
Approximation Algorithms for the Largest Common

Subtree Problem

Sanjeev Khanna
�

Department of Computer Science

Stanford University

Rajeev Motwani
y

Department of Computer Science

Stanford University

Frances F. Yao

Palo Alto Research Center

Xerox Corporation

Abstract

The largest common subtree problem is to �nd a largest tree which occurs as a
common subgraph in a given collection of trees. Let n denote the number of vertices in
the largest tree in the collection. We show that in the case of bounded degree trees, it
is possible to achieve an approximation ratio of O(n(log logn)= log2 n). For unbounded
degree trees, we give an algorithm with approximation ratio O(n(log logn)2= log2 n)
when the trees are unlabeled. An approximation ratio of O(n(log logn)2= log2 n) is also
achieved for the case of labeled unbounded degree trees provided the number of distinct
labels is O(logO(1) n).

1 Introduction

The problem of �nding largest common substructures often arises in chemistry and compu-

tational biology. Such substructures, for instance, may help explain the common properties

shared by a group of compounds (see e.g. [8]). We study a restricted version of this problem,

namely, that of searching for the largest common subtree in a given collection of trees. We

refer to this problem as the largest common subtree (LCST) problem.

The LCST problem for two trees is known to be in both P and RNC, while it is NP-hard

for three or more trees [1]. It is also known that the LCST problem for a �xed number of

bounded degree trees is in NC [1]. Recently, Akutsu and Halld�orson [2] showed that there

exists a constant � > 0 such that the LCST problem is hard to approximate within a factor

of n� on an unbounded collection of trees independent of whether the vertices are labeled

or not (here n denotes the maximum number of vertices in any tree of the given collection).

These results hold even when the vertex degrees are bounded and the trees are ordered.

They also showed that the LCST problem is MAX SNP-hard when the number of trees is

�Supported by an OTL grant, NSF Young Investigator Award CCR-9357849, and a Schlumberger Foun-

dation Fellowship.
ySupported by Alfred P. Sloan Research Fellowship, IBM Faculty Development Award, an OTL grant, and

NSF Young Investigator Award CCR-9357849, with matching funds from IBM, Schlumberger Foundation,

Shell Foundation, and Xerox Corporation.

1



bounded but the vertex degrees are unbounded. On the positive side, it was shown that

the LCST problem can be approximated to within a factor of O(n= logn).

The focus of this paper is to present improved approximation algorithms for the LCST

problem. Speci�cally, we show that in the case of bounded degree trees we can achieve

an approximation ratio of O(n(log logn)= log2 n). For unbounded degree trees, we give an

algorithm with an approximation ratio of O(n(log logn)2= log2 n) if the trees are unlabeled.

In the case of labeled, unbounded degree trees, we can achieve the same approximation ratio

when the number of distinct labels is O(logO(1)n). The approximation guarantees achieved

in this paper are independent of the number of trees in the input collection. It would be

interesting to see if these guarantees can be improved when there is a restriction on the

number of input trees; of particular interest is the case when the number of input trees is

a constant but the vertex degrees are unbounded.

2 Preliminaries

We are given a collection C = fT1; T2; : : : ; Tmg of trees such that each tree contains at most

n vertices. The vertices in the tree may have labels associated with them. The LCST

problem is that of determining the largest tree which occurs as a subgraph in each Ti 2 C.
We say that an algorithm approximates a maximization problem (such as the LCST

problem) to a factor f(N) if on any instance of size N , it outputs a solution such that the

ratio of the optimal solution value to this solution value is at most f(N).

3 The Bounded Degree Case

We �rst consider the case when the maximum degree of any vertex is bounded by a constant,

say �. We show that there is a simple randomized algorithm that achieves an approxima-

tion ratio of O(n(log logn)= log2 n); subsequently, we indicate how this algorithm may be

derandomized.

Let OPT and jOPTj respectively denote an optimal solution and the size of an optimal

solution. If jOPTj � n= log2 n, then the desired approximation ratio is trivially achieved.

Similarly, if the height of OPT is 
(log2 n), then there is a simple algorithm to achieve

the desired approximation: exhaustively compute all O(n2) pairwise paths in T1; verify the

ones which occur as a subgraph in each of the Ti 2 C; and, output the largest one. Without

loss of generality, we assume from now on that:

� jOPTj � n=log2 n, and

� the height of OPT is at most log2 n.

We also assume that both OPT and T1 are rooted at the same vertex r, since we can

exhaustively try all possible vertices of T1 as the root for OPT, and output the best solution

among them.

De�nition 1 [Dense Level] A level of vertices in T1 is called dense if it contains at least

n= log4 n vertices of OPT.

2



Lemma 1 There exists a dense level in T1.

Proof: All vertices in OPT occur in the �rst log2 n levels of T1. The result follows by

an application of the pigeonhole principle to the �rst log2 n levels of T1.

Given two vertices x; y in T1, let LCA(x; y) denote their least common ancestor in T1.

De�nition 2 [Scattered Set] A set of vertices U from a given level of the tree T1 is called

scattered if for any two vertices x and y in U , LCA(x; y) is at a distance h � logn=(2 log�)

from x and y.

Lemma 2 Let U be a set of size k = log n=(5 log logn) chosen uniformly at random from

the vertices in L. Then, with probability 
(1=n), U consists entirely of vertices from OPT

and is a scattered set.

Proof: Consider a vertex x at level L and let Y be the set of all vertices in L such that

LCA(x; y) for y 2 Y is at distance h < logn=(2 log�) from x and y. Since the degree of

each vertex is bounded by �, it is easy to verify that jY j � p
n� 1. Thus if p denotes the

probability that a randomly chosen set U of size k is scattered, then

p �
 
n= log4 n

n

!
�
 
n= log4 n� p

n

n � 1

!
� :::�

 
n= log4 n � (k � 1)

p
n

n� (k � 1)

!
:

It is easy to verify that for any i = O(logn) and su�ciently large n,

 
n= log4 n� i

p
n

n � i

!
� 1

2 log4 n
;

and therefore, for k = logn=(5 log logn),

p � 2�k(4 log logn+1) � 1

n
:

De�nition 3 [Subtree Extension] Given a collection of vertices U in T1, the subtree

extension of U , denoted by TU , is the unique smallest subtree in T1 which contains every

vertex in U .

Lemma 3 Let U be any scattered subset of vertices from a given level of the tree T1. Then

TU , the subtree extension of U , contains at least 
((jU j � 1) logn) vertices.

Proof: We can construct TU iteratively by adding vertices from U one at a time. Each

newly added vertex contributes a path P to the partial subtree Ti constructed so far. But

observe that P must comprise of at least logn=(2 log�) vertices not in Ti; otherwise there
would be a pair of vertices x; y in U with LCA(x; y) at a distance h < log n=(2 log�),

contradicting the assumption that U is scattered.

3



3.1 A Randomized Algorithm

Our randomized algorithm is now easy to state:

A). Select a vertex in T1 as the root. We will try all possible vertices as candidates for

the root; there are at most n such choices.

� Assume from now on that T1 is rooted at the same vertex as OPT.

B). Select a level in T1 as a candidate for being a dense level. As before, we will try all

possible choices; only the �rst log2 n levels need be considered since we assume that

OPT and T1 are rooted at a common vertex and the height of OPT is at most log2 n.

� Assume from now on that L is a dense level.

C). Randomly choose a subset U of k = (logn)=(5 log logn) vertices from L. By Lemma 2,

with probability 
(1=n) the subset U contains only vertices from OPT and is a scat-

tered set. The probability of success can be suitably ampli�ed by repeating the trials.

D). Compute the subtree extension of U in T1, namely TU , and verify that it is indeed a

common subtree of fT1; T2; :::; Tmg.

3.2 The Analysis

Assuming that the algorithm has made the right choices in steps (A) and (B), it is easy to

see that it outputs a solution of size 
((log2 n)= log logn).

The running time is simply given by #A � #B � #C � #D, where #S denotes the

number of times step S gets executed; the steps are nested with (A) being the outermost

and (D) being the innermost.

Lemma 4 Given a set of vertices U in a rooted tree T such that each vertex is at distance

at most h from the root, the subtree extension of the set U in T can be computed in O(jU jh)
time.

Proof: This can be done by a simple algorithm that iteratively constructs the subtree

extension. Suppose we have the subtree extension of a subset of vertices in U and let r0

be the root of this tree. When we add another vertex x from U , we simply need to add

the vertices along the paths from x to LCA(x; r0) and from r0 to LCA(x; r0) to update the

current subtree and the root r0. Since LCA(x; r0) and these paths can be computed in O(h)

time by simply following the parent pointers from each of the vertices x and r0, the lemma

follows.

The following lemma was established in [7].

Lemma 5 Given two rooted trees S and T , it can be determined in time O(st1:5) if S occurs

as a subtree of T , where s and t denote the number of vertices in S and T respectively.

Using Lemmas 4 and 5, we know that each execution of step (D) takes

4



O

 �
log n

log log n
� log2 n

�
�
 

log2 n

log logn
� n1:5 �m

!!

time. Steps (A) and (B), within which step (D) is nested, are performed a total ofO(n log2 n)

times. Finally, the number of executions of (C) depends on the desired probability of error.

Suppose we want the probability of error to be at most O(1=n); it su�ces to execute (B) a

total of O(n logn) times. Thus the total running time will be O((mn3:5 log8 n)=(log logn)2).

Theorem 1 If jOPTj � n=log2 n, then in O((mn3:5 log8 n)=(log logn)2) time, we can de-

termine a common subtree of size 
((log2 n)= log logn) with probability of failure O(1=n).

3.3 Derandomization

The algorithm of Section 3.1 uses randomization only in step (C). Since 
(log2 n= log logn)

random bits are used, the naive derandomization of exhaustively searching through the

probability space would take super-polynomial time. Instead, we will derandomize (C) by

the technique of two-point sampling [6]. This technique involves showing that analysis of

a randomized algorithm applies even when the random choices are pairwise independent;

then, since pairwise independent choices can be obtained using a polynomial size probability

space, the algorithm can be derandomized by e�ciently searching the underlying probability

space.

Let us study the random variable R de�ned as R =
Pl

i=1Ri, where each Ri is a binary

random variable, l is to be speci�ed later, and Ri's are pairwise independent. Let Si�1
denote the set of vertices speci�ed by the �rst i � 1 random variables, and let y be the

vertex chosen at the ith step. The variable Ri equals 1 if and only if

� the vertex y is in OPT, and

� for any vertex x 2 Si�1, fx; yg is a scattered set.

For i = O(logO(1)n),

Pr[Ri = 1] = pi � n= log4 n � (i� 1)
p
n

n � (i� 1)
= 


�
1

log4 n

�
:

Since E(Ri) = pi and �2Ri
� pi, we have E(R) =

Pl
i=1 pi and �2R � Pl

i=1 pi (using the

pairwise independence of Ri's). By Chebyshev's inequality, we have

Pr[jR� E(R)j � t] � �2R
t2
:

Choosing t = E(R)=2 and l = log5 n, we conclude that

Pr

�
R � E(R)

2

�
= O

�
1

logn

�
:

Since E(R) = 
(logn), with some constant probability, we are guaranteed to �nd a scattered

set of size at least logn=(5 log log n) among the log5 n vertices chosen above.

5



Once the log5 n vertices are chosen, we can exhaustively try all possible subsets of k

vertices among them. The number of such subsets is only o(n).

The derandomization is now simple; it is well known that we can construct 
(n) pairwise

independent random variables by using only O(logn) random bits [4, 3]. Hence the proba-

bility space constructed above uses only O(logn) bits and can be exhaustively searched in

polynomial time. Thus we have derandomized the algorithm of Section 3.1.

Corollary 1 LCST in bounded degree trees can be approximated in polynomial time to

within a ratio of O(n(log logn)= log2 n).

3.4 Parallelization

The derandomized algorithm above can in fact be implemented in NC. Only the NC imple-

mentation of Lemma 5 needs some explanation. The algorithm in [7] essentially proceeds as

follows. Delete the roots of S and T to obtain rooted subtrees S1; S2; :::; Sp and T1; T2; :::; Tq.

Form a p � q binary matrix M such that Mij = 1 if and only if Si is a rooted subtree of

Tj (determined recursively). Check if there is a matching in the bipartite graph speci�ed

by M which matches each subtree of S to a distinct subtree of T . Since the height of the

tree S in our application is only O(log2 n), the recursion has O(log2 n) levels. The problem

of bipartite maximum matching in general is known only to be in RNC [5] and not known

to be in NC. However, since an augmenting path can be determined in NC, and in our

application, the size of the matching is O(log2 n), our algorithm can be implemented in NC.

Thus we have the following corollary.

Corollary 2 There is an NC algorithm to approximate LCST in bounded degree trees to

within a ratio of O(n(log logn)= log2 n).

4 The Unbounded Degree Case

We now consider the case when the maximum degree of any vertex is unbounded. To begin

with, observe that we may state Theorem 1 in the following more general form.

Theorem 2 LCST can be approximated to within a ratio of O(n(log log n log�)= log2 n) in

polynomial time, where � denotes an upper bound on the degree of any vertex in OPT.

We use the above theorem to design two separate algorithms for the case of unlabeled

and labeled trees.

4.1 Unlabeled Trees

We observe the following.

Lemma 6 If the largest degree of any vertex in OPT is �, then the LCST of unlabeled

trees can be approximated to within a ratio of O(n=(1 + �)).

Proof: Let �i be the largest degree of any vertex in the tree Ti 2 C, and let �C =

mini�i. Clearly, the graph K1;�C
(a single vertex connected to �C other vertices) occurs

as a common subtree and �C � �.

6



Theorem 3 LCST in unlabeled trees can be approximated in polynomial time to within a

ratio of O(n(log logn)2= log2 n).

Proof: An algorithm which outputs the largest of the two solutions implicit in Theo-

rem 2 and Lemma 6 achieves this approximation ratio.

4.2 Labeled Trees

The above result cannot be directly extended to labeled trees because we do not have an

immediate analogue of Lemma 6. However, if the number of distinct labels is suitably

restricted, it is possible to obtain a similar result.

Theorem 4 LCST in labeled trees can be approximated in polynomial time to within a

ratio of O(n(log logn)2= log2 n), provided the number of distinct labels is O(logc n) for some

constant c.

Proof: If the maximum degree of any vertex in OPT is O(logc+2 n), then Theorem 2

still gives us an approximation ratio of O(n(log logn)2= log2 n). On the other hand, if the

maximum degree is 
(logc+2 n), then there exists a vertex in OPT having at least 
(log2 n)

children with the same label. Therefore, an algorithm which simply computes for each label

b the largest star with all children having the label b, gives an O(n= log2 n) approximation

ratio.

Finally observe that both of the above theorems naturally yield NC algorithms.

References

[1] T. Akutsu. An RNC algorithm for �nding a largest common subtree of two trees.

IEEE Trans. Inf. & Syst., E75-D (1992), pp. 95{101.

[2] T. Akutsu and M.M. Halld�orsson. On the approximation of largest common point

sets and largest common subtrees. Proc. of 5th Ann. Int. Symp. on Algorithms and

Computation, Lecture Notes in Comput. Sci., 834 (Springer-Verlag, 1994), pp. 405{413.

[3] B. Chor and O. Goldreich. On the power of two-point sampling. Journal of Com-

plexity, 5 (1989), pp. 96{106.

[4] A. Joffe. On a set of almost deterministic k-independent random variables. Annals

of Probability, 2 (1974), pp. 161{162.

[5] R.M. Karp, E. Upfal, and A. Wigderson. Constructing a perfect matching is in

random NC. Combinatorica, 6 (1986), pp. 35{48.

[6] R.Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press

)New York, 1995).

[7] S.W. Reyner. An analysis of a good algorithm for the subtree problems. SIAM J.

Comput., 6 (1977), pp 730{732.

7



[8] Y. Takahashi, Y. Satoh, H. Suzuki, and S. Sasaki. Recoginition of largest common

structural fragment among a variety of chemical structures. Analytical Sciences, 3

(1987), pp. 23{28.

8


