
Two Methods for Checking Formulas of

Temporal Logic

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

Hugh Wing�eld McGuire

June 1995

c
 Copyright 1995 by Hugh Wing�eld McGuire

All Rights Reserved

ii

I certify that I have read this dissertation and that in my opinion

it is fully adequate, in scope and quality, as a dissertation for the

degree of Doctor of Philosophy.

hsignedi
Zohar Manna

(Principal Advisor)

I certify that I have read this dissertation and that in my opinion

it is fully adequate, in scope and quality, as a dissertation for the

degree of Doctor of Philosophy.

hsignedi
John C. Mitchell

I certify that I have read this dissertation and that in my opinion

it is fully adequate, in scope and quality, as a dissertation for the

degree of Doctor of Philosophy.

hsignedi
Richard Waldinger

Approved for the University Committee on Graduate Studies:

hstampedi

iii

Abstract

This dissertation presents two methods for determining satis�ability or validity of formulas of

Discrete Metric Annotated Linear Temporal Logic. This logic is convenient for representing and

verifying properties of reactive and concurrent systems, including software and electronic circuits.

The �rst method presented here is an algorithm for automatically deciding whether any given

propositional temporal formula is satis�able and, if so, reporting a model of the formula. The

classical algorithm for this task de�nes possible states as settings of the truth-values of particular

formulas which are relevant to the given formula; possible states are constructed and then linked

according to their associated formulas' constraints on temporally adjacent states, and then certain

ful�llment-conditions are checked. The new algorithm here e�ciently extends that treatment to

formulas with temporal operators which refer to the past or are metric (i.e. refer to measured

amounts of time). Then, whereas classical proofs of correctness for such algorithms are existential,

the proof here is constructive; the proof here shows that for any given formula being checked, any

model of the formula is embedded in the graph of possible states, which implies that the algorithm

here can �nd the model.

The second method presented in this dissertation is a deduction-calculus for determining the

validity of predicate temporal formulas. Previous work on deduction in temporal logic exploits

already well-developed techniques of deduction in �rst-order logic by representing temporal operators

via �rst-order expressions with time rei�ed as quanti�ed expressions of the natural numbers. The

new deduction-calculus presented here employs a re�ned, conservative version of this translation

from temporal forms to expressions with time rei�ed. Quanti�cations are elided, and addition is

used instead of classical complicated combinations of comparisons. Ordering conditions on arithmetic

expressions can arise, but such are handled automatically via uni�cation and a decision-procedure

for Presburger arithmetic. These features make this deduction-calculus very convenient. With

deduction-rules such as temporal induction, this deduction-calculus is as powerful as other methods.

Further deduction-rules such as rewriting are included for additional convenience.

iv

Acknowledgements

I thank my Advisor, Professor Zohar Manna, for the opportunities that he has provided. I

heartily thank Visiting Scholar Amir Pnueli, who initiated and encouraged my work in temporal

logic. I also thank Consulting Professor Richard Waldinger, another direct facilitator of this work.

I thank my fellow doctoral students Henny Sipma,1 Nikolaj Bj�rner, Tom�as Uribe, and Luca de

Alfaro for editing my work.2

I'm grateful to the many people who facilitated this work. Most recent such facilitators are

members of Stanford University's research-community working on formal methods for veri�cation

and related purposes; these people include professors, research-associates, and students, both within

and outside the Department of Computer Science, who have discussed matters with me and given

me pointers. I particularly thank my fellow doctoral students Arjun Kapur and Elizabeth Wolf for

such help. More generally, the synergy of the research-community here has nurtured my work.

Previous facilitators of my work include: \W�" Ian Gasarch, a doctoral student of Computer Sci-

ence at Harvard University when I was there, who led adventurous excursions in e�ective com-

putability; Gerald Sacks, a Professor of Mathematics at Harvard University when I was there, who

introduced me to advanced formal methods and encouraged me in Computer Science; and the Math-

ematical Association of America, which illuminated how fun mathematical `work' is.

I am very grateful to Carolyn Tajnai, Assistant Chair of the Department of Computer Science for

Graduate Studies and External Relations and also Director of the Computer Forum, for arranging

funding for this work. And I thank the external agencies that provided these funds: GTE Foundation

and Achievement Rewards for College Scientists Foundation Inc.3

In conclusion, I thank those who supported me in other ways, including my family and the

Computer Science Department's sta� | particularly Secretary Phyllis Winkler.

1I take this opportunity to thank Henny Sipma further for vital help at my dissertation-defense.
2(Any
aws remaining in this work are mine.)
3I also take this opportunity to thank the National Science Foundation for a Minority Graduate Fellowship which

funded part of my graduate career before I began this work. Further funding has come from my being a teaching-

assistant; I particularly thank Administrative Assistant Claire Stager for facilitating this arrangement.

v

Contents

Abstract iv

Acknowledgements v

Contents vi

List of Tables viii

0 A Temporal Logic 1

0.1 Syntax : 2

0.2 Semantics : 6

0.3 Alternative Notations : 13

Part I A Method for Checking Propositional Temporal Formulas 15

I.0 Introduction to Part I 17

I.1 An Algorithm for Deciding Satis�ability 20

I.1.1 Notation : 20

I.1.2 An Introductory Example : 24

I.1.3 The Algorithm : 29

I.2 Correctness of the Algorithm 36

I.2.0 Termination : 36

I.2.1 Success : 40

I.2.2 Su�ciency : 60

I.3 Complexity of the Algorithm 65

I.3.1 Sizes of Elements : 65

I.3.2 Complexity of Operations : 70

vi

I.4 Examples of Application of the Algorithm 74

I.4.1 An Introductory Example : 74

I.4.2 Correction of a Speci�cation of a Circuit : 75

I.4.3 Compositional Veri�cation of Timing-Speci�cations : : : : : : : : : : : : : : : : : : 79

I.4.4 Interpolation-Properties of This Temporal Logic : 86

I.5 Concluding Remarks for Part I 87

I.5.1 Advantages of This Method : 87

I.5.2 Contributions of This Work : 88

Part II A Method for Checking Predicate Temporal Formulas 89

II.0 Introduction to Part II 91

II.1 A Deduction-Calculus 93

II.1.0 Framework: Deductive Tableaux : 93

II.1.1 Basic Deduction-Rules : 100

II.1.2 The Time-Rei�cation Rule : 106

II.1.3 The Resolution Rule : 110

II.1.4 The Equality-Application Rule : 114

II.1.5 Induction Rules : 115

II.1.6 Invocation of a Presburger Decision-Procedure for Time-Formulas : : : : : : : : : 116

II.2 Examples of Proofs 117

II.2.1 A Tutorial Example : 117

II.2.2 A Demonstration of Relative Power : 123

II.2.3 Veri�cation of List-Processing : 128

II.3 Properties of the Deduction-Calculus 132

II.3.1 Soundness : 132

II.3.2 Relative Completeness : 133

II.3.3 Employability to Decide Propositional Formulas : : : : : : : : : : : : : : : : : : : 133

II.4 Concluding Remarks for Part II 134

II.4.1 Advantages of This Method : 134

II.4.2 Contributions of This Work : 134

Bibliography 135

Index 143

vii

List of Tables

I.1 Options for Additional Formulas Required by Immediate Constraints : : : : : : : : 22

II.1 Simpli�cations for Boolean Operators : 95

II.2 Simpli�cation for Quanti�ers : 96

II.3 Simpli�cations for Plain Temporal Operators : 96

II.4 Simpli�cations for Metric Temporal Operators : 97

II.5 Simpli�cations for Time-Representing Terms : 98

II.6 Simpli�cations for Time-Annotations : 98

II.7 Axioms for Time-Representing Expressions : 98

II.8 Axioms for Temporally Invariable Function- and Relation-Symbols : : : : : : : : : 99

II.9 Rewritings for Boolean Operators and Quanti�ers : : : : : : : : : : : : : : : : : : : 101

II.10 Expansion-Rewritings for Plain Temporal Operators : : : : : : : : : : : : : : : : : 101

II.11 Rewritings for Plain Temporal Operators with Boolean Operators and Quanti�ers : 102

II.12 Rewritings for Metric Temporal Operators : 103

II.13 Rewritings for Time-Annotations : 104

viii

Chapter 0

A Temporal Logic

Pregnant in matter, in expression brief,

Let every sentence stand in bold relief!

| Joseph Story �

The language here is the Annotated Temporal Logic of McGuire, Manna, and

Waldinger [McgMW94],1 which is a modal logic derived from the Linear Temporal Logic of Manna

and Pnueli [ManP91]. Temporal logic has been found to be well-suited for expressing and then

reasoning about properties of reactive and concurrent systems; Pnueli [Pn77] initiated this interest

in temporal logic within Computer Science.2 Re particular features of temporal logic, Pnueli [Pn84]

and Lichtenstein, Pnueli, and Zuck [LicPZ85] show how explicitly including past-operators in the

language is desirable, and Koymans [Koy90, Koy92] and Henzinger [He91] do the same for metric

operators: including these features in the language facilitates expression of some temporal properties

such as aspects of a variable's (past) history3 or occurrence of an event within a few moments from

now. A caveat is that whereas one might expect use of the semantics of [Koy90, He91, Koy92] for

metric temporal operators, the semantics for such here is slightly di�erent, being derived instead

from the work of Wilk and Pnueli [WiP89]; this semantics is simpler, enabling the algorithm of Part I

of this dissertation to maintain e�ciency. The temporal logic here is linear rather than branching

because linear semantics is clearer than branching semantics.4 (But see also the work of Emerson

and Halpern [EH86] re expressibility.) The particular scheme of time-annotation used here was

�\Advice to a Young Lawyer", Stanza i. Written in 1832. Reproduced in Story �W.: Life and Letters of Joseph

Story, Volume II, Chapter ii: \Professorial and Judicial Life", page 88. Charles C. Little and James Brown, Boston,

1851.
1The notation here using \@" is new.
2For history and perspective, see also the presentation of Glanz [Gl95].
3[Pn84] indicates that such historical information facilitates modular veri�cation.
4Consider how di�cult it is in branching temporal logic to semantically distinguish the formulas AGFp, AGAFp,

and AGEFp.

1

2 CHAPTER 0: A TEMPORAL LOGIC

developed (in autumn, 1992) from the work of Shoham [Shoh87] and Abadi and Manna [AbM90].

(Fr�uhwirth [Fr�u94] has derived a similar but more limited scheme of time-annotation from the work

of Kifer and Subrahmanian [KifS92]; see also page 91 below re [Fr�u94]'s scheme.)

0.1 Syntax

Symbols

Basic symbols of the language here comprise:

function-symbols, collected in the set F; examples include \f ", \g", and zero-arity \a"

and \b".

The meta-symbol \
" denotes an arbitrary function-symbol.

parameter-symbols, collected in the set P; examples include \x", \y", and \z".

The meta-symbol \�" denotes an arbitrary parameter-symbol; the meta-expression \�"

denotes an arbitrary sequence of them, e.g. \[x1; x2; x3]".

temporal variables, collected in the set V; examples include \v".

The meta-symbol \�" denotes an arbitrary temporal variable.

relation- or predicate-symbols, collected in the set R; examples include \p", \q", and

\r". Relation-symbols used with zero arity, called propositions, are also

temporally variable. (The signi�cance of temporal variability is semantic; see below.)

The meta-symbol \�" denotes an arbitrary relation-symbol. The meta-symbol \�" denotes

an arbitrary proposition.

the equality-symbol, \=".

boolean operators:

symbol pronunciation operation arities

true true verity 0

false false falsity 0

: not negation 1

^ and conjunction every integer � 2

_ or disjunction every integer � 2

) implies implication 2

() is equivalent to equivalence 2

 ex-or exclusive disjunction every integer � 2

The operator
 does not accept
-formulas as arguments.5 The meta-symbol \?" denotes

an arbitrary boolean operator.

5Without this restriction, the formula (true
 true
 true) would have a value di�erent from that of the formula
((true
 true)
 true); the restriction avoids this situation by simply disallowing the latter formula.

SECTION 0.1: SYNTAX 3

quanti�er-symbols:

\8" (pronounced \for all"), which is used for universal quanti�cation.

\9" (pronounced \there exists"), which is used for existential quanti�cation.

The meta-symbol \Q" denotes an arbitrary quanti�er-symbol.

temporal operators:

symbol pronunciations arity

�rst �rst 0

 next 1

2 henceforth, box 1

3 eventually, diamond 1

U until 2

A awaiting 2

 previously 1

2 hitherto, box-minus 1

3 once, was, diamond-minus 1

S since 2

B barring, back to 2

� term-next, next value of 1

(Instead of \A", [ManP91] uses \W", with the name \unless".)

The operator \�" applies to terms; the other operators apply to formulas.

The symbols for time comprise:

the natural numerals \0" and \1", which are zero-arity function-symbols.

\+", the addition-function-symbol, whose arities comprise every integer � 2 and whose

arguments must be time-representing terms (when this symbol is used for time).

\pred", the predecessor-function-symbol, whose arity is 1 and whose argument must be a

time-representing term.

other function-symbols, e.g. \h1", \h2", and zero-arity \c1" and \c2".

Each of these function-symbols accepts terms as arguments only if they do not contain any

temporal variables or \�".
other parameter-symbols, e.g. \t1", \t2", \d1", and \d2". Such a subscripted or otherwise

accented \t" is generally used to represent an absolute time, and such a subscripted or

otherwise accented \d" is generally used to represent a duration of time, a.k.a. a delay,

a.k.a. a di�erence between two absolute times.

Symbols for time are not themselves temporally variable; they specify time-frames but are not

a�ected by such.

Additional numerals for time are \2", \3", \4", etc., which are abbreviations for \1+1",

\1+1+1", \1+1+1+1", etc. (respectively). The meta-symbol \�" denotes an arbitrary numeral.

The expression \h�+ 1i" denotes \�+ 1" except when � is \0", in which case \h�+ 1i" denotes \1".

4 CHAPTER 0: A TEMPORAL LOGIC

In addition to the type \time" which is speci�ed for the symbols for time, other types (a.k.a.

\sort"s in a sorted logic) can be speci�ed for other function-symbols, parameter-symbols, temporal

variables, and arguments for function- and relation-symbols.

The language here also includes the following binary relation-symbols:

\�", \<", and \���"6, each of whose arity is 2.

For each of these relation-symbols, if one of its arguments is a time-representing term, then its other

argument must also be a time-representing term.

The temporal operators
,
, and � can be superscripted by numerals; for example: \
3".

Any other temporal operator can be metricized by subscripting it with one of the comparison-

symbols \�", \<", or \���" and a numeral. For examples, \2�4" is such a metric temporal operator

and \(p U���5 q)" is a complete formula containing such. In such subscripts, the symbols \�", \<",
and \���" are pronounced \through" or \within", \before", or \each", respectively.

Expressions of the Language

A term is one of the following:

a parameter-symbol, e.g. \x".

a temporal variable, e.g. \v".

an application of a function-symbol to a number of argument-terms satisfying the function-

symbol's requirements of arity and argument-types; e.g. \f(x)", \a" (with zero arguments),

and \t+ c+ 1" (using multi-ary in�x notation for the function-symbol \+").

The type of a function-application is the type of its function-symbol.

an application of the operator \�" to a term, e.g. \�v".
The type of a \�"-term is the type of the sub-term to which \�" is applied.

The meta-symbols \� " and \�" denote arbitrary terms. A time-representing term is a term

whose type is time. The meta-symbol \�" denotes an arbitrary time-representing term.

A quanti�er is the application of a quanti�er-symbol to a positive number of parameter-symbols;

e.g. \(8x)", \(9y; z)".

6The pronunciation of \���" is\congruent". This symbol expresses a variant of modular equivalence: m ��� n means
m = 0 (MOD n). (See semantics, below.)

SECTION 0.1: SYNTAX 5

A formula is one of the following:

an application of a relation-symbol (i.e. a predicate-symbol) to a number of argument-terms

satisfying the relation-symbol's requirements of arity and argument-types; e.g. \p" (with

zero arguments), \q(x)", and \t1 < t2".

an equation \� = �", where � and � are terms of the same type; e.g. \a = f(x)" and

\t = 3".

an application of a boolean operator to a number of argument-formulas satisfying the

operator's arity and obeying the restriction that the operator
 does not accept
-formulas

as arguments.

an application of a possibly superscripted or subscripted temporal operator to an appro-

priate number of argument-formulas.

a time-annotated formula \[� ::::]", where � is a time-representing term and is a

formula which is not a time-formula (see below). In a time-annotated formula [� ::::], the

term � is the time-annotation and the formula is its argument.7

an application of a quanti�er to an argument-formula which does not have any time-

annotations which contain any of the quanti�er's parameter-symbols.

The meta-symbols \'", \ ", and \�" denote arbitrary formulas.

A time-comparison is an application of either \=", \�", \<", or \���" to two time-representing

terms. A time-formula is either a time-comparison or an application of a boolean operator or a

quanti�er to time-formulas.

In a quanti�cation-formula (Q�) , i.e. (8�1; �2; : : : ; �k) or (9�1; �2; : : : ; �k) , each quanti�ed
parameter-symbol �i is bound. In a formula, a parameter-symbol's occurrences that are not bound

are free. In (Q�) , the occurrences of each parameter-symbol �i that are bound speci�cally by the

salient quanti�er (Q�) are those that are free in when it is considered as an independent formula.

In an application of a boolean operator, a temporal operator, a time-annotation, or a quanti�er

to argument-formulas (or -terms), the arguments comprise the scope of the operator, annota-

tion, or quanti�er | except that the scope of a temporal operator or time-annotation does not

extend over the scope of any inner time-annotation. For an example of this exception, in the for-

mula
�
3 :::: 2

�
p ^ [0 :::: q]

��
the scopes of the time-annotation 3 and the temporal operator 2 do not

extend over the scope of the inner time-annotation 0.

7See the work of Mints [Mi92] for similar annotation of formulas.

6 CHAPTER 0: A TEMPORAL LOGIC

Organization of Operators and Their Arguments

Pre�x-notation is used for each operator whose arity is 1; in�x-notation is used for each operator

whose arity or arities is or are larger. Parentheses (\(" and \)") and brackets (\[" and \]") may be

used as delimiters of expressions.

For the binary boolean operator \)" and the binary temporal operators, right-associativity

is used when delimiters are omitted. For example, the formula (p) q) r) is understood as�
p) (q) r)

�
, and the formula (p U q U r) is understood as

�
p U (q U r)

�
. The binary boolean oper-

ator \()" is not associative; so, for example, the unparenthesized sequence of symbols \p() q () r"

is not acceptable (a.k.a. not \well-formed").

Unary operators have the strongest precedence. For example, the formula (: p U q) is

understood as
�
(:p) U q� rather than

�:(pU q)�. The binary temporal operators all share

the next strongest precedence. For examples: the formula (p ^ q U r) is understood as�
p ^ (q U r)� rather than

�
(p ^ q) U r�, and the formula (p1 U p2 A p3 U p4 A p5) is understood as�

p1 U
�
p2 A [p3 U (p4 A p5)]

��
| applying right-associativity since the operators \U" and \A" each

have the same precedence. The precedences of the remaining operators are speci�ed by the follow-

ing list of them ordered by precedence, from strongest to weakest: \^", \
", _", \)", \()", and

time-annotation.

0.2 Semantics

Set-notation used here includes the zero-ary (empty) tuple \()" as an acceptable tuple; this allows

S0, for a set S, to be f()g. For any set S, the expression \}((((S))))" denotes the power-set of S, i.e. the

set of all subsets of S.

The domain for time here is a structure \T " which is a copy of the natural numbers N .8 A

time-value or time is an element of T . The meta-symbol \t" denotes an arbitrary time-value.

A model M is a structure such that:

Associated withM is a nonempty set of objects, denoted by \M ", called the universe

ofM. Some of these objects may have types.

Model M assigns type-consistent objects and times to the language's parameter-

symbols (\x", \t", etc.), i.e.M maps P to M [T . For any parameter-symbol � 2 P ,
the expression \M[[�]]" denotesM's assignment to �.

Model M assigns type-consistent functions over M [T to the language's function-

8Thus, time is discrete here.

SECTION 0.2: SEMANTICS 7

symbols, obeying arities. For any function-symbol
 2 F and arity k 2 N , the expres-

sion \M[[
; k]]" denotesM's assignment to
 with arity k. Obedience of arity is as follows:

For each arity k 2 N , let the collection FFFFk � }(((((M [T)k+1)))) denote the functions over

M [T that have arity k. Then for each function-symbol
 2 F and arity k 2 N , the

assignmentM[[
; k]] 2 FFFFk.
Model M assigns type-consistent relations over M [T to the language's temporally

invariable relation-symbols, obeying arities. For any relation-symbol � 2 R and nonzero

arity k 2 N ���� f0g, the expression \M[[�; k]]" denotesM's assignment to � with arity k.

Obedience of arity is as follows: For each relation-symbol � 2 R and arity k 2 N ���� f0g,
the assignmentM[[�; k]] 2 }(((((M [T)k)))).
Associated with modelM is a sequence of states indexed by T ; modelM's state with

index t 2 T is denoted by \M@t".

In addition to inheriting the preceding assignments of the model to temporally invariable

symbols, a state of a model assigns appropriate values using the model's universe to tempo-

rally variable symbols.9 Speci�cally, a state assigns values to the language's temporal vari-

ables and propositions (i.e. relation-symbols used with zero arity), mapping V to M and

R�f0g to }((((M 0)))). For any temporal variable � 2 V , the expression \(M@t)[[�]]" denotes

state (M@t)'s assignment to �. For any proposition � 2 R, the expression \(M@t)[[�; 0]]"

denotes state (M@t)'s assignment to �. (The \0" indicates the zero arity.)

A model assigns appropriate values to the symbols that represent time | numbers which match

to the numerals, addition to the function-symbol \+", and so on. (The predecessor-function as-

signed to \pred" may map the argument-value zero arbitrarily.) A model also assigns appropri-

ate values to the relation-symbols \<", \�", and \���" over T ; in particular, M[[���; 2]] \ T 2 is the

set: fall the pairs (m;n) such that m is a multiple of ng.

If a term � does not contain any temporal variables or \�", then a modelM's interpretation

of � , denoted by the expression \M[[�]]", is an object ofM's universe M determined as follows:

If term � is a parameter-symbol �, thenM[[�]] isM[[�]].

If term � is
(�1; �2; : : : ; �k), the application of the function-symbol
 with arity k 2 N
to argument-terms �1, �2, : : : , �k, then with M[[
; k]] being a function, the interpreta-

tionM[[�]] is M[[
; k]]
�
M[[�1]];M[[�2]]; : : : ;M[[�k]]

�
.

A stateM@t (for t 2 T) interprets those terms the same; additionally:

If term � is a temporal variable �, then (M@t)[[�]] is (M@t)[[�]].

9Others (e.g. [AbM90]) use the word \rigid" instead of \temporally invariable" and the word \
exible" instead of
\temporally variable".

8 CHAPTER 0: A TEMPORAL LOGIC

If term � is ��, the application of the temporal operator \�" to term �, then (M@t)[[�]]

is
�
M@(t+ 1)

�
[[�]].

If a formula' contains no temporally variable symbols or temporal operators outside the scope of

time-annotations in ', then a modelM either satis�es or falsi�es '. The expression \M j= '" is

an abbreviation for the statement \M satis�es '", and the expression \M �� '" is an abbreviation

for the statement \M falsi�es '". Satisfaction or falsi�cation of a formula ' by a modelM is

determined as follows:

If formula ' is �(�1; : : : ; �k), the application of the relation-symbol � with nonzero ar-

ity k 2 N ���� f0g to argument-terms �1, : : : , �k, then with M[[�; k]] being a relation,

M j= ' if and only if (i�) the tuple
�
M[[�1]];M[[�2]]; : : : ;M[[�k]]

� 2M[[�; k]].

If formula ' is an equation (� = �), then M j= ' i� M[[�]] is the same object asM[[�]].

M j= true.

M �� false.

M j= : i� M �� .

M j= (1 ^ 2 ^ : : :^ k) i� M j= 1,M j= 2, : : : , and M j= k.

M j= (1 _ 2 _ � � � _ k) i� M j= 1,M j= 2, : : : , or M j= k.

M j= () �) i� M �� or M j= �.

M j= (() �) i� M satis�es both and � or neither of them.

M j= (1
 2
 � � �
 k) i� M satis�es exactly one of 1, 2, : : : , and k.

M j= (8�1; �2; : : : ; �k) i� for every k objects o1, o2, : : : , and ok contained in M [T
(with each oi's type the same as the corresponding �i's type), the modelMe satis�es formula

 , where modelMe 's universe, assignments, and states are the same asM's except that

Me [[�1]] is o1,Me [[�2]] is o2, : : : , andMe [[�k]] is ok.
M j= (9�1; �2; : : : ; �k) i� M [T contains k objects o1, o2, : : : , and ok (with each oi's

type the same as the corresponding �i's type) such that the modelMe satis�es formula ,

where model Me 's universe, assignments, and states are the same as M's except that

Me [[�1]] is o1,Me [[�2]] is o2, : : : , andMe [[�k]] is ok.
M j= [� ::::] i� modelM's stateM@

�
M[[�]]

�
satis�es . (Satisfaction/falsi�cation of a

formula by a state is de�ned next.)

A stateM@t, for t 2 T , interprets those formulas the same (including time-annotated ones |

M@t j= [� ::::] i� M@
�
M[[�]]

� j=); additionally:

If formula ' is a proposition, i.e. the application of a relation-symbol � to zero arguments,

then with (M@t)[[�; 0]] being a zero-arity relation, M@t j= ' i� the zero-ary (empty)

tuple () 2 (M@t)[[�; 0]].

SECTION 0.2: SEMANTICS 9

M@t j= �rst i� t is zero.

M@t j=
 i� M@(t+ 1) j= . An example may be depicted as follows:

M@t j=
p : -
0 t

p

M@t j= (
�) i� M@(t+ �) j= . An example may be depicted as follows:

M@t j= (
4
p) : -

0 t t+ 4

p

M@t j=2 i� M@(t+ d) j= for each time-delay d 2 T . An example may be depicted

as follows:

M@t j=2p : -
0 t

p p p p p p p � � �

M@t j= (2��) i� M@(t+ d) j= for each time-delay d 2 T such that d � �. An

example may be depicted as follows:

M@t j= (2�4 p) : -
0 t

p p p p p

M@t j= (2<�) i� M@(t+ d) j= for each time-delay d 2 T such that d < �. (These

conditions are vacuously satis�ed if � is 0 | regardless of ; e.g. the formula (2<0 false)

is satis�ed | always.) An example may be depicted as follows:

M@t j= (2<4 p) : -
0 t

p p p p

M@t j= (2����
) i� M@(t+ d) j= for each time-delay d 2 T such that d ��� �. An

example may be depicted as follows:

M@t j= (2���2 p) : -
0 t

p p p p � � �

M@t j= 3 i� M@(t+ df) j= for some time-delay df 2 T ; then, the formula 3 is

ful�lled at the time t+ df . An example may be depicted as follows:

M@t j=3q : -
0 t t+ df

q

M@t j= (3��) i� M@(t+ df) j= for some time-delay df 2 T such that df � �; then,
the formula3 is ful�lled at the time t + df . An example may be depicted as follows:

M@t j= (3�4 q) : -
0 t t+ df

q

M@t j= (3<�) i� M@(t+ df) j= for some time-delay df 2 T such that df <

�. (Satisfying these conditions is impossible when � is 0; e.g. the formula (3<0 true) is

unsatis�able.) If satis�ed thus, the formula3 is ful�lled at the time t+df . An example

may be depicted as follows:

M@t j= (3<4 q) : -
0 t t+ df

q

10 CHAPTER 0: A TEMPORAL LOGIC

M@t j= (3����
) i� M@(t+ df) j= for some time-delay df 2 T such that df

��� �; then,
the formula3 is ful�lled at the time t + df . An example may be depicted as follows:

M@t j= (3���2 p) : -
0 t t+ df

q

M@t j= (� U) i� M@(t + df) j= for some time-delay df 2 T andM@(t + di) j= �

for each intermediate time-delay di 2 T such that di < df ; then, the formula (� U) is

ful�lled at the time t+ df . An example may be depicted as follows:

M@t j= (p U q) : -
0 t t+ df

qp p p p

M@t j= (� U��) is determined likeM@t j= (�U) with the additional requirement that

df � �. An example may be depicted as follows:

M@t j= (p U�4 q) : -
0 t t+ df

qp p

M@t j= (� U<�) is determined likeM@t j= (�U) with the additional requirement that

df < �. An example may be depicted as follows:

M@t j= (p U<4 q) : -
0 t t+ df

qp p p

M@t j= (� U����) is determined likeM@t j= (�U) with the additional requirement that

df
��� �. An example may be depicted as follows:

M@t j= (p U���2 q) : -
0 t t+ df

qp p p p

M@t j= (� A) i� M@t j= (� U) or M@t j= 2�.
M@t j= (� A��) i� M@t j= (� U��) or M@t j= (2�� �).

M@t j= (� A<�) i� M@t j= (� U<�) or M@t j= (2<� �).

M@t j= (� A����) i� M@t j= (� U����) or M@t j= 2� (sic | no subscript for the

operator \2" here).

M@t j=
 i� t 6= 0 and M@(t � 1) j= . An example may be depicted as follows:

M@t j=
p : -
0 t

p

M@t j= (
�) i� � � t and M@(t � �) j= . An example may be depicted as follows:

M@t j= (
4
p) : -

0 tt� 4

p

M@t j= 2 i� M@(t� d) j= for each time-di�erence d 2 T such that t � d 2 T , i.e.
i� M@~t j= for each time-value ~t 2 T such that ~t � t. An example may be depicted as

follows:

M@t j=2p : -
0 t

pppppppp

SECTION 0.2: SEMANTICS 11

M@t j= (2��) i� M@(t� d) j= for each time-di�erence d 2 T such that t� d 2 T
and d � �. An example may be depicted as follows:

M@t j= (2�4 p) : -
0 t

ppppp

M@t j= (2<�) i� M@(t� d) j= for each time-di�erence d 2 T such that t� d 2 T
and d < �. An example may be depicted as follows:

M@t j= (2<4 p) : -
0 t

pppp

M@t j= (2����
) i� M@(t� d) j= for each time-di�erence d 2 T such that t� d 2 T

and d ��� �. An example may be depicted as follows:

M@t j= (2���2 p) : -
0 t

pppp

M@t j= 3 i� M@(t� d) j= for some time-di�erence d 2 T such that t � d 2 T , i.e.
i� M@~t j= for some time-value ~t 2 T such that ~t � t. An example may be depicted as

follows:

M@t j=3p : -
0 tt� d

i.e. ~t

p

M@t j= (3��) i� M@(t � d) j= for some time-di�erence d 2 T such that t � d 2 T
and d � �. An example may be depicted as follows:

M@t j= (3�4 p) : -
0 tt� d

p

M@t j= (3<�) i� M@(t � d) j= for some time-di�erence d 2 T such that t � d 2 T
and d < �. An example may be depicted as follows:

M@t j= (3<4 p) : -
0 tt� d

p

M@t j= (3����
) i� M@(t � d) j= for some time-di�erence d 2 T such that t� d 2 T

and d ��� �. An example may be depicted as follows:

M@t j= (3���2 p) : -
0 tt� d

p

M@t j= (� S) i� [1] M@(t� d) j= for some time-di�erence d 2 T such that t� d 2 T
and [2]M@di j= � for each intermediate time-di�erence di 2 T such that di < d, i.e. i��
~1
�
M@~t j= for some time-value ~t 2 T such that ~t � t and

�
~2
�
M@ti j= � for each

intermediate time-value ti 2 T such that ~t < ti and ti � t. An example may be depicted

as follows:

M@t j= (p S q) : -
0 tt� d

i.e. ~t

q pppp

12 CHAPTER 0: A TEMPORAL LOGIC

M@t j= (� S��) is determined likeM@t j= (� S) with the additional requirement that

d � �.
M@t j= (� S<�) is determined likeM@t j= (� S) with the additional requirement that

d < �.

M@t j= (� S����) is determined likeM@t j= (� S) with the additional requirement that

d ��� �.
M@t j= (� B) i� M@t j= (� S) or M@t j=2�.
M@t j= (� B��) i� M@t j= (� S��) or M@t j= (2�� �).

M@t j= (� B<�) i� M@t j= (� S<�) or M@t j= (2<� �).

M@t j= (� B����) i� M@t j= (� S����) or M@t j= 2� (sic | no subscript for the

operator \2" here).

A situationM j= [0 :::: '] is abbreviated as \M j= '". The relationship \j="| i.e. \satis�es" |

applies to sets of formulas in a manner naturally derived from its application to individual formulas:

if S is a set of formulas, thenM j= S i� M satis�es each element of S.

A formula is valid if it is satis�ed by all models.

A theory of a domain is speci�ed by a set of formulas A which are called the theory's

domain-axioms. A formula ' is valid within the theory of the domain speci�ed by the set A

if for every modelM that satis�es all the domain-axioms A, M j= '.

SECTION 0.3: ALTERNATIVE NOTATIONS 13

0.3 Alternative Notations

Alternative notations may be de�ned using the language above. Some examples are:e
 � :
: (\weakly previously").b2 �
2 (\hereafter" or \strictly henceforth").

(� bU) �
(� U) (\hereafter until").

())))))))))))))))) � 2()) (\entails").

(2=�) � (
�).

(3=�) � (
�).

(� U=�) � (2<� �) ^ (
�).

(2��) � (
�2).

(� U��) � (2<� �) ^
�

�(� U)

�
.

(2[�;�]) �
�

�(2�h���i)

�
, where \h� � �i" is the di�erence between � and �.

(� U[�;�]) � (2<� �) ^
�

�(� U�h���i)

�
.

(2=� (MOD �)) or (2=� �) �
�

�(2����

)
�
.

(� U=� (MOD �)) or (� U=� �) � (2<� �) ^
�

�(� U����)

�
.

�0 �
� for a proposition �; e.g. \p0".

�0 � �� for a temporal variable �.

Part I

A Method for Checking

Propositional Temporal Formulas

15

Chapter I.0

Introduction to Part I

\If you can look into the seeds of time,

And say which grain will grow and which will not : : :"

| William Shakespeare �

The propositional fragment of temporal logic is decidable. This part of this dissertation presents

one such decision-procedure which is designed for e�ciency.1

Lichtenstein, Pnueli, and Zuck [LicPZ85] present the fundamental concepts for algorithms such as

the one here: Given a formula to check for satis�ability2, \atoms" (which were originally presented

by Fischer and Ladner [FiscL77]) are de�ned as particular subsets of a certain �nite pool of relevant

formulas (which are derived from the given formula); atoms are considered like possible states.

Atoms are used to construct a \semantic tableau", as discussed by Pratt [Pr78], Wolper [Wo85], and

Ben-Ari [Ben93]; a semantic tableau is a directed graph whose vertices are these atoms. In this

graph, an edge connects one vertex to another only if such a connection is consistent with the two

vertices'
- and
-formulas (e.g. if the �rst vertex has the formula
p, then the second vertex

should have p.) The originally given formula is satis�able if | and only if | a path satisfying

certain \ful�llment"-conditions can be found in the graph. All of the operations involved in this

algorithm are �nite, so it is a decision-procedure.3

That basic algorithm can be tuned for e�ciency via a reachability-restriction (a.k.a. \incremen-

tally" constructing the graph) as in the work of [Pr78], Manna and Wolper [ManWo84, Wo85], and

Sherman and Pnueli [SheP89].4 But those systems do not handle operators that refer to the past,

�Macbeth, Act I, Scene iii, Lines 58{59. Written in 1605 or 1606.
1This part of this dissertation is an extended version of the joint work of Kesten, Manna, McGuire, and

Pnueli [KeMMP93].
2Checking the validity of a formula can be done by checking the unsatis�ability of the negation of the formula.
3This algorithm is ultimately due to Kripke [Kr63].
4For a somewhat di�erent algorithm which also employs reachability, see the work of McMillan [Mcm93].

17

18 PART I, CHAPTER 0: INTRODUCTION TO PART I

i.e. \2", \S", etc. Kesten and Pnueli [KeP91] extended [SheP89] to handle past-operators in some

circumstances, but those circumstances were severely restrictive: formulas could not have any future-

operator within the scope of any past-operator. (It was not possible to separate this restriction from

that algorithm and its proof of correctness.)

The work here extends [SheP89] to handle arbitrary formulas with past-operators while reach-

ability is still employed, so e�ciency is maintained. The key idea is that temporal operators de-

termine local constraints (as discussed by Montanari [Mo74], Mackworth [Mac77], Freuder [Fre78],

Kumar [Ku92], and Ciapessoni, Corsetti, Crivelli, and Migliorati [CiCCM94]) which can be propa-

gated through a graph | even while the graph is being constructed; indeed, here, it is this prop-

agation which drives the construction. In this scheme, past-operators can be handled exactly like

future-operators but with their constraints operating in the reverse direction on edges. There are

non-local constraints5: 3- and U-formulas need ful�llment. But as in [SheP89], checking these non-

local constraints is easy (i.e. the complexity of this operation is merely linear in the size of the

graph).

A further extension to handle metric temporal operators [Koy90, He91, Koy92] is `free': it is

necessary only to determine their constraints as for the basic temporal operators. (Handling \���"

does require adjustment of ful�llment-checking.) E�ciency is maintained if suitable semantics is

used.

The classical proof of correctness of such algorithms is existential. For example, the proof in

[LicPZ85] shows that if the originally given formula has a model, then the graph's plenitude of atoms

includes ones corresponding to the model's states, and the graph's plenitude of edges includes ones

corresponding to the model's succession of states, so when the algorithm seeks a path satisfying

ful�llment-conditions, it will succeed. But when construction of the graph is restricted via reacha-

bility, what guarantees that necessary vertices and edges are present? Previous work does not clearly

address this issue.

The proof of correctness here is thorough | and constructive6. The key idea of this proof is

that given a formula to check for satis�ability, any model of the formula can be embedded in the

graph at each stage of the graph's construction. In updating an embedding as the graph is modi�ed,

a strategy of being greedy for ful�llment, supplemented by `patching' 7, succeeds. Thus | given a

model | the proof here shows that the algorithm successfully reports satis�ability. Conversely, if

5These non-local constraints are related to those discussed in the work of Burch, Clarke, McMillan, and
Dill [BuCMD90].

6Beeson [Bee85] shows why constructiveness is desirable in Mathematics (see also the work of Martin-L�of [Mar79],
Constable et al. [Con86], and Manna and Waldinger [ManWa92]) | perhaps even slightly more desirable in `applied'

Mathematics such as Computer Science.
7The idea for this patching is inspired by the work of Soare [So76, So87]

19

a model is reported by the algorithm to be satisfying, it is indeed so. (Previous work does address

this converse somewhat, e.g. [Ben93] (Theorem 5.4.9, on page 226 of that work); a small amount of

additional work is necessary to handle the additional past-operators and metric operators.)

Chapter I.1

An Algorithm for Deciding

Satis�ability

I.1.1 Notation

The algorithm here checks the satis�ability of any given propositional formula, employing a graph

in the manner just described above.

Note that with numerals in metric operators being the only terms of the language used in this

part of this dissertation, some symbols for terms are used otherwise here: e.g. \v" and \V " as

vertices of the graph, \a" as a set of formulas, and \c" as a constant number. Such reinterpretations

are given where they are used.

The relevant graph's vertices are sets of formulas. These sets are called state-sketches (a.k.a.

`atom's) since they can be used to determine states in a model.

In a directed graph, comprising vertices and directed edges, if u and v are vertices connected by

an edge from u to v, then vertex v is a successor of vertex u, vertex u is a predecessor of v, and

each of u and v is a neighbor of the other. A vertex w is an eventual successor of a vertex u if

either w is u or w is an eventual successor of an ordinary successor of u.

A literal is either a proposition or the negation of a proposition; e.g. \p", \:p".
Formulas which are input or which otherwise arise during this algorithmare `simpli�ed' as follows:

First, the formula :false replaces true.1 Then, any formula having the form ::' is simpli�ed to '.

Next, occurrences of the operators \
" and \
" which lack superscripts are automatically given

1The formula \true" could be used; but generally, here, such an intrinsically easily satis�able formula is inconse-
quential.

20

SECTION I.1.1: NOTATION 21

the superscript \1"; and occurrences with the superscript \0" are deleted (e.g. \(
0p)" �! \p").

Metric temporal operators using the symbol \<" are replaced as follows:

2<0 �! true

3<0 �! false

� U<0 �! false

� A<0 �! true

2<0 �! true

3<0 �! false

� S<0 �! false

� B<0 �! true

\<h�+1i" �! \��"

Any formula (� A���0) is changed to (_2�), any formula (� B���0) is changed to (_2�), and
any other formula (: : :���0) is reduced to . Lastly, any subscript \���1" is erased.

Constraints

As the goal here is to delineate a model along a path in the graph that is constructed, the graph

is constrained to conform to characteristics of models, as follows.

The �rst characteristic is that a model M has just one initial state M@0. This situation

engenders the �rst�rst�rst�rst-constraint that when a path in the graph is used to delineate a model, only the

path's �rst state-sketch may contain the formula �rst. The construction of the graph begins with

this �rst-constraint satis�ed for all paths, actually; indeed, each state-sketch contains either �rst

or :�rst, indicating its (potential) role as either a �rst state-sketch or a successor-state-sketch in a

path used to delineate a model. During subsequent elaboration of the graph, each new state-sketch

inherits this feature (either �rst or :�rst) from an old state-sketch.

A larger class of constraints on the graph is the class of immediate constraints: If a state-

sketch s contains a formula ', then ' must not be false, s must not contain :',2 and s must contain

certain additional formulas which are speci�ed according to ''s outermost operator(s). For most

formulas ', the options for these additional formulas which s must contain correspond to the various

ways of satisfying ' (as speci�ed by semantics); for example, the formula (p _ q) can be satis�ed

either by satisfying p or by satisfying q, so if s contains (p _ q), then s must contain either p or

q. For other formulas, satisfaction of them is not reducible like that, so essentially no additional

formulas are required to satisfy their immediate constraints; examples of such `irreducible' formulas

are :false and
p. For every formula ', the options for additional formulas required to satisfy ''s

immediate constraints are speci�ed in Table I.1 (on the following two pages).3

2If ' is a negation : , remember that :' = :: automatically reduces to , so the condition :' =2 s reduces to
 =2 s, as is appropriate.

3Compare the reductions here to some of the \rewritings" of Tables II.9, II.10, II.11, and II.12 (on pages 101{103,
in Part II).

22 PART I, CHAPTER 1: AN ALGORITHM FOR DECIDING SATISFIABILITY

Table I.1: Options for Additional Formulas Required by Immediate Constraints

Formula Option #1 Further Options (if any)

false (no options)

:false, any literal,

�rst, :�rst fg
 1 ^ 2 ^ : : :^ k f 1; 2; : : : ; kg
 1 _ 2 _ � � � _ k f 1g f 2g : : : f kg

) � f: g f�g
 () � f ; �g f: ;:�g

 1
 2
 � � �
 k f 1; : 2; : 3; : : : ; : kg f: 1; 2; : 3; : 4; : : : ; : kg
f: 1; : 2; 3; : 4; : 5; : : : ; : kg

...

f: 1; : 2; : : : ; : k�2; : k�1; kg
:(1 ^ 2 ^ : : :^ k) f: 1g f: 2g : : : f: kg
:(1 _ 2 _ � � � _ k) f: 1; : 2; : : : ; : kg

:() �) f ; :�g
:(() �) f ; :�g f: ; �g

:(1
 2
 � � �
 k) f: 1; : 2; : : : ; : kg f 1; 2g f 1; 3g : : : f 1; kg
f 2; 3g : : : f 2; kg
... . .

.

f k�1; kg

h�+1i

 fg

h�+1i

 f:�rstg
:
�

h�+1i

� ��

h�+1i:
�	

:
�

h�+1i

�
f�rstg f
:(
�)g

2 f ;
2 g
3 f g f
3 g

� U f g f�;
(� U)g
� A f g f�;
(� A)g
2 f ;:
:2 g
3 f g f
3 g
� S f g f�;
(� S)g
� B f g f�; :
:(� B)g
:2 f3: g
:3 f2: g

:(� U) f: A (:� ^ :)g
:(� A) f: U (:� ^ :)g
:2 f3: g
:3 f2: g

:(� S) f: B (:� ^ :)g
:(� B) f: S (:� ^ :)g

SECTION I.1.1: NOTATION 23

Table I.1 (continued)

2�0 f g
2�h�+1i f ;
(2��)g
3�0 f g

3�h�+1i f g f
(3��)g
� U�0 f g

� U�h�+1i f g f�;
(� U��)g
� A�0 f g f�g

� A�h�+1i f g f�;
(� A��)g
2�0 f g

2�h�+1i f ; :
:(2��)g
3�0 f g

3�h�+1i f g f
(3��)g
� S�0 f g

� S�h�+1i f g f�;
(� S��)g
� B�0 f g f�g

� B�h�+1i f g f�; :
:(� B��)g
2����

�
 ;
�

�(2����

)
�	

3����
 f g �

�(3����
)
	

� U���� f g �
(2<� �);

�

�(� U����)

�	
� A���� f g �

(2<� �);
�

�(� A����)

�	
2����

�
 ; :�
�:(2����)�	

3����
 f g �

�(3����
)
	

� S���� f g �
(2<� �);

�

�(� S����)

�	
� B���� f g �

(2<� �); :
�

�:(� B����)

�	
:(2��) f3�� : g
:(3��) f2�� : g
:(� U��) f: A�� (:� ^ :)g
:(� A��) f: U�� (:� ^ :)g
:(2��) f3�� : g
:(3��) f2�� : g
:(� S��) f: B�� (:� ^ :)g
:(� B��) f: S�� (:� ^ :)g
:(2����) f3����

: g
:(3����

) f2���� : g
:(� U����) f: A����

(:� ^ :)g
:(� A����) f: U����

(:� ^ :)g
:(2����) f3����

: g
:(3����

) f2���� : g
:(� S����) f: B����

(:� ^ :)g
:(� B����) f: S���� (:� ^ :)g

24 PART I, CHAPTER 1: AN ALGORITHM FOR DECIDING SATISFIABILITY

The next class of constraints on the graph is the class of neighbor-constraints. These con-

straints, which each state-sketch s imposes on each of its edges to neighbor state-sketches n, are as

follows:

If n is a successor of s, then for each formula ' 2 s having the form
�

h�+1i

�
, state-

sketch n must contain the formula (
�).

If n is a predecessor of s, then for each formula ' 2 s having the form
�

h�+1i

�
, state-

sketch n must contain the formula (
�).

If the edge between s and n satis�es s's neighbor-constraints, then it is

accurate in the direction future or past, respectively as n is either a successor or a predecessor

of s. (The phrase \in the direction" here may be abbreviated as \toward".) An edge which is not

accurate in a direction is inaccurate in that direction.

The �nal class of constraints on the graph is the class of ful�llment-constraints: If any state-

sketch s contains a formula ' having the form 3 , (� U), (3����
), or (� U����), then some

eventual successor u of s must contain formula | and, in the cases with \����", the path P from s

to u must be such that its length jP j ��� �.4

I.1.2 An Introductory Example

The algorithm here operates by actually letting all those constraints drive the processing: state-

sketches (which are used as vertices in the graph that is constructed) are built as aggregations of

formulas speci�ed by immediate constraints, and when an edge does not satisfy a neighbor-constraint,

it is replaced by edges connected to new state-sketches which are created to satisfy the neighbor-

constraint. Before presenting all the details completely, it's convenient to outline the algorithm and

show an example.

The overall algorithm's (pseudo-)code is as follows:

satisfy(formula '
checking

):

init_graph();

elaborate_graph();

search_graph().

Procedure init_graph() initializes the graph, and procedure elaborate_graph() repeatedly adds

4Formulas having the forms :(�A) and :(� A����) would also engender ful�llment-constraints if their options of
Table I.1 were di�erent. For example, suppose the options for :(� A) were f:�;: g and f: ;
:(� A)g. Then,

the ful�llment-constraint for formula :(�A) contained in state-sketch s would be that some eventual successor of s
must contain both :� and : . With \����", there would be a further condition re the length of the path to the ful�lling

eventual successor. Having the options as they are seems simpler than having these additional ful�llment-constraints.

SECTION I.1.2: AN INTRODUCTORY EXAMPLE 25

new vertices and edges to satisfy neighbor-constraints; each of these procedures complies with imme-

diate constraints. Indeed, to ensure completeness, all `consistent' options for satisfying immediate

constraints are used. The function search_graph() seeks a path (in the �nal graph) which can

be used to delineate a model; since any model's domain for time is in�nite, strongly connected

components (SCCs) in the graph are considered since they can be used to yield in�nite paths.

Procedure search_graph() checks whether SCCs satisfy ful�llment-constraints. If it �nds such an

SCC, procedure search_graph() derives a model from the satisfactory SCC, and all processing

halts. Otherwise, the algorithm reports that the given formula 'checking is unsatis�able.

For example, suppose the formula '
checking

is (
2p _ 3q). Then procedure init_graph() pro-

duces the following graph (with state-sketches, which are sets of formulas, as vertices). The three

state-sketches containing the given formula 'checking = (
2p _ 3q) correspond to the multiplicity

of options for satisfying immediate constraints derived from this formula. The desired condition

that some modelM satis�es 'checking would actually haveM's �rst stateM@0 j= '
checking; the for-

mula �rst which is included in each of these three state-sketches here re
ects this (desired) condition.

Then, with those state-sketches which contain �rst corresponding to possible �rst states of a model

of '
checking

, the self-succeeding state-sketch blank corresponds to the sequence of as yet unconstrained

states which follow any such �rst state.

s:8<
:
�rst;

(
2p _ 3q);

2p

9=
;XXXXXXXXXXXXXXXXXXXXXPPPPPq

inaccurate toward future:

for
2p

8>><
>>:
�rst;

(
2p _ 3q);
3q;

q

9>>=
>>; -

8>><
>>:
�rst;

(
2p _ 3q);
3q;

3q

9>>=
>>;�

���
���

���
���

���
���

���
��

��1

inaccurate toward future:

for
3q

�:�rst	blank: �
�����

After execution of procedure init_graph(), processing continues with procedure

elaborate_graph(), which addresses edges that are inaccurate in some direction. For example,

here, the above diagram's topmost edge | from state-sketch s to blank | is inaccurate because s

contains the formula
2p =
�

h0+1i

2p
�
whereas the successor-state-sketch blank does not contain

the formula
�

0
2p
�
=2p. This situation gets corrected via replacement of the inaccurate edge by

26 PART I, CHAPTER 1: AN ALGORITHM FOR DECIDING SATISFIABILITY

one connected to a new state-sketch bn which contains the desired formula 2p. Formulas in addi-

tion to 2p, e.g. p, are included in bn to satisfy immediate constraints. One such additional formula

would be
::2p, but it is automatically simpli�ed to
2p. Some options are rejected, e.g. one

that would include �rst in this state-sketch bn which has a predecessor (s) and which is therefore

improperly placed for a `�rst' state. The successor-states of bn are as yet unconstrained, so an edge

from bn to blank is added. This processing yields the following graph:

s:8<
:
�rst;

(
2p _ 3q);

2p

9=
; -

inacc. past:
2p

8>><
>>:
�rst;

(
2p _ 3q);
3q;

q

9>>=
>>; -

8>><
>>:
�rst;

(
2p _ 3q);
3q;

3q

9>>=
>>;�

���
���

���
���

���
���

���
��

��1

inaccurate toward future:

for
3q

bn:8>><
>>:
:�rst;
2p;

p; :
:2p;

2p

9>>=
>>;QQ

Q
Q
Q
Q
Q
Q
QQs �:�rst	blank: �

�����

Unfortunately, the just-introduced edge from s to bn is inaccurate in the direction past because

bn contains the formula
2p whereas s does not contain 2p. As before, to satisfy the neighbor-

constraint, processing creates a new state-sketch which contains the needed formula, plus additional

SECTION I.1.2: AN INTRODUCTORY EXAMPLE 27

formulas to satisfy immediate constraints | plus the formulas of the original state-sketch s.8>><
>>:
�rst;

(
2p _ 3q);

2p;
2p; p; :
:2p

9>>=
>>;QQ

Q
Q
Q
Q
QQs

8<
:
�rst;

(
2p _ 3q);

2p

9=
;

8>><
>>:
�rst;

(
2p _ 3q);
3q;

q

9>>=
>>; -

8>><
>>:
�rst;

(
2p _ 3q);
3q;

3q

9>>=
>>;�

���
���

���
���

���
���

���
��

��1

inaccurate toward future:

for
3q

8>><
>>:
:�rst;
2p;

p; :
:2p;

2p

9>>=
>>;QQ

Q
Q
Q
Q
Q
Q
QQs �:�rst	blank: �

�����

Next, processing the only inaccurate edge here produces the following graph. The multiplicity

of options in this case engenders the creation of two new state-sketches.8>><
>>:
�rst;

(
2p _ 3q);

2p;
2p; p; :
:2p

9>>=
>>;QQ

Q
Q
Q
Q
QQs

8<
:
�rst;

(
2p _ 3q);

2p

9=
;

8>><
>>:
�rst;

(
2p _ 3q);
3q;

q

9>>=
>>; -

8>><
>>:
�rst;

(
2p _ 3q);
3q;

3q

9>>=
>>;�

��
��

���
��:

XXXXPPPPPPq

8>><
>>:
:�rst;
2p;

p; :
:2p;

2p

9>>=
>>;QQ

Q
Q
Q
Q
Q
Q
QQs

�:�rst;
3q; q

�
���

��
��

��
��

��1

�:�rst;
3q;
3q

�
�
�
�
�
�
�
�
�
�
�
��>

inaccurate toward future:

for
3q

�:�rst	blank: �
�����

Processing the remaining inaccurate edge produces the following graph:

28 PART I, CHAPTER 1: AN ALGORITHM FOR DECIDING SATISFIABILITY

8>><
>>:
�rst;

(
2p _ 3q);

2p;
2p; p; :
:2p

9>>=
>>; Q

Q
Q
Q
Q
Q
QQs

8<
:
�rst;

(
2p _ 3q);

2p

9=
;

8>><
>>:
�rst;

(
2p _ 3q);
3q;

q

9>>=
>>; -

8>><
>>:
�rst;

(
2p _ 3q);
3q;

3q

9>>=
>>;�

��
��

���
��:

XXXXPPPPPPq

8>><
>>:
:�rst;
2p;

p; :
:2p;

2p

9>>=
>>; Q

Q
Q
Q
Q
Q
Q
Q
QQs

�:�rst;
3q; q

�
����

��
��

��
��

��1

�:�rst;
3q;
3q

�
�
�

�
�
��:

�
�

�
�

-

blank:�:�rst	 �
�����

(See the following re the boxes here.)

That is the �nal graph.

To conclude the algorithm, procedure search_graph() searches this �nal graph for an in�nite

path that can be used to delineate a model. One such path here is along the top edges, i.e. along the

state-sketches that are highlighted with boxes. A model derived from this path is delineated simply

by the literals in the state-sketches; here, they are:8>><
>>:

p

9>>=
>>; -

8>><
>>:p

9>>=
>>; - � 	 �

�����
Thus, such a model | say, M | is determined by having its states satisfying proposition p at

time 0, satisfying p again at time 1, and otherwise arbitrary (i.e. assignments to p at times 2�. are

arbitrary, and assignments to q at all times are arbitrary):

-
0

M:

1

p p

Such a model does indeed satisfy the originally given formula '
checking = (
2p _ 3q).

SECTION I.1.3: THE ALGORITHM 29

I.1.3 The Algorithm

Here again is the algorithm's main procedure:

satisfy(formula '
checking

):

init_graph();

elaborate_graph();

search_graph().

The lower-level (pseudo-)code which is below employs the following elements (and notation):

The variable V is a set containing the vertices of the graph being constructed.

The variable E is a set containing the edges of the graph.

The variable E is a set containing edges which have been discarded from E but which must

be recorded to avoid in�nitely repeated reintroduction of them.

There is a special state-sketch blank which represents the as yet unconstrained future of

some state-sketches; this state-sketch blank is the singleton set of formulas f:�rstg.
An edge from a state-sketch s1 to a state-sketch s2 is denoted by the expression \hs1; s2i";
this edge may also be speci�ed as \hs1; s2ifuture" or \hs2; s1ipast".

Construction of the Graph

The initializing procedure is:

init_graph():

blank := f:�rstg;
V := add_options*(f�rstg; f'checkingg) + blank; (� \+": add element to set �)
E := fg;
for each state-sketch s 2 V :

E += the edge hs; blanki; (� i.e. \E := E + hs; blanki" �)
E := fg.

(The function add_options*() is below.)

30 PART I, CHAPTER 1: AN ALGORITHM FOR DECIDING SATISFIABILITY

Next, the central procedure is:

elaborate_graph():

for each edge hs; ni
dir
2 E which is inaccurate | in direction dir:bN := add_options*(n, neighbor_formulas(s, dir));

for each state-sketch bn 2 bN:

establish_edge(s, bn, dir);
if n = blank:

establish_edge(bn, blank, future);
else:

for each state-sketch �n such that the edge hn; �ni
dir
2 E [E:

establish_edge(bn, �n, dir);
V := V [bN;

E += hs; ni
dir
;

E -= hs; ni
dir
. (� \-=": remove element from set �)

The function-call neighbor_formulas(s, dir) here yields:�
all the formulas

�
[neighbor op(dir)]�

�
such that

�
[neighbor op(dir)]h�+1i

� 2 s	;
where neighbor op(future) is \
" and neighbor op(past) is \
".

A subfunction used in both init_graph() and elaborate_graph() is:

add_options*(sets of formulas base, additions): set of state-sketches:

if additions = fg:
return fbaseg;

if the formula false 2 additions:

return fg;
(� otherwise: �)
let the formulas '1, '2, : : : , and 'k be the elements of additions;

options combinations := options('1)� options('2)� � � � � options('k);

intermediates :=

8<
:
all the sets f = (base [additions [o1 [o2 [� � � [ok) such
that (o1; o2; : : : ; ok) 2 options combinations and no obviously

contradictory pair of formulas f ;: g � f

9=
;;

results := fg;
for each set of formulas f 2 intermediates:

results += add_options*(f , f ���� (base [additions));
return results.

This function generates state-sketches by combining base with additions while obeying immediate

SECTION I.1.3: THE ALGORITHM 31

constraints which require additional formulas | which may in turn recursively require additional

formulas, which may in turn : : : . All combinations of options which are super�cially consistent are

included. For example, the result of the function-call add_options*(f:pg, f3p _ qg) is the set of

state-sketches (i.e. set of sets of formulas)
�f:p; (3p _ q); 3p;
3pg; f:p; (3p _ q); qg	.

The subfunction options(') used here returns the set of sets of formulas comprising the op-

tions of additional formulas required for the immediate constraints of formula ', as listed in Ta-

ble I.1. For examples: options(p) is
�fg	, options(2p) is

�fp;
2pg	, and options(pU q) is�fqg; fp;
(p U q)g	.
Another subprocedure (of elaborate_graph()) is:

establish_edge(state-sketches bn, �n; direction dir):

if the edge hbn; �ni
dir

=2 E [E :

E += hbn; �ni
dir
;

unbar_edges(bn, dir);
unbar_edges(�n, reverse(dir)).

This procedure creates the edge hbn; �ni
dir

if it does not already exist. The expression \reverse(dir)"

naturally denotes past if dir = future or future if dir = past.

The subprocedure unbar_edges() is as follows:

unbar_edges(state-sketch ~n, direction dir):

for each ~s 2 V such that the edge h~s; ~ni
dir
2 E and h~s; ~ni

dir
is inaccurate toward dir:

E += h~s; ~ni
dir
;

E -= h~s; ~ni
dir
.

This procedure moves from E back to E certain edges that have vertex ~n as an endpoint. This

operation is necessary when an edge hbn; �ni
dir

is new whereas previous processing duplicated vertex bn's
then extant edges | which didn't include hbn; �ni

dir
| to some vertex `n~b'; moving edges fromE back to

E causes reprocessing, so the new edge hbn; �ni
dir

can be duplicated to n~b. The following diagramdepicts

this situation: The edge h~s; ~ni
dir

is inaccurate in the direction dir and it was previously processed;

at that occasion, the state-sketch n~b and the edge h~s; n~bidir were created, and the edge h~s; ~ni
dir

was

removed; the edge hs; ni
dir

is inaccurate in the direction dir, and it is currently being processed; at this

occasion, the state-sketch bn = ~n is found; and because the edge hn; �ni
dir

is present, the edge hbn; �ni
dir

32 PART I, CHAPTER 1: AN ALGORITHM FOR DECIDING SATISFIABILITY

is created. (The direction dir is downward.) Notice how the graph is somewhat disconnected:

�bn = ~n

�
�n

�n

�s �~s

� n~b | derived from ~n

@
@

@
@

@
@

@
@

@
@@

@
@
@
@
@
@
@
@
@
@@

new edge

barred edge

previously

processed

edge

currently

being

processed

The function unbar_edges() recti�es this situation by reinstating the barred edge h~s; ~ni
dir
:

�bn = ~n

�
�n

�n

�s �~s

� n~b | derived from ~n

@
@

@
@

@
@

@
@

@
@@

@
@
@
@
@
@
@
@
@
@@

After this reinstatement, h~s; ~ni
dir

will be reprocessed, engendering the edge hn~b; �ni
dir
, as desired:

SECTION I.1.3: THE ALGORITHM 33

�bn = ~n

�
�n

�n

�s �~s

� n~b | derived from ~n

@
@

@
@

@
@

@
@

@
@@

@
@
@
@
@
@
@
@
@
@@

�
�
�
�
�
�
�
�
�
��

A formula 'checking whose processing can illustrate this situation is:

[

(p ^

p)] _ �:p ^

�
[

(p ^

p) ^ p] _ [

(p ^

p) ^ p ^

p]��

The situation arises if edges are processed in a certain order.

34 PART I, CHAPTER 1: AN ALGORITHM FOR DECIDING SATISFIABILITY

Conclusion of the Algorithm

The �nal procedure is:

search_graph():

for each subset mscc � V comprising a maximal strongly connected component:

let the set of formulas f :=
S
s2mscc

s;

for each formula having the form 3 or (� U) 2 f:
if this =2 f:

stop processing the current mscc (and start processing the next one, if any);

if any formula having the form (3����
) or (� U����) 2 f:

if fulfilling_congruences(mscc) returns false:

stop processing the current mscc (and start processing the next one, if any);

(� The current mscc has passed the tests here. �)
report that the originally given formula '

checking
is satis�able;

delineate_model(mscc);

terminate processing.

(� if the preceding loop exhausts all mscc s without �nding a satisfactory one: �)
report that the originally given formula '

checking
is unsatis�able.

In this procedure, maximal strongly connected components (mscc s) are found via a textbook algo-

rithm as in the work of Aho, Hopcroft, and Ullman [AhHU74].5 Incidentally, the algorithm that

�nds the mscc produces a path from a state-sketch that contains �rst to the mscc.

The subfunction fulfilling_congruences(mscc) checks whether formulas having the form

(3����
) or (�U����) 2 f are properly ful�lled in mscc; suppose there are k such formulas'1, '2, : : : ,

and 'k, each of which is either (3����i
 i) or (�i U����i i). An array of k sets of numbers is attached

to each element of mscc; for each s 2 mscc, element i of this array attached to s is referenced as

s:reachable[i].6 As mscc is found via a path which ends at some state-sketch in mscc, this state-sketch

is labeled \s�0". Then, for each vertex s 2 mscc, the set s:reachable[i] will record each number m 2
f0::(�i � 1)g such that there is a path P (within mscc) from vertex s�0 to vertex s where the path's

length jP j is such that jP jMOD �i = m. This information is obtained by exhaustively searching

mscc, starting at vertex s�0, with an array branch reached[] of k numbers initialized to zeroes. At each

step of this search, at a vertex s, if each element branch reached[i] 2 s:reachable[i], then this branch of

5But if an mscc is a singleton-set fsg and the edge hs; si =2 E, then processing of this mscc is stopped (and
processing of the next mscc, if any, is started).

6While it's speci�ed here that the arrays s:reachable[] and branch reached[] each comprise k elements, actually
fewer elements can be used since duplicate �is would engender duplicate processing. (But each of the arrays needing[]
and ful�lling[] does require k elements.)

SECTION I.1.3: THE ALGORITHM 35

the search halts; otherwise, each set s:reachable[i] += branch reached[i], each element branch reached[i]

is incremented modulo �i, and with these new values in the array branch reached[], the search re-

curses at each of vertex s's successors in mscc. Two `global' arrays needing[] and ful�lling[], each

comprising k sets of numbers, are also used. When a branch of the search �nds 'i 2 s, the opera-
tion needing[i] += branch reached[i] is performed, and similarly for i and ful�lling[i]. After the search,

if for any index i 2 f1::kg, needing[i] 6� ful�lling[i], then subfunction fulfilling_congruences()

returns false; otherwise, it returns true.

The subprocedure delineate_model(mscc) is straightforward: A cycle throughout mscc (i.e.

a cycle which includes each vertex of mscc at least once) can be generated since mscc is strongly

connected. Then the initial path to mscc plus in�nite repetition of this cycle yields an in�nite path.

(Naturally, only one pass through the cycle is actually displayed.) The model's states are delineated

by the literals that are contained in the state-sketches along this path.

If congruences are salient, the information that function fulfilling_congruences() has gath-

ered a�ects the processing in procedure delineate_model(): While generating a cycle through mscc,

starting at vertex s�0, the search for the cycle is modi�ed to require occurrences of state-sketches which

contain ful�lling formulas at needed lengths (modulo the relevant �i) of the path along the cycle; this

restriction is done by each branch of the search for the cycle again using an array branch reached[] but

also getting a copy branch needing[] of the previously constructed array needing[], and then removing

ful�lled numbers from elements of array branch needing[] as they are reached. (During this search,

at a vertex s, if i 2 s then branch reached[i] is a `ful�lled number'.)

Chapter I.2

Correctness of the Algorithm

A simple statement of the correctness of the algorithm here is:

Theorem (Correctness): The algorithm here reports that a formula is satis�able if and

only if the formula really is satis�able.

But this statement can be made more precise; plus, further claims hold. First:

Theorem 0 (Termination): Regardless of its input, whether satis�able or unsatis�able,

this algorithm eventually �nishes its processing.

This Termination theorem establishes that the algorithm here is a `decision-algorithm'. The cor-

rectness of such a decision is guaranteed by the Correctness theorem | or, actually, theorems, for

Correctness is divided into two halves here. First:

Theorem 1 (Success): The algorithmhere reports that a formula is satis�able if the formula

really is satis�able.

The other half of the Correctness theorem is that the algorithm here reports that a formula is

satis�able only if the formula really is satis�able. This statement is reformulated as follows:

Theorem 2 (Su�ciency): If the algorithm here reports that a formula is satis�able, then

the formula really is satis�able.

The following sections provide proofs of these theorems.

I.2.0 Termination

Theorem 0 (Termination): Regardless of its input-formula'checking, whether satis�able

or unsatis�able, procedure satisfy() eventually �nishes its processing.

Proof: The �rst part of this proof shows that the graph that is being constructed is �nitely

bounded. Then, the process of adding new elements to it must be limited. A �nal consideration is

36

SECTION I.2.0: TERMINATION 37

that no operations should be in�nitely repeatable.

The graph comprises vertices V and edges E | as well as E. The edges E[E are ordered pairs of

vertices in V , i.e. E[E � V�V , so if V is �nite, then so is E[E. The vertices V are state-sketches,

which are sets of formulas; if f is the collection of all these formulas, then V � }((((f)))). Then, if f is

�nite, so is V , and hence so is the graph. The following Lemma shows that the collection of all the

formulas (f) is �nite:

Lemma 0.1: The collection of all the formulas appearing in state-sketches is �nite.

Proof: Showing the �niteness of the collection of all the formulas that appear in state-sketches

requires considering the algorithm's generation of formulas. Well, to begin, formula 'checking is given.

Procedure init_graph() introduces the formulas :�rst and �rst. Procedure elaborate_graph()

generates formulas speci�ed as \
�
[neighbor op(dir)]�

�
", which are really \

�

�

�
" or \

�

�

�
", given

previously extant formulas
�

h�+1i

�
and

�

h�+1i

�
, respectively. And lastly, function options(')

(used in procedure add_options*()) generates formulas according to Table I.1's entry for formula'.

If a formula ' has the form
�
[neighbor op(dir)]h�+1i

�
(for some direction dir), then let the ex-

pression neighbor op stripped(') denote the formula
�
[neighbor op(dir)]�

�
. Then, for any formula ',

let the expression top associated formulas(') denote the set of formulas comprising

neighbor op stripped(') | if applicable | plus all the formulas appearing in options(').1 Then,

the generation of formulas can be summarized via the following recursively speci�ed set:

associated formulas(') = f'; :�rst; �rstg [
[

 2t a f(')

associated formulas() ;

where the expression \t a f(')" is an abbreviation for \top associated formulas(')".2 What's of interest

here is the �niteness of the set associated formulas('
checking

); this desired fact follows as an instance

of the �niteness of associated formulas(: : :) generally, which is shown in the following.

Unfortunately, naively using that de�nition of associated formulas() would engender in�nite re-

cursion in some cases: e.g. the set associated formulas(2p) would be constructed from the set

associated formulas(
2p), but that in turn would be constructed from the set

associated formulas(2p) . The solution here is to analyze the `construction' of the set

associated formulas(') for each case of formula ', showing that the set associated formulas(') com-

prises a �nite `top-level' collection of formulas plus a few sets associated formulas(i) with each for-

mula i containing strictly fewer symbols than formula '; then, induction on the sizes of formulas

applies to the construction of the set associated formulas(').

1For examples: top associated formulas(false) is fg, top associated formulas(p) is fg, top associated formulas(
p)
is fpg, top associated formulas(2p) is fp;
2pg, and top associated formulas(p U q) is fq; p;
(p U q)g.

2The concept associated formulas() here derives from the concept \closure" of [FiscL77]; see also the work of
Gough [Gou84] and Barringer, Fisher, and Gough [BaFG89] re e�ciency-restrictions similar to those employed here.

38 PART I, CHAPTER 2: CORRECTNESS OF THE ALGORITHM

The base-cases of formula ' for this analysis are false, :false, the literals (p, :p, q, :q, etc.),
�rst, and :�rst. For each such formula ', the set top associated formulas(') is empty, so the set

associated formulas(') certainly comprises a �nite top-level collection of formulas (' itself, :�rst,
and �rst) plus a few (here, zero) sets associated formulas(i) with each i containing strictly fewer

symbols than formula '.

The next most tractable cases of formula ' are formulas whose outermost operators are the

boolean operators ^, _,), (),
, or negations of such; each of these cases reduces easily. For ex-

ample, applying the de�nition, associated formulas(1^ 2^ : : :^ k) comprises a �nite top-level col-

lection of formulas| (1^ 2^: : :^ k) itself, :�rst, and �rst | plus associated formulas(i) for each

i 2 f1::kg, and each formula i contains strictly fewer symbols than the formula (1^ 2^ : : :^ k).
For another example, associated formulas

�:() �)
�
comprises a �nite top-level collection of formu-

las | :() �) itself, :�rst, and �rst | plus associated formulas() and associated formulas(:�),
and each of the formulas and :� contains strictly fewer symbols than the formula :() �).

The next group of cases of formula ' comprises formulas whose outermost operator is either 2,

3, U, A, 3, or S. For example, associated formulas(2) comprises the �nite top-level collection of

formulas 2 (itself), :�rst, �rst, and
2 , plus associated formulas(); and formula contains

strictly fewer symbols than the formula2 . Similarly, associated formulas(� S) comprises the �nite

top-level collection of formulas (� S), :�rst, �rst, and
(� S), plus associated formulas(�) and

associated formulas(), and each of the formulas � and contains strictly fewer symbols than the

formula (� S).

Next are formulas with 2 or B. The set associated formulas(2) comprises the �nite top-level

collection of formulas 2 (itself), :�rst, �rst, :
:2 , and
2 , plus associated formulas();

similarly for associated formulas(� B).

A negation ' = :e' where subformula e' 's outermost operator is either 2, 3, 2, or 3 re-

duces straightforwardly to a preceding case; for example, the set associated formulas(:2) comprises

:2 , :�rst, �rst, 3(:), and
3(:), plus associated formulas(:), and formula : contains

strictly fewer symbols than the formula :2 . An analogous situation holds with U, A, S, and

B. For example, associated formulas
�:(� U)� comprises :(� U), :�rst, �rst, �: A (:� ^ :)�,

�: A (:� ^ :)�, and (:� ^ :), plus associated formulas(:�) and associated formulas(:), and

the formulas :� and : each contain strictly fewer symbols than the formula :(� U).
The cases for metric temporal operators with subscripts \��" and \����" resemble the preceding

but with numbers of top-level formulas larger by approximately the value of �, 2��, 3��, 4��, or
5��, depending on the temporal operator. For example, the set associated formulas(2��) comprises

(2��) itself, :�rst, �rst,
(2�h��1i), (2�h��1i),
(2�h��2i), (2�h��2i),
(2�h��3i),

SECTION I.2.0: TERMINATION 39

: : : , and (2�0), plus associated formulas().

Finally, the set associated formulas(') when formula ' is
�

h�+1i

�
or
�

h�+1i

�
obviously com-

prises formula ' itself, :�rst, �rst, and � more formulas (
~�) or (
~�
) with ~� 2 f1::�g, plus

associated formulas(), and formula contains strictly fewer symbols than formula '.

Perhaps disconcertingly, when ' is
�

h�+1i

�
or
�

h�+1i

�
, the set associated formulas() may

involve ' again, e.g. if ' is
2p or
�

2(2���5 p)

�
; but the preceding discussion actually handles this

circumstance: Regardless, associated formulas() may require further associated formulas(i) only

with each formula i containing strictly fewer symbols than formula , and then

associated formulas(i) may require further associated formulas(i;i0) only with each formula i;i0 con-

taining strictly fewer symbols than formula i, and so on. Some of these recursive steps may add

duplicate formulas such as ' | and even more blatantly, :�rst and �rst | but only a �nite collec-

tion of them at each step. And by induction on the sizes of formulas, the number of steps is �nite;

so the overall collection of formulas is �nite.

(Lemma 0.1)

Lemma 0.1 concludes the part of the proof of Theorem 0 showing that the elements of the

graph are �nitely bounded; it's further necessary to show that the processing of the graph is �nitely

bounded.

Well, �rst, all of procedure init_graph()'s operations except the execution of function

add_options*() are obviously �nite. In that recursive function add_options*(base, additions),

after the variable immediates gets set, the situation is that for each element f 2 intermediates,

additions � f and base � f . Then, the formulas in this additions become part of the �rst ar-

gument base of every recursive sub-call add_options*(f , f ���� (base [additions)). Also, with the

sub-call's second argument being f ���� (base [additions), every sub-call's second argument additions

cannot contain any formula ' that was previously processed as a member of an `ancestral' call's

additions. Thus, in any chain of recursive calls of function add_options*(), no formula can appear

in the second argument additions in more than one call. Since the pool of all formulas that are avail-

able is �nite according to Lemma 0.1, chains of recursive calls of add_options*() are uniformly

�nitely bounded by the size of this pool | say, k. Further, at each occasion when add_options*()

recursively calls itself, it does so only a �nite number of times.3 Then for any depth of recursive

calls of add_options*(), the number of further (recursive) sub-calls started at that depth must be

�nite. Then, with zero calls possible at depth k+1, the number of all calls is the sum over depths 0

3This number is at most joptions combinationsj, which equals:
Y

'
i2additions

joptions('i)j.

40 PART I, CHAPTER 2: CORRECTNESS OF THE ALGORITHM

through k, so the number of recursive calls of add_options*() engendered by the initial call in

procedure init_graph() is �nite.

Next, procedure elaborate_graph()'s operations within each iteration of its main loop are

similarly �nite. Then the crucial question is: Is the number of iterations of the loop �nite? Well,

as discussed immediately preceding Lemma 0.1, it follows from Lemma 0.1 that the set of edges is

�nitely bounded. Unfortunately, it's not clear that the loop addresses each edge only a �nite number

of times, for procedure unbar_edges() engenders reprocessing of edges (moving them from E back

to E, whereupon they are processed in procedure elaborate_graph() as inaccurate edges in E).

Fortunately, unbar_edges() is executed | in procedure establish_edge() | only when a new

edge is created. Since each edge can be created at most once, and since the number of edges is �nitely

bounded, procedure unbar_edges() is executed only �nitely many times, so it engenders only a �nite

number of occurrences of reprocessing of edges. Then, the number of times the main loop addresses

an edge is �nite; and therefore, the amount of processing in procedure elaborate_graph() is �nite.

Lastly, procedure search_graph()'s operations are clearly �nite. (The number of maximal

strongly connected components of the graph is bounded by the number of subsets of V, which is

�nite.)

Thus, all processing here is �nite. (See also Chapter I.3.)

(Theorem 0: Termination)

I.2.1 Success

Theorem 1 (Success): Procedure satisfy() reports that its given (input-)formula

'
checking is satis�able if this formula really is satis�able.

Proof:

First, note that if the formula 'checking is satis�able, then some modelM satis�es it. With such

a satisfying model available, the proof here uses the following de�nition:

An embedding of modelM in the graph comprising vertices V and edges E is a mapM : T ! V

such that:

0. The formula �rst 2M[0].

1. For each time-value t 2 T , the stateM@t satis�es the set of formulasM[t].

2. For each time-value t 2 T , the edge
M[t]; M[t+ 1]
�
is in E.

(Such an embedding in the �nal graph is exempli�ed by the boxes in the �nal graph at the end of

Section I.1.2 above, on page 28; see also the diagrams on the next few pages.) When the algorithm's

construction of the graph concludes, such an embedding provides an in�nite path in the graph,

SECTION I.2.1: SUCCESS 41

considering this de�nition's condition 2; then, procedure search_graph() will �nd at least this

path. With ful�llment-constraints also addressed in the embedding, satis�ability will be reported.

The presumptions here are that an embedding exists and that ful�llment-constraints are satis�ed;

these presumptions are justi�ed in the following.

The heart of this proof is the following:

Lemma 1.1: At every stage of the algorithm's processing (after initialization), there's an em-

bedding of modelM in the graph.

Example

For an example, consider the example of the algorithm's processing in Section I.1.2 above (on

pages 25{28), where the formula 'checking is (
2p _ 3q) | but with a di�erent model here, to

illustrate matters more thoroughly: here, let modelM falsify p (i.e. satisfy :p) at all times, falsify

q at times 0 and 1, and satisfy q at time 2 as well as at all times greater than 2:

-
0

M:

1 2

:p;:q :p;:q :p; q :p; q :p; q :p; q � � �

This model can be embedded in the initial graph constructed for '
checking

as follows:8<
:
�rst;

(
2p _ 3q);

2p

9=
;XXXXXXXXXXXXXXXXXXXXXPPPPPq

8>><
>>:
�rst;

(
2p _ 3q);
3q;

q

9>>=
>>; -

M[0]:8>><
>>:
�rst;

(
2p _ 3q);
3q;

3q

9>>=
>>; �

���
���

���
���

���
���

���
��

��1

for each t � 1,

M[t] = blank:�:�rst	 �
�����

The conditions for an embedding do hold here: [0] the state-sketch M[0] contains �rst; [1] for

each time-value t = 0 or t � 1, the state M@t satis�es M[t]; and [2] for each t 2 T , the

edge

M[t]; M[t+ 1]

�
is in E.

Naturally, the same embedding is used while the algorithm processes the top edges, until the

following situation is reached:

42 PART I, CHAPTER 2: CORRECTNESS OF THE ALGORITHM

8>><
>>:
�rst;

(
2p _ 3q);

2p;
2p; p; :
:2p

9>>=
>>;QQ

Q
Q
Q
Q
QQs

8<
:
�rst;

(
2p _ 3q);

2p

9=
;

8>><
>>:
�rst;

(
2p _ 3q);
3q;

q

9>>=
>>; -

M[0]:8>><
>>:
�rst;

(
2p _ 3q);
3q;

3q

9>>=
>>; �

���
���

���
���

���
���

���
��

��1

inaccurate toward future:

for
3q

8>><
>>:
:�rst;
2p;

p; :
:2p;

2p

9>>=
>>;QQ

Q
Q
Q
Q
Q
Q
QQs
M[1];M[2]; : : : :�:�rst	 �

�����

Then, as an edge used by the embedding is processed and removed from E, the embedding is

updated:8>><
>>:
�rst;

(
2p _ 3q);

2p;
2p; p; :
:2p

9>>=
>>;QQ

Q
Q
Q
Q
QQs

8<
:
�rst;

(
2p _ 3q);

2p

9=
;

8>><
>>:
�rst;

(
2p _ 3q);
3q;

q

9>>=
>>; -

M[0]:8>><
>>:
�rst;

(
2p _ 3q);
3q;

3q

9>>=
>>; �

��
��

���
��:

XXXXPPPPPPq

8>><
>>:
:�rst;
2p;

p; :
:2p;

2p

9>>=
>>;QQ

Q
Q
Q
Q
Q
Q
QQs

�:�rst;
3q; q

�
���

��
��

��
��

��1

M[1]:�:�rst;
3q;
3q

� ���
�
�
�
�
�
�
�
��>

inaccurate toward future:

for
3q

M[2];M[3]; : : : :�:�rst	 �
�����

In choosing between the state-sketches f:�rst;3q; qg and f:�rst;3q;
3qg for the new value of

M[1], it's necessary to choose the latter state-sketch because M@1 j= :q, which implies that

M@1 �� f:�rst;3q; qg.

SECTION I.2.1: SUCCESS 43

Next, another edge used by the embedding is processed and removed from E, so again the

embedding is updated:8>><
>>:
�rst;

(
2p _ 3q);

2p;
2p; p; :
:2p

9>>=
>>;QQ

Q
Q
Q
Q
QQs

8<
:
�rst;

(
2p _ 3q);

2p

9=
;

8>><
>>:
�rst;

(
2p _ 3q);
3q;

q

9>>=
>>; -

M[0]:8>><
>>:
�rst;

(
2p _ 3q);
3q;

3q

9>>=
>>; �

��
��

���
��:

XXXXPPPPPPq

8>><
>>:
:�rst;
2p;

p; :
:2p;

2p

9>>=
>>;QQ

Q
Q
Q
Q
Q
Q
QQs

M[2]:�:�rst;
3q; q

�
���

��
��

��
��

��1

M[1]:�:�rst;
3q;
3q

�
�
�

�
��:
�
�

�
�

-

M[3]; : : : :�:�rst	 �
�����

Re choosing the new value of M[2], the state M@2 satis�es both the state-sketch f:�rst;3q; qg
and the state-sketch f:�rst;3q;
3qg. Then greediness to ful�ll the formula 3q is applied: the

ful�lling formula q is present in the state-sketch f:�rst;3q; qg but not in the other state-sketch, so

the former is chosen.

That is the �nal embedding.

Proof of Lemma 1.1:

The proof of the existence of an embedding at every stage of the algorithm's processing follows

the scheme of the preceding example: there is an initial embedding of model M in the initial

graph, and subsequently, when the algorithm changes the graph, the embedding is updated. At

initialization and each update of the embedding, ful�llment-constraints are addressed.

All this `meta'-processing is expressed here as `meta'-pseudo-code which usesM as an `oracle'. To

have the meta-processing here occur at the proper moments during the real algorithm's processing,

the new meta-code is simply added to procedure satisfy() (etc.) as follows:

44 PART I, CHAPTER 2: CORRECTNESS OF THE ALGORITHM

First, a new procedure init_embedding() (which is below) is executed in procedure satisfy()

immediately following execution of the original procedure init_graph():

satisfy(formula '
checking

):

init_graph();

init_embedding(); �
elaborate_graph();

search_graph().

Then, a new procedure shift_embedding() (which is also below) is executed at the end of (and

inside) the main loop of procedure elaborate_graph():

elaborate_graph():
. . .

E -= hs; ni
dir
;

shift_embedding(). �

The �rst of these new procedures is, naturally:

init_embedding():

M[0] := selectively_add_options*(f�rstg; f'checkingg; 0);
for each time-value t 2 T ���� 0:

M[t] := blank.

The purpose of this procedure should be obvious; its e�ect is exempli�ed by the initial embedding

presented on page 41. (The subfunction selectively_add_options*() is below.)

Next is:

shift_embedding():

while there exists any time-value t 2 T such that the edge

M[t];M[t+ 1]

�
=2 E:

if the edge

M[t];M[t+ 1]

�
is inaccurate in the direction future:

let dir := future, let s :=M[t], let n :=M[t+ 1], and let t̂ := t+ 1;

else:

let dir := past, let s :=M[t+ 1], let n :=M[t], and let t̂ := t;

M[̂t] := selectively_add_options*(n, neighbor_formulas(s, dir), t̂).

This procedure does the following, repeatedly: Wherever the embedding passes along an edge

M[t];M[t+ 1]

�
which is missing from the set of edges E, the embedding is shifted to pass along a

di�erent edge by changing one ofM[t] orM[t+ 1] (M[̂t] is the one ofM[t] or M[t+ 1] that is chosen

to be changed). A general picture of such a shift is as follows; direction dir is downward, the path

on the left is the embedding's path through the graph before the shift, and the path on the right is

SECTION I.2.1: SUCCESS 45

the embedding's path after the shift:

�

�

�

�

�

...

...

M[~t] = s

M[̂t] = n

M[�t] = �n

missing
edge =2 E

�!

�

�

�

�

�

...

...

M[~t] = s

n

M[�t] = �n

@
@

@
@

@
@@

�
�

�
�

�
��

�M[̂t] := bn

(If t̂ = t+ 1, then ~t = t, else t̂ = t and ~t = t+ 1; \�t" etc. simply label further values.) For a speci�c

example of such a shift, consider the occasion | during the sample processing just presented on the

preceding pages | when the value M[1] changes (as presented on page 42). At the precise moment

46 PART I, CHAPTER 2: CORRECTNESS OF THE ALGORITHM

when procedure shift_embedding() gets executed, the situation is actually as follows:8>><
>>:
�rst;

(
2p _ 3q);

2p;
2p; p; :
:2p

9>>=
>>;QQ

Q
Q
Q
Q
QQs

8<
:
�rst;

(
2p _ 3q);

2p

9=
;

8>><
>>:
�rst;

(
2p _ 3q);
3q;

q

9>>=
>>; -

M[0] = s:8>><
>>:
�rst;

(
2p _ 3q);
3q;

3q

9>>=
>>; �

��
��

���
��:

XXXXPPPPPPq

8>><
>>:
:�rst;
2p;

p; :
:2p;

2p

9>>=
>>;QQ

Q
Q
Q
Q
Q
Q
QQs

�:�rst;
3q; q

�
���

��
��

��
��

��1

bn:�:�rst;
3q;
3q

�
�
�
�
�
�
�
�
�
�
�
��>

M[1] = n:�:�rst	 �
�����

(The not shown values M[2], M[3], M[4], etc. are equal to f:�rstg, i.e. the state-sketch blank.)

Clearly, for time-value t = 0, the edge

M[t];M[t+ 1]

�
=2 E: it is equal to the edge hs; ni

dir
, currently

being processed, which was just removed from E. The code in procedure shift_embedding()

determines that the edge

M[t];M[t+ 1]

�
is inaccurate in the direction dir = future, so it uses

the same dir, s, and n, and the variable t̂ := t+ 1 = 0 + 1 = 1. Then, M[̂t] | i.e. M[1] | is

reset to bn = selectively_add_options*(n, neighbor_formulas(s, dir), t̂), yielding the situation

depicted at the bottom of page 42.

SECTION I.2.1: SUCCESS 47

A subfunction used in both init_embedding() and shift_embedding() is:

selectively_add_options*(sets of formulas base, additions; time-value t̂): state-sketch:

if additions = fg:
return base;

let the formulas '1, '2, : : : , and 'k be the elements of additions;

selected f := base [additions

[select_option('1, t̂)

[select_option('2, t̂)
...

[select_option('k, t̂);

return selectively_add_options*(selected f, selected f ���� (base [additions), t̂).
The (further) subfunction select_option() is as follows:

select_option(formula ', time-value t̂): set of formulas:

if ' has the form 3 , (� U), (3����
), or (� U����) andM@t̂ j= :

return f g;
else:

return any element o 2 options(') such thatM@t̂ j= o.

A natural concern about these selective functions is: Can they fail? The following claim is

used below to address this concern:

Claim 1.1.0: For any sets of formulas b and a and for any time-value t̂ 2 T , ifM@t̂ j= b and

M@t̂ j= a, then the function-call selectively_add_options*(b, a, t̂) succeeds; further, if state-

sketch bn is the result, then bn 2 add_options*(b, a) and M@t̂ j= bn.
Proof: This proof proceeds in an inductive fashion.

In the base-case, when a = fg, clearly the function-call

selectively_add_options*(base := b, additions := a = fg, t̂) succeeds, immediately returning

base = b. Let bn = this result b. Then bn 2 add_options*(b, a) because | considering that

function's operations (on page 30) | the function-call add_options*(base := b, additions := a = fg)
immediately returns fbaseg = fbg, and obviously bn = b 2 fbg. Lastly,M@t̂ j= bn = b because, by

supposition,M@t̂ j= b.

Otherwise, suppose a 6= fg, and again consider the related function-call

add_options*(base := b, additions := a = fg), line by line:

Lines 1{2: \ if additions = fg, return : : :"
By supposition in the current case, a = additions 6= fg. Consequently, add_options*() does not

terminate here (in the current case).

Lines 3{4: \ if the formula false 2 additions, return : : :"

48 PART I, CHAPTER 2: CORRECTNESS OF THE ALGORITHM

A premise of this claim is thatM@t̂ j= a, so by basic semantics, false =2 a = additions. Conse-

quently, add_options*() does not terminate here either.

Line 5: \ (� : : : �)"
This line is a comment.

Line 6: \ let the formulas '1, '2, : : : , and 'k be the elements of additions"

The same notation is used here.

Line 7: \options combinations := options('1)� options('2)� � � � � options('k)"

By supposition,M@t̂ j= a = additions = f'1; '2; : : : ; 'kg. Then for each i 2 f1::kg,M@t̂ j= 'i.

Then, by semantics and analysis of Table I.1, the state M@t̂ satis�es at least one of the options

of Table I.1 for formula 'i, i.e.M@t̂ satis�es at least one of the elements of options('i). Then

in selectively_add_options*(), clearly the function-call select_option('i, t̂) will succeed in

returning some option oi 2 options('i).

Line 8: \ intermediates := fall the sets f = (base [additions [o1 [o2 [� � � [ok) such that : : :g"
The variable selected f in selectively_add_options*() clearly has add_options*()'s form f =

(base [additions [o1 [o2 [� � � [ok) such that (o1; o2; : : : ; ok) 2 options combinations. Further, con-

sidering the operations of select_option(), the stateM@t̂ satis�es each oi here. Also, by supposi-

tion,M@t̂ j= b = base andM@t̂ j= a = additions. ThenM@t̂ j= selected f. Then, no contradictory

pair of formulas f ;: g � selected f, by basic semantics. Therefore, selected f 2 intermediates.

Lines 9{12: \ : : : results += add_options*(f , f ���� (base [additions)); return results"

By the preceding, one f used in this recursion in add_options*() is selected f. Consequently,

the results of the current call add_options*(b, a) include the results of

add_options*(selected f, selected f ���� (base [additions)). The matching recursive call in

selectively_add_options*() is

selectively_add_options*(selected f, selected f ���� (base [additions), t̂), which is equivalent to

selectively_add_options*(selected f, selected f ���� (b [a), t̂). By the preceding,M@t̂ j= selected f,

so this sub-call is a call selectively_add_options*(b0, a0, t̂) withM@t̂ j= b0 andM@t̂ j= a0.

At this point in this proof of this claim, it is desirable to invoke inductive hypothesis for this sub-

call selectively_add_options*(b0, a0, t̂). But what guarantees that this recursion will terminate?

Well, the preceding discussion demonstrates that the operations in selectively_add_options*()

follow one thread of the operations of function add_options*(). And termination of that function

is guaranteed, as discussed in the proof of Theorem 0 (near the end of that proof, on page 39). Then

the recursion here in function selectively_add_options*() is also guaranteed to terminate, so

induction applies.

SECTION I.2.1: SUCCESS 49

Then, by inductive hypothesis, the sub-call selectively_add_options*(b0, a0, t̂) succeeds, its

result bn 2 add_options*(b0, a0), and M@t̂ j= bn. Notice that the current call

selectively_add_options*(b, a, t̂) simply returns that sub-result bn as the current result. Then,

obviously, this current call succeeds. And this result bn 2 add_options*(b, a) because

bn 2 add_options*(b0, a0) = add_options*(selected f, selected f ���� (b [a)), and it's indicated above

that the results of the current call add_options*(b, a) include the results of

add_options*(selected f, selected f ���� (base [additions)), which is actually

add_options*(selected f, selected f ���� (b [a)). Lastly, the inductive hypothesis also givesM@t̂ j= bn.
(Claim 1.1.0)

It's necessary to prove that the (meta-)pseudo-code here successfully constructs an embedding.

This proof proceeds inductively through the processing, �rst proving that the map M constructed

by procedure init_embedding() is an embedding and then proving that ifM is an embedding just

before execution of procedure shift_embedding(), then immediately afterward, the new mapM is

also an embedding.

Procedure init_embedding()

The goal here is to show that (immediately) after execution of procedure init_embedding(),

the map M is an embedding.

�. A fundamental condition is that M must be a map from T to V . Well, re M[0], proce-

dure init_embedding() begins with the operation:

M[0] := selectively_add_options*(f�rstg, f'checkingg, 0):

This operation is done after procedure init_graph() has executed:

V := add_options*(f�rstg, f'checkingg)+ blank :

By basic semantics,M@0 j= �rst. By supposition,M j= '
checking, i.e.M@0 j= '

checking.

Then by Claim 1.1.0, the function-call selectively_add_options*(f�rstg; f'checkingg; 0)
successfully returns a state-sketch bn such that bn 2 add_options*(f�rstg; f'checkingg) (and

M@0 j= bn). Then since V = add_options*(f�rstg; f'checkingg)+ blank, M[0] = bn 2 V .
For each other time-value t 2 T ����f0g, the valueM[t] = blank 2 V . Thus, this fundamental

condition is satis�ed.

0. Condition 0 is that M[0] must contain the formula �rst. Well, in the recursive func-

tion selectively_add_options*(), selected f := base [other stu�; and each sub-call's

base := the parent call's selected f; and �nally, at termination of the recursion, the result is

50 PART I, CHAPTER 2: CORRECTNESS OF THE ALGORITHM

the terminating sub-call's base. Therefore, the result contains the original base. Then in

init_embedding()'s assignment:

M[0] := selectively_add_options*(base := f�rstg, : : :);

the result must contain f�rstg. Thus �rst 2M[0], as desired.

1. Condition 1 is that for each time-value t 2 T , M@t j=M[t]. Well, from the discussion in

item `�' above, M@0 j= M[0]. For each other time-value t 2 T ���� f0g, the value M[t] =

blank = f:�rstg, so by semantics M@t j=M[t].

2. Condition 2 is that for each t 2 T , the edge

M[t];M[t+ 1]

� 2 E. Well, for every time-

value t 2 T , M[t+ 1] = blank, and procedure init_graph() adds the edge hs; blanki to E
for every state-sketch s 2 V ; so, given the preceding condition `�', for each time-value t 2 T
the edge

M[t]; M[t+ 1]

�
=

M[t]; blank

� 2 E.
Considering the code of procedure elaborate_graph(), this initialmapM remains an embedding

until just before the �rst execution of procedure shift_embedding() | more precisely, until the

operation \E -= hs; ni
dir
" | since the processing that occurs before then is a calculation of bN and

some additions to E and V , and those operations do not a�ect M 's status as an embedding.

Procedure shift_embedding()

Next, suppose M is an embedding just before execution of procedure shift_embedding() |

more precisely, immediately before procedure elaborate_graph()'s operation \E -= hs; ni
dir
"; the

goal here is to prove that immediately after execution of procedure shift_embedding(), the new

map M will also be an embedding. The following two claims facilitate this proof:

Claim 1.1.1: At every stage of the processing (after execution of procedure init_embedding()),

for each time-value t 2 T , M@t j=M[t].

Proof: This proof proceeds inductively through the processing.

This claim's condition clearly holds immediately after execution of procedure init_embedding()

because at that momentM is an embedding (by the preceding) and this claim's condition coincides

with condition 1 of the de�nition of embedding.

Subsequently, this condition can be invalidated only when a value M[̂t] changes. The only

occasion for such change is procedure shift_embedding()'s operation:

M[̂t] := selectively_add_options*(n, neighbor_formulas(s, dir), t̂):

At such an occasion, according to procedure shift_embedding(), there is a time-value t 2 T which

is involved and either dir = future, s = M[t], n = M[t+ 1], and t̂ = t+1, or else dir = past,

SECTION I.2.1: SUCCESS 51

s =M[t+ 1], n =M[t], and t̂ = t. Here, in the �rst case, let time-value ~t = t, else let ~t = t+1; so in

either case, M[~t] = s.

Now, neighbor_formulas(s, dir) uses neighbor op(dir), which is either \
" or \
". Let:

neighbor constraint formulas(s; dir) =�
all the formulas

�
[neighbor op(dir)]h�+1i

�
that are in s

	
:

By inductive hypothesis, M@~t j= M[~t] = s. Then with neighbor constraint formulas(s; dir) � s,

clearly M@~t j= neighbor constraint formulas(s; dir). If the direction dir is future, then

neighbor op(dir) is \
", so each formula in neighbor constraint formulas(s; dir) has the form
�

h�+1i

�
;

thusM@~t j=
�

h�+1i

�
. Then by semantics,M@(~t + 1) j= �
� �. But in this case with dir =

future, the time-value t̂ is ~t+1; soM@t̂ j=
�

�

�
. The collection of such relevant formulas

�

�

�
happens to be neighbor_formulas(s, dir). ThenM@t̂ j= neighbor_formulas(s, dir). Similarly,

if dir = past so neighbor op(dir) is \
" and t̂ = ~t � 1, again M@t̂ j= neighbor_formulas(s, dir).

By inductive hypothesis,M@t̂ j=M[̂t] = n. Then, by Claim 1.1.0, the function-call:

selectively_add_options*(n, neighbor_formulas(s, dir), t̂)

returns a state-sketch bn such thatM@t̂ j= bn. Therefore, the assignmentM[̂t] := bn being considered

here maintains this claim's condition, as desired.

(Claim 1.1.1)

Claim 1.1.2: At every stage of the processing (after execution of procedure init_embedding()),

for each time-value t 2 T , the edge
M[t]; M[t+ 1]
� 2 E [E.

Proof: The proof of this claim proceeds inductively through the processing.

This claim's condition clearly holds immediately after execution of procedure init_embedding()

because at that momentM is an embedding (by the preceding) and condition 2 of the de�nition of

embedding speci�es that each edge

M[t];M[t+ 1]

� 2 E (for all t 2 T).
Otherwise, suppose E [E contains all the edges that are speci�ed by M and procedure

elaborate_graph()'s operation \E -= hs; ni
dir
" occurs. Well, immediately before that, the op-

eration \E += hs; ni
dir
" occurred. Then clearly E [E continues to contain all the edges speci�ed by

M .

Otherwise, suppose E [E contains all the edges that are speci�ed by M and procedure

shift_embedding() changes M, resetting an entry M[̂t] from a value n to a new value bn =

selectively_add_options*(n, neighbor_formulas(s, dir), t̂). After such a change, does E [E
still contain all the edges that are speci�ed by M? The existence of the one or two new edges

connected toM[̂t]'s new value bn must be con�rmed. (This situation is illustrated above on page 45.)

As in the preceding proof (of Claim 1.1.1), there is a time-value t 2 T which is involved and either

52 PART I, CHAPTER 2: CORRECTNESS OF THE ALGORITHM

dir = future, s =M[t], n =M[t+ 1], and t̂ = t+1, or else dir = past, s =M[t+ 1], n =M[t], and

t̂ = t. Here, in the �rst case, let time-value ~t = t, else let ~t = t+1; so in either case, M[~t] = s.

Now, this point in the code (\M[̂t] := : : :") is reached only if

M[t];M[t+ 1]

�
=2 E. But

by inductive hypothesis, E [E contained every such edge before this change of M[̂t]. Then

M[t];M[t+ 1]

� 2 E. Considering the algorithm's code, an edge can enter E only if it is inac-

curate in some direction and it gets processed in procedure elaborate_graph(). Then such is true

of the edge

M[t];M[t+ 1]

�
. Thus, the edge hs; ni

dir
=

M[t];M[t+ 1]

�
is inaccurate (in some direc-

tion), and it has been processed in procedure elaborate_graph(). That processing used this same

direction dir because no edge can be inaccurate in both directions: all initial edges are accurate

in the direction past, and subsequent creation of edges uses neighbor_formulas(: : : , dirf), which

ensures that edges are accurate in the direction dirf .4

The �rst edge whose existence must be con�rmed here is

M[~t];M[̂t]

�
dir

= hs; bni
dir
. But clearly,

when the edge hs; bni
dir

was processed in procedure elaborate_graph(), the subprocedure-call

establish_edge(s, bn, dir) established this edge hs; bni
dir

in E [E (if hs; bni
dir

=2 E [E, the opera-
tion E += hs; bni

dir
occurred), so thenceforth | in particular, now | hs; bni

dir
2 E [E, since after

creation an edge is only moved from E to E or back, never truly expunged. Consequently, the

edge hs; bni
dir

remains in E [E, as desired.

If dir = future or t̂ > 0, the other edge whose existence must be con�rmed here is

M[̂t]; M[�t]

�
dir
,

where �t = t̂ + (̂t�~t), i.e. �t is the time-value beyond t̂ in the direction dir ; let �n =M[�t].

Well, if n = blank, then dir = future because the edge hs; blanki is not inaccurate in the

direction past. Further, �n must be blank.5 Thus the desired edge

M[̂t]; M[�t]

�
dir

= hbn; �ni
dir

is

hbn; �nifuture . Coincidentally, if n = blank then procedure elaborate_graph() executed

establish_edge(bn, blank, future), and thenceforth this edge has remained in E [E.
Otherwise, suppose n 6= blank. By inductive hypothesis, the edge hn; �ni

dir
2 E[E. Then consider

the most recent occasion when the edge hs; ni
dir

was processed. That processing of it included moving

it to E. And it is now in E. Then it must have remained in E continuously since that most recent

processing: if not, it could only have been moved from E to E and then back, and such movement

back | i.e. fromE to E | can occur only during processing of an edge, in which case there would be

more recent processing of hs; ni
dir
. Considering all that, the edge hn; �ni

dir
cannot have been created

after this most recent processing of hs; ni
dir
, for in the procedure-call establish_edge(n, �n, dir) or

4(See the de�nitions of \accurate" and neighbor_formulas() on pages 24 and 30, respectively.)
5This statement is justi�able by a claim that at every stage of the processing, the state-sketch blank has no

successors other than itself. A proof of this claim proceeds inductively through the processing, considering new
edges hs; n̂idir , hn̂; blanki, and hn̂; �nidir which arise: hs; nidir is inaccurate so s 6= blank and neighbor_formulas(s, dir)
is not vacuous (or trivial), neighbor_formulas(s, dir) 2 n̂ so n̂ 6= blank, and hn; �nidir 6= hn; blankipast (by inductive
hypothesis) so hn̂; �nidir 6= hn̂; blankipast .

SECTION I.2.1: SUCCESS 53

establish_edge(�n, n, reverse(dir)) that created hn; �ni
dir
, the operation unbar_edges(n, dir) was

executed; if this operation occurred after the most recent processing of hs; ni
dir
, then hs; ni

dir
2 E

at that moment and unbar_edges() would have moved it from E to E, contradicting the preced-

ing. Therefore, at the most recent occasion when the edge hs; ni
dir

was processed, the edge hn; �ni
dir

was present in E [E. Then at that occasion, procedure elaborate_graph() executed the opera-

tion establish_edge(bn, �n, dir). Then, the edge hbn; �ni
dir

is now present in E [E, as desired.
(Claim 1.1.2)

One issue here is that meta-procedure shift_embedding() speci�es an amount of processing

which is in�nite. Such in�niteness is necessary since an in�nite object, model M, is involved.

Nonetheless, each state-sketch M[t] (for t 2 T) is well-de�ned | not undergoing reassignment

in�nitely many times. Consider a reassignment:

M[̂t] := selectively_add_options*(n, : : :)

= selectively_add_options*(M[̂t], : : :);

where the \M[̂t]" appearing as an argument is the old value of M[̂t]. The function-call here yields

a combination of its �rst argument with further formulas, so the old value of M[̂t] is contained

in the result. Thus the progression of state-sketches which are values of M[̂t] during processing is

monotonic, each containing the preceding. Then this progression is �nitely bounded | and therefore

ultimately stable | since state-sketches are �nitely bounded according to Lemma 0.1.

The outstanding task is to prove that (immediately) after each execution of procedure

shift_embedding(), M is indeed an embedding.

�. A fundamental condition is that M must be a map from T to V . Naturally, this condition

might be violated only when V loses elements | but such loss never occurs | or when val-

ues of M[] change. Such changes ofM[] occur at Line 7 of procedure shift_embedding():

M[̂t] := selectively_add_options*(n, neighbor_formulas(s, dir), t̂):

Considering what precedes this operation, the edge hs; ni
dir

=

M[t];M[t+ 1]

�
=2 E (where

t 2 T). Then by Claim 1.1.2 | and further consulting its proof | the edge hs; ni
dir

was previously processed in procedure elaborate_graph(), being inaccurate in the direc-

tion dir. Now, according to the proof of Claim 1.1.1, Claim 1.1.0 applies here: M[̂t]'s new

value bn 2 add_options*(n, neighbor_formulas(s, dir)). Coincidentally, when the edge

hs; ni
dir

was processed in procedure elaborate_graph(), the operationsbN := add_options*(n, neighbor_formulas(s, dir))and then V := V [bN occurred. Con-

sequently, M[̂t]'s new value bn 2 V . Thus, inclusion of values of M[] in V is maintained, as

desired.

54 PART I, CHAPTER 2: CORRECTNESS OF THE ALGORITHM

0. At any occasion when the entry M[0] changes, its reassignment is as follows:

M[0] =M[̂t] := selectively_add_options*(M[̂t], : : :)
= selectively_add_options*(M[0], : : :);

where the \M[0]" appearing as an argument is the old value of M[0]. Since all formulas

of M[0] are thus (considering how function selectively_add_options*() proceeds) kept

in successive values of M[0], then in particular the formula �rst | which is present before

this reassignment, inductively | is kept. Thus the condition that �rst 2M[0] is preserved,

as desired.

1. The condition that for each time-value t 2 T , M@t j=M[t] is Claim 1.1.1.

2. The condition that for each time-value t 2 T , the edge

M[t]; M[t+ 1]

� 2 E is obvious

after execution of procedure shift_embedding() since such execution terminates only

when there no longer exists any time-value t 2 T such that the edge

M[t]; M[t+ 1]

�
=2 E.

The preceding shows that at every stage of the processing (after initialization), there's an em-

bedding of modelM in the graph, as desired for Lemma 1.1.

(Lemma 1.1)

Lemma 1.2: After procedure elaborate_graph() �nishes, along the graph's path speci�ed by

the embedding that is constructed as in Lemma 1.1, all ful�llment-constraints are explicitly satis�ed.

Proof: Let V�nal, E�nal, and M�nal be the vertices, edges (excluding E), and embedding |

respectively | after the construction �nishes, let t 2 T be arbitrary, and let ' be any formula

having the form3 , (�U), (3����
), or (� U����) such that ' 2M�nal[t]. The goal here is to show

that ''s ful�llment-constraint is satis�ed | along the path speci�ed by M . Well, since M�nal is an

embedding,M@t j= '. Then sinceM is a model, there must be some least time-delay d
fulfill
2 T

such thatM@(t + dfulfill) j= | and, for the cases with \����", dfulfill
��� �. Since dfulfill is minimal,

M@(t+ d) �� for each d 2 T such that d < dfulfill (and, if appropriate, d ��� �); so since M�nal is

an embedding, =2M�nal[t+ d] for each such d.

Claim 1.2.1: For each time-delay d 2 T such that d � dfulfill | and, if ' is (3����
) or (� U����),

d ��� � | ' 2M�nal[t+ d].

Proof: This proof proceeds by induction on natural numbers (T).

For the base-case when d = 0, the condition that ' 2M�nal[t+ d] =M�nal[t] is given.

Otherwise, let arbitrary time-delay d 2 T be such that d < dfulfill , and suppose by inductive

hypothesis that ' 2M�nal[t+ d] | and, if ' is (3����
) or (� U����), d

��� �; it's necessary to show

that ' 2M�nal[t+ (d + 1)] | or, if ' is (3����
) or (� U����), that

' 2M�nal[t+ (d+ �)]. By the

paragraph preceding this claim, the supposition that d < dfulfill implies that =2M�nal[t+ d]. With

SECTION I.2.1: SUCCESS 55

 excluded fromM�nal[t+ d], the options for additional formulas required to satisfy the immediate

constraints of formula ' 2M�nal[t+ d] diminish to just one option | for each case of ': f
3 g if
' is 3 , f�;
(� U)g if ' is (� U),

�

�(3����

)
	
if ' is (3����

), or
�
(2<� �);

�

�(� U����)

�	
if ' is (� U����). These options may be expressed as f
'g, f: : : ;
'g, �
�'	, or �: : : ; �
�'�	,
respectively. The construction of state-sketches ensures that the state-sketch M�nal[t+ d] contains

the appropriate option for '.6 Thus, M�nal[t+ d] contains
' or
�

�'

�
, depending on '. With

� (if relevant) nonzero, this situation may be expressed in either case as
�

h~�+1i'

�
2M�nal[t+ d],

where the numeral ~� is either 0 or � � 1, depending on '.

Since M�nal is an embedding, the edge hM�nal[t+ d]; M�nal[t+ d + 1]i 2 E�nal. Since proce-

dure elaborate_graph() has �nished, this edge is accurate in the direction future. Then with�

h~�+1i'

�
2M�nal[t+ d],

�

~�'

�
2M�nal[t+ d + 1].

If ' is 3 or (� U), then the numeral ~� is 0, so the statement \
�

~�'

�
2 M�nal[t+ d+ 1]"

reduces to \' 2M�nal[t+ d + 1]", which is as desired in these cases for '.

Otherwise, if ' is (3����
) or (� U����), in which case the numeral ~� = � � 1, then \

�

~�'

�
2

M�nal[t+ d+ 1]" may be expressed as \
�

h��1i'

�
2 M�nal[t+ d + 1]". (The meaning of \h� � 1i"

in the formula here should be clear.) If � > 1, then again since elaborate_graph() has �nished,�

h��2i

'
�
2 M�nal[t+ d + 2]. Continuing, clearly

�

h���i

'
�
= ' 2 M�nal[t+ d + �], which is as

desired in these cases for '.

(Claim 1.2.1)

By Claim 1.2.1, ' 2M�nal[t+ dfulfill].

Then consider the moment during processing when the entry M[t+ dfulfill] was �rst set to a

value containing '. Considering the pseudo-code for the construction, this moment is either at

procedure init_embedding()'s line:

M[0] := selectively_add_options*(f�rstg; f'checkingg; 0)

or at procedure shift_embedding()'s line:

M[̂t] := selectively_add_options*(n, neighbor_formulas(s, dir), t̂);

in the latter case, the \n" appearing as an argument is the old value of M[̂t]. In the �rst case,

obviously ' =2 f�rstg; in the other case, by the choice of this moment during the construction, the

old value of M[̂t] does not contain '; so, these two cases reduce to:

M[t+ dfulfill] := selectively_add_options*(b, a, t+ dfulfill);

6This statement can be justi�ed either by Lemma 1.3 (which is on the page after the next one) or, actually, directly
via an argument about a chain of calls of selectively_add_options*() (i.e. an argument as is used later in this proof),
involving considering how ' can be present while is not.

56 PART I, CHAPTER 2: CORRECTNESS OF THE ALGORITHM

where b and a are sets of formulas and ' =2 b. Then how can ' appear in the result of this operation?

The result is constructed via a chain of recursive calls, say numbered 1..j, as follows (abbreviating

\selectively_add_options*" slightly):

selectively_add_opts*(base1 := b, additions1 := a, t̂ := t+ dfulfill) call #1

selectively_add_opts*(base2 := selected f1,

additions2 := selected f1 ���� (base1 [additions1), call #2

t̂ := t+ dfulfill)

selectively_add_opts*(base3 := selected f2,

additions3 := selected f2 ���� (base2 [additions2), call #3

t̂ := t+ dfulfill)
.
.
.

selectively_add_opts*(basej := selected fj�1,

additionsj := selected fj�1 ���� (basej�1 [additionsj�1), call #j

t̂ := t+ dfulfill)
The new value of M[t+ dfulfill] can be the result of this chain only if additionsj = fg and

M[t+ dfulfill] = basej. Then ' 2 basej =M[t+ dfulfill].

For each i 2 f1::(j � 1)g, selected fi := basei [additionsi [(selected options) and basei+1 :=

selected fi; so formulas accumulate in the base s here, i.e. each basei+1 contains all the formulas of

every `ancestral' call's base | and additions. Considering that ' 2 M[t+ dfulfill] = basej, let ib be

the least i 2 f1::jg such that ' 2 basei. Since ' =2 b = base1, ib > 1. Then:

additionsib := selected fib�1 ���� (baseib�1 [additionsib�1) = baseib ���� (baseib�1 [additionsib�1) ;

hence baseib ���� baseib�1 = additionsib [additionsib�1. By choice of ib, ' 2 baseib and ' =2 baseib�1, i.e.

' 2 baseib����baseib�1. Then ' 2 additionsib[additionsib�1; let ia be ib or ib�1 so that ' 2 additionsia .

Then during call #ia, selected fia :=
�
baseia [additionsia [(selected options)

�
, where with ' 2

additionsia , one of these selected options is select_option(', t̂ := t+ dfulfill). By supposition,

M@(t+ d
fulfill

) j= , i.e. M@t̂ j= . Then considering the pseudo-code of function

select_option(), the result of select_option(', t̂ := t+ dfulfill) is f g. Thus, 2 selected fia .

Consequently, 2 baseia+1 := selected fia ; and further, as formulas accumulate in baseia+1,

baseia+2, : : : , basej, 2 basej . Then 2M[t+ dfulfill] = basej .

Then, as formulas are retained in successive values of M[], 2 M�nal[t+ d
fulfill

]. Thus, for

this given formula ' 2 state-sketch M�nal[t], its ful�llment-constraint is satis�ed along the path

comprising values of M[], as desired.

(Lemma 1.2)

To conclude the proof of Theorem 1, it's necessary to show that procedure satisfy()'s sub-

procedure search_graph() does indeed report satis�ability. As procedure search_graph() needs

to �nd certain formulas present in state-sketches, the following lemma is useful here:

SECTION I.2.1: SUCCESS 57

Lemma 1.3: At every stage of the algorithm's processing, all state-sketches' immediate con-

straints are satis�ed.

Proof: This proof proceeds inductively through the processing.

One initial state-sketch is blank = f:�rstg. The immediate constraints are that for each for-

mula ' 2 blank, ' must not be false, blank must not contain :', and blank must contain certain

formulas speci�ed in Table I.1 (there may be options). Well, clearly these constraints are satis�ed.

Every other state-sketch s results from a function-call add_options*(b, a), where b and a are

sets of formulas. In one case, b is f�rstg; in every other case, b is an already extant state-sketch n.

Considering the set of formulas f�rstg as a state-sketch, clearly its immediate constraints are satis�ed.

In the other cases, already extant state-sketch n should have its immediate constraints satis�ed by

inductive hypothesis. Thus, every state-sketch s 2 add_options*(b, a) (for some b and a), where

the immediate constraints for b are satis�ed.

Consider any state-sketch s 6= blank and any formula ' 2 s; are ''s immediate constraints

satis�ed? Well, how can ' appear in this result s of a function-call add_options*(b, a)? But then,

how is s obtained as a result? This result s is constructed via a chain of add_options*()'s recursive

calls, say numbered 1..j, as follows:

add_options*(base1 := b, additions1 := a) call #1

add_options*(base2 := f1, additions2 := f1 ���� (base1 [additions1)) call #2

add_options*(base3 := f2, additions3 := f2 ���� (base2 [additions2)) call #3

...

add_options*(basej := fj�1, additionsj := fj�1 ���� (basej�1 [additionsj�1)) call #j

State-sketch s is the result of this particular chain of calls only if additionsj = fg, call #j returns
fbasejg, and s = basej . Then ' 2 basej = s.

If j = 1, then s = basej = base1 = b. Then, with b satisfying the immediate constraints for ', so

does s = b.

Otherwise, there is a call #(j�1) which provides arguments for call #j: basej := fj�1. In

call #(j�1), this fj�1 would have been rejected from intermediatesj�1 if it contained any obviously

contradictory pair of formulas f ;: g. Therefore, s = basej = fj�1 does not contain :'.
For each i 2 f1::(j�1)g, fi := basei [additionsi [(options) and basei+1 := fi; so formulas

accumulate in the bases here, i.e. each basei+1 contains all the formulas of every `ancestral' call's

base | and additions. Considering that ' 2 s = basej , let ib be the least i 2 f1::jg such that

' 2 basei. If ib = 1, then ' 2 base1 = b. In this case, with the immediate constraints for b

satis�ed by the above, ' 6= false and b contains appropriate additional formulas from Table I.1; then

58 PART I, CHAPTER 2: CORRECTNESS OF THE ALGORITHM

s contains these additional formulas also, since b = base1 � basej = s. Otherwise, if ib > 1, then:

additionsib := fib�1 ���� (baseib�1 [additionsib�1) = baseib ���� (baseib�1 [additionsib�1) ;

hence baseib ���� baseib�1 = additionsib [additionsib�1. By choice of ib (and with ib > 1), ' 2 baseib

and ' =2 baseib�1, i.e. ' 2 baseib���� baseib�1. Then ' 2 additionsib [additionsib�1; let ia be ib or ib�1
so that ' 2 additionsia .

Then during call #ia, processing checks false 2 additionsia , and if this condition is true, there

would have been no result here; so false =2 additionsia , which implies that ' 6= false. Also during

call #ia, fia :=
�
baseia[additionsia[(some options)

�
, where with ' 2 additionsia , one of these options

is o 2 options('). Thus fia contains one of the options for additional formulas required to satisfy

''s immediate constraints. Then, as each basei contains all the formulas of every `ancestral' call's

base and additions here, basej = s also contains the desired formulas.

Thus, all immediate constraints are satis�ed.

(Lemma 1.3)

Now, procedure search_graph() can be addressed.

By Theorem 0, the �nal graph (V�nal; E�nal) is �nite. However, T , the domain for time, is in�nite.

Then with the embeddingM�nal (of Lemma 1.1) being a map from T to V�nal, some values ofM�nal[]

must be repeated in�nitely. SinceM�nal speci�es a path through the graph, there is a path from each

of these in�nitely repeated vertices to each of the others. Thus these in�nitely repeated vertices form

a strongly connected component sccMf
of the graph. Then consider search_graph()'s processing:

Line 1: \ for each subset mscc � V�nal comprising a maximal strongly connected component"

The presentation of procedure search_graph() speci�es that such search for an mscc uses paths

starting at state-sketches that contain �rst. The existence of at least one such state-sketch is guar-

anteed by condition 0 of the de�nition of embedding, that �rst 2 M�nal[0] (plus condition `�', that
M�nal[0] 2 V). Then the search here can �nd the graph's maximal strongly connected component

that contains sccMf
.

Line 2: \ let the set of formulas f :=
S
s2mscc

s"

This operation gathers into set f all the formulas that appear in mscc.

Lines 3{5: \ for each formula having the form 3 or (� U) 2 f: if this =2 f , stop : : :"

Let ' be any formula in f having the form 3 or (� U). Considering how f is derived from

mscc, mscc must contain a state-sketch s1 such that ' 2 s1. Then since mscc is strongly connected, it

contains a path from s1 to any element of mscc's subset sccMf
; let (s1; s2; s3; : : : ; sk) be such a path,

with sk 2 sccMf
. If any si here contains , then with si 2 mscc, 2 f , so search_graph() would

not stop processing mscc at Line 5. Otherwise, with ' 2 s1 and =2 s1, immediate constraints for

SECTION I.2.1: SUCCESS 59

' (which is either 3 or (� U)) entail that
' 2 s1, by Lemma 1.3. Then with the edge hs1; s2i
clearly accurate at this point, ' 2 s2. Similarly, with =2 s2,
' 2 s2 and ' 2 s3. Continuing,

' 2 sk.
Now, sk 2 sccMf

, which comprises the values ofM�nal[] that are repeated in�nitely. Let the time-

value t 2 T be such that (1) M�nal[t] = sk and (2) for all t0 � t, M�nal[t
0] 2 sccMf

. As in the proof

of Lemma 1.2 above, someM�nal[t+ d
fulfill

] contains . Since t+ d
fulfill
� t, M�nal[t+ d

fulfill
] 2 sccMf

.

But sccMf
� mscc, so M�nal[t+ dfulfill] 2 mscc. Thus a state-sketch s = M�nal[t+ dfulfill] contains

and s 2 mscc. Then 2 f . Then, again, procedure search_graph() does not stop processing mscc

at Line 5.

Lines 6{8: \ if : : : (3����
) or (� U����) 2 f: if fulfilling_congs(mscc) = false, stop : : :"

Again, even if such a formula ' isn't ful�lled in mscc ���� sccMf
, it is ful�lled (appropriately) in

sccMf
. Such ful�llment implies that the function fulfilling_congruences() would return true:

Using the notation speci�ed in the presentation of this function (starting on page 34), consider a

state-sketch sn 2 mscc (\n" for \needing") such that 'i 2 sn and a path (in mscc) from s�0 to sn is

Pn; then the value jPnj MOD �i = m is included in the set needing[i]. Now, the set mscc contains

a path from sn to sccMf
. If 'i 2 sn isn't straightforwardly ful�lled along this path, then a state-

sketch ~sn 2 sccMf
contains 'i (with ~sn at a distance ��� �i from sn along the path). As in the

proof of Lemma 1.2 above, ~sn is M�nal[t] for some t, and some M�nal[t+ d
fulfill

] contains i (with

dfulfill
��� �i). Thus there is a state-sketch sf 2 mscc (\f" for \ful�lling") such that i 2 sf , a path

from sn to sf (in mscc) is Pnf , and jPnf j ��� �i | i.e. jPnf j MOD �i = 0. Then conjoining the paths Pn

and Pnf yields a path Pf from s�0 to sf , and modulo �i, jPf j = jPnj+ jPnf j = m + 0 = m (MOD �i).

Thus there is a path from s�0 to sf whose length modulo �i is m, so the value m is included in the

set ful�lling[i]. Since the speci�cs here were arbitrary, needing[i] � ful�lling[i] for each i 2 f1::kg, so
fulfilling_congruences() returns true.

Then processing of mscc does not stop at this point in procedure search_graph().

Line 9: \ (� : : : �)"
This line is a comment.

Line 10: \ report that the originally given formula '
checking

is satis�able"

This is what was desired.

(Theorem 1: Success)

60 PART I, CHAPTER 2: CORRECTNESS OF THE ALGORITHM

I.2.2 Su�ciency

Theorem 2 (Su�ciency): If procedure satisfy() reports that its given (input-)

formula 'checking is satis�able, then this formula really is satis�able.

Proof:

Clearly, procedure satisfy() reports satis�ability only after constructing a graph etc. It would

be complacent to say that a model of 'checking is then simply given by the state-sketches of the relevant

mscc etc. Unfortunately, it's not obvious that these sets of formulas are su�ciently compatible for

any model to satisfy all of them together. Hence the necessity of the work here.

The guiding principle is that the output of procedure delineate_model() actually is su�-

cient to specify a model that satis�es 'checking. Now, basically, delineate_model() determines an

in�nite path of state-sketches s0; s1; s2; s3; : : : and reports their literals, say as sets denoted by

l0; l1; l2; l3; : : :, where each l
t
(for t 2 T) comprises all the literals of s

t
. Then for each t 2 T , a

stateM@t of a modelM can be speci�ed by havingM@t satisfy a proposition � if � 2 lt, falsify
� if :� 2 l

t
, and otherwise | if the set l

t
contains neither � nor :� | allowingM@t to arbitrarily

satisfy or falsify �. This speci�cation cannot be contradictory, requiringM@t to both satisfy and

falsify some proposition �, because Lemma 1.3 implies that state-sketch s
t
does not contain both

formulas � and :�, so with lt � st, the set lt also does not contain both � and :�.
Thus, a modelM is delineated. The desired condition M j= '

checking
is derivable from the

following lemma:

Lemma: For each formula ': for each time-value t 2 T : if ' 2 s
t
, thenM@t j= '.

Proof: The proof of this lemma proceeds via induction on formulas, using a well-founded order-

ing \�" (for formulas) which is de�ned as follows:

\� � '" means associated formulas(�) ������� associated formulas(') :

This ordering is well-founded because proper set-inclusion for �nite sets is well-founded and the

proof of Lemma 0.1 shows that associated formulas(: : :) is a �nite set.

The base-case for a formula ' in this inductive proof is when there is no formula � � '. Then

' must be either �rst or :�rst. The following claim facilitates treatment of these cases for ':

Claim: Continually, throughout procedure satisfy()'s construction of the graph (V;E), every

state-sketch contains either �rst or :�rst; and a state-sketch contains �rst only if the state-sketch

has no predecessors.

Proof: This proof proceeds inductively through the processing.

SECTION I.2.2: SUFFICIENCY 61

The initial state-sketches comprise blank and the results of procedure init_graph()'s

subfunction-call add_options*(base := f�rstg, : : :). Obviously, :�rst 2 f:�rstg = blank. And

add_options*() accumulates base-formulas and returns them, so every initial state-sketch other

than blank contains �rst. Thus, the condition re containment of �rst or :�rst holds initially.
Next, each initial edge is hs; blanki for some state-sketch s 2 V . Obviously, �rst =2 blank =

f:�rstg. No other state-sketch has predecessors here. Thus, the condition that a state-sketch s

contains �rst only if it has no predecessors also holds initially.

Subsequently, creation of a state-sketch bn occurs via procedure elaborate_graph()'s

subfunction-call add_options*(base := n, : : :), where n is a previously existing state-sketch. Then

the result bn must contain n, so as n contains either �rst or :�rst, so does bn.
Then, any edge that is created has the form hs; bni

dir
, hbn; blankifuture , or hbn; �nidir . (The set of

edges E gains elements also when procedure unbar_edges() moves edges from E to E, but these

are old edges, not newly created ones, so they are presumably compliant.) As with hs; blanki above,
an edge hbn; blankifuture easily complies with this claim's condition since �rst =2 blank. The other

cases for an edge, hs; bni
dir

and hbn; �ni
dir
, expand to hs; bni, hbn; si, hbn; �ni, or h�n; bni, depending on the

direction dir. In each of these cases, there is a previously existing similar edge: hs; ni, hn; si, hn; �ni,
or h�n; ni, respectively. If hn; si or hn; �ni exists previously, then by inductive hypothesis �rst =2 s or
�rst =2 �n, as desired for the new edge hbn; si or hbn; �ni, respectively. If hs; ni or h�n; ni exists previously,
then by inductive hypothesis �rst =2 n. Then further by inductive hypothesis, :�rst 2 n. Then

:�rst 2 bn. Then by Lemma 1.3 (which is on page 57), :(:�rst) = �rst =2 bn, as desired for an

edge hs; bni or h�n; bni.
(Claim)

The proof of the lemma proceeds, considering cases of formula ':

If the formula ' is �rst, thenM@0 j= ' by semantics. Re each time-value t 2 T other

than 0, recall that the state-sketches s0; s1; s2; s3; : : : comprise a path. Then with t 6= 0,

the state-sketch s
t
has s

t�1 as a predecessor. Then by the immediately preceding Claim,

�rst =2 st. Thus, for each t 2 T , if ' 2 st, thenM@t j= ', as desired.

If ' is :�rst, then for t 6= 0, M@t j= ' by semantics. For t = 0, the presentation of

procedure delineate_model() implies that state-sketch s0 contains the formula �rst, so

by Lemma 1.3, :�rst =2 s0. Thus, for each t 2 T , if ' 2 s
t
, thenM@t j= ', as desired.

To address other cases for formula ', suppose there is at least one formula � � '. But addition-
ally, suppose there is no formula e' 6= ' such that associated formulas(e') = associated formulas(').

Such cases for ' are as follows:

If ' is false, then Lemma 1.3 implies that no state-sketch st contains ', so the desired

62 PART I, CHAPTER 2: CORRECTNESS OF THE ALGORITHM

condition here holds.

If ' is :false, then the desired condition holds by basic semantics: for any t 2 T ,M@t j=
:false.
If ' is a literal, then for each t 2 T , if ' 2 st thenM@t j= ' by the construction ofM@t.

Suppose formula ' has the form
�

h�+1i

�
. Then because processing has concluded, each

edge hs
t
; s
t+1i (for t 2 T) is accurate in the direction future. Then if ' =

�

h�+1i

�
2

st, (

�
) 2 st+1. Now, associated formulas(
�) � associated formulas

�

h�+1i

�

=

associated formulas('). With associated formulas(
�) 6= associated formulas(') assumed

here, (
�) � '. Then by inductive hypothesis, (
�) 2 s
t+1 implies thatM@(t+ 1) j=

(
�). Then by semantics,M@t j=
�

h�+1i

�
= '.

The case when ' has the form
�

h�+1i

�
resembles the preceding case when ' has the

form
�

h�+1i

�
. A necessary precondition is that t > 0 so t � 1 2 T when ' 2 s

t
.

This precondition holds because immediate constraints are satis�ed by Lemma 1.3, the

immediate constraint of the formula
�

h�+1i

�
2 s

t
requires :�rst 2 s

t
, and as discussed

above in this proof (in the case when ' = :�rst), :�rst =2 s0.
In any other case of formula' here, suppose ' 2 s

t
for some t 2 T , and let o 2 options(')

be a set of formulas that are included in s
t
to satisfy the immediate constraint for ',

by Lemma 1.3. Certainly, by de�nition of associated formulas(), associated formulas() �
associated formulas(') for each formula 2 o. By supposition here, each

associated formulas() 6= associated formulas('). Then for each 2 o, � '. Then by

inductive hypothesis, M@t j= for each 2 o. Then by semantics and analysis of

Table I.1 (which is the source of options()),M@t j= '.

Next, suppose that there is at least one formula � � ' and that there is a formula e' 6= ' such

that associated formulas(e') = associated formulas(').

If ' has the form 2 and ' 2 st for some t 2 T , then with ''s immediate constraint

satis�ed by Lemma 1.3, f ;
2 g � st. Then with the edge hst; st+1i accurate in the

direction future,
2 2 s
t
implies that 2 2 s

t+1. Then f ;
2 g � s
t+1. Then

2 2 st+2, so f ;
2 g � st+2. Continuing, 2 st0 for every t0 � t. Now, � 2 = '.

Then by inductive hypothesis, for every t
0 � t,M@t0 j= . Then by the semantics of \2",

M@t j=2 = '.

If ' has the form
2 and ' 2 s
t
for some t 2 T , then 2 2 st+1, and then analysis

as in the preceding case shows thatM@(t + 1) j= 2 . Then, by the semantics of \
",

M@t j=
2 = '.

Suppose ' has the form 3 and ' 2 s
t
for some t 2 T . Then ''s immediate constraint

SECTION I.2.2: SUFFICIENCY 63

entails that either 2 st or
3 2 st. In the former case, with � 3 , inductive
hypothesis yieldsM@t j= ; then,M@t j= 3 by the semantics of \3". In the latter

case (when
3 2 st), 3 2 st+1, hence either 2 s
t+1 or
3 2 st+1. If 2 st+1,

thenM@t j= 3 ; otherwise, 3 2 st+2. This progression can continue with 3 2 st+3,

s
t+4, etc. But recall that the sequence of state-sketches s0; s1; s2; s3; : : : comprises a

�nite initial part followed by in�nite repetition of a cycle throughout an mscc which has

passed the tests of procedure search_graph(). Suppose the progression here continues

to a state-sketch s~t 2 mscc. (The progression can otherwise terminate only if it �nds

 in a state-sketch, which yields M@t j= 3 = ', which is what is desired anyway.)

With 3 2 s~t 2 mscc and mscc having passed the tests of procedure search_graph(),

the formula appears somewhere in mscc, i.e. it is present in some state-sketch sf 2
mscc. Then as the cycle throughout mscc is supposed to be repeated in�nitely in the

sequence s0; s1; s2; s3; : : :, let tf 2 T be such that tf � ~t and s
tf
= sf . Then 2 stf with

tf � t. ThenM@t j=3 = '.

Suppose ' has the form (3����i
) and ' 2 st for some t 2 T . This case resembles the

preceding case for 3 , with the added condition that tf � t ��� �i. Using the notation of

the presentation of function fulfilling_congruences() (which starts on page 34), let

t�0 2 T be such that t�0 � t and st�0 = s�0. If for each t0 2 ft::(t�0� 1)g, =2 st0 or t0 � t 6��� �i,
then immediate constraints plus accuracy of edges entails that ' 2 s~t for some ~t � t�0 with

(~t� t) MOD �i = 0. If (~t � t�0) MOD �i = m, then m 2 needing[i]. Then in generating a

cycle through mscc, delineate_model() ensured that 2 s
tf
for some tf � t�0 such that

(tf � t�0) MOD �i = m. Then (tf � t) MOD �i = ((tf � t) + (t�0 � t�0)� (~t� t)) MOD �i =

((tf � t�0) + (~t� t�0) � (t� t)) MOD �i = (m �m + 0) MOD �i = 0, i.e. tf � t ��� �i. Thus,

the added condition is satis�ed.

Suppose ' has the form 3 and ' 2 st for some t 2 T . Then ''s immediate constraint

entails that either 2 st or
3 2 st. The former possibility 2 st straightforwardly
implies thatM@t j= 3 = '. In the other case, the immediate constraint for the for-

mula
3 2 st entails that :�rst 2 st. Then as above, t > 0. Then further, with the

edge hst�1; sti accurate in the direction past, 3 2 st�1. Then again, either 2 st�1,

in which case straightforwardlyM@t j= 3 = ', or
3 2 st�1. This progression can

continue, but certainly not past s0, and it stops only when it �nds a state-sketch containing

 , at which point straightforwardlyM@t j=3 .7

All other cases resemble the preceding ones.

7It may be interesting to consider what the algorithm does in the `pathological' version of the situation here. For
example, suppose the formula 'checking is (2:p ^

3p). Then the algorithm constructs a graph whose most

64 PART I, CHAPTER 2: CORRECTNESS OF THE ALGORITHM

(Lemma)

The proof of the theorem continues as follows, showing that the originally given formula '
checking

occurs appropriately in a state-sketch so the preceding Lemma can be applied to it.

According to the presentation of procedure delineate_model(), the state-sketch s0 contains

the formula �rst. Considering procedure init_graph() and function add_options*(), processing

begins with the originally given formula 'checking present in every state-sketch other than blank.

Subsequently, each new state-sketch bn contains a relevant prior state-sketch n. Then every state-

sketch contains one of the initial state-sketches. Now, any state-sketch that contains blank contains

:�rst and hence does not contain �rst. Then with state-sketch s0 containing �rst, it contains some

initial state-sketch other than blank. Since each such other initial state-sketch contains 'checking, so

does s0. Then by the preceding Lemma,M@0 j= '
checking, i.e. modelM satis�es the formula'checking .

(Theorem 2: Su�ciency)

signi�cant state-sketches comprise the following sequence:�
�rst; 'checking;
2:p; :p;
2:p;

3p

� (
:�rst; 2:p;
:p;
2:p;

3p;
3p;
3p

)
-
(
:�rst; 2:p;
:p;
2:p;

3p;
3p;
3p

)
-
�
:�rst; 2:p;
:p;
2:p;
3p;
3p

�
-
n
:�rst; 2:p;
:p;
2:p

o
| with the edge between the �rst two state-sketches removed. Then, when procedure search_graph() searches the

graph for strongly connected components mscc | with the search starting from state-sketches containing �rst | it
can't reach any (appropriate)mscc. Consequently, the algorithm reports that this formula 'checking is unsatis�able |
as it is.

Chapter I.3

Complexity of the Algorithm

Chapter I.2's Theorem 0 (Termination) shows that this algorithm requires only a �nite amount

of work. This chapter estimates the amount.

The algorithm here is designed to maximize e�ciency, but in the worst cases, it does as much

as (and no more than) the amount of work of classical algorithms such as [LicPZ85]. As has been

mentioned above, the complexity here for metric temporal logic di�ers from the complexity speci�ed

in [He91] because of di�erences in the semantics.

I.3.1 Sizes of Elements

The graph comprising vertices V�nal and edges E�nal plus E�nal which is constructed by this

algorithm naturally has jE�nal [E�nalj � jV�nalj2. Then, since the vertices V�nal are sets of formulas

collected in associated formulas('checking):

jV�nalj �
���}((((associated formulas('checking)))))��� = 2

jassociated formulas('checking)j
:

Then, the crucial question is: what is the cardinality jassociated formulas('checking)j, say as a function
of some measure of formula 'checking? With the function size() : formulas ! N denoting this

measure, the following shows that jassociated formulas(')j < c � size('), for a constant c.

Unfortunately, the operators \()" and \
" present di�culties. For example, consider a for-

mula (() �) with, say, size() = i and size(�) = j, and suppose size(() �) = i + 1 + j |

which seems natural. The set associated formulas(() �) involves the formulas , �, : , and
:�, and hence their associated formulas(). Straightforwardly applying the size-formula, these sub-

associated formulas() altogether would number approximately c�i + c�j + c�(1 + i) + c�(1 + j) =

2�c�(i + 1 + j) = 2�c�size(() �) | double the purported value \jassociated formulas(() �)j <

65

66 PART I, CHAPTER 3: COMPLEXITY OF THE ALGORITHM

c � size(() �)"! The situation with \
" is similar. Consequently, in the following, the size() of a

\()"- or \
"-formula is considered to be double its apparent size.1

Aside from the preceding special consideration for the operators \()" and \
", the size() of a

formula ' is the sum of the number of propositions and operators in ' (including operators' repe-

titions due to large arities) plus the numbers that occur as numerals in superscripts and subscripts

in '. For example, size
�
�rst ^ :3p ^ (
3q)

�
= 11.

The following claim speci�es how the desired amount jassociated formulas(')j may be estimated

from size('):

Claim: For any formula', jassociated formulas(')j � 5�size(') � 2 | with strict inequality (\<"),

actually, for every formula except false and the propositions.

Proof: This proof proceeds by induction on the sizes of formulas.

This claim clearly holds if ' is false, :false, a literal, �rst, or :�rst. For

example, associated formulas(p) = fp; :�rst; �rstg and size(p) = 1.

If ' is (1 ^ 2 ^ : : :^ k), then size(') = k�1 + size(1) + size(2) + : : :+ size(k). Also:

associated formulas(') = f'; :�rst; �rstg
[associated formulas(1)

[associated formulas(2)
...

[associated formulas(k) ;

so:
jassociated formulas(')j � 3

+ jassociated formulas(1)j
+ jassociated formulas(2)j
...

+ jassociated formulas(k)j :
Then by inductive hypothesis:

jassociated formulas(')j � 3

+ 5�size(1) � 2

+ 5�size(2) � 2
...

+ 5�size(k) � 2 :

1An alternative resolution of this di�culty is to simply refuse to handle formulas that contain \()" or \
". This

alternative approach is plausible because any \()"- or \
"-formula can be rewritten as an equivalent formula not
using \()" or \
" (as speci�ed in Table II.9, on page 101).

SECTION I.3.1: SIZES OF ELEMENTS 67

Then with the arity k � 2:

jassociated formulas(')j < 5�(k � 1)

+ 5�size(1)
+ 5�size(2)
...

+ 5�size(k)
� 2

= 5 � size(') � 2 ;

so the claim holds in this case.

If ' is (() �), then size(') = 2�[size() + 1 + size(�)] and:

associated formulas(') = f'; :�rst; �rstg
[associated formulas()

[associated formulas(�)

[associated formulas(:)
[associated formulas(:�) :

Then by inductive hypothesis:

jassociated formulas(')j � 3

+ 5�size() � 2

+ 5�size(�) � 2

+ 5�size(:) � 2

+ 5�size(:�)� 2 :

If the formula is not a negation, then naturally size(:) = 1 + size(). If is a nega-

tion : ~ (with ~ not a negation), then : is ~ and size(:) = size(~) = size(: ~) � 1 =

size() � 1 < 1 + size(). Thus, regardless, size(:) � 1 + size(). Similarly, size(:�) �
1 + size(�). Then:

jassociated formulas(')j < 5�size()
+ 5�size(�)
+ 5�[1 + size()]

+ 5�[1 + size(�)]

� 2

= 5��2�[size() + 1 + size(�)]
�� 2

= 5�size(')� 2 :

Thus, the claim holds in this case.

If ' is :(� S), then size(') = 1 +
�
size(�) + 1+ size()

�
and:

associated formulas(') =
�
'; :�rst; �rst;
[: B (:� ^ :)];
(:� ^ :); :
:[: B (:� ^ :)];

[: B (:� ^ :)] 	
[associated formulas(:�)
[associated formulas(:) :

68 PART I, CHAPTER 3: COMPLEXITY OF THE ALGORITHM

Note that both associated formulas(:�) and associated formulas(:) contain the formulas :�rst
and �rst. Then:

associated formulas(') =
�
';

[: B (:� ^ :)];
(:� ^ :); :
:[: B (:� ^ :)];

[: B (:� ^ :)] 	
[�associated formulas(:�) ���� f:�rst; �rstg�
[associated formulas(:) :

If the formula � is either :false or the negation of a proposition, then :� is false or a proposition,
respectively. Then, size(:�) = 1 and jassociated formulas(:�)j = 3, so

jassociated formulas(:�)j � 5�[1 + size(�)] � 3. In all other cases for �, inductive hypothesis

gives jassociated formulas(:�)j < 5�size(:�)� 2 � 5�[1 + size(�)] � 2, i.e. again

jassociated formulas(:�)j � 5�[1 + size(�)]� 3. The situation for is similar. Then:

jassociated formulas(')j � 5

+
�
5�[1 + size(�)] � 3

�� 2

+ 5�[1 + size()] � 3

= 5�[1 + size(�) + 1 + size()]� 3

= 5�size(')� 3 ;

i.e. jassociated formulas(')j < 5 � size(')� 2, as desired.

If ' is (� B����), then size(') = 1 +
�
size(�) + 1 + � + size()

�
and:

associated formulas(') =
�
'; :�rst; �rst; (2�h��1i �);

:
:(2�h��2i �);
(2�h��2i �); (2�h��2i �);

:
:(2�h��3i �);
(2�h��3i �); (2�h��3i �);
...

:
:(2�0 �);
(2�0 �); (2�0 �);

:
�

�:(� B����)

�
;
:�
h��1i:(� B����)

�
;

:�
h��1i:(� B����)
�
;
:�
h��2i:(� B����)

�
;

...

:�
2:(� B����)
�
;
:�
:(� B����)�;

:
(� B����);
(� B����)
	

[associated formulas(�)

[associated formulas() ;

so, by inductive hypothesis:

jassociated formulas(')j � 4

+ 3(� � 1)

+ 2�

+ 5�size(�)� 2

+ 5�size() � 2

< 5�[size(�) + 1 + � + size()] � 2

= 5�size(') � 3 :

SECTION I.3.1: SIZES OF ELEMENTS 69

Thus, the claim holds in this case.

All other cases resemble the preceding ones.

(Claim)

Clearly, this Claim's factor 5 is an overestimate. One way to provably achieve a smaller number

is to analytically reduce options-formulas, e.g. having the options for :(� S) be f: ; :�g and
f: ; :
(� S)g instead of f: B (:� ^ :)g. An alternative perspective would involve deter-

mining a factor for each operator and then combining these factors as appropriate for each for-

mula ''s combination of operators. A �nal consideration is the sharing (which enables savings) of

associated formulas() that is typical of formulas which people care to check.

The context of consideration of jassociated formulas()j is the bound

jV�nalj � 2
jassociated formulas('checking)j

. But this bound can be reduced.

The most important reduction in the bound involves procedure add_options*()'s reduction

of most formulas to equivalent options. The formulas that remain after this reduction are �rst,

:�rst, the literals, \
"-formulas, and \
"-formulas; all other reducible formulas can be ignored as

speci�ers of elements of jV j. For example, if the state-sketch f:�rst; p;
2p;2pg exists, then a

state-sketch f:�rst; p;
2pg would not be added; the former state-sketch would be used wherever

the latter might be desired.2 Typically, these formulas to which all others reduce comprise approx-

imately half of the total number of formulas; then, jV�nalj diminishes accordingly (e.g. if indeed the

formulas are precisely halved, then jV�nalj is the square root of what it would be otherwise).

A further consideration is that the algorithm does not construct state-sketches containing obvi-

ously contradictory pairs of formulas f ;: g. Let the set ir a� comprise all the irreducible formulas

in associated formulas('checking). Then, let:

n = fall the formulas 2 ir a� such that : 2 ir a�, with : really being a negationg
(negated formulas);

~n = fall the formulas : 2 ir a� such that 2 ng ; and:

u = ir a����� (n [~n) (unnegated formulas):

Notice that jnj = j~nj. Then the bound jV�nalj � 2
jir a�j

= 2
jnj+j~nj+juj

= 2
jnj+jnj+juj

= 4
jnj � 2juj can

be reduced to jV�nalj � 3
jnj � 2juj since, for any element of n, either it or its negation or neither |

never both | is or are present in any element of jV j.

The approximate bounds here on sizes of features are indeed reached. For example, if the

2Keeping reducible formulas present is useful to facilitate checking of ful�llment. For example, in checking whether

the formula32p is ful�lled, it's easier to check for 2p rather than for the pair fp;
2pg.

70 PART I, CHAPTER 3: COMPLEXITY OF THE ALGORITHM

formula '
checking

is 2(3p1 ^ 3p2 ^ : : : ^ 3pk), then jV�nalj = 2k+1 + 1 �
q
2
[size('checking)] and

jE�nal [E�nalj = 2k+1 � (2k + 1) + 1 � jV�nalj2.

I.3.2 Complexity of Operations

The algorithm's �rst operations, in procedure init_graph(), clearly all are negligible except for

the execution of function add_options*(). And this execution may be lumped with the executions

of add_options*() in procedure elaborate_graph(), as if that procedure were doing one more

iteration of its main loop with a pseudo-edge \

f
'checkingg; f�rstg�", i.e. as if jE�nal [E�nalj were

larger by one.

As for procedure elaborate_graph(), clearly its main loop \for each edge : : :" must address

each edge if only to determine whether the edge is accurate. Then prima facie, the loop's number

of iterations is jE�nal [E�nalj. (As mentioned above (in the proof of Claim 1.1.2), each edge is

accurate in at least one direction, so the amount of processing here is not multiplied by the number

of directions.)

But procedure unbar_edges() causes reprocessing of edges. To understand how much, consider

a situation such as the following: the edges hsi; nidir are inaccurate in the direction dir, and they have

been processed, engendering vertices bni;j (shown here only for i = 1); the direction dir is downward:

�n

�s` : : : �s2 �s1

�bn1;1 � bn1;2 : : : �bn1;k1

�
�n

B
B
B
B
B
B
B
B
BB

e
e
e
e
e
e
e
e
ee

b
bb

b
b
b
b
b
b
b
b
b
bb

bb
BB

BB

BB

BB

��

��

��

��

barred

edges

hsi; nidir

Now, suppose a new edge hn; �ni
dir

is created, at which occasion unbar_edges(n, dir) is executed.

Then each barred edge hsi; nidir is unbarred:

SECTION I.3.2: COMPLEXITY OF OPERATIONS 71

�n

�s` : : : �s2 �s1

�bn1;1 � bn1;2 : : : �bn1;k1

�
�n

B
B
B
B
B
B
B
B
BB

e
e
e
e
e
e
e
e
ee

b
bb

b
b
b
b
b
b
b
b
b
bb

bb
J
J
J
J
J
J
J
J
JJ

new

edge

B
B
B
B
B
B
B
B
BB

�
�
�
�
�
�
�
�
��

unbarred

edges

hsi; nidir
inaccurate: dir

Then, each edge hsi; nidir is reprocessed. As is the intent of unbarring edges, that �rst new

edge hn; �ni
dir

engenders further new edges hbni;j ; �nidir (shown here only for i = 1):

�n

�s` : : : �s2 �s1

�bn1;1 � bn1;2 : : : �bn1;k1

�
�n

J
J
J
J
J
J
J
J
JJ

BB

BB

BB

BB

��

��

��

��

B
B
B
B
B
B
B
B
BB

e
e
e
e
e
e
e
e
ee

b
b
b
b
b
b
b
b
b
bb

b
b
b
bb

�
�
�
�
�
�
�
�
��

%
%
%
%
%
%
%
%
%%

"
"
"
"
"
"
"
"
"
""

"
"
"
""

resultant

new edges

hbni;j; �nidir

Reprocessing does not produce new edges if they already exist in E [E. In one extreme case,

reprocessing of the edge hsi; nidir produces zero new edges; in the other extreme case, all of the ki

edges hbni;1; �nidir , hbni;2; �nidir , : : : , and hbni;ki ; �nidir are new. A conservative estimate which seems

reasonable is that reprocessing hsi; nidir produces one new edge hbni; �nidir . Then subsequently, this

new edge will be processed, requiring some amount of work. With the amount of work required to

reprocess the edge hsi; nidir considered similar to the amount required to process the edge hbni; �nidir ,
it's possible to count the reprocessing work as simply doubling the normal processing work. This,

then, is the e�ect that procedure unbar_edges() has on the amount of all processing: at most

72 PART I, CHAPTER 3: COMPLEXITY OF THE ALGORITHM

doubling it.3

The next question is: How much work is required during each iteration of procedure

elaborate_graph()'s main loop?

Well, �rst the edge to be processed must be found. Naturally, the scheme used for storing the

graph's elements (V;E) determines the amount of work here. With vertices indexed via hashing and

edges simply listed with vertices, the amount of work here is a constant.

Next, determining whether an edge hs; ni
dir

is accurate in the direction dir involves collecting all of

s's formulas that have the form
�
[neighbor op(dir)]h�+1i

�
into neighbor_formulas(s, dir) and then

checking whether neighbor_formulas(s, dir) 2 n. These operations are linear in the sizes of the sets
of formulas, which are state-sketches, and state-sketches are subsets of associated formulas('checking),

whose size is linear in the size of '
checking

according to the preceding Section; so these operations

require an amount of work which is linear in the size of the originally given formula 'checking.

The next operation is execution of function add_options*(). That function combines divers

options()-sets, producing a multiplicity of state-sketches. Then clearly, the amount of work done

here can be expressed as the amount of work per result times the number of results. Well, as

each result's relevant chain of add_options*()'s recursive sub-calls proceeds, the result is gradually

constructed (in bases), with each formula ' 2 associated formulas('checking) being considered (among

the options) for inclusion at most once. Then this amount of work per result is linear in the size

of associated formulas('checking)
4 and hence linear in the size of the originally given formula 'checking.

Then, as these results are state-sketches included in V, it's reasonable to count the work done in

add_options*() for these (new) state-sketches rather than for the edge that was involved in their

creation.5 Thus, add_options*() overall contributes an amount of work which is O
�
size('checking)

�
for each element of V�nal.

Similarly to the preceding treatment of the work of add_options*(), the work of establishing

the multiplicity of edges may be counted with the newly established edges. This work is clearly

constant per edge.

The other operations of procedure elaborate_graph()'s main loop require constant amounts of

work.

Summarizing, procedure elaborate_graph() (with procedure init_graph()) requires an

amount of work which is O
��jE�nal [E�nalj+ jV�nalj

� � size('checking)�.
3Running the algorithmwith procedure unbar_edges() activated and then deactivated (just observing processing-

time | ignoring results as they are not necessarily correct) con�rms this estimate.
4Conceivably, the depth of the chain of recursive calls of add_options*()would be a factor, but proper management

of additions makes the recursive processing basically a linear progression through formulas.
5Results can be repeated, but experimentation with an implementation of the algorithm con�rms that such repe-

tition is rare, multiplying the amount of work by only a small factor.

SECTION I.3.2: COMPLEXITY OF OPERATIONS 73

Procedure search_graph() needs to �nd the maximal strongly connected components (msccs) of

the graph. [AhHU74] speci�es the complexity of this work as O
�
MAX (jV�nalj; jE�nalj)

�
. Then, with

each mscc, �rst ful�llment of unsubscripted 3- and U-formulas is checked; clearly, this operation

requires an amount of work which is linear in the quantity of such formulas, which is linear in the size

of the originally given formula '
checking

. (The size of the mscc is another factor, but it can be totaled

for all msccs as the size of the entire graph.) When formulas 'i having either the form (3����i
 i)

or the form (� U����i i) are present, the function fulfilling_congruences() searches mscc more

thoroughly. Since the state of any branch of this search is determined by a vertex in mscc and the

contents of the array branch reached[] | whose element branch reached[i] ranges from 0 to �i�1 | the

amount of work required for the search is limited by the product of the (distinct) numbers �i (and

the size of mscc, but again this factor can be expressed in the total). Lastly, if it is executed, proce-

dure delineate_model() searches the satisfactory mscc using a search-algorithm which resembles

breadth-�rst search, requiring an amount of work which is linear in the quantity of the mscc's edges

if no congruences are involved or like the amount of work of fulfilling_congruences() if congru-

ences are involved. Summarizing, procedure search_graph() requires an amount of work which is

O
�
MAX (jV�nalj; jE�nalj) � size('checking)

�
generally, with additional factors being the numbers � that

appear in formulas (3����
) or (� U����), if any.

Summarizing overall for procedure satisfy(), the complexity is

O
��jV�nalj+ jE�nal [E�nalj

� � size('checking)�, with additional factors being the numbers � that appear

in formulas (3����
) or (� U����), if any. Considering that jV�nalj � 2

[5�size('checking)]
so jE�nal [

E�nalj � jV�nalj2 � 2
[c�size('checking)]

, for a constant c, the complexity may alternatively be expressed

as O
�
size('checking) � ~c [size('checking)]

�
, for a constant ~c.6

In comparing the complexity here to that of other algorithms, one should be aware of the base-

number upon which linearity versus exponentiality is determined. With size('checking) as the base-

number, the complexity here is exponential as discussed by Sistla and Clarke [SiC85]. With the size

of the graph admitted as a base-number, the complexity here is linear as for the system of Clarke,

Emerson, and Sistla [ClES86]. (See also the work of Clarke, Grumberg, and Hamaguchi [ClGH94]

re this issue.)

6An implementation of the algorithm has indeed obeyed these bounds.

Chapter I.4

Examples of Application of the

Algorithm

This algorithm has been implemented;1 here are some examples of its use.

I.4.1 An Introductory Example

As in Section I.1.2, suppose the formula 'checking is (
2p _ 3q). This formula can be expressed

in ASCII characters as \(O[-]p \/ <>q)". Given this input, the implementation produces the

following output:

SATISFIABLE:

Leading states:

0. { p }

1. { p }

Repeat:

2. {}

This output delineates a model of the given formula as on page 28 in Section I.1.2, specifying that

such a model should have its states satisfying proposition p at time 0, satisfying p again at time 1, and

otherwise arbitrary (i.e. assignments to p at times 2�. are arbitrary, and assignments to q at all times

are arbitrary); such a model does indeed satisfy the originally given formula 'checking = (
2p_3q).

1This implementation is freely available, for any UNIX system. To get the implementation, send electronic mail
to mcguire hugh@cs.stanford.edu. (Even after I leave Stanford, mail sent to this address should reach me.)

74

SECTION I.4.2: CORRECTION OF A SPECIFICATION OF A CIRCUIT 75

I.4.2 Correction of a Speci�cation of a Circuit

[WiP89] used an early version of this implementation [SheP89] to detect an error in a speci�cation

of a circuit presented by Gordon [Gor86]. The circuit's desired behavior was that of an edge-triggered

D-type
ip-
op; abstractly, such a circuit's behavior is as follows: The circuit's boolean input is d,

and its boolean output is q; a boolean clock-input ck also impinges upon the circuit. Under certain

conditions, the value of the input d should be transferred to the output q:

d

ck

q := d

-

-

-

[Gor86]'s conditions for q getting the value of d are as follows. Some terminology here is that \rising

edges" of the clock's sequence of values correspond to changes of the clock's value from false to

true; the occurrence of such a rise is denoted by the expression \ck"". If [1] a clock-rise ck" occurs,
[2] the value of d has been stable | say being \ val ", some speci�c value which is either true or

false| for c1 units of time before this clock-rise ck", and [3] the next clock-rise ck" does not follow
that �rst one for at least c2 units, then the value of q will be that value val (i.e. the value of d which

was held stable) from c3 units of time after that �rst clock-rise to c4 units of time after the second

clock-rise.

These speci�cations can be expressed in temporal logic. But this expression involves requiring

d to be stable for c1 units of time before the �rst clock-rise. The subscripted operator \2�c1"

would seem appropriate for this circumstance, but it is not since it does not enforce the condition at

times near 0. Consequently, it's convenient to introduce a new temporal operator \�2", pronounced

\retroactively", which always has a subscript \��" or \<�", and whose semantics is the same as that

of \2" with the added condition that for a stateM@t to satisfy a formula (�2��) or (
�2<�), it

must be true that t � � or t � ��1 (and � > 0), respectively. The algorithm here processes this new

operator \�2" as follows: Any formula (�2<0) is simpli�ed to false, and any formula (�2<h�+1i) is

changed to (�2��). Then, Table I.1 (i.e. options()) is extended to include the following entries:

Formula Option #1 Further Options (if any)

�2�0 f g
�2�h�+1i f ;
(�2��)g
:�2�0 f: g

:�2�h�+1i f: g f:
(�2��)g
With this new operator �2, the speci�cation above can be expressed as follows: a clock-rise ck"

can be expressed as (ck ^
:ck), and then the conditions (above) for q := d can be expressed as

76 PART I, CHAPTER 4: EXAMPLES OF APPLICATION OF THE ALGORITHM

the following formula 's:�
ck" ^ [�2�c1 (d() val)] ^
[2<c2 :(ck")]

�
)
�

c3

�
(q() val) A

�
ck" ^ [2<c4 (q () val)]

���
As is the intent of a speci�cation, it can be applied to a proposal (for a circuit) to ensure that

the proposal is correct. Such a proposal for a D-type
ip
op is as follows, using NAND-gates; given

some inputs at one instant of time, a NAND-gate's output at the next instant is the negation of the

conjunction of the given inputs.

NAND

NAND3

NAND

NAND

NAND

NAND

ck -s

-

d -

p1

-

s

-

p2
-s

-

p
3

-s

-

-

p4

-

p
5

-

q-s

-

(The p
i
s are useful when referring to the outputs of the NAND-gates.) [Gor86] claimed that this

circuit satis�es the speci�cation above with c1 = 2, c2 = 3, c3 = 4, and c4 = 1.

[WiP89] checked [Gor86]'s claimusing the aforementioned implementation, encoding the operation

of the circuit as a formula 'c and then verifying the super-formula (2'c) 2's) | i.e. checking

the satis�ability of the formula :(2'c) 2's). The implementation here allows the following

expression of this material: (The character \%" begins comments.)

% "gor86.tl.c"

% Choose a value, "TRUE" or "FALSE" --- here, "TRUE":

#define _val TRUE

#define _rise(_x) ((_x) /\ (-)[~(_x)])

% Here, "i" indicates input and "o" indicates output.

#define _nand(_i1,_i2,_o) (O(_o) <==> ~[(_i1) /\ (_i2)])

#define _nand3(_i1,_i2,_i3,_o) (O(_o) <==> ~[(_i1) /\ (_i2) /\ (_i3)])

#define _circuit_operation [_nand(d,p_2,p_1) \

/\ _nand3(p_1,ck,p_3,p_2) \

SECTION I.4.2: CORRECTION OF A SPECIFICATION OF A CIRCUIT 77

/\ _nand(ck,p_4,p_3) \

/\ _nand(p_3,p_1,p_4) \

/\ _nand(p_2,q,p_5) \

/\ _nand(p_5,p_3,q) \

]

#define _specification \

[(_rise(ck) /\ [<-]_{LEQ 2}:(d <==> _val) /\ O:[]_{< 2}:~_rise(ck)) \

==> \

(O^4[(q <==> _val) A (_rise(ck) /\ []_{< 1}:(q <==> _val))]) \

]

% To verify:

[]:_circuit_operation ==> []:_specification

The C preprocessor enables use of the macros here;2 after such preprocessing, the actual for-

mula (2'c)2's) is as follows:

[]((Op_1 <==> ~(d /\ p_2))

/\

(Op_2 <==> ~(p_1 /\ ck /\ p_3))

/\

(Op_3 <==> ~(ck /\ p_4))

/\

(Op_4 <==> ~(p_3 /\ p_1))

/\

(Op_5 <==> ~(p_2 /\ q))

/\

(Oq <==> ~(p_5 /\ p_3))

)

==>

[](ck /\ (-)~ck /\ ([<-]_{LEQ 2} (d <==> T)) /\ O([]_{LEQ 1} ~(ck /\ (-)~ck))

==>

(O^4 ((q <==> T) A (ck /\ (-)~ck /\ ([]_{LEQ 0} (q <==> T)))))

)

As [WiP89] discovered, this formula is not valid. When given the preceding as input,3 the

implementation here produces the following output:

2Edward Chang suggested this use of the C preprocessor (in 1993).
3As the actual algorithm checks satis�ability, not validity, the implementation actually applies the algorithm to

the negation of the given input. If such application determines unsatis�ability, then validity of the originally given
input is reported; satis�ability reported by the sub-application is interpreted as falsi�ability of the originally given
input.

78 PART I, CHAPTER 4: EXAMPLES OF APPLICATION OF THE ALGORITHM

FALSIFIABLE:

Leading states:

0. { ck, d, p_1, ~p_2, p_3, ~p_4, ~p_5, ~q}

1. {~ck, d, p_1, ~p_2, p_3, ~p_4, p_5, q}

2. { ck, d, p_1, p_2, p_3, ~p_4, p_5, ~q}

3. { ck, ~p_1, ~p_2, p_3, ~p_4, p_5, ~q}

4. {~ck, ~d, p_1, p_2, p_3, p_4, p_5, ~q}

5. {~ck, ~d, p_1, p_2, p_3, ~p_4, p_5, ~q}

Repeat:

6. {~ck, ~d, p_1, p_2, p_3, ~p_4, p_5, ~q}

Thus, one has a trace of the incorrect behavior and can debug it. With such information, [WiP89]

determined that too rapid
uctuation of the clock causes such incorrect behavior here, and they

discuss better speci�cations.

SECTION I.4.3: COMPOSITIONAL VERIFICATION OF TIMING-SPECIFICATIONS 79

I.4.3 Compositional Veri�cation of Timing-Speci�cations

The work of Henzinger, Manna, and Pnueli [HeMP94] presents \timed transition-diagrams" for

expressing systems with timing-speci�cations. An example derived from [HeMP94]'s tra�c-light

example is as follows.

Here, a system is represented by a collection of automata-like diagrams | plus some variables,

for which there may be initial conditions. Each of the diagrams corresponds to a component of the

overall system being represented. In each diagram, locations correspond to `states' of the system-

component being represented, and arcs between locations correspond to transitions between these

states; the initial location for a component is speci�ed via the annotation \>" at the location.

Preconditions for a transition are speci�ed via a label (on the relevant arc) comprising a boolean

expression delimited at the end by \?" or \)"; a transition from a state is `enabled' when the

current location is the state's location and the transition's preconditions' current value is true,

and otherwise the transition is not enabled. E�ects of a transition are speci�ed via assignment-

statements following the label-delimiter \)": in the state following occurrence of a transition,

for each assignment-statement \hvariablei := hvaluei" labeling the transition's arc, the value of

hvariablei is hvaluei. A transition's timing-speci�cations comprise a lower bound l and an upper

bound u, which label the transition's arc as \[l; u]" (or \[l;1)" if u is 1); a transition with lower

bound l and upper bound u must be enabled for l units of time before occurring, and it must never

be enabled for more than u units of time (without occurring). An upper bound of \!" speci�es that

the associated transition is required to occur as soon as its lower bound is satis�ed. At each location

is an idling transition which is not shown with an arc; this transition does not change location, it

has no preconditions, it changes no variables, its lower bound is 1, and its upper bound is 1.

The sample system considered here simulates activity involving tra�c at an automated toll-booth.

Each time a vehicle's driver pays the toll, the toll-booth's gate (which in reality is typically merely

a bar) should be opened (i.e. raised) for an amount of time su�cient to allow passage of the vehicle

through the gate, and then the gate should be closed. Here, the tra�c is considered to comprise a

single process Pt; the gate-controller also comprises a single process, Pc. Thus, two diagrams are used

to represent the overall system. Variables used comprise gate and payment; initially, gate = hclosedi.
The diagram representing the tra�c is as follows:

Pt :
0 1���� ����> -

& %
6

:payment) payment := true

[1;1)

gate = hopeni?
[2; 3]

The transition from location 0 to 1 represents the arrival of a driver who pays the toll. The transition

80 PART I, CHAPTER 4: EXAMPLES OF APPLICATION OF THE ALGORITHM

back represents the passage of the driver through the gate; this transition back is possible only if the

gate is open, and between two and three units of time may pass before completion of this transition.

The diagram representing the gate-controller is as follows:

Pc :
0 1���� ����> -

& %
6

:payment)
�
payment := false,
gate := hopeni

�
[1; !]

:payment) gate := hclosedi
[5; 5]

�
��

$

%@
@@I

payment
)
payment := false

[1; 1]

The transition from location 0 to 1 here represents the acceptance of a payment and the concomitant

opening of the gate. The transition from location 1 back to location 0 represents the closing of the

gate �ve units of time after the payment was accepted. The transition from location 1 to itself

represents acceptance of payments while the gate is already open; after each such acceptance, the

gate will be kept open for �ve units of time.

Translating those diagrams into temporal formulas is somewhat automatic. One issue that

arises involves `frame-axioms', as discussed by McCarthy and Hayes [MccH69] and Kowalski [Kow79]:

if a transition does not modify a variable, then its value is preserved. Expressing a transition's

preservation of a variable which is private to a module is straightforward: the transition's formula

can simply specify that the variable's next value is the same as the current value (\
hvariablei ()
hvariablei", for a boolean hvariablei). The following macro-�le is used to express such preservation:

% "pres_macro.tl.h"

#ifndef PRES_MACRO_TL_H

#define PRES_MACRO_TL_H

#define _preserving(_v) (O[_v] <==> [_v])

#endif

Preservation of variables which are modi�able by multiple modules happens only when each module

does not modify the variable; special propositions for each such variable and module carry this

information, e.g. pt_preserving_payment and pc_preserving_payment in the following.

Here is the translation of the tra�c-process Pt into temporal forms:

% "traffic.tl.h"

% Identifier for elements of this module: "pt" (*p*rocess: *t*raffic).

#include "pres_macro.tl.h"

% Publicly writable variable: "payment".

% So public frame-axioms involving this module use "pt_preserving_payment".

SECTION I.4.3: COMPOSITIONAL VERIFICATION OF TIMING-SPECIFICATIONS 81

% Variable read but not written here: "gate_is_open".

% Locations: 0 and 1.

% So the location-variables here comprise "pt_at_l0" and "pt_at_l1".

#define _pt_init pt_at_l0

% Idling ("I") transition ("tr") --- at any location:

#define _enabled_pt_tr_I TRUE

#define occurring_pt_tr_I \

(_enabled_pt_tr_I \

/\ [_preserving(pt_at_l0) /\ _preserving(pt_at_l1)] \

/\ pt_preserving_payment)

% lower bound is simply 1:

#define _lower_bound_pt_tr_I TRUE

% upper bound is simply infinity:

#define _upper_bound_pt_tr_I TRUE

% transition from location 0 to 1:

#define _enabled_pt_tr_0_1 (pt_at_l0 /\ ~payment)

#define occurring_pt_tr_0_1 \

(_enabled_pt_tr_0_1 /\ Opt_at_l1 /\ Opayment)

% lower bound is simply 1, upper bound is simply infinity:

#define _lower_bound_pt_tr_0_1 TRUE

#define _upper_bound_pt_tr_0_1 TRUE

% transition from location 1 to 0:

#define _enabled_pt_tr_1_0 (pt_at_l1 /\ gate_is_open)

#define occurring_pt_tr_1_0 \

(_enabled_pt_tr_1_0 /\ Opt_at_l0 /\ pt_preserving_payment)

#define _lower_bound_pt_tr_1_0 \

(occurring_pt_tr_1_0 ==> [<-]_{< 2} _enabled_pt_tr_1_0)

#define _upper_bound_pt_tr_1_0 ~[]_{LEQ 3}:_enabled_pt_tr_1_0

#define _pt_distinct_locations (pt_at_l0 XOR pt_at_l1)

#define _pt_some_trans \

(occurring_pt_tr_I \/ occurring_pt_tr_0_1 \/ occurring_pt_tr_1_0)

#define _pt_lower_bounds \

(_lower_bound_pt_tr_0_1 /\ _lower_bound_pt_tr_1_0)

#define _pt_upper_bounds \

(_upper_bound_pt_tr_0_1 /\ _upper_bound_pt_tr_1_0)

#define _pt_operation \

(_pt_distinct_locations /\ _pt_some_trans /\ _pt_lower_bounds \

/\ _pt_upper_bounds)

Next, here is the temporal translation for the gate-controlling process, Pc:

82 PART I, CHAPTER 4: EXAMPLES OF APPLICATION OF THE ALGORITHM

% "controller.tl.h"

% Identifier for elements of this module: "pc" (*p*rocess: *c*ontroller).

#include "pres_macro.tl.h"

% Publicly writable variable: "payment".

% So public frame-axioms involving this module use "pc_preserving_payment".

% Privately writable variable: "gate_is_open".

% Locations: 0 and 1.

% So the location-variables here comprise "pc_at_l0" and "pc_at_l1".

#define _gate_is_closed ~gate_is_open

#define _pc_init (pc_at_l0 /\ _gate_is_closed)

% Idling transition (at any location):

#define _enabled_pc_tr_I TRUE

#define _occurring_pc_tr_I \

(_enabled_pc_tr_I \

/\ [_preserving(pc_at_l0) /\ _preserving(pc_at_l1)] \

/\ _preserving(gate_is_open) /\ pc_preserving_payment \

)

% lower bound is simply 1:

#define _lower_bound_pc_tr_I TRUE

% upper bound is simply infinity:

#define _upper_bound_pc_tr_I TRUE

% transition from location 0 to 1:

#define _enabled_pc_tr_0_1 (pc_at_l0 /\ payment)

#define _occurring_pc_tr_0_1 \

(_enabled_pc_tr_0_1 /\ Opc_at_l1 /\ O~payment /\ Ogate_is_open)

#define _lower_bound_pc_tr_0_1 TRUE

% upper bound is "!" --- `forcing' action at lower bound (which is 1):

#define _upper_bound_pc_tr_0_1 \

([<-]_{< 1}:_enabled_pc_tr_0_1 ==> _occurring_pc_tr_0_1)

% transition from location 1 to 1:

#define _enabled_pc_tr_1_1 (pc_at_l1 /\ payment)

#define _occurring_pc_tr_1_1 \

(_enabled_pc_tr_1_1 /\ Opc_at_l1 /\ O~payment /\ _preserving(gate_is_open))

#define _lower_bound_pc_tr_1_1 TRUE

#define _upper_bound_pc_tr_1_1 ~[]_{LEQ 1}:_enabled_pc_tr_1_1

SECTION I.4.3: COMPOSITIONAL VERIFICATION OF TIMING-SPECIFICATIONS 83

% transition from location 1 to 0:

#define _enabled_pc_tr_1_0 (pc_at_l1 /\ ~payment)

#define _occurring_pc_tr_1_0 \

(_enabled_pc_tr_1_0 /\ Opc_at_l0 /\ O:_gate_is_closed \

/\ pc_preserving_payment)

#define _lower_bound_pc_tr_1_0 \

(_occurring_pc_tr_1_0 ==> [<-]_{< 5}:_enabled_pc_tr_1_0)

#define _upper_bound_pc_tr_1_0 ~[]_{LEQ 5}:_enabled_pc_tr_1_0

#define _pc_distinct_locations (pc_at_l0 XOR pc_at_l1)

#define _pc_some_trans \

(_occurring_pc_tr_I \/ _occurring_pc_tr_0_1 \/ _occurring_pc_tr_1_1 \

\/ _occurring_pc_tr_1_0)

#define _pc_lower_bounds \

(_lower_bound_pc_tr_0_1 /\ _lower_bound_pc_tr_1_1 \

/\ _lower_bound_pc_tr_1_0)

#define _pc_upper_bounds \

(_upper_bound_pc_tr_0_1 /\ _upper_bound_pc_tr_1_1 \

/\ _upper_bound_pc_tr_1_0)

#define _pc_operation \

(_pc_distinct_locations /\ _pc_some_trans /\ _pc_lower_bounds \

/\ _pc_upper_bounds)

And here is a �le expressing composition of Pt and Pc:

% "composition.tl.h"

#include "traffic.tl.h"

#include "controller.tl.h"

% frame-axiom for the one publicly writable variable:

#define _frame_public_var \

(pt_preserving_payment /\ pc_preserving_payment ==> _preserving(payment))

#define _system_operation \

(_pt_operation /\ _pc_operation /\ _frame_public_var)

#define _system_init (_pt_init /\ _pc_init)

The implementation here can be used to check various properties of the overall system expressed

by the preceding. For example, it's naturally desirable that a driver who pays actually progresses

through the gate, say within four units of time after paying. This property can be expressed as

follows:

84 PART I, CHAPTER 4: EXAMPLES OF APPLICATION OF THE ALGORITHM

% "progression.tl.c"

#include "composition.tl.h"

[]:_system_operation

==>

_system_init ==> [](pt_at_l1 ==> <>_{LEQ 4}:pt_at_l0)

When given this material as input, the implementation veri�es it; the output is simply \VALID".

Other desirable properties derive from the original source for this example, which was the tra�c-

light example of [HeMP94]:

(A) 2

�
payment) �

3<2 [2�4 (gate = open)]
��

(B) 2
�
payment) [3�5 (:payment)]

�
(C) 2

�
[2�5(:payment)]) (gate = closed)

�
These properties actually concern only the gate-controlling module; the tra�c-module is irrelevant

to them. Hence they may be expressed as follows:

% "a.tl.c"

#include "controller.tl.h"

[]:_pc_operation

==>

_pc_init ==> [](payment ==> <>_{< 2}:[]_{LEQ 4}:gate_is_open)

% "b.tl.c"

#include "controller.tl.h"

[]:_pc_operation

==>

_pc_init ==> [](payment ==> <>_{LEQ 5}:~payment)

% "c.tl.c"

#include "controller.tl.h"

[]:_pc_operation

==>

_pc_init ==> []([-]_{LEQ 5}~payment ==> _gate_is_closed)

Again, the implementation here veri�es the (resultant) formulas, producing the output \VALID".

Verifying such properties of one module is useful because such can then be used to facilitate

veri�cation of other modules or the overall system. For example, property (A) here can replace

details of the gate-controlling module in veri�cation of the progression-property above:

SECTION I.4.3: COMPOSITIONAL VERIFICATION OF TIMING-SPECIFICATIONS 85

% "a_progression.tl.c"

#include "traffic.tl.h"

[]:_pt_operation

/\

[](payment ==> <>_{< 2}:[]_{LEQ 4}:gate_is_open)

==>

_pt_init ==> [](pt_at_l1 ==> <>_{LEQ 4}:pt_at_l0)

Again, given this input, the implementation here produces the output \VALID".

It is perhaps further interesting to purposefully `munge' the material here and observe the results.

For example, changing the \4" to \6" in a.tl.c engenders the following output:

FALSIFIABLE:

Leading states:

0. {~gate_is_open, payment, pc_at_l0, ~pc_at_l1, ~pc_preserving_payment}

1. { gate_is_open, ~payment, ~pc_at_l0, pc_at_l1, pc_preserving_payment}

2. { gate_is_open, ~payment, ~pc_at_l0, pc_at_l1, pc_preserving_payment}

3. { gate_is_open, ~payment, ~pc_at_l0, pc_at_l1, pc_preserving_payment}

4. { gate_is_open, ~payment, ~pc_at_l0, pc_at_l1, pc_preserving_payment}

5. { gate_is_open, ~payment, ~pc_at_l0, pc_at_l1, pc_preserving_payment}

Repeat:

6. {~gate_is_open, ~payment, pc_at_l0, ~pc_at_l1, pc_preserving_payment}

This output shows processing of the system where payment is true at some moment yet the gate is

not then open for six units of time.

86 PART I, CHAPTER 4: EXAMPLES OF APPLICATION OF THE ALGORITHM

I.4.4 Interpolation-Properties of This Temporal Logic

Maksimova [Mak91] shows that basic temporal logics fail to provide all interpolants. Specif-

ically, [Mak91] exhibits a formula AhP ;X i (where \P" and \X" are placeholders for expressions)

such that the super-formula [Ahp; xi ^ Ahp; yi) (x () y)] (where \x" and \y" are propo-

sitions) is valid, but any basic temporal logic contains no formula BhPi such that the super-

formula
�
Ahp; xi) (x() Bhpi)� is valid. The formula Ahp; xi here is as follows:

2(:x ^:2p) :
:x) ^ 2(:
:x)
x) ^ 2(
x) :x^ :2p) ^ 2(x) :2p) ^ 232p

Interpolation of this formula is di�cult because this formula indicates alternation of x through time,

and as Wolper [Wo83] discusses (re \EVENhX i"), basic temporal logics cannot express such.

But in the temporal logic here, an interpolant Bhpi for Ahp; xi is as follows:�
3���2 (:p ^
2p)

�
Giving the following input to the implementation here con�rms this interpolation:

% "interp.tl.c"

#define A(_P,_X) \

([](~_X /\ ~[]:_P ==> ~O~_X) /\ [](~O~_X ==> O:_X) \

/\ [](O:_X ==> ~_X /\ ~[]:_P) /\ [](_X ==> ~[]:_P) /\ []<>[]:_P \

)

A(p,x) ==> [x <==> <>_{CONG 2}(~p /\ O[]p)]

Given this input, the implementation produces the output \VALID". (Again, it may be more in-

teresting to see the implementation �nd (falsifying) models, e.g. if �Bhpi = �:2p ^
(3���22p)
�

is used instead of the correct Bhpi.) The implementation can also verify the formula�
Ahp; xi) 2[x() Bhpi]�.

Chapter I.5

Concluding Remarks for Part I

I.5.1 Advantages of This Method

The past-operators and metric operators which are handled | e�ciently | by the al-

gorithm here facilitate formal veri�cation (and/or debugging) of concurrent and reactive

systems by enabling one to express both the workings and the desired properties of systems

concisely, conveniently, and clearly.

With a speci�cation (of, say, a program) and a desired property of it being expressed

together as one formula, the state-space here is restricted by the property being checked,

i.e. inconsequential state-sketches are elided. As a contrasting example, the program Mur''''

of Dill, Drexler, Hu, and Yang [DDHY92] does not employ such restriction, so it explores

more states.

Instead of having completely speci�c states, state-sketches are used here, avoiding speci-

�city by neither satisfying nor falsifying formulas unless required to commit to one or

the other. In some sense, state-sketches represent sets of states, as with binary decision-

diagrams [Mcm93].

Formulas are generally maintained as the user speci�ed them1 | rather than, say, all being

translated to some internal forms as in the work of Fisher [Fish92] | so the user can more

easily appreciate or use the algorithm's auxiliary information about a satisfying model:

While the algorithm's basic output is simply a list of sets of literals delineating a model,

associated state-sketches' formulas are available so the user can see the details of how the

original formula is satis�ed, if desired.

1If additional forms such as in Section 0.3 are desired, one need merely determine their options(). This easy
extensibility is demonstrated with the operator \�2" on page 75 above.

87

88 PART I, CHAPTER 5: CONCLUDING REMARKS FOR PART I

This algorithm is obviously parallelizable since su�ciently distant parts of a graph are

independent, i.e. di�erent processors could work on di�erent portions of the graph. A

particularly useful scheme would be to have one processor not modifying the graph but

merely searching portions of it for ful�lling strongly connected components. By contrast,

algorithms such as that of Burch, Clarke, McMillan, Dill, and Hwang [BuCMDH90] seem

not straightforwardly parallelizable because their main data-structure, a binary decision-

diagram, is basically monolithic, not easily treatable as independent components. (But see

also the work of Kimura and Clarke [KimC90] | which actually involves converting binary

decision-diagrams to graphs(!) | and the work of Zhang, Sokolosky, and Smolka [ZSS94].)

I.5.2 Contributions of This Work

The speci�cally new contributions of mine in this part of this dissertation comprise:

e�ciently handling all formulas with past-operators.

the same, for metric temporal operators.

a constructive proof of correctness of the algorithm here, employing the idea of embedding

of a model.

Part II

A Method for Checking

Predicate Temporal Formulas

89

Chapter II.0

Introduction to Part II

\Let us calculate." | Gottfried Leibniz �

This part of this dissertation presents a deduction-calculus for temporal logic.1

While model-checking or -exploring (`semantic tableau') methods such as that presented in

Part I (or related methods such as that of Plaisted [Pl86]) are e�ective for temporal formulas which

are essentially propositional, such methods have been inapplicable to general predicate temporal

formulas. The deduction-calculus of Abadi and Manna [AbM90] extends nonclausal resolution for

predicate logic (as presented by Manna and Waldinger [ManWa80]) to handle temporal operators

directly, but that deduction-calculus requires a Cut rule which gratuitously introduces new formulas

into proofs, and it imposes complicated temporal restrictions on its rules.

An alternative to reasoning directly with temporal operators involves translating temporal for-

mulas into nontemporal �rst-order predicate logic, using quanti�cations and comparisons of explicit,

\rei�ed" (as discussed by Shoham [Shoh87]) time-parameters2 to express the temporal operators.

Then, one can apply the accumulated technology for reasoning in �rst-order logic. Such an ap-

proach is used in the work of Ohlbach [O88] and Wallen [Wa89] for modal logics other than temporal

logic, and obliquely in the work of Fr�uhwirth [Fr�u94] for a temporal logic whose scope is limited (so its

deduction can be automated via logic-programming). But indiscriminately performing that transla-

tion can obfuscate otherwise simple modal-logic proofs, in which the modal operators are intuitively

�In Gerhardt�C. (editor): Die philosophischen Schriften von Gottfried Wilhelm Leibniz, Volume VII, �rst part:
\Scientia Generalis; Characteristica", `Borarbeiten zur allgemeinen Charakteristik', Section xiv (written no earlier
than 1684), page 200. Wiedmann, Berlin, 1875{1890.

1This part of this dissertation is an extended version of the joint work of McGuire, Manna, and
Waldinger [McgMW94].

2The term \reify" is used elsewhere | e.g. in the work of Aitken, Reichgelt, and Shadbolt [AiRS94] | more
broadly, referring to schemes involving handling modal-logic formulas and possible worlds as `objects' in a �rst-order
logic. Here, the only rei�ed `objects' are time-parameters (which correspond to possible worlds).

91

92 PART II, CHAPTER 0: INTRODUCTION TO PART II

meaningful; proofs requiring the already cumbersome operation of modal induction are particularly

susceptible to such disservice. (See also the work of Ohlbach [O93] re e�ciency.)

This part of this dissertation presents a deduction-calculus which employs translation like the

preceding, but with some �nesse. Temporal operators are translated selectively and gradually, and

the resulting expressions representing time are simple: since the domain of time here is the natural

numbers, temporal operators can be represented by addition (and subtraction).3 Then, reasoning

about terms which represent time is done automatically via uni�cation (as with \t" in the following

simple example) plus a decision-procedure for Presburger arithmetic.

An example of such a proof, of the validity of the formula (2p) p), is as follows:

Assertions Goals Explanations

0 0 :::: (2p) p) Theorem

1 0 :::: 2
�
p 0, split \)"

2 0 :::: p
+

0, split \)"

3 t :::: p
�

1, reify \2
�"

4 true
2&3, resolution,

uni�er ft := 0g

This structure formalizes the goal-directed style of proofs that humans prefer to construct and �nd

easiest to understand.4

The deduction-calculus here also provides equality-application, induction for temporal operators,

and rules such as rewriting, for convenience. This deduction-calculus subsumes prior ones such as

that of [AbM90]; i.e. any proof using that deduction-calculus can also be done here.

3Use of addition (and subtraction) certainly was possible previously, but apparently it wasn't done; compar-
isons (such as \�") were used.

4Re this goal-directed paradigm for (interactive) theorem-proving, see also the work of Constable et al. [Con86].

Chapter II.1

A Deduction-Calculus

II.1.0 Framework: Deductive Tableaux

The framework here, using deductive tableaux, is that of [ManWa93].

Notation and Procedure

The deduction-calculus presented here is designed for establishing the validity of any given for-

mula 'checking which has no free parameters1. (It's customary for such a formula 'checking to actually

have the form [0 :::: checking].)

The form of a proof in the deduction-calculus here is a deductive tableau, which is a table

with four columns and any positive number of rows. The leftmost column simply contains row-

numbers; the middle two columns, titled \Assertions" and \Goals", contain formulas | only one

per row; the rightmost column, titled \Explanations", contains texts which explain how rows were

derived. The intuitive interpretation of a deductive tableau is that the column of Goals contains the

formula being proved valid, followed by reductions of it to more tractable Goals, and the column of

Assertions contains formulas which can be assumed true, to be used in the proof. Construction of a

proof of the validity of a formula 'checking begins with the following deductive tableau:

Assertions Goals Explanations

0 '
checking Theorem

1This restriction is necessary for soundness; without this restriction it would be possible to prove invalid formulas.
For example, without this restriction the formula [0 :::: p(a)) p(x)] would be provable via one application of the
Splitting rule and then one application of the Resolution rule. But this formula is not valid because the semantics of
the logic here speci�es nothing such as some sort of implicit quanti�cation for the free parameter-symbol x; a model
can interpret x as one speci�c object while interpreting a as a di�erent object.

93

94 PART II, CHAPTER 1: A DEDUCTION-CALCULUS

Then, rows are added via rules. The proof succeeds when true is generated as a Goal formula. (The

deductive tableau on the preceding page presents a complete, successful proof.)

Associated with every subformula in a deductive tableau is a characteristic called

polarity, as in the work of Murray [Mu78, Mu82], which is determined by the parity of the number

of explicit or implicit negations within whose scope the subformula lies. An implication (\)") im-

plicitly negates its �rst argument. Any strict subformula of an equivalence (\()") is considered to

have both even and odd parity of negations. And placement of a formula in the Assertions column

implicitly negates the formula.2 Even parity of negations occasions positive polarity, and odd par-

ity occasions negative polarity. A superscript of either \+" or \�" (or both) on a formula indicates

the formula's polarity (or polarities).

Implicit Automatic Operations

During the process of constructing a proof, quasi-deductive primitive operations which act within

rows rather than adding new ones include renaming free or quanti�ed parameter-symbols as desired

and automatically simplifying subexpressions.3 Simpli�cations are listed in Tables II.1, II.2, II.3,

II.4, II.5, and II.6 (on the following four pages).

2This situation re
ects the `semantics' of a deductive tableau (see Section II.3.1), involving an implication whose
�rst argument contains the Assertions (while the second argument contains the Goals).

3Such an automatic operation enforces compliance with the syntactic restriction that the operator
 does not
accept
-formulas as arguments by rewriting potential argument
-formulas as speci�ed in Table II.9 (on page 101).

SECTION II.1.0: FRAMEWORK: DEDUCTIVE TABLEAUX 95

Table II.1: Simpli�cations for Boolean Operators

:true �! false

:false �! true

:: �!

:(: 1 ^: 2 ^ : : :^: k) �! 1 _ 2 _ � � � _ k
:(: 1 _: 2 _ � � � _ : k) �! 1 ^ 2 ^ : : :^ k

: : :^ true ^ : : : �! : : :^ : : :
: : :^ false ^ : : : �! false

: : :^ ^ : : :^ ^ : : : �! : : :^ ^ : : :^ : : :
: : :^ ^ : : :^ : ^ : : : �! false

: : :^ : ^ : : :^ ^ : : : �! false

: : :^ (: : :^ : : :) ^ : : : �! : : :^ : : :^ : : :^ : : :
� � � _ true _ � � � �! true

� � � _ false _ � � � �! � � � _ � � �
� � � _ _ � � � _ _ � � � �! � � � _ _ � � � _ � � �
� � � _ _ � � � _ : _ � � � �! true

� � � _ : _ � � � _ _ � � � �! true

� � � _ (� � � _ � � �) _ � � � �! � � � _ � � � _ � � � _ � � �
) true �! true

) false �! :
true) � �! �

false) � �! true

) �! true

) : �! :
:) �!

:) :� �! �)

:() :�) �! ^ �
 () true �!

 () false �! :
 () �! true

 () : �! false

: () :� �! () �

:(() :�) �! () �

� � �
 � � �
 true
 � � �
 � � � �! :(� � � _ � � � _ � � � _ � � �)
� � �
 false
 � � � �! � � �
 � � �

� � �

 � � �

 � � � �! : ^ (� � �
 � � �
 � � �)
� � �

 � � �
 :
 � � � �! :(� � � _ � � � _ � � �)

(Some simpli�cations with elements simply reversed from the preceding are elided here.)

As such might arise, an application of \^", _", or \
" to one argument reduces to the argument,

an application of \^" to zero arguments reduces to true, and an application of _" or \
" to zero

arguments reduces to false.

For each simpli�cation which speci�es multiple occurrences of a formula in the expression be-

ing simpli�ed, quanti�ed parameter-symbols can be renamed to enable matching. Thus, the for-

mula
�
(8x)p(x) ^ (8y)p(y)� can be simpli�ed to (8x)p(x) .

96 PART II, CHAPTER 1: A DEDUCTION-CALCULUS

Table II.2: Simpli�cation for Quanti�ers

(Q : : : ; �; : : :) �! (Q : : : ; : : :) when parameter � is not free in .

(If the quanti�er (Q : : : ; �; : : :) actually has no parameter-symbols other than �, it is simply deleted.)

Table II.3: Simpli�cations for Plain Temporal Operators

true �! true

false �! false

2true �! true

2false �! false

22 �! 2

3true �! true

3false �! false

33 �! 3

true U �! 3

false U �!

� U true �! true

� U false �! false

 U �!

true A �! true

false A �!

� A true �! true

� A false �! 2�

 A �!

true �! :�rst

false �! �rst

2true �! true

2false �! false

22 �! 2

3true �! true

3false �! false

33 �! 3

true S �! 3

false S �!

� S true �! true

� S false �! false

 S �!

true B �! true

false B �!

� B true �! true

� B false �! 2�

 B �!

SECTION II.1.0: FRAMEWORK: DEDUCTIVE TABLEAUX 97

Table II.4: Simpli�cations for Metric Temporal Operators

0
 �!

0
 �!

�0� �! �

2<0 �! true

3<0 �! false

� U<0 �! false

� A<0 �! true

2<0 �! true

3<0 �! false

� S<0 �! false

� B<0 �! true

2�0 �!

3�0 �!

� U�0 �!

� A�0 �! _ �
2�0 �!

3�0 �!

� S�0 �!

� B�0 �! _ �
2���0 �!

3���0 �!

� U���0 �!

� A���0 �! _2�
2���0 �!

3���0 �!

� S���0 �!

� B���0 �! _2�
Any subscript \���1" is erased.

98 PART II, CHAPTER 1: A DEDUCTION-CALCULUS

Table II.5: Simpli�cations for Time-Representing Terms

: : :+ (: : :+ : : :) + : : : �! : : :+ : : :+ : : :+ : : :

: : :+ 0 + : : : �! : : :+ : : :

pred(1) �! 0

pred(: : :+ 1 + : : :) �! : : :+ : : :

As such might arise, an application of \+" to one argument reduces to the argument, and an

application of \+" to zero arguments reduces to 0.

Table II.6: Simpli�cations for Time-Annotations

[� :::: true] �! true

[� :::: false] �! false�
� :::: [~� ::::]

� �! [~� ::::]

Axioms and Lemmas

The re
exive axiom for equality is (8x)[0 :::: 2(x = x)], or simply (8t)(t = t) as a time-formula.

As desired, this axiom (either form) can be added to a deductive tableau as an Assertion. Similarly

usable axioms involving time are as follows:

Table II.7: Axioms for Time-Representing Expressions

:(1 = 0)

(8t; ~t)(~t+ 1 = t+ 1) ~t = t)

(8t)(t � 0) t = 0)

(8t; ~t)
�
~t � t () (9d)(~t+ d = t)

�
(8t; ~t)

�
~t < t () ~t � t ^ : (~t = t)

�
(8t)(0 ��� t)
(8t; ~t)(~t ��� t) ~t+ t ��� t)

(Other axioms for time which one might consider are subsumed by the simpli�cations of Table II.5

and associative-commutative uni�cation for \+".)

SECTION II.1.0: FRAMEWORK: DEDUCTIVE TABLEAUX 99

Table II.8: Axioms for Temporally Invariable Function- and Relation-Symbols

For each temporally invariable function-symbol
 used with arity k:

(8x1; x2; : : : ; xk; y)
��
0 :::: 3

�

(x1; : : : ; xk) = y

��) �
0 :::: 2

�

(x1; : : : ; xk) = y

���
:

For each temporally invariable relation-symbol � used with arity k:

(8x1; : : : ; xk)
�
[0 :::: 3�(x1; : : : ; xk)]) [0 :::: 2�(x1; : : : ; xk)]

�
:

If the validity being proved is relative to a theory of a domain, then any domain-axiomof the theory

can also be added to the deductive tableau as an Assertion.

Previously proved lemmas can be added similarly.

Typically, when an axiom or lemma is loaded into a deductive tableau, its essentially leading

universal quanti�ers and \2"s are unobtrusively eliminated and rei�ed (see below), respectively.

For example, the axiom (8x)[0 :::: 2(x = x)] can be loaded simply as [t :::: x = x].

The Scheme for Deduction-Rules

A deduction-rule applies to one or two antecedent rows which can be anywhere in a deductive

tableau; application of a deduction-rule adds one or more generated rows to the deductive tableau.

A schema for such an operation may be presented like:

Assertions Goals

with antecedent rows speci�ed above the double line and generated rows below. A schema specifying

simply substitution of a formula e' for a subformula ' of one antecedent may be presented simply

as:

' �! e' :
If there are two such schemas ' �! e' and e' �! ', they may be presented together as:

' ! e' :
Each deduction-rule comprises a family of several related schemas.

As indicated in their presentations below, some deduction-rules can be combined with others.

Such combination involves one rule's generated rows undergoing application of another rule, without

the intermediate (generated) rows being added to the deductive tableau.

100 PART II, CHAPTER 1: A DEDUCTION-CALCULUS

Highlighting

A box or underline highlights an expression (or symbol) in a row when the expression (or symbol)

is particularly signi�cant to a deduction-rule which is applied to that row; such a signi�cant expres-

sion is called a target of the rule. For examples: for the deduction-rules of Quanti�er-elimination,

Rei�cation of a temporal operator, and Equality-application, the target is a quanti�er, a temporal

operator, or an equation respectively.

II.1.1 Basic Deduction-Rules

The Rewriting Rule

This rule generates a new row froma prior one by replacing a target subformulawith an equivalent

formula. Rewritings are listed in Tables II.9, II.10, II.11, II.12, and II.13 (on the following four

pages).4

4Compare these rewritings to the \options" of Table I.1 (on pages 22{23).

SECTION II.1.1: BASIC DEDUCTION-RULES 101

Table II.9: Rewritings for Boolean Operators and Quanti�ers

: : :^ ' ^ ^ : : : ! : : :^ ^ ' ^ : : :
� � � _ ' _ _ � � � ! � � � _ _ ' _ � � �

) � ! : _ �
 () � ! � ()

 () � ! () �) ^ (�))

 () � ! (^ �) _ (: ^ :�)
:(1 ^ 2 ^ : : :^ k) ! : 1 _ : 2 _ � � � _ : k
:(1 _ 2 _ � � � _ k) ! : 1 ^ : 2 ^ : : : ^ : k

:() �) ! ^ :�
:(() �) ! (^ :�) _ (� ^ :)

(8�1; �2; : : : ; �k) ! (8�1)(8�2) � � � (8�k)
(9�1; �2; : : : ; �k) ! (9�1)(9�2) � � � (9�k)

(8�1)(8�2) ! (8�2)(8�1)
(9�1)(9�2) ! (9�2)(9�1)

:(8�) ! (9�):
:(9�) ! (8�):

(8�)(1 ^ 2 ^ : : :^ k) ! (8�) 1 ^ (8�) 2 ^ : : : ^ (8�) k
(9�)(1 _ 2 _ � � � _ k) ! (9�) 1 _ (9�) 2 _ � � � _ (9�) k

 1 ^ 2 ^ : : :^ k ^ (1 _ 2 _ � � � _ `)
 ! (1 ^ 2 ^ : : :^ k ^ 1) _ (1 ^ 2 ^ : : :^ k ^ 2) _ � � � _ (1 ^ 2 ^ : : :^ k ^ `)

 1 _ 2 _ � � � _ k _ (1 ^ 2 ^ : : :^ `)
 ! (1 _ 2 _ � � � _ k _ 1) ^ (1 _ 2 _ � � � _ k _ 2) ^ : : :^ (1 _ 2 _ � � � _ k _ `)

 1
 2
 3
 � � �
 k
 ! (1 ^: 2 ^ : 3 ^ : : :^ : k)

_ (: 1 ^ 2 ^ : 3 ^: 4 ^ : : :^: k)
_ (: 1 ^ : 2 ^ 3 ^: 4 ^ : 5 ^ : : :^ : k)
...
_ (: 1 ^ : 2 ^ : : :^ : k�2 ^ : k�1 ^ k)

:(1
 2
 3
 � � �
 k)
 ! :(1 _ 2 _ � � � _ k)

_ � 1 ^ (2 _ 3 _ � � � _ k)� _ � 2 ^ (3 _ � � � _ k)� _ � � � _ (k�1 ^ k)

Table II.10: Expansion-Rewritings for Plain Temporal Operators

2 ! ^
2
3 ! _
3

(� U) ! _ [� ^
(� U)]

(� A) ! _ [� ^
(� A)]

2 ! ^ :
:2
3 ! _
3

(� S) ! _ [� ^
(� S)]

(� B) ! _ [� ^ :
:(� B)]
When used from left to right, these Rewritings are called expansions.

102 PART II, CHAPTER 1: A DEDUCTION-CALCULUS

Table II.11: Rewritings for Plain Temporal Operators with Boolean Operators and Quanti�ers

:
 !
:
:2 ! 3:
:3 ! 2:

:(� U) ! (:) A (:� ^ :)
:(� A) ! (:) U (:� ^ :)
:
 !
: _ �rst

:2 ! 3:
:3 ! 2:

:(� S) ! (:) B (:� ^ :)
:(� B) ! (:) S (:� ^ :)

(1 ^ 2 ^ : : :^ k) !
 1 ^
 2 ^ : : : ^
 k

(1 _ 2 _ � � � _ k) !
 1 _
 2 _ � � � _
 k

() �) !
)
�

(() �) !
 ()
�

(8�) ! (8�)

(9�) ! (9�)

2(1 ^ 2 ^ : : :^ k) ! 2 1 ^ 2 2 ^ : : : ^ 2 k
2(8�) ! (8�)2

3(1 _ 2 _ � � � _ k) ! 3 1 _ 3 2 _ � � � _ 3 k
3(9�) ! (9�)3

(1 ^ 2 ^ : : :^ k) !
 1 ^
 2 ^ : : : ^
 k

(1 _ 2 _ � � � _ k) !
 1 _
 2 _ � � � _
 k

(8�) ! (8�)

(9�) ! (9�)

2(1 ^ 2 ^ : : :^ k) ! 2 1 ^ 2 2 ^ : : : ^ 2 k
2(8�) ! (8�)2

3(1 _ 2 _ � � � _ k) ! 3 1 _ 3 2 _ � � � _ 3 k
3(9�) ! (9�)3

(�1 ^ �2) U ! (�1 U) ^ (�2 U)

� U (1 _ 2) ! (� U 1) _ (� U 2)

(8�)� U ' ! (8�)(� U ')

' U (9�) ! (9�)�' U
�

9>>=
>>;
same for

A, S, and B

In each of the quanti�cation-cases for U (etc.), the formula ' must not contain any free occurrence

of any parameter-symbol in the quanti�ed list �.

SECTION II.1.1: BASIC DEDUCTION-RULES 103

Table II.12: Rewritings for Metric Temporal Operators

h�+1i
 !
(
�)

h�+1i
 !
(
�)

:
�

h�+1i

�
 !
h�+1i:

:
�

h�+1i

�
 !
:(
�) _ �rst

�h�+1i
� ! �(���)

2<h�+1i ! 2��
D
and similarly for every other

appropriate temporal operator

2�h�+1i ! ^
(2��)

3�h�+1i ! _
(3��)

� U�h�+1i ! _ [� ^
(� U��)]

� A�h�+1i ! _ [� ^
(� A��)]

2�h�+1i ! ^ :
:(2��)
3�h�+1i ! _
(3��)

� S�h�+1i ! _ [� ^
(� S��)]

� B�h�+1i ! _ [� ^ :
:(� B��)]
2���� ! ^ �
�(2����

)
�

3����
 ! _ �
�(3����

)
�

� U���� ! _ �(2<� �) ^ �
�(� U����)��
� A���� ! _ �(2<� �) ^ �
�(� A����)��
2���� ! ^ :�
�:(2����)�
3����

 ! _ �
�(3����
)
�

� S���� ! _ �(2<� �) ^ �
�(� S����)��
� B���� ! _ �(2<� �) ^ :�
�:(� B����)��
:(2��) ! 3�� :
:(3��) ! 2�� :
:(� U��) ! : A�� (:� ^ :)
:(� A��) ! : U�� (:� ^ :)
:(2��) ! 3�� :
:(3��) ! 2�� :
:(� S��) ! : B�� (:� ^ :)
:(� B��) ! : S�� (:� ^ :)
:(2����) ! 3����

:
:(3����

) ! 2���� :
:(� U����) ! : A����

(:� ^ :)
:(� A����) ! : U����

(:� ^ :)
:(2����) ! 3����

:
:(3����

) ! 2���� :
:(� S����) ! : B����

(:� ^ :)
:(� B����) ! : S����

(:� ^ :)

104 PART II, CHAPTER 1: A DEDUCTION-CALCULUS

Table II.13: Rewritings for Time-Annotations

[� :::: (:)] ! :[� ::::]
[� :::: (1 ^ 2 ^ : : :^ k)] ! [� :::: 1] ^ [� :::: 2] ^ : : : ^ [� :::: k]
[� :::: (1 _ 2 _ � � � _ k)] ! [� :::: 1] _ [� :::: 2] _ � � � _ [� :::: k]

[� :::: () �)] ! [� ::::]) [� :::: �]
[� :::: (() �)] ! [� ::::] () [� :::: �]

[� :::: (1
 2
 � � �
 k)] ! [� :::: 1]
 [� :::: 2]
 � � �
 [� :::: k]
[� :::: (8�)] ! (8�)[� ::::]
[� :::: (9�)] ! (9�)[� ::::]

(In each of the quanti�cation-cases, the time-annotation � must not contain any free occurrence of

any parameter-symbol in the quanti�ed list �.) When used from left to right, these Rewritings are

called time-distributions.

Time-distribution can be unobtrusively combined with the normal operations of other deduction-

rules, as desired. (For clear examples of such combination, see applications of the Splitting rule such

as in the introductory deductive tableau on page 92.)

The Splitting Rule

This rule splits a formula into its component pieces so processing of them will be clearer:

Assertions Goals

) �

�

Assertions Goals

 1 ^ 2 ^ � � � ^ k

 1

 2

...

 k

Assertions Goals

�1 _ �2 _ � � � _ �k

�1

�2

...

�k

When an implication () �) is split as shown, if formula is a conjunction (1 ^ 2 ^ � � � ^ k),
then instead of generating as an Assertion, it's possible to generate simply the results of splitting

 = (1 ^ 2 ^ � � � ^ k); and similarly if formula � is a disjunction (�1 _ �2 _ � � � _ �k) or an

implication (~) ~�).

SECTION II.1.1: BASIC DEDUCTION-RULES 105

The Duality Rule

Applied to a negated or simply false formula which is in one column (Assertions or Goals), this

rule adds the formula's inverse to the other column:

Assertions Goals

:'

'

Assertions Goals

:'

'

Assertions Goals

false

true

(A false Goal is inconsequential.)

The Quanti�er-Elimination Rule (Skolemization)

A caveat here is that \skolemization" in other deduction-calculi (such as classical Resolution,

for example as presented in the work of Genesereth and Nilsson [GeN87]) has somewhat reversed

operations since the goal there is refutation while the goal here is validation.

The schema of the quanti�er-elimination rule is:

(Q�)' �! ~' ;

where the target subformula (Q�)' must not occur within the scope of any \()", and formula

~' is constructed from formula ' as speci�ed below. Some terminology here is as follows: A

quanti�er (Q�) has universal character5 if either its quanti�er-symbol Q is \8" and its po-

larity is positive or if its quanti�er-symbol is \9" and its polarity is negative; otherwise, (Q�) has
existential character. Then:

If the quanti�er (Q�) that is being eliminated has universal character, then it must not lie

within the scope of any 3, U, A, 3, S, or B.6 Let � be a list of the following parameter-

symbols: every parameter-symbol which is free in the row-formula to which this rule is be-

ing applied, and every parameter-symbol which is bound by a quanti�er whose character is

existential and whose scope contains the target subformula (Q�)'. Also, let \fnew" be a

function-symbol which does not already appear in the deductive tableau. Then the new for-

mula ~' is constructed from the original subformula ' by substituting the term \fnew(�)"

for each occurrence of parameter-symbol � which was bound by the target quanti�er (Q�).
For each of the resulting occurrences of the term \fnew(�)", each parameter-symbol e� 2 �

must be bound (or free) as it was before the substitution; otherwise, this attempted appli-

cation of the Quanti�er-elimination rule is rejected. Renaming of parameter-symbols enables

5[ManWa93] uses the word \force" instead of \character".
6Any such temporal operator speci�es implicit quanti�cation of time on which the quanti�er (Q�) here depends.

106 PART II, CHAPTER 1: A DEDUCTION-CALCULUS

satisfaction of this condition. For example, if Quanti�er-elimination is applied to the quan-

ti�er (9x) in the formula
h
0 :::: (8y) (9x)��p(x; y; v) ^ (8y)q(x; y; ~v)�i�, then rather than ob-

taining
h
0 :::: (8y)

�
p
�
f(y); y; v

� ^ (8y)q�f(y); y; ~v��i as the result, beforehand renaming of the

parameter-symbol y to ~y should occur (at proper places), yielding�
0 :::: (8y)(9x)�p(x; y; v) ^ (8~y)q(x; ~y; ~v)��; then, eliminating (9x) yieldsh
0 :::: (8y)

�
p
�
f(y); y; v

� ^ (8~y)q�f(y); ~y; ~v��i.
If the quanti�er (Q�) that is being eliminated has existential character, then the parameter-

symbol � must not be free in the row-formula to which this rule is being applied, and (Q�)
must not lie within the scope of any other quanti�er (eQ : : : ; �; : : :) with the same parameter-

symbol �, nor within the scope of any quanti�er having universal character, nor inside the

scope and �rst argument of any 2, 2, U, A, S, or B. If these conditions are satis�ed, then

elimination of (Q�) proceeds in this case by simply removing it; i.e. the `new' formula ~' is

simply identical to the original subformula '.

II.1.2 The Time-Rei�cation Rule

Time-rei�cation removes a temporal operator from a formula via a process which is equivalent

to the two-step operation of [1] translating the temporal operator to `equivalent' nontemporal (but

�rst-order) forms, and [2] eliminating the quanti�ers introduced by step [1]. Subexpressions are not

translated or otherwise modi�ed. (The process is slightly di�erent for the operator \�".)

The Underlying Translation-Scheme

The underlying scheme for translation is crucial. Examples for previous translation-schemes

[AbM90, O93] are as follows:

[0 ::::

2p] �! (8t)[t � 3) p(t)]

[0 ::::

32p] �! (9t1)
�
t1 � 3 ^ (8t2)[t2 � t1) p(t2)]

�
[0 ::::

(p U q)] �! (9tf)

�
tf � 3 ^ q(tf) ^ (8ti)[(3 � ti) ^ (ti < tf)) p(ti)]

�
The scheme used here translates di�erently. For those examples:

[0 ::::

2p] �! (8d)p(3 + d)

[0 ::::

32p] �! (9d1)(8d2)p(3 + d1 + d2)

[0 ::::

(p U q)] �! (9df)
�
q(3 + df) ^ (8di)[di < df) p(3 + di)]

�
This translation-scheme used here is speci�ed via two binary meta-functions TLt(()) and TL(());

the �rst argument of TLt(()) or TL(()) is a term or a formula, respectively, and the second argument of

each is a time-representing term. Translation of a given formula [� :::: '] naturally begins as TL(('; �)).

The translation-schemas are:

SECTION II.1.2: THE TIME-REIFICATION RULE 107

TLt((�; �)) is �(�) for a temporal variable �.

TLt((�; �)) is � for a parameter-symbol �.

TLt

��

(�1; : : : �k); �

��
is

�
TLt((�1; �)); : : : ;TLt((�k; �))

�
for a function-application

(�1; : : : �k).

TLt((��; �)) is TLt((�; � + 1)) for the application of the operator \�" to a term � .

TL((�; �)) is �(�) for a temporally variable proposition �, i.e. a relation-symbol used with

zero arity.

TL((�(�1; : : : ; �k); �)) is �
�
TLt((�1; �)); : : : ;TLt((�k; �))

�
for the not temporally variable ap-

plication of a relation-symbol � to a nonzero number (k) of argument-terms.

TL((� = �; �)) is
�
TLt((�; �)) = TLt((�; �))

�
for an equation (� = �).

TL
��
?(1; : : : ; k); �

��
is ?

�
TL((1; �)); : : : ;TL((k; �))

�
for the application of a boolean op-

erator ? to argument-formulas 1, : : :, and k.

TL
��
(Q�) ; �

��
is (Qe�)�TL((~ ; �))� for a quanti�cation (Q�) , where e� and ~ are obtained

from (Q�) by renaming parameter-symbols so that no parameter-symbol e� 2 e� occurs in

�.

TL((�rst; �)) is (� = 0).

TL((
 ; �)) is TL((; � + 1)).

TL((2 ; �)) is (8d)[TL((; � + d))].

TL((3 ; �)) is (9d)[TL((; � + d))].

TL
��
(� U); �

��
is (9df)

�
TL((�; � + df)) ^ (8di)[di < df) TL((; � + di))]

�
.

TL
��
(� A); �

��
is0

@(9df)
�
TL((�; � + df)) ^ (8di)[di < df) TL((; � + di))]

�
_

(8d)[TL((�; � + d))]

1
A
.

TL((
 ; �)) is
�
(0 < �)) TL((; pred(�)))

�
.

TL((2 ; �)) is (8t)�(t � �)) TL((; t))
�
.

TL((3 ; �)) is (9t)�(t � �)) TL((; t))
�
.

TL
��
(� S); �

��
is

(9t)
�
(t � �) ^ TL((�; t)) ^ (8ti)

�
(t < ti) ^ (ti � �)) TL((; ti))

��
.

TL
��
(� B); �

��
is0

B@(9t)
�
(t � �) ^ TL((�; t)) ^ (8ti)

�
(t < ti) ^ (ti � �)) TL((; ti))

��
_

(8t)�(t � �)) TL((�; t))
�

1
CA
.

TL
��
[~� ::::]; �

��
is TL((; ~�)) .

Translation of metric temporal operators resembles the above with appropriate subformulas added

at appropriate places; e.g. (d � �) would be added as a conjunct for 3��.

108 PART II, CHAPTER 1: A DEDUCTION-CALCULUS

Rei�cation uses variants of those translation-schemas which specify only one step of translation

by changing any `sub-call' \TL(('; �0))" to \[�0 :::: ']". Thus, for example, the variant TL1((2 ; �)) is

(8d)[� + d ::::].

The Rei�cation-Schemas

Rei�cation of �rst�rst�rst�rst

The schema for rei�cation of the operator �rst is obvious:

[� :::: �rst] �! (� = 0) :

Rei�cation of

 and

As an illustrative example, translating the operator \
" in the formula [t ::::
p] yields

[t+ 1 :::: p] . Generalizing (facilely), the schema for rei�cation of the operator \
" is:

[� ::::
] �! [� + 1 ::::] :

The translation-scheme TL similarly facilely gives the rei�cation-schema for the operator \
":

[� ::::
] �! (0 < �) ^ [pred(�) ::::] :

Rei�cation of 2222 and 3333

As an illustrative example, suppose the following is a row in a deductive tableau:

Assertions Goals Explanations

3 :::: 2p

Step [1] for rei�cation translates the formula [3 :::: 2p] to (8d)[3 + d :::: p]. Then, step [2] eliminates

the just-introduced quanti�er (8d). With the given formula being an assertion, it has negative

polarity, so the quanti�er (8d) has existential character. Then applying quanti�er-elimination to

(8d)[3 + d :::: p] yields [3 + d :::: p]. Thus, applying the Rei�cation rule to the given row yields the

new row:
Assertions Goals Explanations

3 + d :::: p rei�ed 2
�

Another example, for \2
+", is as follows:

Assertions Goals Explanations

�
t :::: :�v = f(x)

�� ^ (9y)
�
c :::: 2(v = y)

+
�

�
t :::: :�v = f(x)

�� ^ (9y)�c+ h(t; x; y) :::: v = y
� rei�ed 2

+;

\h" is new

SECTION II.1.2: THE TIME-REIFICATION RULE 109

The operator 3 is treated analogously, using the quanti�er-symbol \9" instead of \8".
Considering these examples and the translation-scheme TL, the schemas for rei�cation of the

operators 2 and 3 are:h
� :::: (2)

+
i
�! �

� + hnew(�) ::::
� h

� :::: (2)
�
i
�! �

� + dnew ::::
�

h
� :::: (3)

�
i
�! �

� + hnew(�) ::::
� h

� :::: (3)
+
i
�! �

� + dnew ::::
�

Restrictions and other details are due to the quanti�er-elimination step: In each case, the target

formula must not occur within the scope of an equivalence (\()"). In the two cases on the left, for

\2
+" and \3

�", the expression \�" denotes a list of parameter-symbols as in skolemization; and in

the two cases on the right, for \2
�" and \3

+", rei�cation is disallowed for any formula [� :::: (2)
�]

or [� :::: (3)
+] that occurs within the scope of any quanti�er which has universal character.7

Rei�cation of 2222 and 3333

Clearly:

both
h
� :::: (2)

+
i
and

h
� :::: (3)

�
i
�! �

hnew(�) � �
� ^ �hnew(�) ::::

�
; and

both
h
� :::: (2)

�
i
and

h
� :::: (3)

+
i
�! (tnew � �) ^ [tnew ::::] ;

with details as for 2 and 3.

Rei�cation of UUUU, SSSS, AAAA, and BBBB

Again, clearly:h
� :::: (� U)

�
i
�! �

� + hnew(�) ::::
� ^ ��dnew < hnew(�)

�) �
� + dnew :::: �

��
h
� :::: (� U)

+
i
�!�

� + dnew ::::
� ^ ��hnew(�; dnew) < dnew

�) �
� + hnew(�; dnew) :::: �

��
h
� :::: (� S)

�
i

�!�
hnew(�) � �

� ^ �hnew(�) :::: � ^ �h�hnew(�) < tnew
� ^ �tnew � ��i) �

tnew :::: �
��

h
� :::: (� S)

+
i

�!
(tn � �) ^ [tn ::::] ^

���
tn < hn(�; tn)

� ^ �hn(�; tn) � �
��) [hn(�; tn) :::: �]

�
Details are as usual, with all cases for these operators disallowing targets that occur within the scope

of quanti�ers which have universal character.

The rei�cation-schemas for A and B should be obvious.

7The scopes of `external' temporal operators are signi�cant for regular instances of quanti�er-elimination, but not
here because the salient time-annotation here shadows any external time-frame.

110 PART II, CHAPTER 1: A DEDUCTION-CALCULUS

Rei�cation of ����

Reifying the operator \�" simply involving a single step of translation is not possible: the

language here provides no way to express TLt((��; �))'s result involving � and �+1. So some analysis

is applied to the situation.

An example of a formula containing the operator \�" is [t :::: �v = a]. (Assume that the symbol v

here is a temporal variable.) Using the rei�cation-schema of \
" as a model, it seems appropriate for

the result of rei�cation here to be [t+1 :::: v = a]. Generally, this result is correct, for it is generally

equivalent to the original formula [t :::: �v = a]. But unfortunately, these two formulas are not

equivalent if the symbol a is a temporal variable: in this case, the original formula [t :::: �v = a] may

be interpreted as the nontemporal formula
�
v(t + 1) = a(t)

�
while the other formula [t+ 1 :::: v = a]

may be interpreted as the nontemporal formula
�
v(t + 1) = a(t+ 1)

�
. In this case, rei�cation is not

possible.

Considering the preceding analysis, the rei�cation-schema for the operator \�" is:�
� :::: 'h��1; : : : ;��ni

� �! �
� + 1 :::: 'h�1; : : : ; �ni

�
;

where the target subformula 'h: : :i must not contain any temporally variable symbols outside of the

speci�ed terms ��i (and no ��i here contains any other ��j here).

Rei�cation of Metric Temporal Operators

If desired, metric temporal operators can be rei�ed. Schemas for such would naturally resemble

the preceding ones, typically with added subformulas such as (dnew < �), (dnew � �), or (dnew ��� �),
as appropriate.

II.1.3 The Resolution Rule

The schemas for the Resolution rule are:

Assertions Goals

'
D�
� :::: �+

�E

D�
~� :::: ~�

��E
�
'htruei _ hfalsei�� �

Assertions Goals

'
D�
� :::: �+

�E

D�
~� :::: ~�

��E
�
'htruei ^ hfalsei�� �

SECTION II.1.3: THE RESOLUTION RULE 111

Assertions Goals

'
D�
� :::: � +

�E

D�
~� :::: ~�

��E
0
@:'htruei^
 hfalsei

1
A� �

Assertions Goals

'
D�
� :::: �+

�E

D�
~� :::: ~�

��E
0
@'htruei^
: hfalsei

1
A� �

In each case: [1] the formulas ' and must not share any free variables; [2] each target subformula

[� :::: �] or [~� :::: ~�] must not contain any occurrence of any variable which is bound by a quanti�er

outside of the target;8 and [3] these target subformulas must unify via a most general uni�er �.

The main target expressions here, � and ~�, are not required to be predicate-applications: res-

olution here is nonclausal, as in [ManWa80]. Also, the speci�cations for polarities are not strict: a

target subformula which has both polarities certainly has either polarity as desired. Additionally,

in each case here, more target subformulas can participate in the resolution; if so, the uni�cation

must include them. When either antecedent formula ' or contains such multiple targets, only one

target needs to satisfy the polarity-requirement (\+" in ', \�" in); but regardless, all targets in '

are replaced by true and all targets in are replaced by false. (For an example of the use of multiple

targets, see Section II.2.2's sample deductive tableau's application of resolution to rows 18 and 19,

generating row 20 (on page 127); row 18 has multiple targets.) A �nal particular re the targets here

is that when they are time-formulas, they do not have time-annotations.

The target [� :::: �] here is highlighted \
h
� :::: �

i
" rather than \ [� :::: �] ", and similarly for

each other target. This choice of highlighting re
ects [1] the paramountcy of � in the search for

a matching target with ~� (or vice-versa), since the outermost symbol of formula � must match the

outermost symbol of ~� (see the next paragraph re laxness in matching � and ~�); [2] the importance of

�/~�'s being true or false, which enables resolution to work; and [3] the time-annotation �'s relatively

insigni�cant status as merely a (time-)parameter. For example, in resolving [t :::: p] with [0 :::: p],

highlighting \
h
t :::: p

i
" and \

h
0 :::: p

i
" clari�es [1] the matching and [2] the basic element here

that is either true or false; [3] re \t" and \0" as mere parameters, note that translation here to

nontemporal logic would yield p(t) and p(0) (respectively).

As one may desire, associative-commutative uni�cation for \+" | as in the work of Lincoln and

Christian [LinC88] and Stickel [St75] | may be employed.

A further option, when resolution fails only because the targets' time-annotations � and ~� fail

8Without this requirement, one could prove the invalid formula ((8x)(9y)[x< y]) (9z)(8x)[x< z]) by eliminating
\9"s and resolving \<"s.

112 PART II, CHAPTER 1: A DEDUCTION-CALCULUS

to unify, is that the equation (� = ~�) can be added to the desired result of resolution as something

additional which needs to be proven: if the desired result would be a Goal formula ~G, the actual

result is
�
~G ^ (� = ~�)

�
; for an Assertion formula ~A, the actual result is

�
(� = ~�)) ~A

�
. For an

example of this situation, see the bottom of page 121.

However, additional restrictions apply if the uni�er � involves a replacement � := � with term �

containing a temporal variable. For then:

1. Each free occurrence of parameter-symbol � in the formulas ' and must not lie within the

scope of any temporal operator or inside any time-annotation or time-formula.

2. All the time-annotations within whose scopes free occurrences of � lie must be uni�ed (by �).

These two restrictions ensure consistency of the time at which a temporal variable may be in-

terpreted. Otherwise, such a symbol | contained in term �, placed in various contexts by the

replacement � := � | could refer to di�erent objects, violating soundness. The following segment

of a deductive tableau illustrates obeying these restrictions: (The symbol v is a temporal variable.)

Assertions Goals Explanations

0 :::: q(v)
+

�
~t :::: p(x)

�) �
t :::: q(x)

�
�

0 :::: p(v)
resolution, uni�er

fx := v; t := 0; ~t := 0g

To see the necessity of these restrictions, consider the formula:

(8x)�p(x))
p(x)
�) �

p(v))
p(v)
�

This formula is not valid, being false in a model M such that the universe M is fobject0;
object1g, the interpretation M[[p; 1]] 9 is fobject0g, the interpretation (M@0)[[v]] is object0,

and (M@1)[[v]] is object1. Nonetheless, one might begin an attempt to prove validity of this

9(Recall that the \1" here indicates p's arity.)

SECTION II.1.3: THE RESOLUTION RULE 113

formula as follows:

Assertions Goals Explanations

0 0 ::::

0
@(8x)

�
p(x))
p(x)

�
)�
p(v))
p(v)

�
1
A Theorem

1 0 :::: (8x)
h
p(x))
p(x)

i �

0, splitting

2 0 :::: p(v)
�

0, splitting

3 0 ::::
p(v)
+

0, splitting

4 0 ::::
�
p(x))
p(x)

�
1, eliminate 8�

5
�
0 :::: p(x)

�) �
0 ::::
p(x)

�
�

4, time-distribution

One might attempt to continue as follows, violating restriction 1 here since the parameter-symbol x

lies within the scope of the temporal operator
 in row 5:

6 0 :::: p(v)
+ 5&3, resolution,

uni�er fx := vg

7 true 6&2, resolution

Alternatively, one might attempt to continue as follows:

6 1 : p(v)
+

3, reify

7
�
0 :::: p(x)

�) �
1 :::: p(x)

�
�

5, reify

The next step violates restriction 2 since the parameter-symbol x lies within the scope of two

ununi�able time-annotations, \0" and \1", in row 7:

8 0 :::: p(v)
+ 7&6, resolution,

uni�er fx := vg

9 true 8&2, resolution

For intuition about this situation, note that the temporal variable v would be translated into

nontemporal predicate logic as a function whose argument is time. The improper resolutions here

each involve unifying x with v at time 1 | i.e. v(1) | but somehow in each case obtaining the

result [0 :::: p(v)] | i.e. p
�
v(0)

�
, with an occurrence of x yielding v(0) instead of v(1).

114 PART II, CHAPTER 1: A DEDUCTION-CALCULUS

II.1.4 The Equality-Application Rule

This rule involves resolution-based reasoning. Hence, like the Resolution rule itself, this rule

comprises a multiplicity of schemas because of the alternatives for columns | plus the alternatives

for sides of the equation. Only one such schema need be shown (others may be inferred):

Assertions Goals

'
D�
� :::: �h� i

�E

�h
~� :::: (~� = �)

�
i�

�
'
D�
� :::: �h�i

�E ^ : hfalsei�� �
Here, � must unify term � with term ~� as well as time-annotation � with time-annotation ~�; further

details are as for resolution. The principal replacement \� := �" is subject to (the applicable

parts of) the restrictions concerning temporal variables (broadened to address the fact that � is

potentially more than a parameter-symbol): if � contains a temporal variable, then it must not lie

within the scope of any temporal operator; and if � contains a temporal variable, then � must not lie

within the scope of any temporal operator or inside any time-annotation. An example of (correct)

equality-application is as follows:

Assertions Goals Explanations

0 :::: p
�
f(a + 2)

�

t :::: f(x + 2) = x
�

0 :::: p(a)
equality-application,

uni�er fx := a; t := 0g

SECTION II.1.5: INDUCTION RULES 115

II.1.5 Induction Rules

Induction for a Domain

The logic may refer to a domain, such as the natural numbers or lists, for which principles of

induction hold. Then, rules which implement these principles are available. An example, for the

natural numbers, is:

Assertions Goals

� :::: (8�)'h�i

� ::::
�
'h0i ^ �'hni) 'hn+ 1i��

where the initial row must not contain any free parameter-symbols and the symbol n must be a new

zero-arity function-symbol. Thus, a goal can be reduced to a base case plus an inductive step.

Induction for Temporal Operators

Induction also applies to temporal operators, as follows:

Assertions Goals

� :::: 2'

[� :::: '] ^
��
� + cnew :::: '

�) �
� + cnew + 1 :::: '

��
Assertions Goals

� :::: 3'

[� :::: '] _
��
(� + cnew) :::: :'� ^ �(� + cnew + 1) :::: '

��

In each case, the antecedent row must not contain any free parameter-symbols and the symbol cnew

must be new.

Induction for Time-Formulas

Induction also applies to time-formulas, using the domain-induction schema(s) for the natural

numbers but without time-annotations.

116 PART II, CHAPTER 1: A DEDUCTION-CALCULUS

II.1.6 Invocation of a Presburger Decision-Procedure for

Time-Formulas

If a row contains only a time-formula ', then a Presburger-like decision-procedure10 can be

applied to ' as follows. Let the sequence of parameter-symbols � comprise the free parameter-

symbols of '. If ' is in the Goals column, then the actual formula submitted to the decision-

procedure is (9�)'; if ' is in the Assertions column, then the actual formula submitted to the

decision-procedure is (8�)'. The decision-procedure should return true if its input is valid, and false

if its input is not valid.

If the deductive tableau has multiple rows containing time-formulas, they can be submitted to

the decision-procedure together as follows. Let ntfA and ntfG be the numbers of Assertions or Goals |

respectively | which are time-formulas, let the formulas Ai1 , Ai2 , : : : , AintfA
be the Assertions that

are time-formulas, let the formulas Gj1 , Gj2 , : : : , GjntfG
be the Goals that are time-formulas, and

let �i or �j (for i 2 fi1; i2; : : : ; intfAg or j 2 fj1; j2; : : : ; jntfGg) comprise the free variables of Ai or

Gj, respectively. Then the formula '
tf�

submitted to the decision-procedure is:

[(8�i1)Ai1 ^ (8�i2)Ai2 ^ : : :^ (8�intfA)AintfA]) [(9�j1)Gj1 _ (9�j2)Gj2 _ � � � _ (9�jntfG)GjntfG
]

(As such might arise here, a quanti�er with no parameter-symbols is elided, an application of \^" or
_" to one argument reduces to the argument, an application of \^" to zero arguments reduces to

true, and an application of _" to zero arguments reduces to false.) The result of such an application

of the decision-procedure is a Goal formula. For an example of this situation, see Section II.2.1 (from

the bottom of page 121 to the top of page 122).

The complexity of the formula 'tf� naturally depends on the actual formulas Ai and Gj that are

involved. If 'tf� is too complex, the automatic Presburger decision-procedure that one has may not

be applicable. Then, further `manual' work within the deduction-calculus here would be necessary.

Page 122 provides an example of such return to manual labor.

10Cooper [Coo72] and Shostak [Shos79] provide examples of such Presburger-based decision-algorithms.

Chapter II.2

Examples of Proofs

II.2.1 A Tutorial Example

The formula
�
23

�
(:p) S q�) 2

�
p) 3q

��
is valid.1 Proving the validity is practically

automatic with the strategy: apply the Splitting and Rei�cation rules whenever possible, then

apply the Resolution rule, and invoke the decision-procedure for (arithmetic) time-formulas. For

illustrative purposes, the details of the process of constructing the proof are shown here.

1This formula is derived from [ManP91]'s Exercise 3.2.p (on page 259 of that work); proving the validity of the
formula here comprises essentially one quarter of that exercise.

117

118 PART II, CHAPTER 2: EXAMPLES OF PROOFS

The proof begins as follows:

Assertions Goals Explanations

0 0 ::::

0
B@23

�
(:p) S q�

)
2(p)3q)

1
CA Theorem

Splitting clari�es matters; here, it conveniently demarcates the given formula's premise and desired

conclusion. Implicitly, the Time-distribution rule is combined with the splitting. These operations

add (generated) rows to the proof (the deductive tableau), yielding the following: (Marking rows

used, as with row 0 here, facilitates later �nding unused ones, to use them.)

Assertions Goals Explanations

0
p

0 ::::

0
B@23

�
(:p) S q�

)
2(p)3q)

1
CA Theorem

1 0 :::: 23
�
(:p) S q� 0, split

2 0 :::: 2(p)3q) 0, split

The most straightforward rule applicable to the current Goal, in row 2, is Rei�cation. The result is:

Assertions Goals Explanations

0
p

0 ::::

0
B@23

�
(:p) S q�

)
2(p)3q)

1
CA Theorem

1 0 :::: 23
�
(:p) S q� 0, split

2
p

0 :::: 2
+
(p)3q) 0, split

3 c1 :::: p)3q 2, reify 2
+

Again, for the current Goal (in row 3), splitting clari�es the situation:

SECTION II.2.1: A TUTORIAL EXAMPLE 119

Assertions Goals Explanations

0
p

0 ::::

0
B@23

�
(:p) S q�

)
2(p)3q)

1
CA Theorem

1 0 :::: 23
�
(:p) S q� 0, split

2
p

0 :::: 2
+
(p)3q) 0, split

3
p

c1 :::: p) 3q 2, reify 2
+

4 c1 :::: p 3, split

5 c1 :::: 3
+
q 3, split

And again, Rei�cation is the �rst choice among rules applicable to the current Goal:

Assertions Goals Explanations

0
p

0 ::::

0
B@23

�
(:p) S q�

)
2(p)3q)

1
CA Theorem

1 0 :::: 23
�
(:p) S q� 0, split

2
p

0 :::: 2
+
(p)3q) 0, split

3
p

c1 :::: p) 3q 2, reify 2
+

4 c1 :::: p 3, split

5
p

c1 :::: 3
+
q 3, split

6 c1 + d2 :::: q 5, reify 3
+

There are no obviously useful operations for the current Goal, #6. Similarly for Assertion #4. So

one would focus attention on the other as-yet unused Assertion, #1. Then, again, rei�cation appears

appropriate | three times (for the 2, the 3, and the S):

120 PART II, CHAPTER 2: EXAMPLES OF PROOFS

Assertions Goals Explanations

0
p

0 ::::

0
B@23

�
(:p) S q�

)
2(p)3q)

1
CA Theorem

1
p

0 :::: 2
�
3
�
(:p) S q� 0, split

2
p

0 :::: 2
+
(p)3q) 0, split

3
p

c1 :::: p) 3q 2, reify 2
+

4 c1 :::: p
�

3, split

5
p

c1 :::: 3
+
q 3, split

6 c1 + d2 :::: q
+

5, reify 3
+

7
p

t3 :::: 3
��
(:p) S q� 1, reify 2

�

8
p

t3 + h4(t3) :::: (:p) S� q 7, reify 3
�

9 h5(t3) � t3 + h4(t3) 8, reify S
�

10 h5(t3) :::: q
�

8, reify S�

11

�
h5(t3) < t6

� ^ �t6 � t3 + h4(t3)
�

)h
t6 :::: : p

+
i 8, reify S�

At this point, it seems plausible to resolve either p or q. Closer inspection indicates that resolving p

appears more feasible, since the time-annotations for p appear more uni�able than those for q; so:

SECTION II.2.1: A TUTORIAL EXAMPLE 121

Assertions Goals Explanations

0
p

0 ::::

0
B@23

�
(:p) S q�

)
2(p) 3q)

1
CA Theorem

1
p

0 :::: 2
�
3
�
(:p) S q� 0, split

2
p

0 :::: 2
+
(p)3q) 0, split

3
p

c1 :::: p) 3q 2, reify 2
+

4
p

c1 :::: p
�

3, split

5
p

c1 :::: 3
+
q 3, split

6 c1 + d2 :::: q+ 5, reify 3
+

7
p

t3 :::: 3
��
(:p) S q� 1, reify 2

�

8
p

t3 + h4(t3) :::: (:p) S� q 7, reify 3
�

9 h5(t3) � t3 + h4(t3) 8, reify S�

10 h5(t3) :::: q
�

8, reify S�

11
p

�
h5(t3) < t6

� ^ �t6 � t3 + h4(t3)
�

)h
t6 :::: : p

+
i 8, reify S�

12
p
:
��
h5(t3) < t6

� ^ �t6 � t3 + h4(t3)
�� 11&4, resolution,

uni�er ft6 := c1g

13

h5(t3) < c1
^�
c1 � t3 + h4(t3)

�+ 12, duality

(After the resolution, the Duality-rule is applied | semi-automatically.) Next, one could resolve

Goal #6, containing q+, with Assertion #10, containing q�; as the targets' time-annotations actually

aren't uni�able, the result would be the Goal
�
h5(t3) = c1 + d2

�
, which would be passed with the

deductive tableau's other time-formulas | Assertion #9 and Goal #13 | to a Presburger-like

decision-procedure, altogether in the form `hassertionsi) hgoalsi':

(8t3)
�
h5(t3) � t3 + h4(t3)

�
)

0
B@(9t3)

��
h5(t3) < c1

� ^ �c1 � t3 + h4(t3)
��W

(9 t3; d2)
�
h5(t3) = c1 + d2

�
1
CA

122 PART II, CHAPTER 2: EXAMPLES OF PROOFS

(Quanti�er-elimination is `inverted', for the free variables.) This formula is indeed valid (for the nat-

ural numbers), so the decision-procedure should return true which would be added to the deductive

tableau as a Goal, so these operations would satisfactorily �nish the proof.

Alternatively, one may continue the proof `manually' as follows:

14
p

(8t)� (8d)� (t � t+ d) lemma (property of time)

15
p

t � t+ d
�

14, eliminate 8� twice

16
p

h5(c1) < c1
+ 15&13, resolution, uni�er�

t3 := c1; t := c1; d := h4(c1)
	

17
p

(8t)� (8~t)�
�
~t < t _ (9d)(t+ d = ~t)

�
lemma (property of time)

18
p

~t < t
�

_ (9d)(t+ d = ~t) 17, eliminate 8� twice

19
p

(9d)�
�
c1 + d = h5(c1)

� 18&16, resolution,

uni�er
�
~t := h5(c1); t := c1

	
;

duality

20
p

c1 + c7 = h5(c1)
�

19, eliminate 9�

21
p

h5(c1) :::: q
+ 20&6, equality-application,

uni�er fd2 := c7g

22 true 21&10, resolution, uni�er ft3 := c1g

(The provability of the lemmas used here from the axioms on page 98 should be obvious.)

SECTION II.2.2: A DEMONSTRATION OF RELATIVE POWER 123

II.2.2 A Demonstration of Relative Power

The work of Abadi [Ab89] indicates that proving the validity of the following formula 'p is

di�cult, requiring a powerful logic:�
(8x)[3(v = x)] ^ p(v) ^ (8x)(8y)��p(x) ^ 3[(v = x) ^
(v = y)]

�) p(y)
��) (8x)p(x)

Here, in addition to v being a temporal variable, the relation-symbol p used with arity 1 is temporally

variable. This formula 'p is provable in the deduction-calculus here, as follows.2

Notice that the actual `goal' to be proved valid, (8x)p(x), involves no temporal operators. In-

deed, throughout the overall formula'p, p appears within the scope of no temporal operators. Then,

prima facie, one might consider it possible that purely nontemporal reasoning could achieve the goal;

but such is not possible. Intuitively, considering the formula 'p, the truth of p(x) for each value of x

depends on the value of the temporal variable v at some time. Consequently, temporal reasoning is

required. Indeed, as indicated by the chaining of the premise
�� � � (v = x) ^
(v = y) � � �) p(y)

�
,

induction | speci�cally, temporal induction3 | is required: attempts at proofs using rei�cation (in-

stead of induction) fail. Unfortunately, the given formula's only temporal operator with appropriate

form and polarity such that induction could apply to it is the �rst 3, in the premise (8x)[3(v = x)],

and even if the Induction rule is amended to apply here, the resulting inductive hypothesis is too

weak | again, attempts at proofs fail.

So, one might consider applying techniques as in the situation of `inventor's paradox', when

a theorem must be strengthened or generalized to be proven.4 But the temporal variability of p

hinders this generalization. Prefacing the theorem 'p with the operator 2 doesn't work because

induction applied to that would require relating truth-values of p at di�erent times, and there are

no such preordained relationships here since p is temporally variable. Strengthening further by

changing the theorem's main consequent (8x)p(x) to 2(8x)p(x) doesn't work, similarly; indeed,

this strengthening is `excessive', for the formula with such a change actually isn't valid: p could be

false for all arguments at all times other than 0. Changing (8x)p(x) to 2p(v) also yields a formula

which isn't valid, but it does express a key intuition: that for each value of v | at some time | p

holds for that value; unfortunately, the time here at which v has this value varies, whereas the time

at which p is supposed to hold for the value is 0. It's di�cult to have a formula specify a value for

2[Ab89] gives only a sketch of a proof of the formula 'p. That proof-sketch speci�es invocation of a `de�nition of

an auxiliary predicate' q such that q is not temporally variable and q's `de�nition' is: [0 :::: (8x)(q(x)() p(x))]. With
this de�nition, it's possible to derive the formula 2q(v), then (8x)q(x), and then (8x)p(x).
The proof here is (ultimately) more direct.
3The domain or type for the symbols v, x, and y is not speci�ed as one for which a law of induction holds. But

even if such were speci�ed, the `chaining' speci�es only a temporal sequence, not necessarily one which is inductive
for the domain. For example, even if the domain is the natural numbers, the sequence of values of v is not constrained

to be an at all ordered progression of them.
4More precisely, one uses a lemma which is a strengthened or generalized version of the original theorem.

124 PART II, CHAPTER 2: EXAMPLES OF PROOFS

v at some arbitrary time and also specify the same value for an argument for p at time 0: the scope

of the temporal operator for v is likely to cover the occurrence of p. Restraining the scope of the

temporal operator in an attempt such as having (8x)�3(v = x)) p(x)
�
as a substitute main goal

is too weak.5 The solution here is to explicitly constrain the occurrence of p to be at time 0 via a

time-annotation which overrides or `shadows' the scope of the temporal operator used for v. This

scheme is employed in the following new main consequent: 2(8x)
�
(v = x)) [0 :::: p(x)]

�
.

Changing the original theorem's main consequent (8x)p(x) to this new one yields:�
(8x)[3(v = x)]

^
p(v)

^
(8x)(8y)��p(x) ^ 3[(v = x) ^
(v = y)]

�) p(y)
��

)
2(8x)

�
(v = x)) [0 :::: p(x)]

�
But the consequent here actually does not need the antecedent's �rst conjunct. So the lemma that

is used here is actually:�
p(v)

^
(8x)(8y)��p(x) ^ 3[(v = x) ^
(v = y)]

�) p(y)
��

)
2(8x)

�
(v = x)) [0 :::: p(x)]

�
The lemma's proof is below; but �rst, here is how the lemma can be used to prove the originally

desired validity of 'p. In the following, let the formula

(8x)(8y)��p(x) ^ 3[(v = x) ^
(v = y)]
�) p(y)

�
be abbreviated as .

Assertions Goals Explanations

0 0 ::::

0
B@
�
(8x)[3(v = x)] ^ p(v) ^ �
)

(8x)p(x)

1
CA Theorem

1 0 :::: (8x)[3(v = x)] ^ p(v) ^ 0, split

2 0 :::: (8x)+p(x) 0, split

3 0 :::: p(a)
+

2, eliminate 8+

5This formula (8x)(3(v = x)) p(x)) is actually directly derivable from the original theorem 'p.

SECTION II.2.2: A DEMONSTRATION OF RELATIVE POWER 125

4 0 ::::
�
p(v) ^ �) 2(8x)

�
(v = x)) [0 :::: p(x)]

�
lemma

5 [0 :::: p(v) ^]) �
0 :::: 2

�
(8x)�(v = x)) [0 :::: p(x)]

��
4, time-distribution

6 [0 :::: p(v) ^]) �
t :::: (8x)��(v = x)) [0 :::: p(x)]

��
5, reify 2

�

7
�
0 :::: p(v) ^ �)

"
t ::::

(v = x))

�
0 :::: p(x)

�
�!#

6, eliminate 8�

Next, in this proof, resolution is applied to Goal #3 and Assertion #7. Note that the time-

annotation t of the antecedent row 7 is not involved (in uni�cation) because it is `shadowed' by

the inner time-annotation 0.6

8
�
0 :::: p(v) ^ � ^ ht :::: v = a

+
i 7&3, resolution,

uni�er fx := ag

9 0 :::: (8x)�3(v = x) 1, split

10 p(v)
�

1, split

11
�

1, split

12 0 :::: 3
�
(v = x) 9, eliminate 8�

13 h(x) :::: v = x
�

12, reify 3
�

14 0 :::: p(v)
+
^ 13&8, resolution,

uni�er fx := a; t := h(a)g

15 0 ::::
+

14&10, resolution

16 true 15&11, resolution

6Incidentally, the symbol a is not a temporal variable here.

126 PART II, CHAPTER 2: EXAMPLES OF PROOFS

Next, as promised, here is a proof of the validity of the lemma:

Assertions Goals Explanations

0 0 ::::

0
B@
�
p(v) ^

�
)

2(8x)
�
(v = x)) [0 :::: p(x)]

�
1
CA Theorem

1 0 :::: p(v)
�

0, split

2

0 ::::

 z }| {
(8x)�(8y)�2
666664

0
B@p(x) ^ 3

2
4(v = x)

^

(v = y)

3
5
1
CA

)
p(y)

3
777775

0, split

3 0 :::: 2 (8x)
�
(v = x)) [0 :::: p(x)]

�
0, split

4

0 :::: (8x)+
�
(v = x)) [0 :::: p(x)]

�
V 0
@
�
c :::: (8x)

�
(v = x)) [0 :::: p(x)]

��
)�
c+ 1 :::: (8x)

�
(v = x)) [0 :::: p(x)]

��
1
A

3,

temporal

induction

5
0 ::::

�
v = a0

�)
�
0 :::: p

�
a0
���

V �
[c :::: : : :]) [c+ 1 :::: : : :]

� 4,

eliminate 8+

6
0 ::::

�
(v = a0))

h
0 :::: p(v)

+
i�

V �
[c :::: : : :]) [c+ 1 :::: : : :]

� 5&5,

equality-

application

7
�
[c :::: : : :]) [c+ 1 :::: : : :]

�
6&1,

resolution

8 c :::: (8x)�
�
(v = x)) [0 :::: p(x)]

�
7, split

9 c+ 1 :::: (8x)+
�
(v = x)) [0 :::: p(x)]

�
7, split

10 c+ 1 :::: (v = ac+1)) [0 :::: p(ac+1)]
9,

eliminate 8+

11 [c+ 1 :::: v = ac+1]) [0 :::: p(ac+1)]

10,

distribution;

simpli�cation

(of `shadowed'

annotation)

SECTION II.2.2: A DEMONSTRATION OF RELATIVE POWER 127

12 c + 1 :::: v = a
c+1

�
11, split

13 0 :::: p(a
c+1

)
+

11, split

14 0 ::::

2
66666664

0
B@p(x) ^ 3

2
4(v = x)

^

(v = y)

3
5
1
CA

)
p(y)

�

3
77777775

2, eliminate 8�
twice

15 0 :::: p(x)
+
^ 3

2
4(v = x)

^

(v = a

c+1
)

3
5

14&13,

resolution,

uni�er

fy := a
c+1g

16 c :::: (v = ~x))
�
0 :::: p(~x)

�
� 8, eliminate 8�;

rename

parameter

(x �! ~x)

17

h
0 :::: 3

+�
(v = ~x) ^
(v = a

c+1)
�i

^
[c :::: v = ~x]

16&15,

resolution,

uni�er fx := ~xg

18

h
~t :::: v = ~x

+ ^
(v = a
c+1

)
i

^h
c :::: v = ~x

+
i 17, reify 3

+

19 t :::: x = x
� axiom

for equality

20 c ::::
(v = a
c+1

)

19&18,

resolution,

uni�er

fx := v; ~x := v

t := c; ~t := cg

21 c + 1 :::: v = a
c+1

+
20, reify

22 true
21&12,

resolution

128 PART II, CHAPTER 2: EXAMPLES OF PROOFS

II.2.3 Veri�cation of List-Processing

An assumption of list-processing code is that for any list l and at any time, if some temporal

variable v is set equal to the list and then (as time passes) v repeatedly gets truncated (while doing

so is possible), then eventually v will equal the empty list NIL. Such a statement can be formalized

as follows:

(8l)2
��
(v = l) ^ 2

�:(v = NIL)) [�v = tail(v)]
��) 3(v = NIL)

�
:

The validity of this formula can be proven in the deduction-calculus here, using domain-induction

for lists and rei�cation of \�", in thirty-three steps. Abbreviating the formula as (8l)2'hli, such a

proof begins as follows:

Assertions Goals Explanations

0 0 :::: (8l)2'hli Theorem

1 0 ::::
�
2'hNILi| {z }

�1

^ �
2'hl0i) (8x)2'hcons(x; l0)i

�| {z }
�2

�
0, domain-induction

for lists

With �1 and �2 as the indicated formulas here, a convenient way to proceed is to prove their validity

separately and then load them as Assertions in this main deductive tableau, continuing as follows:

1 0 ::::
�

�1
+ ^ �2

�
0, domain-induction

for lists

2 0 :::: �1
�

lemma

3 0 :::: �2
+

2&1, resolution

4 0 :::: �2
�

lemma

5 true 4&3, resolution

The proofs of the validity of the lemmas are as follows.

SECTION II.2.3: VERIFICATION OF LIST-PROCESSING 129

Lemma 1

The �rst lemma, �1, is actually:

2

��
(v = NIL) ^ 2

�:(v = NIL)) [�v = tail(v)]
�| {z }

�) 3(v = NIL)
�

Let the subformula
�:(v = NIL)) [�v = tail(v)]

�
be abbreviated as . Then a proof of the

validity of �1 proceeds as follows:

Assertions Goals Explanations

0 0 :::: 2
+�
[(v = NIL) ^ 2]) 3(v = NIL)

�
Theorem

1 c1 :::: [(v = NIL) ^ 2]) 3(v = NIL) 0, reify 2
+

2 c1 :::: (v = NIL)
�
^ 2 1, split

3 c1 :::: 3(v = NIL) 1, split

4 c1 :::: (v = NIL)
+
_
3(v = NIL) 3, expand 3

5 true
4&2,

resolution

Lemma 2

The second lemma, �2, is
�
2'hl0i) (8x)2'hcons(x; l0)i

�
. A proof of its validity begins as

follows:

Assertions Goals Explanations

0 0 :::: 2'hl0i) (8x)2'hcons(x; l0)i Theorem

1 0 :::: 2
�
'hl0i 0, split

2 0 :::: (8x)+2'hcons(x; l0)i 0, split

3 0 :::: 2
+
'hcons(x; l0)i 2, eliminate 8+

4 c1 :::: 'hcons(x; l0)i 3, reify 2
+

Recalling what \'h: : :i" abbreviates, this last Goal #4 is actually:

(4) c1 ::::
�
[v = cons(a; l0)] ^ 2

�:(v = NIL)) [�v = tail(v)]
��) 3(v = NIL)

or, continuing to use the abbreviation as in Lemma 1 above:

(4) c1 ::::
�
[v = cons(a; l0)] ^ 2

�) 3(v = NIL)

130 PART II, CHAPTER 2: EXAMPLES OF PROOFS

Then the proof may continue as follows:

5 c1 :::: v = cons(a; l0)
�

4, split

6 c1 :::: 2 4, split

7 c1 :::: 3(v = NIL) 4, split

8
[c1 :::: (v = NIL)]

_ [c1 ::::
3(v = NIL)]

7, expand 3

(and

distribution)

9

[c1 :::: (v = NIL)]

_
�
c1 + 1 :::: 3(v = NIL)

+
�

8, reify

10 t2 ::::

0
B@
[(v = l0) ^2]
)
3(v = NIL)

�

1
CA

1, reify 2
�

(and

unabbreviate

\'h: : :i")

11 c1 + 1 :::: (v = l0) ^ 2
+ 10&9, resolution,

ft2 := (c1 + 1)g

12 c1 :::: ^
2 6, expand 2

13 c1 ::::

 z }| {0
@:

�
v = NIL

�
)��v = tail

�
v
��
1
A 12, split

14 c1 ::::
2 12, split

15 c1 + 1 :::: 2
�

14, reify

16 c1 + 1 :::: v = l0 15&11, resolution

17 c1 ::::

0
@:[cons(a; l0) = NIL]

)��v = tail
�
cons(a; l0)

��
1
A 13&5, equality-

application

SECTION II.2.3: VERIFICATION OF LIST-PROCESSING 131

18 c1 + 1 ::::

0
BB@
:[cons(a; l0) = NIL]

)
v = tail

�
cons(a; l0)

� �

1
CCA 17, reify �

19

�
c1 + 1 :::: :

�
cons(a; l0) = NIL

��
^
�
c1 + 1 :::: tail

�
cons(a; l0)

�
= l0

+
� 18&16,

equality-

application

20 t :::: tail
�
cons(x; l)

�
= l

�

axiom for lists

21 c1 + 1 :::: :
�
cons(a; l0) = NIL

� +

20&19,

resolution,

ft := (c1 + 1);

x := a;

l := l0g

22 t :::: :[cons(x; l) = NIL
�

axiom for lists

23 true

22&21,

resolution,

ft := (c1 + 1);

x := a;

l := l0g

Chapter II.3

Properties of the

Deduction-Calculus

II.3.1 Soundness

Con�rming the soundness of this deduction-calculus is actually trivial: applying the translation

TL(()) of Section II.1.2 to expressions here yields expressions of the nontemporal �rst-order logic

of [ManWa93], and each deductive operation here translates to a deductive operation there | e.g.

time-rei�cation here translates to quanti�er-elimination there1 | so the soundness established there

implies soundness here.2 (Analysis of TL(()) and semantics con�rms that this translation preserves

validity.) One point re this issue is that the Resolution rule's two restrictions re temporal vari-

ables ensure that translation of expressions before application of the rule would agree with their

translations afterward.

1Remember that such complete translation is spurned in actual operation of the deduction-calculus here because
such completely translated formulas would be unwieldy.

2[ManWa93]'s establishment of soundness involves showing that each deductive operation preserves the condition
that the originally given formula 'checking is valid if a certain formula which encapsulates the deductive tableau is
valid. The deduction-calculus reports validity when a Goal which is true is achieved; but such a Goal happens to
make that encapsulating formula obviously valid, which implies validity of 'checking by the condition being preserved;

thus, the deduction-calculus is sound, i.e. it reports validity only in the case of actual validity. That encapsulating
formula is as follows: If the deductive tableau comprises nA + nG Assertions and Goals Ai1 , Ai2 , : : : , AinA , Gj1 ,

Gj2 , : : : , and GjnG
, and �i or �j (for i 2 fi1; i2; : : : ; inAg or j 2 fj1; j2; : : : ; jnGg) comprises all the free variables of

Ai or Gj, respectively, then the encapsulating formula is:

[(8�i1)Ai1 ^ (8�i2)Ai2 ^ : : : ^ (8�inA)AinA]) [(9�j1)Gj1 _ (9�j2)Gj2 _ � � � _ (9�jnG)GjnG]

132

SECTION II.3.2: RELATIVE COMPLETENESS 133

II.3.2 Relative Completeness

Szalas [SzH88] (see also the work of Szalas and Holenderski [Sz86]) showed that no sound and

e�ective3 deduction-calculus for full �rst-order temporal logic can be complete, i.e. none can prove

every valid formula. So, re completeness, the best one can hope is that a deduction-calculus is

able to prove some large class of formulas relative to something such as the collection of models

of a particular temporal-logic speci�cation being considered; or, that the deduction-calculus can

prove as much as | or more than | another deduction-calculus. Section II.2.2 suggests that the

deduction-calculus here is as powerful as the ones of [Ab89]. Truly proving this relative power is

done by showing that each of the deduction-rules of [Ab89] is `admissible' in the deduction-calculus

here, i.e. that given the [Ab89]-rule's premises, the conclusion is derivable here. This task is trivial

for most of [Ab89]'s rules, e.g.:

If ` ' and ` (')) then ` .
Then, two �nal complicated rules re `predicate-de�nition' are admitted here exactly as in [Ab89]'s

proof 7.1(B). [Ab89]'s `predicate-de�nition' involves predicates q which are de�ned via expressions

(8�)�q(�)() h�i�.4 That proof 7.1(B) indicates how instances of q(: : :) in a deduction can be

replaced with h: : :i. Naturally, the same can be done here. Thus, the deduction-calculus here is as

powerful as that of [Ab89]. Similarly re [AbM90].

II.3.3 Employability to Decide Propositional Formulas

The deduction-calculus here can be used for a decision-procedure for propositional formulas of

temporal logic by using expansion-rewritings (and splitting) to mimic the algorithm of Part I of this

dissertation. The resulting decision-procedure closely resembles the construction in [AbM90]'s proof

of completeness of their deduction-calculus for propositional temporal formulas. See also the work

of Cyrluk and Narendran [CyN94] re decidability of fragments of quanti�er-free predicate temporal

logic.

3Processing is not e�ective if it requires impossible operations such as an in�nite amount of work.
4A footnote on page 123 (here) gives an example of such.

Chapter II.4

Concluding Remarks for Part II

II.4.1 Advantages of This Method

Deductive tableaux provide goal-directed proof-construction.

Partial translation of temporal operators into �rst-order forms enables application of the vari-

ous well-developed techniques for reasoning in predicate logic while maintaining the advantages

of temporal logic | clarity and conciseness.

Using addition in the reifying translation facilitates clarity by keeping formulas simple; it

also enables application of powerful automatic methods which facilitate deduction such as

Presburger decision-algorithms and associative-commutative uni�cation.

II.4.2 Contributions of This Work

The speci�cally new contributions of mine in this part of this dissertation comprise:

providing a clear and practical scheme, partial time-rei�cation using addition, for transla-

tion of temporal operators into �rst-order forms.

developing a thorough deduction-calculus which employs this translation-scheme.

134

Bibliography

[Ab89] Abadi�M.

\The Power of Temporal Proofs", in Theoretical Computer Science, Volume 65 (1989),

pages 35{83.

(Cited herein on pages 123 and 133.)

[AbM90] Abadi�M. and Manna�Z.
\Nonclausal Deduction in First-Order Temporal Logic", in Journal of the Association
for Computing Machinery, Volume 37 (1990), Number 2 (April), pages 279{317.

(Cited herein on pages 2, 7 (in a footnote), 91, 92, 106, and 133.)

[AhHU74] Aho�A., Hopcroft� J., and Ullman�J.
The Design and Analysis of Computer Algorithms, Chapter 5: \Algorithms on

Graphs", Section 5: \Strong Connectivity", pages 189{195. Addison-Wesley Publish-

ing Company, Reading, Massachusetts, 1974.

(Cited herein on pages 34 and 73.)

[AiRS94] Aitken� J., Reichgelt�H., and Shadbolt�N.
\Resolution Theorem Proving in Rei�ed Modal Logics", in Journal of Automated
Reasoning, Volume 12 (1994), Number 1 (February), pages 103{129.

(Cited herein on page 91, in a footnote.)

[BaFG89] Barringer�H., Fisher�M., and Gough�G.
\Fair SMG and Linear Time Model Checking", in Sifakis�J. (editor): Automatic Ver-
i�cation Methods for Finite State Systems: International Workshop (1989, Lecture

Notes in Computer Science #407). Springer-Verlag, Berlin, 1990.

(Cited herein on page 37, in a footnote.)

[Bee85] Beeson�M.

Foundations of Constructive Mathematics. Springer-Verlag, Berlin, 1985.
(Cited herein on page 18, in a footnote.)

[Ben93] Ben-Ari�M.

Mathematical Logic for Computer Science, Chapter 5: \Temporal Logic", Section 5.4:

\Semantic Tableaux", pages 216{228. Prentice-Hall International (UK) Ltd., London,

1993. (See also the work of Ben-Ari, Pnueli, and Manna [BenPM83].)

(Cited herein on pages 17 and 19.)

[BenPM83] Ben-Ari�M., Pnueli�A., and Manna�Z.
\The Temporal Logic of Branching Time", in Acta Informatica, Volume 20 (1983),

pages 207{226.

(Cited herein on page 135.)

135

136 BIBLIOGRAPHY

[BuCMD90] Burch� J., Clarke�E., McMillan�K., and Dill�D.
\Sequential Circuit Veri�cation Using Symbolic Model Checking", in ACM/IEEE
Design Automation Conference (27th, Proceedings) (1990), pages 46{51.
(Cited herein on page 18, in a footnote.)

[BuCMDH90] Burch� J., Clarke�E., McMillan�K., Dill�D., and Hwang�L.
\Symbolic Model Checking: 1020 States and Beyond", in Proceedings of the Fifth
Annual IEEE Symposium on Logic in Computer Science (June 1990), pages 1{13.

(Cited herein on page 88.)

[CiCCM94] Ciapessoni�E., Corsetti�E., Crivelli�E., and Migliorati�M.

\Checking Satis�ability of TRIO6= Speci�cations", in Ohlbach�H. (editor): Tempo-
ral Logic | Proceedings of the ICTL Workshop, Technical Report #MPI-I-94-230,

pages 110{15. Max-Planck-Institut f�ur Informatik, June 1994.

(Cited herein on page 18.)

[ClES86] Clarke�E., Emerson�E., and Sistla�A.
\Automatic Veri�cation of Finite-State Concurrent Systems Using Temporal Logic

Speci�cations", in ACM Transactions on Programming Languages and Systems, Vol-
ume 8 (1986), Number 2 (April), pages 244{263.

(Cited herein on page 73.)

[ClGH94] Clarke�E., Grumberg�O., and Hamaguchi�K.
\Another Look at LTL Model Checking", in Dill�D. (editor): Computer Aided Ver-
i�cation (6th International Conference, CAV '94) (Lecture Notes in Computer Sci-

ence #818), pages 415{427. Springer-Verlag, Berlin, 1994.

(Cited herein on page 73.)

[Con86] Constable�R. et al.
Implementing Mathematics with the Nuprl Proof Development System. Prentice-Hall
Inc., Englewood Cli�s, New Jersey, 1986.

(Cited herein on pages 18 (in a footnote) and 92 (in a footnote).)

[Coo72] Cooper�D.
\Theorem proving in arithmetic without multiplication", in Machine Intelligence,
Volume 7 (1972), pages 91{99.

(Cited herein on page 116, in a footnote.)

[CyN94] Cyrluk�D. and Narendran�P.
\Ground Temporal Logic: A Logic for Hardware Veri�cation", in Dill�D. (editor):
Computer Aided Veri�cation (6th International Conference, CAV '94) (Lecture Notes
in Computer Science #818), pages 247{259. Springer-Verlag, Berlin, 1994.

(Cited herein on page 133.)

[DDHY92] Dill�D., Drexler�A., Hu�A., and Yang�C.
\Protocol Veri�cation as a Hardware Design Aid", in 1992 IEEE International Con-
ference on Computer Design: VLSI in Computers and Processors, pages 522{25.
(Cited herein on page 87.)

[EH86] Emerson�E. and Halpern� J.
\`Sometimes' and `not never' revisited: On branching time versus linear time", in

Journal of the Association for Computing Machinery, Volume 33 (1986),

pages 151{178.

(Cited herein on page 1.)

137

[FiscL77] Fischer�M. and Ladner�R.
\Propositional Dynamic Logic of Regular Programs", in Journal of Computer and
System Sciences, Volume 18 (1977), pages 194{211.

(Cited herein on pages 17 and 37 (in a footnote).)

[Fish92] Fisher�M.

\A Model Checker for Linear Time Temporal Logic", in Formal Aspects of Computing,
Volume 4 (1992), pages 299{319.

(Cited herein on page 87.)

[Fre78] Freuder�E.
\Synthesizing Constraint Expressions", in Communications of the ACM, Vol-

ume 21 (1978), Number 11 (November), pages 958{966.

(Cited herein on page 18.)

[Fr�u94] Fr�uhwirth�T.
\Annotated Constraint Logic ProgrammingApplied to Temporal Reasoning", in Pro-
gramming Language Implementation and Logic Programming (6th International Sym-
posium, Proceedings) (Lecture Notes in Computer Science #844), pages 230{243.

Springer-Verlag, Berlin, 1994.

(Cited herein on pages 2 and 91 (in a footnote).)

[GeN87] Genesereth�M. and Nilsson�N.
Logical Foundations for Arti�cial Intelligence. Morgan-Kaufmann, San Mateo, Cali-

fornia, 1987.

(Cited herein on page 105.)

[Gl95] Glanz�J.
\Mathematical Logic Flushes out the Bugs in Chip Designs", in Science, Volume 267,

pages 332{333, 20 January 1995.

(Cited herein on page 1, in a footnote.)

[Gor86] Gordon�M.

\Why higher-order logic is a good formalism for specifying and verifying hardware",

in Formal Aspects of VLSI Design, pages 153{177. Elsevier Science Publishers, North
Holland, 1986.

(Cited herein on pages 75{78.)

[Gou84] Gough�G.
\Decision Procedures for Temporal Logic". Master's thesis, Department of Computer

Science, University of Manchester, UK, 1984.

(Cited herein on page 37, in a footnote.)

[He91] Henzinger�T.
\The Temporal Speci�cation and Veri�cation of Real-Time Systems",

Report No. STAN-CS-91-1380. Department of Computer Science, Stanford Univer-

sity, Stanford, California, 1991.

(Cited herein on pages 1, 18, and 65.)

[HeMP94] Henzinger�T., Manna�Z., and Pnueli�A.
\Temporal Proof Methodologies for Timed Transition Systems", in Information and
Computation, Volume 112 (1994), Number 2 (August), pages 273{337.

(Cited herein on pages 79 and 84.)

138 BIBLIOGRAPHY

[HuC89] Hughes�G. and Cresswell�M.

An Introduction to Modal Logic. Methuen & Co. Ltd., London, 1989.

(Cited herein on page 138.)

[KeMMP93] Kesten�Y., Manna�Z., McGuire�H., and Pnueli�A.
\A Decision Algorithm for Full Propositional Temporal Logic", in

Courcoubetis�C. (editor): Computer Aided Veri�cation (5th International Confer-
ence, CAV '93) (Lecture Notes in Computer Science #697), pages 97{109. Springer-

Verlag, Berlin, 1993.

(Cited herein on page 17.)

[KeP91] Kesten�Y. and Pnueli�A.
\An E�cient Introduction of the Past", Technical Report | Preliminary Version.

Department of Computer Science, the Weizmann Institute of Science, Israel, 1991.

(Cited herein on page 18.)

[KifS92] Kifer�M. and Subrahmanian�V.
\Theory of Generalized Annotated Logic Programmingand its Applications", in Jour-
nal of Logic Programming, Volume 12 (1992), Number 4 (April), pages 335{367.

(Cited herein on page 2.)

[KimC90] Kimura�S. and Clarke�E.
\A Parallel Algorithm for Constructing Binary Decision Diagrams", in 1990 IEEE
International Conference on Computer Design (Proceedings), pages 220{23. IEEE
Computer Society Press, 1990.

(Cited herein on page 88.)

[Kow79] Kowalski�R.
Logic for Problem Solving. North Holland, New York, 1979.

(Cited herein on page 80.)

[Koy90] Koymans�R.
\Specifying Real-Time Properties with Metric Temporal Logic", in Journal of Real-
Time Systems, Volume 2, Number 4, pages 255{299. Kluwer Academic Publishers,

1990.

(Cited herein on pages 1 and 18.)

[Koy92] Koymans�R.
Specifying Message Passing and Time-Critical Systems with Temporal Logic (Lecture
Notes in Computer Science #651). Springer-Verlag, Berlin, 1992.

(Cited herein on pages 1 and 18.)

[Kr63] Kripke� S.
\Semantical Analysis of Modal Logic I, Normal Propositional Calculi", Zeitschrift f�ur
Mathematische Logik und Grundlagen der Mathematik, Volume 9 (1963), pages 67{

96. VEB Deutscher Verlag der Wissenschaften, Berlin. (For a more accessible source,

see the work of Hughes and Cresswell [HuC89].)

(Cited herein on page 17.)

[Ku92] Kumar�V.
\Algorithms for Constraint-Satisfaction Problems: A Survey", in AI Magazine, Vol-
ume 13 (1992), Number 1 (Spring), pages 32{44.

(Cited herein on page 18.)

139

[LicPZ85] Lichtenstein�O., Pnueli�A., and Zuck� L.
\The Glory of the Past", in Logics of Programs (Proceedings) (Lecture Notes in

Computer Science #193), pages 196{218. Springer-Verlag, Berlin, 1985.

(Cited herein on pages 1, 17, 18, and 65.)

[LinC88] Lincoln�P. and Christian� J.
\Adventures in Associative-Commutative Uni�cation (A Summary)", in Lusk�E. and
Overbeek�R. (editors): 9th International Conference on Automated Deduction (Lec-

ture Notes in Computer Science #310), pages 358{366. Springer-Verlag, Berlin, 1988.

(Cited herein on page 111.)

[Mac77] Mackworth�A.
\Consistency in Networks of Relations", in Arti�cial Intelligence, Volume 8 (1977),

pages 99{118.

(Cited herein on page 18.)

[Mak91] Maksimova�L.
\Temporal Logics with `The Next' Operator Do Not Have Interpolation or the Beth

Property", in Siberian Mathematics Journal, Volume 32 (1991), Number 6 (Novem-

ber/December), pages 989{993.

(Cited herein on page 86.)

[ManP91] Manna�Z. and Pnueli�A.
The Temporal Logic of Reactive and Concurrent Systems: Speci�cation. Springer-
Verlag, New York, 1991.

(Cited herein on pages 1, 3, and 117 (in a footnote).)

[ManWa80] Manna�Z. and Waldinger�R.
\A Deductive Approach to Program Synthesis", in ACM Transactions on Program-
ming Languages and Systems, Volume 2 (1980), pages 90{121.

(Cited herein on pages 91 and 111.)

[ManWa92] Manna�Z. and Waldinger�R.
\Fundamentals of Deductive Program Synthesis", in IEEE Transactions on Software
Engineering, Volume 18 (1992), Number 8 (August), pages 674{704.

(Cited herein on page 18, in a footnote.)

[ManWa93] Manna�Z. and Waldinger�R.
The Deductive Foundations of Computer Programming. Addison-Wesley, Reading,

Massachusetts, 1993.

(Cited herein on pages 93, 105 (in a footnote), and 132.)

[ManWo84] Manna�Z. and Wolper�P.
\Synthesis of Communicating Processes from Temporal Logic Speci�cations", in

ACM Transactions on Programming Languages and Systems, Volume 6 (1984), Num-

ber 1 (January), pages 68{93.

(Cited herein on page 17.)

[Mar79] Martin-L�of�P.
\Constructive Mathematics and Computer Programming", in Cohen�L. (editor): In-
ternational Congress of Logic, Methodology, and Philosophy of Science VI (Proceed-
ings) (1979). PWN | Polish Scienti�c Publishers, New York, 1982.

(Cited herein on page 18, in a footnote.)

140 BIBLIOGRAPHY

[MccH69] McCarthy� J. and Hayes�P.
\Some Philosophical Problems from the Standpoint of Arti�cial Intelligence", in Ma-
chine Intelligence, Volume 4 (1969), pages 410{17.

(Cited herein on page 80.)

[McgMW94] McGuire�H., Manna�Z., and Waldinger�R.
\Annotation-Based Deduction in Temporal Logic", in Gabbay�D. and

Ohlbach�H. (editors): Temporal Logic (First International Conference, ICTL, Pro-
ceedings) (Lecture Notes in Arti�cial Intelligence #827), pages 430{444. Springer-

Verlag, Berlin, 1994.

(Cited herein on pages 1 and 91 (in a footnote).)

[Mcm93] McMillan�K.
Symbolic Model Checking. Kluwer Academic Publishers, Boston, Massachusetts, 1993.

(Cited herein on pages 17 (in a footnote) and 87.)

[Mi92] Mints�G.
A Short Introduction to Modal Logic (CSLI Lecture Notes No. 30), Section 3.4: \In-

dexed Formulas and Deduction Rules", pages 44�. Center for the Study of Language

and Information (CSLI), Leland Stanford Junior University, Stanford, California,

1992.

(Cited herein on page 5, in a footnote.)

[Mo74] Montanari�U.
\Networks of Constraints: Fundamental Properties and Applications to Picture Pro-

cessing", in Information Sciences, Volume 7 (1974), pages 95{132.

(Cited herein on page 18.)

[Mu78] Murray�N.
\A Proof Procedure for Non-Clausal First-Order Logic" (technical report). Syracuse

University, Syracuse, New York, 1978.

(Cited herein on page 94.)

[Mu82] Murray�N.
\Complete Nonclausal Theorem Proving", in Arti�cial Intelligence, Volume 8 (1982),

pages 67{85.

(Cited herein on page 94.)

[O88] Ohlbach�H.
\A Resolution Calculus for Modal Logics", in Lusk�E. and Overbeek�R. (editors):
9th International Conference on Automated Deduction (Proceedings) (Lecture Notes
in Computer Science #310), pages 500{516. Springer-Verlag, Berlin, 1988.

(Cited herein on page 91.)

[O93] Ohlbach�H.
\Translation Methods for Non-Classical Logics | An Overview", in Automated De-
duction in Nonstandard Logics (Technical Report #FS-93-01), pages 113{125. AAAI

Press, Menlo Park, California, 1993.

(Cited herein on pages 92 and 106.)

[Pl86] Plaisted�D.
\A Decision Procedure for Combinations of Propositional Temporal Logic and

Other Specialized Theories", in Journal of Automated Reasoning, Volume 2 (1986),

pages 171{190.

(Cited herein on page 91.)

141

[Pn77] Pnueli�A.
\The Temporal Logic of Programs", in 18th Annual Symposium on Foundations of
Computer Science (1977), pages 46{57.

(Cited herein on page 1.)

[Pn84] Pnueli�A.
\In Transition from Global to Modular Temporal Reasoning about Programs", in

Apt�K. (editor): Logics and Models of Concurrent Systems (Proceedings, 1984),

pages 123{144. Springer-Verlag, Heidelberg, 1985.

(Cited herein on page 1.)

[Pr78] Pratt�V.
\A Practical Decision Method for Propositional Dynamic Logic", in Proceedings of
the 10th Annual Symposium on Theory of Computing (May 1978), pages 326{337.

(Cited herein on page 17, in a footnote.)

[SheP89] Sherman�R. and Pnueli�A.
\Model Checking for Linear Temporal Logic: An E�cient Implementation" (technical

report). Information Science Institute, USC, 1989.

(Cited herein on pages 17 and 75.)

[Shoh87] Shoham�Y.
\Temporal Logics in AI: Semantical and Ontological Considerations", in Arti�cial
Intelligence, Volume 33 (1987), pages 89{104.

(Cited herein on pages 2 and 91.)

[Shos79] Shostak�R.
\A practical decision procedure for arithmetic with function symbols", in Journal
of the Association for Computing Machinery, Volume 26 (1979), Number 2 (April),

pages 351{360.

(Cited herein on page 116, in a footnote.)

[SiC85] Sistla�A. and Clarke�E.
\The Complexity of Propositional Linear Temporal Logics", in Journal of the Associ-
ation for Computing Machinery, Volume 32 (1985), Number 3 (July), pages 733{749.

(Cited herein on page 73.)

[So76] Soare�R.
\The In�nite Injury Priority Method", in Journal of Symbolic Logic,
Volume 41 (1976), pages 513{530.

(Cited herein on page 18, in a footnote.)

[So87] Soare�R.
Recursively Enumerable Sets and Degrees (A Study of Computable Functions and
Computably Generated Sets). Springer-Verlag, Berlin, 1987.
(Cited herein on page 18, in a footnote.)

[St75] Stickel�M.

\A Complete Uni�cation Algorithm for Associative-Commutative Functions", in In-
ternational Joint Conference on Arti�cial Intelligence (Proceedings) (1975), pages 71{
82.

(Cited herein on page 111.)

[Sz86] Szalas�A.
\Concerning the Semantic Consequence Relation in First-Order Temporal Logic", in

142 BIBLIOGRAPHY

Theoretical Computer Science, Volume 47 (1986), pages 329{334.

(Cited herein on page 133.)

[SzH88] Szalas�A. and Holenderski�L.
\Incompleteness of First-Order Temporal Logic with Until", in Theoretical Computer
Science, Volume 57 (1988), pages 317{325.

(Cited herein on page 133.)

[Wa89] Wallen�L.
Automated Proof Search in Nonclassical Logics. The MIT Press, Cambridge, Mas-

sachusetts, 1989.

(Cited herein on page 91.)

[WiP89] Wilk�A. and Pnueli�A.
\Speci�cation and Veri�cation of VLSI Systems", in 1989 IEEE International Con-
ference on Computer-Aided Design (Proceedings), pages 460{63. IEEE Computer

Society Press, 1989.

(Cited herein on pages 1 and 75{78.)

[Wo83] Wolper�P.
\Temporal Logic Can Be More Expressive", in Information and Control, Vol-

ume 56 (1983), Numbers 1/2 (January/February), pages 72{99.

(Cited herein on page 86.)

[Wo85] Wolper�P.
\The Tableau Method for Temporal Logic: An Overview", in Logique et Analyse,
Number 110/111 (June{September 1985), pages 119{136.

(Cited herein on page 17.)

[ZSS94] Zhang� S., Sokolosky�O., and Smolka�S.
\On the Parallel Complexity of Model-Checking in the Modal Mu-Calculus", in Ninth
Annual IEEE Symposium on Logic in Computer Science, pages 154{163. IEEE Com-

puter Society Press, 1994.

(Cited herein on page 88.)

Index

 (exclusive disjunction): 2

? (operator): 2
2, 3, 4, etc. (additional numerals): 3

h� + 1i: 3
���: 4 (in a footnote), 7
hs1; s2i[future=past] (edge): 29
�2 (\retroactively"): 75

accurate edge: 24

add_options*(): 30
annotation, time-: 5

antecedent row: 99

associated formulas(): 37
associativity, operator's: 6

@: 7

axiom: 98,
domain-: 12

blank (state-sketch): 29
boolean operator: 2

character, quanti�er's: 105
� (parameter-symbol): 2
� (sequence of parameter-symbols): 2
combining deduction-rules: 99

constraint,

�rst-: 21
ful�llment-: 24

immediate: 21

neighbor-: 24

delineate_model(): 35
distribution, time- (rewriting): 104

domain, theory of: 12

domain-axiom: 12
domain-induction: 115

Duality rule: 105

E (edges): 29

E (barred edges): 29

� (formula): 5
elaborate_graph(): 30

elimination, Quanti�er- (rule): 105

embedding: 40
establish_edge(): 31

� (numeral): 3

eventual successor: 20

existential character: 105

expansion (rewriting): 101

' (formula): 5
falsify: 8

�rst-constraint: 21

formula, time-: 5
fulfilling_congruences(): 34

ful�llment: 9, 10

ful�llment-constraint: 24

 (function-symbol): 2

generated row: 99

immediate constraint: 21
inaccurate edge: 24

induction, domain-: 115

induction, temporal: 115
init_embedding(): 44

init_graph(): 29

invariability, temporal: see variability, temporal

lemma: 98

literal: 20

M (embedding): 40
M (model): 6

metric temporal operator: 4

� (numeral): 3

neighbor: 20

neighbor-constraint: 24
neighbor_formulas(): 30

neighbor op(): 30
� (temporal variable): 2

numeral: 3

operator,

associativity: 6

boolean: 2
precedence: 6

temporal: 3,

metric: 4
options(): 31

}(((()))) (power-set): 6

parameter-symbol: 2

143

144 INDEX

' (formula): 5
� (proposition): 2

polarity: 94

precedence, operator's: 6
pred (predecessor-function-symbol): 3

 (formula): 5

Q (quanti�er-symbol): 3

Quanti�er-elimination rule: 105
quanti�er-symbol: 3

Rewriting rule: 100
� (relation-symbol): 2

satisfy(): 29

schema, deduction-rule: 99

scope: 5
search_graph(): 34

selectively_add_options*(): 47

select_option(): 47
shift_embedding(): 44

� (term): 4

sketch, state-: 20
skolemization: see Quanti�er-elimination rule

Splitting rule: 104

state: 7
state-sketch: 20

subscript, metric temporal operator's: 4

successor, eventual: 20
superscript, metric temporal operator's: 4

T (time-domain): 6

t (time-value): 6

target: 100
� (term): 4

temporal induction: 115

temporal invariability: see temporal variability
temporal operator: 3,

metric: 4

temporal variability: 2, 7
temporal variable: 2

term, time-representing: 4

theory of a domain: 12

� (time-representing term): 4

time-annotation: 5

time-distribution (rewriting): 104

time-formula: 5

time-representing term: 4

time-value: 6

type,

symbol's: 4

term's: 4

unbar_edges(): 31

universal character: 105
universe: 6

V (vertices): 29
v (temporal variable): 2

� (temporal variable): 2

variability, temporal: 2, 7
variable, temporal: 2

� (parameter-symbol): 2
� (sequence of parameter-symbols): 2

� (formula): 5

 (exclusive disjunction): 2

 (function-symbol): 2

