I thank my father, Dr. Amir Hasan, for providing the inspiration to pursue a PhD. I thank my mother, Fatima Hasan, my brothers Safdar, Javed, and Zulfiqar, and sister Seemin for their love and encouragement. I owe a debt to my wife Shirin and son Arif for putting up with my long hours and for the support, love and encouragement that made this work possible.
Contents

Abstract iv
Acknowledgements vi

1 Introduction 1
1.1 Minimizing Response Time: Sources and Deterrents 1
 1.1.1 Sources of Speedup 2
 1.1.2 Deterrents to Speedup 3
1.2 Model for Parallel Query Optimization 4
 1.2.1 Annotated Query Trees 5
 1.2.2 Operator Trees 5
 1.2.3 Parallel Machine Model 7
1.3 Organization of Thesis 8
1.4 Related Work 9
 1.4.1 Query Optimization for Centralized Databases 9
 1.4.2 Query Optimization for Distributed Databases 10
 1.4.3 Query Optimization for Parallel Databases 10

2 Price of Parallelism 12
2.1 Introduction 13
2.2 Tandem Architecture: An Overview 14
 2.2.1 Parallel and Fault-tolerant Hardware 14
 2.2.2 Message Based Software 14
 2.2.3 Performance Characteristics 15
2.3 Parallelism in NonStop SQL/MP 15
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.1</td>
<td>Use of Intra-operator Parallelism</td>
<td>15</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Process Structure</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Startup Costs</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Costs of Operators and Communication</td>
<td>19</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Experimental Setup</td>
<td>21</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Costs of Scans, Predicates and Aggregation</td>
<td>22</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Costs of Local and Remote Communication</td>
<td>23</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Cost of Repartitioned Communication</td>
<td>24</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Costs of Join Operators</td>
<td>26</td>
</tr>
<tr>
<td>2.5.6</td>
<td>Costs of Grouping Operators</td>
<td>27</td>
</tr>
<tr>
<td>2.6</td>
<td>Parallel Versus Sequential Execution</td>
<td>28</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Parallelism can Reduce Work</td>
<td>29</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Parallelism Can Increase Response Time</td>
<td>30</td>
</tr>
<tr>
<td>2.7</td>
<td>Summary of Findings</td>
<td>30</td>
</tr>
</tbody>
</table>

3 JOQR Optimizations

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>A Model for Minimizing Communication</td>
<td>33</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Partitioning</td>
<td>33</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Repartitioning Cost</td>
<td>34</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Optimization Problem</td>
<td>35</td>
</tr>
<tr>
<td>3.2</td>
<td>Algorithms for Query Tree Coloring</td>
<td>36</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Problem Simplification</td>
<td>37</td>
</tr>
<tr>
<td>3.2.2</td>
<td>A Greedy Algorithm for Distinct Pre-Colorings</td>
<td>37</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Algorithm for Repeated Colors</td>
<td>39</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Extensions: Using Sets of Colors</td>
<td>42</td>
</tr>
<tr>
<td>3.3</td>
<td>Model for Methods and Physical Properties</td>
<td>44</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Annotated Query Trees and their Cost</td>
<td>45</td>
</tr>
<tr>
<td>3.4</td>
<td>Extension of ColorSplit for Methods and Physical Properties</td>
<td>47</td>
</tr>
<tr>
<td>3.5</td>
<td>Model With Join Ordering</td>
<td>49</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Join Ordering Without Physical Properties</td>
<td>49</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Join Ordering With Physical Properties</td>
<td>51</td>
</tr>
<tr>
<td>3.6</td>
<td>Usage of Algorithms</td>
<td>52</td>
</tr>
</tbody>
</table>
4 Scheduling Pipelined Parallelism

4.1 Problem Definition .. 54
4.2 Identifying Worthless Parallelism 57
 4.2.1 Worthless Edges and Monotone Trees 57
 4.2.2 The GreedyChase Algorithm 59
 4.2.3 Lower Bounds .. 60
4.3 The Modified LPT Algorithm 60
4.4 Connected Schedules .. 62
 4.4.1 Connected Schedules when Communication is Free 63
 4.4.2 BalancedCuts with Communication Costs 66
4.5 Connected Schedules as an Approximation 67
4.6 Heuristics for POT Scheduling 71
 4.6.1 A Hybrid Algorithm 72
 4.6.2 The Greedy Pairing Algorithm 72
4.7 Approximation Algorithms .. 74
 4.7.1 A Two-stage Approach 74
 4.7.2 The LocalCuts Algorithm 76
 4.7.3 The BoundedCuts Algorithm 79
4.8 Experimental Comparison .. 85
 4.8.1 Experimental Setup 85
 4.8.2 Experimental Comparison 85
 4.8.3 Performance of Hybrid 86
 4.8.4 Comparison of Hybrid, LocalCuts and BoundedCuts 87
 4.8.5 Behavior of Lower Bound 88
4.9 Discussion .. 88

5 Scheduling Mixed Parallelism

5.1 Problem Definition .. 90
5.2 Balanced Schedules .. 93
5.3 Symmetric Schedules .. 98
5.4 Scheduling Trees with Two Nodes 107
5.5 Discussion .. 109
6 Summary and Future Work 111
 6.1 Summary of Contributions 111
 6.2 Future Work 114

Bibliography 117
List of Tables

2.1 Parallelization Strategies and Join Methods .. 17
2.2 CPU Costs of Operations (1K tuples occupy 1 Mbyte) 21
3.1 Examples of Input-Output Constraints ... 46
List of Figures

1.1 Query Processing Architecture .. 2
1.2 Phases and Sub-phases of Parallel Query Optimization 4
1.3 (A) Annotated Query Tree (B) Corresponding Operator Tree 6

2.1 (a) Tandem Architecture (b) Abstraction as Shared-Nothing 14
2.2 Process Startup: With (solid) and without (dotted) process reuse 19
2.3 Local, Remote and Repartitioned Communication 20
2.4 Scan with 1 predicate(dotted), 2 predicates(solid), aggregation(dashed) 23
2.5 Scan and Aggregation(dashed) with Local(solid) and Remote(dotted) Comm. .. 23
2.6 Process structure: (a) No communication (b) Local (c) Remote 24
2.7 Local and Repartitioned Execution ... 25
2.8 Local(dotted) and Repartitioned(solid) Comm. 26
2.9 Query using Simple-hash (dashed), Sort-merge (solid) and Nested Join (dotted) 27
2.10 Hash (solid) and Sort (dotted) Grouping Costs 28
2.11 Process Structure: Sequential and Parallel Execution 29

3.1 Query Trees: Hatched edges show repartioning 33
3.2 (i) Query Tree; (ii) Coloring of cost 7; (iii) Minimal Coloring of cost 6 36
3.3 (i) Split colored interior node (ii) Collapse uncolored leaves 37
3.4 (i) Query Tree (ii) Suboptimal DLC coloring (cost=9) (iii) Optimal coloring (cost=8) 39
3.5 Problem Decomposition after Coloring Node i 40
3.6 Opt and Optc tables for tree of Figure 3.4 41
3.7 Interaction of Repartitioning with Join Predicates 43
3.8 Annotated Query Trees ... 45
3.9 Interaction of Repartitioning with Order of Joins 49
3.10 Decomposition of a complex query .. 52
Chapter 1

Introduction

Database systems provide competitive advantage to businesses by allowing quick determination of answers to business questions. Intensifying competition continues to increase the sizes of databases as well as the sophistication of queries against them. Parallel machines constructed from commodity hardware components offer higher performance as well as performance at a lower price as compared to sequential mainframes. Exploiting parallelism is therefore a natural solution for reducing the response times of queries against large databases.

SQL, the standard language for database access, is a declarative language. It insulates users from the complex procedural details of accessing and manipulating data. In particular, exploiting parallel machines does not require users to learn a new language or existing SQL code to be rewritten. Given a declarative query, the DBMS first devises a procedural plan and then executes the plan to produce the query result (see Figure 1.1). The problem of devising the best procedural plan for a SQL query is termed query optimization.

While the declarative nature of SQL allows users to benefit transparently from parallel machines, the DBMS must solve a new optimization problem. This new problem, termed parallel query optimization, is the subject of this thesis. It is defined as: Given an SQL query, find the parallel plan that delivers the query result with the least response time.

1.1 Minimizing Response Time: Sources and Deterrents

In this thesis, we will exploit two complementary tactics for reducing the response time of a query (i.e. speeding up a query). Response time may be reduced by decreasing the total work to compute a query. It may also be reduced by partitioning work among multiple processors.
CHAPTER 1. INTRODUCTION

We will model two fundamental deterrents to achieving speedup through partitioning of work. First, there may be intrinsic limits on how work may be partitioned. The available parallelism may be such that it is impossible to partition work evenly among processors. Since response time is the time at which all processors have completed work, skewed processor loads reduce speedup. As an extreme case, the available parallelism may be insufficient even to use all processors. The second deterrent is that partitioning may itself generate extra work. Thus, the overhead of exploiting parallelism may reduce, or even offset, the benefit from parallel execution.

1.1.1 Sources of Speedup

We first discuss tactics for reducing total work followed by tactics for partitioning work among multiple processors.

The total work to compute a query may be reduced by two tactics. First, algebraic laws may be applied to transform a query into an equivalent query by rearranging, replacing, or eliminating operators. If the equivalent query requires less work, we may compute it instead of the original query. Second, each operator (or collection of operators) has several alternative implementations each of which may be the best depending on the statistical and physical characteristics of the operands. Work may be reduced by choosing an appropriate combination of methods for each operator. While there has been substantial work on these tactics, parallel machines raise new aspects such as communication costs that require a fresh look at the problem.

The work in computing a query may be partitioned using three forms of parallelism: independent, pipelined and partitioned. Two operators neither of which uses data produced by the other may run simultaneously on distinct processors. Such inter-operator parallelism is termed independent parallelism. Since operators produce and consume sets of tuples, the tuples output by a producer can sometimes be fed to a consumer as they get produced. Such inter-operator concurrency is termed pipelining and, when the producer and consumer use distinct processors, is termed pipelined parallelism. A third form of parallelism, termed partitioned parallelism, provides intra-operator parallelism based on partitioning of data. We explain opportunities for partitioned parallelism for unary and binary operators below.
If \(T = T_0 \cup T_1 \cup \ldots \cup T_k \) (where \(T_i \) are tables), then unary operators such as selection, projection, duplicate elimination, grouping and aggregation may be pushed through union using algebraic identities that essentially have the following form:

\[
\text{Op}(T) = \text{Op}(T_0) \cup \text{Op}(T_1) \cup \ldots \cup \text{Op}(T_k)
\]

The terms on the right hand side may be computed independently of each other, thus providing opportunity for parallel execution. The exact transformation is more complex for operators such as grouping and aggregation.

Binary operators such as equijoins, set intersection, and set subtraction may also exploit parallelism based on data partitioning. Consider the equijoin of tables \(T \) and \(S \). Let \(T = T_0 \cup T_1 \cup \ldots \cup T_k \) and \(S = S_0 \cup S_1 \cup \ldots \cup S_k \) such that matching tuples go to matching partitions. In other words, if the value of the join column for tuple \(t \in T \) matches the value of the join column for tuple \(s \in S \) and, \(t \) goes to partition \(T_i \) then \(s \) must go to partition \(S_i \). The following identity shows the opportunity for partitioned parallelism.

\[
T \bowtie S = (T_1 \bowtie S_1) \cup (T_2 \bowtie S_2) \cup \ldots \cup (T_k \bowtie S_k)
\] (1.1)

Similar identities apply to other binary operators. We also mention a related form of parallelism based on exploiting a combination of data replication and partitioning. It may be used for joins without requiring an equijoin predicate. The join operator may be parallelized by partitioning \(T \) and joining each partition with a replica of \(S \). This strategy is termed fragment and replicate or partition and replicate. The transformation applies irrespective of the nature of the join predicate; specifically it also applies to Cartesian products.

\[
T \bowtie S = (T_1 \bowtie S) \cup (T_2 \bowtie S) \cup \ldots \cup (T_k \bowtie S)
\] (1.2)

1.1.2 Deterrents to Speedup

Speedup is limited by the intrinsic limits on available parallelism and by the overheads of exploiting parallelism.

Available parallelism is limited by several factors. Inter-operator parallelism is limited by timing constraints between operators. For example, a hash join works by first building a hash table on one operand and then probing the hash table for matches using tuples of the second operand. Since the hash table must be fully built before being probed, there is a precedence constraint in the computation. As another example, an operator that scans a table may pipe its output to the operator that builds a hash table. Such concurrency eliminates the need to buffer intermediate
CHAPTER 1. INTRODUCTION

results. However, it places a parallel constraint in the computation. In many machine architectures, data on a specific disk may be accessed only by the processor that controls the disk. Thus data placement constraints limit both inter and intra-operator parallelism by localizing scan operations to specific processors. For example, if an Employee table is stored partitioned by department, a selection query that retrieves employees from a single department has no available parallelism.

Using parallel execution requires starting and initializing processes. These processes may then communicate substantial amounts of data. These startup and communication overheads increase total work. The increase is significant enough that careless use of parallelism can result in slowing down queries rather than speeding them up. The cost of communication is a function of the size of data communicated. While an individual operator may examine a relatively small portion of each tuple, all attributes that are used by any subsequent operator need to be communicated. Thus, communication costs can be an arbitrarily high portion of total cost.

1.2 Model for Parallel Query Optimization

We will adopt a two-phase approach [Hon92b] to minimizing the response time of queries (Figure 1.2). The first phase applies the tactic of minimizing total work while the second applies the tactic of partitioning work among processors. Dividing the problem into two phases reduces the conceptual complexity of parallel query optimization.

The first phase, JOQR (for Join Ordering and Query Rewrite, the two steps in a conventional optimizer [HFLP89]), produces an annotated query tree that fixes aspects such as the order of joins

![Figure 1.2: Phases and Sub-phases of Parallel Query Optimization](image)
and the strategy for computing each join. While conventional query optimization deals with similar problems we will develop (in Chapter 3) models and algorithms that are cognizant of critical aspects of parallel execution. Thus rather than finding the best plan for sequential execution, our algorithms find the best plan while accounting for parallel execution.

The second phase, parallelization, converts the annotated query tree into a parallel plan. We break the parallelization phase into two steps, parallelism extraction followed by scheduling. Parallelism extraction produces an operator tree that identifies the atomic units of execution and their interdependence. It explicates the timing constraints among operators. We shall briefly discuss the extraction of parallelism in Section 1.2.2.

The scheduling step allocates machine resources to each operator. We shall develop models and algorithms for several scheduling problems in Chapters 4 and 5.

1.2.1 Annotated Query Trees

A procedural plan for an SQL query is conventionally represented by an annotated query tree. Such trees encode procedural choices such as the order in which operators are evaluated and the method for computing each operator. Each tree node represents one (or several) relational operators. Annotations on the node represent the details of how it is to be executed. For example a join node may be annotated as being executed by a hash-join, and a base relation may be annotated as being accessed by an index-scan. The EXPLAIN statement of most SQL systems (such as NonStop SQL/MP [Tan94]) allows such trees to be viewed by a user.

Example 1.1 The following SQL query retrieves the average of the salaries of all employees who are skilled in “Molding” and earn more than their managers. Figure 1.3(A) shows an annotated query tree for the query.

```sql
select avg(E.salary)
from Emp E, Emp M, EmpSkills S
where E.empNum = S.empNum and E.mgr = M.empNum and E.Salary > M.Salary and S.skill = “Molding”
```

1.2.2 Operator Trees

An operator tree exposes opportunities for parallelism by identifying the atomic units of execution and the timing constraints between them. Nodes of an operator tree are termed operators\(^1\) and

\(^1\)The meaning of the term operator varies with the context. It is used to denote operators of the relational algebra, nodes of annotated query trees as well as nodes of operator trees. A query tree operator may consist of several relational
represent pieces of code that are deemed to be atomic. Edges represent the flow of data as well as timing constraints between these operators.

An operator takes zero or more input sets of tuples and produces a single output set. Operators are formed by appropriate factoring of the code that implements the relational operations specified in an annotated query tree. A criteria in designing operators is to reduce inter-operator timing constraints to simple forms, i.e. parallel and precedence constraints.

The process of parallelism extraction is used to create operator trees from annotated query trees. This process may be viewed as applying a “macro-expansion” to each node of an annotated query tree. Since annotated query trees are constructed out of a fixed set of operators, the macro-expansion of each operator (of an annotated query tree) may be specified using mechanism such as rules. We will illustrate a sample expansion in Example 1.2.

Given an edge from operator i to j, a parallel constraint requires i and j to start at the same time and terminate at the same time. A precedence constraint requires j to start after i terminates. We define an edge that represents a parallel constraint to be a pipelining edge and an edge that represents a precedence constraint to be a blocking edge.

Parallel constraints capture pipelined execution. A pipeline between two operators is typically implemented using a flow control mechanism (such as a table queue [PMC+90]) to ensure that a fixed amount of memory suffices for the pipeline. Flow-control causes a fast producer to be slowed down by a slow consumer (or vice-versa) by stretching over a longer time period. Thus, the producer and consumer operators are constrained to run concurrently. Precedence constraints capture the

operators. An operator tree operator is a piece of code that may not correspond to any relational or query tree operator.
behavior of operators that produce their output set only when they terminate. A consumer operator must wait for the producer to terminate before it may start execution.

Example 1.2 Figure 1.3(B) shows the operator tree for the annotated query tree of Figure 1.3(A). Thin edges are pipelining edges, thick edges are blocking. A simple hash join is broken into `Build` and `Probe` operators. Since a hash table must be fully built before it can be probed, the edge from `Build` to `Probe` is blocking. A sort-merge join sorts both inputs and then merges the sorted streams. The merging is implemented by the `Merge` operator. In this example, we assume the right input of sort-merge to be presorted. The operator tree shows the sort required for the left input broken into two operators `FormRuns` and `MergeRuns`. Since the merging of runs can start only after run formation, the edge from `FormRuns` to `MergeRuns` is blocking.

The operator tree exposes available parallelism. Partitioned parallelism may be used for any operator. Pipelined parallelism may be used for operators connected by pipelining edges. Two subtrees with no (transitive) precedence constraints between them may run independently. For example, the subtrees rooted at `FormRuns` and `Build` may run independently; operators `FormRuns` and `Scan(M)` may use pipelined parallelism; any operator may use partitioned parallelism.

1.2.3 Parallel Machine Model

We consider a parallel machine to consist of several identical nodes that communicate over an interconnect. The cost of a message consists of CPU cost incurred equally by both the sending and the receiving CPU. This cost is a function of the message size but independent of the identities of the sending and receiving CPUs (as long as they are distinct). In other words, we consider propagation delays and network topology to be irrelevant.

Propagation delay is the time delay for a single packet to travel over the interconnect. Query processing results in communicating large amounts of data over the interconnect. Such communication is typically achieved by sending a *stream* of packets – packets continue to be sent without waiting for already sent packets to reach the receiver. Thus, the propagation delay is independent of the number of packets and becomes insignificant when the number of packets is large.

Network topology is ignored for three reasons. First, it is unclear whether the behavior of sophisticated interconnects can be captured by simple topological models. Besides topological properties, interconnects also have embedded memory and specialized processors. Second, most architectures expect applications to regard the interconnect as a blackbox that has internal algorithms for managing messages. Third, there is tremendous variation in the topologies used for interconnects.
Topology-dependent algorithms and software will be not be portable. Further, topology changes even in a specific machine as nodes fail and recover or are added or removed. Correctly and reliably adapting to such changes is complex. Incorporating topological knowledge in query processing and optimization will further complicate these tasks.

1.3 Organization of Thesis

In Chapter 2, we start with an experimental study that compares parallel and sequential execution in NonStop SQL/MP, a commercial parallel database system from Tandem Computers. The experiments establish communication to be a significant overhead in using parallel execution. They also show that startup costs may be made insignificant by modifying the execution system to reuse processes rather than creating them afresh.

In Chapter 3, we deal with models and algorithms for the JOQR phase. We pose minimizing communication as a tree coloring problem that is related to classical Multiway Cut problems. We then enhance the model to cover aspects such as the dependence of operator costs on physical properties of operands, the availability of multiple methods for an operator, and re-ordering of operators. The chapter also provide a clean abstraction of the basic ideas in the commercially popular System R algorithm.

In Chapter 3, we focuses on the parallelization phase and consider the problem of managing pipelined parallelism. We start by developing the notion of worthless parallelism and showing how such parallelism may be eliminated. We then develop a variety of scheduling algorithms that assign operators to processors. We evaluate the algorithms by measuring their performance ratio which is the response time of the produced schedule divided by the response time of the optimal schedule. We establish bounds on the worst-case performance ratio by analytical methods and measure average-case performance ratios by experiments.

In Chapter 5, we consider the problem of scheduling a pipelined tree using both pipelined and partitioned parallelism. This is the continuous version of the discrete problem considered in the last chapter. We develop characterizations of optimal schedules and investigate two classes of schedules: symmetric and balanced.

Finally, in Chapter 6, we summarize our contributions and discuss some open problems.
1.4 Related Work

In this section, we discuss relevant past work in databases. The individual chapters will discuss related work from theory (Multiprocessor Scheduling [Gra69, Ull75], Multiway Cuts [DJP+92] and Nonlinear optimization [GMW81, Lue89]) that we will find useful in developing optimization algorithms.

1.4.1 Query Optimization for Centralized Databases

Early work in query optimization followed two tracks. One was minimization of expression size [CM77, ASU79]. Expression size was measured by metrics, such as the number of joins in a query, that are independent of the database state. Another track was the development of heuristics based on models that considered the cost of an operator to depend on the size of its operands as well as the data structures in which the operands were stored. For example, the cost of a join was estimated using the sizes of operands as well as whether an index to access an operand was available.

Examples of such heuristics are performing selections and projections as early as possible [Hal76] and the Wong-Youseffi algorithm [WY76] for decomposing queries.

The System R project at IBM viewed the problem of selecting access paths and ordering join operators as an optimization problem with the objective of minimizing the total machine resource to compute a query [SAC+79]. The estimation of machine resources was based on a cost model in which the cost of an operation depended on the statistical properties of operands (such as the minimum and maximum values in each column), the availability of indexes and the order in which tuples could be accessed. It also developed a combination of techniques to search for a good query plan. One of these techniques, the use of dynamic programming to speed up search, has been adopted by most commercial optimizers. Another technique, avoiding Cartesian products, is now recognized to produce bad plans for “star” queries (common in decision-support applications) in which a single large table is joined to several small tables.

System R also incorporated algebraic transformations that were applied as heuristics while parsing queries. The Starburst project recognized the growing importance of such heuristic transformations [Day87, Kin81, Kim82, GW87] by considering Query Rewrite to be a phase of optimization [PHH92].

The growing importance of decision-support has led to a rejuvenation of interest in discovering new transformations and algorithms to exploit the transformations [YL95, CS94, GHQ95, LMS94].
1.4.2 Query Optimization for Distributed Databases

While distributed and parallel databases are fundamentally similar, research in distributed query optimization was done in the early 1980s, a time at which communication over a network was prohibitively expensive and computer equipment was not cheap enough to be thrown at parallel processing.

The assumption of communication as the primary bottleneck led to the development of query execution techniques, notably semijoins [BC81], to reduce communication. Techniques for exploiting parallelism were largely ignored. For example, Apers et al. [AHY83] discuss independent parallelism but do not discuss either pipelined or partitioned parallelism. Thus, for historical reasons, the notion of distributed execution differs from parallel execution. Since the space of possible executions for a query is different, the optimization problems are different.

While Apers et al. considered minimizing response time as an optimization objective, most work, such as in SDD-1 [BGW+81] and R* [LMH+85, ML86], focused on minimizing resource consumption. SDD-1 assumed communication as the sole cost while R* considered local processing costs as well.

Techniques for distributing data using horizontal and vertical partitioning schemes [Ull89, CNW83, OV91] were developed for distributed data that also find a use in exploiting parallelism.

1.4.3 Query Optimization for Parallel Databases

Several research projects such as Bubba [BCC+90], Gamma [DGS+90], DBS3 [ZZBS93], and Volcano [Gra90] devised techniques for placement of base tables and explored a variety of parallel execution techniques. This has yielded a well understood notion of parallel execution.

Considerable research has also been done on measuring the parallelism available in different classes of shapes for join trees. Schneider [Sch90] identified right-deep trees (with hash-joins as the join method) as providing considerable parallelism. Chen et al. [CLYY92] investigated segmented right-deep trees and Ziane et al. [ZZBS93] investigated Zig-Zag trees. Such research focuses on evaluating a class of shapes rather than optimizing a single query. It may be used to subset the space of executions over which optimization should be performed.

Hong and Stonebraker [HS91] proposed the two-phase approach to parallel query optimization. They used a conventional query optimizer as the first phase. For parallelization, they considered exploiting partitioned and independent parallelism but not pipelined parallelism. While they ignored communication costs, we note that Hong [Hon92b] conjectured the XPRS approach to be
inapplicable to architectures such as shared-nothing that have significant communication costs.

Hong [Hon92a] develops a parallelization algorithm to maximize machine utilization under restrictive assumptions. The parallel machine is assumed to consist of a single disk (RAID) and multiple processors and each operator is assumed to have CPU and IO requirements. Assuming that two operators, one CPU-bound and the other IO-bound to always be available for simultaneous execution, the algorithm computes the degree of partitioned parallelism for each operator so as to fully utilize the disk and all CPUs.

Many other efforts in parallel query optimization [SE93, LST91, SYT93, CLYY92, HLY93, ZZBS93] develop heuristics assuming parallel execution to have no extra cost.
Chapter 2

Price of Parallelism

This chapter is a case study of NonStop SQL/MP, a commercial parallel DBMS from Tandem Computers\(^1\). We report experimental measurements of the overheads in parallel execution as compared to sequential execution\(^2\). We also document the use of parallel execution techniques in a commercial system.

Our experiments investigate two overheads of using parallel execution: startup and communication. Startup is the overhead of obtaining and initializing the set of processes used to execute the query. Communication is the overhead of communicating data among these processes while executing the query. The findings from the experiments may be summarized as:

- Startup costs are negligible if processes can be reused rather than created afresh.
- Communication cost consists of the CPU cost of sending and receiving messages.
- Communication costs can exceed the cost of operators such as scanning, joining or grouping

These findings lead to the important conclusion that

\textit{Query optimization should be concerned with communication costs but not with startup costs.}

\(^1\)We thank Tandem Computers for providing access to NonStop SQL/MP and a parallel machine. Parts of this chapter have also been published as the paper \textit{S. Englert, R. Glasstone and W. Hasan: Parallelism and its Price: A Case Study of NonStop SQL/MP, Sigmod Record, Dec 1995}

\(^2\)We used the following guidelines to prevent commercial misuse of our experimental results: (a) All execution times are scaled by a fixed but unspecified factor. (b) All query executions were created by bypassing the NonStop SQL optimizer and no inference should be drawn about its behavior.
2.1 Introduction

Startup overhead is incurred as a prelude to real work. It consists of obtaining a set of processes and passing to each a description of its role in executing the query. The description consists of the portion of the query plan the process will execute and the identities of the other processes it will communicate with.

Communication overhead is the cost of transferring data between processes. Our experiments consider three categories of communication between processes. Local communication consists of a producer process sending data to a consumer process on the same processor. Remote communication is the case when the producer and consumer are on distinct processors. Repartitioned communication consists of a set of producers sending data to a set of consumers. Each tuple is routed based on the value of some attribute.

Communication requires data to be moved from one physical location to another. Local communication is implemented as a memory to memory copy across address spaces. Remote communication divides data into packets that are transmitted across the interconnect. The receiving CPU has to process interrupts generated by packet arrival as well as to reassemble the data. In repartitioned communication, a producer has to perform some additional computation to determine the destination of each tuple.

Our experiments compare the cost of communication with the cost of operators such as scans, joins and groupings. We observe that while the cost of communicating data is proportional to the number of bytes transmitted, an operator may not even look at all its input data – it only needs to look at attributes that are relevant to it and may ignore the attributes that are relevant only to subsequent operators.

We first describe the architecture of Tandem systems in Section 2.2. In Section 2.3, we describe how opportunities for parallelism are exploited by NonStop SQL/MP. We then describe our experimental results on startup costs in Section 2.4. Section 2.5 describes our results on the cost of communication. These costs are put in perspective by comparing them with costs of operators such as scans, joins and groupings. Section 2.6 shows interesting examples of parallel and sequential execution and Section 2.7 summarizes our conclusions.
2.2 Tandem Architecture: An Overview

2.2.1 Parallel and Fault-tolerant Hardware

Tandem systems are fault-tolerant, parallel machines. For the purpose of query processing, a Tandem system may be viewed as a classical shared-nothing system (see Figure 2.1). Each processor has local memory and exclusive control over some subset of the disks.

Processors communicate over an interconnection network. Up to 16 processors may be connected to an interprocessor bus to form a node. A variety of technologies and topologies are used to interconnect multiple nodes.

For fault-tolerance, each logical disk consists of a mirrored pair of physical disks. Disk controllers ensure that a write request is executed on both disks. A read request is directed to the disk that can service it faster; for example if both disks are idle, the request is directed to the one with its read head closer to the data.

We will not discuss further fault-tolerance features of the Tandem architecture since they are largely orthogonal to query processing. The interested reader is referred to [BBT88] for details.

2.2.2 Message Based Software

Messages implement interprocess communication as well as disk IO. Access to a disk is encapsulated by an associated set of disk processes that run on the processor that controls the disk. They implement the basic facilities for reading, writing and locking disk-resident data. An IO request is made by sending a message to a disk process. Data read by a read request is also sent back to the requester as a message. Use of a set of disk processes allows several requests to be processed concurrently. Disk processes are system processes and, for the purpose of query processing, may be regarded as being permanently in operation.

A single file may be partitioned across multiple disks by ranges of key values. This allows tables
and indexes to be horizontally partitioned using range partitioning. The file system is cognizant of partitioned files and can route messages based on the key value of a requested record.

2.2.3 Performance Characteristics

The interconnect used for communication between processors is engineered to provide high bandwidth and performance. Experiments [Tan] have shown the message throughput between two processors to be limited by CPU speed rather than the speed of the interprocessor bus.

The programming interface for messages provides location transparency. However, the implementation mechanisms for inter and intraprocessor messages are different. An intraprocessor message is transmitted by a memory-to-memory copy. An interprocessor message is broken into packets and sent over the interconnect. Packet arrival generates interrupts at the receiving CPU. The packets are then assembled and written into the memory of the receiving process. Measurements show an intraprocessor message to be significantly cheaper than an interprocessor message.

A mirrored disk consists of two physical disks with identical data layout. As remarked earlier, a write request is executed on both physical disks while a read is directed to the disk that can process it faster. A mirrored pair processes read requests faster than a single physical disk while writes run at about the same speed.

2.3 Parallelism in NonStop SQL/MP

NonStop SQL/MP uses intra-operator parallelism for scans, selection, projection, joins and grouping and aggregation. Intra-operation parallelism uses replication as well as partitioning. Interoperator parallelism is not used. The system does not, for example, use pipelined parallelism, in which disjoint sets of processors are used for the producer and consumer. It does, however, use pipelined execution whenever possible, in which producers and consumers run concurrently.

In Section 2.3.1, we discuss the use of intra-operator parallelism. Section 2.3.2 discusses how operators are mapped to processes and processes to processors.

2.3.1 Use of Intra-operator Parallelism

Intra-operator parallelism is based on data partitioning and replication. Recall that base tables and indexes may be stored horizontally partitioned over several disks based on key ranges. Scans and groupings are parallelized using the existing data partitioning.
Joins may repartition or replicate data in addition to using the existing data partitioning. Such repartitioning or replication occurs on the fly while processing a query and does not affect any stored data. Data repartitioning is based on hashing and equally distributes data across all CPUs.

Stored data is scanned by disk processes that implement selection, projection and some kinds of groupings and aggregation. Since each disk has its exclusive disk processes, the architecture naturally supports parallel scans.

Grouping is implemented in two ways, one based on sorting and the other on hashing. Sort grouping first sorts the data on the grouping columns and then computes the grouped aggregates by traversing the tuples in order. Hash grouping forms groups by building a hash table based on the grouping columns and then computes aggregates for each group.

The strategy for parallelizing a grouping is to use the existing data partitioning. A separate grouping is done for each partition followed by a combination of the results. Data is not repartitioned to change the degree of parallelism or the partitioning attribute.

A join of two tables (say T and S) may be parallelized in the following two ways corresponding to Equations 1.2 and 1.1.

Partition Both: Both tables may be partitioned only when an equijoin predicate is available. If both tables are similarly partitioned on the join column, the “matching” partitions may be joined. Otherwise, one or both tables may be repartitioned.

Partition and Replicate: Another parallelization strategy is to partition S and join each partition of S with all of table T. This may be achieved in two ways. The first is to replicate T on all nodes that contain a partition of S. The second is to repartition S (for example, to increase degree of parallelism) and replicate T on all nodes with a (new) partition of S.

Three methods are used for joins: nested-loops, sort-merge and hybrid-hash. Table 2.1 summarizes the join methods used for each parallelization strategy.

When both tables happen to be partitioned similarly by the join column, sort-merge join is the most efficient join method. Since the partitioning columns are always identical to the sequencing columns in NonStop SQL, the sorting step of sort-merge is skipped and the matching partitions are simply merged.

In the strategy of repartitioning both tables, both are distributed across all CPUs using a hash function on the joining columns. In this way, corresponding data from both tables or composites is located such that it can be joined locally in each CPU using the hybrid hash-join method. The strategy of repartitioning only one of the tables is not considered.

The partition-and-replicate strategy considers both nested-loops and hybrid-hash. The inner
Table 2.1: Parallelization Strategies and Join Methods

<table>
<thead>
<tr>
<th></th>
<th>Partition Both</th>
<th>Partition and Replicate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Use Existing Partitioning</td>
<td>Repartition both</td>
</tr>
<tr>
<td>hybrid-hash</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>nested-loops</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Sort-merge</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>

KEY: ✓ indicates use of strategy for join method, × indicates not used.

A single SQL query is executed by use of multiple processes. Three kinds of processes are used. First, there is the SQL *Executor* process, which consists of system library routines bound into the user application. Second, slave processes called ESPs (for Executor Server Process) may be spawned by the Executor. Third, there are disk processes which are system processes that are
permanently in operation.

Scans are implemented by disk processes and the remaining work is divided between ESPs and the Executor. The query result is produced by the Executor. The mapping of operators to processes and allocation of processes to processors may be understood with respect to query trees in which interior nodes represent operations such as joins and groupings and leaves represent scans. The basic idea in forming processes is to have an operator share processes with the prior (child) operator as far as possible. New processes are created only when such combination is impossible due to a data repartitioning or due to the fact that the prior operator is a scan. In the case of a join there are two children. Since once of them is always a base table or index, the join is attempted to be combined with the operator that produces the outer table.

Scans (the leaves of a query tree) are always executed by disk processes. Thus scans are parallelized based on the partitioning of the data being read; there is one process for each disk that contains a partition of the data. While ESPs are capable of repartitioning their output, disk processes are not. Thus if the result of a scan is to be repartitioned, one ESP is created per existing partition of the data for the sole purpose of repartitioning data.

A grouping is always parallelized based on the existing partitioning of the data. It can be combined into the same process as the prior operator, unless the prior operator is a scan and the grouping is such that a disk process cannot implement it. Disk processes can implement groupings in which the grouping columns are a prefix of the key columns.

The process structure for joins is more complex since a join has two operands. One of the operands, the inner, is always a base table. For nested-loops and merge-join, one ESP is used per partition of the outer table. If possible, this ESP is the same ESP as for the operator that produces the outer table. The inner is accessed by sending messages to disk processes. In the case of nested-loops, one message is sent per tuple of the outer so as to retrieve only the relevant tuples.

We only describe the process structure of hybrid-hash for the case when both operands are repartitioned. One ESP is used per existing partition of the inner to repartition data. If the outer is a base table, one new ESP is used per partition of the outer to repartition data. On the other hand, if the outer is not a base table, then the ESP that produces it also performs the repartitioning. One ESP is used at each CPU to receive the repartitioned data and locally compute a hybrid-hash join.
2.4 Startup Costs

Parallel execution requires starting up a set of processes and communicating data among them. This section measures startup cost and the next section focuses on communication.

When a query is executed in parallel, the Executor process starts up all necessary ESP processes and sends to each the portion of the plan it needs to execute and the identities of the other processes it needs to communicate with. The ESP processes are created sequentially; each process is created and given its plan before the next process is created. ESPs are not terminated for 5 minutes after the query completes. In case another query is executed within five minutes, ESP processes are reused.

We measured the cost of starting up processes by running a query that required 44 ESP processes. Figure 2.2 plots the time at which successive processes got started and had received their portion of the plan. The dotted line plots process startup when new processes had to be created. The solid line plots the case when processes were reused.

We conclude that communicating the relevant portion of the plan to each ESP has negligible cost. Startup cost is negligible when processes can be reused. Startup incurs an overhead of 0.5 sec per process that needs to be created. A possible enhancement would be to start the ESP processes in parallel instead of sequentially.

![Figure 2.2: Process Startup: With (solid) and without (dotted) process reuse.](image)

2.5 Costs of Operators and Communication

In this section we measure the cost of communication and put these costs in perspective by a comparison with operators such as scans, joins and grouping.

We describe measurements of the cost of local, remote and repartitioned communication. Local
communication consists of a producer process sending data to a consumer process on the same processor. Remote communication is the case when the producer and consumer are on distinct processors. In repartitioned communication, a set of producers send data to a set of producers. The cost of repartitioning varies with the pattern of communication used. We decided to focus on the case where a single producer partitions its output equally among a set of consumers. This simple pattern captures the overhead of a producer sending data to multiple consumers i.e. the additional overhead of determining the the destination of each tuple. The producer applies a hash function to an attribute value to determine the CPU to which the tuple is to be sent. Figure 2.3 illustrates the forms of communication covered by our experiments. These cases were chosen due to their simplicity. The costs of other communication patterns may be extrapolated.

Table 2.2 summarizes the results of measurements that are described later in this section. It turned out that the cpu time of all our queries was linear in the amount of data accessed. Even operations that involved sorting behaved linearly in the range covered by our experiments. Thus costs are stated in units of msec/Ktuple and msec/Mbyte. The two units are comparable, since 1K tuples occupy 1 Mbyte for the table under consideration. Join costs were measured by joining two tables, each with \(k \) tuples, to produce \(k \) output tuples. Join costs were linear in \(k \) and are therefore reported in msec/Ktuple.

Our approach was to devise experiments such that the cost of an operation could be determined as the difference of two executions. For instance the cost of local communication was determined as the difference of executing the same query using two plans that only differed in whether one or two processes were used.

Section 2.5.1 provides an overview of our experimental setup. Sections 2.5.3 and 2.5.4 describe experiments that measure the cost of communication and Sections 2.5.2, 2.5.5 and 2.5.6 address the
<table>
<thead>
<tr>
<th>Transfer Operation</th>
<th>Cost (msec/Mbyte)</th>
<th>Computational Operation</th>
<th>Cost (msec/Ktuple)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan</td>
<td>180</td>
<td>Aggregation</td>
<td>65</td>
</tr>
<tr>
<td>Local Comm.</td>
<td>390</td>
<td>Sort-Merge Join</td>
<td>370</td>
</tr>
<tr>
<td>Remote Comm.</td>
<td>745</td>
<td>Hash Join</td>
<td>40</td>
</tr>
<tr>
<td>Repartitioning (4 CPUs)</td>
<td>1230</td>
<td>Hash Grouping</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sort Grouping</td>
<td>765</td>
</tr>
</tbody>
</table>

Table 2.2: CPU Costs of Operations (1K tuples occupy 1 Mbyte)

costs of operators.

2.5.1 Experimental Setup

We ran all experiments reported in this Section on a 4 processor Himalaya K1000 System. Each processor was a MIPS R3000 processor with 64MB of main memory and several 2 GB disks. The size of the cache associated with each disk was reduced to 300 Kbytes to reduce the effects of caching on our experiments.

The tables Single, Single2 and Quad used in our experiments had identical schema and content. Quad was equally partitioned over four disks while Single and Single2 were stored on single disks.

Each of these tables had four columns: unique, twenty, hundred and str. The first three were integer columns and the fourth a 988 byte string. The unique column was the key and each table was stored sorted by this column. The column twenty was randomly chosen from $1 \ldots 20$, hundred randomly chosen from $1 \ldots 100$, and str was a 988 byte string with an identical value in each row. Each tuple occupied 1000 bytes. Each table had 50,000 tuples resulting in a total size of 50 Mbytes.

We forced query plans by the use of optimizer hooks that allowed us to specify plan elements such as the sequence and method for each join; whether parallel execution should be used or not; and whether a join should repartition data or not, whether predicates should be combined with a disk process or not and so on. The EXPLAIN command in NonStop SQL allowed us to view plans to confirm the details of the execution.

We collected performance data by using MEASURE, a low overhead tool. MEASURE collects statistics about objects of interest such as processors, disks, processes and files while a program is in execution. The collected statistics can later be perused using a query tool. MEASURE also measures the cost of processing interrupts that are generated by message arrival and IO completions – these
costs are not assigned to any process.

Each data point reported in this paper is an average over three executions. Typically, the three executions differed by less than 1%. All plotted curves were obtained using a least squares fit using the Fit function in Mathematica.

2.5.2 Costs of Scans, Predicates and Aggregation

We used the following query to scan `Single`.

Query1:
```
select unique from Single
where twenty > 50000 and unique < k
```

The predicate `twenty > 50000` is false for all tuples. Thus no tuples are returned and the overhead of communicating the result of the scan is eliminated. Since the table was stored sorted by `unique`, the predicate `unique < k` allowed us to vary the portion of the table scanned.

The query plan used a single disk process and combined predicate evaluation with the scan. The cost of the plan consists of a scan and two predicate evaluations, one of which is a key predicate. The dotted line in Figure 2.4 plots the cost as k was varied from 5000 to 50000 in increments of 5000. Denoting cpu cost by t and the number of Mbytes scanned by b, a least squares fit yields the equation $t = 0.31 + 0.185b$. Thus a scan with two predicates costs 185 msec/Mbyte.

We determined the cost of predicate checking by additional measurements. To measure the cost of the key predicate, we tried two queries: one with the predicate `unique < 100,000` and the other with no key predicate. Both queries scanned the entire table, since all key values were less than 100,000, and ran in identical time.

To measure the cost of the nonkey predicate, we ran a query with two nonkey predicates. The “where clause” of Query1 was changed to `(twenty >50000 or hundred >50000) and unique < k`. The solid lines in Figure 2.4 plots the cost of a query. Curve fitting yields $t = 0.31 + 0.18b$ i.e. the cost increases by 5 msec/Mbyte due to the additional nonkey predicate. Thus, we may expect a scan with no predicates to cost 180 msec/Mbyte.

The dashed line in Figure 2.4 shows the cost of applying an aggregation in the disk process using the following query.

Query2:
```
select max(str) from Single
where unique < k
```
A least square fit yielded the equation \(t = 0.31 + 0.245b \). Subtracting scan cost, we infer aggregation to cost (245-180) msec/Mbyte which is 65 msec/Mbyte. Recall that \texttt{str} is a 988 byte string with an identical value in each row. Thus the aggregation uses 988 bytes of each 1000 byte tuple.

2.5.3 **Costs of Local and Remote Communication**

We measured the cost of local and remote communication by use of optimizer hooks that permitted the creation of plans in which the aggregation in Query2 was moved to a separate process (the Executor) and the process could either be placed on the same CPU as the disk process or on a different CPU. Figure 2.6 shows the process structure for the three executions.
When aggregation is in a separate process from scan, 988 bytes of each 1000 byte tuple have to be communicated across processes. Figure 2.5(a) plots the data points for scanning and aggregation in the disk process and also with the remote and local communication. The curves are marked (a), (b) and (c) to show the correspondence with three process organizations of Figure 2.6. Least squares curve fitting shows slopes of 0.635 and 0.99 for the local and remote curves. Since scanning and aggregation without communication has a slope of 0.245, we infer that local communication costs 390 msec/Mbyte and remote communication costs 745 msec/Mbyte.

We observe that the relative cost of communication is a function of the amount of data communicated. Figure 2.5(b) shows the case when Query2 is modified to aggregate on twenty. In this case only 4 bytes of each 1000 byte tuple have to be communicated across processes and the relative cost of communication is negligible.

2.5.4 Cost of Repartitioned Communication

Repartitioning dynamically distributes data across all CPUs using a hash function. In general this involves a combination of local and remote communication. Since tuples are routed based on a hash function applied to some column, additional cost of deciding the destination must be incurred for each tuple.

Given a system with 4 CPUs, we chose to focus on the case where a single producer equally repartitions data among four consumers. Since one consumer was placed on the same CPU as the producer, 1/4’th of the tuples may be expected to be transported using local messages and the remaining 3/4’th by remote messages. The cost of repartitioning will vary depending on the number of CPUs and the arrangement of producers and consumers.
We devised the following query to create two executions that only differ in whether or not data is repartitioned. Small is a single column table with twenty values 0..19 stored in twenty tuples. The result of joining Single and Small is identical to Single and is grouped into twenty groups.

Query3:
\[
\text{select max}(\text{str}) \text{ from Single w, Small s} \\
\text{where w.twenty} = s.unique \text{ and w.unique} < k \\
\text{group by w.twenty}
\]

We forced the two executions shown in Figure 2.7. Both use a simple hash join in which a hash table is built on Small and probed by Single. The hash join is followed by a hash grouping. The first execution executes the join and grouping in the Executor process on a single CPU. The second execution build a hash table on Small and replicates it on four CPUs. Then Single is repartitioned and the join and grouping computed separately for each partition. Finally, the Executor process merges the results of the separate groupings.

While Figure 2.7(b) shows several extra communication arrows, only the repartitioning arrows are significant. Between 5 and 50 Mbytes of data is repartitioned. In comparison, the hash table on Small occupies about 0.00008 Mbytes, so replicating it has negligible cost. The result of each grouping consists of 20 groups that occupy about 0.02 Mbytes, which is comparatively negligible.

![Figure 2.7: Local and Repartitioned Execution](image)

Figure 2.7 plots the costs of the two executions as as \(k \) was varied from 5000 to 50000 in increments of 5000. Least squares curve fitting shows the slopes of the lines to be 0.785 and 2.015. Since the difference between the two executions is the cost of repartitioning, we conclude repartitioning to cost \((2.015 - 0.785) \) sec/Mbyte or 1230 msec/Mbyte. We remind the reader that our measurements of repartitioning cost are for four CPUs.
2.5.5 Costs of Join Operators

We measured the cost of simple-hash, sort-merge and nested joins by joining Single with an identical copy called Single2. We executed the following query using different join methods. The query was modified for sort-merge join to require sorting on one operand by changing the join predicate to \(w1\text{-unique} = w2\text{-hundred} \). Figure 2.9 plots the execution costs as \(k \) was varied from 5000 to 50000 in increments of 5000.

Query4:

\[
\text{Select max}(w1\text{-str}) \text{ from } \text{Single } w1, \text{Single2 } w2 \\
\text{where } w1\text{-unique} = w2\text{-unique and} \\
w1\text{-unique} < k \text{ and } w2\text{-unique} < k
\]

Surprisingly all plots in Figure 2.9 are linear in \(k \) even though we are joining two operands each with \(k \) tuples, and producing a result consisting of \(k \) tuples.

The nested join accesses the inner table (Single2) for each tuple of the outer (Single). Thus the cost is linear in the size of the outer table. Each access to the inner table is a random IO which explains the high cost of the nested join.

Hash-join builds a hash table on the qualifying tuples of Single2 and probes it using tuples from Single. The one possible source of nonlinearity is when \(k \) probes are performed on a hash table that contains \(k \) entries. We conclude that cost of a probe is independent of hash table size.

For sort-merge join, only one operand (Single2) needed to be sorted since the other was pre-sorted on the join column. It may be surprising that the cost of sorting does not introduce any nonlinear component into the cost. The explanation is that the system chose to sort by inserting tuples into a sequenced file. The cost of insertion is independent of file size and the cost of
comparisons is not a significant cost in locating the correct page.

Least squares curve fitting shows cost of the query to be 1835, 855 and 1185 msec/Mbyte for nested, hash and sort-merge join respectively. The “per Mbyte” should be interpreted as “per Mbyte of each operand”.

We may separate the cost of joining from the cost of scans, communication, and aggregation by using our prior measurements.

For hash-join, we incur a scan for each operand. However, local communication is significant only for Single. After projection, Single2 is reduced to 4/1000’th of its original size while almost all (992/1000’th) of Single is communicated. Thus the cost of the join may be calculated by subtracting the cost of two scans, the cost of locally communicating Single, and the cost of aggregation. This gives us $855 - (2 \times 180 + 390 + 65) = 105$ msec/Mbyte.

Similarly, the cost of a sort-merge join may be calculated to be 370 msec/Mbyte. The cost of a nested-loops join cannot be broken down in this manner since it incurs a random IO per tuple of Single.

2.5.6 Costs of Grouping Operators

NonStop SQL uses two algorithms for grouping. Hash grouping forms groups by hashing tuples into a hash table based on the value of the grouping column. Sort grouping forms groups by sorting the table on the grouping column. The following query reads k records and forms twenty groups.

Query5:

```sql
select max(str) from Single
where unique < k
```
CHAPTER 2. PRICE OF PARALLELISM

```
group by twenty;
```

Figure 2.10: Hash (solid) and Sort (dotted) Grouping Costs

Figure 2.10 plots the costs of hash and sort grouping as a function of k. Least squares curve fitting shows the query to cost 1245 msec/Mbyte and 1400 msec/Mbyte respectively for hash and sort grouping. Since the query incurs a scan, local communication, and aggregation, we conclude that hash and sort grouping to cost 110 msec/Mbyte and 765 msec/Mbyte respectively.

2.6 Parallel Versus Sequential Execution

The distinction between parallel and sequential execution in Tandem systems is the use of multiple versus single SQL Executor processes to execute a query. Note that sequential execution may use multiple disk processes if it accesses data from multiple disks.

Parallel and sequential execution may be compared based on two metrics: work and response time. The common intuition is that parallel execution reduces response time at the expense of increased work. The basis for this intuition is that parallel execution will cost at least much as sequential execution and will run at least as fast as sequential execution. While true in some cases, this is not true in general. The relative costs of parallel and sequential execution depend on communication costs.

We present two examples in this section. The first shows that parallel execution can reduce both work and response time by saving communication costs. The second shows that parallel execution can result in increased response time when the communication costs offset the benefit from parallel execution. We are not aware of any instances of the remaining logical possibility
of parallel execution offering reduced work but increased response time compared to sequential execution.

To sum up, in addition to the intuitive case in which parallel execution runs faster but consumes more resources, it is possible that (a) parallel execution consumes less resources as well as runs faster and (b) parallel execution consumes more resources as well as runs slower. The main determinant is the cost of communication.

2.6.1 Parallelism can Reduce Work

The following query performs a grouping on a table that is equally partitioned across 4 disks, each attached to a distinct CPU.

Query6:

```sql
select max(str)
from Quad
group by twenty;
```

![Figure 2.11: Process Structure: Sequential and Parallel Execution](image)

Figure 2.11 shows the process structure for sequential and parallel execution. When sequential execution is used, SQL runs as a single process (Executor). This process must incur remote communication to read the three partitions that reside on remote disks. When parallel execution is used, the grouping is partitioned. Each partition of `Quad` is grouped separately by an ESP process. The result of each grouping is communicated to the Executor to produce the combined grouping. The local grouping at each CPU substantially reduces the amount of data to be communicated resulting in reduced work. Response time is reduced both because of work reduction as well as better load balancing.
When sequential execution was used the query used 49 sec CPU and had a response time of 78 sec. With parallel execution, the total CPU time fell to 36.5 sec and the response time fell to 26.5 sec.

2.6.2 Parallelism Can Increase Response Time

Consider the query used in Section 2.5.4 with the sequential and parallel executions shown in Figure 2.7. The parallel execution incurs greater work due to communication costs. Its response time is also increased since the parallelism available in the plan does not suffice to offset the increased work.

Consider the data point for $k = 50000$. When sequential execution was used the query used 39 sec CPU and had a response time of 66.5 sec. With parallel execution, the total CPU time rose to 102 sec and the response time rose to 109.5 sec.

Surprisingly, the response time increases to 109.5 sec even though 102/4 is less than 39. The explanation lies in the fact that there are sequential portions of the query, and the benefit from parallelism is offset by communication costs for the parallel portions. Scanning and repartitioning Single is inherently sequential. These operations can only be performed on CPU 0. Parallel execution only benefits the join and grouping. That speedup is not sufficient to offset the increase in work due to repartitioning. No parallelism is available in scanning Small and building and replicating a hash table on it. However, these operations had negligible cost compared to the rest of the query.

It should be noted that the inherent sequentiality illustrated in this example is not pathological. Selection predicates can localize a scan to a single disk (or a subset of the disks) even when a table is partitioned across several disks.

2.7 Summary of Findings

The important conclusion from our experiments is that a query optimizer should be concerned with communication costs but not with startup costs. This is based on the following findings:

- Startup costs are negligible when processes can be reused rather than created afresh.
- Communication cost consists of the CPU cost of sending and receiving messages.
- Communication costs can exceed the cost of operations such as scans, joins or grouping.
Our experiments show that the cost of parallel execution can differ substantially from that of sequential execution. The cost may be more or even less depending on what data needs to be communicated.

It is worth observing that the cost of communication relative to the cost of operators is a strong function of the quality of the implementation. For example if operators are poorly implemented, communication costs will be relatively low. Further, such a poor implementation may actually lead to the system exhibiting good scalability! This underlines the fact that scalability must be tested with respect to the best implementation on a uniprocessor.

An interesting question is how communication can be avoided or its cost reduced. Architectural techniques such as DMA are likely to help to some extent. However, most of the cost of communications tends to be incurred at software levels that are higher than DMA interfaces. Use of shared-memory is of limited value since the cost of communication through a shared piece of memory rises as the number of processors increases.
Chapter 3

JOQR Optimizations

In this chapter we develop models and algorithms for the JOQR phase that minimize the total cost of computing a query. The models take a “macro” view of query execution. They focus on exploiting physical properties such as the partitioning of data across nodes; determination of the best combination of methods for computing operators; and fixing the order of joins. “Micro” decisions about allocation of resources are the responsibility of the subsequent parallelization phase.

We start with a simple model that captures the communication incurred when data needs to be repartitioned across processors. Minimizing communication is posed as a tree coloring problem (related to classical Multiway Cut problems [DJP+ 92]) in which colors represent data partitioning.

We then enhance the model in two ways. Firstly, we generalize colors to represent any collection of physical properties (such as sort-order, indexes) that can be exploited in computing an operator. Secondly, we permit each operator to have several alternate methods by which it can be computed. This allows us to capture effects such as the fact that a Grouping may be computed very efficiently if the data is partitioned as well as sorted on the grouping attribute.

The final enhancement of the model is to allow joins to be reordered. At the end of the chapter, we describe several ways in which the algorithms may be used.

It is appropriate to contrast the models and algorithms in this chapter with work in conventional query optimization [SAC+ 79]. Besides incorporating communication costs, our contribution is to show that choosing methods and physical properties can be separated from join ordering. While join ordering requires exponential time, methods and physical properties can be chosen in polynomial

Parts of this chapter have been published in the two papers

W. Hasan and R. Motwani: Coloring Away Communication in Parallel Query Optimization, VLDB95
S. Ganguly, W. Hasan and R. Krishnamurthy: Query Optimization for Parallel Execution, Sigmod92
time. Further, join ordering only applies to joins. The algorithms for choosing physical properties and methods are applicable to any query tree. This opens up new ways of combining the different aspects of query optimization even for conventional systems.

3.1 A Model for Minimizing Communication

Partitioned parallelism which exploits horizontal partitioning of relations may require data to be *repartitioned* among sites thus incurring substantial communication costs.

Example 3.1 Assume tables `Emp(enum, name, areaCode, number)` and `Cust(name, areaCode, number)` are horizontally partitioned on two sites on the underlined attributes. The following query (in SQL2 [X3H92] syntax) determines the number of employees who are also customers in each area code. An employee and a customer are guessed to be the same person if they have the same name and phone number:

```sql
Select areaCode, Count(*)
From Cust Intersect (Select name, areaCode, number From Emp)
Group by areaCode;
```

Figure 3.1 shows two query trees that differ only in how data is repartitioned. Since tuples with the same `areaCode` need to come together, `GroupBy` is partitioned by `areaCode`. However, `Intersect` may be partitioned on *any* attribute. If we choose to partition it by `areaCode`, we will need to repartition the (projected) `Emp` table. If we partition by `name`, we will need to repartition the `Cust` table as well as the output of `Intersect`. Thus one or the other query tree may be better depending on the relative sizes of the intermediate tables.

![Figure 3.1: Query Trees: Hatched edges show repartitioning](image)

3.1.1 Partitioning

We begin with a formal definition of partitioning.
Definition 3.1 A partitioning is a pair \((a, h)\) where \(a\) is an attribute and \(h\) is a function that maps values of \(a\) to non-negative integers.

Given a table \(T\), a partitioning produces fragments \(T_0, \ldots, T_k\)

For example, the partitioning of \(\text{Emp}\) in Example 3.1 is represented as \((\text{name}, \text{hash(name) mod 2})\). The function \(\text{hash(name) mod 2}\) is applied to each tuple of \(\text{Emp}\) and the tuple placed in fragment \(\text{Emp}_0\) or \(\text{Emp}_1\) depending on whether the function returns 0 or 1.

Partitioning provides a source of parallelism since the semantics of most database operators allows them to be applied in parallel to each fragment. Suppose \(S_0, \ldots, S_k\) and \(T_0, \ldots, T_k\) are fragments of tables \(S\) and \(T\) produced by the same partitioning \(\alpha = (a, h)\).

Definition 3.2 A unary operator \(f\) is partitionable with respect to \(\alpha\) if and only if \(f(S) = f(S_0) \cup \ldots \cup f(S_k)\). A binary operator \(f\) is partitionable with respect to \(\alpha\) if and only if \(f(S, T) = f(S_0, T_0) \cup \ldots \cup f(S_k, T_k)\).

Definition 3.3 An attribute sensitive operator is partitionable only for partitionings that use a distinguished attribute. An attribute insensitive operator is partitionable for all partitionings.

The equation \(S \bowtie T = \bigcup_i (S_i \bowtie T_i)\) holds only if both \(S\) and \(T\) are partitioned on the (equi-)join attribute. Thus join is attribute sensitive. Similarly, grouping is attribute sensitive since it requires partitioning by the grouping attribute. UNION, INTERSECT and EXCEPT (set difference), aggregation, selection and projection are attribute insensitive. External functions and predicates may be either sensitive or insensitive.

3.1.2 Repartitioning Cost

Communicating tuples between operators that use different partitionings requires redistributing tuples among sites. Some percentage of tuples remain at the same site under both partitionings and therefore do not need to be communicated across sites. We believe that the crucial determinant of the extent of communication cost, given a “good” scheduler, is the attribute used for partitioning. We argue the following all or nothing assumption to be reasonable.

Good Scheduler Assumption: If two communicating operators use the same partitioning attribute, no inter-site communication is incurred. If they use distinct partitioning attributes then all tuples need to be communicated across sites.

Consider the case of two operators with different partitioning attributes. The greatest savings in communication occur if the two operators use the same set of processors. If a table with \(m\) tuples
equally partitioned across \(k \) sites is repartitioned on a different attribute, then assuming independent distribution of attributes, \((1 - \frac{1}{k})m \) tuples may be expected to change sites. Thus it is reasonable to assume all \(m \) tuples to be communicated across sites.

Now consider the case of two operators with the same partitioning attribute. We believe that any good scheduler will choose to use the same partitioning function for both operators since it not only saves communication cost but also permits both operators to be placed in a single process at each site. For example, our assumption is exactly true for symmetric schedulers (such as those used in Gamma [DGS+ 90]) that partition each operator equally over the same set of sites.

3.1.3 Optimization Problem

We associate colors with nodes as corresponding to the partitioning attribute.

Definition 3.4 The color of a node in a query tree is the attribute used for partitioning the node. An edge between nodes \(i \) and \(j \) is multi-colored if and only if \(i \) and \(j \) are assigned distinct colors.

In a query tree, the nodes for attribute sensitive operators or base tables are *pre-colored* while we have the freedom to assign colors to the remaining *uncolored* nodes.

We will associate a weight \(c_e \) with each edge \(e \) to represent the cost of repartitioning. Since this cost is incurred only if the edge is multi-colored, the total repartitioning cost is the sum of the weights of all multicolored edges. Thus the optimization problem is:

Query Tree Coloring Problem: Given a query tree \(T = (V, E) \), weight \(c_e \) for edge \(e \in E \), and colors for some subset of the nodes in \(V \), color the remaining nodes so as to minimize the total weight of multicolored edges.

Conventional cost models [SAC+ 79] provide estimates for the sizes of intermediate results. The weight \(c_e \) may be estimated as a function of these sizes. Our work is applicable regardless of the model used for estimation of intermediate result sizes or the function for estimation of repartitioning cost. We assume some method of estimating \(c_e \) to be available.

Query tree coloring is related to the classical problem of multiway cuts with the difference that multiway cut restricts pre-colored nodes to have distinct colors. Multiway cut is NP-hard for graphs but solvable in polynomial time for trees [DJP+ 92]. Chopra and Rao [CR91] developed an \(O(n^2) \) algorithm (where \(n \) is the number of tree nodes) for multiway cut for trees using linear programming techniques. The DLC algorithm in the next section is substantially simpler and has a running time of \(O(n) \). Erdos and Szekely [ES94] provide an \(O(n|C|^2) \) algorithm (where \(|C| \) is
number of colors) for the case of repeated colors. The ColorSplit algorithm in the next section is an $O(n|C|)$ algorithm based on a better implementation of their ideas.

\[\frac{\text{COUNT}}{\text{EXCEPT}} \]
\[\text{UNION} \]
\[\text{CarParts} \quad \text{BoatParts} \]
\[\text{AirParts} \]
\[\text{A} \quad \text{B} \quad \text{C} \]

(ii) (iii)

Figure 3.2: (i) Query Tree; (ii) Coloring of cost 7; (iii) Minimal Coloring of cost 6

Example 3.2 Figure 3.2(i) shows the query tree for a query to count parts used in manufacture of aircraft but not of cars or boats. The three base tables are assumed to be partitioned on distinct attributes (colors) A, B, and C. Figures 3.2(ii) and 3.2(iii) show two colorings. The cost of a coloring is the sum of the cut edges which are shown hatched. The coloring in Figure 3.2(ii) is obtained by the simple heuristic of coloring an operator so as to avoid repartitioning the most expensive operand. The minimal coloring is shown in Figure 3.2(iii); here, \text{UNION} is not partitioned on the partitioning attributes of any of its operands.

3.2 Algorithms for Query Tree Coloring

Coloring nodes may equivalently be viewed as cutting/collapsing edges. An edge between nodes of distinct colors is cut while an edge between nodes of identical colors is collapsed. This view constrains colors of adjacent nodes to be identical or distinct without fixing actual colors.

We first present some simplifications of the problem in Section 3.2.1. In Section 3.2.2, we consider the restricted problem in which all pre-colored nodes have distinct colors. We show this problem to be solvable by a simple greedy algorithm that runs in linear time. Section 3.2.3 shows the greedy algorithm to fail when colors are repeated and develops a $O(n|C|)$ dynamic programming algorithm (n is the number of tree nodes and $|C|$ the number of colors). Section 3.2.4 discusses extensions to deal with optimization opportunities provided by choices in access methods (due to indexes, replication of tables) and choices in join and grouping attributes.
3.2.1 Problem Simplification

The problem of coloring a tree can be reduced to coloring a set of trees which have the special property that all interior nodes are uncolored and all leaves are pre-colored. This follows from the following observations which imply that colored interior nodes may be split into colored leaves, and uncolored leaves may be deleted.

(Split) A colored interior node of degree \(d \) may be split into \(d \) nodes of the same color and each incident edge connected to a distinct copy. This decomposes the problem into \(d \) sub-problems which can be solved independently.

(Collapse) An uncolored leaf node may be collapsed into its parent. This gives it the same color as its parent which is minimal since it incurs zero cost.

![Figure 3.3: (i) Split colored interior node (ii) Collapse uncolored leaves](image)

The following procedure achieves the simplified form in time linear in the number of nodes in the original tree. Figure 3.3 illustrates the simplification process.

Algorithm 3.1 Procedure *Simplify*

1. \textbf{while} \(\exists \) uncolored leaf \(l \) with parent \(m \) \textbf{do}
2. \hspace{1em} collapse \(l \) with \(m \);
3. \hspace{1em} \textbf{while} \(\exists \) colored interior node \(m \) with degree \(d \) \textbf{do}
4. \hspace{2em} split \(m \) into \(d \) copies with each copy connected to distinct a edge.

3.2.2 A Greedy Algorithm for Distinct Pre-Colorings

We now focus on the restricted case when all pre-colored nodes have distinct colors. By the discussion in the previous section, we only need to consider trees in which a node is pre-colored if and only if it is a leaf node.
Definition 3.5 A node is a mother node if and only if all adjacent nodes with at most one exception are leaves. The leaf nodes are termed the children of the mother node.

The algorithm repeatedly picks mother nodes and processes them by either cutting or collapsing edges. Each such step creates smaller trees while preserving the invariant that all and only leaf nodes are colored. We are finally left with a set of trivial trees that may be easily colored. The following two lemmas make such processing possible.

Suppose \(m \) is a mother node with edges \(e_1, \ldots, e_d \) to leaf children \(v_1, \ldots, v_d \). Assume we have numbered the children in order of non-decreasing edge weight, i.e., \(c_{e_1} \leq c_{e_2} \leq \cdots \leq c_{e_d} \).

Lemma 3.1 There exists a minimal coloring that cuts \(e_1, \ldots, e_{d-1} \).

Proof: The proof uses the fact that all leaves have distinct colors. In any coloring at least \(d - 1 \) leaves have a color different from \(m \). If the optimal colors \(m \) differently from all leaves, the lemma is clearly true. If not, then suppose \(m \) has the same color as leaf \(v_i \) and let this color be \(A \). Let the color of \(v_d \) be \(B \). Change all A-colored nodes (other than \(v_i \)) to be B-colored nodes. Such a change is possible since no pre-colored node other than \(v_i \) may have color \(A \). Since \(c_{e_1} \leq c_{e_d} \), the new coloring has no higher cost.

Notice that after we cut edges using the above lemma, we are left with a mother node with one child. Consider the case in which the mother node has a parent. Then the mother node is of degree 2 and the following lemma shows how we can deal with this case. Let the incident edges be \(e_1 \) and \(e_2 \) such that \(c_{e_1} \leq c_{e_2} \). Since \(m \) is not pre-colored, a minimal coloring will always be able to save the cost of the heavier edge.

Lemma 3.2 There is a minimal coloring that collapses \(e_2 \).

The last case is when the mother node has only one child and no parent. In other words, the tree has only two nodes. Such trees are termed trivial and can be optimally colored by giving the child the color of its mother.

Notice that the invariant that exactly leaf nodes are colored remains true after any of the lemmas is used to cut/collapse edges. Thus, for any non-trivial tree, one of the two lemmas is always applicable. Since the application of a lemma reduces the number of edges, repeated application leads to a set of trivial trees. These observations lead to the algorithm given below for find a minimal coloring.

Algorithm 3.2 Algorithm DLC
1. while ∃ mother node \(m \) of degree at least 2 do
2. Let \(m \) have edges \(e_1, \ldots, e_d \) to \(d \) children; Let \(c_{e_1} \leq \ldots \leq c_{e_d} \);
3. if \(d > 1 \) then cut \(e_1, \ldots, e_{d-1} \)
4. else Let \(e_p \) be the edge from \(m \) to its parent;
5. if \(c_{e_p} < c_{e_1} \) then collapse \(e_1 \) else collapse \(e_p \).
6. end while;
7. color trivial trees.

Since each iteration reduces the number of edges, the running time of the algorithm is linear in the number of edges.

3.2.3 Algorithm for Repeated Colors

![Query Tree](image)

Figure 3.4: (i) Query Tree (ii) Suboptimal DLC coloring (cost=9) (iii) Optimal coloring (cost=8)

The following example shows that DLC may not find the optimal coloring when colors are repeated.

Example 3.3 Figure 3.4(i) shows a query tree for a query that finds employees who are customers as well as suppliers. Taking the tables \(\text{Supp} \), \(\text{Cust} \), and \(\text{Emp} \) to be partitioned on distinct attributes, we pre-color them by colors \(A, B, \) and \(C \) respectively. We now have repeated colors and two “widely separated” leaves are both pre-colored \(A \). The DLC algorithm finds the sub-optimal coloring shown in Figure 3.4(b) since it makes a local choice of cutting away the \(A \) leaves. The optimal coloring shown in Figure 3.4(c) exploits the like colored leaves to achieve a lower cost.

Thus, repeated colors make it difficult to make greedy choices of colors. Brute force enumeration is undesirable since the number of colorings for \(c \) colors and \(n \) nodes is \(c^n \).

Recall from Section 3.2.1 that a colored interior node may be split to decompose the problem into smaller subproblems that are independently solvable. Since interior nodes are all initially uncolored, this observation can only be exploited after coloring an interior node. A further observation that we will make is that the subproblems can be posed in a manner that makes them independent of
the color chosen for the interior node. We now develop an efficient algorithm based on dynamic programming that exploits problem decomposition while trying out different colors for each node.

Definition 3.6 $\text{Opt}(i, A)$ is defined to be the minimal cost of coloring the subtree rooted at i such that i is colored A. If node i is pre-colored with a color different from A, then $\text{Opt}(i, A) = \infty$.

Definition 3.7 $\text{Opt}(i)$ is defined as $\min_a \text{Opt}(i, a)$, i.e., the minimal cost of coloring the subtree rooted at i irrespective of the color of i.

Consider a tree (Figure 3.5) in which root node i has children $\alpha_1, \alpha_2, \ldots, \alpha_k$. Let the edge from i to α_j have weight c_j, and let T_j be the subtree rooted at α_j. If we fix a color for node i, we can decompose the tree into k “new” trees by splitting node i into k copies. Since the only connection between new trees was through i, they may now be colored independently of each other. Thus $\text{Opt}(i, A)$ is the sum of the minimal colorings for the k new trees.

Consider the jth new tree. The minimal coloring either pays for the edge (i, α_j) or it does not. If it pays for the edge, then it can do no better than using the minimal coloring for T_j, thus incurring a cost of $c_j + \text{Opt}(\alpha_j)$. If it does not pay for the edge, it can do no better than the minimal coloring that gives color A to node α_j thus incurring a cost of $\text{Opt}(\alpha_j, A)$. The next lemma follows by taking the cost of coloring the jth new tree to be the best of these cases. It provides a way of finding the cost of a minimal coloring.

Lemma 3.3 The minimal cost $\text{Opt}(i, A)$ of coloring the subtree rooted at i such that i gets color A is

$$
\text{Opt}(i, A) = \begin{cases}
\infty & \text{i pre-colored with color other than } A \\
0 & \text{i a leaf, uncolored or pre-colored } A \\
\sum_{1 \leq j \leq k} \min[\text{Opt}(\alpha_j, A), c_j + \text{Opt}(\alpha_j)] & \text{otherwise}
\end{cases}
$$

Example 3.4 Figure 3.6 shows Opt_c and Opt for the tree of Figure 3.4. Lemma 3.3 may be applied to fill up columns of these tables in a left to right manner. The first column is for the Emp_1 node.
that is pre-colored by color A. By the first two cases of the formula of Lemma 3.3, the row for color A in this column is 0 and the other two entries are ∞. The entry in the Opt table is the minimum of the column values.

Consider the last column of the table that represents entries for the Union node. This column is computed using the values in the columns for the children of the Union node, i.e., columns for Intersect$_1$ and Intersect$_2$. For example, $Optc(\text{Union}, A)$ is the sum:

$$
\min[Optc(\text{Intersect}_1, A), 3 + Opt(\text{Intersect}_1)] + \\
\min[Optc(\text{Intersect}_2, A), 3 + Opt(\text{Intersect}_2)].
$$

If the query tree has root i, then $Opt(i)$ is the cost of the any optimal coloring. If A is a color such that $Optc(i, A) = Opt(i)$, then there must be an optimal coloring the gives color A to i. Once we know an optimal color for i, we can pick optimal colors for the children of i by applying Lemma 3.3 in “reverse” as follows:

Lemma 3.4 If i gets color A in some minimal coloring, there exists a minimal coloring such that child α_j of i has color A if $Optc(\alpha_j, A) \leq c_j + Opt(\alpha_j)$ and any color a for which $Optc(\alpha_j, a) = Opt(\alpha_j)$ otherwise.

Lemmas 3.3 and 3.4 lead to the following $ColorSplit$ algorithm. Letting C be the set of colors used for pre-colored nodes, the algorithm has a running time of $O(n|C|)$.

Algorithm 3.3 Algorithm $ColorSplit$

1. **for each** node i in postfix order **do** step 2
2. **for each** color $a \in C$ **do** steps 3 and 4
3. compute $Optc(i, a)$ using Lemma 3.3;
4. $Opt(i) = \min_a Optc(i, a)$
5. Let $a \in C$ be such that $Opt_c(r, a) = Opt(r)$ where r is the root
6. $\text{color}(r) = a$;
7. for each non-root node α_j in prefix order do steps 8 to 11
8. Let i be the parent of α_j; Let c_j be the weight of edge between i and α_j;
9. if $Opt_c(\alpha_j, \text{color}(i)) \leq c_j + Opt(\alpha_j)$
10. then $\text{color}(\alpha_j) = \text{color}(i)$
11. else $\text{color}(\alpha_j) = a \in C$ such that $Opt_c(\alpha_j, a) = Opt(\alpha_j)$

We further observe that $ColorSplit$ does not require the input tree be such that all and only the leaf nodes are pre-colored. It finds the optimal coloring for any tree. In other words, the tree need not be pre-processed by the $Simplify$ algorithm of Section 3.2.1. Having pre-colored interior nodes actually reduces the running time of $ColorSplit$ since the first two cases of Lemma 3.3, which are simpler than the third case, may be used.

$ColorSplit$ is a fast algorithm. While pre-processing with $Simplify$ offers the possibility of reducing the running time of $ColorSplit$ (by reducing the number of colors in each new tree), additional gains may not be worth the implementation effort.

3.2.4 Extensions: Using Sets of Colors

We show that the mechanism of using a set of colors rather than a single color to pre-color a node makes several extensions possible. Handling sets of colors does not increase the complexity of $ColorSplit$. The intuitive reason is that any pre-coloring constrains the search space and thus can only reduce the running time of the algorithm.

Pre-coloring with a set of nodes serves to restrict the choices of colors that the $ColorSplit$ algorithm may make for a node. This restriction is implemented by the formula given in Lemma 3.3 which may be modified as shown below.

Lemma 3.5 (Modified Lemma 3.3) The minimal cost $Opt_c(i, A)$ of coloring the subtree rooted at i such that i gets color A is given by

$$
Opt_c(i, A) = \begin{cases}
\infty & A \text{ is not in set of pre-colors for } i \\
0 & i \text{ a leaf, uncolored or has } A \text{ as pre-color} \\
\sum_{1 \leq j \leq k} \min[Opt_c(\alpha_j, A), c_j + Opt(\alpha_j)] & \text{otherwise}
\end{cases}
$$

This is the only modification needed for $ColorSplit$ to work with a set of pre-colors. The modified algorithm finds the optimal in $O(n|C|)$ running time. Notice that using a set of pre-colors
does not change the worst case running time of the algorithm since any pre-coloring (set or single color) reduces the running time of the algorithm by simplifying the computation of O_{ptc}.

Access Methods: Typically, the columns needed from a table may be accessed in several alternate ways. For example if a table is replicated then any copy may be accessed. Further, an index provides a copy of the indexing columns as well as permits access to the remaining columns. Each access method may potentially provide a different partitioning. We may model this situation by associating a set of colors with each base table node, one color per partitioning. We observe that each access method may have a different cost in addition to delivering a different partitioning. Such interactions between the cost of computation and communication are handled in Section 3.3.

Compound Attributes: Thus far we have considered attribute sensitive operators such as joins and groupings to have a single color. When such operators are based on compound attributes, additional opportunities for optimization arise that may be expressed by sets of pre-colors.

Example 3.5 Given the tables $\text{Emp}(\text{emp#}, \text{dep#}, \text{city})$ and $\text{Dep}(\text{dep#}, \text{city})$, the following query finds employees who live in the same city as the location of their department.

Select e From Emp e, Dep d

Where $e.\text{dep#} = d.\text{dep#}$ \textbf{and} $e.\text{city} = d.\text{city}$

Since a join operator has to be partitioned on the join column, the required partitioning depends on the predicate chosen to be the join predicate. In Figure 3.7, the first query tree uses the join predicate on dep# and requires the Emp table to be repartitioned. The second uses the join predicate on city

![Figure 3.7: Interaction of Repartitioning with Join Predicates](image)

may be modeled by pre-coloring the join node by a set of two colors $\{\text{dep#}, \text{city}\}$. We observe that choice of the join predicate may impact the cost of the join-method. Such interactions between the cost of computation and communication are postponed to Section 3.3. □
Similar observations apply to other attribute sensitive operators. Given a grouping of employees by department and city, we pre-color the GROUPBY operator by \{dep#, city\}. A partitioning guarantees that tuples that agree on the partitioning attribute(s) are assigned to the same site. Given some set of attributes \(X\), a partitioning on any non-empty subset of \(X\) is also a partitioning on \(X\). The most general way of modeling this situation is by pre-coloring an attribute sensitive operator that has compound attribute \(X\) by a set colors, one color for each non-empty subset of \(X\).

Partitioning Functions: Suppose two base tables are partitioned on the same attribute \(A\) using different partitioning functions (We consider two attributes to be the “same” attribute w.r.t. a query if they are equated by an equality predicate.) For example, one table may be hash partitioned on \(A\) and the other range partitioned. We will fix this situation by giving distinct colors (say \(B_1\) and \(B_2\)) to the two tables. Any attribute sensitive operator that needs a partitioning on \(A\) could use either of the two partitions and will therefore be given the set of colors \(\{B_1, B_2\}\).

3.3 Model for Methods and Physical Properties

We have so far been concerned with communication costs incurred by repartitioning and have blithely considered the cost of an operator to be independent of the partitioning attribute.

Several alternate strategies, each with a different cost, may be available for an operator. The following example shows that the cost of an operator depends on the chosen strategy as well as several physical properties of data. The partitioning attribute is simply one of these physical properties.

Example 3.6 Given the schema Emp (emp#, salary, dep#, city) and Dep (dep#, city), the following query finds the average salaries of employees grouped by city for those employees who live in the same city as the the location of their department.

Select e.city, avg(e.salary)

From Emp e, Dep d

Where e.dep# = d.dep# and e.city = d.city

Group by e.city;

Suppose Emp is partitioned by city and each partition is stored in sorted order by city. Suppose Dep is partitioned by dep# and each partition has an index on dep#. Figure 3.8 shows two query trees. The computation of Avg is assumed to be combined with GroupBy. The first query tree uses the join predicate on dep# and repartitions the Emp table. Due to the availability
of an index on Dep, a nested-loops strategy may be the cheapest for joining each partition of Emp (outer) with its corresponding partition of Dep (inner). The grouping operator is implemented by a hash-grouping strategy.

The second query tree uses the join predicate on city and repartitions the Dep table. Since each partition of Emp is pre-sorted, it may be cheapest to use a sort-merge join for joining corresponding partitions. Since the output of merge join is pre-sorted in addition to being pre-partitioned on the city, the grouping operator uses a sort-grouping strategy.

The example illustrates several points. Firstly, while partitioning impacts communication costs, other physical properties (sort-order and indexes) impact operator cost. We will generalize the notion of a color to capture all physical properties. Secondly, a strategy expects its inputs to have certain physical properties and guarantees its output to have some other properties. We will specify such input-output constraints using color patterns. Thirdly, the overall cost is reduced when an input to a strategy happens to have the expected physical property. We will therefore break the cost of computing an operator into the intrinsic cost of the strategy itself and the cost of getting the inputs into the right form. The latter will be modeled as a re-coloring cost that may or may not be incurred.

3.3.1 Annotated Query Trees and their Cost

We now allow a query tree to have annotations. Each interior node of a query tree is annotated by a strategy, an output color, and a color for each input. The leaf nodes have an output color but no strategy.

We have so far used a color to represent the attribute on which data is partitioned. We now generalize a color to be a triple \(\langle p : a_1, s : a_2, i : a_3 \rangle \) where \(a_1 \) is the partitioning attribute, \(a_2 \) the sort attribute and \(a_3 \) the indexing attribute (this is easily generalizable to quadruples etc. if more physical properties are to be modeled).

A strategy specifies a particular algorithm for computing an operator. It requires the inputs to
satisfy some constraints and guarantees some properties for its output. We will use color patterns to specify such input-output constraints. A constraint has the form $\text{Input}_1, \ldots, \text{Input}_k \rightarrow \text{Output}$, where Input_j and Output are color patterns. A color pattern is similar in syntax to a color but allows the use of variables and wild-cards. Table 3.1 shows examples of input-output constraints for several strategies.

If some input is not colored as required, a re-coloring is needed. Re-coloring requires repartitioning, sorting, or building an index.

Example 3.7 The Emp table of Example 3.6 (Figure 3.8) has the output color $\langle p : \text{city}, s : \text{city}, i : \text{none} \rangle$ while Dep has $\langle p : \text{dep#}, s : \text{none}, i : \text{dep#} \rangle$. In the first query tree of Figure 3.8, the join uses the nested-loops strategy and its output has the color $\langle p : \text{dep#}, s : \text{city}, i : \text{none} \rangle$. From the first row of Table 3.1, this implies that the color of input1 (Emp) should be $\langle p : \text{dep#}, s : \text{city}, i : \text{none} \rangle$ and that of input2 (Dep) should be $\langle p : \text{dep#}, s : \text{dep#}, i : \text{dep#} \rangle$. The color of Dep matches the requirements but that of Emp does not.

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Output</th>
<th>Input1</th>
<th>Input2</th>
<th>Additional requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nested-Loops Join</td>
<td>$\langle p : X, s : Y, i : \text{none} \rangle$</td>
<td>$\langle p : X, s : Y, i : \text{none} \rangle$</td>
<td>$\langle p : X, s : *, i : X \rangle$</td>
<td>Join predicate on X</td>
</tr>
<tr>
<td>Sort-Merge Join</td>
<td>$\langle p : X, s : X, i : \text{none} \rangle$</td>
<td>$\langle p : X, s : X, i : \text{none} \rangle$</td>
<td>$\langle p : X, s : *, i : X \rangle$</td>
<td>Join predicate on X</td>
</tr>
<tr>
<td>Hybrid-Hash Join</td>
<td>$\langle p : X, s : Y, i : \text{none} \rangle$</td>
<td>$\langle p : X, s : Y, i : \text{none} \rangle$</td>
<td>$\langle p : X, s : *, i : * \rangle$</td>
<td>Join predicate on X</td>
</tr>
<tr>
<td>Hash Grouping</td>
<td>$\langle p : X, s : \text{none}, i : \text{none} \rangle$</td>
<td>$\langle p : X, s : \text{none}, i : \text{none} \rangle$</td>
<td>$\langle p : X, s : *, i : * \rangle$</td>
<td>X is a grouping attribute</td>
</tr>
<tr>
<td>Sort Grouping</td>
<td>$\langle p : X, s : X, i : \text{none} \rangle$</td>
<td>$\langle p : X, s : X, i : \text{none} \rangle$</td>
<td>$\langle p : X, s : *, i : * \rangle$</td>
<td>X is a grouping attribute</td>
</tr>
<tr>
<td>Hash Intersect</td>
<td>$\langle p : X, s : \text{none}, i : \text{none} \rangle$</td>
<td>$\langle p : X, s : \text{none}, i : \text{none} \rangle$</td>
<td>$\langle p : X, s : *, i : * \rangle$</td>
<td>X is a grouping attribute</td>
</tr>
</tbody>
</table>

Table 3.1: Examples of Input-Output Constraints

Our goal is to devise an abstract cost model that is compatible with classical cost models. Such classical models typically consists of two parts: (a) estimation of statistics (such as size, number of unique values in columns) for intermediate results; and, (b) estimation of cost of an operator given statistics and physical properties of operands. Our goal is not to provide new formulas but to provide abstractions that make it possible to reason with formulas provided by existing models in a more general manner.

Definition 3.8 R^* is the set of statistics for table R. R^* depends only on the contents of table R, not on how it is physically stored.

Definition 3.9 $\text{recolor}(R^*, c_{\text{old}}, c_{\text{new}})$ is the cost of re-coloring table R from c_{old} to c_{new}.

Definition 3.10 $\text{inpCol}(s, A, j)$ is the color pattern needed by strategy s for input j for the output to be of color pattern A.
Example 3.8 The color required for the first input of the nested-loops join in the first query tree of Figure 3.8 is $c_{\text{new}} = \langle p : \text{dep#}, s : \text{city}, i : * \rangle$. Since the output color (call it c_{old}) of Emp differs in partitioning attribute, $\text{recolor}(R, c_{\text{old}}, c_{\text{new}})$ is the cost of repartitioning Emp on the city attribute.

The cost of an annotated query tree is the sum of the costs of all operators. The cost of an operator consists of re-coloring the inputs to have colors needed by the chosen strategy plus the cost of the strategy itself. Suppose the root of tree T uses strategy s and has output color a. Let $c_j' = \text{inpCol}(s, a, j)$, the color required by strategy s for the j'th input. Let T have k immediate subtrees T_1, \ldots, T_k such that T_j produces table R_j with color c_j.

$$\text{Cost}(T) = \text{StrategyCost}(s, R_1', \ldots, R_k') + \sum_{j=1}^{k} \text{recolor}(R_j', c_j, c_j') + \sum_{j=1}^{k} \text{Cost}(T_j)$$

If T is a leaf, we take its cost as zero since we count the cost of accessing operands as part of the cost of a strategy. Since the output of a query is always shipped to an application, the root of any query tree will be a unary operator that achieves the shipping. By convention, we will omit showing this operator.2

Observe that no restriction is placed on the form of the StrategyCost() or recolor() functions. This allows, for example, non-linear terms such as logarithms, product and division that do occur in the classical System R [SAC$^+$ 79] cost model.

3.4 Extension of ColorSplit for Methods and Physical Properties

We will now develop an extension of ColorSplit that given a tree with colors for the leaf nodes finds a minimal-cost strategy as well as input and output colors for each interior node.

Definition 3.11 $\text{OptC}(i, A)$ is defined to be the minimal cost of the subtree rooted at node i such that i has output color A. $\text{OptCStrategy}(i, A)$ is defined to be the strategy that achieves this minimal value (pick any one strategy if several are minimal).

For a leaf node i, $\text{OptC}(i, A) = 0$ if i is pre-colored with a color compatible with A and ∞ otherwise. We will treat $\text{OptCStrategy}(i, A)$ as undefined for leaf nodes.2

2Consider a query that simply scans a table. It will have a query tree consisting of a Ship with Scan as the only child. Observe that the cost of scanning data is counted as part of Ship.
Definition 3.12 Strategies(i, A) is the set of strategies applicable to the operator represented by node i and whose input-output constraint permits A as an output color.

The following is a generalization of Lemma 3.3. Let node i have children α1, . . . , αk. Suppose the subtree rooted at αj computes table Rj as its output. The minimum cost of the tree rooted at i such that i has output color A is obtained by trying out all strategies capable of producing output color A. The lemma shows that for any such strategy s, the lowest cost is achieved by individually minimizing the cost of each input.

Lemma 3.6 For a leaf node i, Optc(i, A) is 0 if i has a color compatible with A and ∞ otherwise. For non-leaf node i, Optc(i, A) obeys the following recurrence.

\[
Optc(i, A) = \min_{s \in S} \left[StrategyCost(s, R^i_1, \ldots, R^i_k) + \sum_{j=1}^{k} \min_{c \in C}[Optc(\alpha_j, c) + recolor(R^j_c, inpCol(s, A, j))]\right]
\]

where \(S = Strategies(i, A) \)

OptcStrategy(i, A) is some strategy for which the minima is achieved.

Using the lemma, the following algorithm computes Optc and OptcStrategy by a bottom-up followed by a subsequent top-down pass that extracts optimal colors and strategies.

Algorithm 3.4 Algorithm ExtendedColorSplit

1. for each node i in postfix order do step 2
2. Use Lemma 3.6 to compute Optc(i, a) and OptcStrategy(i, a) for each color a ∈ C
3. Let r be the root and a a color s.t. Optc(r, a) ≤ Optc(r, c) for all colors c ∈ C
4. Optimal color for r is a and optimal strategy is OptcStrategy(r, a)
5. for each non-root node in prefix order do step 6
6. compute optimal colors and strategies by top-down pass applying Lemma 3.6 in reverse.

The algorithm has a worst-case running time of \(nS|C|^2 \) where S is the number of strategies, |C| the number of allowable colors and n the number of nodes in the tree.

Since n and S are typically small, the running time of the algorithm is dependent on |C|. |C| can become large when we permit the extensions discussed in section 3.2.4. The magnitude of |C| may be kept small by observing (1) no strategy yields an output relation with an index. Thus only 2 components of the triple for colors are relevant for interior nodes (2) only colors that might be useful to subsequent operator need to be considered.
3.5 Model With Join Ordering

We now show an example of how repartitioning costs interact with the order of joins.

Example 3.9 Suppose the tables \(\text{Emp}(\text{emp\#}, \text{city}), \text{EmpSkills}(\text{emp\#}, \text{skill\#}) \), and \(\text{Skills}(\text{skill\#}, \text{skilltype}) \) are partitioned by the underlined attributes. The following query finds employees who live in Palo Alto and have analytical skills.

\[
\text{Select } e \text{ from } \text{Emp} e, \text{EmpSkills} es, \text{Skills} s
\]
\[
\text{Where } e.\text{emp\#} = es.\text{emp\#} \text{ and } es.\text{skill\#} = s.\text{skill\#} \text{ and } s.\text{skilltype} = \text{Analytical} \text{ and } e.\text{city} = \text{Palo Alto}
\]

Figure 3.9(i) and (ii) shows two alternate query trees. The trees use different join orders and incur different repartitioning costs. If “s.skilltype = analytical” is a highly selective predicate, the second tree may achieve a low cost due to the small size of the intermediate table \(\text{Skills} \bowtie \text{EmpSkills} \). However, the first tree avoids the cost of repartitioning the possibly very large \(\text{EmpSkills} \) table. Thus repartitioning cost impacts the ordering of joins. Figure 3.9(iii) illustrates the details of the strategy annotations for join operations.

Commercially adopted solutions to join ordering are typically variations of the System R algorithm [SAC+ 79]. Our goal is to combine the basic ideas from this algorithm with the ColorSplit algorithm. We will start by developing an abstraction of some aspects of the System R style dynamic programming. This will us to understand and analyze the basic ideas while ignoring many details of the actual algorithm.

3.5.1 Join Ordering Without Physical Properties

Definition 3.13 A join tree is an annotated query tree in which all interior nodes represent 2-way join operations and leaves represent tables.
Since join operations are associative and commutative, they may be performed in any order. Given a SPJ query on tables T_1, \ldots, T_n, the join ordering problem is to find a minimal cost join tree for computing the query. A join tree fixes the order of joins in addition to the strategy for each join. We will use a nested list notation to represent join trees. For example, the tree of figure 3.9(iii) may be represented as $[s_2, [s_1, \text{Skills, EmpSkills, Emp}]]$

For simplicity, we first consider the case when re-coloring has zero cost. In other words, physical properties do not make a difference to cost and we have:

$$Cost(T) = \begin{cases} 0 & \text{if } T \text{ is a leaf} \\ StrategyCost(s, R^*_l, R^*_r) + Cost(T_l) + Cost(T_r) & \text{if } T = [s, T_l, T_r] \end{cases}$$

The following lemma follows from the structure of the cost formula and implies that any subtree of an optimal query tree must be an optimal query tree for the corresponding sub-query.

Lemma 3.7 If $OptPlan(Q) = [s, T_l, T_r]$ and $Q = Q_l \cup Q_r$ where T_l computes the sub-query over Q_l and T_r over Q_r, then $OptPlan(Q_l) = T_l$ and $OptPlan(Q_r) = T_r$

This lemma leads to the following dynamic programming algorithm:

Algorithm 3.5 Algorithm JO (Join Ordering)

Input: SPJ query on tables $T = \{T_1, \ldots, T_n\}$
Output: Optimal join tree.
1. for $i = 1$ to n do $OptPlan(\{T_i\}) = T_i$
2. for $i = 2$ to n step 3
3. for each $Q \subseteq T$ s.t. $|Q| = i$ do steps 4 and 5
4. $bestCost = \infty$
5. for each $Q_l \neq \emptyset$, $Q_r \neq \emptyset$ s.t. $Q = Q_l \cup Q_r$ do steps 6 and 7
6. Let R^*_l, R^*_r be statistics for tables computed by queries Q_l, Q_r
7. for each join strategy s do steps 8 to 11
8. if $StrategyCost(s, R^*_l, R^*_r) < bestCost$ then
9. $bestCost = StrategyCost(s, R^*_l, R^*_r)$
10. $OptPlan(Q) = [s, OptPlan(Q_l), OptPlan(Q_r)]$
11. end if

The algorithm has a running time of $O(3^n)$. Since plans for all subsets of Q are cached, and a plan for i tables has storage cost proportional to i, the space requirements of the algorithm are
A brute force enumeration of all trees would run in $O(2^n/n!)$ time but require only $O(n)$ space (for 1 plan).

Often systems choose a restricted class of shapes of join trees. A popular restriction is left-deep trees that require the left child of any interior node to be a leaf. This cuts the number of trees to $n!$ and the algorithm runs in $O(n^2n)$ time.

3.5.2 Join Ordering With Physical Properties

Suppose strategy s requires input colors c^l_i and c^r_i. Suppose sub-plan (subtree) T_l produces table R_l with color c_l (R_r and c_r for sub-plan T_r).

$$\text{Cost}(T) = \begin{cases}
0 & \text{if } T \text{ is a leaf} \\
\text{recolor}(R^*_l, c_l, c^l_i) + \text{recolor}(R^*_r, c_r, c^r_i) + \\
\text{StrategyCost}(s, R^*_l, R^*_r) + \text{Cost}(T_l) + \text{Cost}(T_r) & \text{if } T = [s, T_l, T_r]
\end{cases}$$

Let $Optc(Q, A)$ be the cost of an optimal join tree for the set of tables Q such that the output has physical property A.

Lemma 3.8 $Optc(Q, a)$ obeys the following recurrence:

$$Optc(Q, a) = \min_{Q_l, Q_r} \left\{ \min_{s \in S} \left[\text{StrategyCost}(s, Q_l, Q_r) \\
+ \min_{a \in C} \left[Optc(Q_l, a) + \text{recolor}(Q^*_l, a, \text{inpCol}(s, a, 1)) \right] \\
+ \min_{a \in C} \left[Optc(Q_r, a) + \text{recolor}(Q^*_r, a, \text{inpCol}(s, a, 2)) \right] \right] \right\}$$

where Q_l and Q_r are all sets such that $Q = Q_l \cup Q_r$, $Q_l \neq \emptyset$, $Q_r \neq \emptyset$ and S is the set of strategies that produce property a.

Algorithm 3.6 Algorithm JOP (Join Ordering With Physical Properties)

Input: An SPJ query on tables $T = \{T_1, \ldots, T_n\}$

Output: An optimal join tree.

1. for $i = 1$ to n do step 2
2. $Optc(T_i, a) = \begin{cases}
0 & T_i \text{ has access method with physical property } a \\
\infty & \text{otherwise}
\end{cases}$
3. for $i = 2$ to n do step 4
4. for each $Q \subseteq T$ s.t. $|Q| = i$ do steps 5 and 6
5. \(Optc(Q, a) = \infty \) for each physical property \(a \in C \)
6. \(\text{for each } Q_l \neq \emptyset, Q_r \neq \emptyset \text{ s.t. } Q = Q_l \cup Q_r \text{ do steps 7 and 8} \)
7. Let \(R_l^*, R_r^* \) be statistics for tables computed by queries \(Q_l, Q_r \)
8. \(\text{for each physical property } a \in C \text{ do step 9} \)
9. \(\text{for each strategy } s \text{ that can produce property } a \text{ do steps 10 and 11} \)
10. Let \(scost = StrategyCost(s, R_l^*, R_r^*), a'_l = inpCol(s, a, 1) \) and \(a'_r = inpCol(s, a, 2) \)
11. \(\text{for each physical property } a_l \in C, a_r \in C \text{ do steps 12 to 16} \)
12. Let \(newcost = scost + Optc(Q_l, a_l) + recolor(R_l^*, a_l, a'_l) + Optc(Q_r, a_r) + recolor(R_r^*, a_r, a'_r) \)
13. \(\text{if } newcost < Optc(Q, a) \text{ then} \)
14. \(Optc(Q, a) = newcost \)
15. \(OptPlan(Q, a) = [s, OptPlan(Q_l, a_l), OptPlan(Q_r, a_r)] \)
16. \(\text{end if} \)
17. \(\text{return } Min_{a \in C} OptPlan(T, a) \)

A complex query may be decomposed into SPJ queries connected by other operators (Figure 3.10). We remark that it is possible to integrate the \(JOP \) and \(ExtendedColorSplit \) algorithms in a straightforward manner to produce an optimal annotated query tree. The tree is optimal with respect to all allowed orderings within SPJ boxes and all possible annotations of nodes.

3.6 Usage of Algorithms

There are several ways in which the algorithms developed in this chapter may be used. One possibility is to use \(ExtendedColorSplit \) as a post-pass to a conventional optimizer. This has two
advantages. First, no modifications is required to existing optimizers. Secondly, *ExtendedColorSplit* runs in polynomial time. The disadvantage is that the query trees will have optimal annotations given the join orders produced by the conventional optimizer. The second possibility is to produce optimal join order as well as annotation by using the integration of the *JOP* and *ExtendedColorSplit* as a replacement for a conventional optimizer.
Chapter 4

Scheduling Pipelined Parallelism

In this chapter\(^1\), we focus on the problem of scheduling a pipelined operator tree, which is an operator tree in which all edges are pipelining edges. Pipelined parallelism permits all operators in such a tree to run concurrently. Scheduling such trees poses a parallelism-communication trade-off. A producer and a consumer operator must either communicate data across processors to benefit from and run on distinct processors, or they must share a processor but save communication.

We will measure the quality of scheduling algorithms by their performance ratio [GJ79] which is the ratio of the response time of the generated schedule to that of the optimal. Our goal is to devise algorithms that are near-optimal in the sense that the average performance ratio should be close to 1 and the worst performance ratio should be a small constant.

We start by defining the problem more precisely. We then develop and analyze several algorithms followed by an experimental comparison.

4.1 Problem Definition

Definition 4.1 Given \(p \) processors and an operator tree \(T = (V, E) \), a schedule is a partition of \(V \), the set of nodes, into \(p \) sets \(F_1, \ldots, F_p \) with set \(F_k \) allocated to processor \(k \).

The cost of executing \(F_k \) is the cost of executing all nodes in \(F_k \) plus the cost for communicating with nodes on other processors. It is thus the sum of the weights of all nodes in \(F_k \) and the weights

\(^1\)Parts of this chapter have been published in the two papers

W. Hasan and R. Motwani: Optimization Algorithms for Exploiting the Parallelism-Communication Tradeoff in Pipelined Parallelism, VLDB94

C. Chekuri, W. Hasan and R. Motwani: Scheduling Problems in Parallel Query Optimization, PODS95
of all edges that connect a node within F_k to a node outside. For convenience, we define $c_{ij} = 0$ if there is no edge from i to j.

Definition 4.2 The load L_k on processor k is $\sum_{i \in F_k} t_i + \sum_{j \notin F_k} c_{ij}$.

The response time, L, of a schedule may be derived by observing that pipelining constraints force all operators in a pipeline to start simultaneously (time 0) and terminate simultaneously at time L. Fast operators are forced to “stretch” over a longer time period by the slow operators. Suppose operator i is allocated to processor k and uses fraction f_i of the processor. The pipelining constraint is then:

$$f_i = \frac{1}{L} [t_i + \sum_{j \notin F_k} c_{ij}] \quad \text{for all operators } i \in V \tag{4.1}$$

The utilization of a processor is the sum of utilizations of the operators executing on it. Since at least one processor must be saturated (otherwise the pipeline would speed up):

$$\max_{1 \leq k \leq p} \left[\sum_{i \in F_k} f_i \right] = 1$$

$$\Rightarrow L = \max_{1 \leq k \leq p} \left[\sum_{i \in F_k} [t_i + \sum_{j \notin F_k} c_{ij}] \right] = \max_{1 \leq k \leq p} L_k \quad \text{using equation (4.1)}$$

Example 4.1 Figure 4.1(a) shows a schedule by encircling the sets F_k. The cost of each set is underlined. For example $\{\text{PROBE(h1)}\}$ costs 8 by adding up its node weight (7) and the weight of the edge (1) connecting it to its child. Observe that we show edges as undirected since the parallel constraint represented by pipelining edges is symmetric. Figure 4.1(b) shows a Gantt chart of the execution specified by the schedule. The fraction of the processor used by each operator in shown in parenthesis.

The pipelined operator tree scheduling (POT) problem may now be stated as follows:
Input: Operator Tree $T = (V, E)$ with positive real weights t_i for each node $i \in V$ and c_{ij} for each edge $(i, j) \in E$; number of processors p

Output: A schedule with minimal response time i.e., a partition of V into F_1, \ldots, F_p that minimizes $\max_{1 \leq l \leq p} \sum_{i \in F_l} [t_i + \sum_{j \notin F_l} c_{ij}]$.

Definition 4.3 If F is a set of operators, $\text{cost}(F)$ is the load on a processor that computes F.

\[\text{cost}(F) = \sum_{i \in F} [t_i + \sum_{j \notin F} c_{ij}] \]

Since the special case in which all edge weights are zero is multiprocessor scheduling [GJ79, GLLK79], POT is NP-hard. Since the number of ways of partitioning n elements into k disjoint non-empty sets is $\binom{n}{k}$ (which denotes Stirling numbers of the second kind) [Knu73], the number of distinct schedules for a tree with n nodes on p processors is $\sum_{1 \leq k \leq p} \binom{n}{k}$. This number is about 1.2×10^5 for $n = p = 10$ and 5.0×10^{13} for $n = p = 20$, thus ruling out enumerative approaches to the problem.

A natural question is whether multiprocessor scheduling algorithms such as LPT may be adapted for POT. Multiprocessor scheduling is the problem of scheduling independent jobs with known running times on a set of processors. LPT assigns the job with the largest running time to the least loaded processor, repeating this step until all jobs are assigned. For p processors, LPT has a worst case performance ratio of $\frac{4}{3} - \frac{1}{p}$ [Gra69].

LPT may be applied to POT by simply using the cost of each node (i.e. the node weight plus weights of all incident edges) as its running time. This Naive LPT algorithm performs poorly since it is unaware of the tradeoff between parallelism and communication. Consider two operators each of weight t connected by an edge of weight c. To obtain a schedule for 2 processors, Naive LPT will consider the cost of each operator to be $t + c$ and place them on separate processors resulting in a schedule with a response time of $t + c$. LPT never saves communication cost by placing both operators on a single processor which would achieve a response time of $2t$. Since cheap operators and expensive communication can make the ratio $\frac{t + c}{2}$ arbitrarily large, the worst case performance ratio of Naive LPT is unbounded.

Our algorithms will use the operations of cutting and collapsing edges that correspond to decisions to place adjacent nodes on the same or different processors.

Definition 4.4 $\text{Collapse}(i, j)$ modifies a tree by replacing nodes i and j by a single new node i' with weight $t_{i'} = t_i + t_j$. Edges that were connected to either i or j are instead connected to i'.

Definition 4.5 $\text{Cut}(i, j)$ modifies a tree by deleting edge (i, j) and adding its weight to that of the nodes i and j, i.e. $t_{i}^{\text{new}} = t_{i}^{\text{old}} + c_{ij}$ and $t_{j}^{\text{new}} = t_{j}^{\text{old}} + c_{ij}$.
If a schedule places both i and j on processor k, the load on all processors is invariant when i and j are collapsed, and the new node is placed on processor k. If a schedule places i and j on distinct processors, the load is invariant when (i, j) is cut.

Our analysis will often consider the following two special cases.

Definition 4.6 A *star* is a tree with one non-leaf node. A *path* is a tree with two leaves.

4.2 Identifying Worthless Parallelism

In this section we investigate the tradeoff between parallelism and communication cost and develop the *GreedyChase* algorithm that “chases” down and removes parallelism that is “worthless” irrespective of the number of processors.

We start by characterizing *worthless edges* whose communication overhead is relatively high enough to exceed any benefits from parallelism. We identify a class of trees that we call *monotone*. Such trees have no worthless parallelism in the sense that maximal use of parallelism is in fact optimal. We show that repeatedly collapsing worthless edges results in a monotone tree. Finally, we provide lower bounds on schedules for monotone trees.

4.2.1 Worthless Edges and Monotone Trees

In Figure 4.1, the cost incurred by MERGE in communicating with SCAN(E) is 4 seconds which exceeds the cost of SCAN(E) itself. It is thus always better for the processor executing MERGE to execute SCAN(E) locally rather than communicate with it. We now generalize this observation.

Definition 4.7 An edge e_{ij} is *worthless* if and only if $(e_{ij} \geq t_i + \sum_{k \neq j} c_{ik})$ or $(e_{ij} \geq t_j + \sum_{k \neq i} c_{jk})$.

The following theorem shows that our definition of worthless indeed captures edges whose high communication cost offsets the advantage of parallel execution.

Theorem 4.1 Given p processors and an operator tree T with worthless edge (i, j), there exists an optimal schedule of T for p processors in which nodes i and j are assigned to the same processor.

Proof: We prove the theorem by showing that given a worthless edge (i, j) and an optimal schedule S, we can generate another schedule S' (for the same number of processors) with no higher response time in which (i, j) is collapsed.
Let F_p and F_q be the sets of nodes assigned to processors p and q in S such that $i \in F_p$ and $j \in F_q$. Since (i, j) is worthless, without loss of generality we may assume

$$c_{ij} \geq t_j + \sum_{k \neq i} c_{jk}$$

(4.2)

We show S' to consist of S modified by moving j from q to p. This move changes the loads only on p and q and we show that neither load can increase.

Moving j onto processor p increases the load on p by at most $t_j + \sum_{k \notin F_p} c_{jk} - c_{ij}$, since p saves the cost of the edge between i and j, but incurs the additional cost of j communicating with nodes other than those assigned to p. Observing that $\sum_{k \in (V - F_p)} c_{jk} \leq \sum_{k \neq i} c_{jk}$, Equation 4.2 shows this increase cannot be positive.

Removing j from processor q increases the load on q by $-c_{ij} - \sum_{k \in F_q} c_{jk}$, since q saves the cost of j, and j communicating with i, but must now incur the cost of the remaining nodes of F_q communicating with j. Observing that $\sum_{k \in F_q} c_{jk} \leq \sum_{k \neq i} c_{jk}$, Equation 4.2 shows this increase cannot be positive.

Definition 4.8 An operator tree is **monotone** if and only if any connected set of nodes, X, has a lower cost than any connected superset, Y, i.e., if $X \subset Y$ then $\text{cost}(X) < \text{cost}(Y)$.

We now establish an important connection between worthless edges and monotone trees. The following theorem allows us to transform any tree into a monotone tree by collapsing all worthless edges. More importantly, we can schedule the monotone tree rather than the original tree. This follows since collapsing worthless edges does not sacrifice optimality (Theorem 4.1) and the schedule for the original tree can be recovered from the schedule for the transformed tree.

Theorem 4.2 A tree is monotone if and only if it has no worthless edges.

Proof: [WORTHLESS EDGE IMPLIES NON-MONOTONICITY]

Assume edge (i, j) is a worthless edge. Without loss of generality, we assume

$$c_{ij} \geq t_j + \sum_{k \neq i} c_{jk}$$

(4.3)

We show $\text{cost}(\{i\}) \geq \text{cost}(\{i, j\})$ and hence the tree is not monotone.

$$\text{cost}(\{i\}) = t_i + \sum_k c_{ik}$$

$$= t_i + c_{ij} + \sum_{k \neq j} c_{ik}$$

$$\geq t_i + (t_j + \sum_{k \neq i} c_{ij}) + \sum_{k \neq j} c_{ik} \text{ by Equation 4.3}$$

$$= \text{cost}(\{i, j\})$$
If a tree is not monotone, there must be connected sets X and Y such that $X \subset Y$ with $\text{cost}(X) \geq \text{cost}(Y)$. Since X and Y are both connected sets, it must be possible to arrange the nodes in $Y - X$ in a sequence v_1, \ldots, v_m such that Y can be created from X by adding these nodes one by one and guaranteeing a connected set at all steps. That is, we progress through sets F_0, F_1, \ldots, F_m with $F_i = F_0 \cup \{v_1, \ldots, v_i\}$ being a connected set and with $F_0 = X$ and $F_m = Y$. Since $\text{cost}(F_0) \geq \text{cost}(F_m)$, there must be some vertex v_α, such that $\text{cost}(F_{\alpha-1}) \geq \text{cost}(F_\alpha)$. Since both $F_{\alpha-1}$ and F_α are connected but acyclic sets, v_α is connected to exactly one node in $F_{\alpha-1}$. Call that node β.

\[
\text{cost}(F_\alpha) = \text{cost}(F_{\alpha-1}) + t_\alpha - c_\alpha \beta + \sum_{j \neq \beta} c_{\alpha j}
\]

Using $\text{cost}(F_{\alpha-1}) \geq \text{cost}(F_\alpha)$, we can conclude $t_\alpha + \sum_{j \neq \beta} c_{\alpha j} \leq c_\alpha \beta$ which proves (α, β) to be a worthless edge.

4.2.2 The GreedyChase Algorithm

Algorithm 4.1 The GreedyChase Algorithm

Input: An operator tree

Output: A monotone operator tree

1. **while** there exists some worthless edge (i, j)
2. Collapse(i,j)
3. **end while**

Since each collapse reduces the number of nodes, GreedyChase must terminate. The check for the existence of a worthless edge is the crucial determinant of the running time. When a worthless edge is collapsed, adjacent edges may turn worthless and thus need to be rechecked. The algorithm may be implemented to run in time $O(n d)$, where n is the number of nodes and d is the maximum degree of any node. Experimentally, the running time of our implementation of GreedyChase was virtually linear in n.

We remark that even though the order in which new edges turn worthless may depend on the order of edge collapses, the monotone tree for an operator tree is unique.
4.2.3 Lower Bounds

We will use GreedyChase as a pre-processing step in all our algorithms. The following lower bounds will be useful in analyzing the performance ratios of our algorithms.

Lemma 4.1 Let $R_i = [t_i + \sum_{j \in V} c_{ij}]$ be the net weight of node i. The response time of any schedule (independent of number of processors) for a monotone operator tree has a lower bound of $R = \max_{i \in V} R_i$.

Proof: It suffices to show $t_i + \sum_{j \in V} c_{ij}$ to be a lower bound for any node i. Suppose Y is the set of all nodes that are assigned the same processor as i. Y may be decomposed into maximal connected sets Y_1, \ldots, Y_q. Suppose $i \in Y_\alpha$. Since $\text{cost}(Y) = \sum_j \text{cost}(Y_j)$, we have $\text{cost}(Y) \geq \text{cost}(Y_\alpha)$. By definition of monotone trees, $\text{cost}(Y_\alpha) \geq \text{cost}(\{i\})$. Thus, the load on the processor executing i is at least $\text{cost}(\{i\})$ which is $t_i + \sum_{j \in V} c_{ij}$.

Lemma 4.2 The response time of a p processor schedule for any operator tree (monotone or not) has a lower bound of $\overline{W} = \frac{W}{p}$ where $W = \sum_i t_i$ is the total node weight.

Proof: The total load is at least the sum of the node weights and some processor must have at least the average load.

4.3 The Modified LPT Algorithm

The modified LPT algorithm consists of running GreedyChase followed by LPT.

Example 4.2 Figure 4.2(A) shows traces the collapse of worthless edges by GreedyChase. Note that edges may turn worthless as a result of other collapses. For two processors, modified LPT produces schedule (B) with response time 11. Naive LPT on the other hand may produce schedule (C) with response time 25.

Modified LPT performs well when the LPT stage receives a monotone tree that is star-shaped. Edges in a star have low communication costs since the weight of an edge cannot exceed the weight of the incident leaf without making the edge worthless.

Theorem 4.3 For trees that result in monotone stars, the worst-case performance ratio of the modified LPT algorithm is less than $2 + \frac{1}{p}$. Examples exist that achieve a ratio of 2.
Figure 4.2: (A) Trace of GreedyChase (worthless edges hatched) (B) modified LPT schedule (C) naive LPT schedule

Proof: Consider a star in which the center node, labeled 0, is connected to \(n - 1 \) nodes labeled \(1, \ldots, n - 1 \). Let \(c_i \) be the weight of the edge from node 0 to node \(i \). If all edges are cut, we get \(n \) jobs. The job created from the center has weight \(\alpha_0 = t_0 + \sum_{1 \leq i < n} c_i \) and the remaining \(n - 1 \) jobs have weights \(\alpha_i = t_i + c_i \) for \(i = 1, \ldots, n - 1 \).

Suppose LPT schedules these jobs to give a response time of \(L \). Let \(j \) be the node that when scheduled caused the load on some processor to reach \(L \). Since LPT assigns a job to the least loaded processor, the load on all processors must have been at least \(L - \alpha_j \) when \(j \) was assigned. Thus the total load on all processors has to be at least \((L - \alpha_j)p + \alpha_j \).

\[
(L - \alpha_j)p + \alpha_j \leq \sum_{0 \leq i < n} \alpha_i
\]

\[
L \leq (1 - \frac{1}{p})\alpha_j + \frac{1}{p} \sum_{0 \leq i < n} \alpha_i = (1 - \frac{1}{p})\alpha_j + \frac{1}{p} [\sum_{0 \leq i < n} t_i + 2 \sum_{0 \leq i < n} c_i]
\]

The above steps are analogous to a standard analysis of the LPT algorithm. We can now exploit a property particular to stars. Since all edges are incident with node 0, \(\sum_{1 \leq i < n} c_i < \alpha_0 \).

\[
L < (1 - \frac{1}{p})\alpha_j + (\sum_{0 \leq i < n} t_i)/p + \frac{2}{p}\alpha_0
\]

Since the star is monotone, by Lemmas 4.1 and 4.2, both \(\alpha_j \) and \((\sum t_i)/p \) are lower bounds on the optimal response time \(L_{opt} \). Thus we conclude \(L/L_{opt} < 2 + \frac{1}{p} \).

A ratio of 2 is achieved by a star consisting of \(p+1 \) nodes. The center with weight 1 is connected by edges with weight 0 to \(p-1 \) nodes with weight 2, and by an edge of weight \(1 - \epsilon \) to a node of weight 1. The optimal schedule achieves a response time of 2 by placing the two nodes of weight 1 on the same processor and the remaining \(p - 1 \) nodes on distinct processors. The LPT
stage of *Modified LPT* gets \((p - 1)\) nodes of weight 2 and 2 nodes of weight \(2 - \epsilon\). It therefore produces a schedule with response time \(4 - 2\epsilon\).

The algorithm is still oblivious to the tradeoff between parallelism and communication. Edges in a monotone path can have high weights. The algorithm does not attempt to save heavy edges by assigning the incident nodes to the same processor.

Lemma 4.3 The worst-case performance ratio of modified LPT is unbounded for paths.

Proof: Figure 4.3 shows a monotone path for which the LPT phase receives \(n\) jobs each of weight \(2 + \epsilon\). It can produce a schedule with a response time of \((2 + \epsilon)n/p \approx 2n/p\). The optimal is obtained by cutting the path into \(p\) pieces of equal length thus obtaining a response time of \(2 + \lceil n/p \rceil \epsilon \approx 2\) and a performance ratio of \(n/p\).

4.4 Connected Schedules

A connected schedule requires the nodes assigned to any processor to be a connected set. This restriction is equivalent to only considering schedules that incur communication cost on \(p - 1\) edges (the minimal possible number) when using \(p\) processors.

A practical reason for investigating connected schedules is execution efficiency. Code generation schemes such as that employed in the LDL system [CGK90] generate a single thread of control for a connected sets of operators. The context switching between operators is efficiently built into the generated code rather than being managed by more expensive mechanisms such as thread packages. Unconnected sets require as many threads as the number of connected components in the set. Thus connected schedules permit a faster implementation of intra-processor context switching.

While POT is NP-hard, we show that the optimal connected schedule can be constructed by a polynomial algorithm. Subsequent sections show the optimal connected schedule to also be a near-optimal general schedule for path-shaped trees. It therefore finds a use in the construction of the *Hybrid* algorithm in Section 4.6.
A connected schedule for \(p \) processors divides the operator tree into \(k \leq p \) fragments (i.e. connected components) obtained by cutting \(k - 1 \) edges and collapsing the remaining edges (Figure 4.4). Thus, one way of finding a connected schedule is to examine all \(O(2^n) \) combinations of cutting/collapsing edges. The next section shows how we can do better.

4.4.1 Connected Schedules when Communication is Free

We now develop an algorithm for finding the optimal connected schedule for trees in which all edge weights are zero. The algorithm is generalized to handle edge weights in the next section.

We will develop the algorithm in two steps. First, given a bound \(B \) and number of processors \(p \), we develop an efficient way of finding a connected schedule with a response time of at most \(B \), if such a schedule exists. Second, we show that starting with \(B \) set to a lower bound on the response time, we can use a small number of upward revisions to get to the optimal connected schedule.

Definition 4.9 A schedule is \((B, p)\)-bounded if and only if it is a connected schedule that uses at most \(p \) processors and has a response time of at most \(B \).

Definition 4.10 A node is a mother node if and only if all adjacent nodes with at most one exception are leaves. The leaf nodes are termed the children of the mother node.

We first consider the simple case of a mother node \(m \) with a single child \(r \) to see how the decision to cut or collapse an edge can be made. Suppose \(t_r + t_m > B \). Clearly, the edge \((m, r)\) should be cut since otherwise we shall exceed the bound. Now suppose instead \(t_r + t_m \leq B \). We claim that the edge \((m, r)\) can be collapsed. Since \(r \) is connected only to \(m \), if the connecting edge were cut, \(r \) would get a processor, say \(p_r \), to itself. Putting \(m \) on \(p_r \) reduces the total work for other processors without causing the bound to be exceeded on \(p_r \), and thus can never hurt. This basic
idea will be generalized to derive an efficient algorithm. Some of the ideas are similar to those of Hadlock [Had74] for a related but different problem.

The following lemmas narrow the set of schedules we need to examine. We assume \(m \) is a mother node with children \(r_1, \ldots, r_d \) in the order of non-decreasing weight, i.e. \(t_{r_1} \leq t_{r_2} \leq \cdots \leq t_{r_d} \).

Lemma 4.4 If a \((B, p)\)-bounded schedule \(S \) places \(m \) and \(r_j \) in the same fragment and \(r_i \) in a different fragment where \(i < j \) (i.e. \(t_{r_i} \leq t_{r_j} \)), then the schedule \(S' \) in which \(r_j \) and \(r_i \) exchange places is also \((B, p)\)-bounded.

Proof: Let \(F_m \) and \(F_l \) respectively be the fragments containing \(m \) and \(r_i \). Swapping \(r_i \) and \(r_j \) cannot increase the cost of \(F_m \) since \(t_{r_i} \leq t_{r_j} \). It suffices to show that the cost of \(F_l \) does not increase beyond \(B \). Since \(S \) is a connected schedule and leaf \(r_i \) is not in the same fragment as its mother node, \(r_i \) must be the only node in \(F_l \). Since the original schedule was \((B, p)\)-bounded, no individual node weight exceeds \(B \). Thus swapping cannot increase the cost of \(F_l \) beyond \(B \). \(\square \)

Repeated application of Lemma 4.4 results in:

Lemma 4.5 If there exists a \((B, p)\)-bounded schedule, then there exists a \((B, p)\)-bounded schedule such that (1) if \((m, r_j)\) is collapsed then so is \((m, r_{j-1})\) (2) if \((m, r_j)\) is cut then so is \((m, r_{j+1})\).

Let \(l \) be the largest number of children that can be collapsed with \(m \) without exceeding bound \(B \), that is, the maximum \(l \) such that \(t_m + \sum_{1 \leq i \leq l} t_{r_i} \leq B \).

Theorem 4.4 If there exists a \((B, p)\)-bounded schedule, then there exists a \((B, p)\)-bounded schedule such that (1) \((m, r_j)\) is collapsed for \(1 \leq j \leq l \) (2) \((m, r_j)\) is cut for \(l < j \leq d \).

Proof: By Lemma 4.5 there exists a \((B, p)\) schedule such that all collapsed children precede all cut children. Assume \(t_{r_1}, \ldots, t_{r_l} \) are collapsed and \(t_{r_{l+1}}, \ldots, t_d \) are cut. Let \(F \) be the fragment containing \(m, t_{r_1}, \ldots, t_{r_l} \).

Clearly \(l' \leq l \) since otherwise the bound \(B \) will be exceeded. Since \(\text{cost}(F) \leq B \), we can replace the fragments \(F, \{t_{r_1}, \ldots, t_{r_l}\} \) by two fragments \(F = \{m, t_{r_1}, \ldots, t_{r_l}\} \) and \(\{m, t_{r_1}, \ldots, t_{r_l}\} \) each of which is bounded. \(\square \)

Theorem 4.4 gives us a way of finding a \((B, p)\)-bounded schedule or showing that no such schedule exists. We pick a mother node and traverse the children in the order of non-increasing weights. We collapse children into the mother node as long the weight of the mother stays below \(B \) and then cut off the rest. We repeat the process until no more mother nodes are left or we have cut
CHAPTER 4. SCHEDULING PIPELINED PARALLELISM

$p - 1$ edges. If the weight of the last fragment is no more than B, we have found a (B, p)-bounded schedule, otherwise no such schedule is possible.

Algorithm 4.2 The $BpSchedule$ Algorithm

Input: Operator tree T with zero edge wts, bound B
Output: Partition of T into fragments F_1, \ldots, F_p s.t. $\text{cost}(F_i) \leq B$ for $i = 1, \ldots, p - 1$

1. while there exists a mother node m
2. Let m have children r_1, \ldots, r_d s.t. $t_{r_1} \leq \ldots \leq t_{r_d}$
3. Let $l \leq d$ be the max l s.t. $t_m + \sum_{i \leq i \leq l} t_{r_i} \leq B$
4. for $j = 1$ to l
do
5. collapse(m, r_j)
6. for $j = l + 1$ to d
do
7. cut(m, r_j)
8. if total number of cuts is $p - 1$ goto 10
9. end while
10. return resulting fragments F_1, \ldots, F_p

We will find the optimal connected schedule by setting B to a lower bound on the response time and repeatedly revising B by as large an increment as possible while ensuring that we do not overshoot the optimal value. For each such value of B we run $BpSchedule$ and check whether $\text{cost}(F_p)$ is at most B.

We can use an unsuccessful run of $BpSchedule$ to derive an improved lower bound. For each fragment F_i produced by $BpSchedule$, let B_i be the cost of the fragment plus the weight of the next node that was not included in the fragment (i.e. the value t_{l+1} when a cut is made in line 7 of $BpSchedule$). For a re-run to be successful, some fragment must become larger. Thus B must increase to at least B^*, the smallest of the B_i.

Lemma 4.6 $B^* = \min_i B_i$ is a lower bound on the optimal response time.

Using the lower bounds given by Lemmas 4.1 and 4.2 and the revision procedure given by Lemma 4.6, we devise the algorithm shown below.

Algorithm 4.3 The $BalancedCuts$ Algorithm

Input: Operator tree T with zero edge weights, number of processors p
Output: Optimal connected schedule

1. $B = \max \left(\left\lfloor \sum_{i \in V} t_i/p \right\rfloor, \max_{i \in V} t_i \right)$
2. repeat forever
3. \(F_1, \ldots, F_p = \text{BpSchedule}(T, B) \)
4. if \(\text{cost}(F_p) \leq B \) return \(F_1, \ldots, F_p \)
5. Let \(B_i = \text{cost}(F_i) + \text{wt of next node not in } F_i \)
6. \(B = \min_i B_i \)
7. end repeat

The following theorem shows \textit{BalancedCuts} to terminate in at most \(O(np) \) iterations and thus have a running time of \(O(n^2p) \). The remarks below show how the implementation may be improved to \(O(np) \).

Lemma 4.7 BalancedCuts terminates in at most \(1 + (p - 1)(n - p) \) iterations.

Proof: Suppose we label the edges by integers starting at 1 in the order they were considered by \textit{BpSchedule}. Any schedule can now be described by a vector \(e = e_1, \ldots, e_{p-1} \) of the indices of the \(p - 1 \) cut edges. Notice that \(e_1 < e_2 < \ldots < e_{p-1} \). Given two sequences \(e \) and \(e' \), we say \(e \) is dominated by \(e' \) if every entry of \(e \) is no larger than the corresponding entry of \(e' \). The method for revising \(B \) guarantees that the increment is large enough for at least one fragment to increase in size. Thus at least one cut must move to a strictly higher label and no cut moves to an edge with a lower label. The sequence of schedules constructed by \textit{BalancedCuts} gives a sequence of vectors where each vector strictly dominates all the preceding vectors. The length of any sequence of such vectors can be at most \(1 + (p - 1)(n - p) \) since the \(i \)’th element of the vector may only change from a minimum value to \(i \) to a maximum value of \(n - p + i \).

A more careful analysis (and implementation) of this idea gives us a bound of \(O(nk) \). Whenever the \(B \) value is updated, the total work done in finding a new candidate solution can be charged to the nodes which migrate from a component to a previous one. It is easy to verify that the implementation cost works out to be \(O(1) \) for each such node migration. Since any one node can migrate at most \(p \) times, the total work can be bounded by \(O(np) \).

4.4.2 BalancedCuts with Communication Costs

Generalizing \textit{BalancedCuts} to take care of communication requires two changes. Firstly, the input tree must be pre-processed by running \textit{GreedyChase}. Secondly, \textit{BpSchedule} must consider the children of a mother node in the order of non-decreasing \(t_i - c_{im} \). Both changes are required to make \textit{BpSchedule} work correctly.
CHAPTER 4. SCHEDULING PIPELINED PARALLELISM

BpSchedule assumes that adding more nodes to a fragment, while retaining connectivity, can only increase its cost. The monotone trees produced by *GreedyChase* guarantee exactly this property. Since the schedule for the original tree can be recovered from the schedule for the “pre-processed” tree, it suffices to schedule the monotone tree.

BpSchedule greedily “grows” fragments by collapsing children with their mother node as long as the fragment cost remains bounded. The children were ordered by non-decreasing weights, and the weight of each child was a measure of how much the weight of the fragment would increase by collapsing the child into the mother node. With non-zero edge weights, the mother node must pay the cost of communicating with the child when it is a different fragment. Thus collapsing the child *i* with the mother *m* increases the cost of the fragment by \(t_i - e_{im} \). Ordering the children of the mother node in the order of non-decreasing \(t_i - e_{im} \) suffices to generalize Lemmas 4.4 and 4.5 and Theorem 4.4.

4.5 Connected Schedules as an Approximation

The optimal connected schedule is a good approximation for paths but not for stars.

Theorem 4.5 For path-shaped operator trees, the worst-case performance ratio in using the optimal connected schedule is at most \(2 - \frac{1}{p} \). Examples exist that achieve a ratio of \(2 - \frac{1}{E^+} \).

Proof: We shall prove the theorem by considering the situation preceding the last iteration of the *BalancedCuts* algorithm (Algorithm 4.3).

Suppose the *BpSchedule* procedure chooses mother nodes in a left-to-right manner, thereby cutting the path into maximal fragments \(F_1, \ldots, F_p \) (see Figure 4.5). Let the first node of fragment \(F_i \) have weight \(w_i \), and let the weights of the edges to the left and right of \(w_i \) be \(e_{il} \) and \(e_{ir} \), respectively (take \(e_{il} = 0 \), and if \(w_{p+1} \) is the last node, take \(e_{(p+1)r} = 0 \)). Let \(A_i = \text{cost}(F_i) \) and \(B_i = \text{cost}(F_i \cup \{w_{i+1}\}) \).

The procedure for revising bounds chooses the minimum of the \(B_i \)'s. Therefore before the last round we must have, for \(i = 1, \ldots, p \), that \(B_i \geq L_C \) where \(L_C \) is the response time of...
the connected schedule. Adding these p inequalities, and using $B_i = cost(F_i \cup \{w_{i+1}\}) = A_i + w_{i+1} + e_{(i+1)p} - e_{(i+1)p}$ we get the following inequality.

$$\sum_{1 \leq i \leq p} (A_i + w_{i+1} + e_{(i+1)p} - e_{(i+1)p}) \geq pL_C$$

This may be rearranged as follows (recall that $e_{il} = 0$).

$$\frac{1}{p} \left[w_{p+1} + e_{(p+1)p} + \sum_{1 \leq i \leq p} (A_i - e_{il} - e_{(i+1)p}) \right] + \frac{1}{p} \left[\sum_{1 \leq i \leq p} (w_i + e_{il} + e_{ir}) \right] \geq L_C$$

Note that $(A_i - e_{il} - e_{(i+1)p})$ is the sum of the all node weights in the i'th fragment. Further, since there are no worthless edges, $e_{(p+1)p}$ is less than the sum of the weights of all nodes to the right of w_{p+1}. Therefore, $[w_{p+1} + e_{(p+1)p} + \sum_{1 \leq i \leq p} (A_i - e_{il} - e_{(i+1)p})] \leq \sum_{1 \leq i \leq p} (w_i + e_{il} + e_{ir})$ is at most the sum of all node weights. Further, $(w_i + e_{il} + e_{ir})$ is the weight of a node plus the weight of incident edges. Letting W (sum of nodes weights divided by p) and R (maximum node weight plus incident edges) represent the lower bounds given by Lemmas 4.1 and 4.2, the last equation may be rewritten as

$$W + \frac{p-1}{p} R \geq L_C$$

Letting L_{opt} be the response time of the optimal unconnected schedule, $L_{opt} + \frac{p-1}{p} L_{opt} \geq L_C$, or equivalently $\frac{L_{opt}}{L_{opt}} \leq 2 - \frac{1}{p}$.

We now demonstrate examples that achieve a ratio of $2 - 1/\lceil \frac{p+1}{2} \rceil$ i.e., $2p/(p+1)$ for odd values of p and $(2p+2)/(p+2)$ for even values. We will construct examples for which L_C/W equals the claimed ratio. We then show that when n is large enough, L_{opt} equals W (see Figure 4.6). We will consider the cases of odd and even p separately.

Case 1 (p odd): For a path with $(p+1)$ nodes assign weights of $(p-1)/2$ and $(p+1)/2$ to alternate nodes. The total node weight is $p(p+1)/2$ giving $W = (p+1)/2$. A connected schedule needs to combine two adjacent nodes and will therefore have a response time of p giving $L_C/W = 2p/(p+1)$.

We now show paths with $p+d$ nodes for which $L_C/L_{opt} = L_C/W = 2p/(p+1)$ when $d \geq (p+1)/2$. Such paths are constructed by replacing an end-node (with weight $(p-1)/2$) by d nodes with the same total weight. Thus L_C and W remain constant but it becomes possible for an unconnected schedule to obtain a response time of W by appropriately matching the new nodes with the lighter nodes. The weight $(p-1)/2$ may be distributed among the d new nodes as follows: give weight 1 to the first $(p-3)/2$ nodes and equally distribute the remaining weight of 1 among the remaining nodes. Now, an unconnected schedule may pair each of the nodes of weight 1 with a node with weight $(p-1)/2$ and put all nodes with weight less than 1 with the remaining node of weight $(p-1)/2$.

<table>
<thead>
<tr>
<th>p</th>
<th>n</th>
<th>(\frac{L_C}{L_{opt}})</th>
<th>(\frac{L_C}{W})</th>
<th>EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>(\frac{3}{2})</td>
<td>(\frac{3}{2})</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>(\frac{3}{2})</td>
<td>(\frac{3}{2})</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>(\frac{3}{2})</td>
<td>(\frac{3}{2})</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>(\frac{3}{2})</td>
<td>(\frac{3}{2})</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>(\frac{5}{4})</td>
<td>(\frac{5}{3})</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>(\frac{5}{3})</td>
<td>(\frac{5}{3})</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>(\frac{5}{4})</td>
<td>(\frac{5}{3})</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>(\frac{5}{3})</td>
<td>(\frac{5}{3})</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4.6: Examples with \(\frac{L_C}{L_{opt}} = 2 - \frac{1}{\left\lfloor \frac{n}{2} \right\rfloor} \)
Case 2 (p even): For a path with \((p + 1)\) nodes assign weights \(p/2\) and \(1 + p/2\) to alternate nodes. We obtain \(\bar{W} = (p + 2)/2\) and \(L_C = p + 1\) thus giving \(L_C/\bar{W} = (2p + 2)/(p + 2)\). The remaining argument is similar to Case 1.

There is a small gap between proved worst-case performance ratio of \(2 - 1/p\) and the examples that achieve \(2 - 1/[p+1]/2\). The following theorem tightens the proof to meet the examples for the case of zero communication costs.

Theorem 4.6 For path-shaped operator trees with zero communication costs the worst-case performance ratio in using the optimal connected schedule is \(2 - \frac{1}{[p+1]/2}\).

Proof: From the proof of last lemma, the condition \(B_i \geq L_C\) may be written as follows for the case of zero communication costs:

\[
A_i + w_{i+1} \geq L_C \quad \text{for } i = 1, \ldots, p
\]

(4.4)

Separating the odd and even values of \(p\), it suffices to show

\[
\frac{L_C}{L_{opt}} \leq \frac{2p}{p+1} \quad \text{for } p \text{ odd}
\]

\[
\frac{2p+2}{p+2} \quad \text{for } p \text{ even}
\]

(4.5)

Case 1 (p odd): Adding up the \(\frac{p+1}{2}\) equations for the odd values of \(i\) in (4.4), we have

\[
\sum_{1 \leq j \leq \frac{p+1}{2}} A_{2j-1} + w_{2j} \geq \frac{p+1}{2} L_C
\]

(4.6)

Observing \(A_{2j} \geq w_{2j}\),

\[
w_{p+1} + \sum_{1 \leq i \leq p} A_i \geq \frac{p+1}{2} L_C
\]

(4.7)

The lhs is at most \(W\), the sum of all node weights. Since \(W/p\) is a lower bound, \(pL_{opt} \geq W\). Thus we have

\[
pL_{opt} \geq \frac{p+1}{2} L_C
\]

\[
\equiv \frac{L_C}{L_{opt}} \leq \frac{2p}{p+1}
\]

Case 2 (p even): Adding up the \(\frac{p+1}{2}\) equations for the odd values of \(i\) and the equation for \(i = p\) in (4.4), we have

\[
A_p + w_{p+1} + \sum_{1 \leq j \leq \frac{p}{2}} A_{2j-1} + w_{2j} \geq \frac{p+2}{2} L_C
\]
Using $A_{2j} \geq w_{2j}$ and rearranging,

$$w_{p+1} + (w_p + \sum_{1 \leq i \leq p} A_i) \geq \frac{p + 2}{2} L_C$$

Note that $w_p + \sum_{1 \leq i \leq p} A_i$ is at most W and $pL_{opt} \geq W$. Further $L_{opt} \geq w_{p+1}$ since the weight of any node is a lower bound (Lemma 4.2). Therefore,

$$L_{opt} + pL_{opt} \geq \frac{p+2}{2} L_C$$

$$\Rightarrow L_{opt} \leq \frac{2p+2}{p+2}$$

Connected schedules are not a good approximation for stars since all fragments except the one containing the center are forced to consist of a single node.

Lemma 4.8 The worst-case performance ratio in using the optimal connected schedule is unbounded for stars.

Proof: Consider a star in which all nodes have weight 1 and all edges have weight zero. A connected schedule is forced to place a single leaf on all processors except one, and the remaining star on the remaining processor. Thus a connected schedule has a response time of $n - p + 1$. An unconnected schedule achieves a response time of $\lceil n/p \rceil$. Thus, the performance ratio is $(n - p + 1)/\lceil n/p \rceil$ which may have an arbitrarily high value. Figure 4.7 shows an example for $n = 10$ and $p = 5$ that achieves a performance ratio of 3.

4.6 Heuristics for POT Scheduling

We now describe two heuristics for the POT problem. We show the heuristics to have worst-case performance ratios of about 2 for several restricted cases. We failed to generate counter-examples...
even by use of simulations over millions of examples and therefore conjecture these heuristics to have a worst-case performance ratio of about 2 in general.

We have the interesting situation in which the modified LPT algorithm works well for stars but not for paths, while connected schedules are a good approximation for paths but not for stars. This naturally motivates the combination of the two algorithms into a Hybrid algorithm (Section 4.6.1). In Section 4.6.2, we discuss the GreedyPairing algorithm which has the advantage of being extremely simple.

4.6.1 A Hybrid Algorithm

BalancedCuts performs poorly on stars since the constraint of connected schedules is at odds with load balancing. While the algorithm is cognizant of communication costs, it is poor at achieving balanced loads. On the other hand, LPT is very good at balancing loads but unaware of communication costs.

One way of combining the two algorithms is to use BalancedCuts to cut the tree into many fragments and then schedule the fragments using LPT. LPT can be expected to “cleanup” cases such as stars on which connected schedules are a bad approximation.

Algorithm 4.4 The Hybrid Algorithm

Input: Operator tree T, number of processors p

Output: A schedule

1. $T' = \text{GreedyChase}(T)$
2. for $i = p$ to n do
3. $F_1, F_2, \ldots, F_i = \text{BalancedCuts}(T', i)$
4. schedule $= \text{LPT}([F_1, F_2, \ldots, F_i], p)$
5. end for
6. return best of schedules found in steps 2 to 5

Note that Hybrid has a performance ratio no worse than that obtained by using BpSchedule or by modified LPT. This is because the case $i = p$ will provide an optimal connected schedule, while the case $i = n$ will behave as the modified LPT algorithm. Thus the performance ratio is no worse than $2 - 1/p$ for paths and no worse than $2 + 1/p$ for stars.

4.6.2 The Greedy Pairing Algorithm

We now describe an algorithm which is based on greedily collapsing that pair of nodes which leads to the least increase in response time.
GreedyPairing starts by first pre-processing the operator tree into a monotone tree by running GreedyChase. Then it chooses the pair of nodes, \(i \) and \(j \), such that \(\text{cost}(\{i, j\}) \) is the minimum possible and collapses them. Ties are broken by favoring the pair which offers the greatest reduction in communication. This process is continued until the number of nodes is reduced to \(p \), and then each node is assigned a distinct processor. Note that collapsing two (non-adjacent) nodes in a tree will not necessarily maintain the property of being a tree.

We can prove the algorithm to have a worst-case performance ratio close to 2 for the case of zero edge weights.

Theorem 4.7 The GreedyPairing algorithm has a tight worst-case performance ratio of \(2 - \frac{2}{p+1} \) when all edge weights are zero.

Proof: Consider the penultimate stage of this algorithm, i.e. when there remain \(p + 1 \) nodes. Label the nodes as 0, 1, \(\ldots \), \(p \). Without loss of generality, assume that the last collapse is of the pair \(S = \{0, 1\} \).

We first claim that if the response time \(L \) of the final schedule is not given by \(\text{cost}(S) = t_0 + t_1 \) then GreedyPairing produces an optimal schedule. Suppose that the response time is larger than \(\text{cost}(S) \), then there exists an \(i > 1 \) such that \(t_i > t_0 + t_1 \). But then \(i \) must be one of the original nodes, since GreedyPairing would always prefer to collapse the nodes 0 and 1 before ever performing the collapse which would result in a node of cost \(t_i \). Since \(t_i \) is a lower bound (Lemma 4.1) on the optimal response time, we obtain that the response time \(L = t_i \) is optimal.

Consider now the remaining case where \(L = \text{cost}(S) = t_0 + t_1 \). By the definition of GreedyPairing, we have that for all \(i, j \in \{0, 1, \ldots, p\} \), \(L = t_0 + t_1 \leq t_i + t_j \). Summing over all \(i \) and \(j \), we obtain that

\[
\frac{p(p + 1)}{2} L \leq \sum_{0 \leq i < j \leq p} (t_i + t_j) = p \sum_{i=0}^{p} t_i \leq p^2 L_{\text{opt}}
\]

where the last inequality follows from Lemmas 4.2 and 4.1. We conclude that \(L \leq \frac{2p}{p+1} L_{\text{opt}} \) which gives the desired bound on the performance ratio.

That this bound is tight can be seen from the following example. Suppose there are \(p \) nodes of weight 1 and \(p \) nodes of weight \(p \). The optimal solution pairs off one node of each type achieving a response time of \(p + 1 \). On the other hand, GreedyPairing merges the nodes of weight 1 to obtain,
at the penultimate stage, \(p + 1 \) nodes of weight \(p \). At this point it is forced to pair two nodes of weight \(p \) each, giving a response time of \(2p \).

4.7 Approximation Algorithms

We first discuss a two-stage approach to developing approximation algorithms and then develop the LocalCuts and BoundedCuts algorithms.

4.7.1 A Two-stage Approach

We divide the POT scheduling problem into two stages, fragmentation followed by scheduling. Fragmentation produces a connected schedule assuming unlimited processors. Scheduling assigns the fragments produced by the first stage to the real processors.

The two stage approach offers conceptual simplicity and does not restrict the space of schedules. Any schedule defines a natural fragmentation corresponding to cutting exactly the inter-processor edges. For any given schedule, some scheduling algorithm will produce it from its natural fragmentation. Notice that the scheduling stage may assign two fragments that were connected by a cut edge to the same processor thus "undoing" the cutting. Thus, several fragmentations may produce the same schedule. In our analysis, we will ignore the decrease in communication cost caused by this implicit undoing of an edge cutting operation. This can only over-estimate the cost of our solution.

The two-stage approach allows us to use standard multiprocessor scheduling algorithms for the second stage. We choose to use the \(LPT \) [Gra69] algorithm. Given the use of \(LPT \) for scheduling, we may develop the conditions for a good fragmentation. There is an inherent tradeoff between total load and the weight of the heaviest connected fragment. If an edge is cut, communication cost is incurred thus increasing total load. If an edge is collapsed, a new node with a larger net weight is created, potentially increasing the weight of the largest connected fragment. Lemma 4.11 captures this trade-off and provides conditions on fragmentation for a bounded performance ratio.

Recall our choice of notation from Section 4.2.3. \(R_i = t_i + \sum_j c_{ij} \) is the net weight of node \(i \) and \(R = \max_i R_i \). \(W = \sum_i t_i \) is the sum of the weights of all nodes and \(\bar{W} = W/p \) is the average node weight per processor.

Assuming fragmentation to produces \(q \) fragments with weights \(M_1, \ldots, M_q \), we make the following definitions.

Definition 4.11 \(M = \max_i M_i \) is the weight of heaviest fragment. \(C \) is the the total communication
cost incurred, which is twice the sum of the weights of the cut edges. $\overline{L} = (W + C)/p$ is the average load per processor.

We use the subscript OPT to denote the same quantities for the natural fragmentation corresponding to an optimal schedule, for example, M_{opt} for the weight of the heaviest fragment. We have:

Lemma 4.9 $\overline{W} \leq \overline{L} \leq L$. In particular, $\overline{W} \leq \overline{L}_{\text{opt}} \leq L_{\text{opt}}$.

Lemma 4.10 $R \leq M \leq L$. In particular, $R \leq M_{\text{opt}} \leq L_{\text{opt}}$.

In the following lemma, k_1 captures the effect of size of the largest fragment and k_2 the load increase due to communication.

Lemma 4.11 Given a fragmentation with $M \leq k_1 L_{\text{opt}}$ and $\overline{L} \leq k_2 \overline{L}_{\text{opt}}$, scheduling using LPT yields a schedule with $L_{\text{LPT}} \leq \max\{k_1, 2k_2\}$.

Proof: Let p_k be a heaviest loaded processor in an LPT schedule with response time L. Let M_j be the last fragment assigned to p_k. We will divide the analysis into two cases based on whether M_j is the only fragment on p_k or not.

If M_j is the only fragment on p_k, $L = M_j$ and by our assumption,

$$L = M_j \leq M \leq k_1 L_{\text{opt}}$$

Now consider the case when the number of fragments on p_k is at least 2. Since LPT assigns a job to the least loaded processor, the load on any processor must be at least $L - M_j$ when M_j was assigned to p_k. The total load $\sum_k L_k$ may be bounded as

$$\sum_k L_k \geq (L - M_j)p + M_j$$

$$\Rightarrow L \leq \frac{1}{p} \sum_k L_k + \left(1 - \frac{1}{p}\right) M_j$$

$$\Rightarrow L \leq \overline{L} + M_j.$$

Since LPT chooses the least loaded processor, the first p jobs are scheduled on distinct processors. Since there was at least one other fragment on p_k before M_j, there are at least $p + 1$ fragments, each of them no lighter than M_j. Thus,

$$\sum_k L_k \geq (p + 1) M_j$$

$$\Rightarrow M_j \leq \frac{1}{p + 1} \sum_k L_k < \overline{L}.$$
Combining the two inequalities shown above and using the assumption $L \leq k_2 L_{opt}$, we obtain

$$L \leq \sum \frac{M_j}{2} \leq 2L \leq 2k_2 L_{opt}.$$

Combining the two cases, we conclude $L/L_{opt} \leq \max\{k_1, 2k_2\}$. □

Using the above lemma, the best we can do is to find a fragmentation with $k_1 = k_2 = 1$ which would guaranteed a performance ratio of 2. However, finding the best fragmentation is NP-complete.

Theorem 4.8 Given a star $T = (V, E)$, bounds B and C, the problem of determining whether there is a partition of V such that no fragment is heavier than B and the total communication is no more than C is NP-complete.

Proof: (Sketch) We reduce the classical knapsack problem [GJ79] to the above problem. Let an instance of the knapsack problem be specified by a bag size S and n pairs (w_i, p_i) where each pair corresponds to an object of weight w_i with profit p_i. We can assume without loss of generality that $p_i \leq w_i$ for all i since all p_i can be scaled. Consider a star T with $n + 1$ nodes obtained from the knapsack instance. We label the nodes of T from 0 to n with the center as 0. We set $c_{i0} = p_i/2$ and $t_i = w_i + c_i$ and $B = S + \sum_i c_i$. We claim that the minimum communication cost for the star instance is C if and only if the maximum profit for the knapsack instance is $\sum_i p_i - C$. □

We remark that the problem is polynomially solvable when the tree is restricted to be a path.

The next two subsections focus on algorithms to find a fragmentation that guarantees low values for k_1 and k_2.

4.7.2 The LocalCuts Algorithm

We now develop a linear time algorithm for fragmentation called LOCALCUTS. We show bounds on the weight of the heaviest fragment as well as on the load increase due to communication. Application of Lemma 4.11 shows the algorithm to have a performance ratio of 3.56.

LOCALCUTS repeatedly picks a leaf and determines whether to cut or collapse the edge to its parent. It makes the decision based on local information, the ratio of the leaf weight to the weight of the edge to its parent. The basic intuition is that if the ratio is low, then collapsing the edge will not substantially increase the net weight of the parent. If the ratio is high, the communication cost
incurred by cutting will be relatively low and can be amortized to the weight of the node cut off. One complication is that cutting or collapsing an edge changes node weights. Our analysis amortizes the cost of cutting an edge over the total weight of all nodes that were collapsed to produce the leaf.

In the following discussion we assume that the tree T has been rooted at some arbitrary vertex. We will refer to the fragment containing the root as the residual tree. A mother node in a rooted tree is a node all of whose children are leaves. The algorithm uses a parameter $\alpha > 1$. We will later show (Theorem 4.9) how this parameter may be chosen to minimize the performance ratio.

Algorithm 4.5 The LocalCuts Algorithm

Input: Monotone operator tree T, parameter $\alpha > 1$.
Output: Partition of T into fragments F_1, \ldots, F_k.

1. while there is a mother node m with a child j do
2. if $t_j > \alpha c_{jm}$ then cut e_{jm}
3. else collapse e_{jm}
4. end while

The running time of the LocalCuts algorithm is $O(n)$. The following lemma shows a bound on the weight of the resulting fragments.

Lemma 4.12 Any fragment produced by LocalCuts has weight less than αR, which implies $M < \alpha R$.

Proof: Consider an arbitrary fragment produced in the course of the algorithm. Let m be the highest level node in the fragment, with children $1, \ldots, d$. The node m is picked as a mother node at some stage of the algorithm. Now, $R_m = c_{mp} + t_m + c_{m1} + \ldots + c_{md}$ where c_{mp} is the weight of the edge from m to its parent. Collapsing child j into m, corresponds to replacing c_{mj} by t_j. Since the condition for collapsing is $t_j < \alpha c_{mj}$, collapsing children can increase R_m to at most αR_m which is no greater than αR. □

We now use an amortization argument to show that the communication cost incurred by the LocalCuts algorithm is bounded by a constant factor of the total node weight, W.

Lemma 4.13 The total communication cost of the partition produced by the LocalCuts algorithm is bounded by $\frac{2}{\alpha-1}W$, that is $C \leq \frac{2}{\alpha-1}W$.

Proof: We associate a credit p_i with each node i and credit p_{jk} with each edge e_{jk}. Initially, edges have zero credit and the credit of a node equals its weight; thus, the total initial credit is
The total credit will be conserved as the algorithm proceeds. When a node is cut or collapsed, it’s credit is taken away and either transferred to another node or to an edge that is cut. The proof is based on showing that when the algorithm terminates, every edge that is cut has a credit equal to \((\alpha - 1)\) times its weight. This allows us to conclude that the total weight of the cut edges is bounded by \(\frac{2}{\alpha - 1}W\). We abuse notation by using \(t_i\) for the current weight of a node in the residual tree. We now prove the following invariants using an inductive argument.

1. Each node has a credit greater than or equal to its current weight in the residual tree, i.e.,
 \[p_i \geq t_i. \]

2. Each cut edge \(e_{im}\) has a credit equal to \((\alpha - 1)\) times its weight, i.e., \(p_{im} = (\alpha - 1)c_{im}\).

As the base case, these invariants are trivially true at the beginning of the algorithm. As the inductive step, suppose these invariants are true up to \(k\) iterations and we consider leaf node \(j\) with mother \(m\) in the \((k + 1)\)st iteration. If \(j\) is collapsed, \(t_{m}^{\text{new}} = t_m + t_j\). We use the superscript \(\text{new}\) to indicate the values at the next iteration. By transferring the credit of \(j\) to \(m\), we get \(p_{m}^{\text{new}} = p_j + p_m\).

Since \(p_j \geq t_j\) and \(p_m \geq t_m\), by the inductive hypothesis we have \(p_{m}^{\text{new}} \geq t_{m}^{\text{new}}\) and both invariants are preserved.

If \(j\) is cut, \(t_{m}^{\text{new}} = t_m + c_{jm}\). We need to transfer a credit of \(c_{jm}\) to \(m\) to maintain the first invariant. The remaining credit \(p_j - c_{jm}\) may be transferred to the edge \(e_{jm}\). By the induction hypothesis, we have \(p_j - c_{jm} \geq t_j - c_{jm}\) and since edge \(e_{jm}\) was cut, \(p_j - c_{jm} > (\alpha - 1)c_{jm}\). Thus sufficient credit is available for the second invariant as well.

The previous two lemmas combined with Lemma 4.11, allow us to bound the performance ratio guaranteed by LOCALCUTS. The following theorem states the precise result and provides a value for the parameter \(\alpha\).

Theorem 4.9 Using LPT to schedule the fragments produced by LOCALCUTS with \(\alpha = \frac{3 + \sqrt{17}}{2}\) gives a performance ratio of \((3 + \sqrt{17})/2 \sim 3.56\).

Proof: From Lemma 4.13 and Lemma 4.9,

\[
L = \frac{W + C}{p} \leq \frac{\alpha + 1}{\alpha - 1}W \leq \frac{\alpha + 1}{\alpha - 1}L_{opt}.
\]

Combining this with Lemma 4.12 and using Lemma 4.11 we conclude

\[
\frac{L}{L_{opt}} \leq \max\left\{ \alpha, \frac{2(\alpha + 1)}{\alpha - 1} \right\}
\]
Observing that the max is minimized when $\alpha = 2(\alpha + 1)/(\alpha - 1)$, we obtain $\alpha = (3 + \sqrt{17})/2$ and $L/L_{\text{opt}} \leq (3 + \sqrt{17})/2$.

The performance ratio of LOCALCUTS is tight. Consider a star in which the center node with weight δ is connected by edges of weight 1 to $n - 1$ leaves, each of weight $\alpha = 3.56$. Suppose the star is scheduled on $p = n$ processors. LOCALCUTS will collapse all leaves and produce a single fragment of weight $(n - 1)\alpha + \delta$. The optimal schedule consists of cutting all edges to produce $n - 1$ fragments of weight 1 + α and one fragment of weight $n - 1 + \delta$. When $n > 5$, the performance ratio is $((n - 1)\alpha + \delta)/(n - 1 + \delta)$ which approaches α as δ goes to zero.

4.7.3 The BoundedCuts Algorithm

The LOCALCUTS algorithm determines whether to collapse a leaf into its mother based on the ratio of the leaf weight to the weight of the edge to its mother. The decision is independent of the current weight of the mother node. From the analysis of LOCALCUTS, we see that the weight of the largest fragment is bounded by αR_m, where m is the highest level node in the fragment (Lemma 4.12). If R_m is small compared to M_{opt}, we may cut expensive edges needlessly. Using a bound that is independent of R_m should reduce communication costs.

The analysis of LOCALCUTS showed the trade-off between total communication ($C \leq \frac{2}{\alpha - 1} W$) and the bound on fragment size ($M < \alpha R$). Reduced communication should allow us to afford a lower value of α, thus reducing the largest fragment size and the performance ratio.

We now discuss a modified algorithm called BOUNDED CUTS that uses a uniform bound B at each mother node. It also cuts off light edges in a manner similar to LOCALCUTS. Our analysis will show that the modified algorithm improves the performance ratio to 2.87. We will show the ratio to be tight. Our analysis of communication costs uses lower bounds on C_{opt}, the communication incurred in some fixed optimal schedule.

The algorithm below is stated in terms of three parameters α, β and B that are assumed to satisfy $\beta \geq \alpha > 1$, and $M_{\text{opt}} \leq B \leq L_{\text{opt}}$. Our analysis uses these conditions and we shall later show how the values of these parameters may be fixed.

Algorithm 4.6 The BoundedCuts Algorithm

Input: Monotone operator tree T, real parameters α, β, and B where $\beta \geq \alpha > 1$ and $B \geq R$.

Output: Partition of T into connected fragments T_1, \ldots, T_k.

1. **while** there exists a mother node m
2. partition children of m into sets N_1, N_2 such that
child $j \in N_1$ if and only if $t_j / e_{mj} \geq \beta$;

3. cut e_{mj} for $j \in N_1$; (\textbf{\textit{\beta rule}})

4. \textbf{if} $R_m + \sum_{j \in N_1} (t_j - e_{mj}) \leq \alpha B$ \textbf{then}

5. \textbf{else} cut e_{mj} for all $j \in N_2$; (\textbf{\textit{\alpha rule}})

7. \textbf{end while}

8. \textbf{return} resulting fragments T_1, \ldots, T_k.

\textbf{Lemma 4.14} Any fragment produced by BOUNDED CUTS has weight at most MB. As a consequence, $M \leq \alpha L_{opt}$.

\textbf{Proof:} Since the weight of a fragment increases only when some edge is collapsed, the explicit check in line 4 ensures the lemma. \hfill \Box

Let C denote the set of edges cut by BOUNDED CUTS. We cut edges using two rules, the \textit{\beta} rule in Step 3 and the \textit{\alpha} rule in Step 6. Let C_β and C_α denote the edges cut using the respective rules. C_β and C_α are disjoint and $C_\beta \cup C_\alpha = C$. Let C_β and C_α denote the communication cost incurred due to edges in C_β and C_α respectively. We bound C_β and C_α in Lemmas 4.15 and 4.17.

\textbf{Lemma 4.15} $C_\alpha \leq \frac{\beta - 1}{\alpha - 1} C_{opt}$.

The proof of the lemma requires several definitions and lemmas.

\textbf{Definition 4.12} Let $T_i = (V_i, E_i)$ denote a subtree of $T = (V, E)$ rooted at i, defined as follows: V_i includes i, children of i that are not cut off by the \textit{\beta} rule, and all nodes that eventually collapse into a child of i; E_i consists of all edges $e_{kj} \in E$ such that $k, j \in V_i$. The weight of an edge in E_i is the same as the corresponding edge in E. The weight of node $j \in V_i$ is the weight of j in T plus the weights of all incident edges that are not in E_i, i.e., $t_j^{(T)} = t_j^{(T)} + \sum_{t \in V - V_i} c_{jt}$.

Figure 4.8 illustrates the definition of T_i. With respect to the figure, the weight of m in T_m equals the original weight plus the weight of the two edges that connect m to nodes not in T_m.

\textbf{Definition 4.13} W_i is the total weight of all nodes in T_i.

\textbf{Definition 4.14} C_{opt} is defined to be the set of edges in tree T that are cut in a fixed optimal solution.
Definition 4.15 C_{opt}^i is set of edges formed by starting with the edges $C_{\text{opt}} \cap E_i$ and deleting all edges e_{kj} for which there exists $e_{mj} \in C_{\text{opt}} \cap E_i$ with m being an ancestor of k.

C_{opt}^i is a subset of the edges of T_i that are cut in the optimal. Figure 4.9 shows the edges in T_m that are cut by a fixed optimal schedule as thick edges. The subset of edges that forms C_{opt}^m are checked off.

Definition 4.16 C_{α}^i is defined to be the set of edges in tree T_i that are cut by the α rule. C_{α}^i is the total weight of the edges in C_{α}^i.

Lemma 4.16 If m and m' are distinct mother nodes where we cut using the α rule, then $C_{\text{opt}}^m \cap C_{\text{opt}}^m' = \emptyset$ and $C_{\alpha}^m \cap C_{\alpha}^m' = \emptyset$.

Proof: The lemma follows since, by their definition, trees T_m and $T_{m'}$ do not share any edges (see Figure 4.8). \square

Proof of Lemma 4.15

Proof: By Lemma 4.16, it suffices to establish

$$C_{\alpha}^m \leq \frac{\beta - 1}{\alpha - 1} C_{\text{opt}}^m$$
for each mother node m where we use the α rule to cut edges. Let the set C_{α}^m consist of s edges $e_{m_1z_1}, \ldots, e_{m_sz_s}$. These edges partition T_m into $s + 1$ fragments. From the definition of C_{α}^m it follows that one fragment, F_m, contains nodes m and m_1, \ldots, m_s (some of these may be the same as m). Let the remaining fragments be F_1, \ldots, F_s, with F_j containing node z_j. We have

$$C_{\alpha}^m = \sum_{1 \leq j \leq s} c_{m_jz_j}$$

Since no fragment in the optimal is larger than M_{opt}, the total node weight in fragment F_m is at most $M_{opt} - \sum_{1 \leq j \leq s} c_{m_jz_j}$. Thus, letting Q_j be the total node weight in fragment F_j for $j = 1, \ldots, s$, we have

$$M_{opt} - \sum_{1 \leq j \leq s} c_{m_jz_j} + \sum_{1 \leq j \leq s} Q_j \geq W_m.$$

We applied the α rule at m. Since children cut by the α rule are in T_m, $W_m > \alpha B$. Since $B \geq M_{opt}$, we have $W_m > \alpha M_{opt}$ which reduces the above equation to:

$$\sum_{1 \leq j \leq s} (Q_j - c_{m_jz_j}) > (\alpha - 1) M_{opt}$$

Since no edge in T_m was cut by the β rule, we must have $Q_j < \beta c_{m_jz_j}$ which results in

$$\sum_{1 \leq j \leq s} (\beta - 1) c_{m_jz_j} > (\alpha - 1) M_{opt}$$

$$\Rightarrow M_{opt} < \frac{\beta - 1}{\alpha - 1} \sum_{1 \leq j \leq s} c_{m_jz_j} = \frac{\beta - 1}{\alpha - 1} C_{\alpha}^m.$$

Since $C_{\alpha}^m < R_m \leq M_{opt}$, we have the desired result:

$$C_{\alpha}^m \leq \frac{\beta - 1}{\alpha - 1} C_{\alpha}^m$$

Using techniques similar to those in the proof of Lemma 4.13, we show the following bound on C_β.

Lemma 4.17 $C_\beta \leq \frac{2}{\beta - 1} W - \frac{\alpha - 1}{\beta - 1} C_{\alpha}$.

Proof: We use a credit based argument similar to that of Lemma 4.13. For each edge in C_β we associate a credit of $(\beta - 1)$ times it’s weight and for each C_α edge we maintain a credit of $(\alpha - 1)$ times it’s weight. The proof for C_β edges is similar to that in Lemma 4.13. For C_α edges, we cannot use a similar argument since the weight of the leaf being cut off, is not necessarily α times the
weight of the edge to it’s parent. But consider all the edges cut off at a mother node. From the
algorithm we have \(R_m + \sum_{j \in N_s} (t_j - c_{m_j}) > \alpha B \). From this we see that even though each leaf is
not heavy enough, the combined weight of all the leaves being cut off at a mother node is sufficient
for a credit of \((\alpha - 1) \) times the weight of the edges cut. Since we start with an initial credit of \(W \),
the result follows.

Combining Lemmas 4.15 and 4.17, we obtain the following.

Lemma 4.18 \(C = C_\beta + C_\alpha \leq \frac{2}{\beta - 1} W + \frac{\beta - \alpha}{\alpha - 1} C_{opt} \).

We need the following technical lemma before we prove the main theorem.

Lemma 4.19 For \(\beta \geq \alpha > 1 \), the function
\[
m(\alpha, \beta) = \max \left\{ \alpha, \frac{2(\beta + 1)}{\beta - 1}, \frac{2(\beta - \alpha)}{\alpha - 1} \right\}
\]
is minimized when
\[
\alpha = \frac{2(\beta + 1)}{\beta - 1} = \frac{2(\beta - \alpha)}{\alpha - 1}
\]
The minimum value is 2.87 when \(\alpha \sim 2.87 \) and \(\beta \sim 5.57 \).

Proof: We observe that \(f(\alpha, \beta) = \alpha \) is strictly increasing in \(\alpha \), \(h(\alpha, \beta) = 2(\beta - \alpha)/(\alpha - 1) \)
is strictly decreasing in \(\alpha \), \(g(\alpha, \beta) = 2(\beta + 1)/(\beta - 1) \) is strictly decreasing in \(\beta \), and \(h \) is strictly
increasing in \(\beta \). From this it is easy to verify that at the optimum point, both \(f \) and \(g \) must be equal
to the optimum value. If either them is not the max-value of the max, then appropriately change
\(\alpha/\beta \) to make this happen, and note that this can only reduce the value of \(h \). From this it follows
that all three terms are equal at the optimum. Eliminating \(\beta \) from the above two equations gives us
\[
\alpha^3 - \alpha^2 - 4\alpha - 4 = 0
\]
which on solving yields the claimed values for \(\alpha, \beta \) and the minimum.

Theorem 4.10 Using LPT to schedule the fragments produced by \textsc{BoundedCuts} with \(\alpha = 2.87 \),
and \(\beta = 5.57 \) gives a performance ratio of 2.87.

Proof: Using Lemma 4.18, we have
\[
\mathcal{L} = \frac{W + C}{p} \leq W + \frac{2}{\beta - 1} W + \frac{\beta - \alpha}{\alpha - 1} C_{opt}
\]
\[
\leq \max \left\{ \frac{\beta + 1}{\beta - 1}, \frac{\beta - \alpha}{\alpha - 1} \right\} \times \mathcal{L}_{opt}.
\]
Using the bound on L from the above equation and from the bound on M from Lemma 4.14, we can apply Lemma 4.11 to obtain

$$\frac{L}{L_{\text{opt}}} \leq \max \left\{ \alpha, 2 \left(\max \left\{ \frac{\beta + 1}{\beta - 1}, \frac{\beta - \alpha}{\alpha - 1} \right\} \right) \right\} \leq \max \left\{ \alpha, \frac{2(\beta + 1)}{\beta - 1}, \frac{2(\beta - \alpha)}{\alpha - 1} \right\}.$$

From Lemma 4.19, the right hand side of the above inequality is minimized at the values stated in the theorem, and this shows that $L/L_{\text{opt}} \leq 2.87.$

The performance ratio of BOUNDED CUTS is tight. The example is similar to that for LOCAL CUTS i.e. a star in which the center node with weight δ is connected by edges of weight 1 to $n - 1$ leaves each of weight $\alpha = 2.87$. Suppose the star is scheduled on $p = n$ processors. The optimal schedule consists of cutting all edges to produce $n - 1$ fragments of weight 1 + α and one fragment of weight $n - 1 + \delta$. Taking $n > 4$, $M_{\text{opt}} = L_{\text{opt}} = n - 1 + \delta$. BOUNDED CUTS will collapse all leaves and produce a single fragment of weight $(n - 1)\alpha + \delta$ (since $B = L_{\text{opt}}$, this does not exceed αB). The performance performance ratio is therefore $((n - 1)\alpha + \delta)/(n - 1 + \delta)$ which approaches α as δ goes to zero.

The results in this section rely on the fact that the bound B used in BOUNDED CUTS satisfies $M_{\text{opt}} \leq B \leq L_{\text{opt}}$. Since we do not know the optimal partition, we do not know M_{opt} or L_{opt}. However, we can ensure that we try a value of B that is as close as we want to L_{opt}. The following theorem makes the idea more precise.

Theorem 4.11 For any $\epsilon > 0$, we can ensure that we run BOUNDED CUTS with a bound B satisfying $L_{\text{opt}} \leq B \leq (1 + \epsilon)L_{\text{opt}}$. This yields a performance ratio of $(1 + \epsilon)2.87$ with a running time of $O(\epsilon^{-1}np \log n)$.

Proof: From Lemmas 4.9 and 4.10, $\max\{W, R\}$ is a lower bound on L_{opt}. W is an upper bound since we can always schedule the entire tree on a single processor. Thus, $\overline{W} \leq L_{\text{opt}} \leq p\overline{W}$. We can try the value $B = \epsilon k\overline{W}$ for each integer k satisfying $1/\epsilon \leq k \leq p/\epsilon$. For each such value, we run BOUNDED CUTS followed by LPT and take the best schedule. This guarantees that we will use a bound $L_{\text{opt}} \leq B \leq (1 + \epsilon)L_{\text{opt}}$. From the previous analysis, if we use such a bound, we get a performance ratio of $(1 + \epsilon)2.87$. There are $(p - 1)/\epsilon$ values for k. LPT requires $O(n \log n)$ time, and BOUNDED CUTS requires $O(n)$. Thus the total time for all values of B is $O(\epsilon^{-1}np \log n)$. \square
4.8 Experimental Comparison

In this section, we experimentally compare the average-case performance of the algorithms developed in previous sections. We first discuss the experimental setup and then describe the results. The overall result is that Hybrid has the best average case behavior.

4.8.1 Experimental Setup

All experiments were done by random sampling from spaces of monotone trees. The space was specified by four parameters: shape, size, edgeRange and nodeRange. We restricted ourselves to monotone trees since all algorithms pre-process the input tree into a monotone tree.

The shape of trees was controlled by specifying the maximum number of children that a node could have. Given this maximum, the actual number of children of a non-leaf node was randomly chosen from between 1 and the maximum. Two interesting classes of shapes are narrow and wide trees. Narrow trees restrict a node to have at most two children while wide trees allowed a node to have any number of children. Narrow trees represent the shapes that are commonly encountered in practice since most database operators have 1 or 2 arguments.

EdgeRange and nodeRange specified the integer ranges from which edge and node weights could be chosen. The size specified the number of nodes in the trees to be generated.

Given fixed values for shape, size, edgeRange and nodeRange, we randomly generated trees of at least the given size and filtered those whose corresponding monotone trees was of the exact size needed. For each specification of the space that we experimented with, we generated 2500 monotone trees and stored them in a file.

Each reported data point is an average over 2500 monotone trees. This number of samples was always sufficient to guarantee an error of less than 5% with a confidence of 95%.

4.8.2 Experimental Comparison

All experiments reported in this section are on trees with 30 nodes with both edgeRange and nodeRange set to 1...100. The shapes of the trees are either narrow or wide. We again note that narrow trees represent the shapes that are commonly encountered in practice.

Experiments with spaces in which the tree size or shape was different did not yield any new lessons. Changes to edgeRange and nodeRange do change the difference between curves but did not, in our observation, change the relative ordering of algorithms.
Since computing the optimal schedule has prohibitive cost, all performance ratios are with respect to a lower bound on the optimal. The lower bound was taken to be the largest of two lower bounds. The lower bounds given by Lemma 4.2 can be improved using the following lemma. The second lower bound was from Lemma 4.1.

Lemma 4.20 If C_E is the sum of the weights of the cheapest $p - 1$ edges and W the sum of all node weights in a monotone tree with at least p nodes, then $(C_E + W)/p$ is a lower bound on the optimal response time.

Proof: The optimal schedule for a monotone tree with at least p nodes must cut at least $p - 1$ edges.

4.8.3 Performance of Hybrid

Figures 4.8.3 and fig:nhyb plot performance ratios for the Hybrid algorithm as well as the two algorithms out of which Hybrid was constructed.

We observe that Modified LPT outperforms BalancedFragments for wide trees but the situation reverses for narrow trees. The explanation lies in the fact that narrow trees are close to paths while wide trees are close to stars. Connected schedules produced by BalancedFragments are a good approximation for paths (Theorem 4.5) but not for stars (Lemma 4.8). Schedules produced by Modified LPT are a good approximation for stars (Theorem 4.3) but not for paths (Lemma 4.3).

Hybridization of the two algorithms helps since for an specific tree either one or the other algorithm performs well.
4.8.4 Comparison of Hybrid, LocalCuts and BoundedCuts

Figures 4.8.4 and 4.8.4 compare Hybrid, LocalCuts and BoundedCuts.

We first observe that even though BoundedCuts has a better worst-case performance ratio than LocalCuts, LocalCuts performs better on the average. The explanation lies in the fact that while the weight of the largest fragment is lower in BoundedCuts (as compared to LocalCuts) the lowering comes at the expense of cutting more expensive edges. This increases the average performance ratio.

The second observation is that Hybrid outperforms the other two algorithms. We also note that while we could prove worst-case bounds on the performance ratio of Hybrid only for stars and paths, we do not know of any examples on which Hybrid has a performance ratio of more than 2.
CHAPTER 4. SCHEDULING PIPELINED PARALLELISM

4.8.5 Behavior of Lower Bound

Computing the optimal schedule even for a single tree is prohibitively expensive when the trees get large. In our implementation, it took a few days to compute the optimal schedule for a tree with 15 nodes. All reported performance ratio are therefore with respect to a lower bound on the optimal.

Figure 4.8.5 plot the performance ratio of the optimal (i.e. optimal response time divided by lower bound) for trees with 10 nodes and compares it with the performance ratio of Hybrid.

We observe that a reason for the humped nature of all curves is that the lower bound itself follows this pattern. When the number of nodes far exceeds the number of processors, the average node weight tends to be a good lower bound. When the number of node is almost the same as the number of processors, the maximum net weight is a good lower bound. The lower bounds are not as good in the intermediate region.

4.9 Discussion

We developed several algorithms for managing pipelined parallelism and evaluated their average as well as worst-case performance ratios. Of these, we consider Hybrid to be the algorithm of choice since it has the best average performance ratio and a worst-case performance ratio of about 2 for many cases. We conjecture Hybrid to have a performance ratio of about 2 in general.

Some of the other algorithms developed in this chapter have properties that are worth discussing. GreedyPairing has the advantage of being extremely simple. It is also easily usable when some of the operators are pre-allocated to processors. This is important in architectures where a disk may
be scanned only by the processor that “owns” it.

Connected schedules have the practical advantage that certain code generation schemes (such as in LDL [CGK90]) can generate code with a single thread of control for a connected sets of operators. The context switching between operators is efficiently built into the generated code rather than being managed by more expensive mechanisms such as thread packages. Unconnected sets require as many threads as the number of connected components in the set. Thus connected schedules permit a faster implementation of intra-processor context switching.

LocalCuts and BoundedCuts have the advantage providing a guarantee on the worst-case performance ratio. We experimented with variations of LocalCuts such as the use of multiple values of α and trying out multiple choices of the root. Such variations improve average performance bringing is closer to the performance of Hybrid.
Chapter 5

Scheduling Mixed Parallelism

In this chapter, we address the problem of scheduling a pipelined tree using both pipelined and partitioned parallelism. This problem is the continuous version of the discrete optimization problem addressed in the last chapter. When using only pipelined parallelism, each operator is allocated to a unique processor (a 0/1 assignment). Partitioned parallelism permits an operator to be allocated to a set of processors. Each processor executes some fraction of the operator.

Allowing partitioned parallelism enlarges the space of schedules. Interestingly, the problem gets simplified for the case when communication has zero cost. However, when communication is considered, the problem becomes NP-hard and is a continuous optimization problem that does not fall into classes such as convex or quadratic programming.

After defining the model, we investigate two interesting classes of schedules. Balanced schedules put equal load on all processors and symmetric schedules that divide each operator equally over all processors. We develop characterizations of the optimal schedule. We also show a simple rule for optimally scheduling trees with two nodes.

5.1 Problem Definition

Definition 5.1 A schedule is a \(n \times p \) matrix \(A \) with entries \(a_{ik} \geq 0 \) such that \(\sum_{1 \leq k \leq p} a_{ik} = 1 \). The number \(a_{ik} \) is the fraction of operator \(i \) executed by processor \(k \).

To understand communication costs, suppose operator \(i \) produces a data stream that is consumed by operator \(j \). Assuming uniform production, fraction \(a_{ik} \) of the data stream will be produced on processor \(k \). Assuming uniform redistribution of tuples, fraction \(a_{jk} \) is consumed by the local clone of operator \(j \) and fraction \(1 - a_{jk} \) by non-local clones (In the terminology of Chapter 3, we are
focusing on the case where each node is of a different color). Thus, on processor \(k \), operator \(i \) incurs a communication cost of \(c_{ij}a_{ik}(1 - a_{jk}) \) with operator \(j \). Generalizing, the total communication cost (with all other operators) incurred by \(i \) on processor \(k \) is \(\sum_{1 \leq j \leq n} a_{ik}(1 - a_{jk})c_{ij} \).

Definition 5.2 The load \(L_k \) on processor \(k \) is

\[
L_k = \sum_{1 \leq i \leq n} a_{ik}t_i + \sum_{1 \leq j \leq n, \sum_{1 \leq j \leq n} a_{ik}(1 - a_{jk})c_{ij}.
\]

We will use \(L_k(A) \) to denote the load on processor \(k \) in schedule \(A \).

The response time, \(L \), of a schedule is derived by reasoning similar to that in the last chapter. The pipelining constraints force all operators in a pipeline to start simultaneously (time 0) and terminate simultaneously at time \(L \). Letting \(f_{ik} \) be the fraction of operator \(i \) executed by processor \(k \), the pipelining constraint is:

\[
f_{ik} = \frac{1}{L}[t_i + \sum_{j} a_{ik}(1 - a_{jk})c_{ij}]
\]

Since at least one processor must be fully utilized, we have:

\[
\max_{1 \leq k \leq p} \sum_{1 \leq i \leq n} f_{ik} = 1
\]

\[
\Rightarrow L = \max_{1 \leq k \leq p} [\sum_{1 \leq i \leq n} [t_i + \sum_{j} a_{ik}(1 - a_{jk})c_{ij}]] = \max_{1 \leq k \leq p} L_k\text{ using equation (5.1)}
\]

Example 5.1 Figure 5.1 shows an operator tree with 2 nodes scheduled on two processors. Taking the SCAN operator to be operator 1 and BUILD to be operator 2, the schedule being illustrated has \(a_{11} = 3/4, a_{12} = 1/4, \) and \(a_{21} = a_{22} = 1/2 \). Processor 1 is saturated and the schedule has response time 22.
CHAPTER 5. SCHEDULING MIXED PARALLELISM

Input: Operator Tree $T = (V, E)$ with positive real weights t_i for each node $i \in V$ and c_{ij} for each edge $(i, j) \in E$; number of processors p

Output: $n \times p$ matrix A that minimizes $L = \max_{1 \leq k \leq p} L_k$ subject to

- $a_{ik} \geq 0$ for $1 \leq i \leq n$, $1 \leq k \leq p$
- $\sum_{1 \leq k \leq p} a_{ik} = 1$ for $1 \leq i \leq n$

We first observe that Lemma 4.2 applies to POTP and $\overline{W} = W / p$ where $W = \sum_i t_i$ is a lower bound on the response time of any schedule. Since operators are now divisible, the lower bound given by Lemma 4.1 does not apply (as a counter-example, consider a tree consisting of a single node scheduled on two processors).

Lemma 5.1 POTP is NP-complete.

Proof: (Sketch) The problem is in NP since the response time of a schedule is easily computed. To see the problem to NP-hard, consider a path with $2n$ nodes in which alternate edges have weights ∞ and 0. Since edges with ∞ weight must be collapsed, the problem reduces classical Multiprocessor scheduling of the resulting n nodes and is thus NP-hard. In Section 5.2, we will show this proof idea to apply with finite edge weights. \qed

Our formulation of POTP has an objective function that is not smooth due to the presence of max. Continuity of first and second derivatives is desirable in continuous analysis. The following equivalent formulation achieves smoothness:

Minimize z subject to

- $z - L_k \geq 0$ for $1 \leq k \leq p$
- $a_{ik} \geq 0$ for $1 \leq i \leq n$, $1 \leq k \leq p$
- $\sum_{1 \leq k \leq p} a_{ik} = 1$ for $1 \leq i \leq n$

Since L_k is a quadratic function in terms of a_{ik}, the constraint $z - L_k \geq 0$ is non-linear. Thus POTP does not fall into the class of linear programming (objective function and all constraints linear) or quadratic programming (quadratic objective function, linear constraints). It also does not fall into the class of convex programming problems which have the useful property that a local minimum is also a global minimum. For a problem to be convex, the objective function must be convex, equality constraints must be linear and inequality constraints must be convex. Unfortunately, the constraint $z - L_k \geq 0$ is neither convex nor concave due to its quadratic nature. This can be seen
more formally by observing that for \(n = p = 2 \), the Hessian for \(z - L_k \geq 0 \) is indefinite with eigenvalues -2, -2, 0, 2, 2.

We will find it useful to distinguish between two schedules with equal response time by preferring the one that lowers load on some processors while keeping it constant on the remaining processors. The following definition states this precisely.

Definition 5.3 \(A < A' \) if and only if one of the following conditions is true:

- \(L(A) < L(A') \)
- \(L(A) = L(A') \) and \(L_k(A) \leq L_k(A') \) for all processors \(k \) and there exists some processors \(k' \) such that \(L_{k'}(A) < L_{k'}(A') \).

Two schedules are equal if neither is less than the other.

We will find it useful to reason with the partial derivatives of load functions.

\[
\frac{\partial L_k}{\partial a_{ik}} = \begin{cases}
 t_i + \sum_{1 \leq j \leq n} (1 - 2a_{jk})c_{ij} & \text{if } k_1 = k \\
 0 & \text{otherwise}
\end{cases} \quad (5.2)
\]

\[
\frac{\partial^2 L_k}{\partial a_{ik} \partial a_{jk}} = \begin{cases}
 -2c_{ij} & \text{if } k = k_1 = k_2 \\
 0 & \text{otherwise}
\end{cases} \quad (5.3)
\]

Definition 5.4 We will use \(A_{ik} \) as a convenient notation for \(\frac{\partial L_k}{\partial a_{ik}} \).

5.2 Balanced Schedules

Definition 5.5 A balanced schedule has equal load on all processors.

In this section, we investigate properties of balanced schedules. This allows us to develop necessary conditions for minimal schedules. In particular, we will show that if a minimal schedule is not balanced then any processor \(k \) that has more load than some other processor must have \(a_{ik} = 0 \) or 1 for all operators \(i \). Further, if \(S \) is the set of operators for which \(a_{ik} = 1 \), then \((\forall i \in S) t_i + \sum_{j \in S} c_{ij} \leq \sum_{j \in S} c_{ij} \).

Though scheduling in parallel systems is often termed “load balancing”, the following example shows that there may be more than one balanced schedule and none of the balanced schedules may be optimal.
Example 5.2 Consider an operator tree with 2 nodes each of weight 1 and an edge of weight 4. If scheduled on two processors, the loads are:

\[
L_1 = a_{11} + a_{21} + 4(a_{11}a_{22} + a_{21}a_{12})
\]

\[
L_2 = a_{12} + a_{22} + 4(a_{12}a_{21} + a_{22}a_{11})
\]

The condition for a balanced schedule is \(L_1 = L_2 \) and may be simplified to yield \(a_{11} + a_{21} = 1 \). Thus, there are infinitely many balanced schedules. For example, the schedule with \(a_{11} = a_{21} = 1/2 \) is balanced and symmetrically divides each operator over all processors giving a response time of 3. Another balanced schedule is a pipelined schedule in which each operator is assigned to a different processor (\(a_{11} = 1 \) and \(a_{21} = 0 \)) and has a response time of 5. The optimal schedule places both operators on the same processor to yield a response time of 2. (The optimality follows by Theorem 5.1 which is proved later in this chapter.)

Lemma 5.2 Given an arbitrary schedule \(A \) and operator \(i \), \(A_{ik} \leq 0 \) for at most one processor \(k \).

Proof: We will assume \(A_{ik} \leq 0 \) for two processors \(k_1 \) and \(k_2 \) and derive a contradiction. Using Definition 5.4, \(A_{ik} \leq 0 \) may be written as \(\frac{1}{2}(t_i + \sum_{1 \leq j \leq n} c_{ij}) \leq \sum_{1 \leq j \leq n} a_{jk}c_{ij} \)

\[
A_{ik_1} + A_{ik_2} \leq 0
\]

\[
\equiv t_i + \sum_{1 \leq j \leq n} c_{ij} \leq \sum_{1 \leq j \leq n} (a_{jk_1} + a_{jk_2})c_{ij}
\]

which is a contradiction since \(a_{jk_1} + a_{jk_2} \leq 1 \) and \(t_i > 0 \).

Lemma 5.3 For any local minima \(A \), if \(A_{ik} \leq 0 \) then \(a_{ik} = 1 \).

Proof: Assuming \(a_{ik} < 1 \) in a locally minimal schedule \(A \), we derive a contradiction by showing the existence of neighboring schedule \(A' < A \). If \(a_{ik} < 1 \), then there exists some processor \(k_1 \) such that \(a_{ik_1} > 0 \). We construct \(A' \) by increasing \(a_{ik} \) and decreasing \(a_{ik_1} \). Since \(A_{ik} \leq 0 \), by Lemma 5.2 \(A_{ik_1} > 0 \). Thus \(A' < A \) since load is reduced on \(k_1 \) and does not increase on \(k \).

Lemma 5.4 Suppose locally minimal schedule \(A \) is not balanced and \(k_{max} \) is a processor with maximal load. Then for any operator \(i \), either \(a_{ik_{max}} = 1 \) and \(A_{ik_{max}} \leq 0 \) or \(a_{ik_{max}} = 0 \) and \(A_{ik_{max}} > 0 \).

\[
\forall i [(a_{ik_{max}} = 1 \land A_{ik_{max}} \leq 0) \lor (a_{ik_{max}} = 0 \land A_{ik_{max}} > 0)]
\]
Proof: For arbitrary operator i, we consider the cases $A_{ik_{max}} \leq 0$ and $A_{ik_{max}} > 0$.

If $A_{ik_{max}} \leq 0$ then by Lemma 5.2 we must have $A_{ik} > 0$ for all $k \neq k_{max}$. If $A_{ik_{max}} < 1$, then there must be some k_1 such that $a_{ik_1} > 0$ and $A_{ik_1} > 0$. We may reduce load on both k_{max} and k_1 by increasing $a_{ik_{max}}$ and decreasing A_{ik_1}. This contradicts the assumption of A being a local minima.

Now consider the case $A_{ik_{max}} > 0$. Since A is not balanced there must a processor k_{min} with strictly less load than k_{max}. If $A_{ik_{max}} > 0$, we may reduce the load on k_{max} by reducing $a_{ik_{max}}$ and increasing $a_{ik_{min}}$ (possibly increasing the load on k_{min}). The resulting schedule is less than A thus contradicting the assumption of A being a local minima.

Lemma 5.5 If S is the set of operators on the bottleneck processor in an unbalanced local minima then each operator $i \in S$ satisfies

$$t_i + \sum_{j \notin S} c_{ij} \leq \sum_{j \in S} c_{ij}$$

Proof: Letting k_{max} be the bottleneck processor, $i \in S$ if and only if $a_{ik_{max}} = 1$.

$$A_{ik_{max}} = t_i + \sum_{j} (1 - 2a_{jk})c_{ij}$$
$$= t_i + \sum_{j} c_{ij} - 2 \sum_{j \in S} c_{ij}$$
$$= t_i + \sum_{j \notin S} c_{ij} - \sum_{j \in S} c_{ij}$$

Thus the condition $A_{ik_{max}} \leq 0$ may be written as $t_i + \sum_{j \notin S} c_{ij} \leq \sum_{j \in S} c_{ij}$

Lemmas 5.4 and 5.5 yield conditions that must be satisfied by the bottleneck processor in any unbalanced local minima. It is interesting to ask whether these lemmas can be applied recursively to the remaining processors.

Let P be some subset of the processors. Given schedule A for tree T, we may view the portion of the tree scheduled on subset P as a new tree T^P with schedule A^P. Tree T^P differs from T only in the values of the node and edge weights. Let α_{iP} be the total fraction of operator i on subset P.

Definition 5.6 The projected tree T^P has node and edge weights given by

$$t_i^P = t_i \alpha_{iP} + \sum_j \alpha_{iP} \alpha_{jP} c_{ij}$$

$$c_{ij}^P = \alpha_{iP} \alpha_{jP} c_{ij}$$

where $\alpha_{iP} = \sum_{k \in P} a_{ik}$
The projected schedule A^P has $a_{ik}^P = a_{ik}/\alpha_i$. Given A to be a legal schedule, A^P is a legal schedule since $a_{ik}^P \geq 0$ and $\sum_{k \in P} a_{ik}^P = 1$. The following two Lemma establish that loads and strong minimality are invariant under projection.

Lemma 5.6 The load on processor $k \in P$ under schedule A^P for tree T^P is identical to the load under schedule A for tree T.

Proof: It suffices to show the load on processor k due to operator i to be identical under the two schedules.

\[
\begin{align*}
 a_{ik}^P t_i^P + \sum_j a_{jk}^P (1 - a_{jk}^P) c_{ij}^P \\
 = a_{ik}^P t_i + \sum_j a_{jk} \alpha_j p c_{ij} + \sum_j a_{ik} (1 - a_{jk}) \alpha_i p \alpha_j p c_{ij} \\
 = a_{ik} t_i + \sum_j a_{ik} \alpha_j p c_{ij} + \sum_j a_{jk} \alpha_j p c_{ij} - \sum_j a_{ik} a_{jk} c_{ij} \\
 = a_{ik} t_i + \sum_j a_{ik} (1 - a_{jk}) c_{ij} \quad \text{since} \quad \alpha_j p + \alpha_j p = 1
\end{align*}
\]

Local minimality comes in two forms: weak and strong. Strong minimality requires existence of a neighborhood in which all other schedules are strictly less than the minima. Weak minimality permits the neighboring schedules to have the same response time.

Strong minimality is retained by projection. Weak minimality may not be retained. For example, consider a neighbor A' of a weak minima A that keeps load constant on the bottleneck processor, increases load on the processor with second highest load and decreases it on some other processor. While $A' = A$, we have $A'^P < A^P$.

Lemma 5.7 If A is a strong local minima for tree T, then A^P is a strong local minima for tree T^P where P is any subset of the processors.

Thus, Lemma 5.4 and 5.5 may be applied recursively to unbalanced schedules that are strong local minima. This yields the structure illustrated in Figure 5.2. If S is the set of operators on any of the unbalanced processors, then each operator $i \in S$ satisfies $t_i + \sum_{j \notin S} c_{ij} \leq \sum_{j \in S} c_{ij}$. A proof of Lemma 5.1, is given below (using Lemma 5.3):

Lemma 5.1 POTP is NP-complete.
Proof: Given a path with alternate edges of weights c and 0, we show that the optimal must collapse all edges of weight c for large enough values of c. Let i and j be neighboring nodes connected by an edge of weight c.

We first consider the case $a_{ik}, a_{jk} \leq \delta$ for all k. The total communication incurred between i and j is

$$C_{ij} = \sum_k a_{ik}(1 - a_{jk})c$$

$$\geq c(1 - \delta) \sum_k a_{ik} = c(1 - \delta)$$

Any schedule that incurs communication larger than $p \sum_i t_i$ cannot be optimal since we can form a better schedule by putting all operators on a single processor. Thus, a schedule with $a_{ik}, a_{jk} \leq \delta$ cannot be optimal if $c(1 - \delta) > p \sum_i t_i$, which may be written as $\delta < 1 - p \sum_i t_i/c$.

Now consider the other case: $a_{ik} > \delta$ for some i, k. Thus $A_{jk} = t_j + (1 - 2a_{ik})c$ and $A_{jk} < 0$ provided $a_{ik} > 1/2 + t_j/2c$. By Lemma 5.3, if $A_{jk} < 0$, then $a_{jk} = 1$. Thus $a_{jk} \geq a_{ik} > \delta$ and $a_{ik} = 1$ as well. Thus $a_{ik} > \delta > 1/2 + t_j/2c$ assures that nodes i and j will be collapsed in the optimal.

Combining the two cases, $1 - p \sum_i t_i/c > \delta > 1/2 + t_j/2c$ assures that all edges of weight c will be collapsed in the optimal. Such a value of δ can be found provided $c > 2p(\sum_i t_i) + \max_i t_i$.

\square
5.3 Symmetric Schedules

The symmetric schedule partitions each operator equally over all processors. In this section, we shall establish some properties of such schedules. We will show that symmetric schedules are optimal when communication is free. They are locally minimal for trees of size 2 but may not be locally minimal for larger trees. However, under extremely likely conditions, the symmetric schedule has the same response time as any interior local minima. Finally, symmetric schedules may be arbitrarily more expensive than the global minimum.

Definition 5.7 The symmetric schedule has $a_{ik} = \frac{1}{p}$ for all operators i, processors k.

The symmetric schedule has $L_k = \sum \frac{t_i}{p}$ when $c_{ij} = 0$. Thus $L = \sum \frac{t_i}{p}$ which is optimal since the lower bound of Lemma 4.2 is achieved.

Lemma 5.8 The symmetric schedule is optimal when communication is free.

However, when communication is not free, symmetric schedules may be arbitrarily sub-optimal. Consider a path with nodes of weight 1 and edges of weight c. For two processors, the symmetric schedule has a response time of $L = \frac{n}{p} + 2(p - 1)(n - 1)c/p^2$. If the path is long enough, the optimal schedule will chop the path into p pieces thus obtaining a response time of $L_{opt} = \frac{n}{p} + 2c$. When n/p is large L/L_{opt} goes to $1 + 2c$.

Lemma 5.9 The symmetric schedule has an unbounded performance ratio when communication is not free.

We will understand symmetric schedules further by investigating the Kuhn-Tucker conditions for local minima (see standard textbooks such as [GMW81, Lue89] for a review). Since symmetric schedules lie in the interior of the feasible space, it is useful to investigate the class of interior schedules.

Definition 5.8 A schedule A is an interior schedule iff every processor is allocated a non-zero fraction of every operator i.e. $0 < a_{ik} < 1$ for all operators i and processors k.

The following is a consequence of Lemmas 5.3 and 5.4.

Lemma 5.10 If interior schedule A is a local minima, then A is a balanced schedule and $A_{ik} > 0$ for all operators i, processors k.
The POTP problem is restated below. We will use $\mu_k \geq 0$, $\alpha_{ik} \geq 0$ and λ_i respectively as the Lagrange multipliers for the three kinds of constraints. In our use of matrices, we will treat the variables in the order $z, a_{11}, \ldots, a_{1p}, a_{21}, \ldots, a_{22}, \ldots, a_{n1}, \ldots, a_{np}$.

Minimize z

subject to

$$z - L_k \geq 0 \quad \text{for } 1 \leq k \leq p$$

$$a_{ik} \geq 0 \quad \text{for } 1 \leq i \leq n, \ 1 \leq k \leq p$$

$$\sum_{1 \leq k \leq p} a_{ik} = 1 \quad \text{for } 1 \leq i \leq n$$

At an interior schedule, the constraint $a_{ik} \geq 0$ is not active and may be ignored. The Lagrangian function is therefore

$$L = z - \sum_k \mu_k (z - L_k) - \sum_i \lambda_i (\sum_k a_{ik} - 1)$$

By the Kuhn-Tucker conditions, a minima can occur only at stationary points. A feasible point is said to be stationary if $\nabla L = 0$. The conditions for the z and a_{ik}'th components of ∇L to be zero are:

$$\sum_k \mu_k = 1 \quad (5.4)$$

$$-\mu_k a_{ik} + \lambda_i = 0 \quad 1 \leq i \leq n \text{ and } 1 \leq k \leq p \quad (5.5)$$

Lemma 5.11 The symmetric schedule is a stationary point.

Proof: We need to show that the symmetric schedule is feasible and $\nabla L = 0$. Since $a_{ik} = \tfrac{1}{p}$, the constraints $a_{ik} \geq 0$ and $\sum_{1 \leq k \leq p} a_{ik} = 1$ are satisfied. For any processor k, $L_k = \sum_i \tfrac{1}{p} t_i + \sum_{ij} \tfrac{1}{p} (1 - \tfrac{1}{p}) c_{ij} = \tfrac{1}{p} \left[\sum_i t_i + \tfrac{p-1}{p} \sum_{ij} c_{ij} \right]$. Thus $z - L_k \geq 0$ is satisfied with $z = \tfrac{1}{p} \left[\sum_i t_i + \tfrac{p-1}{p} \sum_{ij} c_{ij} \right]$. This establishes the feasibility of the symmetric schedule.

Observe that $A_{ik} = t_i + \sum_j (1 - 2 a_{jk}) c_{ij} = t_i + \tfrac{p-2}{p} \sum_j c_{ij}$ is independent of k. By Equation 5.5, this implies that μ_k is independent of k and Equation 5.4 gives $\mu_k = \tfrac{1}{p}$. It follows that $\lambda_i = pt_i + (p - 2) \sum_j c_{ij}$. Thus the symmetric schedule satisfies $\nabla L = 0$ with $\mu_k = \tfrac{1}{p}$ and $\lambda_i = pt_i + (p - 2) \sum_j c_{ij}$.

Lemma 5.12 If interior schedule A is a stationary point then $\lambda_1, \ldots, \lambda_n$ and μ_1, \ldots, μ_p are strictly positive.
Proof: By Equation 5.5, \(A_{ik} = \frac{\lambda_i}{\mu_k} \). Since \(A_{ik} > 0 \) by Lemma 5.10 and \(\mu_k > 0 \), we must have \(\lambda_i > 0 \) and \(\mu_k > 0 \).

We will now establish that for \(n = 2 \) and arbitrary \(p \), the symmetric schedule is the only interior stationary point that could be a local minima (Lemma 5.13) and that it is indeed a local minima (Lemma 5.14).

Lemma 5.13 For \(n = 2 \) and arbitrary number of processors, the symmetric schedule is the only interior stationary point that may be a local minima.

Proof: A local minima must satisfy Equation 5.4 and, by Lemma 5.10, must be balanced. We show that this permits exactly one solution, the symmetric schedule, for \(n = 2 \).

By Equation 5.5, \(A_{ik} = \frac{\lambda_i}{\mu_k} \) at a stationary point. Using Definition 5.4, this may be rewritten as

\[
\sum_j a_{jk} c_{ij} = \frac{1}{2} \left[t_i + \sum_j c_{ij} - \frac{\lambda_i}{\mu_k} \right]
\]

Since \(n = 2 \), \(\sum_j a_{jk} c_{ij} = a_{2k} c_{12} \) for \(i = 1 \) and \(a_{1k} c_{12} \) for \(i = 2 \). Thus, for any fixed \(k \),

\[
a_{1k} = \frac{1}{2c_{12}} \left[t_2 + c_{12} - \frac{\lambda_2}{\mu_k} \right] \quad \text{and} \quad a_{2k} = \frac{1}{2c_{12}} \left[t_1 + c_{12} - \frac{\lambda_1}{\mu_k} \right] \quad (5.6)
\]

The load on processor \(k \) is derived as follows. Equation 5.7 is obtained by substituting (5.6) and simplifying.

\[
L_k = \sum_i a_{ik} t_i + \sum_{i,j} a_{ik} (1 - a_{jk}) c_{ij}
= a_{1k} t_1 + a_{2k} t_2 + (a_{1k} + a_{2k}) c_{12} - 2a_{1k} a_{2k} c_{12}
= \frac{t_1 t_2}{2c_{12}} + \frac{t_1 + t_2 + c_{12}}{2} - \frac{\lambda_1 \lambda_2}{2c_{12} \mu_k^2} \quad (5.7)
\]

By Lemma 5.10, an interior local minima is balanced and thus \(L_k \) is independent of \(k \). Given (5.7), this requires \(\mu_k^2 \) to be independent of \(k \). By Lemma 5.12, \(\mu_k > 0 \) and thus \(\mu_k \) is independent of \(k \).

From Equations (5.6) it follows that the values of \(a_{1k} \) and \(a_{2k} \) must be independent of \(k \). Thus the symmetric schedule is the only possible solution.

Lemma 5.14 For \(n = 2 \) and arbitrary number of processors, the symmetric schedule is a local minima.
Proof: Lemma 5.11 established the symmetric schedule to be a stationary point and Lemma 5.12 showed the Lagrange multipliers to be positive at any stationary point. Thus it suffices to show the projected Hessian of the Lagrangian function to be positive definite.

We will establish Z^TWZ be positive definite where $W = (G - \sum_t f_t G_t)$ is the Hessian of the Lagrangian function (G_t is the Hessian and f_t the Lagrange multiplier for the t’th constraint, G is the Hessian for the objective function) and Z is a matrix whose columns form a basis for the null space of A, the Jacobian matrix of the constraints. We first give the proof for $p = 2$ and then generalize.

[PROOF FOR $n = p = 2$]

Our optimization problem for $n = p = 2$ is:

Minimize z

subject to

$$z - L_1 \geq 0$$
$$z - L_2 \geq 0$$
$$a_{11} + a_{12} = 1$$
$$a_{21} + a_{22} = 1$$

Since $A_{ik} = \frac{\lambda_k}{\mu_k}$ by Equation 5.5, the Jacobian of the constraints may be written as (our convention is to list variables in the order $z, a_{11}, a_{12}, a_{21}, a_{22}$):

$$A = \begin{bmatrix}
1 & -\frac{\lambda_1}{\mu_1} & 0 & -\frac{\lambda_2}{\mu_1} & 0 \\
1 & 0 & -\frac{\lambda_1}{\mu_2} & 0 & \frac{\lambda_2}{\mu_2} \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1
\end{bmatrix}$$

The matrix Z whose columns form a basis for the null space of A is $Z = [0 \lambda_2 - \lambda_2 - \lambda_1 \lambda_1]^T$. Since the objective function and the last two constraints are linear, $G = G_{\lambda_1} = G_{\lambda_2} = 0$. From Equation 5.3, $\frac{\partial^2 L}{\partial a_{ij} \partial a_{j,k}} = -2c_{ij}$ is independent of k and thus G_{μ_1} and G_{μ_2} are equal. Since $\mu_1 + \mu_2 = 1$ by (5.4), we have $\mu_1 G_{\mu_1} + \mu_2 G_{\mu_2} = G_{\mu_1}$ which yields $W = -G_{\mu_1}$. Since $c_{ii} = 0$, we have:

$$W = -G_{\mu_1} = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2c_{12} & 0 \\
0 & 0 & 0 & 0 & -2c_{12} \\
0 & 0 & 0 & 0 & -2c_{12} \\
0 & -2c_{12} & 0 & 0 & 0 \\
0 & 0 & 0 & -2c_{12} & 0
\end{bmatrix}$$
Multiplying out $Z^T W Z$ yields the 1×1 matrix $8\lambda_1\lambda_2 c_{12}$. Thus the only eigenvalue is $8\lambda_1\lambda_2 c_{12}$ which is positive since $\lambda_1, \lambda_2 > 0$ by Lemma 5.12.

[PROOF FOR $n = 2, p$ ARBITRARY]

We now sketch how the proof generalizes for arbitrary p. (Figure 5.3 illustrates the values of some of the matrices for $p = 3$).

The matrix A has a simpler form if we multiply the row for $z \sim I_k$ by μ_k. The matrix A is the following $(p + 2) \times (2p + 1)$ matrix in which I is a $p \times p$ identity matrix.

\[
A = \begin{bmatrix}
\mu_1 \\
\mu_2 \\
\vdots \\
\mu_p \\
0 & 1 \ldots 1 & 0 \ldots 0 \\
0 & 0 \ldots 0 & 1 \ldots 1
\end{bmatrix}
\begin{bmatrix}
-\lambda_1 I \\
-\lambda_2 I \\
\lambda_2 R \\
-\lambda_1 R
\end{bmatrix}
\]

The null space of A is the following $(2p + 1) \times (p - 1)$ matrix Z. The sub-matrix R is a $p \times (p - 1)$ matrix in which all elements of the first row are 1. The bottom-left to top-right diagonal of the remaining $(p - 1) \times (p - 1)$ matrix consists of -1's and the remaining elements are zero.

\[
Z = \begin{bmatrix}
0 \ldots 0 \\
\lambda_2 R \\
-\lambda_1 R
\end{bmatrix}
\]

The matrix W has the value $-C_{\mu_1}$ by reasoning similar to the case $p = 2$ and is the following $(2p + 1) \times (2p + 1)$ matrix where I is the $p \times p$ identity matrix and 0 is the $p \times p$ matrix of zeros.

\[
W = \begin{bmatrix}
0 & 0 \ldots 0 & 0 \ldots 0 \\
0 & 0 & -2c_{12}I \\
\vdots & \vdots & \vdots \\
0 & -2c_{12}I & 0
\end{bmatrix}
\]
$A = \begin{bmatrix}
\mu_1 & -\lambda_1 & 0 & 0 \\
\mu_2 & 0 & -\lambda_1 & 0 \\
\mu_3 & 0 & 0 & -\lambda_1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1
\end{bmatrix}

\begin{bmatrix}
-\lambda_2 & 0 & 0 \\
0 & -\lambda_2 & 0 \\
0 & 0 & -\lambda_2 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 1 & 1
\end{bmatrix}$

$Z = \begin{bmatrix}
\lambda_2 & \lambda_2 \\
0 & -\lambda_2 \\
-\lambda_2 & 0 \\
-\lambda_1 & -\lambda_1 \\
0 & \lambda_1 \\
\lambda_1 & 0
\end{bmatrix}$

$W = \begin{bmatrix}
0 & 0 & 0 & 0 & -2c_12 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -2c_12 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -2c_12 \\
-2c_12 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -2c_12 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -2c_12 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2c_12 & 0 & 0 & 0
\end{bmatrix}$

$X = \begin{bmatrix}
2 & 1 \\
1 & 2
\end{bmatrix}$

Figure 5.3: Matrices for $p = 3$
Multiplying out $Z^T W Z$ yields $4c_{12} \lambda_1 \lambda_2 X$ where X is a $(p - 1) \times (p - 1)$ matrix in which the diagonal entries are 2 and the remaining entries are 1. The determinant of $X - \beta I$ may be shown to be $(\beta - p)(\beta - 1)^{p-2}$. Thus X has only positive eigenvalues and is positive definite.

\[\square\]

Lemma 5.15 If a tree contains a mother node m with distinct leaf children s and d s.t. $\frac{t_s}{c_{ms}} \neq \frac{t_d}{c_{md}}$ then, for any number of processors, any interior minima has the same response time as the symmetric schedule.

Proof: A local minima must satisfy Equations 5.4 and 5.5 and by Lemma 5.10 must be balanced. We show, given $\frac{t_s}{c_{ms}} \neq \frac{t_d}{c_{md}}$, these conditions imply that all interior minima have the same response time as the symmetric schedule.

We first use $\frac{t_s}{c_{ms}} \neq \frac{t_d}{c_{md}}$ and Equations 5.4,5.5 to show $\mu_k = 1/p$. We then show $\sum_j a_{jk} c_{ij}$ to have a value independent of k and use it to show the total communication cost at any interior stationary point to equal that of the symmetric schedule. Since an interior local minima is balanced, we may the response time of any interior minima to equal the symmetric schedule.

By Equation 5.4, $A_{ik} = \frac{\lambda_i}{\mu_k}$ at a stationary point. Using Definition 5.4, this may be rewritten as

\[2 \sum_j a_{jk} c_{ij} = t_i + \sum_j c_{ij} - \frac{\lambda_i}{\mu_k} \quad (5.8)\]

Taking $i = d$ and noting that the only neighbor of d is m, we obtain

\[2a_{mk} c_{md} = t_d + c_{md} - \frac{\lambda_d}{\mu_k} \quad (5.9)\]

\[\Rightarrow \quad 2c_{md} = p(t_d + c_{md}) - \lambda_d \sum_k \frac{1}{\mu_k} \quad \text{summing over } k\]

\[\Rightarrow \quad \lambda_d = (pt_d + (p - 2)c_{md})/ \sum_l \frac{1}{\mu_l} \quad \text{rearranging and renaming } k \text{ to } l\]

Substituting back in Equation 5.9 and rearranging

\[2a_{mk} = \frac{t_d}{c_{md}}[1 - \frac{p}{\mu_k \sum_l 1/\mu_l}] + 1 - \frac{p - 2}{\mu_k \sum_l 1/\mu_l}\]

A similar derivation for $i = s$ leads to another expression for a_{mk}.

\[2a_{mk} = \frac{t_s}{c_{ms}}[1 - \frac{p}{\mu_k \sum_l 1/\mu_l}] + 1 - \frac{p - 2}{\mu_k \sum_l 1/\mu_l}\]
Since \(\frac{t_s}{c_{ma}} \neq \frac{t_d}{c_{md}} \), the above equations are consistent only if \(1 - p/\mu_k \sum_l 1/\mu_l = 0 \) or

\[
\mu_k \sum_l 1/\mu_l = p \tag{5.10}
\]

\[
\Rightarrow (\sum_k \mu_k) \sum_l 1/\mu_l = p^2 \quad \text{summing over } k
\]

\[
\Rightarrow \sum_l 1/\mu_l = p^2 \quad \text{using Equation 5.4}
\]

\[
\Rightarrow \mu_k = 1/p \quad \text{substituting back in 5.10}
\]

We now show that \(\mu_k = 1/p \) implies \(\sum_j a_{jk} c_{ij} = 1/p \sum_j c_{ij} \). Substituting \(\mu_k = 1/p \) in Equation 5.8

\[
p\lambda_i = t_i + \sum_j (1 - 2a_{jk}) c_{ij} \tag{5.11}
\]

\[
\Rightarrow p^2 \lambda_i = pt_i + (p - 2) \sum_j c_{ij} \quad \text{summing over } k
\]

\[
\Rightarrow \lambda_i = \frac{t_i}{p} + \frac{(p - 2)}{p^2} \sum_j c_{ij} \tag{5.12}
\]

Substituting the value of \(\lambda_i \) in Equation 5.11 and simplifying gives

\[
\sum_j a_{jk} c_{ij} = \frac{1}{p} \sum_j c_{ij} \tag{5.13}
\]

We now show that the communication cost to be the same at each stationary point. The total communication cost of a schedule is \(\sum_{i,j,k} a_{ik}(1 - a_{jk}) c_{ij} \) which is \(\sum_i c_{ij} - \sum_{i,j,k} a_{ik} a_{jk} c_{ij} \).

\[
\sum_{i,j,k} a_{ik} a_{jk} c_{ij} = \sum_{i,k} a_{ik} \sum_j a_{jk} c_{ij}
\]

\[
= \sum_{i,k} a_{ik} \frac{1}{p} \sum_j c_{ij} \quad \text{applying Equation 5.13}
\]

\[
= \frac{1}{p} \sum_{j,k} a_{ik} c_{ij}
\]

\[
= \frac{1}{p^2} \sum_{j,k} c_{ij} \quad \text{applying Equation 5.13}
\]

\[
= \frac{1}{p} \sum_{i,j} c_{ij}
\]

The total communication cost is therefore \(\frac{p - 1}{p} \sum_{i,j} c_{ij} \) which is equal to the communication cost of the symmetric schedule.
By Lemma 5.10 an interior minima is balanced. It follows that the response time of any interior minima equals that of the symmetric schedule. □

It is worth observing that the set of equations 5.13 along with the constraint \(\sum a_{ik} = 1 \) has solutions other than the symmetric schedule. For example for \(n = 3, p = 2 \) any solution of the \(a_{11} = a_{12} = 1/2; a_{21} = \frac{1}{2} + dc_{13}/c_{12}; a_{22} = \frac{1}{2} - dc_{13}/c_{12}; a_{31} = \frac{1}{2} - d; a_{22} = \frac{1}{2} + d; \) is a solution for any \(0 \leq d \leq \min(\frac{1}{2}c_{12}/c_{13}) \).

Lemma 5.16 The symmetric schedule may not be a local minima.

Proof: (Counter-Example)

Consider the tree shown in Figure 5.4 to be scheduled on two processors. Observing that \(c_{13} = 0 \), the load on processor 1 is given by:

\[
L_1 = a_{11}t_1 + a_{21}t_2 + a_{31}t_3 + a_{11}(1 - a_{21})c_{12} + a_{21}(1 - a_{11})c_{12} \\
= a_{11} + a_{21} + 2a_{31} + c_{12}(a_{11} + a_{21} - 2a_{11}a_{21})
\]

Noting that for two processors, \(a_{i2} = 1 - a_{i1} \) and equal communication is incurred by both processors

\[
L_2 = (1 - a_{11})t_1 + (1 - a_{21})t_2 + (1 - a_{31})t_3 + c_{12}(a_{11} + a_{21} - 2a_{11}a_{21}) \\
= 4 - a_{11} - a_{21} - 2a_{31} + c_{12}(a_{11} + a_{21} - 2a_{11}a_{21})
\]

The condition for a balanced schedule is \(L_1 = L_2 \) which gives \(a_{11} + a_{21} + 2a_{31} = 2 \). The response time of a balanced schedule is given by the load on any processor which we may now write as:

\[
L_1 = a_{11} + a_{21} + 2a_{31} + c_{12}(a_{11} + a_{21} - 2a_{11}a_{21}) \\
= 2 + c_{12}(a_{11} + a_{21} - 2a_{11}a_{21})
\]
Figure 5.5 shows a plot of the function \(z = a_{11} + a_{21} - 2a_{11}a_{21} \) that makes it clear that the symmetric schedule is a saddle-point.

5.4 Scheduling Trees with Two Nodes

We will now establish the following theorem that shows that tree with two nodes may be scheduled optimally by a simple method. The proof is based on the two lemmas presented below.

Theorem 5.1 For \(n=2 \), the optimal schedule is either the symmetric schedule or a schedule that computes the entire tree on a single processor.

Lemma 5.17 For \(n=2 \), any balanced schedule \(A \) in which processors \(Q = \{1, \ldots, q\} \) compute both operators and \(Q_1 = \{q + 1, \ldots, p\} \) compute only operator 1 is either not a local minima or no better than the symmetric schedule.

Proof: Figure 5.6 illustrates the assumptions of the Lemma. We will show \(A \) to be inferior to the symmetric schedule for \(q \geq 2 \) and to be not a local minima for \(q = 1 \).

Since \(A \) is a local minima \(A_Q \) must also be a local minima (Lemma 5.6). Clearly \(A_Q \) is an interior schedule and thus (by Lemmas 5.13 and 5.14) must be the symmetric schedule. This implies (by Definition 5.6) that \(a_{ik} \) is independent of \(k \) for \(k \in Q \). Since each processor \(k \in Q_1 \) computes only operator 1 and processor loads are balanced, \(a_{ik} \) is independent of \(k \) for \(k \in Q_1 \).
If a is the total fraction of operator 1 on Q, $a_{1k} = a/q, a_{2k} = 1/q$ for $k \in Q$ and $a_{1k} = (1 - a)/(p - q), a_{2k} = 0$ for $k \in Q_1$. The total communication, C, in schedule A is

$$
C = \sum_k [a_{1k}(1 - a_{2k})c_{12} + a_{2k}(1 - a_{1k})c_{12}]
$$

$$
= 2c_{12} - 2c_{12} \sum_k a_{1k}a_{2k} = 2c_{12} - \frac{2ac_{12}}{q}
$$

Similarly, the communication cost of a symmetric schedule is $2c_{12} - 2c_{12}/p$. Among balanced schedule, a schedule with lower communication has lower response time. The condition for A to beat the symmetric schedule is therefore $a/q > 1/p$ or $a_{1k} > 1/p$ for $k \in Q$.

The loads on processors are:

$$
L_k = a_{1k}t_1 + a_{2k}t_2 + a_{1k}(1 - a_{2k})c_{12} + a_{2k}(1 - a_{1k})c_{12}
$$

$$
= a_{1k}t_1 + a_{2k}t_2 + (a_{1k} + a_{2k})c_{12} - 2a_{1k}a_{2k}c_{12}
$$

$$
= \begin{cases}
 at_1/q + t_2/q + (a + 1)c_{12}/q - 2ac_{12}/q^2 & \text{if } k \in Q \\
 (t_2 + c_{12})(1 - a)/(p - q) & \text{if } k \in Q_1
\end{cases}
$$

Since $a/q > 1/p$ may be rewritten as $(1 - a)/(p - q) < 1/p$, we have $L_k < (t_2 + c_{12})/p$ for $k \in Q_1$. Using the equation for $k \in Q$, we may derive $L_k \geq (t_2 + c_{12})/q + ac_{12}/q[1 - 2/q]$. Thus the schedule is not balanced provided $q \geq 2$.

We now show that if $q = 1$, then the schedule is not a local minima. We will show that A_{1k} is negative for $k = 1$ and positive for $k > 1$. Thus we cannot have a local minima since the load on all processors may be reduced by increasing a.

Now, $A_{11} = t_1 + (1 - 2a_{21})c_{12} = t_1 - e$. We observe the condition for balanced loads for $q = 1$ is

$$
at_1 + t_2 + (a + 1)c_{12} - 2ac_{12} = (t_2 + c_{12})(1 - a)/(p - 1)
$$

$$
\equiv (t_2 + c_{12}) + a(t_1 - c_{12}) = (t_2 + c_{12})(1 - a)/(p - 1)
$$

Since $(1 - a)/(p - 1) < 1$, we may conclude $t_1 - c_{12} < 0$. For $k > 1$, we have $A_{1k} = t_1 + (1 - 2a_{2k})c_{12} = t_2 + (p - 2 + a)/(p - 1)$ which is clearly positive since $p \geq 2$.

\[\square\]

Lemma 5.18 For $n=2$, any balanced schedule is either not a local minima or no better than the symmetric schedule.
Figure 5.7: Balanced Schedule for $n=2$ (Some communication arcs omitted)

Proof: We will assume A to be a balanced local minima and argue it to be no better than the symmetric schedule. A balanced schedule for a tree with two nodes has the structure shown in Figure 5.7 where the load on all processors is identical. The set of processors Q compute both operators, Q_1 computes only operator 1, and Q_2 computes only operator 2. Applying Lemma 5.17 twice completes the proof.

5.5 Discussion

We have developed a model for exploiting both pipelined and partitioned parallelism. We investigated the classes balanced and symmetric schedules.

We showed that there may be more than one balanced schedule and none of the balanced schedules may be optimal. We characterized the structure of optimal schedules. If a minimal schedule is not balanced then any processor k that has more load than some other processor must
have \(a_{ik} = 0 \) or 1 for all operators \(i \). Further, if \(S \) is the set of operators for which \(a_{ik} = 1 \), then

\[
(\forall i \in S) t_i + \sum_{j \notin S} c_{ij} \leq \sum_{j \in S} c_{ij}.
\]

We showed symmetric schedules to be optimal when communication is free. They are locally minimal for trees of size 2 but may not be locally minimal for larger trees. However, under extremely likely conditions, the symmetric schedule has the same response time as any interior local minima. Finally, symmetric schedules may be arbitrarily more expensive than the global minimum.

While we have characterized the problem and developed several results, further research is needed to yield practical algorithms for the problem.
Chapter 6

Summary and Future Work

6.1 Summary of Contributions

In this thesis we have addressed the problem of optimizing SQL queries for parallel machines. Exploiting parallel machines has led to new query processing strategies based on exploiting several forms of parallel execution. Further, the decreasing cost of computing motivates minimizing the response time to produce the query result as opposed to the traditional practice of minimizing the machine resources consumed in answering the query. The problem of finding the best procedural plan for a declarative query poses fresh challenges since we are dealing with a new space of procedural plans as well as a new optimization objective.

The response time of a query may be reduced by two complementary tactics, reducing total work and partitioning work among processors. Partitioning work among processors may not yield ideal speedup due to two obstacles. First, timing constraints between operators and data placement constraints place intrinsic limits on available parallelism. It may become impossible to partition work equally over all processors thus reducing the speedup from parallel execution. Second, partitioning work generates extra work due to the resulting need to communicate data across processors. This may reduce or even offset the benefit from exploiting parallel execution.

Our two-phase architecture (Figure 6.1) for parallel query optimization is a refinement of ideas due to Hong and Stonebraker [HS91, Hon92b]. We apply the two tactics for reducing response time as two phases. The first phase, JOQR (for Join Ordering and Query Rewrite), minimizes total work while the second phase, parallelization, partitions work among processors. Breakup into phases provides a way of conquering problem complexity. It eases the understanding of problems as well as the development of solutions.
We started with a performance study to understand how use of parallel execution can result in the generation of extra work. The study was conducted on NonStop SQL/MP, a commercial parallel database system from Tandem Computers. Since a query is executed in parallel by a set of cooperating processes, we measured two kinds of overhead costs of parallel execution, startup and communication. Startup consists of obtaining and initializing the processes. Communication consists of data transfer among processes. Our experiments led to three findings: First, startup costs become negligible when processes are reused rather than created afresh. Second, communication cost consists of the CPU cost of sending and receiving messages. Third, communication costs can exceed the cost of operators such as scanning, joining or grouping.

Figure 6.1: Phases and Sub-phases of Parallel Query Optimization

One conclusion from our experiments is that startup costs can be effectively controlled by modifying a query execution system to reuse processes rather than creating them afresh. Communications costs, on the other hand, appear endemic to parallel execution. Machine architecture changes, such as offloading communication to specialized processors, hold the possibility of reducing communication costs. However, much of CPU cost of communication is incurred by software layers above the communication layer and will therefore still be substantial. This is a consequence of the low levels of abstraction offered by communication layers due to the need to cater to many different applications. We therefore concluded that query optimization should be based on models that incorporate the cost of communication but omit the cost of startup.

In Chapter 3, we developed algorithms for a series of increasingly sophisticated models for the JOQR phase. We started by posing the minimization of communication costs as a tree coloring problem (related to the Multiway Cut [DJP+92] problem) where colors represent data partitioning.
We then enhanced the model by two generalizations. The first generalization was to capture the interaction of computation and communication costs by supporting a set of alternate methods for each operator. The cost of a method can be an arbitrary function of the color and statistical properties of the inputs. Each method has an input-output constraint that provides guarantees on the color of the output as a function of colors of the inputs. The second generalization was based on the observation that communication may be viewed as resulting from changing the physical location of data. Since other physical properties of data such as sort-order or the existence of an index also impact the cost of a method, we generalized colors to represent collections of physical properties. The final enhancement of the model was to permit joins to be reordered.

Our work on the JOQR phase shows that optimally exploiting physical properties may be separated from join ordering. The separation has some advantages. Firstly, we showed that physical property optimization may be achieved by a fast polynomial algorithm. In contrast, only exponential algorithms are known for optimal ordering of joins. Secondly, physical property optimization is not limited to SPJ queries, it applies as well to query trees that contain operators such as grouping and foreign functions. Thirdly, we open up alternate ways of combining physical property optimization with join ordering. Another contribution of our work is an explanation and formalization of the basic ideas used in existing commercial query optimizers.

After addressing problems in the JOQR phase, we moved on to the problems in the parallelization phase. We addressed the problem of POT (pipelined operator tree) scheduling which is to exploit pipelined parallelism for operator trees with only pipelining edges. Our model of response time captured the fundamental tradeoff between parallel execution and its communication overhead. We assessed the quality of a scheduling algorithm by its performance ratio which is the ratio of the response time of the generated schedule to that of the optimal. We developed worst-case bounds on the performance ratio by analytical methods and measured the average performance ratios by use of experimental benchmarks. Of the several algorithms developed, we consider Hybrid to be the algorithm of choice since it has the best average performance ratio and a worst-case performance ratio of about 2 for many cases.

Our work on POT scheduling has several aspects that are interesting in their own right. We developed the notion of worthless parallelism which is parallelism that is never beneficial. Such parallelism may be efficiently removed from operator trees to yield a subclass of operator trees that we term monotone. Monotone trees have an additional lower bound that proved useful in analyzing the performance ratio of algorithms. We showed that the optimal connected schedules may be found by an efficient polynomial-time algorithm. Connected schedules have the practical advantage that
certain code generation schemes can generate code with a single thread of control for a connected
sets of operators. The context switching between operators is efficiently built into the generated
code rather than being managed by more expensive mechanisms such as thread packages.

The algorithms that “lost” to Hybrid have features that make them useful. The GreedyPairing
algorithm has the advantage of being extremely simple. It is also easily usable when data placement
constraints pre-allocate some of the operators to specific processors. While we could prove the
worst-case performance ratios of Hybrid and GreedyPairing for some cases, we could not prove or
find counter-examples for the remaining cases. On the other hand, the LocalCuts and BoundedCuts
algorithms have the advantage providing a guarantee on the worst-case performance ratio.

The last problem addressed in this thesis is the POTP (pipelined operator tree with partitioning)
problem of exploiting both pipelined and partitioned parallelism in scheduling a pipelined operator
tree. POTP is the continuous version of POT scheduling since partitioned parallelism permits several
processors to each execute some fraction of an operator. POTP expands the class of permissible
schedules as compared to POT. One effect of this expansion is to simplify the problem for the
case of zero communication costs. While the zero-communication case is NP-hard for POT, it is
easily solvable for POTP (a symmetric schedule is optimal). However, when communication costs
are non-zero, POTP has an NP-hard problem embedded in it and falls in the class of non-linear,
non-convex continuous optimization problems. We investigated two classes of schedules: balanced
and symmetric. This led to a characterization of optimal schedules and several results on local
minimization. We also showed that trees of size 2 may be optimally scheduled by a simple rule.

The overall contribution of our thesis is the development of models and algorithms for parallel
query optimization that account for the benefit as well as the cost of parallel execution. We have
used a formal approach in addition to experimentation on real systems and simulations. Our models
capture opportunities for parallelism and obstacles to speedup that are likely to be applicable beyond
database query processing to parallel computing applications such as N-body simulations [Her88,

6.2 Future Work

There are several open problems in the area of parallel query optimization. Some may be investigated
within the models that we have proposed, other require extensions.

Integration of JOQR and Parallelization: An open issue is to devise and evaluate approaches
for integrating the two phases of optimization so as to produce globally optimal plans. An interesting
approach is to produce a set of plans as the output of the JOQR phase, parallelize each of them and take the best. Interesting questions are the criteria for choosing the set of plans, the size of the set, and an analysis of how close we get to the optimal plan.

Space-Time Trade-off: Since main memory is available at increasingly lower prices, an important problem is to exploit the space-time tradeoff in scheduling. Additional memory can be exploited to reduce the I/O and CPU cost of operators such as sorting. In a parallel machine, more memory may be obtained for an operator by partitioning it over a larger number of processors – thus I/O and CPU can be traded for memory and communication. It is challenging to devise models and algorithms that minimize response time subject to limits on maximum memory usage while taking this trade-off into account.

Heterogeneous Architectures: It is standard for work in parallel query optimization to assume all nodes of a parallel machine to be identical. However, heterogeneity arises for several reasons. One often touted advantage of parallel machines is the ability to incrementally add components (processors, disks). It should be noted that by the time more computing power is needed, newer and faster components are likely to be available. A more general scenario for heterogeneity is the existence of a large number of diverse machines in most offices. Many of these machines are under-utilized, especially at night. Commodity interconnects such as Myrinet, FDDI or an ATM switch may be used to turn idle machine cycles into a useful parallel machine. Thus, optimization for heterogeneous parallel machines is an important problem.

Dynamic/Pre-emptive Optimization: The machine resources available for executing a query may change while the query is in execution. For example, another query may complete and release resources. This motivates the need for pre-emptive scheduling that allows dynamic revision of scheduling decisions [Roy91, Der92]. Optimization decisions other than scheduling may also benefit from revision at execution time. Join ordering is sensitive to estimates of intermediate result sizes. It is well known that such estimates may have large errors and better information may be available at execution time. We observe that the additional freedom to revise scheduling decisions gives two advantages in classical scheduling problems such as multi-processor scheduling. Firstly, it typically makes the algorithmic problem easier. Secondly, pre-emptive schedule are better than non-preemptive schedules. An important question is whether pre-emptive scheduling yields advantages in parallel query processing. One issue is the cost of pre-empting a query that uses a large number of resources on a parallel machine. Designing pre-emptive schemes requires innovations in both query execution and optimization.
Data Placement and Precedence Constraints: Data placement constrains the allocation of scan operators to specific processors. While this aspect can be easily incorporated into some of the algorithms such as GreedyPairing, we have not explored the issue in depth. We have also not developed scheduling algorithms that account for precedence constraints. While there is substantial work on precedence constraints in scheduling theory, the challenge is to account for the cost of communication. Since edges in operator trees represent the flow of data, a precedence constraint implies materialization of a set of tuples. Transferring such a set incurs substantial communication cost.
Bibliography

