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Abstract

In model-based systems that reason about the physical world, models must be matched to portions of
the physical system. To make model-based reasoning and diagnosis systems more readily extensible

and re-usable, this thesis explores automating model-matching. If matching is automated, one can
add a model without specifying every place in the physical equipment where it can be used. One

can apply the system to new equipment without identifying every place that every model may be
used. However, models address particular individuals, portions of the physical world identified as

separate entities. If the set of models is not fixed, one cannot carve the physical system into a fixed

set of individuals. Our goals are to develop methods for individuating and matching models and to
identify characteristics of physical equipment that must made explicit for those methods.

Our investigation involves three steps. First we explore examples of engineering models ap-

plied to physical systems found in textbooks or in manufacturing equipment to identify relevant

characteristics. Second, we implement matching methods using the characteristics. Third, we test
re-usability and extensibility. If the system can correctly define individuals and match some models,

even when models call for individuals not previously defined, then we can conclude that we have

identified some subset of the characteristics required to automate model-matching.

The first step of the investigation revealed that a number of models used in the domain of fluid

processing and chemical manufacturing do not correspond to components such as valves, tanks,.
or pumps. Many principles apply to regions containing particular materials or phases, or having

particular parameter values. An example is the Ideal Gas Law, which applies to any volume of space

occupied by molecules in the gas phase. Individuals for these kinds of models cannot be identified
in advance because there are too many possible individuals. Previous model-based diagnosis work

assumes the set of individuals is given and fixed. This assumption excludes real world diagnosis

problems where models like the Ideal Gas Law are required. Identification of this class of models
also shows that run-time individuation is required to solve certain kinds of problems.

We develop two matching and two reconfiguration algorithms which use descriptions of the
space occupied by the equipment and the space required by models to reconfigure individuals

at run-time. Two series of equipment description replacements demonstrate re-usability. Each

equipment description in a series has content to match the same model, but had represented as

different individuals. Two series of model additions demonstrate extensibility. In each series, the

equipment description remains constant, and the added models’ individuals vary. The system

correctly reconfigures and matches in all cases. We conclude that the 3-dimensional space occupied

by the equipment and required by the models along with the distribution of phases, materials,
and functional components within that space are required for model-matching. The locatio’ns  and
spatial extents of parameters are also required.
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Chapter 1

Introduction

1.1 Problem Overview

In all model-based reasoning systems, models must be assigned to portions of the physical world.

Typically this is done by humans at the time the reasoning system is built. Instances of appropriate
models are linked together to form a representation of the physical world. A few systems perform

model assignment automatically. They allow the equipment to be described in terms used in the

models and then do the assignment using a straightforward matching of model terms to equipment

terms [23,24]. B fe ore these systems start their tasks, though, all models must be assigned to all

possible places in the equipment to which they could later be applied. This thesis proposes a more

general solution to the problem of automating model-matching.
The model-matching problem is somewhat more difficult than the term matching or assigning

might suggest. Models generally apply to particular individuals, portions of the physical world that

have been identified as separate entities. To describe equipment so that a model can apply, one

must choose the right portions of the physical world to be individuals. However, if the set of models
is not fixed at the time the equipment description is built, one cannot know which individuals to

identify. In this work, we do not assume that the set of models is fixed, but that the set may
change and grow over the lifetime of the system. Thus the matching problem includes the problem

of individuating, defining portions of the physical equipment that should be treated as separate

entities.

I.2 Motivation for Automated Model-Matching

Our original motivations for automating model-matching were to improve re-usability and eztensi-
bility  of model-based reasoning systems. In the course of conducting the research, we discovered a
third motivation: Automated model-matching is required for certain kinds of models. Re-usability is

measured by the ease of applying a reasoning system and its models to different physical equipment.

Without automation, one must identify every possible place in the new equipment where each model
applies. If model-matching is automated, one should only have to describe the new physical system

and install that description into a reasoning system that contains the model matcher. Furthermore,

describing new equipment should be accomplished independently of the models in the system. Oth-

erwise, the description task grows with the size and number of models. So, for example, if three
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different models applicable to a centrifugal pump are present, and each model requires a different
level of detail, the equipment description should not have to be built at those three specific levels
of detail in order for models to be matched. Of course, the equipment description must contain as

much or more detail than a model requires for that model to successfully match.
Extensibility  is measured by the ease of adding a new model to a reasoning system and using it

to calculate something new. If model-matching is not automated, one must identify every possible
place in a physical system where the new model applies and identify the correct matching of

model variables to physical paramters. If model-matching is automated, adding a model requires

only describing the physical situation in which the model applies. The level of detail provided in

the description of the model’s physical situation should be independent of the current equipment

description. One should not have to find all possible places in the equipment where the model may

apply, and provide descriptions with the model at all the levels of detail used in those possible places.
Furthermore, the model itself should not have to be re-implemented to use a representation scheme

prescribed by the model matcher or diagnosis system. Many models of engineering phenomena
already exist; having to re-write them makes model addition more difficult and expensive and thus

reduces extensibility. In fact, Given the variety of mathematical forms and calculation methods used

in engineering models, it is likely that requiring a predetermined internal representation scheme for

models would prevent many models from being included because they could not be written in the

prescribed form.

During the course of this research, we discovered a third, very important reason for automating
model-matching. Run-time model-matching is required for certain kinds of models, like the Ideal

Gas Law, because of the very large (or infinite) number of portions of a physical system to which
. these models may apply. We refer to models with this characteristic as non-component models.

The particular location in which these models apply is ultimately determined by parameter values.
Values will typically not be available until reasoning time, since many values are calculated allong

the way. Non-component models are essential to engineering reasoning, but assigning them to every

possible location in advance of any task would not be feasible. If models are assigned at run-time,

then the values available allow a system to match only relevant models at relevant locations. This

finding is elaborated in Section 2.4.

113 Goals for this Research

This research is the first attempt at solving the general model-matching problem. Defined as a
problem of matching engineering models implemented as computer programs to descriptions of real

physical systems, the general problem is very large. The number of situations that real physical

systems can present is very large. The number of enginnering models, either implemented as
programs or not, is also very large. It is our opinion that attempting to matech  any one of these
models to any of the physical situations could point out deficiencies in an automated model-m&tching

system. (See Section 2.5 for a discussion of related work.)

To enable model-matching, more information about the physical situations in which models
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apply and about physical equipment must be made explicit than is used in systems where model-

matching is done by humans. Some method for matching the descriptions of models to physical

equipment also had to be developed. Thus the goals of this research were to:

1. identify characteristics required to describe models,

2. identify characteristics required to describe equipment,

3. and develop methods to match models to equipment

’ for selected representative engineering models in representative physical situations. By examining

some models and some situations, we identify a subset of the additional characteristics required to
solve the general model-matching problem and develop a subset of the matching methods required,

given those additional characteristics.
Since the motivation for automating model-matching is to gain re-usability and extensibility, the

test of the methods developed is to show that they do have the independence of model descriptions

from equipment descriptions described in Section 1.2. If a model can be matched to a number of

equipment descriptions where the level of detail varied from that used in the model description,
then the matching methods provide the desired independence for re-usability, at least for the model

tested. Likewise, if a number of different models can be added to the model matcher’s model
collection where the level of detail differed from that in the system’s current equipment description,

and if those models can be correctly matched and used to calculate new information, then the

methods provide the desired independence for extensibility.

This investigation of model-matching is a first step. Clearly efficiency of model-matching is
important for practical use as for all computer programs. However, given that this work is the
first attempt at model-matching, we focused on functionality more than performance. Although

optimization of implementations for efficiency purposes is left for future work, some analysis of the

algorithms as well as monitoring of implemented examples are done to assess feasibility.

1.4 Focus on Model-Based Diagnosis

Even though we believe that the problems and solutions studied are relevant to all model-based
reasoning tasks, we have focused on the model-based diagnosis task. For other tasks, such as

analysis or explanation, perhaps only correct behaviors are important. This class of behaviors may

be enumerable, and if it is, individuals can also be identified in advance. To diagnose a physical

system, one must be able to reason about correct behaviors as well as incorrect behaviors, even

when those incorrect behaviors cannot be enumerated in advance. The incentive for automating
model-matching is greater in diagnosis than in other model-based reasoning tasks, and we place

our work in the context of model-based diagnosis.
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1.5 Solution Overview

Our solution to the automated model-matching problem revolves around re-defining the portions

of the equipment that are individuals at matching time, if necessary. The equipment description

provided to a system must contain enough information to make that possible, and it must retain
the S-dimensional space in its representation. Our approach allows users to divide the equipment
into individuals in whatever way they find convenient, as long as the individuals represent the whole

body of space occupied by their equipment. The space may be carved up in any manner, but no

pieces may be left out of the representation. With these representational constraints, making a new
individual from such a representation is matter of merging and splitting adjacent individuals.

The physical individuals required by a model are described using the same underlying principles
as for the equipment. These individuals also partition a S-dimensional space. Since the engineering
models that we observed require entities that exemplify not only particular functional types (such

as pump or reactor), but also particular materials and phases (such as gas or liquid), we provide
means whereby these properties can be described for individuals both in equipment and models.

All the models require parameters, which have particular locations and spatial extents within the

individuals. The spatial representation method allows the spatial extents of parameters to be made

explicit. We also find that certain other characteristics of models, such as restrictions on their

parameter values and classification of parameters, are necessary to correctly match and use them.

We develop a matching method which, given a particular equipment parameter (having a partic-

ular location and spatial extent in the equipment), proceeds through a model description, attempt-

ing to match all the individuals and characteristics to those in the equipment. If a match cannot be

made, a reconfiguration may be attempted. We develop several reconfiguration methods which can

change the form of the individuals by merging and splitting. One algorithm is called when a model

requires a region that has only material and/or phase specified, but no functional type. We can

generate different equipment individuals by merging adjacent regions of the appropriate phase and

material or by splitting a region of that phase and material. Another algorithm is triggered when

the model requires an individual of a particular functional type (such as pump) and the equipment

has individuals that are subparts of a pump.

For such a reconfiguring system to produce new individuals that are useful reasoning tasks, it
must be able to generate the properties of the individuals. For example, if we merge two adjacent

regions of liquid water, the resulting region also will be liquid water. The resulting region has a

mass that is the sum of the masses of the two initial regions. This is background knowledge for

engineers. How a parameter is transformed through a merge or split depends on the type of the
parameter, its spatial extent, the type of reconfiguration (merge or split), and the type of region

involved (phase, material, functional type). We identify several classifications for parameter types

based on how they behave through merges and splits and implement transformation algorithms to

calculate the new parameters for a merged or split spatial entitiy from the initial entities an’d their

parameters.

Since our goal is to make systems more re-usable and extensible, we provide demonstrations of
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both. In, these demonstrations, we use non-component models, models which apply to individuals

that cannot be identified in advance, as well as component models. To demonstrate re-usability, we

provided a series of equipment descriptions to the system, each one replacing the old one as if the

system were being applied to some new piece of equipment. Each equipment description in a series

contains the right things to match a target model, the same model for each equipment description in
the series, but in each case the equipment description has a different set of individuals. We test two

such series, one for a non-component model and 7 different equipment descriptions and one for a
component model and 3 equipment descriptions. To show extensibility we make two series of model

additions, one involving 3 non-component models and one involving 4 component models. A single
equipment description is used for each of these two addition series. Because extensibility is affected
by what kinds of models the system allows to be added, we incorporate several different arbitrarily

implemented models into the system. However, to more strongly demonstrate that the system

admits models which were not designed by us to work in this system, we include a model built by

other researchers that uses the QSIM qualitative simulation program [42] to do its calculations. This

is a large program, 1.2 M of Common Lisp code, which was correctly matched and executed by the

model matcher. Since we were able to demonstrate this enhanced re-usability and extensibility, we

conclude that we have identified some of the characteristics and developed some of the algorithms

necessary to automate model-matching.

1.6 Overview of Contributions

This thesis makes several contributions to the understanding and solution the model-matching
problem:

l It indentifies a class of models, non-component models, which require run-time individuation.

This finding has implications for model based diagnosis research. The traditional definition
of model-based reasoning, including the most studied instance, the Model-Based Diagnosis
Problem, assumes that individuals are given and fixed, and thus excludes problems where

non-component models are required.

1 l It identifies characteristics of equipment and models that must be represented explicitly for

run-time model-matching. The single most important characteristic that has not been in-

cluded in previous model-based reasoning systems is the 3-dimensional space occupied by
equipment. This thesis verifies the identified characteristics in an implemented system that

correctly matches and reconfigures in two series of extensibility tests and two series of re-

usability tests.

l It has identified property transformation methods, ways of calculating parameters for merged
or split regions from initial regions’ parameters, as necessary methods for an automated

model matcher. These transforms represent background engineering knowledge. Some of this
knowledge is implemented and demonstrated.
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l It identifies several matching methods and demonstrates some of those methods in an imple-

mented matching system. An important finding was that models sometimes specify entities

and relations that cannot be present in addition to those that must be present. A matching
method is developed to handle handle those specifications.

l It identifies several reconfiguration methods and demonstrates some of those methods in an
implemented matching system. A particularly important finding with regard to reconfigura-

tion is that only reconfigurations  local to the point of failure in a match need be considered,

if model entities are matched in a particular order.

Specific findings are listed in Section 8.2.



Chapter 2

The Model-Matching Problem

2.1 Summary

The model-matching problem must be solved for any system to proceed with model-based diagnosis

or other reasoning about physical systems. It is a distinct task from other component model-

based reasoning tasks, such as model selection, prediction, truth maintenance, conflict generation,

hypothesis generation, hypothesis ordering, measurement selection, and test generation. All of these
tasks are done (in some form) in an iteration to accomplish diagnosis. Model-matching typically has

been done by hand. We automate model-matching and insert it as a task into a diagnosis iteration.

Since our goal is to improve extensibility, our definition of model is different than previous definitions:

we require that models be implemented computer programs and we allow them to use any internal

representations and calculation methods, rather than a prescribed representation. Through our

investigation of model-matching in the chemical processing domain, we found certain models, like
the Ideal Gas Law, which apply to a very large number of locations within a physical system, and

thus cannot be matched in advance of problem solving. The traditional definition of The Model-
Bused Diagnosis Problem assumes that individuals are fixed in advance and given as an input, and

thus excludes some real world diagnosis problems where models such as the Ideal Gas Law are

necessary. We suggest that the definition of The Model-Based Diagnosis Problem be revised. Our

survey of the related work indicates that the model-matching problem has not been recognized as

a separate problem. Some previous work on shifting ontologies, though, does carve the world up

in different ways. This previous work generally maps back and forth between two different ways of
carving up some kind of physical system using some partial representation of space. Our approach

generalizes these methods by providing the whole space and letting the model and data suggest the

appropriate individuals.

2.2 Models

We are concerned with models of engineered physical systems, specifically models that may be used

in model-based diagnosis, where parameter values predicted by models are compared to measured
values and to other predicted values. Thus the definition of model used in this research is simi-

lar to that used by other model-based diagnosis researchers. The terminology used here follows
Struss [74].  Struss states that models describe constituents (components or processes) of physical

7
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systems, predicting behaviors in terms of a particular a set of variables ve = (~1,212,.  . . un) for that

consituent,  C. Each variable takes values from a domain DOM(vi),  and then the cross product of

these domains, DOM(ve)  = DOllI  x DOM(v2)  x . . . x DOM(v,),  is the space of behaviors

that can be represented. The model then specifies a relation R as a subset of DOM(ve)  that gives

the predicted behavior of the constituent.
However, our definition departs from Struss’s definition [74] in that we assume models to be

implemented computer programs. Inputs to the program form a subset of the variables vo, and

program outputs form another subset, disjoint from the first. Other researchers such as Scar1 et al
[66] and Davis [13] have assumed that models are equations that can be manipulated symbolically

(either by hand or by computer programs) to produce desired variables as outputs. This kind of
manipulation  is excluded by the definition used here. We also assume that models are run via
function calls, for convenience of implemention. No assumption is made about the forms inside
the models, though. The models may employ any data structures or algorithms that run on the

computer platform being used. This aspect of the definition is less restrictive than that used by other

researchers modeling physical systems such as Falkenhainer and Forbus  [24] and Nayak [51].  They
assume that models provide equations in a few specified forms that can be composed, simulated,

or solved by programs in their systems. For this composition to be possible, the models must use

internal representations that are compatible with the simulation program, thus restricting the class

of models that can be included in such a system.

Another departure from Struss [74] is in the type of constituents to which models apply. Struss

informally states that constituents may be, for example, components or processes. In this work,

constituents will refer to any spatially contiguous portion of the physical system. Physical objects
typically referred to as components, such as pumps, valves, or AND-gates, occupy spatially contigu-
ous portions of a physical system and thus are constituents according to this definition. Processes,
such as those used in Qualitative Process Theory [25],  typically refer to spatially contiguous re-

gions within a physical system. However, in this work, constituents may correspond to portions

of processes or components. The models may apply to constituents of any size. No distinction is
made between models describing portions of processes or components and models describing whole

components or aggregates of components that together form a larger physical system.

2;3 What is the Model-Matching Problem?

2.3.1 Model-Matching: A Task in Model-Based Diagnosis

In model-based diagnosis, one uses models of physical systems to predict behavior. The values

of parameters predicted by models are compared to measured values or other predictions to find

discrepancies. If a model predicts values that are discrepant with what is occuring in the physical
system, then either

1. the portion of the physical system being modeled is faulty,

2. the physical system’s parameters were incorrectly observed, or
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Figure 2.1: The model-based diagnosis paradigm compares parameter values predicted by models
to observed values.

3. the model is not appropriate for the physical situation.

An example is shown in Figure 2.1. Here the physical system is an OR-gate and the model calculates

the output of the OR-gate given both inputs. The variables are digital: they can only take values

of zero or one. Using the values observed at Input A and Input B on the physical device as 211  and
‘~2 for the model, the model predicts that the value observed at Output C should be 1. This is

discrepant with the actual value of 0. Thus one can conclude that this particular OR-gate is faulty,
that one or several of the observations of the physical parameters are incorrect, or that the model

is not the correct model for the situation at hand.

When model-based diagnosis is applied to physical systems, there are typically many components
such as the OR-gate above that are being simulated via models. The goal is to identify the location

of the fault in these larger systems. In this context, other tasks must be carried out to successfully

locate faults. One such task is dependency tracking. The calculated values which are used to derive

discrepancies may depend on a number of components behaving correctly as well as the input values
to the models being correct. In the example of Figure 2.1, only one component and one model is

involved. In a larger system, the discrepancy may be derived from values generated by models

of several components, each of which is a potential source of faults. Truth maintenance methods
[14,21]  accomplish this task of dependency tracking.

Once a discrepancy is found, diagnostic hypothesis generation must be done. The diagnostic hy-

pothesis can be generated from the dependencies of the discrepant parameters, which are typically

tracked by a truth maintenance system. The hypotheses generated may also depend on whether

the discrepancy is assumed to be the result of a single fault. Some research in the area of hypoth-

esis generation [18,16,58,61] h as addressed the problem of identifying all possible hypotheses and
representing that hypothesis space efficiently. Other research [19,75]  has addressed how to generate
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hypotheses  when models of faulty behaviors are included with models of correct behaviors.

Other tasks arise when more than one hypothesis is generated. These include ordering hypothe-
ses, identifying observation points, and test generation. Hypotheses may be ordered so that the

most likely candidates can be generated first as in the work of Davis [13].  de Kleer  [15] has shown

that this is a useful strategy for avoiding the combinatorial explosion that results when all hypothe-

ses are generated at once. Additional observations may discriminate between several competing

hypotheses, perhaps eliminating some possibilities. Identifying the observations which will provide

the most discriminating power has been investigated in [17]. In some physical systems, actions may

be taken that change parameter values. The changed parameters may provide more discriminating

power. Identifying which parameters to change and what values to give them is called test gen-
eration. Singh [69] and Shirley and Davis [67] have investigated this problem for digital circuits

diagnosis.
Another task that arises when more than one model is available for any constituent of the

physical system is model selection. A model may describe a constituent only over some portion
of its operating range, and thus multiple models are required to cover the full operating range. A

model may describe the behavior in a simplified form, so that the model itself is cheaper and faster
to use, but it may not accurately describe the physical constituent under some circumstances. When

multiple models are available, some criteria must be used to select the most appropriate model for

the situation at hand. Some of the researchers addressing this task include Addanki et al [l],  Struss

[74],  Dague et al [lo], and Nayak et al [52].
Figure 2.2 summarizes the tasks within diagnosis. These systems contain a representation of

the physical systems that is made up of a network of the models. These models’ inputs and outputs

are linked to form the network. The model inputs and outputs are also tied to physical parameters,

which are represented as Pn in the figure. The diagnosis system has access to both the physical
parameter values, P,, as well as values calculated by the models. The diagnosis system also uses
the network as a representation of structure in the physical equipment, indicating what components

are connected. The figure shows flow of control among the various diagnosis tasks, indicated by the

solid arrows. Information will flow along these paths and also along the paths represented by the
dashed arrows. The process starts with some physical parameter appearing that is abnormal and

ends when all but one of the diagnostic hypothesis have been ruled out.

, A couple of the tasks appearing in the figure were not previously explained. After the selector

chooses among the multiple models which may apply to the point of interest in the equipment, a

behavior predictor runs the selected model to generate output values. A conflict  generator compares

calculated values to observed physical values or to other calculated values to detect conflicts. Our

approach separates the models from the equipment as shown in Figure 2.3. We insert the model

matcher which will map models onto the physical equipment as needed.

In each of the tasks described, instances of models were assumed to be attached to portions of

physical systems with the models’ variables correctly attached to physical parameters. In this thesis,

we attempt to automate model-matching, the task of attaching models and model variables to the
appropriate portions of physical systems. Since computer systems cannot readily observe physical
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Figure 2.2: The architecture of a diagnosis system without a matcher.

systems for the purpose of attaching models, we assume that a description of a physical system

is given. We also assume that some models are given with descriptions of the physical situations

in which they apply. We investigate what characteristics must be included in those descriptions

as well as how to match the models onto the physical system descriptions. In the example of
Figure 2.1 where models describe components of digital circuits, matching models to an equipment

description is relatively easy. However, in the domain of our investigation, fluid processing and
chemical manufacturing equipment, matching is complicated by the types of models used.

2.3.2 The Domain

The models and equipment descriptions used in this work are taken from the chemical manufacturing

domain. Our underlying assumptions restrict models to be computer programs that generate values

for physical parameters. We also assume that the equipment occupies some continuous region in

space and the models apply to pieces of continuous space. The space may be divided up into
individuals, but the individuals must be contiguous. These assumptions appear to’allow us to work

in many domains where reasoning about some portion of the physical world is done. However,
we test the methods only on some models and situations that are encountered in fluid flow and
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Figure 2.3: The architecture of a diagnosis system with a matcher.

chemical manufacturing equipment.
We implement cases involving fluid flow and heat transfer in pipes, pumps, and a stirred-tank

reactor. The models included in the demonstrations could be used by engineers in chemical plants,

semiconductor manufacturing facilities, electric power plants, pharmaceutical manufacturing, and

refineries. This particular domain presents a challenge for automated model-matching because some

of the models used do not correspond to structural components. For example, consider the Ideal

Gas Law, PV = nRT. This model applies to any group of gas molecules that reside in a contiguous

portion of space, assuming that the gas otherwise behaves nearly ideally. The portion of a physical

system to which it is applied during diagnosis may be determined by what other parameters have

been either calculated or measured. The region for model application may be determined by the

values of parameters. The Ideal Gas Law requires that the temperature be uniform across the region

of application. Other examples of such models include conservation of energy and mass balance.

These kinds of models are called non-component models throughout this thesis. The examples of
non-component models implemented in this thesis apply to portions of liquid flow through pipes.

Because these models may be applied to portions of a physical system that do not correspond to
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structural components, they present an additional challenge for automated model-matching over

component-oriented models.

2 . 4 Extending the Definition of “The Diagnosis Problem”

During the course of this research, we found that the definition of The Diagnosis Problem currently
used in model-based diagnosis research excludes problems that are called diagnosis problems in

the domain of fluid processing and chemical manufacture. Three recent articles [8,16,73]  examine

the model-based diagnosis literature and identify, among other characteristics, the variations in

the definition of The Diagnosis Problem used by previous researchers. The relevant feature of the
.

definition is what is assumed to be given. The paper by de Kleer, Mackworth, and Reiter [16] states
that a system is given, and that a system has the following definition.

Definition 2.1 (System) A system is a triple (SD, COMPS, OBS) where:

1. SD, the system description, is a set of first-order sentences.

2. COMPS, the system components, is a finite set of constants.

3. OBS, u set of observations, is a set of first-order sentences.

The physical equipment is assumed to consist of components, COMPS, which form the set of

constants described by the first-order sentences in SD and OBS. SD contains the models that predict

the behavior of components, and OBS contains the values observed for physical parameters. To solve
The Diagnosis Problem, one identifies the subset of COMPS which is behaving abnormally. The

other two papers [8,73] use slightly different terminology, but indicate that some set of components

is identified in advance and remains fixed through all diagnoses.

The problem with assuming that such a system is given is that it restricts the portions of the

physical system to which models can be applied. The constants in the set COMPS are associated

with fixed pieces of the physical system prior to any diagnosis problem arising. For some situations

in the chemical processing domain where non-component models such as the Ideal Gas Law (Sec-
tion 2.3.2) must be used, this restriction prohibits diagnosis. There are so many possible places
that these models can apply, that it is prohibitive to identify all those places before the data arise

to suggest the appropriate one. Furthermore, the appropriate place for model application in one

diagnosis may overlap the place that is appropriate in another diagnosis, preventing identification
of any single set of constants where each constant represents separate portions of the physical sys-

tem, as the constants in COMPS are assumed to do. Throughout the rest of this thesis, the term
individzlul  is used to mean a portion of the physical equipment which is identified as an entity for

the purpose of applying models. For example, for each application of the Ideal Gas Law, one must

identify a particular volume of gas molecules. Components such as OR-gates, pumps, or valves also

can be individuals.

As an example of a particular case where one must identify individuals at diagnosis time, consider

a situation that can arise in fluid processing equipment as depected in Figure 2.4. A pipe carries a
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Figure 2.4: A hot liquid leaking from some other vessel flows ,over the outside of a pipe.

reactant liquid that is warmer than the outside air. Normally this liquid will be losing heat to the

environment as it passes through the pipe. In the figure, a hotter liquid stream is shown flowing

over the outside of the pipe, as might occur if some nearby pipe or vessel sprung a leak. In the
portion of the pipe with the hotter fluid flowing across the outer surface, heat transfers through the
pipe wall heating the reactant inside. To calculate what temperature may be achieved, one would

apply some models of heat transfer including transfer at the surface of liquids to the adjacent pipe
surface and conduction through the pipe wall. To calculate the liquid-solid heat transfer from the

pipe to the reactant, one could use a heat transfer coefficient such as that calculated by the Dittus-

Boelter equation. (The Dittus-Boelter equation is an empirical correlation which is described in

many heat transfer textbooks, such as [33,56].)  Th’is engineering model applies to any length of the

. cylindrical space inside the pipe through which the fluid is flowing. (This model is used in some of

the implemented examples in this thesis and is explained in detail in Section C.2.) For the situation

shown in the figure, one would select the space inside the pipe that corresponds to the area over
which the hot fluid is flowing on the outside. Note that the particular cylindrical space could not

have been identified in advance of the hot liquid leaking. Nor could one identify all such possible
cylindrical spaces, because there are too many such spaces.

An investigation of textbooks in the areas of heat transfer, reaction kinetics, fluid flow, ther-
modynamics, and mass transfer yielded a number of examples of non-component principles being

used to solve problems. (These textbook examples are listed in Appendix A.) In these examples,

as&for  the example of Figure 2.4, individuals were being identified by carving them out of the four-

demensional space (3 spatial dimensions and 1 time dimension) occupied by some physical system.

Clearly this space must be available at diagnosis time, if these principles are to be used. Defini-

tion 2.1 does not specify how the constants in COMPS relate to the space of physical equipment.

They typically are chosen to represent pieces of the equipment that do not spatially overlap, but

do not cover the four dimensional space of the equipment.

To extend the definition of The Diagnosis Problem to include diagnoses where non-component
models are used, the four dimensional space must be made available, and the requirement of iden-

tifying all the individuals (constants in Definition 2.1) in advance must be removed.
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Definition 2.2 (The Extended Diagnosis Problem) Given:

1. .jSPACE, a body of contiguous three-dimensional space defined over time interval that is oc-
cupied by the physical system (It may be moving and may be varying in size or shape over
time.)

2. ED, the equipment description, is a representation of the arrangement of matter and energy
occupying $SPACE  via spatio-temporal relations on portions of that space

3. M, a set of models with specifications of the matter, energy, space, and time characteristics
of the individuals required by those models

4. OBS, a set of observations,
locations and extents in ED,

which are values for parameters having particular space-time

identify the relations within ED that must be suspended for OBS to be consistent with values gen-
erated by M.

This definition follows the definitions used in consistency-based approaches as described by Console

and Torasso [8]  hw ere models of correct behavior are used. Definition 2.2 could be modified to

include abductive approaches to diagnosis where fault models are used, but since this thesis makes

no commitment to one approach or the other, those modifications are left out for brevity.
The Extended Diagnosis Problem as defined may appear to vary from the The Diagnosis Problem

in the goal of identifying relations rather than identifying a subset of COMPS. However, in systems

using the old definition, there is one relation for each constant ci in COMPS that says isa(ci,  typej).
(The relation may also be stated in the form normal A typei(c This relation then allows
models describing the correct behavior for a typej object to be used to simulate ci and derive

conclusions. Since these relations are the only relations that may be suspended, and there is one
relation for each element of COMPS, identifying a subset of COMPS is equivalent to identifying

relations to suspend [73]. The relations have been explicitly included in The Extended Diagnosis
Problem rather than identifying some set of individuals, because the models encountered required

that a number of relations hold on individuals for models to apply. For example, the Dittus-Boelter

model as implemented for this thesis (See Section C.2) requires that the individual within the pipe

be liquid. Thus if the values generated by the model were discrepant with observed values, it could

be because the relation requiring that the individual be a liquid was violated. The liquid individual

also must have a particular shape, that is a cylinder that completely fills the interior of the pipe. This

is a spatial relation that may be suspended if the model’s values are discrepant with observations.
The new definition presented here makes it possible to diagnose (suspend relations) situations

other than a particular component being faulty, such as material contamination or spatial relations

between components changing. A physical system may exhibit faulty behavior when components
no longer have correct spatial relations to each other, even though all the pieces of the system are
normal. These additional relations make it possible to diagnose additional faults, but they also

make diagnosis more complex. A diagnosis system could ignore these relations, considering only
relations of more likely faults, similar to the method developed by Davis [13]. Investigations of
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diagnosis  with more than one suspendable relation per individual (or per model) are left for future

work.

2 . 5  Related Work

In surveying the literature, we find that the problem of individuating and matching models to some

physical system has not been addressed before. We investigate several areas of the research literature

where the matching problem might have appeared, including artificial intelligence, computer-aided

diagnosis in semiconductor manufacturing, and in chemical manufacturing. The diagnosis task

requires that a system be able to deal with unanticipated problems, and thus would be the most
likely task in which researchers would address individuating or reconfiguring on the fly, but we also

investigated other tasks involving modeling of physical systems. The research nearest to ours with
respect to making individuals were some efforts addressing shifting ontologies for physical system

modeling. These researchers use some aspects of a 3-dimensional space to map between (usually)
2 specific ways of carving up the world. Our work generalizes these approaches by using a whole

3-dimensional space and letting the situation (parameter values available, diagnostic goals, models
available) determine how to carve the world into individuals. Our view is that there are many

right ways to carve up the world, but the appropriate one for a problem cannot be determined in

advance.

2.5.1 Artificial Intelligence

Multi-Model Diagnosis.

Within the diagnosis literature, we focus on diagnosis systems where more than one model could be
used at a given point in the equipment. A disproportionate amount of this work addresses digital

circuit diagnosis. Davis [13] uses models of the behavior of circuits and gates as well as models

of their physical locations, but instances of the models are linked together at system building

time to represent the equipment. Genesereth [31] works with multiple levels of detail, reasoning
about adders and mulitpliers as well as individual gates, but all the levels must be in place before

diagnosis starts. Hamscher [34] uses both functional and physical representations of circuits, but
defines primitives in both representations. The equipment is represented using these primitives,

which have been designed for efficient troubleshooting and repair. The primitives limit what may

be an individual. Struss and Dressler [75],  de Kleer and Williams [19], and Raiman et al [59]
expand the theory of diagnosis to use fault models, models which simulate behavior of a particular

malfunction in a component. Each type of component has a model of correct behavior as well as

some number of fault models. The types and locations of all components are identified in advance.

The type of the component defines the set of models applicable. The types act as primitives,

defining in advance what can be an individual.

Some multiple model diagnosis has been done outside of the digital circuit domain. The
DEDALE system of Dague, Raiman, and Deves [lo]  uses multiple models for correct behavior
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as well as fault behavior for components in analog circuits. Models are tied to the type of analog

component, so these types predetermine a single individuation. Struss [74] develops a theory of

relations between models and how a model switch affects a diagnosis. The models are grouped

accordling to the type of component to which they apply, such as breakers or lines in Struss’s power
transmission network domain. The relations between various models of the same component are

defined and used to switch models under various circumstances. This work explicitly states that a
fixed set of components is assumed to be given, but the component-wise classification of models also

only requires an individuation according to component type. Bublin and Kashyap [4]  directed en-

ergies toward building a multi-level model of a carburetor which allows focusing and control within

a diagnosis. This single model is used as the representation for a physical carburetor, and the
individuation and matching are done implicitly at system building time like the other approaches

described. Bonarini and Sassaroli [3]  introduce processes into a system that diagnoses trash burning

plants, but these processes are defined over a fixed set of component types.

All of these papers, with exceptions in [34] and [13], make the assumption that a component

view of the world and the single individuation which that entails is sufficient. Hamscher [34] and

Davis [13] both use some representation of the physical location of a component, that it is on a

particular board, DIP, and pin. Unlike our work, they do not retain the S-dimensional space within
their representation, nor redefine individuals at run-time.

Model Selection

Weld 1791  defines 4 independent dimensions within the model selection problem.

1. Scope (for example, the refrigerator vs. the refrigerator’s compressor)

2. Domain of Applicability (the ranges of inputs and outputs over which a model is valid)

3. Precision (for example, qualitative ranges vs. integer values)

4. Accuracy (how closely the model reflects physical reality)

Of these four dimensions, investigation of scope appears to be the most likely area in which the

problem of individuation would have arisen. However, we find no previous work that directly
+ addresses scope. Scope is addressed, usually as a side issue, in the work on compositional modeling

discussed in the next section. The work addressing model selection is generally focused on accuracy.

The Graph of Models formalism of Addanki et al [l] is a seminal work in the area of selecting
models for accuracy. Relations between models correspond to changes in assumptions between
the models. For each relation, the changes in parameter values that would result if one were to

use one model instead of the other are also specified. Given some starting point in the graph of

models and some observed parameter values, one can compare the values to those predicted by

the given model, and then identify the most accurate model using the relations ‘between models.
In a graph of models, all the models describe the same entity, such as the gear train transmission

in [l].  In selecting among physiologic models of the heart and lungs, Rutledge and Shachter [64]
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extend the use of the graph of models by using time constraints to select models and using belief

nets to enable model selected even when none of the models fully meet requirements for accuracy
or time. Weld [77] develops methods for comparing models with respect to their predictions for a

physical system over time and then later [79] incorporates those techniques into a graph of models.

Other efforts have been directed at producing various models dynamically. Weld and Addanki [78]

collaborated on methods to generate approximate models by choosing appropriate simplifications

for the various components being modeled. A number of researchers [57,47,12,40]  have investigated

order of magnitude reasoning to simplify models under various circumstances.

The efforts directed toward model selection all have in common that they deal with one entity.

In [l] the graph of models is applied to a gear train transmission. Every model in the graph
addresses the same portion of the physical system, the whole gear train transmission. The problem

of identifying individuals and matching models to physical systems is not addressed here.

Compositional Modeling

Recent research addresses the problem of modeling large systems by composing models of parts of

the equipment. When modeling large systems, complexity of the model can become prohibitive,
so the efforts in the area of compositional modeling attempt to use the simplest model possible

for each part of the physical system. Falkenhainer and Forbus  [23,24]  investigate compositional
modeling within the context Qualitative Process Theory (QPT) [25].  QPT provides a process-

oriented qualitative representation for representing physical systems. Falkenhainer and Forbus’
system composes models in response to queries. To determine how much of the system to model

for any query, they rely on defined operating blocks which identify parts of the system (a steam
.

power plant) that must be represented at a uniform level of detail. They also require that enough

parts be modeled, so that the equations contributed by the models for the parts can answer the

query. In the later work [24] they define systems and subsystems to indicate which parts of the

physical system must be modeled as units. Before analysis can begin, they “fully instantiate” their

set of models (called domain model) on a description of the equipment (called scenatio).  This

process is a matching of each model to every possible place that the model can be used within

the equipment. Figure 2.5 shows an example of a partial model (called process) of heat-flow with

a scenario. A process can be mapped onto the scenario at every place where it has individuals

satisfying the predicates (such as HAS-QUANTITY) specified under Individuals in the process. The

mapping is not as straight forward as in the component centered approaches, but there is still a

finite mapping of processes onto the scenario. Even though models are in some sense being matched
to equipment, all the individuals are defined in advance. A, B, and C in the scenario of Figure 2.5

are the individuals. This contrasts with our approach.

Nayak [51,52]  has also investigated compositional modeling. Nayak’s work introduces the use
of context, both structural and behavioral, as well as the expected behavior to select appropriate

models (called model fragments) for each part of a physical system. Attempting to answer queries,

like Falkenhainer and Forbus,  Nayak defines criteria for generating the simplest adequate model to

answer the query. Kayak organizes the model fragments into trees of context dependent behaviors
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PROCESS

Process: Heat-Flow

Individuals:
src, [object] HAS-QUANTITY(src, heat)
dst, [object] HAS-QUANTITY(dst, heat)
path, [heat-path]

HEAT-CONNECTED (path, src, dst)

Preconditions:
Heat-Aligned (path)
:

etc.

SCENARIO

Furnace (A)
Reboiler (B)
HAS-QUANTITY(A, heat)
HAS-QUANTITY (B, heat)
Heat-Path (C)
HEAT-CONNECTED(C, A, B)

Figure 2.5: An example of a process and a scenario represented in Forbus’ QPT [25].

4 perfect-conductor
z electrical-conductor resistor

wire elastic-wire
thermally-expanding-wire

qaxially-rotating-wire
2

rigid-rotating-wire
torsion-spring Possible Mode/ link

Figure 2.6: An example of a primitive component (wire) and some of its possible models as defined
by Nayak [52].

. which represent all the ways a component may be modeled. An example is shown in Figure 2.6

for the possible models of a wire. This organization according to components results in an a priori

definition of individuals as in digital circuit diagnosis.
Several researchers have extended the results of Nayak. Rickel and Porter [63] present methods

for system boundary definition and time scale selection when answering queries about plant physi-

ology. Iwasaki and Levy [38] extend Nayak’s method to cases where simulation over multiple states

is required to answer the query. Forbus  and Whalley [26] built a tutoring system that combines

compositional modeling, qualitative representations, truth maintenance, and constraint propaga-

tion to explain thermodynamic cycles. All of these researchers use either QPT or a very similar4
underlying representation and are thus forced to define individuals a priori as in Figure 2.5.

Besides defining a fixed set of individuals, these approaches differ from our approach because they
require specific internal representations and calculation methods within the models. The models

that are composed all contribute equations (of one or several specified forms) to a simulator. Thus

only models that are written in the proper form for the simulator can be added.

Shifting Ontologies

The body of work on shifting ontologies is the closest to our own. This work is not directed towards

matching models for diagnosis but is addressing the problem of carving the world up in different
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ways. Collins and Forbus  [7] introduced the Molecular Collection (MC) ontology which is based

on Hayes’ [35] notion of piece of siufl An MC is a piece of stuff that is small enough to always

be in one “place”, but large enough to have macroscropic  properties such as temperature. The

MC is important for reasoning about thermodynamic cycles such as refrigeration cycles where one

analyzes what happens to a portion of the refrigerant as it flows around its cyclic path. MC is built
on top of a QPT representation of substances (liquids and gases) in containers. Since MC is always

in one “place”, it is never partially in one container and partially in another. Rules attached to
each process (the models within QPT) generate properties for MC and tell how MC is affected by

the process, for example that MC will move into the next container.

Rajamoney and Koo [60] develop a method, also supported by QPT, that can explain evap-
oration of alcohol at the surface of a liquid into the surrounding air. Their approach separates

from the liquid a small number of particles which are representative of the larger group, predicts

effects of interactions of the particles, then extends the results to the whole liquid. They provide
specific relations for moving back and forth as well as specifying what additional quantity types and

individuals (as used in QPT terminology) appear and disappear. Our methods could not handle

the particular transition made to reasoning about molecules as balls that move around in empty
space, because our methods asume  that macroscopic properties such as temperature are meaning-

ful. Bylander  and Chandrasekaran [5]  predict behavior of composites from the components of a
system. They use structural primitives for both connections and containments.  Substances move

from one containment to the next. The containers can be joined into composite containers, and
causal patterns specify behavior for composites from their components.

Liu and Farley [46] and later Liu [45] develop the Charge Carrier (CC) ontology that describes

charged particles flowing through wires. CC is an alternate ontology for the analog circuit compo-
nents such as capacitors and resistors. It is very similar in intent to the MC ontology, but resides in

the domain of electrical flow. Different primitives, both quantity types and individuals, are defined

for the CC and component ontologies. Bridging relations convert from one representation to the

other. For example current  in the component ontology converts to charge-flow  in the CC ontology.

For CC, the notion of a region is defined as a structural unit between two poles, through which

charge carriers can flow. They can be connected in series or parallel and any number can be defined

within the space of a component. They may also be hierarchically defined, with regions having
subregions. The regions are all cylinders described by length and cross sectional area. Unlike our

approach, though, these regions are defined and not cut out of some complete 3-dimensional space.

These regions provide the foundation for the bridging between the two ontologies. Liu [45] states

that there is not a one-t-one mapping between the terms in the two ontologies because they carve
the world in different granularities.

In all of these approaches, the individuals are defined in advance either through the use of QPT

or through the specific terms provided in the ontology pairs. However, in all cases, space is being
used to relate the two ontologies to each other. MC has its “places”, the other fluid ontologies

[5,60]  have their containers, and CC has its regions. In each case, the representation of space is just

strong enough to meet the needs of the two ontologies. Another noteworthy point is that what Liu
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[&I treats as a bridging relation, we would treat is a model, the relation between current and charge

carrier density, As Liu points out, the two ontologies carve the world up into different granularities.

Our view is that no small number of these particular ontologies are sufficient to reason about the real

world. Therefore our approach attempts to generalize what these researchers have done for special

cases. By providing the full 3-dimensional space (and also time) and by providing extra information

with each model about what it needs, we can carve the world as the particular task, goals, and

model demand. The carving methods include our type and parameter transformations as well as

reconfiguration methods. These appear to be at higher level of generality because, for example,

a single reconfiguration method (like our implemented intensive reconfiguration or unimplemented

extensive method) could cut an MC out of liquid or could cut any other necessary size of individual.

2.5.2 Diagnosis in Semiconductor Manufacturing

,

Some example problems that inspired this thesis were found in the semiconductor manufacturing
domain. Semiconductor manufacturing involves a number of processing steps where fluid flows,

heating, cooling, and chemical reactions are carried out to form layers on silicon wafers which
ultimately become the chips upon which computers are built. Because of the nature of the processes

involved, this domain can require the use of non-component models during diagnosis. Much fluid

processing is done in this domain as in the chemical manufacturing domain, but semiconductor

manufacturing is distinguished by the discrete nature of the steps involved. A wafer is placed in
a number of different fluid processing environments through the manufacturing sequence. In the

chemical processing domain, fluids tend to be handled in a more continuous manner. The literature

and research in these two domains tend to be separate from each other, and thus we consider

related work in semiconductor manufacturing as well as the chemical processing domains. We have
surveyed the literature directed at diagnosing semiconductor manufacturing to find any information

relvant to model-matching and individuating. A number of approaches to computer aided diagnosis

have been investigated with respect to semiconductor manufacturing including evidential reasoning

(for example belief nets), neural net pattern detection, rule-based approaches, and model-based

approaches. We restrict the discussion here to approaches that involve predictive models of the

physical equipment.
In semiconductor manufacturing, a wafer which is initially a thin disk of silicon, goes through

many different processes that occur in many different pieces of equipment. Mohammed and Sim-

mons [SO,681 address the problem of causally linking characteristics of the layers on the wafer to

processing steps and conditions in the processes. Their approach is to symbolically simulate the
wafer going through the process steps. At each step, dependencies are recorded as to what pro-
cess and condition is responsible for what portion of the structure developing on the wafer. The

causal history that is built up can then be used for finding causes for abnormalities. Even though

this approach would not, be classified as model-based diagnosis, it uses models to’simulate  process

steps. The models are matched to the equipment by the type of the process step involve, similar

to the way in which models are assigned in the work on diagnosis of digital circuits. Here the
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processing steps are the fundamental individuals to which models may be assigned. Mohammed

and Simmons do not represent the 3-dimensional space for the processing equipment, but they

do use a simplified spatial representation of the layers on the wafer. Funakoshi and Mizuno [28]
develop a similar approach to simulate the effects of process steps on wafers, but their models are

sets of rules. Slaughter et al [70] deve o e1 p d a system that was inspired by the work of Mohammed

and Simmons, but that uses quantitative analytic models for process steps instead of qualitative
models. They use an object oriented approach and hand code the dependencies for each model into
methods (procedures) which record dependencies as the simulator runs. Dishaw and Pan [20] make

numerous runs of quantitative simulators to generate data from which diagnosis rules are extracted.

In later work, Mohammed develops methods for combining model-based with rule-based reasoning
[49].  In that effort, the focus is on carefully selecting the level of abstraction and granularity in

the representations so that both methods work synergistically. None of these researchers represent
the space occupied by the equipment nor individuate, but they solve a problem that our approach

could not solve. We assume that the equipment about which we are reasoning occupies a particular

region in space over time. There is no obvious way to map the situation of a wafer being subjected

to many process in many locations into our paradigm.

Freeman [27] applies model-based diagnosis to a different problem within semiconductor man-

ufacturing. When wafers are complete, the circuits on them are tested electrically to determine

if they have the desired properties. If some measurement is abnormal, the problem is to identify
which structure or layer on the wafer is responsible for the problem. Freeman’s system incorporates
analytic models of the relationships between measured parameters and properties of wafer layers.

Freeman builds the network of analytic models required for any particular set of given measure-
. ments at run-time, and is thus doing a form of model assignment. The system maintains a symbolic

hierarchy of what structures are contained by what other structures. It also contains definitions

of variables which are uniquely associated with a kind of structure. Models then use these defined

variables. A network of models is built for a particular set of measurements starting from the

variables that are associated with the given measurements. All models are included that address

these variables, and the network is filled out with models required to relate the measurements to

structural parameters. Because one can define in advance the parameters that one will see, these
parameters can be uniquely associated with the places where they occur. Freeman does not need

any representation of 3-dimensional space. Even though our methods were not envisioned to work

in a situation like this, their fundamental assumption of working in a particular region of space is

not violated. However, if one can predict the parameters one will use including their locations, then

our approach is not useful. It introduces complexity that simply is not necessary. The predictability

is probably a result of the kind of diagnosis. A large number of wafers which are very similar are

examined. There is a prescribed set of measurements that will are made. The physical system, the

wafer, is being examined over a relatively short period of time in a relatively stable environment.

These characteristics are significantly different than are encountered when reasoning about, a piece
of manufacturing equipment, our intended area of application.
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Saxena and Unruh [65] apply model-based diagnosis directly to semiconductor processing equip-

ment. In their work, they compare the use of detailed quantitative models of the equipment called
response swfuce  models (RSM) to qualitative simulation models using QSIM [42] and a simple

symbolic model that associates the direction of change in wafer state parameters to processing

conditions. Their models are built to describe the whole piece of equipment being diagnosed. They
do not address the problem of matching models or individuating.

2.5.3 Diagnosis in Chemical Manufacturing

The use of non-component models and thus dynamic individuation is likely to appear in diagnosis

’ of fluid processing and chemical manufacturing. On surveying this literature, we find that most

work divided the processing equipment into units, the term commonly used by chemical engineers

to refer to parts of a processing plant at the level of columns, reactors, and tanks. This view of

a processing plant is a component-connection model like that used in the work on digital circuit

diagnosis.
The earliest use of model-based diagnosis for fluid processing systems was the work of Scar1 et

al [66] whose system diagnosed failures in the liquid oxygen delivery system for the space shuttle.

The system contained a network of functional relations that described the behavior of the various

components. By propagating values through this network and comparing calculated values to

measured values, faults could be isolated. Kramer [41] used quantitative constraints to model the
units in a chemical plant. Associated with each constraint was a set of faults that could cause the

constraint to be violated. Because of this association, the approach is not strictly model-based.

Rich and Venkatasubramanian [62] built a system called MODEX which used qualitative models

for units as well as for fluid flows (streams) connecting them. They later combined rules with the

model-based system to improve efficiency [76].  Gallanti  et al [29] used equation models for steam
handling units in a power plant, applying a form of Iwasaki’s causal ordering technique [39]  to

link the equations and identify causes of faults. For such a linking to be possible, the variables in

the equations have to be implicitly associated with the real variables (and the locations of those

variables) in the physical system. Ng [53] used qualitative simulation models based on QSIM [42]
for the components in a proportional-control heater/cooler. By using models that simulate over

. time, they can detect some kinds of faults not previously diagnosable. However, they explicitly

state that their approach rests on the assumption that the continuous system can be modeled

adequately by a component-connection model and that each qualitative constraint can be localized
to one component. Oyeleye et al [54] modeled units in a chemical processing plant using extended
signed directed graphs as models of the units. This work probably does not meet the definition of

model-bused because the directed graphs were a representation of causality, rather than simulators

of behavior. However, their method, like all the others surveyed, relies on an individuation of the

system done at system building time along unit boundaries.

The work of Grantham and Ungar [32] is distinguished from the other work in chemical pro-
cessing because it does not use units as the individuals. It relies on processes such as heat flow
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or chemical reaction which are composed to represent the units and ultimate larger portions of a

chemical plant. These authors have developed a diagnosis method that uses the process-oriented

QPT representation of Forbus  [25]. The include QPT processes representing correct behavior asy
well as faulty behavior. By activating and deactivating the possible process models for a unit to get

model predictions that are consistent with observations, faults can be identified. Even though units

are not the fundamental individuals used in this work, the use of QPT requires that individuals be
defined and process instances assigned in advance, as was discussed in Section 25.1.



Chapter 3

An Approach to Automated Model Matching

3.1 Summary

Our approach to the model-matching problem is to represent the 3-dimensional space occupied by

the equipment, the characteristics of the space required by the model, and then match them at

run-time, possibly reconfiguring the equipment description to match. Reconfiguring is a process

of merging and splitting the individuals in an equipment description, preserving the substance but

changing the form. Our method requires explicit descriptions of model requirements, a separate

description of the space of the equipment, and algorithms that match and reconfigure. We have

isolated the problem of model-matching from the larger problem of diagnosis, to focus our study

and resources on this problem. The interface to a diagnosis system consists of the inputs to a

matcher, the outputs, and some globally shared representation for the equipment. The inputs are

an equipment parameter (which is part of the global equipment description) and a goal (one of find
causes, find eflects,  or calculate values) with respect to that parameter. The outputs are the values

calculated by an appropriate model (We are doing the behavior prediction step from Figure 2.3.),
the relations on equipment entities that must hold for the calculated values to be valid, and any

conditions on parameters which could not be tested at the time. The network of models used in
previous work had another role, though, besides that of providing the behavior predictions and

conditions returned by the model matcher. It was also used as a representation of the structure

of the equipment, which is necessary for other tasks within the diagnosis. In our approach, the
diagnosis system is assumed to have access to the equipment description to obtain its structural

infor  mat ion.
1 Our methods are limited by their underlying assumptions as well as by the limited implemen-

tations and testing. We assume equipment individuals occupy contiguous space and likewise for

model individuals. We also assume that macroscopic properties such as temperature and pressure

apply to all individuals, and so cannot transition to reasoning about matter as balls (molecules)

moving through empty space. We implement matching and reconfiguration algorithms in Common

Lisp and build 11 different equipment descriptions and 8 model descriptions to generate 16 different

implemented cases of model-matching. The algorithms and various descriptions are about 2 M of
source code, 1.5 in the descriptions for the examples and 0.5 in the algorithms themselves. To
limit the scope of the work, we select for implementation a subset of the algorithms we identi-

fied as necessary to solve the general model-matching problem. We also provide limited geometric

25
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Figure 3.1: Abstract view of a static network of models as is typically used in model-based diagnosis
systems.

[13,66].  Figure 3.1 illustrates the network of models and the correspondences of model variables

to parameters and of model instances to physical constituents. The values calculated by models
are compared to physical parameters to generate discrepancies. Each model that participates in

generating discrepant values also contributes some (usually just one) relations which that model

requires for its results to be valid. Typically the single relation was that the component correspond-
ing to the model was functioning correctly. This relation is often expressed as either isa(ci,  typei)
or normal  A typej(c;). These relations are used by a diagnosis system to generate diagnostic

hypotheses. Each model also may have a causality specification with it, so that models used to

generate discrepancies could be selected in portions of the network where the fault might be.

In logic-based approaches [18,31]  where theorem provers are used to generate diagnoses, a static
network of models was not built explicitly but was still effectively achieved through the form of

the logic sentences which embodied the models combined with the fixed set of constants that

corresponded to physical constituents. For example, consider some of the axioms in Genesereth’s

DART system [31].

ANDGATE  A VALUE((IN,  1, d), t, ON) A VALUE((IN,  2, d), t, ON)

- VALUE((OUTld)tON)

This axiom states that if d is an AND-gate and the values on its two input lines are both ON at

time t, then the value on its output line is also ON at time t.

CONN(x,  y) A VALUEjx,  t, z) - VALUE(y,  t, z)

This axiom states that if x and y are connected and x has value z at time t, then y also has value
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z at time t. These axioms, when combined with some facts about the physical system such as

ANDGATE(

ANDGATE(A2),

and

CONN((OUT,  1, Al), (IN, 2, Ol)),

and a fixed set of constants like Al and A2, effectively yield a static network of models. These axioms

and facts provide the correspondence between models and constituents by stating, for example,

ANDGATE(A1) and then including AN DGATE( x) in the antecedant  of the axioms that embody

the model for AND-gates. The correspondence of model variables to physical parameters is implied

by axioms through the specification IN or OUT and the number of the input or output. The
correspondence is not stated explicitly, but assumed to be obvious once the physical constituent,

such as Al or A2, is stated.

3.3.2 Dynamic Virtual Network of Models and Variables

Our method produces the same three elements used by previous diagnosis systems, the network, the

correspondence between models and physical constituents, and the correspondence between model

variables and physical parameters. There are two differences between the network produced in this

work and the network used in previous work. The first difference is the variability of the physical

constituents. Since portions of the equipment that are identified as constituents may change, the

network can take on many different forms. The second difference is that the network is virtual and

dynamic, in that the only portion of the network that actually exists is the piece being used by the

diagnosis system at the current time. Thus the approach is much like that of paging and virtual

memory used in operating systems.

One of the functions that a network of models and variables tacitly performed is a representa-

tion for the physical equipment showing how components are connected and where the parameters

existed. The method developed here uses a representation of four dimensional space to show com-
ponent and parameter locations and then produces the expected network of models from that rep-

resentation. It is expected that a diagnosis system would use this representation to find information

it needs about the equipment rather than the previously used network of models.
The method developed here explicitly provides both the correspondence between models and

constituents and the correspondence between model variables and physical parameters when it

produces a new node in the virtual network. A successful matching of a model to the equipment

description produces a new node. The relations required for a model to be applicable are explicit

in the description used by the matcher and are available to the diagnosis system for dependency

tracking and hypothesis generation. The model descriptions in this thesis embody many more

relations than were typically associated with models in previous work ( isa(ci,  typei)), but the

additonal relations may be ignored by a diagnosis system.
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3.3.3 Inputs/Outputs of Model Matcher to a Diagnosis System

The inputs to the model matcher developed in this thesis are

1. a physical parameter,

2. its spatial extent,

3. and one of [causes, effects, values]

(the diagnosis system’s goal with respect to the physical parameter.)

The physical parameter and its spatial extent are objects in the object-oriented equipment descrip-

tion. They act as a starting point for the model matcher, which is attempting to identify individuals

and find the necessary relations between those individuals in the physical context surrounding the

input parameter. The goal may be one of three possible goals, find causes, find effects, or find

values. The matcher attempts to match only models that present an appropriate causal relation
to the input parameter. If the diagnosis system is searching for values, perhaps as input for some

other model, then only models that can calculate the physical parameter are considered.

The outputs of the model matcher are

1. the relations on the physical individuals required by the matched model (these are instantia-
tions of the model’s relations on the physical entities matched),

2. the calculated values generated by the model embodied as physical parameters in the equip-

ment descripton,

3. and a list of applicability conditions.

The relations returned are the manifestation of the explicit mapping of model individuals, parame-

ters, and relations to their physical analogs. Some of the physical entities specified in the relations

may be created by the model matcher as a side effect, if a reconfiguration is required to get a match.

However it does not destroy existing individuals in this process. These relations must be satisfied

for the results of the model to be valid, and these are the inputs to a truth maintenance component.

If the values calclated by this model are later found to conflict with measured values, these relations

are used to generate diagnostic hypotheses about what could faulty. The output parameters gen-

erated by running the model are returned explicitly as a list, since dependency tracking for these

values will be done by the diagnosis system. By side effect, the parameter objects for outputs are
created and installed into the physical description at the location corresponding to where model

outputs were matched. The last output is a list of conditions that the model requires to be met to

ensure applicability, but which could not be tested because of lack of data. Rather than disallowing
use of the model when applicability data is unavailable, these conditions are passed to the diagnosis

system which may treat them as assumptions.
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Model Matching Implementation
(approx. 500 K total, 9,000 lines)

r Value Comparison

I

20%
(for parameter matching)

I Spatial Reasoning I 38% I

Match & Reconfigure 28% I

Generate Model Test Set,
Check Model Conditions,
Execute Model

6%

Table 3.1: The model-matching system’s implemented components and sizes.

3.4 Scope of the Solution

3.4.1 Implementations

.

The algorithms for matching and reconfiguration are implemented in Common LISP within the BBl
system [36,37].  BBl’s  architecture is a blackboard framework that provides a sophisticated object

oriented representation language as well as the means to opportunistically execute operations based

on changing conditions within a system. The object oriented capabilities of BBl  include the ability

to create and use different kinds of relations on objects (beyond the standard subclass relations)

and to selectively inherit attributes and relations. Since diagnosis is very opportunistic, selecting
what to do next based on the conclusions derived so far, the BBl architecture provides an ideal

framework for experimenting with the model-matching system built for this thesis in the larger

context of diagnosis.

The algorithms for matching and reconfiguration consist of about 9,000 lines of LISP code

(approximately 500 K) h’ hw ic use object manipulation functions provided by BBl. Table 3.1 shows
the various capabilities implemented and their percentages of the 9,000 lines of code. Each of the 16

test cases made for the demonstrations of re-usability and extensibility involves a model description
(as well as the model itself) and an equipment description. Eleven different equipment descriptions

and 8 model descriptions were built to make these 16 test cases. The average equipment description

is about 115 K and the average model description is about 40 K, adding up to another 1.5 M of

code.

3.4.2 Underlying Assumptions

Two assumptions underlie our method, and thus inherently limit the situations in which it is

appropriate.

Contiguous Space Assumption. The first assumption regards the space occupied by equipment

and by model individuals. We assume that the equipment occupies one continuous volume
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3. The five kinds of characteristics are at least partially independent of each other. (For ex-
ample, a component such as a pipe can be made of many different possible materials.) The

characteristics behave differently through different mergings and splittings of entities, and

thus are independently represented and manipulated.

4. The physical individuals and connections between them required by each model are made

explicit to allow the individuals to be identified in the equipment description at diagnosis time.

( A matching procedure triggers “cutting and pasting” when the match fails, if individuals
required by the model can be made from the individuals existing at that location in the

equipment description.)

Our approach requires three elements be available in a knowledge base.

l a set of models

l a model description for each model

l equipment description

These elements are described in detail in Chapter 4. The approach uses two kinds of algorithms

for identifying individuals for models.

l matching

0 reconfiguration

Reconfiguration algorithms are called by matching algorithms when a match between a model

description and an equipment description has failed. The reconfiguration algorithms evaluate the

individuals present at the point of failure in the equipment description to determine if the desired
individuals can be made from them. If so, the individuals are reconfigured, and the matching

algorithms continue, attempting to complete the match. Chapter 5 describes matching algorithms,

and Chapter 6 describes reconfiguration.

3.3 How Model-Matching Fits into Model-Based Diagnosis

Diagnosis systems have used static networks of models. Our approach is to generate part of that

network when it is needed. This dynamic approach allows different networks to be constructed
for the same equipment, when the data available warrant (and thus make it possible to use non-

component models) while still presenting the same information to the diagnosis system.

3.3.1 Static Network of Models and Variables Previously Used

In previous approaches to model-based diagnosis, models of the constituents (component or pro-

cess) of a system were linked together via their input and output variables to form a network of

models that corresponded to the components and parameters of the physical system to be diagnosed
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representation and spatial reasoning capability sufficient to handle the spatial requirements of the
selected algorithms and models.

3.2 Overview of Solution to the Model-Matching Problem

Our approach is based on characteristics observed in engineering problem solving where non-
component models, like the Ideal Gas Law, are used. The focus is on non-component models

because they present a bigger challenge for matching and because they have not been used signifi-

cantly in previous systems. The observations are based on five textbook problems from each of five

different areas, heat transfer, fluid mechanics, mass transfer, thermodynamics, and reaction kinet-
ics. These 25 problems are listed in Appendix A. The findings are that the individuals used in these

problems were portions of contiguous space identified by combinations of up to 5 characteristics.

l phase

0 material

0 parameter values or locations

0 geometry

l boundaries of components

Identifying the individuals to which such models apply in advance of diagnosis time is not feasible

because there are too many possible choices as described in Section 2.4. Since parameter values,

which arise at diagnosis time, play a role in identifying the boundaries of individuals, the boundaries

are underspecified until those values are available.

Our solution is to describe the space occupied by the equipment and separately describe the

individuals required by each model. Descriptions of the equipment space and model individuals

include the five characteristics identified above. At diagnosis time, when parameter values appear,

matching algorithms use model descriptions and the equipment space to identify appropriate pieces

of the space as individuals. The process of identifying individuals within such a descripton  of space

is refered  to as individuation.
The following principles are used in this work to make individuation at run-time possible:

,
1. The equipment representation partitions the 3-dimensional space occupied into entities, and

the matter, energy, and connections amongst the entities are described. Since it is a partition
without arbitrary holes, it is possible to cut the individuals required out of that space at

diagnosis time. If necessary, the equipment entities may be “cut and pasted” into individuals

that do not correspond to either parts or aggregates of the original entities.

2. Engineering models typically divide the physical world into entities according to (at least)

the five identified characteristics: materials, phases, parameters, geometry, and components.

These characteristics are described for each entity and methods are provided for splitting or
merging entities to make different individuals, while correctly maintaining characteristics.
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textbook examples of model-matching. Several matching mechanisms appear to be required de-
pending on what a model requires in its individuals. The methods implemented can represent and

match models where the exact individuals and relations required are specified and where certain
other individuals having particular relations are specified to not be present. These two mechanisms

are called simple (positive) and negative matching respectively, and are described in detail in Chap-
ter 5. Some models may apply to situations with a variable number of individuals, such as any

number of pipes connected together end-to-end. These models require a method for representing
patterns in the model descriptions as well as a method for matching patterns to the equipment

descripton.  This mechanism was not implemented, in the interest of completing the project in a

reasonable amount of time.
l Similarly, some reconfiguration mechanisms are selected for implementation from those identified

in examples. This system can reconfigure individuals that have phase and material specified but no

quantitative amount. This system can also reconfigure individuals with a functional type (such as

pump ) from equipment descriptions which do not explicitly represent any object of that type, but
do represent the parts (such as impeller, shaft, and casing) of that component. This system

cannot reconfigure to meet quantitative shape and size requirements on regions of specified phase
or material, as is required by some models.

The goal of this thesis is to show that the approach of model-matching at diagnosis time could
enhance re-usability and extensibility. Since the applicable mechanisms are determined by the

characteristics of the model, and since only a limited number of models could be implemented,

then only mechanisms required by the models being implemented for demonstrating re-usability

and extensibility were included. The other mechanisms, some of which may not yet be identified,

are left as future work.



32 CHAPTER 3. AN APPROACHTOAUTOMATED MODELMATCHING

of space. Likewise, it has been assumed that the situation in which a model applies is a

continuous portion of space. This space may be broken up into any number of indivduals,

but each individual is assumed to be contiguous with some other individual in the model

description. Component models used in the domain of chemical processing, such as models of

pumps and reactors, often meet this assumption. The textbook examples of non-component
models (See Appendix A) also required individuals that met this assumption. Chemical
processing plants often meet this assumption in that all the processing units are connected.
This method would not be appropriate for diagnosis of a whole semiconductor manufacturing

facility, because the individual processing steps are often not connected. Wafers are carried

from one piece of equipment to another. However, the approach is applicable to each piece of
equipment within the fabrication facility.

Macroscopic Properties Assumption. We also assume that no reasoning at the molecular level

is required. The system has no means of transitioning from reasoning about a region filled with

gas to a region of balls (molecules) moving through empty space. When such a transition

occurs, parameters such as temperature and pressure which are macroscopic properties no

longer make sense. The reconfiguration methods developed here assume that macroscopic

properties apply to the regions created by merging and splitting and thus that the size of
the regions required is never smaller than the number of molecules necessary for macrosopic

properties to apply.

3.4.3  Limitations due to Implementation

Other limitations of the implementations are a result of the need to limit the length of the overall
project, but still be able to show feasibility of this approach. One such limitation lies in the spatial

reasoner, the portion of the code that merges and splits adjacent regions. The represention used

is a semi-quantitative semantic net which makes explicit adjacencies between neighboring volumes
of space, but allows only limited quantitative descriptions of those spaces. Chapter 4 gives more

detail on this representation. Models that specify individuals using quantitative geometries cannot

be accomodated  in this implementation. The system does include models whose individuals have

shape implied by the functional type, as the shape of a pipe is implied by its type. The system can

also work with models whose individuals’ shapes are determined by adjacent components, such as

the fluid inside a portion of a pipe.

We investigate limited kinds of changes occuring in the equipment description. In the examples

implemented, no adjacencies of individuals either appear or disappear over time, other than through

the merging and splitting done by the reconfiguration algorithms. In some examples, the size of the

surface representing the adjacency between two regions changes, but does not completely disappear.

Clearly these kinds of changes occur in chemical processing systems as well as in situations where
mechanical motions cause the adjacencies to change. Further experimentation is needed in this area

and could require revision of the representation or the matching and reconfiguration algorithms.
We implement selected matching and reconfiguration algorithms from the set identified in the



Chapter 4

Representing Equipment and Models

4.1 Summary

The Equipment Description Scheme (EDS) and the Model Description Scheme (MDS) are the rep-

resentations we developed to embody the characteristics that we observed in 25 textbook examples
of non-component models. (Appendix A lists these examples.) EDS provides methods for repre-

senting distribution of materials, phases, component types, and shapes through a four dimensional
space as well as parameters describing portions of that space. Our method uses four extensible
type hierarchies to represent functional, material, phase, and geometric types and 13 relations and

thier inverses. We find that at least functional, material, and phase properties are classified into

hierarchies by engineers and that these hierarchies are useful for model-matching. (For example, a
model of electrical conduction may apply to a whole class of metals.) We also find that the four

types behave differently through reconfigurations  and exhibit independence with respect to model-
matching. (For example, electricity can conduct equally well through a spoon, a screwdriver, or

. a wire, if they are made of the same materials. The functional type is irrelevant.) MDS uses the
same methods to represent the physical space required by a model, but also describes characteris-

tics specific to models, including classifications of variables (input, output, causal, aflected,  carried),
classification of conditions, (approximation, enabling), syntactic information (call forms and return
forms), and resources. We also find that models require specifications of entities and relations that

are not allowed to be present. MDS specifies these as negative sets.

4.2 The Equipment Description Scheme (EDS)

EDS provides a method whereby a user may describe the contiguous space occupied by a physical

system. The user may divide the space into individuals at their discretion. For each portion of space,

the user may specify the functional type (like pipe or valve), the material type, the phase type,

and the geometric type using 4 independent type hierarchies. These hierarchies form a description

vocabulary. Since it is not possible to predict the particular terms or primitives that will be useful

for all physical systems, the vocabulary can be varied by the user. The details and motivations for
using 4 type hierarchies are given in Section 4.2.2.

34
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4.2.1 Spatial Representation in EDS

The space occupied by the physical equipment is described in EDS by dividing it into pieces or

individuals however the user may want to do that. The pieces must fit together to cover the entire

space of the equipment. The spatial representation method provided in EDS is limited to the

simplest possible representation that would allow the goals of this thesis to be achieved. Since a
number of models were found that do not require quantitative geometry and rely only on adjacencies
between regions, EDS provides a semantic net representation of spatial adjacencies. Nodes in the

net are spatial entities or parameters describing them, and the net is implemented as objects and

named directional links in the BBl system [36,37].
The spatial representation is designed to contain sufficient information to support the merging

and splitting operations required for reconfiguration. This requires not only adjacencies between
regions, but also adjacencies between surfaces and between edges. Thus, each individual is repre-

sented as some number of objects in the net, where the objects correspond to the individual itself,
portions of the surface of the individual, edges of those surfaces, and endpoints of the edges. These

objects are distinguished by their functional types, region, port (surface), edge, and endpoint.

(See Section 4.2.2 for discussion of type hierarchies.) Each port (surface) object represents an

adjacency between this individual and some other individual. The adjacencies between surfaces are
curves and are represented as edge objects. Edges may have common endpoints with other edges.

The binary relations between these objects that represent an individual are HAS-PORT (relating
a region to one of its ports), HAS-EDGE (relating a port one of its edges), and HAS-EIDPOIIT

(relating a edge to one of its endpoints).

Portions of surfaces that become ports and edges in this representation do not correspond to

the everyday understanding of surfaces, which are assumed to be smooth, and edges, which are
assumed to be discontinuities in the surface direction. Figure 4.1 shows an example of a cylinder

sitting on a table top. Such a cylinder is normally thought of as having 4 surfaces, an inner
curved surface, an outer curved surface, and the two flat ends. The cylinder in Figure 4.1 has only

two ports, one representing the portion of the cylinder’s surface adjacent to the table, and one

representing the portion adjacent to the air. Each of these ports have two edges, Edge A and

Edge B in the figure. The EDS description, also shown in Figure 4.1, has no objects corresponding

to Edge C and Edge D.

It may appear that surfaces and the adjacencies between regions would be sufficent  to represent

space, but when two regions merge, there may be surfaces of the two regions that must be merged to

maintain the adjacency semantics. For example, when the two half cylinders, B and C, of Figure 4.2

are merged, the outer curved surfaces must merge into one surface. The adjacencies between these

surfaces, as expressed by Edges 1 and 3 in the figure, are required. The end surfaces will also merge

into one surface, and the Edges 5 and 6 on the left end of the cylinder must become one edge to

maintain the semantics. The endpoints, representing adjacencies between edges, are required to
make that edge merge.

The relationships between adjacent regions are expressed as stream objects which are linked to
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Figure 4.1: The semantic net represention of a cylinder on a table.
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A C D

Figure 4.2: A spatial situation that requires edges and endpoints be represented to merge
half-cyinders B and C correctly.

the adjacent surfaces of the regions. Streams are full-fledged objects in EDS so that subtypes of

stream  may be included in the type hierarchy to distinguish different connections between neigh-
boring individuals. For example, two solid objects may simply abut as in Figure 4.1 or they may be

welded together. Since connections are stream objects, parameters may also be attached to them

to describe characteristics of the connection. The terminology used here (stream, port) is based on

Stephanopoulos [72] with the concepts slightly expanded in this work.

Two subclasses of the type port are needed to distinguish otherwise ambiguous situations. The

use of type hierarchies in EDS (Section 4.2.2) encourages users to divide space along boundaries

of phases, materials, and functional component types. However, it is often not convenient to use

only those boundaries. (Consider a liquid stream that may flow continuously from beginning to

end of a refinery.) The subclass uniform-port describes any surface of an individual that does not

correspond to a discontinuity. This surface represents an arbitrary division made for convenience

of representation. This type of port is necessary to distinguish the situation where, for example,

two solid objects which abut are represented as two individuals from the situation where one

solid object has been represented as two individuals for convenience. In the first case, there is a

discontinuity which may be relevant to some models. The two solid objects have abutting ports

that are nonunif arm-port s .

This spatial representation is one of the limitations in the implementations that will prevent
a class of models, those which require quantitative geometry, from being used. Reconfiguration

methods that would generate the quantitative geometric individuals also cannot be added to the
system as it exists.

4.2.2 Type Hierarchies

The material, phase, functional (or component) type, and geometric characteristics of individu-

als are used in the textbook examples (Appendix A) to identify individuals for non-component

models, along with parameter values. EDS represents these properties by means of four indepen-
dent type hierarchies. As an example of the independence of these properties, assume that the
cylinder in Figure 4.1 is a pipe called Pipe-l. Its functional type is pipe. Its 6 material type is

stainless-steel-316. Its phase type is solid, and its geometric type is hollow-cylinder as

shown in Figure 4.3. The EXEMPLIFIES relation indicates that Pipe-l, a physical object, is a mem-
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ber of a particular class. Pipe-l participates in 4 EXEMPLIFIES relations. The functional type pipe

does not determine other types. Pipes may be made out of various metals or plastics. The pipe will

be some kind of a solid phase, but certain metals can exist as single phase solids or a-phase  solids.

Pipes also are all approximately hollow cylinders, but at a more detailed level of representation
they have different shapes, for example, some of them have threads and others have flanges.

Why are 4 type hierarchies used instead of the standard type hierarchy (which corresponds to
the functional type hiearchy in this work) ? These kinds of characteristics are deemed necessary

based on examination of textbook examples, and these characteristics have the following properties.

Useful Hierarchical Classifications. These characteristics have hierarchical classes which have

been identified and named over the centuries by scientists and engineers. Properties may

describe all members of a class, for example, metals conduct electricity more readily than
other materials. Thus it is useful to describe an equipment individual as being metal, even if

the specific metal is not known.

Independence of Type Hierarchies. An individual, like Pipe-l, has a range of possible types in
each of the 4 type categories as described above which are at least partially independent. When

regions are merged and split, as they are during reconfiguration, types will apply indepen-
dently to the new regions formed. For example, if we conceptually cut a piece out of the wall

of Pipe-l to reason about heat transfer, the piece is not a pipe but is stainless-steel-316.

Correct Matching on Superclasses. In the textbook examples observed and in the models im-

plemented, the individuals required by models can correctly match any equipment individual

which is of the same class or is a subclass of the types specified in the model. Thus the

class:subclass  relations must exist somewhere in the system. Furthermore, certain models

require matching on one or several types independent of the other types. For example, a

model that calculates the hydraulic horsepower required by any mechanical pump (one of the

examples implemented in this thesis) correctly matches centrifugal pumps and positive dis-
placement pumps, whether the material type is stainless-steel-316 or plastic. Similarly

a general model describing electrical conduction through metals correctly matches a metal

wire, pipe, or tanR.

There may be hierarchies beyond the four identified in this work that are necessary for specifying

and matching models. This thesis does not claim that there are exactly four hierarchies. However,

these four hierarchies are useful for the models and physical situations observed and implemented in

this work. It should be noted here that very little use was made of the geometric type hierarchy in

this work because of the limitations on the geometric representations. Future work involving quan-

titative geometric characteristics and more sophisticated spatial reasoning may reveal a diffferent

approach to handling geometric properties.
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4.2.3 Representing Parts and Pieces

Some models require an individual to have another individual as a part. For example, the model
that calculates net positive suction head for a centrifugal pump (See Section C.3.) requires that

the pump has a part which is a single suction impeller. This is the standard part-of relation

used in conventional type hierarchies (like the functional-type hierarchy in this work) to rep-

resent subcomponents and aggregates. Since EDS uses four type hierarchies instead of one, it

also provides four disaggregation relations. These relations are HAS-PART, HAS-SPATIAL-PORTION,
HAS-COMPONENT, and HAS-COMPONENT-PHASE. The inverse of each relation is also defined for con-

venience. HAS-PART applies to functional parts, for example, a pump may have an impeller, a

shaft, and a casing. HAS-SPATIAL-PORTION relates entities that are parts defined along geomet-
ric lines, for example, the lower half of Pipe-l is a SPATIAL-PORTION-OF Pipe-l. HAS-COMPONENT

is a disaggregation relation for materials, for example, air has nitrogen and oxygen components.

HAS-COMPONENT-PHASE breaks a region along phase boundaries, for example a colloidal suspension

has a solid phase component and a liquid phase component.

The disaggregation relations are used in the type hierarchies as well as in the equipment de-

scription. In type hiearchies,  the disaggregations are assumed to be a complete set. For example,

if a centrifugal-pump in the type hierarchy has 3 HAS-PART relations, one each to impeller,

shaft, and casing, then this is taken to mean that there are exactly these 3 parts of centrifugual
.

pumps. In the equipment description, parts are not assumed to be complete sets. The disaggre-
gation relations are allowed in the equipment description so the user may describe equipment at

multiple levels of detail or mixed levels of detail. EDS allows the user to decide what detail and

how much detail to represent for their physical system. The implemented examples of this thesis
make extensive use of the HAS-PART relation (and its inverse) both in the type hierarchies and in the

equipment descriptions. (See the DETAILED-PUMP, CSTR-1, and CSTR-2 equipment descrip-
tions in Appendix B.) Extensive use of the HAS-SPATIAL-PORTION relation and its inverse is made

in the equipment descriptions when reconfigurations (Chapter 6) are done, since reconfigurations

result in multiple representations of some portions of space.

To make it possible to reason about portions of the physical world over temporal slices of

their existence, EDS provides the HAS-INSTANCE relation. It is intended to represent tempod
subabstractions as defined by Lenat and Guha [43].  The HAS-INSTANCE relation indicates that one

entity, A, is a view of another entity, B, during some portion of B’s lifetime. A rapid thermal

multiprocessor (a reaction chamber for manufacturing semiconductor devices) may have helium in

its chamber in one instance of the interior space of that chamber and may have oxygen occupying the
same space in another temporal instance. The examples implemented in this thesis do not require

reasoning about different instances of entities, even though some involve parameters changing over
time, so use of the HAS-INSTANCE relation has not been demonstrated.
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pressure-sensor-readout-l 37
time: 76443
time-dimension:  1
time-units:  set
time-type: real
time-interval-type:  point
time-precision-type:  absolute
time-precision:  fl
time-max:  nil
time-min: nil

value: 52.0
value-dimension:  1
value-units  : bar
value-type:  real
value-interval-type:  point
value-precision-type:  relative
value-precison:  &5%
value-max:  500
value-min: 0

location: nil
location-dimension:  nil
location-units:  nil
location-value-type:  nil
location-interval-type:  nil
location-coordinate-system:  nil
location-coordinate-system-type:  nil
location-precision-type:  nil
location-precision:  nil
location-max:  nil
location-min:  nil

Figure 4.4: The attributes of parameter objects in EDS.

4.2.4 Representing Behavior: Parameters and Instances

EDS provides parameters and instances to represent behavior. Parameters are represented as
objects (nodes in the semantic net) like spatial entities. EDS provides 29 unary attribute functions

to specify characteristics of parameters. These attributes fall into three classes, attributes of the

parameter’s time, attributes of its value, and attributes of its location. Figure 4.4 shows these
attributes with some example values. In this work, the time-type and value-type may be integer,

real, qualitative landmark, or qualitative sign. The time-dimension and value-dimension take

integers indicating whether the corresponding value is a l-dimensional (scalar), 2-dimensional, or

n-dimensional vector. The time-interval-type and value-interval-type may be either a point,
open, or closed interval. Time-precision-type takes values absolute or relative, indicating that

the time of the parameter is f time-precision or that time is f time-precision % of time. The
value of the parameter, given by the value attribute function, is similarly described by value-type,
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Purpose Relation Inverse Relation
has-port port-of-region

spatial relations has-stream stream-of-port
has-edge edge-of-port
has-end-point end-point-of-edge
isomet tic isometric-r

type information exemplifies
I I

exemplified-by

aggregation

has-instance instance-of
has-part part-of
has-spatial-portion spatial-portion-of
has-component component-of
has-component-phase component-phase-of

parameters I describes I described-by

subclass I is-a I can-be-a

Table 4.1: The relations defined in EDS.

equipment description

connects equipment
description to

type hierarchies

equipment description
and

type hierarchies

equipment description1and tvoe hierarchies
type hierarchies 1

value-interval-type,  value-precision-type, and value-precision. Parameters sometimes

have minimum and maximum values, for example, when they represent values obtained from sensors,
and these minima/maxima are described by attribute functions value-min and value-max.

One of the characteristics of the textbook examples is that the location and spatial extent of

a parameter can determine the boundaries of individuals. The location of parameters is indicated

through the DESCRIBES relation. The DESCRIBES relation attaches parameters to regions, ports,
streams, edges, or endpoints, identifying their location and extent. It is expected that more spe-
cific information regarding location would be useful for certain models and physical parameters

and thus the 11 location attributes shown in Figure 4.4 have been included. Since the geometric

representation used is not quantitative, however, experimentation with these attributes is left for

future work. When the location attributes do not have values (as is the case for all parameters in

this work), the parameter is assumed to describe the entire entity which it DESCRIBES. Entities in

this representation may occupy volume, may be surfaces, lines, or points, so parameters may have

a variety of spatial extents.
The HAS-INSTANCE relation is included in EDS for representing views of entities over portions of

their lifetime as described in Section 4.2.3. The intention is that behaviors not readily represented

by parameters, like phase changes, will be represented with multiple HAS-INSTANCE relations, but
this has not been tested in the implementations.

4.2.5 Relations in EDS

EDS has a fixed set of 13 relations and their inverses. The 13 relations are listed in Table 4.1. The

classes in the type hierarchies could have also been relations in EDS, for example, PUHP(region-452)
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instead of EXEMPLIFIES(region-452, pump). The matching and reconfiguration algorithms use

the fixed set of relations, but are not specific to the entities addressed by those relations, including
the entities in the type hierarchies (with the exception of the region, port, edge, endpoint,

and stream subclasses). This approach allows hierarchies to be changed without changing the al-

gorithms. Thus if a user needs a change that can be expressed through the vocabulary hierarchy,

the system can easily accept that change. However, if some models or matching problems arise that

require additional relations, the algorithms may require redesign.
The preceeding  paragraphs have described 12 of these 13 relations. One additional relation,

ISOMETRIC, applies to any two spatial entities that occupy the exact same space. Thus when

reconfigurations  generate new individuals which duplicate a portion of the existing equipment de-
scription, the relationship between the new individual and old individuals can be maintained. The

ISOMETRIC relation is more often used between the ports of two regions rather than the regions
themselves, because when merging and splitting generates new regions, some of the ports occupy

the exact same space as the old regions’ ports. The new region typically occupies more or less space

than the old region.

4.3 The Model Description Scheme

The Model Description Scheme (MDS) is a language to describe the characteristics of models re-

quired to match and use them in a diagnosis. The model description allows the model to be treated

as a black box. MDS provides a method for describing both implicit and explicit characteristics

necessary for matching and running the model. The scheme addresses the physical situation re-

quired, enabling conditions, approximation conditions, causal parameters, carried parameters, and
resources, all of which are implicit characteristics. It also provides a technique to describe the ex-

plicit characteristics including input parameters, output parameters, call forms, and returns forms.

4.3.1 Describing the Physical Situation: The Model Map

The model description must make explicit the physical situations in which a model applies. MDS

describes physical situations with entities and relations as used in EDS. Thus, each model descrip-
tion contains a small equipment description which we call a model map. Model maps have two

differences from an equipment description. First, the physical situation captured in the model de-

scription is intended to represent all the situations in which that model may apply. The entities

act as variables that will be instantiated with entities from the equipment description, which are
of the same type or are a subtype. Thus model entities should be the most general type possible.

Variables, represented as parameter objects (Section 4.2.4), also are included in the model map

and used for matching. Since many models require particular variable attributes, such as value
type (for example, real) or value dimension (for example, Z-da’mensional  vector), the variables in

the model map may have attribute values which will be used during matching. The variable’s at-

tributes specified here should be the most general that the model can accept. Section 5.3 describes
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the matching method for both entities and variables.
The second difference between model maps and equipment descriptions is that some portions

of the semantic net in a model descripton  may be specified as negative. These negative portions of

the net represent entities with their associated relations that must not be present in the equipment

description.

Finding: Some models require explicit specification of what is not present in addition to specifying

entities that are present.

Anything not specified (either negatively or positively) is irrelevant to the model and may be either

present or not present in matching equipment descriptions. The negative entities in the semantic
net are grouped into sets, indicating how they should be matched. Each set is treated as a separate

subnet,  and if all of the entities in the set and all the relations on those entities are found in the

equipment description, then the matching fails.
One example of negative entities comes from the Dittus-Boelter Model implemented for this

thesis. (Appendix C explains this model and description.) The model requires a cylindrical section

of fluid inside a pipe and there can be nothing else inside the cylindrical space. In the Dittus-

Boelter Model Map, a negative set containing a single port attached to the cylindrical liquid region

indicates that the region has exactly the positive ports specified and no additional ports. Additional

ports would indicate additional adjacencies of the liquid with something other than the pipe or

adjacent liquid. Figure 4.5 shows a picture of the liquid individual with a portion of the model map

containing the negative object. The intended meaning of this model map requires that negative
sets be matched after all positive entities. Section 5.4 describes the negative matching procedure.

The Pump-NPSH model, which calculates net positive suction head for a centrifugal pump,

provides another example of negative sets. (See NPSH Model in Appendix C.) The model requires
that the pump be completely filled with liquid water, and we use negative entities to indicate that

no other individuals may exist inside the centrifugal pump besides the liquid region. Figure 4.6

contains a portion of this model map showing two negative sets. The sequence of negative objects

in the larger set expresses this constraint by disallowing any matches where regions, such as fluid,
adjacent to the water inside the pump also have shared surfaces with the pump. This negative set

disallows such adjacent regions at the outlet port, Port-6 in the figure. Another similar negative

set disallows this kind of adjacency at the inlet port (not shown), forcing the outlet and inlet ports

of the fluid region to be at the inlet and outlet of the pump. This model description also contains

a singleton negative set with Port-7 attached directly to the Liquid individual indicating that it

has no other ports and thus there are no individuals “hiding” inside the liquid individual.

4.3.2 Input Variables

For each model, MDS specifies which of the variables that exist in the model map are input to the

model. The variables are linked to spatial entities by the DESCRIBES relation, providing the’spatial

extent and location of the variable. Specification of input variables includes not only the parameter

object from the model map, but also which attribute the model requires. Many models take the
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cylindrical section of the
liquid flowing in pipe

MODEL MAP for cylindrical liquid section

Stream-l
(leading to pipe)

Names used in Dittus-Boelter
Model Description

Region-X
Port-l
Port-2
Port-3
Port-4

Edge-l
Edge-2

Stream-l

M2-fluid-in-pipe
M2-port-l b
M2-port-2a
M2-port-3a
m2-neg-port
M2-edge-1 b
M2-edge-2a
M2-stream-3

KEY

h - P  > has-port
relation

h - e  s has-edge
relation

h-s, has-stream
relation

Figure 4.5: Use of a singleton negative set in the Dittus-Boelter Model Map.

value but could also take other attributes such as time or value-precision. The specification of

input variables is a list of pairs, where the first element in each pair indicates a parameter, and the
second element indicates the attribute.

4.3.3 Output Variables

MDS also specifies which of the variables in the model map the model generates as output. This

specification is also a list of pairs, analogous to the list for input variables. Unlike input variables,

output variables do not have to be found to successfully match a model. They are generated by the

model matcher when the model is run and are installed into the model map by attaching the new

parameter to the correct spatial object with the DESCRIBES relation. If the goal for matching is to
calculate values for a given physical parameter, the list of output variables is used to determine if

the model in question can produce the desired value.

4.3.4  Causal Variables

The model description maintains a third set of variables for each model, called causaZ  variables. In

the physical world various effects are caused by particular driving forces. For example, a tempera-

ture gradient causes heat transfer and a body force acting on a mass causes acceleration. One may
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Names used in PUMP-NPSH
Model Description

Pump
Liquid

Fluid
Port-l
Port-2
Port-3
Port-4
Port-5
Port-6
Port-7

Stream-l
Stream-2
Stream-3

M3GPump
M3-Internal-Water
M3-Adjacent-Water-B
M3-Port-2A
M3-Port-2B
M3-Pump-Neg-Port-B
M3-Adj-WaterB-Neg-Port-l
M3-Adj-WaterB-Neg-Port-2
M3-Port-3A-Outlet
M3-Int-Water-Neg-Port
M3-Stream-2
M3-Pump-Neg-Stream-B
M3-Adj-WaterB-Neg-Strean

Liquid

Figure 4.6: Two negative sets used in the Pump-NPSH Model Map.

calculate the force from the acceleration, but one cannot generate a force on a mass by somehow
. accelerating it without applying a force. MDS makes causal variables explicit because diagnosis

must both find causes for effects and find effects from causes. Causal variables are specified as a

list of pairs (variable-name, attribute), like input and output variables lists. Causal variables are
not necessarily output variables because calculations done by the model do not necessarily parallel

the causality.

4.3.5 Affected Variables

Aflected  Variables are the variables being influenced by the phonomenon being addressed by the

model. Just as force is a causal variable in the example of Section 4.3.4, acceleration is an affected

variable. Affected variables are specified by a list of pairs analogous to the causal variables, and

are used to identify models which may satisfy the goal of finding effects. Section 5.2 describes

identifying models to satisfy three different possible goals.

4.3.6 Approximation Conditions

Approximation conditions are restrictions on physical parameters that must be met for the model
to accurately describe the phenomenon. The Ideal Gas Law may reasonably describe most real
gases if the pressure is less than a few atmospheres. Under this condition, the interactions of the
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molecules, which are affected by their kinetic energy, how close they are to each other, size and

shape, attractive forces, etc. are approximately the same as the those of mass-less points that

are the molecules of the ideal gas. The pressure condition being met does not cause a particular

phenomenon. Many other researchers, including Nayak [52] and Falkenhainer and Forbus  [24], use
some form of approximation conditions in their modeling formalisms.

In the system implemented for this thesis, approximation conditions may be any function that
is free of side effects, uses inputs specified in the model map, and does not maintain internal state.

The value returned is treated as true  for all non-nil values and f&e for nil values. The specification
of the approximation conditions is then a list of cull forms for these condition checking functions.

A cull  form is a list where the first element is the function name and the succeeding elements are

in pairs, one pair for each argument to the function. Each pair has a model variable as its first
element, and the second element is the variable’s attribute that the function takes as input. The

variables themselves are represented as parameter objects in the model map just as for input and

output variables. These objects may contain attribute values (such as value-type) indicating the
requirements of the function on its inputs.

4.3.7 Enabling Conditions

Enabling conditions are restrictions on physical parameters that must be met to allow the phe-

nomenon being modeled to occur. For example, the vapor pressure of a liquid must be equal to the
ambient pressure for boiling to occur. A fuel/air mixture must be at a temperature above its flash-

point to enable burning. (An ignition source may be required as well if the temperature is not above

the auto-ignition point.) The associated model may or may not use these parameters as input or

output. Enabling conditions are another form of causes, and so are separated from approximation

conditions because they are used to identify models that might reveal causes. Enabling conditions
take the same form as approximation conditions.

4.3.8 Call Form and Return Form

Since models are implemented computer programs, running them requires not only having values

for inputs, but also calling a program using the appropriate syntax. MDS thus provides a way to
describe the calling syntax for each model. For this work, we assume that all models are run by

function calls. The call form is a list which has the name of the function to call as its first element.

The remaining elements form pairs, where the first in each pair is a model variable and the second

element is an attribute of that variable that is to be passed as an argument to the model. These

pairs are in the order required by the model function. The return form is similar except that there

is no function name, only pairs of variables and attributes. All the variables listed must exist as

parameter objects in the model map. If the model requires any attributes of its input variables

or output variables to be fixed (for example, value-type real and value-unitsggallons/minute),

those attribute values are specified in the parameter object and are used at matching time to find

the right physical parameters. See Section 5.3.3 for a description of parameter matching.



4 8 CHAPTER 4. REPRESENTING EQUIPMENT AND MODELS

4.3.9  Carried Variables

Many models implicitly require that a number of attribute values of outputs are the same as some

input parameter’s corresponding attribute value. For example, all the output values from any form
of the Ideal Gas Law are implicitly assumed to occur at the same time as the input values used. (All

the input values must be for the same time.) MDS provides the curried variables list to describe

these attribute values that are carried unchanged from some input to some output variable. They

are specified as a list of 4-tuples. The first element in the 4tuple is the input variable. The second

element is the attribute of that variable, such as time that is carried to some output. The third
element is the output variable. The fourth element is the attribute of the output that receives the

value. After a model is run and its output values are installed into a parameter object as specified
in the return form, the attributes specified in the carried variables are installed.

4.3.10 R e s o u r c e s

To make decisions about which models to run in a dynamic environment, models’ resource require-

ments must be considered, where resources may be running time, memory requirements, the type

of processor required by a model, and the availability of cycles on that machine. Resozlrces  have

been included in MDS in anticipation of future work where model-matching will be integrated into

a diagnosis system working in a dynamic environment, but the examples in this thesis do no use

resources.
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Model-Matching

5.1 Summary

’ The algorithms developed break the model-matching problem into four steps.

Step 1: Potential Match Set Generation (PMSG). PMSG, described in Section 5.2, takes a
parameter in the equipment description, its spatial extent, and a goal (one of find causes,

find effects, or calculate values) and returns a list of the models in the system that address

a variable of the same type and spatial extent as the equipment parameter for the desired
goal.

Step 2: Match-Reconfigure (M-R). M-R takes a model from the list generated in Step 1 and
attempts to match the rest of the model map (beyond the variable identified in the first step.)

If this matching fails, the system evaluates the potential for reconfiguration and may attempt

to reconfigure. The matching portion of M-R is described in this chapter, Sections 5.3 and

5.4, and reconfiguration is described in Chapter 6.

Step 3: Check Model Conditions (CMC). CMC, discussed in Section 5.5, evaluates the con-
ditions in the model description’s approximation condition and enabling condition lists given

the equipment parameter values matched to the model’s variables in Step 2. CMC returns nil

if at least one condition is not met. It returns t if all testubZe  conditions are met along with a
list of untestable conditions. A condition is untestable if it involves some optional parameter

that was not matched. Any parameter that is not an input for the model is optional. The

list of untested conditions are returned to the diagnosis system to be treated as assumptions.

Step 4: Execute Model and Install (EXEC-M). If the conditions in Step 3 are met, then the
model is called using the cull f~mz and the results are installed into parameter objects in the

equipment description using the return form and curried variables list from the model descrip-

tion. The relations on the entities as required by the model map are also made available to the

diagnosis system for dependency tracking for the newly created parameter. (See Section 3.3

for a discussion of how relations are used by a diagnosis system.)

The examples of engineering models revealed three kinds of specifications on individuals, and
thus three kinds of matching capabilities.

49
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1. Simple Matching

2. Negative Matching

3. Pattern Matching

Simple (or positive) matching (Section 5.3) takes specifications of a fixed set of objects and relations
and matches them. Negative matching (Section 5.4) takes specifications of objects and relations

that cannot be present (beyond the simply matched entities) and ensures that they are not there.
Pattern matching, which was not implemented, takes a specification of a variable number of entities
and relations in some pattern and matches them. Future work with other engineering models may

reveal additional specification types and matching algorithms.
Building these algorithms and the 16 test cases that use them revealed several important findings.

First, the order in which a model map is traversed for matching must be approximately breadth first

through the physical space. The breadth first approach ensures that when failures occur, only local

reconfigurations  within the current region or adjacent regions need be considered to try to repair
the failed match. Second, all the models implemented required some kind of negative specification

and thus used the negative matching capability. Third, all the models tested implicitly assumed
values for output parameter attributes beyond those calculated by the model itself. Typically they

assumed that the time and time-related attributes had values the same as the time of the input

parameters, but in some models, such as the Wear Ring Model, value-units were also implicitly

assumed. Thus EXEC-M generates calculated values by calling the model, and also carries values
from inputs to outputs in all test cases.

5.2 Generating A Potential Match Set

Potential Match Set Generation (PMSG) identifies models that are candidates for a match from

amongst the possibly large set of models available to the model matcher. All models that may

successfully match the equipment description at the point indicated and satisfy current goals of the

diagnosis system are guaranteed to be in the set that PMSG identifies. One could apply model
preference or model selection techniques such as those developed by Nayak [51] or Iwasaki and Levy

[38] to identify the best model in this set to match first. Preference techniques are not included in the

implemented system. Model selection from the model set generated by PMSG is done interactively.

PMSG takes three inputs from a diagnosis system.

1. a parameter P (and an attribute of P) in the equipment description

2. the spatial extent SE of P

3. the goal G with respect to P

In the system implemented for this thesis, the parameter and spatial extent are objects such that

DESCRIBES(P, SE). Along with the parameter P, one of its 29 attributes (usually value) is specified,

so in this discussion, P will refer to both the parameter object and the specified attribute. SE
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is an object representing something that occupies volume, is a surface, a line, or a point. PMSG

generates a list of pairs, (mvari,  mobjj),  where mvari  is a model variable and mobjj is an object
in the model map which satisfy the following conditions.

1. P matches mvuri.

2. SE matches mobjj.

3. DESCRIBES(mva.ri,mobjj).

4. The model to which mvari belongs satisfies the goal G.

Model Entity A matching Physical Entity B means that for each type of A, B has a type that is

identical or a subclass. Model Variable A matching Physical Parameter B means in addition to

matching types, for each attribute of A that has a value, B has an equal value (within the stated

precision if the attribute is numerical.) Entity matching and parameter matching are described in

Sections 5.3.2 and 5.3.3, respectively. Appendix D lists inputs and outputs of PMSG for all 16 test

cases.

Generating the potential match set is essentially a backwards application of model matching,

finding model maps that match the equipment. We have made an arbitrary choice as to how far
to go in the reverse matching to identify the set of models. One could attempt to do the entire

matching for each model encountered at this step. However, applying model preference techniques

before complete matching can eliminate the need to match some models, and thus eliminate the
significant work involved in matching. We have chosen to do a small amount of work that can

significantly reduce the size of the potential match set from the set of all models in the system.

We have not investigated the tradeoffs in doing more work to further reduce the size of this set.
We interactively choose models from the set generated, and assume that we could employ model

preference techniques in the future to make choices automatically.
We assume that the diagnosis system will have one of three goals with respect to P, either to

find causes, find effects, or calculate values.

Goal: find causes. If the goal given to PMSG by the diagnosis system is causes, then only
models that can potentially identify a cause for the parameter P are selected. The models

must satisfy the following conditions.

1. P is in the aflected  variables list. (Section 4.3.5.)

2. P is in the input variables list. (Section 4.3.2.)

If the diagnosis system is looking for causes for P having some abnormal value, then only models

in which P is an aflected  variable are relevant. In this case P must also be an input variable, so
that the output will be determined by the value of P. An example is a model that calculates force
from acceleration. Acceleration is both an affected variable and an input variable. SForce  is a causal
variable and an output variable. Thus such a model could calculate what force might be causing
some known abnormal acceleration. One of the models implemented for this work, the Wear Ring
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(defun SELECT-MODELS (P, P-attribute, SE, goal-G)
for each superclass Tk of TO, where EXEMPLIFIES(P, TO),

for each model variable mvari where EXEMPLFIES(mvari, Tk),

if matches P on type and attributes

's model satisfies goal-G with respect to
and mvari

then for each entity mobjj such that DESCRIBES(mvari, mobjj),
if mobjj matches SE,
then return (mvari, mobji))

Figure 5.1: Pseudocode for the PMSG algorithm as implemented by the function select-models.

model (Appendix C.4), has an uflected variable as an input variable, and thus can be used to identify

causes.

Goal: find effects. Models that can satisfy the goal of finding effects must satisfy the following

conditions.

1. P is in the causal variables list. (Section 4.3.4.)

2. P is in the input variables list. (Section 4.3.2.)

OR

1. P participates in an enabling condition. (Section 4.3.7.)

Finding effects is the reverse of finding causes for some abnormal value. If a model calculates

acceleration from force, and P is force, than that model is relevant to finding effects of that force. If

P participates in enabling conditions, its value may allow the phenomenon described by the model

occur, in which caSe it does not have to be an input variable.

Goal: calculate values. For a model to be able to generate a value for a parameter P, P must

be an output and the model must satisfy the following condition.

1. P is in the output variables list. (Section 4.3.3.)

The same model may be chosen to satisfy different goals as illustrated by two cases implemented

for this thesis. In one case (Appendix D.2), the Dittus-Boelter model is chosen to find effects of

a changed heat capacity. In another case (Appendix D.3), the same model is identified to calculate
the value of a heat transfer coefficient.

The PMSG algorithm takes advantage of the type hierarchies to consider only model parameters
of the correct type. The algorithm is written in pseudocode in Figure 5.1. It traverses the functional
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type hierarchy starting with type T, where EXEMPLIFIES(P,  T). It gets all model variables that also

EXEMPLIFIES(mvari,  T), which is an easy operation since relations are implemented as named

links. One finds the objects linked to T via EXEMPLIFIES links. For each mvari,  the entities

satisfying DESCRIBES(mvari,  mobjj) are found. This also is a matter of getting all objects linked

via a DESCRIBES link. If mobjj matches SE, that is all of mobjjs  types are superclasses of types of

SE, then the pair (mvari,  mobjj) is returned as a potential match. Each mvari  is a part of only
one model map, so specifying mvari specifies the corresponding model.

5.3 The Simple Matching Algorithm

The simple matching algorithm implements the Match-Reconfigure (M-R) step by matching en-

tities and relations, calling negative matching when negative entites are encountered, and calling

reconfiguration when matching fails. Reconfiguration is described in Chapter 6.

5.3.1 Inputs and Outputs

The simple matching portion of M-R matches the objects and links in the semantic net representa-
tion of model maps to the semantic net representation for equipment descriptions. M-R takes four

inputs.

1. P, the physical parameter input to PMSG

2. SE, the spatial extent of P, an object also input to PMSG

3. mvuri,  a model variable matching P, an output of PMSG

4. mobjj , a model entity matching SE and corresponding to mvuri,  also an output of PMSG

The inputs act as a starting point for the match of this particular model to the equipment description
surrounding paramter P. Simple matching finds all matches in the equipment description available.

(It may call the reconfiguration algorithms, though, which do not try all possible reconfigurations.)
The simple matching algorithm returns a list of matches for the objects in the model map

containing mvari. It has the following two outputs.

1. An association list, giving an ordering on model map objects

2. A list of vectors, indicating correct matches to physical objects

The association list associates integers 0 through n with the objects in the model map. Each vector

in the vector list represents a match. The vector has n + 1 elements and in element i holds the

name of a physical object matching model element i (as numbered in the association list). All the

links in the model map amongst these objects have also been matched. Appendix D shows the
association list and matching vectors generated for each of the 16 test cases.
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5.3.2 Matching Entities

CHAPTER 5. MODEL-MATCHING

Each object in the model map semantic net that is not a parameter is matched to equipment objects
using only the types. For each type specified for the model object, the equipment object must have

either the same type or a subclass of that type. The model object may have up to four types, all of
which must meet this condition. Any of the four possible types that are not specified in the model

object are ignored for the purposes of matching. Thus if a model map contains an object A where
EXENPFLIFIES(A, pump) is the only type, and the equipment description contains object B where

EXEMPLIFIES(B, centrifugal-pump) and EXEMPLIFIES(B, stainless-steel), then B matches
A, assuming that centrifugal-pump is a subclass of pump in the functional type hierarchy. The

model object A “doesn’t care” about the material type, and thus any material type will suffice.

5.3.3 Matching Parameters

Parameters, which are also objects in the model map semantic net, are matched first on types just
like entities. They will only have one type, a functional type. Model variables may have values for

their 29 attributes (See Figure 4.4) which also are matched to physical parameter attributes. For

example, if the model requires scalar values, the value-dimension will be 1. A physical parameter

must have 1 for its value-dimension to match. Model variables usually do not specify a particular

value for a parameter (because models usually calculate a range of values from a range of possible

inputs), but if a value is specified, it is matched to the physical parameter’s value taking into
account the precision specified in value-precision. Thus the two values are considered equal if

the possible ranges for both values have any overlap.
.

Parameter matching code handles a number of different types of values, interval types, precision

types, and dimensions so as not to unnecessarily limit the kinds of models that could later be added

to the system. Since parameter objects may be meaningfully compared to other parameters that

do not have identical characteristics on all attributes, for example, comparing a point value to

a closed interval value, the number of cases is relatively large. This supporting code makes up

about 28% of the code written (See Table 3.1) to implement the four steps of the model matching

algorithms.

Some of a model’s variables are treated as optional with respect to matching. Any variable that

isA not an input variable may be ignored by the matching algorithm. These variables participate

in the approximation conditions (Section 4.3.6) or in the enabling conditions (Section 4.3.7)). If

no values are found, the models may still be run because these values are not inputs. However,
since some upprozimation conditions or enabling conditions cannot be tested, one cannot assess the

applicability of the model. These variables are treated as optional, though, because the value may

become known later and more importantly because the condition may apply to an output of the

model which will not be available until the model is run. Nayak [51] has identified some models
with this characteristic. Not knowing a value is being treated differently than having a value that
fails to meet a condition. Such untestable conditions can be treated as assumptions by a diagnosis

sytem’s truth maintenance component to be later verified or denied. Conditions that cannot be
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tested are returned by the condition checker, described in detail in Section 5.5, for possible use by

a diagnosis system.

5.3.4 Matching Relations and Order of Matching

Relations that appear in a model map successfully match links in the equipment description when

the two links have the same name. EXEMPLIFIES relations are excluded from this portion of the

matching because they indicate types and are used in matching entities as described in Section 5.3.2.

The starting point for the match is the model variable mvari and model object mobji  returned by

PMSG along with the corresponding inputs to PMSG, P and SE from the equipment description.

Any parameter in the model may be a starting point for a match. (The implemented algorithms

actually will take any object in the model map with a corresponding physical object as a starting

point.) The matching proceeds through the model map attempting to match all links by name and
all objects by type. Since this work assumes that models address connected regions of space, the
model map is a single semantic net, allowing the matching to start at any point and find all objects
by following links. Two cases implemented for this thesis illustrate the Dittus-Boelter model map

being matched in two different orders. Appendices D.3 and D.7 show the association lists (which

indicate the order of matching) for these two cases.
In this system, objects have unique names while links of the same type are not distinguishable,

so object names are stored to keep track of matches. The matcher proceeds in an approximately

breadth first traversal of the model map’s semantic net.

Finding: A breadth first traversal of the model map’s semantic net allows local reconfiguration.

We ran an experiment using a stack to get a depth first traversal in place of the breadth first

traversal, ostensibly to compare speeds of the two approaches. We find that depth first traversals can
make it difficult to reconfigure, because one cannot predict which equipment regions to reconfigure

for certain depth first traversals. Figure 5.2 shows a situation where a depth first traversal can
result in reconfiguration difficulty. That figure shows three connected pipes with liquid inside

the pipes. The liquid is divided into three regions, Liquid-A, Liquid-B, and Liquid-C. (This is the

equipment represented in the PIPES-O Equipment Description in Appendix B.) A partial equipment

description for the liquid regions is shown in the figure. A portion of a model map (similar to the

DITTUS-BOELTER Model Map in Appendix C) is also shown in the figure. Consider the partial

match shown in Figure 5.2 generated during a depth first traversal of the model map. On attempting

to match Param-Xl  via a DESCRIBES link from Port-Cl (the last object matched in the series), the

match fails. The match has strayed through three regions in the equipment description, when the

ports and edges in the model map were all part of one region. Breadth first traversals do not allow

a match to stray any further than the adjacent region. Thus when a failure occurs, reconfigurations

(merging or splitting of regions) only have to be tested in the immediate vicinity of the object

at which the failure occurred. Consider the breadth first partial match shown in Figure 5.2. This

match also fails when a match for Param-Xl  is sought via a DESCRIBES link from Port-Al. However,

at this failure point, reconfiguring by merging or splitting Liquid-A or the region adjacent on the
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Edge-B
Port-A3
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Figure 5.2: An equipment description and model map where depth first matching of the model map
strays through three regions.



5.4. THE NEGATIVE MATCHING ALGORITHM 57

other side of Port-Al (not shown in the figure) can possibly fix the failure. Reconfiguration is

discussed in Chapter 6.
Some preferences are interjected into the breadth first traversal order, partly for efficiency and

also for correctness in matching negative objects. Instead of a simple queue, a priority queue is

used. At each step of the match, one is considering some model object A previously matched with

some link that has not yet been matched leading to another model object B. B may or may not
have been matched. (Most objects in model maps have more than one link, and they will be seen

during matching one time for each link, verifying that each link matches an equipment link.) The

following priorities based on characteristics of A and B are used.

Priority 1: B has been matched.

Priority 2: B is a required parameter.

Priority 3: B is non-negative entity.

Priority 4: B is an optional parameter.

Priority 5: B is a negative entity.

The guiding principle for setting up Priorities l-4 is earliest possible elimination of partial matches

to reduce work done later when these partial matches are extended. Objects that have been

matched get top priority, because the matcher verifies that another link to that object exists and

can eliminate partial matches that were already made, but cannot add any new matches. Priority

2 and 3 items can both add and remove matches, but parameters occur less often in the model

maps and equipment descriptions and thus have more chance to delete matches. Priority 4 items,
optional parameters, cannot delete any matches. Negative entities must be matched last because of

the semantics of negative objects, as described in Section 5.4, although negative matches can only

delete partial matches from the list of correct matches.

5.4 The Negative Matching Algorithm

When negative entities are encountered in the M-R step, simple matching calls negative matching.

The priority queue within simple matching ensures that all positive objects have been matched

before any negative objects are encountered. Negative matching is done last because of the semantics

of the negative objects and sets. They indicate entities and relations which are not present beyond
the positive entities and relations. For example, the negative Port-4 in Figure 4.5 specifies that

the cylindrical region of liquid has no ports beyond the three specified ports, Port-i, Port-a, and

Port-3.

The intention of grouping negative entities into sets is to indicate that there is no matching set
of entities in the equipment description exhibiting the same relationships. Thus we do negative

matching set-wise. Each set of negative entities is assumed to be a connected subgraph  within

the model map’s semantic net. The simple matching algorithm is applied to this set to match all



58 CHAPTER 5. MODEL-MATCHING

entities and relations in the set. If all entities and relations in the set match, then a failure is

signalled to the simple matcher. We do not allow reconfigurations if the negative match fails to find

the whole negative subgraph, since all negative specifications in this thesis deal with the form of

regions having only phase and material types rather than functional type. If negative specifications

for functional type objects are found in models, then this restriction should be revised. If the simple

match fails because the negative match succeeded, though, reconfigurations are attempted.

5.5 Checking Model Conditions (CMC)

Once a match is made to a model map by M-R, CMC checks conditions listed in the approximation
conditions and enabling conditions lists of the model description. This function loops through the

cull forms in these lists, passing the appropriate attribute of the the matched equipment parameter

to the condition function specified. The inputs to CMC are

1. condition-list name, one of [approx-conditions, enabling-conditions],

2. association-list, and

3. match-vector.

.
The condition-list name simply tells which of the two kinds of conditions to check. The association-

list and match-vector are outputs from M-R. The match-vector can be chosen from amongst the
vectors in the vector-list returned by M-R. Since no model preference techniques, like those de-

veloped by Nayak [Sl] or Iwasaki and Levy [38], have been incorporated into the algorithms, the
vector choice is made interactively.

CMC returns NIL (false) if any condition in the list returns nil. Some conditions may not be

testable, given the current match, because some parameters may not have been matched. Parame-

ters are not required to match unless they are input parameters for the model. Conditions may be

specified on the output parameters, which are not available for testing until after model execution.

Conditions may also be specified on parameters that do not participate in the model. For example,

the Dittus-Boelter model requires that the inlet, outlet, and pipe wall temperatures meet certain
conditions for that model to apply (See Appendix C.2.3, Approximation Condition 32),  but temper-

atures are not used in the calculations made by that model. Since a model may be executed when

inputs are available, and since diagnosis systems keep track of assumptions on which conclusions

are based, our approach is to allow a model to be executed if all of its testable conditions are met,

returning untestable conditions to be treated as assumptions. Thus, the outputs of CMC are either
NIL or (T, list-of-conditions). Appendix D shows the return values of CMC for each of the 16 test

cases implemented for this thesis.
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5.6 Executing Models and Installing Outputs (EXEC-M)

EXEC-M calls models and installs returned values into the equipment description using information

from the model description that specifies how to do that. It takes only the assocation list and one of
the match vectors generated by M-R as input. It explicitly returns the names of parameter objects

(that it creates by side effect) which hold the output values from the model.
EXEC-M parses the cull form for the matched model, identifying the equipment parameter

objects matched to the model variables, and passing the specified attributes of each equipment

parameter to the model function. Our assumption is that models are accessed via function calls.

The function name is specified in the cull form. For each output variable in the return form of
9 the model description, EXEC-M creates a new parameter object. This object is installed into

the equipment description with links corresponding to those in the model map. EXEC-M installs

EXEMPLIFIES links to the same types to which the model variable is linked. For other links, EXEC-

M finds the equipment object that matches the model object linked to the model parameter and

installs the equipment link there.
EXEC-M generates attribute values for output paramters in three different ways.

1. specified

2. carried

3. calculated

When a model’s output parameter object is copied to make the equipment parameter, any attribute

values that are specified in that model object are copied to the equipment object. For example, the

Dittus-Boelter model implemented for this thesis (Appendix C.2) calculates a heat transfer coeffi-

cient that has value-units of BTU/hrft2F.  This is specified in the model variable’s value-units

attribute. EXEC-M also parses the carried variables list in the model description. We find that

models may not calculate or use some parameter attributes, but those attribute values are implicitly

assumed to be the same as for inputs. The models examined during this work often treat time and

time-related attributes implicitly. In the Dittus-Boelter model, time for the output heat transfer

coefficient is carried from the time for the input mass flow rate. EXEC-M parses the return  form
to install the calculated values returned by the model function into the correct attributes of the

generated output parameter objects. We observe specified, carried, and calculated attributes in all
of the models implemented for this work. Appendix D shows the parameter objects generated for
each successful match with annotations (specified, curried, calculated) indicating the source of the
installed value.

5.7 Implementations

We implement all four steps described, potential match set generation (PMSG), matching (M-

R), condition checking (CMC) , and model execution (EXEC-M). Of the three kinds of matching
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do-simple-match

entities-match? do-negative-match

reconfigure

parameters-match?

indicate6 function
call and return

CMC (6 K) EXEC-M (8 K)

check-model-conditions

parse-call

\ .

execute-model

Figure 5.3: Flow of control within the four components of the model matching system. Each
component is currently called interactively.

specifications observed, positive object matching, negative set matching, and pattern matching, we
.

have implemented the first two methods. Thus the system as it currently exists cannot handle

models which require specifications of patterns of objects and relations rather than a particular

fixed set of objects and relations. Figure 5.3 shows the flow of control within PMSG, M-R, CMC,

and EXEC-M along with the sizes of the algorithms as implemented in Common Lisp.

The inputs and outputs to the system as well as the inputs and outputs passed between the
four steps of the algorithm are summarized in Figure 5.4. Appendix D gives inputs and outputs

generated by the four steps for each of 16 test cases. The appendix also shows the side effects

which include reconfigurations  of the equipment description as well as parameter objects created
and installed into the equipment description.

The data in Appendix D illustrate the capabilities described in this chapter. The test cases

provide examples of use of each of the three kinds of goals, causes, effects, and values. All cases
use both positive and negative matching. The appendix shows the order in which model objects

were matched. Model objects are annotated as to whether they are positive objects, required

parameters, negative objects, or optional parameters, illustrating the priority breadth first search.

Three cases which match without reconfiguring probably best illustrate the algorithms described

in this chapter. These cases are summarized in Table 5.1. We discuss complexity and efficiency of

the algorithms in Section 7.4.



5.7. IMPLEMENTATIONS 61

QM-R

((mobj o , 0), (mobj 1 , I), . ..(mobj n t n))l

from diagnosis system

P, SE, G

Model Matching System

> PMSG

(...(mvar i-1 , mobj j-1 ),(mvar i ,,mobj  j ), . ..)

EXEC-M
I

Figure 5.4: Flow of data between the four components of the model-matching system.

Model # Equip # Run-
Appen- Descr # Model Negative Equipment Descr Matches time

dix Model Size Objects Sets Description Size G o a l  F o u n d  (hr:min:

0.2 Dittus- 54 K 34 8 PIPES-O 53 K effects 1 0:Ol
Boelter

D.9 Dalle- 61 K 40 1 CSTR-1 92 K values 16 0:13
Molle

D.17 Hagen- 47 K 33 6 PIPES-l 144 K effects 1 0:02
Poiseuille

Table 5.1: Statistics on test cases that did not require reconfiguration.



Chapter 6

Individuating: Reconfiguring Equipment

Descriptions

6.1 Summary

Reconfiguration algorithms split and merge regions existing in an equipment description. A recon-
figuration method is triggered when a model requires a physical entity that may be present in the

equipment description but is not represented in the same form as required by the model. We iden-
tified three reconfiguration methods by examining engineering models, problems, and solutions to

determine what the models required and the range of ways that the corresponding physical entities

could be divided into individuals in a representation.

1. Intensive Reconfiguration

2. Extensive Reconfiguration

. 3. Part/Whole Reconfiguration

Intensive reconfiguration deals with merging and splitting regions when the individual required by

the model does not implicitly or explicitly specify the amount or size. (The intensive/eztensive
terminology is based on that used in physical sciences such as thermodynamics, where intensive
properties are those that do not depend on amount and eztensive properties do depend on amount

[48,71].)  M d 1 go e re ions having only material and phase types without any specifications on size,
mass, volume, etc., are intensive, and the intensive reconfiguration algorithms merge and split

equipment regions of appropriate phase and material types to meet other model requirements such

as adjacency or parameters. Some models specify regions that have material or phase types but

also have some quantitative size or shape, such as “1 lb of liquid” or “1 cubic centimeter of the

metal in the tank wall.” An extensive reconfiguration method is required to merge and split as in
the intensive case, but to meet a quantitative specification.

Model regions may also have geometric or functional types specified, which are inherently

extensive. If something is a centrifugal-pump and we split some portion out or merge some

adjacent region onto the pump, the resulting region is not necessarily a centrifugal-pump. How

might a pump be present in an equipment description other than as a single individual with type
pump? It could be divided arbitrarily into pieces. If so, the equipment description would still
somehow have to say that the collection of pieces were spatial portions of a pump. The pump could

62
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also be divided into its parts, each having an appropriate functional type such as impeller, shaft,

or casing. Pati/Whole  reconfiguration handles these cases. It identifies and merges the spatial

portions in a collection identified in the equipment description as being a pump, or it identifies the

subparts of the pump present, using the functional type hierarchy as a guide (which has not only

is-a but also part-of relations) for finding the appropriate subparts.
For models to be correctly matched after reconfigurations in an equipment representation, the

reconfigurations must correctly transform both types and parameters describing the old region (or

portions of it) to types and parameters of the new region. For example, if two adjacent regions of

liquid water, both at 54 F are merged, then the resulting region should also have types liquid

and water and has a temperature of 54 degrees. However, if a stainless-steel tank holding the
water is split in half horizontally, the two halves are still stainless-steel but are not of type tank.

Transformation methods are fundamental knowledge about the physical world that are implicitly
used by engineers when applying models. We encode some of the transformation knowledge for both

types and parameters. This transformation capability forms the foundation for the reconfiguration

methods.
We implement the intensive and the part/whole reconfiguration methods on top of the encoded

parameter and type transformation methods. Reconfigurations  are triggered when a match fails

and a region nearby the failure point in the model map will allow a reconfiguration of the equipment

description. Since a merging or splitting can affect only the region being merged or split and the

immediately adjacent regions, the methods can be triggered by considering only the immediate or
adjacent regions at the point of failure in a match, if our matching never strays more than one

region before a non-match was detected. By moving through the geometric space of the model map
in a breadth first fashion, we match the immediate region and adjacent regions completely before

moving farther afield. (See Section 5.3.4 for a detailed example.) Of the 16 test cases implemented,
13 do a least one reconfiguration, and 10 of the 13 reconfigure to successfully match the model map.

Table 6.1 summarizes the 13 reconfiguring cases. Three cases, D.5, D.6, and D.8,  were designed to

allow reconfigurations but to not be reconfigurable to a complete match. In all of the cases, local
triggering and reconfiguring within the current region or adjacent regions in both the model and

the equipment description were sufficient to generate the correct forms, if it was possible to do so.

In two cases, D.4 and D.lO, three separate reconfigurations (where each reconfiguration can contain

multiple merges or splits) were triggered and performed during a single model-matching.
Limitations in the methods implemented arise from the simplicity of the geometric representa-

tion, the limited coverage of the reconfiguration and transformation methods, and the assumptions

made within the reconfiguration algorithms. The geometric representation is adjacency based and is
only semi-quantitative. Some quantitative geometric requirements of models cannot be expressed.

The splitting capability is also limited by this representation. The geometry prevents some param-

eter transformations from being implemented. For example, we should be able to add the lengths

of two merged cubes, but our geometric representation is not detailed enough. , In terms of lim-

ited coverage, we implement only 2 of the 3 reconfiguration methods identified, and examination
of additional models may reveal more reconfiguration methods. Similarly with the transformation
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Reconfigurations
triggerd by failure

Reconfiguration
Method Used:  # # Run-

Jppen- Equipment to find: . Inten- Part/ Recon-  Matches t ime
dix Model Description p-objl req-p* neg-s3  sive Whole figs Found (hr:min:

D.3 Dittus- PIPES-l X X X 2 1 I:29
Boelter

0.4 Dittus- PIPES-2 X X 3 1 1:25
Boelter

D.5 * Dittus- PIPES-3 X X 1 0 0:ll
Boelter

D.6 Dittus- PIPES-4 X X 1 0 0:Ol
Boelter

D.7 Dittus- PIPES-5 x X 1 1 0:14
Boelter

D.8 Dittus- PIPES-6 x X 2 0 0:15
Boelter

D.10 Dalle- CSTR-2 x x x x x 3 16 4:46
Molle

D.11 Dalle- CSTR-3 x X 2 16 2:04
Molle

D.12 NPSH Deta i led -  x X 1 2 0:08
Pump

D.13 Wear D e t a i l e d -  x
Ring Pump

D.14 Hydrau l i c  De ta i led -  x
HP Pump

D.15 HYPo- De ta i led -  x
t hetical Pump

D.16 Friction PIPES-l
Factor

X 1 2 0:lO

X 1 1 0:ll

X 2 4 0:18

X X 2 2 138

1. p-obj = positive object 2. req-p = required parameter 3. neg-s = negative set

Table 6.1: The 13 test cases implemented that do reconfigurations. I
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methods, only a subset of those identified are implemented In both the intensive and part/whole

reconfiguration methods, we make assumptions that we believe will be satisfied in many situations.

For intensive reconfiguration we implement a search termination heuristic that may miss some cor-

rect matches. In the part/whole reconfiguration, some equipment faults will not be recognized and

the components will be reconfigured into an aggregate that is assumed to be working properly.
However, the implemented methods have been sufficient to handle some engineering models in a

number of different matching and reconfiguring situations, indicating that methods can be devel-
oped incrementally, adding methods as more models are examined. We view the space of possible

model matchings onto physical situations as being infinite, but still worth exploring. This work

takes a step into that mostly unexplored territory.

6 . 2 Transformations during Merging and Splitting

When regions are merged or split, types and parameters must be assigned to the new regions. We

use the term transformations for the methods that calculate the new types and parameters from

old types and parameters. These methods encode fundamental engineering knowledge about the
nature of properties (types and parameters) of the physical world. The transformations described

here are used whenever any two regions are merged or any region is split, regardless of the reconfig-

uration method ( intensive or part/whole) which is ultimately responsible for the reconfiguration.

The reconfiguration method can add to or modify the types or parameters transformed, because
reconfiguration methods encode special case knowledge about transformations. For example, the

part/whole reconfiguration will modify the functional type of the merged regions it creates. The

transforms are applied to all spatial entities that are split or merged, including ports and edges
in addition to regions. Port and edge merging occurs within region merging.

6.2.1 Transformations of Types

Types from each of the four types hierarchies are transformed using the following rules.

Type Transforms for Merging

material type: The new entity gets the nearest common ancestor in the material type

hierarchy of the two old entities’ material types.

phase type: The new entity gets the nearest

of the two old entities’ phase types.
common ancestor in the phase type hierarchy

functional type: The new entity gets one of (region, port, edge, endpoint) as its func-

tional type, depending on which of these types is a functional type superclass of the

functional types of the old entities. (The old entities will both be either region,

por t ,  edge , or endpoint in any legal merge.)

geometric type: The new entity gets no geometric type assigned.
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Type Transforms for Splitting

material type: The new entities get the same material type as the old entity.

phase type: The new entities get the same phase type as the old entity.

functional type: The new entities get one of (region, port, edge, endpoint) as its func-

tional type, depending on which of these types is a functional type superclass of the

functional type of the old entity.

geometric type: The new entities get no geometric type assigned.

The geometric type transformations are particularly weak in this system, because the geometric
representation is weak. If a more quantitative representation were used with a more sophisticated

spatial reasoner, significantly more geometric information could be preserved through merges and
splits. If a different spatial representation were used, it may also eliminate the geometric type

hierarchy used in this work in favor of some other more convenient representation.

6.2.2 Transformations of Parameters

When regions are merged or split, parameters describing the old region(s) may also describe the

new region(s). Whether a parameter gets carried through a merge or split depends (at least) on the

type of parameter the spatial extent of the parameter, the types of the regions, and whether they
are being split or merged. For example, if we have two adjacent regions of water, one liquid and

one vapor, both at a uniform temperature of 100 C, then the merged region also has a temperature
of 100 C. However, the viscosities of the two regions are not the same (because viscosity depends

1
not only on material but also on phase) and so we do not have a viscosity parameter that describes
the whole region. However if we split the liquid region, both parts would have the same viscosity.

The parameter types, region types, and reconfiguration types (merge or split) all play a role in this
example. To more clearly illustrate the role of spatial extent, consider two cylindrical regions of

liquid, perhaps inside a pipe, being merged. We know the surface temperature at one end of one

cylinder. Call this surface A. If the two cylinders are merged end-to-end so that surface A becomes

an end of the merged cylinder, then we know the end surface temperature for the merged region.

It may appear that one would have to encode a seperate transform for each parameter type

and region type, but in this work we find that we can classify the parameters we encountered in
implemented cases into 7 catagories  (one of which is not used). Two transforms are encoded for

each category, one for merging and one for splitting. The same transforms apply to merging and

splitting regions, as well as merging and splitting ports (surfaces) and edges. Port and edge merging
can occur during merging of regions, depending on the geometric adjacencies. Figure 6.1 shows the

7 categories we identified, which are part of the functional type hierarchy.

Parameter Transforms for Merging

material & phase independent: If the values are the same within stated precisions,  ap-

ply the parameter to the new entity.
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Figure 6.1: The portion of the functional type hierarchy that classifies parameters for parameter
transformations.

material dependent: If the material types of the merging entities are the same, the values
are the same within precisions, and all other parameter attributes match, apply the

parameter to the new entity.

phase dependent: If the phase type of the merging entities are the same, the values are the

same within precisions, and all other parameter attributes match, apply the parameter

to the new entity.

material & phase dependent: If the phase and material types of the merging entities are

the same, the values are the same within precisions, and all other parameter attributes
match, apply the parameter to the new entity.

uniform-additive extensive: If all other parameter attributes match, add the value at-
tributes.

non-uniform-additive extensive: If all other parameter attributes match, add the value
attributes.

extensive: Parameter not applied to new entity.

Parameter Transforms for Splitting

material & phase independent: Apply the parameter to the new entity.

material dependent: Apply the parameter to the new entity.

phase dependent: Apply the parameter to the new entity.

material & phase dependent: Apply the parameter to the new entity.

uniform-additive extensive:

proportional to the size of
If all other attributes

the resulting entities.
match divide the value into two pieces

non-uniform-additive extensive: Parameter not applied.

extensive: Parameter not applied.

Here we use the eztensive/intensive terminology as it is used in thermodynamics [48,71]  to mean

that the parameters either do or do not depend on amount.
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PIPE-1

@i  PIPE-2

(from inside Pipe-

~ Figure 6.2: An example of an existing cycle of edges where the splitter may split a region.

These categories and parameter transforms clearly do not encode all the knowledge about appli-

cation of parameters in the physical world. For example, even though the mass in a region need not
be uniformly distributed, if we know that it is, we can assign the mass to split subregions according

to their relative volumes. If we know that two solid bodies are rigidly connected, and we know

the angular speed of one body, when we merge these two regions, we also know the angular speed

of the resulting region. Other limitations derive from the spatial representation employed. Our
system is not sophisticated enough, for example, to add the lengths of two cylinders when those

cylinders are merged end-to-end. By encoding some of the parameter transformation knowledge,

though, we have been able to successfully reconfigure and match models, thus identifying parameter

transformations as a necessary component of such systems.

6.3 Merging and Splitting Regions

The spatial operations that underlie the intensive and part/whole reconfiguration algorithms are
1 merge and split. Merge takes two regions that have a shared surface and forms a single region. The

semantics of our geometric representation require that regions have surfaces (ports) in one-to-one
correspondence with adjacencies to neighboring regions. When two regions are merged, adjacent

ports may now represent adjacencies to the same neighboring region. Merge  finds these ports and

merges them into a single port. Similar to region merges necessitating port merges, port merges

can require edge merges. The merge function ensures that the resulting region retains the required

semantics by performing the necessary merges at all levels.

Split takes a region and a cycle of connected edges within that region and returns two regions,

where the two regions are formed by splitting the old region and inserting new ports (surfaces) with

the cycle as the port boundary. In our limited geometric representation, splitting is performed only

on regions that meet two conditions. First, the region must be simply connected. That is it cannot

have any holes like a doughnut. Second, the region must have a set of edges that are connected

in a cycle that do not already form the boundary of some port in the region. Figure 6.2 shows an

example of where our system can split a region of liquid flowing through two pipes. Region-A has
no holes in it and it has a cylce of edges, in this case a single edge which is a closed curve (Edge-2),
that does not already form the boundary of a port in the region. Our system cannot make arbitrary

splits. A more sophisticated geometric reasoning system could do this and it would be necessary

for an extensive reconfiguration algorithm.
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The merge and split functions call the parameter and type transforms not only when they

generate the new region, but also when they merge ports or edges. Parameters may describe ports,
edges, or endpoints as well as entire regions. For example, we may know the temperature at the

outer surface of a pipe. If this surface were to be merged with some adjacent surface, the transforms
are called for the two merging surfaces and return the temperature parameter (if any) to be installed

to the new surface.

6.4 Intensive Reconfiguration

Intensive reconfiguration is the merging and splitting of equipment regions to match model regions

* that are intensive, that is, model regions that have only material or phase types and have no

specified values for extensive parameters.

6.4.1 Triggering Intensive Reconfiguration

Intensive reconfiguration is triggered when a match completely fails, and the model object at which
the failure occurred is “near” an intensive object in the model. During matching, we move through

the objects and links in the model map, finding equipment objects and links that match the current

model object and link. During this process, we accumulate a number of correct partial matches.

When, on attempting to extend the partial matches for the next model object and link, none of the

partial matches have a linked object matching the current model object, we have a complete failure.
Let the model object which was being matched when the failure occurred be called current-m-obj.

If any of the model objects in the same region as current-m-obj or in regions adjacent to

current-m-obj ‘s region are intensive regions, then reconfiguration is possible. The current-m-obj

may be a region object but may also be an endpoint, edge, port, stream, or parameter among

others, and we implemented functions that find the appropriate containing regions and adjacent
regions for each of these types of objects. If any of the model regions “near” current-m-obj are

intensive, and they have already been matched, then intensive reconfiguration proceeds, starting
with the matched equipment region. Thus, the criteria for triggering intensive reconfiguration are:

1. Complete failure of the match at some model object, current-m-obj .

2. The model has an intensive region R that contains current-m-obj or is adjacent to it.

3. R has already been matched.

Considering only “nearby” regions to the point of failure assumes that the matching process

cannot stray any further than to the adjacent equipment region before it fails. By moving breadth

first through the geometric space, which is represented explicitly in the model map, the matcher

does not go any further than into an adjacent equipment region before the current region is entirely

matched. Section 5.3.4 discussed the effect of matching order on the location of ,possible reconfig-

urations. In the implemented cases, checking only the local model region and adjacent regions for
reconfigurations  is sufficient to find all the possible correct reconfiguration points.
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6.4.2 Searching for Regions to Merge  and split

The triggering function for intensive matching identifies a model region and a matching  equipment

region. This equipment region is the base region which will be split and merged. A search begins

to generate a new region through merging and splitting that will match all the previously matched
objects and additionally match the current-m-obj, the model object that failed to match. For the
purposes of merging, the system considers only regions adjacent to the base region that are of the
same material and phase type as required by the intensive model region. We have implemented the
intensive reconfiguration algorithm to merge in a breadth first manner, first generating and testing

all merges of the base region with adjacent regions (generating level 2 regions), then considering all
merges of level 2 regions with all possible adjacent regions. The motivation for this breadth first

order is that it prevents the merger from passing by whatever it is looking for. If it were to continue

merging a bigger and bigger chain of regions, it may go off into deep space while the parameter

or adjacency needed was within 2 regions (2 merges) but was not on the first chain selected. This
choice of search order was sufficient for the examples implemented, but no other order was tested.

To control the merge search, we have implemented a termination heuristic. The heuristic ter-

minates further merging onto a region when the region fails to rematch the previously successful

portion of the match. Without a heuristic, the system could continue to merge regions until it ran

out of regions to merge, when no correctly matching regions are generated. Whenever the equip-

ment description is changed through a merge or split, some portion of the partial match that had
been made before failure will have to be redone. We use the term rematching to refer to the process

of identifying the portion of the match that may have been affected by the merge and regenerating
. that portion of the match for the reconfigured equipment description. The heuristic says that if we

cannot rematch the portion of the model map that we had successfully matched prior to reconfig-
uring, then disqualify the current equipment region from further merging or splitting. Inability to

rematch indicates that something is now missing or incorrect that was previously available. This
heuristic is a form hill-climbing, where we only consider merges or splits whose resulting regions

generate matches that are as good as previous matches.
As with any hill-climbing approach, the system can only find the local optimum. Will this cause

us to miss matches? Some kinds of rematch failures clearly will never be fixed by forming bigger

regions. For example, some of the model descriptions implemented, such as the Dittus-Boelter
model (Appendix C.2) require a fluid region inside a pipe where the ends are uniform ports that

share edges with the cylindrical non-uniform port adjacent to the pipe wall. If we proceed to

merge fluid regions until we are outside the original pipe, no such shared edge will ever exist. The

implemented matching case D.5 is an example of this kind of termination. For the pump models
(Appendices D.12, D.13, and D.14) where a negative port is specified for the liquid inside the pump

(indicating that the liquid) can have no additional ports beyond the exact positive ports specified),

merging can only produce additional ports once the merged liquid region extends outside the pump
into adjacent piping. Similarly in splitting, if we lose an adjacency (port) to a pipe, we will not

reaquire that through splitting because the region will only get smaller. However, one can imagine a
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Figure 6.3: Flow of control between the reconfiguration functions.

situation where a parameter could be lost during merging but regained later. For example, consider

a model that required both temperature and flow rate at the end of a liquid region. The base region

could have the temperature parameter at one end. Several regions further downstream there is a

region that has the required flow rate and temperature at the same point. As we merge regions onto

the base region, the previously matched end temperature is lost. Our current heuristic terminates

the merge before the appropriate parameters are found. In the cases implemented, we observe
the first situation, where additional merging would never repair the mismatch, but not the second

where we missed correct matches. However, further investigation of the heuristic is left for future

work.

6.4.3 Implementations

Figure 6.3 summarizes the implemented reconfiguration algorithms and shows flow of control. The

large box labeled reconfigure is an expansion of the reconfigure box from Figure 5.3. Each arrow

represents a cull and &Urn  of a function. Both the intensive-reconf ig and part/uhole-re-
conf ig methods use the same underlying spatial reasoning (merge and split functions) and

type/parameter transforms. The reconfiguration functions are initially triggered by do-simple-
match, as represented by A in Figure 6.3, when it cannot proceed any further with a match. The
intensive-reconf ig and part/whole-reconf ig functions call do-simple-match, as indicated by
the 2 in the figure, to do their rematching work. Rematch calls restrict do-simple- match to
only match the portion of the model map that is disturbed by the reconfiguration.

Cases D.3, - D.8, D.lO, and D.16 all use intensive reconfigurations. These cases are summarized
in Table 6.1 and more detail is given for each in Appendix D. The intensive reconfiguration mech-

anism can be triggered by mismatches occuring at positive objects in the model map, at required

parameters, or at negative objects, as is also shown in the table. The reconfiguration mechanism

can be triggered more than once during a single model-matching to fix mismatches, as is illustrated
especially well by Case D.4, where intensive reconfigurations are done 3 times. Two of the recon-

figurations require 5 different merges before a region that solved the mismatch was generated, and

one reconfiguration requires 7 merges.
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6.4.4 Limitations

The limitations in the intensive reconfiguration methods implemented derive from the search heuris-

tic used to terminate merges and splits and also from the simplicity of the geometric representa-

tion. The heuristic is included to reduce the number of useless reconfigurations that the system

will attempt. However, it can cause correct reconfigurations to be missed. It may be possible to

characterize cases where the heuristic should not be used, but this is left for future work. The gee-

metric representation used severely restricts the splitting capability. The system will only attempt
to split simply connected regions and can only split those where edges already exist. The geometric

representation also prevents us from handling certain extensive parameters, such as length, as they

should be handled during merges and splits.

6.5 Part/Whole Reconfiguration

Part/whole reconfiguration is a merging of regions that form the functional subparts of a func-

tional superpart type region required by a model. For example, part/whole reconfiguration can find
and merge the casing, shaft, impeller, and other parts to form a single region of type centrifugal--

pump, when the model calls for such a pump, and the equipment description only explicitly represents

pump parts.

6.5.1 Triggering Part/Whole Merging
.

Part/whole reconfiguration is triggered when a match completely fails, and some model object

“near” the point of failure in the model map has a functional type with subparts. During the
matching process, we move through the objects and links in the model map, building partial matches

to the equipment objects. When, on attempting to extend the partial matches for the next model
object and link, none of the partial matches have a linked object matching the current model object,

we have a complete failure. Let the model object which was being matched at the failure point

be called current-m-obj. Any type in the functional type hierarchy that has subparts, other

types linked to it via a has-part link, is called coalescible. If the model object current-m-obj lies

in -a model region that is coalescible, or in a model region adjacent to a coalescible region, then

part/whole reconfiguration may be able to fix the mismatch. We consider only the local region

and immediately adjacent regions for the same reasons as in the intensive reconfiguration method.

Any nearby coalescible model region also cannot have been matched previously, because part/whole

reconfiguration will change the required type (functional type), unlike intensive reconfiguration

that preserves required types (material and phase types). By taking a previously matched region

for part/whole reconfiguration we would destroy part of a correct match. Thus, the criteria for
triggering part/whole reconfiguration are:

1. Complete failure of the match at some model object, current-m-obj (
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2. The model has a coalescible region R that contains current-m-obj or is adjacent to

current -m-ob j ‘s region.

3. R has not yet been matched.

6 .5 .2  The Part/Whole Merging Algorithm

The part/whole merger finds all the subparts of the coalescible type in the equipment description,
merges them applying the type and parameter transforms, and assigns the resulting region to have

the coalescible type as its functional type.
The coalescible type, the functional type of the coalescible model region, is given to the

part/whole merger by the triggering mechanism. The part/whole merger relies on the functional

type hierarchy to define what subparts the coalescible type has through has-part links from the

coalescible type. We assume that the set of subparts in the functional type hierarchy is complete.

The part/whole merger then must find a complete set of subparts within the equipment description.

Finding a complete set of subparts is complicated by the fact that we allow subparts to be defined
by a tree of has-part links that extend from the coalescible type we are trying to generate. The

algorithm then finds a complete set of subparts, finding sibling subparts at whatever level they might
be represented in the equipment description. There is no restriction on equipment descriptions to

represent everything at the same level of detail.
We define the condition of all subparts having a match recursively. Here we use the predicate

matched(x) to mean that for the type object, x, an equipment region that is of that type or a

subclass has been found.

AUSubpartsMatch(T) c

matched(T) V (Vit;  (HasPart  (T, t i) + (matched(&) V AZISubpartsMutch(ti))))

An example is shown in Figure 6.4. This is a portion of the functional type hierarchy used in

several cases implemented for this thesis (Appendices D.12, D.13, D.14, and D.15). If the part/whole

merger was attempting to generate a single-stage centrifugal-pump, then one way that it could

create it is by finding equipment regions that match all the boxed subparts and merging them.

Besides knowing what to look for, the merger must also know where to look. We start with any

A equipment region that is near enough to the point of failure that a reconfiguration could fix the

failure. Thus we look at equipment regions either at the point of failure or adjacent to the region
in which failure occurred. Any nearby region that is a subpart (at any level in the type hierarchy’s

subpart tree) of the coalescible type becomes a starting point, called s-region for the part/whole

search. We make the following two assumptions about the nature of subparts manifested in the

equipment description.

Adjacency Assumption: All the subparts ti such that has - part(T, ti), share a surface with
at least one other subpart tj, where ti # tj.

Manifested Failures Assumption: If the subparts or aggregate in the equipment description is
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Figure 6.4: A portion of a functional type hierarchy showing a legal set of parts for reconfiguring
to a single-stage-centrifugal-pump.

not in working order, the defect will be described as either a missing subpart, a subpart whose

proper functional type has been removed, or as a completely disconnected part.

The first assumption allows the part/whole merger to find the parts by checking the space adjacent

to s-region. The second assumption allows it to find the parts without checking the nature of

their interconnections. Since we expect that most of the equipment description will depict working

* equipment, this assumption will be correct in most cases. Furthermore, since diagnosis systems
use the is-a relation (which corresponds to exemplifies in our system) to signify not only type

but that the individual is behaving correctly as specified by that type, faulty components would

typically be depicted as having no functional type or a different functional type. To give users
the flexibility to arbitrarily divide equipment components into spatial pieces (much like they might

divide large liquid regions into arbitrary pieces), the part/whole merger also checks the spatial

superregions of any equipment regions when looking for the subparts to reconfigure.

6.5.3 Implementations

Figure 6.3 shows the flow of control to and from the part/whole reconfiguration functions. It is called

by do-simple-match when a failure occurs and the triggering conditions for part-whole-reconf ig
are met. Part-whole-reconf ig calls merge, the same function as used by the intensive reconfigu-

ration algorithm, which will call the same type and parameter transforms. Part-whole-reconf ig

also must call do-simple-match via z to do its rematch work. Just as intensive reconfigurations

disturb previously matched portions and require rematching, so do part/whole reconfigurations.

The test cases that use the part/whole reconfiguration algorithm are Cases D.lO-D.15,  which
are summarized in Table 6.1. More detail is provided in the corresponding appendices. Two of

the cases, D.ll and D.15, require two separate part/whole reconfigurations. The models in these
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two cases require that some aggregate, in one case a reactor and in the other a pump, be explicitly

represented  as well as some subpart. The reactor model requires an impeller and the pump model

requires a casing. The system correctly generates the aggregate and subpart in both cases from even

smaller subparts. In another case, D.lO, both part/whole and intensive reconfigurations are used.

As for the intensive examples, all of these examples find the correct reconfigurations by looking no

further than the region of failure or the adjacent regions.
The important finding in building these test cases is that aggregates must be made spatially.

By merging the subparts spatially, we automatically maintain the proper spatial relationship of
the aggregate to the surrounding equipment and likewise retain parameters for the aggregate. The

parameters involved in models of functional type components such as pumps and reactors often
describe regions adjacent to the equipment, and not the equipment itself. An example is the

pressure of the fluid inside the pump entrance. In previous work the geometric space occupied
by the equipment has been mostly ignored. Physical entities act on each other through space.
Parameters all have particular locations and spatial extents. Our view is that by keeping the
spatial information in the representation, we can automatically manage parameters and relations

between the equipment of interest and the equipment around it without predetermining levels of
detail.

6.5.4 Limitations

The limitations of the part/whole reconfiguration algorithms derive from the Adjacency Assumption
and the Manifested Failures Assumption. The Adjacency Assumption states that every subpart of

some piece of equipment is assumed to share a surface with some other part of the equipment. This

is a reasonable assumption for pumps and reactors, the types of equipment we model in this thesis,

but may not be a good assumption for all types of equipment we might encounter. The Manifested
Failures assumption is likely to present more difficulty in the kinds of equipment we model because

all the components of a piece of equipment may be present and may meet the Adjacency Assumption,
and each component would be in working order, but the aggregate would not be in working order

because the relations between the parts are not correct. Part/whole reconfiguration would not be

able to distinguish this non-working aggregate from a correctly assembled piece of equipment. We

expect the impact of this limitation to be relatively small, though, because equipment descriptions

would most likely be built for working equipment, and only a few faults would be incorporated

by a diagnosis sytem as it reasoned about the equipment. The impact is also reduced by the fact

that some faults would be detected by the part/whole algorithm, those that meet the Manifested

Failures Assumption. This problem could benefit from future work.



Chapter 7

Evaluation of Approach

7.1 Summary

Our motivation for embarking on this research is to find ways that modeling of physical systems and

therefore model-based reasoning systems, especially diagnosis systems, can be made more readily

re-usable and extensible. Our goals are to identify characteristics of models, identify characteristics
of equipment, and develop methods to match models to equipment at run-time that allow models

and equipment to be described independently from each other. If these tasks are independent we
can significantly reduce the work required to add models and to re-use the system on a different

piece of equipment. Clearly the problem of independence and matching engineering models to

equipment is a large one, and we view the characteristics and methods we identified as a subset of
those required to solve the general problem. To evaluate the set of characteristics identified and
the matching methods developed, we demonstrate re-usability and extensibility.

We implement a series of examples to provide two separate demonstrations of re-usability and

two demonstrations of extensibility. The re-usability demonstrations consist of giving the matching

system a series of different equipment descriptions, and having the system reconfigure (if necessary)
and match the same model correctly in all the cases. The equipment descriptions contain similar

pieces of equipment to which the model can be applied, but the descriptions take a number of

different forms. We have two re-usabililty series, one for a non-component model and one for a

component model. Non-component models are those models, like the ideal gas law, that have at

least one individual whose boundaries may be set anywhere through a region of space. Component

models have only individuals with boundaries that occur at discrete locations. The non-component

model used for re-usability demonstrations is the Dittus-Boelter model, which is described in Ap-
pendix C.2. One of its individuals is a cylinder of space inside a pipe through which liquid is

flowing. The ends of the cylinder may be at any locations within the pipe. The series consists of

7 different equipment descriptions of fluid flow in pipes. We also provide a re-usability series for

a model of hot and cold liquid mixing in a stirred tank reactor. This model was implemented by

David Dalle Molle [l l] and referred to in this work as the Dal/e Molle model. The individuals in

this model can be chosen exactly one way for any physical situation. Three different equipment
descriptions are built for matching of the Dalie Molle model. The matching and reconfiguration

algorithms correctly match and reconfigure for both of these series.
The extensibility demonstrations consist of adding a series of different models to the system that

76
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match a single equipment description. The models in the series require different reconfigurations  to

meet their specifications. We provide a non-component model series and a component model series,
paralleling the two re-usability demonstrations. One series matches 3 non-component models, the

Dittus-Boelter model (Appendix C.2), the Hagen-Poiseuille model (Appendix C.8), and a friction

factor model (Appendix C.7). The Hagen-Poiseuille model implements the Hagen-Poiseuille flow
equation which calculates volumetric flow rate for liquids in pipes. The friction factor model calcu-

lates Fanning friction factor for fluid flow in pipes. They each have somewhat different requirements

for parameters and individuals which causes them to reconfigure the single equipment description

in three different ways. The second extensibility series involves 3 different pump models, all of
which are component models. The system had to reconfigure for 6 of these 7 models, and did so

successfully in each case.
Ability to extend also requires ability to extend the vocabulary. The matching and reconfigu-

ration algorithms use only the partial order within the type hierarchies (except for the top level

classifications such as region, port, edge, etc.), and thus can be extended with new types as
needed. As we added models, we were forced to add new types to the hierarchies, both as leaf

nodes and as internal nodes. The matcher handled all additions successfully.

Since engineering models do not all use the same calculation methods and since many models
are already implemented, we design our approach to allow models using arbitrary internal methods

to be included in the system. By design, our system does not access the internal representations

of the model, only providing inputs to models and taking outputs. As a demonstration, we include

several different kinds of internal calculation methods. We include models using various equation

forms, a table interpolation method, a numerical method (not used in the demonstration series),

and a large qualitative simulator. The qualitative simulator is QSIM [42] and it is internal to the

Dalle Molle model [II]. It is a large system, about 1.2 M of Common Lisp code. This model was
built by other people and we do not know its internal data structures or algorithms. We have added

this model to our model-matching system as our primary demonstration that various models can

work together. The matching system successfully reconfigures, matches, and calculates values with

this model.
Even though our primary research goals do not include efficiency, we analyze the methods and

monitor the implemented examples to collect efficiency data. We show that the matching problem,

as we have formulated it using semantic nets, is provably NP-complete. In the worst case, an
exponential number (in the number of objects in the semantic net) of partial matches could be

examined to find the correct match. However, the worst case is probably significantly different

than what we would usually find in real matching situations. This difference results from not

being able to guarantee that we have any distinguishing information (types and link types) within

the net. Most semantic nets will have distinguishing types and links that eliminate a lot of the
partial matches we would have to consider at each step in the matching. We monitor the number

of partial matches examined in all of our cases and see numbers that are very small compared to

the exponential worst case. The worst case analysis does not take into account reconfiguration

methods, which may force us to reconfigure and rematch a number of times. We also have not
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fully investigated efficiency issues within the implementations. The system runs in Common Lisp

on lisp machines, which are known to be slow machines. ’ We also found a serious implementation

inefficiency in the BBl  blackboard system upon which our matcher is built. (This inefficiency has

been removed from a new version of BBl.) The cases all run fast enough (ranging from less than 1

minute to 4 hours) for the purposes of this research. However, before such a system could be put
to practical use, efficiency should be improved.

The limitations of this approach arise from our fundamental assumptions, the selection of mech-
anisms implemented and tested, and implementation assumptions.

Fundamental Assumptions. The assumptions on which we based this approach require that
the models apply to contiguous portions of space (Contiguous Space Assumption) and that
individuals are large enough that macroscopic properties, such as temperature and pressure,
are meaningful (Macroscopic Properties Assumption.) Section 3.4.2 described these two as-
sumptions.

Selected Implementation.
methods from those we

To limit
observed.

the scope of the work, we selectively implement some of the

1. Geometric reasoning (merging and splitting) is limited to cases that can be described
using a semi-quantitative semantic net.

2. Parameter transformations are limited by the geometric representation.

3. We implement simple and negative matching, but not pattern matching.

4. We implement intensive and part/whole reconfiguration, but not extensive reconfigura-
tion.

5. The cases implemented do not exhibit characteristics which are known to be important
for some kinds of engineering models, including different properties of the connections
between individuals (such as abutting vs. rigidly connected) and changes in spatial
relationships between individuals that cause ports (surfaces) to appear or disappear.

6. Efficiency of the current implementation is optimized only enough to carry out the re-
search, and run times on the current platform are probably not small enough for practical
use in a diagnosis system.

Implementation Assumptions.

1. Intensive reconfiguration uses a search termination heuristic that is a form of hill-
climbing, and thus may find only local optima.

2. Part/whole reconfiguration can only reconfigure equipment which have parts that all
share at least one surface with some other part. It can also only detect that a set of
parts will not form a correctly functioning whole if the fault is manifested in particular
ways. (See Section 6.5.2 for details.)

We identify a particular set of model and equipment characteristics and a set of matching and

reconfiguration methods required, and implement and test a subset of the identified set. We do

not claim to have identified all the characteristics and methods. When working with the infinite

lLisp machines were more widely used in research when we began implementions.
research on the lisp machine rather than porting to the now more commonly used unix
to avoid delaying the research.

We chose to complete the
machines or C++ language
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number of possible situations the physical world may present, it is not possible to show that any

set of methods or characteristics is sufficient.

7.2 Demonstrations of Re-usability

The demonstrations of re-usability involve a series of replacements of the system’s current equip-
ment description with a new equipment description. Each of the equipment descriptions built is

large enough so that the matcher and reconfiguring algorithms did not run into the boundaries.

Through the series of replacements, the models in the matching system and the matching algo-
rithms themselves remain the same. These demonstrations mimic what would be done to re-use

’ such a system for some different physical equipment. The intent is to show that the system can

successfully match a model to a number of equipment descriptions whose forms vary from the form

required by the model. If the system can make the correct forms, then the user does not have to
tailor the equipment description to the form of this model and to the forms of all the potentially

large number of models that such a system could contain.

7.2.1 The Dittus-Boelter Series

The Dittus-Boelter series is a set of matchings of the Dittus-Boelter model to 7 different equipment

descriptions. This series is longer than the others because it is also intended to show that we
could express the requirements for a non-component model and that the matcher could identify

and correctly match examples where different requirements were the determining factor in the

match. Some of the cases in this series provide situations that should not be matched under any

reconfigurations,  to show that the matcher correctly recognizes a requirement not being met. All

of the non-matching cases are “near” matches in the sense that they have only one characteristic

that is different than the model requires. If the matcher can detect these subtle differences it will

also be able to detect large differences.
Figure 7.1 shows the physical situation and requirements of the Dittus-Boelter model. The

cylindrical liquid region which forms the individual of interest is conceptually cut out of the flowing

stream of liquid. The individual does not have to fill the pipe from end to end, but cannot extend
beyond the ends. This variability makes the Dittus-Boelter model a non-component model. Ap-

pendix C.2 gives the full model description for the Dittus-Boelter model, including the model map

and the approximation conditions.
The Dittus Boelter re-usabililty series focuses on the model requirements that are not numerical.

Figure 7.1 lists these requirements. They also are not purely geometrical. They involve combinations

of material, phase, and functional types occupying space and having particular relationships to each

other. Besides the listed requirements, all of the models implemented require that parameters exist
at particular locations and have particular spatial extents. These requirements often are not stated

explicitly in engineering textbooks because they are part of the background knowledge of engineers.
The ability to express and check these requirements is one of the original contributions of this
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Figure 7.1: Some non-numeric requirements of the Dittus-Boelter model.

The requirements listed in Figure 7.1 are each tested by one of the equipment descriptions in the

series. The equipment descriptions are shown as pictures in Figure 7.2 along with the reconfigured

portions that matched. This figure also shows the starting parameter (*) for each attempted match.

The pictures in Figure 7.2 are only drawings of what we have built using the semantic net geometric

representation. These equipment descriptions range in size from 53 K to 195 K and are described

. in more detail in Appendix B. We believe that given the requirements for the model, it will be

obvious to all observers (engineers and non-engineers) whether the system is exhibiting the desired
behavior with respect to each requirement.

PIPES-l: This equipment description tests the ability to identify locations and spatial extents
of parameters. The match starts in Region C with the goal of matching a model that will
calculate a heat transfer coefficient at the wall. It ultimately merges A, B, C, D, and E to
get a correct match. The driving force behind this merge is the required flow rate parameter
which must describe one end of the cylindrical region. Note that the requirement for a full
cylinder could have been met by merging only C, D, and E.

PIPES-2: This equipment description tests the requirement that nothing else be present inside
the cylinder of fluid, a requirement which is expressed through negative sets. Starting from
Region A, the matcher finds the interior regions, B, C, D, and E, which happen to be mergable
with A in this case. By reconfiguring, the system correctly finds a match. If these interior
regions had been pipes or portions of a wire, for example, the merging would not have been
possible and no match would be found.

PIPES-3: This equipment description tests the requirement that the pipe’s cross section be filled
with liquid. Liquid is flowing through only the bottom half of each pipe. The matcher, being
unsophisticated geometrically, tries a few reconfigurations,  starting with the initial parame-
ter’s region, Region WD, merging WC and WB, at which point the termination heuristic finds
the match is worse than when merging started. (The surface to the pipe no longer shares its
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Figure 7.2: Equipment descriptions and reconfigurations  in the Dittus-Boelter re-usability series.
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edges with the two end surfaces.) The merging has wandered beyond the end of the pipe,
violating some other requirements that had been met before merging started. The matcher
also merges in the other direction with region WE and finds that the match is again degraded.
It then terminates without finding matches because no other regions can be merged.

PIPES-4: This case tests the requirement that the fluid continue beyond the cylindrical individual
identified. In this case, a cap has been placed on the left end of Pipe-l, perhaps to block the
pipe for maintenance of other equipment. A flow sensor still reports a flow rate at that end
of the pipe, even though the value is 0. Starting with the goal of finding effects of a change
in heat capacity in Region B, the matcher merges A and B, finding the flow rate parameter
it needs. (The value is not tested until after the match.) However, the requirement that the
end surface of the cylinder be adjacent to more liquid is not met. The matcher attempts to
merge B and C as well as B, C, and D when the termination heuristic stops it from attempting
any further merges. The merging has wandered outside the pipe and degraded the previously
matching portion of the model map.

PIPES-5: This case tests the requirement that the liquid cylinder not extend past the end of a
pipe. Starting with the goal of finding effects of the heat capacity in Region C, the matcher
finds the only flow rate available (a required parameter) at the end of Region C. The inability
to match the shared edge between the liquid’s surface to the pipe and an end surface triggers
an intensive reconfiguration. Splitting the region, the matcher eventually finds the portion
which is wholly contained inside Pipe-2 and which also has the flow rate parameter.

PIPES-6: This case ensures that the system find liquid within a pipe, and not some other flow
conduit. Given the goal of finding effects of the thermal conductivity in Region B, the matcher
finds the required flow rate at the left end of Region B. The system finds it necessary to split
the region, because it extends over the ends of a containing pipe. Then it finds a region
wholly contained within Elbow-l and having the required flow rate. No match is found,
though, because the containing conduit, Elbow-l, is not of functional type pipe.

.
Appendix D contains the details of each of these test runs, including all inputs and outputs from
each of the four stages of the matching system, as well as the side effects and a summary of the

reconfigurations  tried.
This series demonstrates a significantly increased independence of the equipment description

from the model details over previous approaches. This independence enhances the re-usability by

allowing equipment descriptions to be built without tailoring to the exact details of each model.

7.2.2 The Dalle Molle Series

The Dalle Molle re-usability series uses the Dalle Molle model, which is a qualitative simulation

of hot and cold liquid flows mixing in a stirred tank reactor. It simulates the temperature change

and the change in liquid level in the tank over time after a step increase or decrease in either the

hot inlet stream or cold inlet stream. Even though it involves liquid inside the reactor, it is a
component model because the liquid inidividual must include all the liquid in the reactor. Thus

for any particular physical situation, there is only one such individual no matter what parameters

may be available. The Dalle Molle model requires that not only a whole stirred tank reactor
be present, but also that its impeller (a subpart) be explicitly represented, thus requiring the
ability to represent and match multiple levels of detail within the same match. A spatial relation
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requirement  of the Dalle Molle model that is not necessarily implied by the functional types is

that the outlet nozzle be installed in the bottom of the tank, rather than through the side wall.

This requirement  is a result of the model’s assumption that outlet flow is proportional to height

of liquid in the tank. (The location of the outlet is not sufficient to meet this condition, though,

and an approximation condition checks numerical values in addition to this spatial relation.) This

requirement is specified as a shared surface (ports) between the outlet nozzle and tank floor in the

model map. Appendix C.l gives the full model description for this model, including the model map
and approximation conditions.

The Dalle Molle re-usability series applies the Dalle Molle model to the three different equipment

descriptions pictured in Figure 7.3, where the individuals are shown as disembodied pieces. In the

equipment description, all individuals are assembled in contiguous space. These three equipment
descriptions as implemented in the semantic net geometric representation range in size from 92 K

to 139 K and are described in Appendix B. The figure also shows the reconfigurations made and

the matches found. The part/whole reconfiguration algorithm generates the required reactor from

the assembled parts in both the second and third cases. The part/whole reconfigurer also makes
the impeller in the third case, because only its parts were represented. The second case employs

intensive reconfiguration to generate the liquid individual inside the reactor. The model has to find
an individual that includes all the liquid within the tank. Appendix D provides additional detail

for each of these 3 matches, including inputs and outputs for each of the four stages of the match-

ing algorithm, side effects, and a summary of reconfigurations tried. This series demonstrates for
component models how run-time matching and reconfiguration decouples the equipment descrip-

tions from the model details. This added independence increases the re-usability of such systems
by allowing the equipment descriptions to be built without tailoring details to each model in the

system.

7.3 Demonstrations of Extensibility

We address three dimensions of extensibility. First, by showing that a series of models may be added

without their requirements being specified in the exact terms present in the current equipment de-

scription, we show increased ease of incorporating models. This independence of model descriptions
from equipment descriptions allows models to be described with the least detail possible to state

their requirements. One also does not have to identify every place in the current equipment de-
scription where new models should be match, and tailor the description to have the exact same

form(s) as all the places where it may be applied. Second, we show that the algorithms allow the
type hierarchies to be changed without affecting the ability to match or reconfigure. Type hierar-

chies provide the vocabulary for describing models and equipment. If the system were restricted

to the particular details of our hierarchies, the system would not be readily extensible. Third, we

demonstrate that models using different internal calculation methods can be used by this system.

Previous approaches require a uniform representation for models, usually because they somehow

access the model internals. Such a requirement forces one to re-write any model before it can be
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Figure 7.3: Equipment descriptions and reconfigurations  in the Dalle Molle re-usability series.
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incorporated. This task may be prohibitive for large models. Furthermore, it is unlikely that any

single represenation is appropriate to handle a large number of engineering models, because these

models use a large variety of calculation methods and different ways of abstracting the physical

world.

7.3.1  Adding Models: The Pump Series

We provide two extensibility series paralleling the re-usability series, one for component models and

one for non-component models. In each series, the system starts out with an equipment description
in place and models are added one by one. The models require different parameters and individuals

which may require different reconfigurations to match. The models also calculate different values.

Thus as we add models, the system’s capabilities increase. These two series demonstrate that

model descriptions which specify their requirements in forms different than that expressed in the

equipment description can be matched correctly.

The pump extensibility series uses the DETAILED-PUMP equipment description to match
four different models. This equipment description represents 14 different parts of a single-stage

centrifugal pump as separate individuals. Figure 7.4 shows the individuals as disembodied pieces

to make explicit what is present in the equipment description. DETAILED-PUMP also represents
two pipes attached to the inlet and outlet of the pumps as individuals. The liquid inside the pump

is a single individual. The liquid regions inside each of the attached pipes are also represented. In
addition, an individual that is an aggregate of some of the other individuals is represented explicitly.

P76-Impeller  is composed of P76-Rotor  and P76-Impeller-wear-ring.  These parts are represented
at two levels of detail to show that the approach does not restrict equipment descriptions to only

one representation of each portion of space. More details of the DETAILED-PUMP equipment
description are provided in Appendix B.ll.

The models in this series vary in the classification of pump they require, the levels of detail, and

the parameters that they require and calculate. They also vary in their requirements on the fluid

in the pump.

The NPSH  Model.  The NPSH model calculates minimum net positive suction head (NPSH)
required for a single stage centrifugal pump pumping liquid water. The minimum NPSH
requried can be thought of approximately as a minimum pressure required at the pump
inlet to ensure proper operation. In addition to the pump, this model also requires the
impeller to exist as a separate individual, because the speed of the impelller is a required
parameter. The impeller also must be a single-suction impeller, which is one of several
impeller types that the single stage centrifugal pump may have. This model clearly shows
the need to represent multiple levels of detail. If we had to rely only on the pump type,
we would be forced to invent arbitrary types like single stage centrifugal pump with
single suction impeller that are not used in the domain. Appendix C.3 provides full
details for the NPSH model description. Appendix D.12 provides additional detail for this
matching, including inputs and outputs for each of the four stages of the matching algorithm,
side effects, and a summary of reconfigurations tried.

The Wear  Ring Model.  The Wear Ring model calculates the change in clearance between the
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Figure 7.4: Individuals in the DETAILED-PUMP equipment description shown as disembodied
pieces.

impeller wear ring and casing wear ring in a centrifugal pump as a function of increased power
consumption. As the pump wears and the clearance becomes larger, the power required to
generate the same flow rate at the same pressure will increase. This model applies to a larger
class of pumps than the NPSH model because it doesn’t require a single stage pump, nor does
it require a single suction impeller. It requires different individuals as well because the casing
and impeller wear rings must be explicitly represented. This model is also less restrictive in
that it applies to any fluid (liquid or gas), not just liquid water. Appendix C.4 gives the full
model description for the Wear Ring model. Appendix D.13 provides additional detail for this
matching, including inputs and outputs for each of the four stages of the matching algorithm,
side effects, and a summary of reconfigurations  tried.
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The Hydraulic  Horsepower  Model.  Hydraulic horsepower is the theoretical minimum horse-
power required to boost the velocity and pressure of a fluid from from the inlet conditions to
the outlet conditions of a pump. This minimum horsepower does not take into account any
losses within the pump or motor. This model applies to all pumps, not just centrifugal pumps,
and thus has an even wider range of applicability than the previous two models. It does not
require any of the parts of the pump to be explicitly represented as individuals. Appendix C.5
provides the details for the Hydraulic Horsepower model description. Appendix D.14 provides
additional detail for this matching, including inputs and outputs for each of the four stages
of the matching algorithm, side effects, and a summary of reconfigurations tried.

The Hypothetical  Model.  This model is not a real model, but simply a model description that
we built to test the system’s capability to reconfigure to two different levels of detail within the
same piece of equipment. Models clearly can require more than one level of detail, as the NPSH

. and Wear Ring models do, but our equipment description did not provide the opportunity to
reconfigure at two levels. The Hypothetical model has all the same individuals and required
parameters as the NPSH model, except that it does not require an impeller and does require a
casing. The casing is represented as 5 separate individuals in DETAILED-PUMP, P76-Back-
Casing, P76-Front-Casing,  P76-Suction-Nozzle,  P76-Discharge-Nozzle,  and P76-Casing-Wear-
Ring. Appendix C.6 provides the details of this model description. Appendix D.15 provides
additional detail for this matching, including inputs and outputs for each of the four stages
of the matching algorithm, side effects, and a summary of reconfigurations tried.

Figure 7.5 summarizes the pump extensibility series. We show the relevant portion of the
functional type hierarchy including both subparts and subclasses. In the hierarchy shown, boxes

indicate the types which have exemplifying individuals within the DETAILED-PUMP equipment

description. This portion of the hierarchy is used by the part/whole reconfiguration algorithm to

find the necesary parts for the reconfigurations in this series. Below the hierarchy, a table lists the

Qpes of individuals required in each of the models along with required parameters. These models
require different functional types of pumps, different subparts, and different material and phase

types on the internal fluid. All of these models apply to the situation in DETAILED-PUMP and

in all cases, the system correctly reconfigures to make the individuals of the required types and

proceeds to match. This series demonstrates enhanced independence of model descriptions from

equipment descriptions and thus enhanced extensibility over previous approaches, because one does

not need to strictly tailor model descriptions to use the exact terms as in the current equipment

description. Furthermore, each model addition enhances the system’s capabilities, enabling it to

& calculate a parameter that it could not previously calculate.

7.3.2 Adding Models: The Fluid Flow Series

The fluid flow extensibility series uses the PIPES-l equipment description (Appendix B.2) and

matches 3 different models to the flow through the pipes. All these models are non-component
models in that at least one of their individuals is intensive and could be matched multiple ways

in a given phsyical situation. All involve fluid flow within pipes, but the requirements on the fluid

individual and the parameters are somewhat different, forcing different reconfigurations to be made.
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The Dittus-Boelter  Model.  The Dittus-Boelter model requires a cylindrical region of liquid
within a pipe. It was previously described in Section 7.2.1, and Appendix C.2 gives complete
details of its model description. The matching is described in Appendix D.3.

The friction  Factor Model.  The friction factor model calculates the Fanning friction. factor
from the pipe diamater and roughness. The correlation is only valid under particular flow
conditions, though, which require the fluid to be completely filling the pipe, similar to the
Dittus-Boelter model. Unlike the Dittus-Boelter model, the Friction Factor model applies to
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Figure 7.6: Pictorial representation of the model maps for the 3 fluid flow models, showing individ-
uals, required parameters, output parameters, and parameter locations.

fluids (liquids or gases) and the region of fluid within the pipe does not have to have parallel
ends. The model requires pipe roughness as an input parameter, and thus we restrict the
individual to reside within one pipe. Appendix C.7 gives further details of this model and its
description. Appendix D.16 describes the matching.

The Hagen-Poiseuille  Model.  This model calculates the volumetric flow rate in a pipe from
the fluid viscosity and the pressure difference across a cylindrical section of fluid inside a
pipe. The Hagen-Poiseuille model requires a cylinder of liquid, just like the Dittus-Boelter
model, but the cylinder is allowed to cross pipe boundaries into adjacent pipes. This model
exposed the need for a pattern matching capability to allow us to specify any number of pipes
connected in series. However, we have not implemented pattern matching, and thus we treat
the Hagen-Poiseuille model as if it were restricted to a single pipe. The restricted model
still has significant differences from the Dittus-Boelter model’s individual because it requires
different parameters describing the individual. Appendix C.8 gives details of this model and
its description. Appendix D.17 describes the matching.

Figure 7.6 summarizes these 3 models pictorially, showing their individuals, required parameters,

parameters calculated, and locations of parameters. Figure 7.7 shows the portions of the PIPES-l

equipment description that were reconfigured and matched for each of the models. This figure also

shows the starting parameter for each match. This series demonstrates enhanced independence
of model descriptions from equipment descriptions for non-component models and thus enhanced

extensibility over previous approaches, because one is not required to tailor model descriptions to

the exact individuals in the current equipment description. Notice that the individual matched by

Hagen-Poiseuille is a portion of the individual matched by Dittus-Boelter, illustrating that no single
individuation of equipment will be sufficient for these kinds of models. Furthermore, each model

addition enhanced the system’s capabilities, enabling it to calculate a parameter that it could not
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previously calculate.

7.3.3 Extending the Type Hierarchies

Our algorithms rely only on the partial order within the type hierarchies, and not the specific types,
1 except for the parameter classifications used by the parameter transforms (Section 6.2.2) and the

types used by the merger and splitter, region, port, stream, edge,  and endpoint. This aspect

of our approach is not novel, but we provide some evidence here to verify the independence of the

algorithms from the specific types. As this work progressed, we used the same hierarchies for all

test cases, adding types as either the added equipment descriptions or the added models required.

We added nodes below a leaf, nodes below an internal node, and inserted internal nodes which the

algorithms proceeded to use correctly in matchings. Figure 7.8 shows an example of each of these

types of additions.

7.3.4 Diversity of Model Calculation Methods

It is important for extensibility to be able to include models that use various representation schemes
and calculation methods, so that one can add models that already exist and so that one can

accomodate  the variety of methods that are used in engineering models. By design, our matching
system does not access the internals of the model. It only finds input parameters, passes those in the

correct form to the model’s function, and accepts outputs. To demonstrate that the algorithms can
work with models using various calculation methods, we have included models with different internal

methods. Many of the models use mathematical equations, such as the Dittus-Boelter model, but
each was arbitrarily and independently implemented. The NPSH model does interpolations in tables
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of data to calculate its outputs. We also built and matched a model of a heat exchanger which used

a numerical method. (This model was not used in an extensibility or reusability series.) However,

to make a stronger demonstration, we have incorporated a large model that was implemented by

others, the Dalle Molle model (Appendix C.l). This model simulates hot and cold streams mixing

in a stirred tank reactor and was built by David Dalle Molle [ll] as part of his thesis work. It uses

the QSIM qualitative simulator [42] h hw ic consists of about 1.2 M of Common Lisp code.

We choose this model for our demonstration because it is large, it was built by others, it is readily
available, and it runs on our platform. The rnodel did not meet our assumptions regarding models,

however. It was not executable by calling a function with arguments that returned parameters.
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One ran the model by defining a lisp function containing the parameters and then calling that
function without arguments. The results were displayed on a screen in graphical form for humans
to observe. To make the model fit our function-call assumption, we provide a simple interface,

a lisp macro (called simulate-mixing-tank) that takes parameters as arguments and generated

the necessary function on the fly. This macro with 2 supporting functions is about 2.5 pages of

Lisp source code and is shown in Appendix E. It contains some parameter generating code (in

the first let* construct) and some output handling code (in the last let construct) which are

necessary because QSIM usually presents its outputs not as parameters but as a graph displayed

on a screen for a human user. The middle portion of the macro (the ‘progn construct) generates

exactly the modeling function as presented in [ll], w ic is also included in the appendix. Since ourh’ h
system ‘requires that models be functions and not muc~os,  the function dalle-molle-simulation

was written to take arguments to the model, dynamically load QSIM and the model, and call

the macro that executes the model. With the function-call interface installed, we were able to

successfully match and execute the Dalle Molle model, providing a demonstration that the system

can incorporate models with various internal representations and methods without knowing or re-

writing the internal methods. Appendices D.9, D.10,  and D.ll give details of the matches and
executions of this model.

7.4 Computational Complexity and Efficiency

Since this research is the first look at a previously unexplored problem, we do not set any goals
regarding efficiency. We investigate what knowledge had to be made explicit as well as what a

. matcher had to do, analyzing the algorithms and observing the actual complexity occurring in our

implemented examples. Of the four steps in the matching (generating a set of models that are
potential matches, matching the model map, checking model conditions, and executing the model),

all are simple operations except the matching. Our analysis focuses on that operation.

When matching the objects and links in a model map to those in an equipment description,

the matcher is doing a problem very similar to the known NP-complete subgraph  isomorphism
problem [30]. In subgruph isomorphism, given two graphs composed of nodes and links which have

no types or other distinguishing information, the problem is to find whether one graph contains a

subgraph  that is isomorphic to the other graph. The matching problem in our semantic nets has

two differences from the subgraph  isomorphism problem. First, the matcher is given a starting
point. It is given a model parameter that is known to match an equipment parameter by PMSG,
the potential match set generator. The objects representing these two parameters are therefore tied

to each other and the matcher can only consider isomorphisms where those nodes are matched.

The second difference is the additional information available.

1. Links are labelled with one of the 13 relations or their inverses.

2. Nodes have up to four different types attached.

3. Nodes that are parameters have up to 29 attributes.
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Each of these 3 kinds of additional information are used during matching, and will eliminate some

of the isomorphism  that one could find in a graph containing only nodes and links without labels.

For the purposes  of theoretical analysis, though, the amount or distinguishing power provided by
this information cannot be guaranteed. It could be that all node types are the same, link types

are the same, and parameters are the same in both the model map and equipment description.
When the types and attributes are removed, we are left with the problem of finding a subgraph
isomorphism with an anchored starting point. Small changes in the definition of a problem, like

this anchored starting point, can move the problem from the NP-complete class to the polynomial
class in terms of complexity. However, in this case, we construct a proof showing the problem with

the anchored starting was still NP-complete. Appendix F contains the proof.
The proof of worst case complexity indicates that we could see problems where the number of

steps required to solve the problem is exponential in the number of nodes in the smaller graph (the
model map). In the matching algorithm we have implemented, matches are built node by node in a

breadth first fashion. The matcher finds all correct partial matches with 2 nodes. Then for each of

those matches, it finds correct partial matches with 3 nodes, and continues the process until all the

nodes and their associated links have been matched. At each step, the number of partial correct

matches can be multiplied by the number of links from the node already in the match from which

we are searching in the breadth first order. Because of the exponential nature of this process, the

number of matches made at the nth node in the model map will swamp the number of matches

made at the n - 1 node. Thus we simply keep track of the maximum number of correct partial
matches that the matcher had accumulated at any point in the matching to measure the complexity

occurring in implemented cases. These numbers are summarized in Table 7.1 along with the sizes
of the model maps and running times. The table also lists an approximate theoretical worst case,

which is calculated from the average number of links per node in equipment maps, which is about
4, and the number of nodes in the particular model map. All of the cases we implemented exhibit

a number of orders of magnitude less than the worst case. This evidence suggests that the types,

link relations, and parameter attributes provide distinguishing information that is eliminating most

of the partial matches before the numbers get large.
The evidence indicates that even though the underlying algorithm may be exponential in its

computational complexity, in practice the worst case may not occur. We implement only a small

number of examples from a perhaps infinite space of examples, but the evidence is encouraging.

It may also be possible, upon observing enough implemented examples, to predict circumstances
under which we get a large number of partial matches that are later eliminated, and thus avoid some

of the bad cases. In this work, the two cases that exhibited significantly worse complexity were

two matchings of the Dalle Moile model (Appendices D.10 and D.11). By observing the matches as
they proceed, we find that the large number of partial matches are being generated when matching

ports (surfaces) of the liquid region. The liquid region in these two equipment descriptions has a
large number of surfaces, a surface to each of the separately represented components of the stirred

tank reactor. The model has only a few surfaces to be matched at the same point. Thus a large
number of correct partial matches were generated at that point in the matching. This may be a
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Equipment Model Description
Description

. Run-
4ppen , #objects #

aiEztx-  max. #
time case Partial #

dix Name Size Name size n links (hr:min) 4(n-1) matches rematches

D.2 PIPES-O 53 K Dittus- 54 K 34 67 0:Ol 7~10’~ 4 0
Boelter

D.3 PIPES-1 144 K Dittus- 54 K 34 67 1:29 7x10’9 312 23
Boelter

0.4 PIPES-2 107 K Dittus- 54K 34 67 1:25 7~10’~ 120 35
Boelter

D.5 PIPES-3 195 K Dittus- 54 K 34 67 0:ll 7~10’~ 156 4
Boelter

D.6 PIPES-4 72 K Dittus- 54 K 34 67 0:Ol 7~10’~ 8 3
Boelter

D.7 PIPES-5 95 K Dittus- 54 K 34 67 0:14 7~10’~ 24 18
Boelter

D.8 PIPES-6 85 K Dittus- 54 K 34 67 0:15 7~10’~ 40 20
Boelter

D.9 CSTR-1 92 K Dalle- 61 K 40 82 0:13
c

3x10*< 240 0
Molle

D.10 CSTR-2 135 K Dalle- 61 K 40 82 4:46 3~10~~ 1840 33
Molle

D.11 CSTR-3 139 K Dalle- 61 K 40 82 2:04 3~10~~ 2048 2
Molle

D.12 Detailed- 138 K NPSH 36K 38 84 0:08 2x10** 24 1
Pump

D.13 Detailed- 138 K Wear 42 K 32 92 0:lO 5x10’8 13 1
Pump Ring

D.14 Detailed- 138 K Hydraulic 32 K 31 71 0:ll 1x10’* 59 1
Pump HP

D.15 Detailed- 138 K Hypo- 34 K 39 85 0:18 8x10** 52 2
Pump thetical

D.16 PIPES-1 144 K Friction 30 K 25 54 138 3x10’4 816 12
Factor

D.17 PIPES-1 144 K Hagen- 47 K 33 70 0:02 2x10 l9 30 0
Poiseuille

Table 7.1: Observed complexity and run times for the 16 implemented matching cases.
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situation to avoid, one where a region has a large number of surfaces to other individuals. This

situation occurs when one region is large relative to its neighbors. One might devise an automatic
method for restructuring equipment descriptions exhibiting this characteristic. One might also use

some form of lookahead in the matching to avoid considering some of the surfaces which do not

lead to correct matches. We leave this for future work.

Additional complexity is generated by the reconfigurations, since they require at least partial
rematching. Part/whole reconfigurations will only usually be able to make one aggregate out of

the components existing at the point of failure, and thus only one rematch is required. How-

ever, intensive reconfiguration involves a search through a number of splits and merges. Table 7.1

lists the number of rematches that occurs in each case. We implemented a termination heuristic

(Section 6.4.2) to prevent reconfigurations that are probably useless. However, the intensive recon-
figuration algorithm does a crude generate and test. It merges or splits regions that have the right

material and phase types and are adjacent to the region at which the match failed. A more so-

phisticated generation mechanism could reduce the number of reconfigurations and their associated
rematches. An example is a case where the matcher is looking for a particular kind of parameter.

No merging or splitting can generate the parameter unless it is already available somewhere within

the regions to be merged or split. By looking ahead to find the parameter, several merges could be
done at one time, rematching after the final merge. Lookahead could also prevent some splits from

being made or rematched. We leave this investigation for future work.
The overall efficiency of our implementations, as evidenced by the running times, is probably not

good enough to allow the system to be incorporated into a diagnosis engine. However, it is likely that

significant improvements could be made with relative ease. The implementations themselves have
not been fully optimized. They were developed to have sufficient speed to carry out the research.

The implementations also sit on top of a version of BBl, the blackboard system that provides the

object oriented framework, which has some known inefficiencies. One major inefficiency involves
the copying of lists of links whenever the links of an object are accessed. For most accesses, links

should not by copied. The excessive copying slows match generation, where links are accessed,
and also causes unnecessary garbage collection. This inefficiency has been corrected in a recently

completed version of BBl. The matching system could also be speeded up by a change of platform.

It currently runs on an Explorer II, a lisp machine manufactured by Texas Instruments. Porting

A our system to newer versions of BBl, which run in Lisp or C++ on UNIX platforms, would speed

up the matching substantially.

7.5 Limitations of the Approach and Implementation

Limitations arise from three sources, fundamental assumptions underlying the approach, selective
implementation, and assumptions made for implementations. The fundamental assumptions under-

lying our design are the Contiguous Space Assumption and the Macroscopic Properties Assumption,

both discussed in Section 3.4.2. The Contiguous Space Assumption says that models require in-

dividuals that occupy contiguous space, that is, individuals that touch each other, and that the
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equipment  also occupies some region of contiguous space. Our matching methods would fail, if ei-

ther the equipment or the model could not be represented as contiguous, because the matcher works
through space to find make a match. The Macroscopic Properties Assumption requires that the re-

gions we deal with be at least a few molecules, so that properties such as temperature and pressure
will be meaningful. The reconfigurer  cannot make the transition to reasoning about molecules as

balls moving around in empty space, because the type and parameter transforms are not valid.
We also implement only a selected portion of the mechanisms that appear to be needed to match

engineering models to equipment. The geometric representation used is a semiquantitative semantic
net. This prevents representing some kinds of models and equipment details. It also restricts the

regions that can be formed, because splitting is limited to simply connected regions which already
have edges where a split can be made. We classify parameters and implement parameter transfor-

mations for the classes, but only examine limited number of parameters. Furthermore, the limited

geometric representation does not allow some parameter transformations to be implemented. We

identify three matching methods, simple, negative, and pattern matching, and implement sim-

ple and negative matching. We identify three reconfiguration methods, intensive, extensive, and

part/whole, and implement intensive and part/whole reconfiguration. The examples implemented

also are known not to exhibit two kinds of characteristics. First they do not involve appearance

or disappearance of an adjacency (surface or port) between individuals, although sizes of adjacent
surfaces did vary. Second, they do very little distinguishing between different types of connections.
In the implemented cases, it is generally required only that the individuals abut. We also choose

to limit attempts to improve the efficiency of implementations to what was required to achieve our

original research goals. There are both research issues and implementation issues that could be
. addressed to improve efficiency.

The matching and reconfiguration implementations rely on some assumptions. The intensive
reconfiguration algorithm uses a heuristic to terminate merging and splitting on a region when

the last merge or split produced a region that did not match as well as the region that triggered

the reconfiguration. This is a form of hill climbing and will only find local optima. (Section 6.4.2

contains the details.) The part/whole reconfiguration mechanism also makes assumptions, first

that all subparts of an aggregate piece of equipment have at least one shared surface with another

subpart. This assumption may not be valid for all kinds of equipment. The second assumption

is-that faults in the equipment will manifest themselves as either missing or changed types for

a subpart or completely disconnected subparts. If the subparts of a piece of equipment are all
present but somehow faulty, and the fault is not manifested in one of the two assumed ways, the

part/whole mechanism will aggregate the parts into the whole equipment and assign it a type as
if it were a correctly functioning aggregate. (Section 6.5.2 contains more details on the part/whole

reconfiguration assumptions.)



Chapter 8

Conclusions

8.1 Summary of Thesis
.

We investigate the problem of model-matching, assigning models to portions of physical systems, for

use in model-based diagnosis systems. In previous work on model-based diagnosis and other kinds
of reasoning about physical systems, the assignment was assumed to be given, and was usually

done by hand at system building time. If the models and equipment were separate, and if an

automated matcher can do that work at run-time, we can make these systems significantly more re-

usable and extensible. One can give an existing system a new piece of equipment (in some suitable
representation) without going through the collection of models in the system and identifying every

place in the equipment where each model might apply. One can also give such a system a new

model, thereby extending the system’s capabilities, without finding every location in the equipment
where it should be used. This obviously requires that an equipment description be provided to

the system as well as some characterization of the situations in which a model may apply. Our

goal is to identify the characteristics of both models and equipment that are required as well as
what methods are needed to do the run-time model assignment so that we could achieve enhanced

re-usability and extensibility. We investigate examples of engineering model assignment in both

manufacturing equipment and in textbooks. Using the characteristics and methods identified, we

build a system to match models, and then demonstrate re-usability and extensibility for a few
models and equipment descriptions. If we can demonstrate the re-usability and extensibility for

some models and equipment, we can conclude that we had successfully identified at least some

subset of the set of required characteristics and methods.
Our investigations of textbook and manufacturing examples lead us to the conclusion that

& individuals, the portions of the equipment which are identified as separate entities, can not be

defined in advance. There are two reasons.

1. Some models, like the Ideal Gas Law, require individuals whose boundaries may be set any-
where through some region of continuous space, depending on parameter availability and

values.

2. If models can be added at any time, we cannot predict what individuals those models may

require.

Our approach is to

conceptually carve

leave the S-dimensional space in the equipment and model descriptions and to

the indiv iduals requiredout of the space at matching time. Our approach is

97
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novel in this aspect. In previous work, it has been assumed that the individuals can be identified

in advance and the Z&dimensional  space can be largely forgotten. Our method actually reconfigures

the individuals in an equipment description, allowing a user to build the description initially with

any size individuals that they find convenient. Certain characteristics of models also require that

the 3-dimensional space be present. Some models apply to regions containing a particular material
or phase, where that region may be a portion of some larger object. All models specified parameters
that have particular locations and particular spatial extents not necessarily corresponding to whole
individuals. A parameter may describe some volume of space, a surface, a curve, or a single point.

Without the 3-dimensional space, one cannot identify regions within larger objects nor can one

specify and match parameters correctly.
After identifying characteristics and methods, we built a matching system employing those

methods. Our system takes as input a parameter in an equipment description and a goal with
respect to that parameter. Our system selects models from its collection that can address the goal

for the parameter, matches models from the selected set to the equipment description surrounding
the input parameter, checks numeric conditions on matched parametrs, and calls the matched model

to calculate its outputs. Our system will, by side effect, reconfigure the equipment description
(defining different individuals) if a match cannot be made and if its reconfiguration methods are

appropriate for the situation at hand. The system also installs the values calculated by a model

as parameters in the equipment description, also by side effect. The system returns the values it

calculated, the model conditions which it could not test at the time, and the relations which had

to be matched for the model to apply. Model conditions which were not verified may be treated as

assumptions by a diagnosis system. Diagnosis systems also use the relations upon which the model
. relies as the basis for generating fault candidates.

The bulk of the matching system’s efforts lie in matching and reconfiguring. Of the three

kinds of specifications for entities in model descriptions, positive, negative sets, and patterns, we
implement algorithms for matching positive entities and negative sets of entities. (Negative sets
specify sets of entities and relations not allowed to be present in correct matches.) Reconfigurations

should be done when the right things are present but are in the wrong form. We identify three

different reconfiguration methods, based on observations of what physical entities a model might
require and how those physical entities could appear in equipment descriptions. We call these

mechanisms intensive, extensive, and part/whole reconfiguration. Intensive reconfiguration deals
with individuals whose amount is not specified. Regions which only have either material or phase

specified fall into this category, assuming that no parameter (such as a mass) specifies the amount.

Extensive reconfiguration addresses similar types of individuals where the amount is specified by a

paramter. Part/whole reconfiguration assembles subcomponents of a larger piece of equipment (like

assembling casing, shaft and impeller into a centrifugal pump) when a model requires an individual

of the aggregate type that is not explicitly represented. We implement the intensive and part/whole
mechanisms for this thesis.

The limitations in this work arise from our fundamental assumptions, selected implementation
effort, and assumptions underlying the implementations. The fundamental assumptions are:
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1. Models deal with individuals that occupy contiguous portions of space.

2. All individuals in an equipment description are large enough so that macroscopic properties,
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such as temperature and pressure, make sense.

We limit our implementations by using a simplified geometric representation, by selecting 2 of the

matching methods and 2 of the reconfiguration methods for implementation, and by limiting effort
directed towards improving efficiency of the code. The model-matching cases implemented also do

not test certain kinds of spatial changes over time nor do they stress differentiation of kinds of

connections between adjacent individuals. Within the reconfiguration algorithms we also employ a

heuristic to terminate intensive merging and splitting that may cause some matches to be missed.
The part/whole reconfiguration algorithm assumes that every subpart of an aggregate piece of

equipment has a shared surface with at least one other subpart. This algorithm also assumes that

faults within the equipment will be manifested in particular ways.
Since our goal is to identify characteristics and methods required to match models and indepen-

dently built equipment descriptions at run-time to gain enhanced extensibility and re-usability, we

build the system and demonstrate those properties. We provide two series of model-matching cases

to demonstrate re-usability and two series to show extensibility. The re-usability series both in-

volve providing a series of equipment descriptions to the system which vary in form but contain the

physical situations required to match a particular model. One series is built for a non-component
model, a model which has at least one individual whose boundaries may be set anywhere through a

continuous region of space. The second series is built for a component model, a model in which all

individuals can be matched only at discrete locations. Similarly, we provide a non-component and a

component series demonstrating extensibility. In those series, we add models that should match the

physical situation in the current equipment description, but where the forms specified in the model
varied from that in the equipment description. Extensibility also depends on the restrictions the

system places on the kinds of models that may be incorporated. We design our system to be able to

incorporate models using arbitary internal representation schemes and calculation methods to do

their work. If a system is restricted to using only models built in some pre-defined representation,

one generally cannot make use of engineering models that are already implemented. Our models
used various calculation methods, such as mathematical equations, interpolation in data tables,

and numerical methods. Our primary demonstration of this characteristic, though, is to incorpo-
rate a model using a large qualitative simulator, QSIM, into our system and successfully match

and run this model. Table 8.1 summarizes the demonstration series. Since we are able to demon-
strate re-usability and extensibility for some models and equipment descriptions, we conclude that

the characteristics and methods identified, implemented, and used in these series form one set of

necessary (but not sufficient) characteristics and methods for solving the model-matching problem.
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Re-usability: 1. Dittus-Boelter Series (non-component model, 7 equipment descriptions)
2. Dalle Molle Series (component model, 3 equipment descriptions)

Extensibility: 1. Pump Model Addition Series (4 component models)
2. Fluid Flow Model Addition Series (3 non-component models)
3. Use of models with arbitrary internal methods: The Dalle Molle Model

Table 8.1: Summary of the re-usability and extensibility demonstration series.

8.2 Contributions

This research contributes understanding of and ability to solve the model-matching problem, a
problem which has not been considered previously. Our contributions fall into four categories.

1. Discovery and demonstration that individuation at run-time is required to use certain kinds

of models and to enhance re-usability and extensibility.

2. Identification of characteristics of models and equipment required for run-time model- match-

ing:

Spatial Representation.  For both equipment and models the 3-dimensional space occupied

must be represented. Characteristics of that space that were required are:

l functional types such as pump or reactor

0 materials

l phases

l parameters, including their particular spatial extent

Model  Characteristics.  In addition to the spatial representation for the model’s physical

situation, we found certain other characteristics necessary. (* indicates characteristics

not tested by the implemented model-matching cases.)

l Parameter classifications: causal, affected, input, output, and carried

l Syntactic information: call forms and return forms

l Conditions on parameters: approximation conditions and enabling* conditions

l Resources*

3. Identifications and demonstration of methods required for run-time model-matching:

l spatial merging and splitting

l transformation of properties (parameters and types in this work) through spatial merges

and splits

l matching algorithms-positive (simple), negative set, and pattern matching (not. imple-

mented)

l reconfiguration algorithms-intensive, extensive (not implemented) and part/whole
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4. Findings about reconfiguration methods:

Matching  Order.  Proceeding through a model map in a spatially breadth first order keeps
reconfiguration local. Only the current and adjacent regions within the model and also

within the equipment need be considered for reconfigurations because the matcher cannot
stray any further than an adjacent region before a mismatch is detected.

Using Space  to Make  Aggregates.  Merging the subparts of an aggregate spatially as the
part/whole reconfiguration does is important to retain the relations of the aggregate

to neighboring individuals. Models addressing aggregate functional types often require

parameters that are not located on the aggregate, but in the space surrounding. (The

pump models required parameters describing portions of the liquid inside the pump.)

The general problem of matching models to the physical world is large. Any new model that
one encounters combined with any particular physical situation may expose new characteristics or

methods required. The set of possible physical situations (perhaps also the set of models) is infinite.

Therefore one cannot guarantee that one has identified all the characteristics or methods required.
We have identified a necessary (but not sufficient) set of characteristics and developed associated

matching methods for some models and physical situations. We have taken the first step into this
previously unexplored area.

8.3 Future Work

Our first recommendation for future work is to integrate a model-matching system with a diagnosis

engine. Such an experiment could yield results on both the model-matching side as well as the

diagnosis side. Integration might point out additional requirements of the model-matching system.
A model-matching system, such as the one we have built, presents many more relations on physical

entities that must hold for a model’s calculated output parameters to be valid than have previously

been used in diagnosis. Diagnosis systems typically work with only one relation per model, the

relation that says, “component X is functioning properly.” This was usually manifested as the type
of X or by the relation isa(X,  FunctionalType).  Our system manifests these kinds of types, but

also material and phase types, as well as particular relations between the different spatial entities
to which a model has been matched. These additional relations should make it possible to diagnose

many new kinds of faults. These additional relations may have implications for the representations

or methods used in the diagnosis system as well.

We recommend experimentation on additional mechanisms, models, and physical situations
as well as an investigation of complexity and efficiency. We have only implemented a subset of

the mechanisms that we observed. Pattern matching and extensive reconfigurations have been
left for future work. We have not attempted to deal with models or physical situations where
spatial relationships between individuals change so that adjacencies appear or ,disappear.  Nor

have our implemented cases required any sophisticated differentiation of the kinds of connections
between adjacent individuals. Investigation of additional models and physical situations could
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reveal addition characteristics and mechanisms required. This approach could benefit from a more
sophisticated geometric reasoner which would also allow more parameter transformations to be

included. More investigation of efficiency and complexity is recommended. These methods require

a relatively knowledge-rich representation. It may be possible to classify situations in which either

matching or reconfiguration does useless work or runs into severe complexity problems and then

use the characteristics represented to identify those situations in advance. This thesis represents
the first step into an unexplored territory and there are many avenues of research to be pursued in

the area of model-matching to physical systems.



APPe ndix A

Text book Examples of Non-Component Models

A.1 Introduction

This collection of examples from engineering textbooks provides examples where the individuals
being reasoned about do not correspond to structural components. The principles being used,

often based on conservation laws, may be a pplied to in a very large (and sometimes infinte)

number different portions of the physical equipment. Usually only 1 or a few ways of defining
the individuals for the model are useful, but those cannot be identified until parameter values and

locations are available. Because of the large number of individuals that can be identified with a
single physical system and reasoned about using these models, the examples indicate that no single

a priori breakdown of physical equipment into individuals will suffice.

The collection contains five different examples in each of five areas, fluid mechanics, mass trans-
fer, thermodynamics, heat transfer, and reaction kinetics. Each set of five examples was taken from

a single textbook to show that these kinds of problems are not rare or obscure.

A.2 Fluid Mechanics

All fluid mechanics examples were found in lhnsport  Phenomena by Bird, Stewart, and Lightfoot

PI*
Analysis  of a Capillary  Flowmeter.  Problem 2.L, page 66, [2].

Drainage  of Liquids. Problem 2.R, page 69, [a].

Flow of a Falling  Film. Section 2.2, pages 36-38, [2].

Velocity  Distribution  in a Turbulent  Plane Jet. Problem 5.H,  pages 178-179, [2].

Performance  of a Liquid-Liquid  Ejector.  Example 7.5-2, pages 220-222, [2].

A.3 Mass Transfer

All mass transfer examples were found in Trunspori  Phenomena by Bird, Stewart, and Lightfoot

PI-
Diffusion through  a Stagnant Gas Film. Section 17.2, pages 522-523, [2].
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Diffusion with Heterogeneous  Chemical  Reaction.  Section 17.3, pages 529-531, [2].

Mass-Transfer  Coefficients in Two Phases at Low Mass-Transfer  Rates.  Section 21.3,

pages 652-654, [2].

Height of a Packed-Tower  Absorber.  Example 22.5-2, pages 692-697, [Z].

The Wet-and-Dry-Bulb  Psychrometer.  Example 21.2-2, pages 649-652, [2].

A.4 Thermodynamics

I .

All thermodynamics examples were found in Thermodynamics and Its Applications by Model1 and
Reid [48].

Work  Required  to Compress  Air into a Tank. Problem 4.18, pages 93-94, [48].

Work done by a “Drinking  Bird” Toy. Problem 4.2, pages 78-79, [48].

Temperature  and Pressure  in a Tanks  after Pumping  Operations.  Problem 4.19,

page 94, [48].

Cyclic Pumping.  Problem 4.14, pages 90-91, [48].

Ice Evaporation  in a Low Pressure  Tank. Problem 6.7, page 140, [48].

A.5 Heat Transfer

All heat transfer examples were found in Theory and Problems of Heat Transfer by Pitts and Sissom

[561-

Heat Transfer through  a Portion  of Pipe Wall.  Problem 2.23, pages 38-39, [56].

Heat Loss  from a Vertical  Wall  Exposed  to Nitrogen.  Problem 8.5, page 209, [56].

Electrical  Power Required  to Maintain  Wire Temperature.  Problem 8.10, page 212, [56].

Heat Flux from a Wire with Constant  Current  and Voltage  Applied.  Problem 9.2, page

227, [56].

Heat  Flux from the Surface of Boiling Water.  Problem 9.5, page 228, [56].

A.6 Reaction Kinetics

All reaction kinetics examples were found in Chemical Reaction Engineering by Levenspiel’[44].

Multiparameter  Models  to Account  for Non-Ideal  Flow. Chapter 9, pages 253-254, [44].



A.6. REACTION  KINETICS

Gas Bubbles  in a Fluidized Bed Reactor.  Chapter 9, pages 310-314, [44].

Diffusion-controlled  Reaction  at Catalyst  Surface. Chapter 12, pages 364-365, [44].

Tower Height Required  for Transferring Reactant  from Gas to Liquid. Chapter 13,

pages 428-430, [44].

Tower Height  for Fast Reaction  in Liquid Phase.  Chapter 13, pages 436-437, [44].
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Appendix B

Implemented Equipment Descriptions

B . l

This appendix contains statistics and pictures of the implemented equipment descriptions. We pro-
vide a picture of the equipment with its individuals in the correct relative locations. We also provide

a breakdown showing the separately represented individuals as separate pieces. Each equipment

description was built using the semantic net representation described in Section 4.2. The semantic

net for PIPES-l is included in this appendix to show how equipment descriptions were implemented.

The other equipment descriptions are significantly larger than PIPES-l, and their semantic nets

are not shown.

PIPES-O: Liquid Flow in Connected Pipes

Statistics on the PIPES-O Equipment Description
Size: 53 K

Individuals: 6
Objects: 66

Parameter Objects: 24
Non-nil Parameter attributes: 318

Links: 171
Objects in Type Hierarchies:* 131

Links in Type Hierarchies:* 132
* Not all objects in the type hierarchies are used in this equipment description.

Table B.l: Statistics on the PIPES-O equipment description.

PIPF-7 PIPE-3PIPE-1

pipe-2-inlet-flow heat-capacity-A

Figure B.l: Equipment represented in the PIPES-O equipment description.
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PIPE-l PIPE-2 PIPE3

pipe-l -id pipe-2-id pipe-3-id
REGION-X REGION-A REGION-Y

I I I
mu-X mu-A mu-y

Figure B.2: The individuals represented in the PIPES-O equipment description.

B.2 PIPES-l: Liquid Flow in Connected Pipes

Statistics on the PIPES-l Equipment Description
Size: 144K

Individuals: 10
Objects: 1~

Parameter Objects: 56
Non-nil Parameter attributes: 750

L i n k s :  496
Objects in Type Hierarchies:* 131

Links in Type Hierarchies:* 132
l Not all objects in the type hierarchies are used in this equipment description.

Table 8.2: Statistics on the PIPES-l equipment description.

/ \
pipe-2-inlet-flow heat-transfer-coefficient-C

Figure 8.3: Equipment represented in the PIPES-l equipment description.
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P I P E - l PIPE-2 PIPES

Htti1UN-L \
REGION-X REGION-A REGIONB m ’

(+E+ I /u.2.
mu-X mu-f, mu-c Ht 1UN-t
rho- x rho-A mu-D

heat-capacity -X heat-capacity -A rho- c

thermal-cond- X t hermal-cond- A heat-capacity -
4

rho- D
heat-capacity - D

thermal-cond- C thermal-cond- D

KEY mu-B
rho- B

UPPERCASE-REGIONS heat-capacity  -B
lowercase - p a r a m e t e r s- thermal-cond- B

mu-E
rho- E

heat-capacity - E
thermal-cond- E

mu-Y
rho-Y

heat-capacity -Y
thermal-cond- Y

Figure 8.4: The individuals represented in the PIPES-l equipment description.

B.3 PIPES-2: Liquid Flow in Connected Pipes

Statistics on the PIPES-2 Eauioment Descriotion
Size: 107

Individuals: 10
Objects: 130

Parameter Objects: 52
Non-nil Parameter attributes: 698

Links: 337
Objects in Type Hierarchies:* 131

Links in Type Hierarchies:* 132
1 l Not all objects in the type hierarchies are used in this equipment description.

Table B.3: Statistics on the PIPES-2 equipment description.

inlet-flow-B1 r
inlet-flow-Al /

wall-i-trans-coeff-A
[heat-transfer-coefficient]

Figure B.5:  Equipment represented in the PIPES-2 equipment description.



PIPE-l
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PIPE-2 PIPE3

[inside-diameter] [inside-diameter]
[heat-transfer-coefficient] [insi~$!3eter]m

REGION-X REGION-A REGION-Y

0 A A k, 
mu-X inlet-flow-Al /’ mu-A \ mu-Y
rho-x / rho-A \ \ rho-Y

heat-capacity -X
/

heat-capacity -A \/ \
thermal-cond- X

0 thermal-cond-A \ heat-capacity -Y
/ \ thermal-cond- Y/ \

inlet-flow-B1 TON” TN4 RT-D “‘p

mu-B mu-C mu-D mu-E
rho-B rho-c rho- D rho- E

heat-capacity -B heat-capacity -C heat-capacity - D heat-capacity - E
thermal-cond- B thermal-cond-C thermal-cond- D thermal-cond- E

.

Figure B.6: The individuals represented in the PIPES-2 equipment description.

B.4 PIPES-3: Liquid Flow in Connected Pipes

Statistics on the PIPES-3 Equipment Description
Size: 195K

Individuals: 17
Objects: 258

Parameter Objects: 78
Non-nil Parameter attributes: 967

Links: 804
Objects in Type Hierarchies:* 131

Links in Type Hierarchies:* 132
l Not all objects in the type hierarchies are used in this equipment description.

Table 8.4: Statistics on the PIPES-3 equipment description.
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wall-h-trans-coeff -C
[heat-transfer-coefficient]

Figure B.7: Equipment represented in the PIPES-3 equipment description.

PIPE-l PIPE-2 PIPE3 PIPE-4 PIPES

pipe!1  -id
[inside-
diameter]

P-M
P-M

cp -AA
k-AA

inlet-
flow-AA I

p-WA
P-WA

Cp -WA

inlet- k-WA
flow-WA

pipe!1  -id pipe-‘1 -id pipe-l lid
[inside- [inside- [inside-
diameter] diameter] diameter]

wall-h-trans-coeff -C
[heat-transfer-coefficient]

CL-AB p-AC p-AD CL-AE
P-AB p-AC p-AD p- AE

Cp -AB Cp -AC Cp -AD Cp -AE
k-AB k-AC k-AD k-AE

pipe!1  -id
[inside-
diameter]

CL-AF
P-E

cp -AF
k-AF

REGION-F?

flow-AC flow-AC

I UPPERCASE-REGIONS [ ] indicates types
lowercase - p a r a m e t e r s I I

p- mu [viscosity]
* Describes link p-rho [density] I

Cp- heat-capacity
k- thermal-cond I

Figure 8.8: The individuals represented in the PIPES-3 equipment description.
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B.5 PIPES-4: Liquid Flow in Connected Pipes

Statistics on the PIPES-4 Equipment Description
Size:

Individuals:
Objects:

Parameter Objects:
Non-nil Parameter attributes:

Links:
Objects in Type Hierarchies:*

Links in Type Hierarchies:*

72 K
9
95
31

254
131
132

* Not all objects in the type hierarchies are used in this equipment description.

Table 8.5: Statistics on the PIPES-4 equipment description.

inlet-flow-Al heat-capacity-A

Figure B.9: Equipment represented in the PIPES-4 equipment description.
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PLUG-l PIPE-1 PIPE-2 PIPE-3

[liquid] I
[water] I’

[liquid] : [liquid] [liquid]
[water] I [water]

REGION-A REGIONB  REGION-C
[water]

REGION-D

[liquid]
[water]

REGION-E

4=F!v=? =P
inlet-flow-Al

mu-A [visdosity]
rho- A [density]

heat-capacity -A
thermal-cond-A

m;-B h - c mu-D mu-E
rho- B I-ho-C rho- D rho- E

heat-capacity - B heat-capacity -C heat-capacity - D heat-capacity - E
thermal-cond- B thermal-cond- C thermal-cond- D thermal-cond- E

KEY
UPPERCASE-REGIONS [ ] indicates types
lowercase - p a r a m e t e r s + Describes ’ link

Figure B.10: The individuals represented in the PIPES-4 equipment description.

B.6 PIPES-5: Liquid Flow in Connected Pipes

Statistics on the PIPES-5 Equipment Description
Size:

Individuals:
Objects:

Parameter Objects:
Non-nil Parameter attributes:

Links:
Objects in Type Hierarchies:*

Links in Type Hierarchies:*

95 K
12
131
38

131
132

* Not all objects in the type hierarchies are used in this equipment description.

Table 8.6: Statistics on the PIPES-5 equipment description.
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Figure B.11: Equipment represented in the PIPES-5 equipment description.

[a-y-solid] [a?-solid] [a?-solid] [a-y-solid] [aysolid] [a-y-solid]
[carbon-steel] [carbon-steel] [carbon-steel] [carbon-steel] [carbon-steel] [carbon-steel]

[elbow] [PiPeI [PiPeI iPiP4 iPiP4 [elbow]
ELBOW-l PIPE-1 PIPE-2 PIPE-3 PIPE-4 ELBOW-2

& E 92Td ffj$)
- -

- m - m s w
elbow-l-id I [inside- I I

elbow
[inside- /
diameter] l diameter] 1 1 I [PiPeI

I I I I PIPE-5

I I I I
[water] / [water]
[liquid] 1 [liquid] Q .w wm

p;N;ILpzD p’pe5’d

P-c
cPc

CP-D p-E
k-C k-D p-E

inlet-flow-C 4

REGION-E
CPE [liquid]

.KEY 1 k-E [water]

UPPERCASE-REGIONS [ ] indicates types p- mu [viscosity]
lowercase - p a r a m e t e r s + Describes link p-rho [density]

Cp- heat-capacity
k- thermal-cond

Figure 8.12: The individuals represented in the PIPES-5 equipment description.
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B.7 PIPES-6: Liquid Flow in Connected Pipes

115

Statistics on the PIPES-6 Equipment Description
Size: 85 K

Individuals: 11
Objects: 119

Parameter Objects: 33
Non-nil Parameter attributes: 420

Links: 326
Objects in Type Hierarchies:* 131

Links in Type Hierarchies:* 132
1 l Not all obiects  in the tvpe hierarchies are used in this equipment description.

Table 8.7: Statistics on the PIPES-6 equipment description.

Figure B.13: Equipment represented in the PIPES-6 equipment description.
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[a-y-solid] [ay-solid] [a-y-solid] [a)l-solid] [a-y-solid]
[carbon-steel] [carbon-steel] [carbon-steel] [carbon-steel] [carbon-steel]

[elbow] IPiP4 IPiP4 iPiP4 [elbow]
ELBOW-l PIPE-2 PIPE-3 PIPE-4 ELBOW-2

@ow -l-id qid qid elbow-

\ [inside-diameter]

UPPERCASE-REGIONS [ ] indicates types p- mu [viscosity]
lowercase - p a r a m e t e r s * Describes link p-rho [density]

Cp- heat-capacity
k- thermal-cond

Figure 8.14: The individuals represented in the PIPES-6 equipment description.

B.8 CSTR-1: A Stirred Tank Reactor

Statistics on the CSTR-1 Equipment Description
Size:

Individuals:
Objects:

Parameter Objects:
Non-nil Parameter attributes:

Links:
Objects in Type Hierarchies:*

Links in Type Hierarchies:*

92 K
12
149
9
107

241
276

* Not all objects in the type hierarchies are used in this equipment description.

Table B.8: Statistics on the CSTR-1 equipment description.
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PIPE-l 82

PIPE-1 81

Rl2-LIQUID
[liquid]

outlet-temperature-276674
outlet-temperature-2773

Figure 8.15: Equipment represented in the CSTR-1 equipment description.
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PIPE-l 82
n

RI2- ,fi/lPFI I

PI 82-LIQUID
1

PI 81 -LIQUID
>

has-part

 Rl2-TANK-FLOOR

I 8
PIPE-l 83

I
Rl2-OUTLET-NOZZLE

L------I-.---w.

hot-inlet-flow-2766
hot-inlet-flow-2771
[mass-flow-rate]

cold-inlet-flow-2766
cold-inlet-flow-2771 P
[mass-flow-rate] I l

I ’
I l Rl2-LIQUID
Il

liquid-height-2766 -*
c - 2 I. - - k 2-y--,

1

e---parameters
- indicates types

Describes link

Figure B.16: The individuals represented in the CSTR-1 equipment description.
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B.9 .CSTR-2: A Stirred Tank Reactor

119

Statistics on the CSTR-2 Equipment Description
Size: 135K

Individuals: 21
Objects: 219

Parameter Objects: 9
Non-nil Parameter attributes: 107

Links: 706
Objects in Type Hierarchies:* 241

Links in Type Hierarchies:* 276
l Not all objects in the type hierarchies are used in this equipment description.

Table B.9: Statistics on the CSTR-2 equipment description.

Figure 8.17: Equipment represented in the CSTR-2 equipment description.
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PIPE-1 82
m

PIPE-1 81
a

e

R15-M OTOR R15-INLET-N OZZLE-2

R15-SHAFT

L

R15-INLET-N  OZZLE-1 u R 15-TANK-R  OOF
0 0 0

J a RlS-SEAL

R15-TANK-WALL

R15-BLADE D

P182-LIQUID
1
1

hot-inlet-flow-2766
hot-inlet-flow-2771 -
[mass-infow-rate]

cold-inlet-flow-2766
cold-inlet-flow-2771
[mass-infow-rate]

R15-TANK-FLOOR c

R15-OUTLET-NOZZLE8
m

Au PIPE-1 83

-‘\ R15-GAS

II I

R15-LIQUID-A

lowercase----

Describes link
outlet-temperature-2771

Figure B.18: The individuals represented in the CSTR-2 equipment description.
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B.10 CSTR-3: A Stirred Tank Reactor

121

Statistics on the CSTR-3 Equipment Description
Size:

Individuals:
Objects:

Parameter Objects:
Non-nil Parameter attributes:

Links:
Objects in Type Hierarchies:*

Links in Type Hierarchies:*

139K
18
233
9
107
746
241
276

* Not all objects in the type hierarchies are used in this equipment description.

Table B.10:  Statistics on the CSTR-3 equipment description.

I I I I
e -T T 7 -\- -J I---_____L-(---_ -‘--p+------ - -i

4Joutlet-temperature-2771

Figure B.19: Equipment represented in the CSTR-3 equipment description.
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PIPE-1 82

m
PIPE-1 81

m

R14-MOTOR

R14-INLET-NOZZLE-1

a R14SEAL
R14-SHAFT

R14-INLET-NOZZLE-2

R14-TANK-ROOF

R14-BLADE m
R14-TANK-f

P182-LIQUID

1
P181 -LIQUID

1

= LOOR

R14-OUTLETNOZZLE~

hot-inlet-flow-2766
hot-inlet-flow-2771
[mass-infow-rate]

cold-inlet-flow-2766
cold-inlet-flow-2771
[mass-infow-rate]

R14-LIQUID

Figure 8.20: The individuals represented in the CSTR-3 equipment description.
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B.ll DETAILED-PUMP: Single-Stage Centrifugal Pump

Statistics on the DETAILED-PUMP Equipment Description
Size: 138 K

Individuals: 19
Objects: 187

Parameter Objects: 13
Non-nil Parameter attributes: 171

Links: 655
Objects in Type Hierarchies:* 215

Links in Type Hierarchies:* 237
l Not all objects in the type hierarchies are used in this equipment description. 1

Table B.ll: Statistics on the DETAILED-PUMP equipment description.
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P76-FRONT-CASING
\

P76-DISCHARGE-NOZZLE P76-ATMOSPHERIC-AIR

PIPE-183 /

\
P76-ROTOR

\

P76-BACK-CASING

6-IMPELLER P-/6-MOTPR

P76-

i
P76-STATIC  -SEAL -1 ’

P76-LIQUID / / . \ ’\
water4-v-w-. .emperature

’ I*IMPELLER-WEAR-RING
P76CASING- WEAR -RING

P76STATIC -SEAL -2

P76-ROTATING  -SEAL-RING

P76STATIONARY  -SEAL-RING

P76-SPRING-ASSEMBLY

Figure 8.21: Equipment represented in the DETAILED-PUMP equipment description.
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PIPE-183 pump-outlet-flow P76-ATMOSPHERIC-AIR

power-input-l
power-input-72\p76-MaR

pump-outlet-diameter
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txlmn-inlet-diameterr----r . . . . -_ -.-...-_-.

I
PIPE-1 82

L

water-f low

\pump-inlet-pressure
m wstnr-tamnnral‘uI”-..UbVI ,“I I ly/“#U.
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ll
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casing-wear-ring-i&
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Appendix C

Implemented Model Descriptions

C.1 The Dalle Molle Model Description

C.l . l The Model and its Requirements

David Dalle Molle developed this model and published it in his thesis [ll].  The model uses QSIM,

the qualitative simulation engine developed at the Univeristy of Texas at Austin [42].  The version
of QSIM that we installed consists of about 1200 K of Common Lisp code which runs on a TI

Explorer II lisp machine.
The model simulates some parameters of a continuous stirred-tank reactor (CSTR) like that

shown in Figure C.l. The CSTR has two liquid streams flowing into it, a cold stream and a hot

stream. The temperature of the liquid in the outlet stream will vary depending on the temperatures

and flow rates of the two inlet streams. The height in the tank can also vary. The model takes as

input the initial values of the HEIGHT (height of liquid in the tank) and TEMPOUT (temperature

of the outlet stream) parameters as well as a step increase in either or both of the COLDFLOW

or HOTFLOW  parameters, the flowrates of the two inlet streams. It simulates the behavior to

COLDFLOW - z 5
C O L D T E M P  -i

inlet nozzle #l 1

3/
HOTFLgW
HOlTEMP inlet nozzle

Parameter names shown in
UPPERCASE letters.

motor

continuous stirred
tank reactor (CSTR)

,TEMPOUT
/ ’ OUTFLOW0

Figure C.l: The continuous stirred-tank reactor (CSTR) required by the Dalle Molle Model.
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calculate what the HEIGHT and TEMPOUT will be when the system again reaches steady state.

The purpose of the model description is to make explicit the physical situations in which that

model applies, and to make explicit the assumptions under which the model is valid. This model

assumes that the CSTR has two liquid inlets, the outlet nozzle is at the bottom of the tank rather

than out the side (so that flow out is proportional to height), and that enough liquid is present

so that the impeller is immersed for good mixing. We have incorporated these assumptions into
the spatial relations in the model map. This model also assumes that the CSTR is initially (prior

to the step change in a flow rate) at steady state and returns to a steady state. We express
these requirements as Approximation Conditions 41-49 in the model description, listed later in this

appendix. The temperatures of the two inlet streams must be constant (only flow rates may change),
which we express as Conditions 50 and 51. The flow out of the reactor must be proportional to

the height of the liquid, and this is guaranteed by Condition 52. All of the parameters involved,

including model inputs, outputs, and other parameters used for checking conditions must have the

correct time relationships to each other. These are specified in Approximation Conditions l-34. The

Dalle Molle Model uses qualitative variables and takes as input the qualitative value of a variable

along with the list of ordered qualitative values, called the quantity space from which the variable

may take values. The Dalle Molle Model can work with quantity spaces only if they meet certain

restrictions, and these are specified in Conditions 35-40.

C.1.2 Statistics

I STATISTICS FOR DALLE MOLLE MODEL AND DESCRIPTION I
model size: 1210 K

model internal method: qualitative simulation by QSIM
model author: D. Dalle Molle, B. Kuipers, A. Farquhar,

J. Rickel, D. Throop
model description size: 61 K

individuals in model description: 5
model map representation: 40 objects, 82 links

C.1.3 The Implemented Model Description

. THE DALLE MOLLE MODEL DESCRIPTION -7
Input Variables

NAME OF OBJECT
rn& tempout- before
m8- tempout- before
ticoldflow-  before
m6 coldflow- before
m&coldflow-after
m& hotflow -before
n-t& hotflow -before
m& hotflow -after

Al-TRIBUTE OF OBJECT
value
value-precision-type
value
value-precision-type
value
value
value-precision-type
value
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THE DALLE MOLLE MODEL DESCRIPTION
NAME OF OBJECT ATTRIBUTE OF OBJECT

Output Variables m8- height-after value
n-18 height-after value-precision-type
rn8 height-after time
m8- height-after time-precision-type
n-&tempout-after value
m8 tempout-after value-precision-type
m&tempout-after time
mWempout-after time-precision-type

Causal Variables
rn8 height- before value
m8 tempout-before value
m8- coldf  low- before value
m&oldflow-after value
m8 hotflow -before value
m8 hotflow -after value

Affected Variables m8 height-after value
m8 tempout-after value

Carried Variables From: m8 height- before value-units
To: m8- height-after value-units

From: m8- tempout-after time
To: m&height-after time

From: m8 tempout-after time-precision-type
To: m8 height-after time-precision-type

From: m8 height- before time-units
To: m8-height-after time-units

From: m8 height- before time-interval-type
To: m8 height-after time-interval-type

From: m8 tempout- before value-units
To: m8 tempout-after value-units

From: m8 tempout- before time-units
To: m8-tempout-after time-units

From: m8 tempout- before time-interval-type
To: m8 tempout-after time-interval-type
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THE DALLE MOLLE MODEL DESCRIPTION
NAME OF OBJECT ATTRIBUTE OF OBJECT

Call Form m8-coldflow-before value
m8-coldflow-after value

M8-dab-molle:: m8-coldflow-before value-precision-type

simulate-mixing-tank m8-hotflow-before value

(function name)
m8- hotflow-after value
m8-hofflow-before value-precision-type
m8-height-before value
m8-height-before value-precision-type
m8-tempout-before value
m8-tempout-before value-precision-type

Return Form m8 height-after value
m8 height-after value-precision-type
m8 tempout-after value
m8 tempout-after value-precision-type
m8 tempout-after time
m8 tempout-after time-precision-type

Enabling Conditions NIL

Approximation
Conditions- - - - - - - - - - - - I . - - - - - - - -
1. equal m8- height- before time-units

(function name) nScoldflow- before time-units
- - I I - - - - - - - - - - . - - - - - - - -
2. equal m8 tempout- before time-units

m8 coldflow- before time-units
-------------.--------

3. equal mkoldflow-after time-units
rn8- coldflow- before time-units

----I-------I.--I---Y-

4. equal m8 hotflow -before time-units
m&oldflow-before time-units

-------------.--------
5. equal rn8 hotflow -after time-units

m8 coldf  low- before time-units
-------------.--------

26. equal mkflowderiv-before time-units
mkoldflow- before time-units-------------.--------

7. equal n+cflowderiv-after time-units
m8coldflowbefore time-units
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does not extend beyond the end of a single pipe into an adjacent pipe. The ends of the cylinder are

conceptual, not physical. The fluid extends beyond the ends of the cylinder in either direction. The
model map,  shown in Section C.2.3, specifies these physical adjacencies and guarantees through its

negative ports, edges, and endpoints that the cylinder fills the pipe without crossing pipe boundaries.

The negative set { H2-neg-port  } allows the cylinder to have only the 3 positive ports specified,

thus preventing the fluid from being adjacent to more than one pipe and also ensuring that nothing

else is “hiding” inside the cylinder. The cylinder’s surface with the pipe is guaranteed to be a
cylindrical shell (rather than some other shape) by the 5 singleton negative sets. These negative

edges and endpoints specify that none of the ports can have any other edges than the two edges

forming the boundaries at each end, and that those edges must be closed curves (because they have
no endpoints).

Each of the parameters describe a particular portion of the cylinder or pipe as shown in Fig-

ure C.2. For example, the viscosity describes the entire volume of the cylinder while the heat

transfer coeficient  describes only the surface of that cylider.  The model map also makes explicit the

spatial requirements for parameters. We specify requirements on the parameter’s attribute values

in the approximation conditions. All the parameters must have values over the same time period

as specified in conditions 1 through 28. Conditions 29 and 30 guarantee that the Reynolds number

and Prandtl number are in acceptable ranges. Condition 31 guarantees that the aspect ratio of the

pipe (length/diameter) required by the model is met. Condition 32 checks that the average bulk
temperature in the cylindrical section of fluid, as calculated from the inlet and outlet temperatures

does not vary more than 10 degrees F. from the wall temperature. This condition also guarantees
that the liquid is being cooled as required by the exponent, a = 0.3, in the implemented Dittus-
Boelter computer program. The final two conditions check that the surfaces of the cylinder have

. normal directions parallel to the axial direction of the pipe, guaranteeing that the cylindrical region
matched will have the flat parallel ends required.

C.2.2 Statistics

STATISTICS FOR DllTUS-BOELTER  MODEL AND DESCRIPTION
model size: 3 K

model internal method: mathematical equation
model author: J. Murdock

model description size: 54 K
individuals in model description: 2

model map representation: 34 objects, 67 links
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C.2.3 The Implemented Model Description
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THE DllTUS-BOELTER MODEL DESCRIPTION
NAME OF OBJECT ATTRIBUTE OF OBJECT

Input Variables m2- pipe -inside diameter value
m2- mass -flow - rate value
n-Q- density value
m2- viscosity value
m2-thermal  -conductivity value
m2- heat -capacity value

Output Variables m2-heat-transfer-coeff icient value

Causal Variables m2- pipe -inside diameter value
m2- mass -flow - rate value
m2- density value
m2- viscosity value
m2- thermal conductivity value
m2- heat capacity value

Affected Variables m2-heat-transfer-coeff icient value

Carried Variables From: m2- mass -flow-rate time
To: m2- heat -transfer-coeff  icient time

From: m2- mass -flow-rate time-type
To: m2- heat-transfer-coefficient time-type

From: m2- mass -flow - rate time-interval-type
To: m2- heat -transfer-coeff  icient time-interval-type

From: m2- mass -flow - rate time-precision-type
To: m2- heat-transfer-coefficient time-precision-type

From: m2- mass -flow - rate time-precision
To: m2- heat -transfer-coeff  icient time-precision

From: m2- mass -flow-rate time-units
To: m2- heat -transfer-coeff  icient time-units

Call Form m2- pipe -inside diameter value
m2- mass -flow - rate value

m2- dittus-boelter :: m2- density value
dittus- boelter m2- viscosity value

. (function name) m2- thermal -conductivity value
m2- heat -capacity value

Return Form m2- heat -transfer coeff icient value

Enabling Conditions NIL
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THE DITTW-BOELTER  MODEL DESCRIPTION
NAME OF OBJECT AT-TRIBUTE OF OBJECT

Approximation Conditions
1. - <quT~ - - -~L&c~li(j- - - - - tire-u$ - - - -

(function name) m2- density time-units
-----~--~~-~~---I-~~~
2. equal m2- viscosity time-units

m2- heat -capacity time-units
- - - - - - - - - - - - - - - - - - - - -
3. equal m2- viscosity time-units

m2-thermal  conductivity time-units
- - - - - - - - - - - - - - - - - - - - -
4. equal m2- viscosity time-units

m2- inlet -temperature time-units
- - - - - - - - - - - - - - - - - - - - -
5. equal m2- viscosity time-units

m2-outlet  -temperature time-units
--------~~~~-~--- - - - -
6. equal m2- viscosity time-units

m2- pipe-wall -temperature time-units
---------------o-----
7. equal m2- viscosity time-units

m2- mass -flow - rate time-units
-~~~--~--I----~~~~~~-
a. equal n-Q- viscosity time-dimension

m2- density time-dimension
---------o------o---_
9. equal m2- viscosity time-dimension

m2- heat -capacity time-dimension
--------~~-~I--~~~~~~

10. equal m2- viscosity time-dimension
m2- thermal -conductivity time-dimension

- - - - - - B - B - B - - - - - - - - - -
11. equal m2- viscosity time-dimension

m2- inlet -temperature time-dimension
-----------~-~~~~~_ o-

12. equal m2- viscosity time-dimension
m2-outlet  -temperature time-dimension

- B - B - - - - - - - B - - - B - - - - -
13. equal m2- viscosity time-dimension

m2- pipe -wall -temperature time-dimension
------------o--------

14. equal m2-viscosity time-dimension
m2-mass-flow-rate time-dimension
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THE DllTUS-BOELTER MODEL DESCRIPTION
! NAME OF OBJECT ATTRIBUTE OF OBJECT

Approximation Conditions--continued- B - o - - - - - - - - . - - - - - - - -
15. equal m2-viscosity time-type

m2-density time-type- - - - - - - - - - a - - - - - - - - - - -

16. equal m2-viscosity time-type
m2-heat-capacity time-type-~-~-~~~-----~--------

17. equal m2-viscosity time-type
m24hermalconductivity time-type- B - - B - - - B - - - I - - m - - - - - -

18. equal m2-viscosity time-type
m2-inlet-temperature time-type

m - - - - - - - - - - - - m - - - - - - - -
19. equal m2-viscosity time-type

m2-outlet-temperature time-type
- - - - - - - - - - - - a - - - - - - - - -
20. equal m2-viscosity time-type

m2-pipe-wall-temperature tme-type
-----~-~-~---c-~----~-
21 equal m2-viscosity time-type

(function name) m2-mass-flow-rate time-type
- - B - - - - - B - - - - c - - - - - - - -

22. m2- viscosity time, time-type, time-interval-type
any-common-portion? time-precision, time-precision-type

m2- mass -flow - rate time, time-type, time-interval-type
time-precision, time-precision-type

- - - - B - - m - - - I I I - - - - - - - -

23. m2-viscosity time, time-type, time-interval-type
any-common-portion? time-precision, time-precision-type

m2-pipe-wall-temperature time, time-type, time-interval-type
time-precision, time-precision-type-;4.- - - - - - 9 - - - - -- - - - - - - - -

any-common-portion? m2- viscosity time, time-type, time-interval-type
time-precision, time-precision-type

m2-outlet-temperature time, time-type, time-interval-type
time-precision, time-precision-type25.- - - - - - - - - - - -. - 0 - - - - - -

‘any-common-portion? m2-viscosity time, time-type, time-interval-type
time-precision, time-precision-type

m2-inlet-temperature time, time-type, time-interval-type
time-precision, time-precision-type
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THE DIITUS-BOELTER MODEL DESCRIPTION

! NAME OF OBJECT A-I-TRIBUTE OF OBJECT
~p~oxJm&io~Cgn Or&--continue& - I - , , , - , - ,

!6. m2-viscosity
any-common-portion?

time, time-type, time-interval-type

(function name)
time-precision, time-precision-type

m2-thermal-ccnductivity time, time-type, time-interval-type
time-precision, time-precision-type

w - - - - - .- - - - - - -. - - - - - - - 9
!7. m2-viscosity

any-common-portion?
time, time-type, time-interval-type

time-precision, time-precision-type
m2-heat-capacity time, time-type, time-interval-type

time-precision, time-precision-type
- - - - - - .- - - - - - mm - - - - - - - -

28. m2-viscosity
any-common-portion?

time, time-type, time-interval-type
time-precision, time-precision-type

m2-density time, time-type, time-interval-type
time-precision, time-precision-type

- - - - - - a- - - - - - -m - - w - - - - -

?9. value
m2-dittus-boelter::

m2-pipe-inside-diameter
m2-mass-flow-rate

w-in-range?
value

m2-density value
m2-viscosity value

- - - 9 - 0 ,- B - - - - II - - - - - - - -

30. m2-dittus-boelter:: m2-heat-capacity value
pr-in-range? m2-viscosity value

m24hermalconductivity value
- - - B B B .- - - - - - -. v 0 0 - - v - m

31. m2-dittus-boelter:: m2-pipe-length value
I-over-d-ok? m2-pipe-inside-diameter value

I - 0 I - 9 .I - - - - 9 II. m - 9 - - - - B
32. m2-inlet-temperature value

m2-dittus-boelter:: m2-outlet-temperature value
pipe-temperatures-ok? m2-pipe-wall-temperature value

- v 9 9 B 9 .- - - - - - -. - - - - - - - -
33. > m2-mass-flow-rate value .

nil 0- B B B - - .- B B - - - VI v - - - - B B -

34.
vectors -parallel? m2- pipe axial direction

value, value-type, value-interval-type,
value-dimension, value-precision,
value-precision-type, time, time-type
time-interval-type, time-dimension,
time-precision, time-precision-type

value, value-type, value-interval-type,

m2- surface -normal -2 a
value-dimension, value-precision,
value-precision-type, time, time-type
time-interval-type, time-dimension,
time-precision, time-precision-type
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THE DIllUS-BOELTER  MODEL DESCRIPTION

I NAME OF OBJECT
- _

35. vectors -parallel? m2-pipe-axial-direction

m2-surfoace-normal-l  b

AlTRIBUTE OF OBJECT

-B---B--

value, value-type, value-interval-type,
value-dimension, value-precision,
value-precision-type, time, time-type
time-interval-type, time-dimension,
time-precision, time-precision-type

value, value-type, value-interval-type,
value-dimension, value-precision,
value-precision-type, time, time-type
time-interval-type, time-dimension,
time-precision, time-precision-type

1

C.3 The NPSH Model Description

C.3.1 The Model and its Requirements

The NPSH model is a computer program that calculates the minimum net positive suction head
(NPSH) required at the inlet of a single stage centrifugal pump for operation without cavitation.

The NPSH can be thought of approximately as the pressure (measured in feet of liquid) at the
entrance to the pump. The general principles involved in calculating head are discussed in many

textbooks and pump handbooks, such as [6]  and [22].  The NPSH program implements some plots of

correlated data found in [55].  This model requires a single stage centrifugal pump that is pumping1
hot water. The pump must have a single-suction impeller. The model map thus specifies three

regions, a water region, a single stage pump, and an impeller that is part of that pump. The water
region must be filling the pump completely. The model is not applicable if some region inside the
pump is occupied by gas. The singleton negative set containing Ma-int-water-neg-port  (shown

in the model map in this section) guarantees that the water region has no other adjacent regions,
so that, for example, no regions surrounded by the water can exist. The two negative sets, each

having 6 members, ensure that the water region matched is the whole region inside the pump by
specifying that there can be nothing adjacent to the water region that also shares a surface with

the-pump.
The model calculates NPSH from the inlet flowrate, pressure, the water temperature and the

impeller speed. The locations and spatial extents of these parameters are specified in the model

map. The model requires that these parameters lie within specific ranges which we specify in the

approximation conditions. Conditions l-4 ensure that the water temperature, the flowrate, and the

impeller speed are within the ranges covered by this model. Conditions 5 and 6 specify that the

surfaces of the water at the inlet and outlet must be flat by requiring them to have non-zero surface
normal vectors describing the whole inlet or outlet surface. Conditions 7-22 ensure that the all the
parameters have the appropriate time relationships to each other.
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C.3.2 Statistics

I STATISTICS FOR NPSH MODEL AND DESCRIPTION

C.3.3 The Implemented Model Description

model size: 7 K
model internal method: interpolation on data tables

model author: J. Murdock

model description size: 36 K
individuals in model description: 3

model map representation: 38 objects, 84 links

r
Input Variables

THE NPSH MODEL DESCRIPTION

Output Variables
Causal Variables

Affected Variables
Carried Variables

Call Form
m3=nw=pump-::
pump-npsh

(function name)
Return Form

NAME OF OBJECT

m3-inlet-flow-rate
m3-inlet-pressure
m3-water-temperature
m3-DUrnD-SDeed
m3-npsh

m3-inlet-flow-rate
m3-water-temperature
m3-DUrnD-SDeed

m3-npsh

From: m3-inlet-pressure
To: m3-npsh

From: m3-inlet-pressure
To: m3-npsh

From: m3-inlet-pressure
To: m3-npsh

From: m3-inlet-pressure time-precision
To: m3-npsh time-precision

From: m3-inlet-pressure
To: m3-npsh

From: m3-inlet-pressure
To: m3-npsh

m3-pump-speed
m3-inlet-flow-rate
m3-inlet-pressure
m3-water-temDerature

m3-npsh

Al-TRIBUTE OF OBJECT
value
value
value
value
value

value
value
value

value
time
time

time-interval-type
time-interval-type

time-precision-type
time-precision-type

time-type
time-type

time-units
time-units

value
value
value
value
value

1



NPSH MODEL MAP
REGION OBJECTS 1 PORT OBJECTS 1 STREAMOBJECTS 1 EDGE OBJECTS 1 ENDPOINT OBJECTS

ti3-ss-impeller  < 5 ’

M3-stream-3-outlet 3 M3-neg-edge-3A
[common-flovi stream] I

I 1 5* -PA:AIikTER OzJEzTSi-
Fl3-inlet-flow-rate_. k--

&member
negative-set

f

M3-adj-waterB-neg-po
[PO4

iDOrt1

.
M3-adj-waterB-neg-stream
[common-effofl-streaml

I KEY I
1 Has-Port link
2 Has-Stream link
3 Has-Edge link
4 Has-Endpoint link
5 Describes link
6 Has-Part link

[ ] indicates object type
* multiple links represented by one arrow
** attributes of parameters not shown
italics indicate optional (non-input params
I indicates a negative set

I Not shown: another
6-member negative

-

L

t-

[mass-flow-rate]
M3-inlet-pressure

[pressure]
M3-npsh
[head]

M3-inlet-surface-normal
[direction-vector]3

M3-outlet-surface-normal-cdirection-vector]
7
M3-water-temperature
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THE NPSH MODEL DESCRIPTION
NAME OF OBJECT ATTRIBUTE OF OBJECT

Enabling Conditions NIL
_ApEroxJmaJion CsndiJiclns
1. < (function name) m3-Yate7tempeZur -“alu; - - - - - -

nil
- - - - - - - - - - - - - - - - - - - - -

*- > m3-inlet-flow-rate
nil

value
0

- - - - - - - - - - - - - - - - - - - - -
3. m3-hw-pump:: m3-pump-speed value
pump-rpm-ranges-satisf ied?
--------------------_
4. m3-hw-pump:: m3-inlet-flow-rate value
pump-gpm-ranges-satisf ied?
- - - - - - - - - - - - - - - - - - - - -
5. m3-hw-pump:: m3-inlet-surface-normal value, value-type, value-interval-type
vector-values-dont-overlap? value-dimension, value-precision,

nil
value-precision-type

(0, 0, 0), real, point, 3, 0, absolute
- - - - - - - - - - - - - - - - - - - - -
6. m3-hw-pump:: m3-outlet-surface- value, value-type, value-interval-type
vector-values-don&overlap? norma value-dimension, value-precision,

nil]
value-precision-type

(0, 0, 0), real, point, 3, 0, absolute
- - - - - - - - - - - - - - I - - - , - -
7. equal m3-inlet-flow-rate time-units

m3-inlet-pressure time-units
--------------------_
a. equal m3-inlet-flow-rate time-units

m3-water-temperature time-units
- - - - - - - I - - - - - - - - - - - - -
9. equal m3-inlet-flow-rate time-units

m3-pump-speed time-units
- - - - - - - - - - - - - - - - - - - - -
10. equal m3-inlet-flow-rate time-units

m3-water-density time-units
- - - - - - - - - - - - - - - - - - - - -
11. equal m3-inlet-flow-rate time-units

m3-lpshm - - - - - - - - - - -time-unitsm - - B - - - -
12. m3-hw-pump:: m3-inlet-flow-rate time-type
time-type-real-or-integer?



146 APPENDIX C. IMPLEMENTED MODEL DESCRIPTIONS

THE NPSH MODEL DESCRIPTION
NAME OF OBJECT ATTRIBUTE OF OBJECT

-Approxim?tio_n  CQnd tions=cor$nied- - - - - , - , -
i4. m3-hw-pump:: time-type
time-type-real-or-inte er? m3-water-temperature
- - Cfunctionna~  -. - - - - - -. - - - - - - - -
5. m3-hw-pump:: time-type
time-type-real-or-integer?  m$pump-speed
- B - - - B -. - B - - - -. - - B B - - - -

6 .  m3-hw-pump:: time-type
time-type-real-or-integer?  m3-water-densiv
- - - - - - -. - B B - - -. m B - - - - _ -
7 .  m3-hw-pump:: time-type
time-type-real-or-integer?  ma-npshB.------.----o-.B ---o--o

any-common- portion?
m3-inlet-flow-rate time, time-type, time-interval-type

time-precision, time-precision-type
m3-npsh time, time-type, time-interval-type

time-precision, time-precision-type
i.- - - - - -- - - - - - -. - - - - - - - -

any-common-portion?
m3-inlet-flow-rate time, time-type, time-interval-type

time-precision, time-precision-type
m3-water-density time, time-type, time-interval-type

time-precision, time-precision-type
5-B - - - - -- - - - - - -. - - - - - - - -

any-common-portion?
m3-inlet-flow-rate time, time-type, time-interval-type

time-precision, time-precision-type
m3-pump-speed time, time-type, time-interval-type

time-precision, time-precision-type
I 0 - 0 B - II 0 - w m 0 I, -~~~~~-~
!I.

any-common-portion?
m3-inlet-flow-rate time, time-type, time-interval-type

time-precision, time-precision-type
m3-water-temperature time, time-type, time-interval-type

time-precision, time-precision-type
&.- - - - - -. - - - - -I. - - - - - - - -

any-common-portion?
m3-inlet-flow-rate time, time-type, time-interval-type

time-precision, time-precision-type
m3-inlet-pressure time, time-type, time-interval-type

time-precision, time-precision-type

c . 4 The Wear Ring Model Description

CA.1 The Model and its Requirements

The wear ring model is a correlation of increased pump power consumption with the wear of internal

parts [22].  Centrifugal pumps have impellers that turn inside casings. The impeller is fitted with a

wear ring, as is the casing, at the point where the impeller and casing are in very close proximity.

The two rings should have enough clearance to allow the impeller and its wear ring to turn but not
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to allow fluid to move through the clearance. As these parts wear, the clearance between the rings

increases. The increased clearance allows some fluid leakage and makes the pump less efficient,
thereby requiring more power to produce the same flow. The Wear Ring Model is calculates the

change in clearance given the change in power consumption observed.

The Wear Ring Model Map specifies physical situation for this model. The model requires a

centrifugal pump with an impeller wear ring and a casing wear ring. The pump must be completely

full of the fluid being pumped. We specify this condition using a singleton negative set and two

6-member negative sets similar to those used in the NPSH model map. The result of the model

is valid only if the viscosity, density, and pump speed are the same for the initial observation and

the observation of increased power. Conditions l-6 in the Approximation Conditions guarantee
that those values are constant. Conditions 7-14 specify the time relationships amongst the model

parameters. The model does not require any particular units for power, but does require the initial
power and final power to have the same units (Condition 15),  and similarly that the two wear ring

diamaters given as input both have the same units (Condition 16). The model is only valid if the
change in power consumption is less than 9%, which we specify in Condition 17.

C.4.2 Statistics

1 STATISTICS FOR WEAR RING MODEL AND DESCRIPTION

model size: 2 K
model internal method: mathematical equation

model author: J. Murdock

model description size: 42 K
individuals in model description: 6

model map representation: 32 objects, 93 links

C.4.3 The Implemented Model Description

THE WEAR RING MODEL DESCRIPTION I

Input Variables
NAME OF OBJECT AT-TRIBUTE OF OBJECT

m5-i-wear-ring-od value
m5-c-wear-ring-id value
m5-power-l value
m5-power-2 value

Output Variables 1 m5-clearance I value I

Causal Variables m5-i-wear-ring-od
m5-c-wear-ring-id
m5-power-l
m5-clearance

value
value
value
value

Affected Variables I m5-power-2 I value I
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THE WEAR RING MODEL DESCRIPTION
NAME OF OBJECT ATTRIBUTE OF OBJECT

Carried Variables From: m5-power-2 time
To: m5-clearance time

From: m5-power-2 time-type
To: m5-clearance time-type

From: m5-power-2
To: m5-clearance

time-interval-type
time-interval-type

From: m5-power-2 time-units
To: m5-clearance time-units

From: m5-power-2
To: m5-clearance

time-precision-type
time-precision-type

From: m5-power-2 time-precision
To: m5clearance time-precision

From: m5-power-2 time-dimension
To: m5-clearance time-dimension

From: m5-c-wear-ring-id value-units
To: m5-clearance value-units

Call Form
m5-wear-ring:: m5-power-l value
wear-ring-power* m5-power-2 value
consumption value

(function name)
m5-c-wear-ring-id
m5-i-wear-ring-od value

Return Form m5-clearance value

Enabling Conditions NIL

Approximation Conditions
1. - - - - -

equal
- i5 rho ,- - -- ~alu~un~s  - - - - -- w -

(function name) m5-rho-2 value-units
- - - - - - - - - - - - - - - - - - - - - -
2. equal m5-mu-l value-units

m5-mu-2 value-units
<. - - - - - - - - - - - -- alue-un..s  - - - - -

equal m5-rpm-1
m5-tpm-2 value-units
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THE WEAR RING MODEL DESCRIPTION

! NAME OF OBJECT ATTRIBUTE OF OBJECT
Approximation Conditions--continued---~~~~I-----.-~~  -o---
12.
any-common-portion?

m5-power-2 time, time-type, time-interval-type

(function name)
time-precision, time-precision-type

m5-mu-2 time, time-type, time-interval-type
time-precision, time-precision-type

-------IIII--I---oo----
13.

any-common-portion?
m5-power-2 time, time-type, time-interval-type

time-precision, time-precision-type
m5-rho-2 time, time-type, time-interval-type

time-precision, time-precision-type
- - - - - - - - - 0 - 0 -I - 0 0 0’. - - -
14.

any-common-portion?
m5-power-2 time, time-type, time-interval-type

time-precision, time-precision-type
m5-rpm-2 time, time-type, time-intefval-type

time-precision, time-precision-type
15.- - - - - - - - - - - -- - - - - - - - -

equal m5-power-1 value-units
mli-power-2 value-units

-,s.- - - - - - - - - - - -. - - - - - - - -

equal m5-i-wear-ring-od value-units
m5-c-wear-ring-id value-units

-,70- - - - - - - - - - - -. - - - - - - - -

mS=wear-ring:: m5-power-2 value
power-delta-small? m5-power-l value

--------11--11~~~~~--1
18. > m5-c-wear-ring-id value

m5-i-wear-ring-od value

19.. F - - - -m&w~rm2-  - ij~e- - - - - - -
m5-power-l value

c.5

c.5.1

.

The Hyraulic Horsepower Model Description

The Model and its Requirements

The Hydraulic Horsepower model calculates the theoretical minimum horsepower required by a
pump to generate the pressure and velocity of a fluid at its outlet from the fluid conditions at

the pump inlet [55]. The model takes the inlet and outlet pressures, the inlet and outlet nozzle

diameters, the volumetric flow rate, and the specific gravity of the fluid as input. This model, unlike

the NPSH and Wear Ring models, applies to any kind of pump, not just centrifugal pumps.

The Hydraulic Horsepower model does require that the liquid region inside the pump occupy

the entire pump, because the parameters are assumed to describe certain portions of that space.

The specific gravity is assumed to describe the whole region. The inlet and outlet pressures are

assumed to describe a surface of the liquid exactly the size of the inlet and outlet nozzles. This
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requirement is specified through negative sets similarly to the NPSH and Wear Ring model maps.

Two negative sets of 6 objects each specify that anything beyond the inlet and outlet surface of the

liquid must be outside the pump. (See the Hydraulic Horsepower Model Map in Section C.5.3.)

A singleton negative set specifies that the liquid region can have no other ports and thus nothing
can “hide” inside the liquid itself. The only conditions on parameter values are that the values of

all the parameters occur at the same time (Approximation Conditions I-10) and that the outlet

pressure be greater than the inlet pressure (Approzimation Condtion II).

C . 5 . 2  S t a t i s t i c s

STATISTICS FOR MODEL AND DESCRIPTION

model size: 2 K
model internal method: mathematical equations

model author: J. Murdock

model description size: 32 K
individuals in model description: 2

model map representation: 31 objects, 71 links

C.5.3 The Implemented Model Description

THE HYDRAULIC HORSEPOWER MODEL DESCRIPTION
NAME OF OBJECT AT-TRIBUTE OF OBJECT

Input Variables m6-suction-pressure value
m6-discharge-pressure value
m6-suction-nozzle-id value
m6-discharge-nozzle-id value
m6-flow-rate value
m6-specific-gravity value

Output Variables m6-horsepower value

Causal Variables m6-suction-pressure value
m6-suction-nozzle-id value
m6-discharge-nozzle-id value
m6-specific-gravity value
m6-horsepower value

Affected Variables m6-discharge-pressure value
m6-flow-rate value

Carried Variables From: m6-flow-rate time
To: m6-horsepower time

From: m6-flow-rate time-type
(continued) To: m6-horsepower time-type
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THE HYDRAULIC HORSEPOWER MODEL DESCRIPTION
NAME OF OBJECT ATTRIBUTE OF OBJECT

Carried Variables From: m6-flow-rate time-units
(continued) To: m6- horsepower time-units

From: m6-flow-rate
To:

time-interval-type
m6-horsepower time-interval-type

From: m6-flow-rate
To:

time-precision-type
m6-horsepower time-precision-type

From: m6-flow-rate
To:

time-precision
m6-horsepower time-precision

Call Form m6-suction-pressure value
m6-hydraulic-hp:: m6-discharge-pressure value
calc-hydraulic- m6-suction-nozzle-id value

horsepower m6-discharge-nozzle-id value
(function name) m6-flow-rate value

m6-specific-gravity value

Return Form m6-horsepower value

Enabling Conditions nil

Approximation Conditions
7. - - rquaT - r - -. - - - -I leGnits  - - - - -m6-suctron-pressure

(function name) m6-discharge-pressure time-units
m - - - - - - - - - - m - - - - - - - - - -
2. equal m6-suction-pressure time-units

m6-suction-nozzle-id time-units- B - - - - I- B - B - - -. - w B w B - B B
3. equal m6-suction-pressure time-units

m6-discharge-nozzle-id time-units- w - m m m I- v B D - - -. - w - - - - v -
4. equal m6-suction-pressure time-units

m6-f low-rate time-units- - B B - - I- B - - - - I. - m - - D - D -
5. equal m6-suction-pressure time-units

m6-specific-gravity time-units
-; - - - - v a- B - B - - -. - - B B - B - B
6.

any-common-portion? m6-suction-pressure time, time-type, time-interval-type
time-precision, time-precision-type

m6-discharge-pressure time, time-type, time-interval-type
time-precision, time-precision-type
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THE HYDRAULIC HORSEPOWER MODEL DESCRIPTION

! NAME OF OBJECT ATTRIBUTE OF OBJECT

-Appro_pimAtion  C_ondJtioEs--conJinged- _ - _ - - - _ _
7 any-common-portion? m6-suction-pressure. time, time-type, time-interval-type

(function name)
m6-suction-nozzle-id

time-precision, time-precision-type
time, time-type, time-interval-type

time-precision, time-precision-type- - - - - - - - - - - - - . - - - - I - - -
8 any-common-portion? m6-suction-pressure. time, time-type, time-interval-type

m6-discharge-nozzle-id
time-precision, time-precision-type

time, time-type, time-interval-type
time-precision, time-precision-type

- - - - - - - - - - - - - I - - - - - - - -

9. m6-suction-pressure time, time-type, time-interval-type
any-common-portion? time-precision, time-precision-type

m6-flow-rate time, time-type, time-interval-type
time-precision, time-precision-type

io.- - - - - - - - - - - -I - - - - - - - -
m6-suction-pressure time, time-type, time-interval-type

any-common-portion? time-precision, time-precision-type
m6-specific-gravity time, time-type, time-interval-type

time-precision, time-precision-typei,.- -,- - - - - - - - - -. - - - - - - - -
m6-discharge-pressure value
m6-suction-pressure value

. C.6 The Hypothetical Model Description

C.6.1 The Model and its Requirements

The Hypothetical model is simply a model description that does not correspond to any real model. It
was built by modifying the model description for the NPSH model to test reconfiguration capabilities

that did not get tested by the real pump models. The purpose of the Hypothetical model is to force

the matching system to reconfigure parts of the pump at two different levels of detail within the

same matching. The Hypothetical model requires a pump individual that has a has-part relation

with a pump casing. In the equipment description used to match the pump models, subparts of the

casing and the pump are represented, but neither the pump nor the casing appear as individuals.

To find the match for the Hypothetical model in this equipment description, the reconfiguration

algorithms do two separate reconfigurations  to generate the pump and the casing individuals.

Since the Hypothetical model is not a real model, its description does not contain any ap-

proximation conditions, enabling conditions, call-form, or return-form. It does have input, output,
causal, and uflected variables, (taken from the NPSH model description) so that the model may be
identified as a potential model to match when given a parameter and a goal.
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C.6.2  Statist ics

1 STATISTICS FOR HYPOTHETICAL MODEL AND DESCRIPTION 1

model size: 0 K
model internal method: none

model author: none

model description size: 34 K
individuals in model description: 4

model map representation: 39 objects, 85 links

C.6.3 The Implemented Model Description

I THE HYPOTHETICAL MODEL DESCRIPTION I
! NAME OF OBJECT 1 AlTRIBUTE OF OBJECT

I
Input Variables

Output Variables

Causal Variables

m7-inlet-flow-rate
m7-inlet-pressure
m7-fluid-temperature
m7-pump-speed

m7-npsh

m7-inlet-flow-rate
m7-fluid-temperature
m7-DUrnD-SDeed

value
value
value
value

value

value
value
value

.

1 Affected Variables 1 m7-npsh I value I
Carried Variables

Call Form

nil

nil

Return Form

Enabling Conditions

nil

nil

I Approximation
Conditions I

nil
I I
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PIPE-4 NSIDE-D IAM

PIPE-ROUGHNESS (k)
FRICTION-FACTOR

~~~~‘pERATuRE f l u i d  s e c t i o n

Figure C.3: The individuals and parameters required by the Friction Factor model.

C.7 The Friction Factor Model Description

C.7.1 The Model and its Requirements

Friction factors are a form of drag coefficient used to calculate pressure loss of fluid flowing in round
pipes due to viscous drag. The model we have incorporated is an empirical correlation of friction

factor with pipe roughness and diameter given by [33]. This model requires that the pipe be full

of the flowing fluid and that we identify a section of the fluid as shown in Figure C.3. Unlike the

Dittus-Boelter model (Section C.2), this model does not require that the fluid section be a cylinder

with parallel ends. The section is not allowed to cross pipe boundaries, though, because the model.
requires the pipe roughness variable to describe the whole pipe surface adjacent to the liquid. It
would be acceptable to calculate a friction factor for many pipes connected in series as long as

they had the same friction factor. However, this would require describing a pattern (the series
of pipes), and the associated matching method was not implemented during this work. Thus the

model description is restricted to a single pipe.

The model map specifies that the fluid section fill the cross-section of the pipe and that it not

cross pipe boundaries by using negative sets. The singleton negative set containing MiO-neg-port
(shown in Section C.7.3) ensures that the fluid section can have no other ports beyond its inlet,

outlet, and surface with one pipe. This negative port also guarantees that nothing else can be

“hiding” inside the liquid section. The single port to the pipe is guaranteed to be a cylindrical

surface because it must have exactly two edges (guaranteed by a negative edge MO-neg-edge-3A)
and the edges are guaranteed to be closed curves. They can have exactly 0 endpoints, as specified

by a negative endpoint  (MlO-neg-endpt-lB, MlO-neg-endpt-2A)  attached  to each edge.
The approximation conditions in the model map specify the conditions that must be satisfied

by paramter attribute values for the Friction Factor model to be valid. Besides requiring that the

parameters  occur at the same time (Conditions l-13),  The model requires  that heat is not being
transferred to or from the fluid as it flows through the pipe. Conditions 14 and 15 restrict application
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of this model to cases where the inlet and outlet temperatures are the same to within their known

precisions.  This model is an empirical correlation of data collected at particular Reynolds numbers

(Re) and pipe roughnesses (k), and so Conditions 16-18 check that these values are within bounds.

C . 7 . 2  S t a t i s t i c s

1 STATISTICS FOR FRICTION FACTOR MODEL AND DESCRIPTION

model size: 1 K
model internal method: mathematical equation

model author: J. Murdock

model description size: 30 K
individuals in model description: 2

model map representation: 25 objects, 54 links

C.7.3 The Implemented Model Description

THE FRICTION FACTOR MODEL DESCRIPTION

Input Variables

Output Variables

Causal Variables

Affected Variables

Carried Variables

NAME OF OBJECT

ml O-pipe-inside-diameter
ml O-pipe-roughness
ml O-friction-factor

ml O-pipe-inside-diameter
ml O-pipe-roughness
ml O-velocity
ml O-density
ml O-viscosity

ml O-friction-factor

From: ml O-velocity
To: ml O-friction-factor

From: ml O-velocity
To: ml O-friction-factor

From: ml O-velocity
To: ml O-friction-factor

From: ml O-velocity
To: ml O-friction-factor

From: ml O-velocity
To: ml O-friction-factor

ATTRIBUTE OF OBJECT
value
value

value

value
value
value
value
value

value
time
time

time-interval-type
time-interval-type

time-units
time-units

time-precision-type
time-precision-type

time-precision
time-precision

1
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THE FRICTION FACTOR MODEL DESCRIPTION
! NAME OF OBJECT ATTRIBUTE OF OBJECT

Approximation Conditions--continuedb* - - - - - - ,,o,,“zy - - -I - - - - - - - -

any-common-portion? time, time-type, time-interval-type
(function name) ml O-velocity

time-precision, time-precision-type
time, time-type, time-interval-type

time-precision, time-precision-type- - - - - - - - - - o - - . - - - o - - - -
11. ml O-viscosity time, time-type, time-interval-type

any-common-portion? time-precision, time-precision-type
ml O-velocity time, time-type, time-interval-type

time-precision, time-precision-type
- o - - - - - - o - - - - . - - - - - - - -
12. ml O-inlet-temperature time, time-type, time-interval-type

any-common-portion? time-precision, time-precision-type
ml O-velocity time, time-type, time-interval-type

time-precision, time-precision-type
-~----L---~--.--~---~~
13. ml O-outlet-temperature time, time-type, time-interval-type

any-common-portion? time-precision, time-precision-type
ml O-velocity time, time-type, time-interval-type

time-precision, time-precision-type
-~~-~~,--~---I.~-------

14. equal ml O-inlet-temperature value-units
ml O-outlet-temperature value-units

k - - - - -
- - o - - m - - - - - - - -

ml O-outlet-temperature value, value-type, value-interval-type,
possibly-equal? value-precision, value-precision-typ

ml O-inlet-temperature value, value-type, value-interval-type,
value-precision, value-precision-typ

--------~~~--.---I----
16. ml O-pipe-inside-diameter value

mlO=friction::Re-ok? ml O-velocity value
ml O-density value
m 1 O-viscosity value

-~~-~~~------~~~-----~

17. ml O-pipe-roughness value
ml O-friction:: kD-ok? ml O-pipe-inside-diameter value

~~~~~~~---I--~--~-~~~-
16. ml O-pipe-inside-diameter value

ml O-friction:: ml O-velocity value
Re-and-kD-ok? ml O-density value

ml O-viscosity value
ml O-pipe-roughness value
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LENGTH (L)
SHEAR-STRESS-l (tl)
SHEAR-STRESS-2 (t2)

vIscosITY-1  (p)
OUTLET-PRESSURE (Poutlet)

Figure C.4: The individuals and parameters required by the Hagen-Poiseuille model.

C.8 The Hagen-Poiseuille  Model Description

CA.1 The Model and its Requirements

.

The Hagen-Poiseuille model is a computer implementation of the Hagen-Poiseuille flow law which
can be found in fluid flow textbooks such as [33]. The model applies to laminar steady-state flow of
imcompressible  newtonian fluids in circular pipes. This model requires identification of a cylindrical

cross-section of fluid as an individual as shown in Figure C.4. The variables in the Hagen-Poiseuille

law,
-rR46P

‘= 8pL  ’

where R is the pipe radius (D/2),  6P is Poutlet  - Pinlet, and the rest of the variables are defined
in Figure C.4. Each variable has a particular spatial extent within the fluid cylinder or the pipe.

For example, Poutlet describes the right end of the fluid cylinder, and p (viscosity) describes the

entire volume of the cylinder. The Hagen-Poiseuille law is applicable to fluid cylinders that cross

boundaries of connected pipes. However, to specify this physical situation, one needs to specify a
pattern, any number of pipes connected end to end. This kind of specification and the associated

matching algorithms have not been implemented for this thesis. Thus the model is treated as if it

is valid for fluid cylinders residing in one pipe.

This model requires a geometric situation very similar to the Dittus-Boelter model (Section C.2).
We include negative sets in the model map to ensure that the liquid cylinder completely fills the

pipe cross-section, that the cylinder has only 3 adjacencies (one with the pipe and two with adjacent

fluid regions), and that nothing is “hiding” inside the cylinder. The map specifies that the fluid
be a liquid so that the incompressibility condition is met. Approximation Conditions 18-20 check

that the fluid is newtonian (the viscosity is constant with respect to shear stress). Conditions
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21 and 22 ensure that flow is laminar and is steady state, respectively. Since the fluid section

must be a cylinder with its ends perpendicular to the pipe axis, Conditions 23 and 24 specify that

surface normals on both ends of the cylinder must be parallel to the pipe axial direction. The other

conditions (1-17) ensure that the parameters all have the appropriate time relationships to each

other.

C.8.2 Statistics

STATISTICS FOR HAGEN-POISEUILLE MODEL AND DESCRIPTION
model size: 1 K

model internal method: mathematical equation
model author: J. Murdock

model description size: 47 K
individuals in model description: 2

model map representation: 33 objects, 70 links

C.8.3 The Implemented Model Description

THE HAGEN-POISEUILLE MODEL DESCRIPTION

Input Variables

Output Variables
Causal Variables

Affected Variables

Carried Variables

(continued)

I NAME OF OBJECT

~ m9-viscosity-l
m9-pipe-inside-diameter
m9-lengt  h

m9-inlet-pressure
’ m9-outlet-pressure

m9-vol-flow-rate

m9-viscosity-l
m9-pipe-inside-diameter
m9-length
m9-inlet-pressure
m9-outlet-pressure

m9-vol-flow-rate

From: m9-inlet-pressure
To: m9-vol-flow-rate

From: m9-inlet-pressure
To: m9-vol-flow-rate

From: m9-inlet-pressure
To: m9-vol-flow-rate

ATTRIBUTE OF OBJECT
value
value
value
value
value

value

value
value
value
value
value
value

time-units
time-units

time-type
time-type

time-precision-type
time-precision-type
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THE HAGEN-POISEUILLE  MODEL DESCRIPTION
NAME OF OBJECT ATTRIBUTE OF OBJECT

Carried Variables From: m9-inlet-pressure time-precision
(continued) To: m9-vol-flow-rate time-precision

From: m9-inlet-pressure time
To: m9-vol-flow-rate time

Call Form m9-viscosity-l value
m9-pipe-inside-diameter value

m9-hagen:: m9-length value
calculate-hagen-flow value

(function name) m9-inlet-pressure
m9-outlet-pressure value

Return Form m9-vol-flow-rate value

Enabling Conditions nil

_Approfirngion  Cznd?ioFs
1. equal m9-viscG&tyTi - - Tmel;;lits  - - - - -

(function name) m9-inlet-pressure time-units
- - - - - - - ~ - ~ - - - I - ~ - - - - - -
2. equal m9-viscosity-l time-units

m9-outlet-pressure time-units-~---~-~-~---~----~---
3. equal m9-viscosity-l time-units

m9-pressure-deriv time-unitsm - - - - - - - - - w - - - - - - - - - - -
4. equal m9-viscosity-l time-units

m9-shear-stress-l time-units-------------.--------
5. equal m9-viscosity time-units

m9-shear-stress-2 time-units
;. - - - e;ual- - -. -. - - - -- time-unit; - - - - -m9-vtscosrty-1

m9-viscosity-2 tme-units

7.
------------_--------

equal m9-viscosity-l time-units
m9-density time-units

s: - - - ,,,I - -- - - - - - -- TrneJnitF  - - - - -m9-viscosity-l
m9-length time-units

-------o-----_--------
9. equal m9-viscosity-l time-units

m9-pipe-inside-diameter time-units
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THE HAGEN-POISEUILLE MODEL DESCRIPTION
NAME OF OBJECT ATTRIBUTE OF OBJECT

10. m9-inlet-pressure time, time-type, time-interval-type
any-common-portion? time-precision, time-precision-type

(function name) m9-outlet-pressure time, time-type, time-interval-type
time-precision, time-precision-type

------m-----m I-~~~~~~~

11. m9-inlet-pressure time, time-type, time-interval-type
any-common-portion? time-precision, time-precision-type

m9-viscosity-l time, time-type, time-interval-type
time-precision, time-precision-type

-------B----e .-~~~~~~~
12. m9-inlet-pressure time, time-type, time-interval-type
any-common-portion? time-precision, time-precision-type

m9-pipe-inside-diameter time, time-type, time-interval-type
time-precision, time-precision-type

i3.- - - - - - - - - - 0 -.

any-common-portion?
m9-s hear-stress- 1 Ge, Ge-i;per;imZnt&al-t~pe-

time-precision, time-precision-type
m9-viscosity-l time, time-type, time-interval-type

time-precision, time-precision-type
--------B----I- -~~~~~~
14.

any-common-portion?
m9-inlet-pressure time, time-type, time-interval-type

time-precision, time-precision-type
m9-length time, time-type, time-interval-type

time-precision, time-precision-type
--------o--I-.- -~~~~~~
15.

any-common-portion?
m9-inlet-pressure time, time-type, time-interval-type

time-precision, time-precision-type
m9-density time, time-type, time-interval-type

time-precision, time-precision-type
-------B---B -.-------_
16.

any-common-portion?
m9-inlet-pressure time, time-type, time-interval-type

time-precision, time-precision-type
m9-vol-flow-rate time, time-type, time-interval-type

time-precision, time-precision-type
--------m---e .-~~~~~~~
17.

any-common-portion?
m9-shear-stress-2 time, time-type, time-interval-type

time-precision, time-precision-type
m9viscosity-2 time, time-type, time-interval-type

time-precision, time-precision-type
---------m--e .-~~~~~~~
18. m9-shear-stress-l value, value-type, value-interval-type

not-any-
common-portion?

value-precision, value-precision-typt
m9-shear-stress-2 value, value-type, value-interval-type

value-precision, value-precision-typt
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THE HAGEN-POISEUILLE  MODEL DESCRIPTION
! NAME OF OBJECT ATTRIBUTE OF OBJECT

Approximation Conditions-continued-------~~-I~--~~-~~~~
19. equal m9-shear-stress-l value-units

(function name) m9-shear-stress-2 value-units
ro.--------------------

m9-hagen:: m9-shear-stress-l value
fluid-isqqe~onian?  mg-“iSCOSitY-1 value

m9-shear-stress-2 value
m9-viscosity-2 value; ,.--------* -0 o--D o----o

m9-hagen:: m9-pipe-Inside-diameter value
flow-is-laminar? m9-vol-flow-rate value

m9-density value
m9-viscosity-l value

-------~~-Io--1.II~o~~~
22.

possibly-equal?
m9-pressure-deriv value, value-type, value-interval-type

value-precision, value-precision-type
nil 0, real, point, nil, nil

------I~~~--~-~~~~~~~
34. vectors -parallel? m% pipe -axial direction value, value-type, value-interval-type,

value-dimension, value-precision,
value-precision-type, time, time-type,
time-interval-type, time-dimension,

m4 surface -normal -2 a
time-precision, time-precision-type

value, value-type, value-interval-type,
value-dimension, value-precision,
value-precision-type, time, time-type,
time-interval-type, time-dimension,
time-precision, time-precision-type-------~~~I-~~~~-__~~

35. vectors-parallel? m9-pipe-axial-direction value, value-type, value-interval-type,
value-dimension, value-precision,
value-precision-type, time, time-type,
time-interval-type, time-dimension,
time-precision, time-precision-type

m9-surfoace-normal-l  b
value, value-type, value-interval-type,

value-dimension, value-precision,
value-precision-type, time, time-type,
time-interval-type, time-dimension,
time-precision, time-precision-type



Appendix  D

Implemented Matching/Reconfiguration Cases

D.1 Introduction

A This appendix contains the inputs and outputs for the 16 matchings made as tests of the methods
developed in this thesis as well as some statistics that were collected on the runs. Inputs and outputs

from each of the four steps, potential match set generation (PMSG), match-reconfigure (M-R), check

model conditions (CMC), and execute the model (EXEC-M) are listed here. The side effects, if

any, are also listed. A model matching system would normally be called by a diagnosis system, and

besides returning the values calculated by the models after matching, the model matcher would
also return the relations required by the model, The list of relations is not shown here because it is

a straight forward instantiation of the model relations with equipment objects that were matched

to model objects.

169
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D.2 Dittus-Boelter Model and PIPES-O  Equipment
Description

D.2.1 Statistics on the Matching

Equipment Description:
Model Description:

Goal:

Max. partial matches:
Complete matches:

Rematches:
Run time:

Objects created (kept):
Links created (kept):

Separately triggered reconfigurations:

Used simple matching?
Used negative matching?

Used intensive reconfiguration?
Used part-whole reconfiguration?

Positive object triggered reconfiguration?
Parameter triggered reconfiguration?

Negative set triggered reconfiguration?

D.2.2 Generating the Potential Match Set

INPUTS;
(SELECT-MODELS ‘heat-capacity-a ‘value ‘describes

‘region-a ‘effects)

PIPES-O
DII-TUS-BOELTER
find EFFECTS

4
1
0
0:Ol (hr:min)
1 (1)
2 (2)
0

Yes
Yes
No
No

No
No
No

OUTPUTS;
(
(heat-capacity-a-value describes region-a effects m2-heat-capacity m2-fluid-in-pipe}
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D.2.3 Match/Reconfigure

DESCRIPTION 171

INPUTS:
(DC-SIMPLE-MATCH ‘m2-fluid-in-pipe ‘m2-heat-capacity ‘region-A ‘heat-capacity-A)

OUTPUTS: (association-list and vector-list)

Vector-list of matching
Assoc-List of Model Equipment Objects Returned
Objects Returned notes vector #1 1 vector #2

0 m2- heat -capacity W-P heat-capacity-a I
1 m2-fluid-in-pipe P-obj region -a I
2 m2-porNa P-W port- a3
3 mZpott-2a P-W port-a2 I
4  m2-port-l b P-W port-al
5 m2- density W-P rho-a I
6 m2-thermal  conductivity V-P thermal-cond-a I
7 m2- viscosity req-p m-a
8 m2- stream3 P-oh stream -pipe -2-a3 I
9  m2-edge-l b P-N pipe -1 -edge-2-1
10 m2-edge-2a P-04 pipe-2-edge-2-l I
11 m2- stream -2 P-W stream -a2-yl I
12 n-Q- stream -1 P-04 stream -x2- al
13 m2- mass -flow - rate W-P pipe-2-inlet-flow I
14 m2-port3b P-04 pipe -2-port3  a
15 n-Q-pipe P-N pipe -2 I
16 m2- pipe -inside diameter W-P pipe-2-id I
17 m2- outlet- temperature opt -P nil
18 m%surface-normal-2a Opt-P port- normal-a2 I
19 m2- inlet -temperature Opt-P fluid-temp-port-al
20 m2- surface -normal -1 b opt -P port- normal-a 1 I
21 m2- pipe-wall -temperature opt-p nil I
22 m2- heat-transfer-coeff icient opt-p wall- h-trans -coeff -a
23 m2- pipe -length opt-p nil I
24 m2- pipe -axial direction opt -P pipe-2-axial direction
25 m2- neg -port neg -1 nil I
26 m2- neg edge3a neg -2 nil I
27 m2-neg-edge-2a WN nil
28 m2- neg-s-normal-2 a neg-4 nil I
29 m2- neg -edge-l b neg* nil
30 m2- neg -s-normal-l b we nil I
31 m2- neg -endpt-1  b neg -7 nil I
32 m2- neg -endpt-2  a neg* nil

l different than vector #l. p-obj -- positive object neg-n -- member of the nth
req-P -- required parameter opt-p -- optional parameter negative set matched
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D.2.4 Checking Model Conditions

INPUTS:
(CHECK-MODEL-CONDITIONS ‘approx-conditions assoc-list (first vector-list))

OUTPUTS:
T

(( m%dittus-boelter:  pipe-temperatures-ok?

n-12- inlet -temperature value
m2-outlet  -temperature value
m2- pipe -wall -temperature value)

(m%dittus-boelter :Iwer-d-ok?

m2-pipe-length value m2- pipe -inside diameter value)

(any-common -portion?

m2- viscosity time m2- viscosity time-type
m2- viscosity time -interval-type m2- viscosity time -precision
m2- viscosity time -precision-type m2- outlet -temperature time
r&outlet  -temperature time-type m2-outlet  -temperature time -interval-type
m2-outlet  -temperature time -precision m2-outlet  -temperature time -precision-type)

(any-common-portion?

m2- viscosity time m2- viscosity time -type
m2- viscosity time -interval-type m2- viscosity time -precision
m2- viscosity time -precision-type m2- pipe -wall -temperature time
m2- pipe -wall -temperature time -type m2- pipe -wall -temperature time -interval-type
m2- pipe -wall -temperature time -precision m2- pipe -wall -temperature time -precision-type)

(equal m2- viscosity time -type m2- pipe -wall-temperature time -type)

(equal m2- viscosity time -type m2- outlet -temperature time -type)

(equal m2-viscosity  time dimension m2- pipe -wall-temperature time dimension)

(equal m2-viscosity  time dimension m2-outlet-temperature  time dimension)

(equal m2- viscosity time -units m2-pipe -wall-temperature time -units)

(equal m2-viscosity  time -units m2-outlet  -temperature time -units))
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D.2.5 Executing the Model

DESCRIPTION 173

INPUTS:
(EXECUTE-MODEL assoc-list (first vector-list))

OUTPUTS:
t-W

SIDE-EFFECTS: The parameter object, T4, is created with attributes and links shown.

T4*
time: InO-------------
time-dimension: 1 - - - - - - - -
time-units:  min - - - - - - - - - - -
time-type: real - - - - - - - - - - -
time-interval-type: point - - - - -
time-precision-type: absolute . - -
time-precision: +lO - - - - - - - -
time-max: nil
time-min: nil

v a l u e :  2 0 8 7 . 4 1 1 6  - - - - - - - - -
value-dimension: 1 - - - - - - - -
value-units: btu/hr-sq-ft-deg-f-  - -
value-type: real - - - - - - - - - -
value-interval-type: point - - - - -
value-precision-type: nil
value-precison: nil
value-max: nil
value-min: nil

“location” attributes are all nil.

exemplifies
-l > HEAT-TRANS-COEFF

- carried
- specified
-carried
-carried
-carried
- carried
- carried

- calculated
- specified
- specified
-specified
-soecified
KEY

(functional-type)

’ > pipe-2-port-3A

calculated-- attribute value calculated by model
specified-- attribute value specified in model param
carried-- attribute value copied from another parameter

as specified in the “carried variables” list of
the model description

* name of parameter object is created by the GENTEMP function which
generates unique names, all beginning with “T” followed by an integer.

D.2.6 Summary of Merges and Splits Tested

I Assoc-list of model objects
I I

Reconfiguration
I

Reconfigurations
(indicates order of matchina) notes type tried I

No reconfigurations made.

req-P -- required parameter
p-obj -- positive object

opt-p -- optional parameter
neg-n -- member of the nth negative set matched
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D.3 Dittus-Boelter Model and PIPES-1 Equipment
Description

D.3.1 Statistics on the Matching

Equipment Description: PIPES-1
Model Description: DITTUS-BOELTER

Goal: calculate VALUES

Max. partial matches: 312
Complete Matches: 1

Rematches: 23
Run time: 1:29 (hr:min)

Objects created (kept): 633 (11)
Links created (kept): 3998 (67)

Separately triggered reconfigurations:  2

Used simple matching? Yes
Used negative matching? Yes

Used intensive reconfiguration? Yes
Used part-whole reconfiguration? No

Positive object triggered reconfiguration? No
Parameter triggered reconfiguration? Yes

Negative set triggered reconfiguration? Yes

D.3.2 Generating the Potential Match Set

INPUTS;
(SELECT-MODELS ‘wall-h-trans-coeff -c ‘value ‘describes ‘pipe-2-port-3c ‘values)

OUTPUTS;
(
(wall- ktrans-coeff -c value describes pipe-2-port&  values m2- heat-transfer-coeff icient

m2-port3b)
)
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D.3.3 Match/Reconfigure

DESCRIPTION 175

INPUTS:
(DO-SIMPLE-MATCH ‘m2-port3b ‘m2-heat-transfer-coefficient

‘wall-h-trans-coeff c)
OUTPUTS: (association-list and vector-list)

‘Pipe -2-port3 c

Assoc-List of Model
Vector-list of matching

Objects Returned
Equipment Objects Returned

notes vector #l 1 vector #2
0 m2- heat-transfer-coefficient opt -P wall- h-trans -coeff -c I
1 m2-port3b P-W t547
2 m2- stream 3 p - o b j  t546 I
3 m2-pipe P-04 pipe -2
4 m2-edge-2a P-W

I
t545

5 m2-edge-l b p-obj t546 I
6 rWport3a p-obj t544
7 m2- pipe -inside diameter req-P pipe-2-id I
8 m2-port-2a P-W t549
9 m2-port-l b P-W

I
t550

10 n-Q-fluid -in -pipe p-ojb t543 I
11 m2- stream -2 P-oh t425
12 m2- stream -1 P-04 stream -x2- al I
13 m2- mass -flow - rate req-P
14 m2- heat -capacity

pipe-2-inlet-f low 1
req-P heat-capacity-c

15 m2- density W-P rho-c I
16 m2- thermalconductivity req-P thermal-cond-c
17 m2- viscosity req-p mu-c I
18 m2- pipe -wall -temperature opt-p nil
19 m2- pipe-length opt-p nil

I
20 m2- pipe -axial direction opt-p pipe-2-axial direction I
21 m2-outlet  -temperature opt -P nil
2 2  m2-surface-normal-2a opt -P port- normalc2 I
23 m2- inlet -temperature opt-p
24 m2- surface -normal -1 b opt -P

fluid-temp-port-al I
port- normal-a 1

25 m2-neg-endpt-2a neg -1 nil I
26 m2-neg-endpt-1  b neg -2 nil
27 m2- neg -edge3a nega nil I
28 m2-neg-edge-2a WI4 nil
29 m2- neg-s-normal-2 a

I
neg* nil

30 m2- neg -edge-l b we nil I
31 m2- neg -s-normal-l b neg -7 nil
32 m2- neg -port WI* nil I

r different than vector #I. p-obj -- positive object
‘eq-P -- required parameter opt-p -- optional parameter

neg-n -- member of the nth
negative set matched
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SIDE EFFECTS:

REGION-C
REGION8 o=>

.D

+Before After

D.3.4 Checking Model Conditions

INPUTS:
(CHECK-MODEL-CONDITIONS ‘approx-conditions assoc-list (first vector-list))

OUTPUTS:
T

(( m%dittus-boelter:  pipe-temperatures-ok?
m2- inlet -temperature value
m2- outlet -temperature value
m2- pipe -wall -temperature value)

(m&dittus- boelter:l-overd-ok?
m2- pipe -length value
m2- pipe -inside-diameter value )

(any-common-portion?
m2- viscosity time m2- viscosity time-type
m2- viscosity time -interval-type m2- viscosity time -precision.
m2- viscosity time -precision-type m2-outlet  -temperature time
m2- outlet -temperature time -type time -precision m2-outlet  -temperature time -interval-type
m2-outlet  -temperature m2- outlet -temperature time -precision-type)

(any-common-portion?
m2- viscosity time m2- viscosity time-type
m2- viscosity time -interval-type m2- viscosity time -precision
m2- viscosity time -precision-type n-12-  pipe-wall -temperature time
m2- pipe -wall -temperature time -type m2- pipe-wall -temperature time -interval-type
n-12- pipe -wall -temperature time -precision m2- pipe-wall -temperature time-precision-type)

(dqual m2-viscosity  time -type m2- pipe -wall -temperature time -type)

(equal m2- viscosity time -type m2- outlet -temperature time -type)

(equal m2- viscosity time-dimension m2- pipe-wall-temperature time-dimension)

(equal m2-viscosity  time-dimension m2-outlet-temperature  timedimension)

( e q u a l  m2-viscosity time -units m2-pipe -wall-temperature time -units)

(equal m2- viscosity time -units m2-outlet  -temperature time -units))



0.3. DITTUS-BOELTER  MODEL AND PIPES-l EQUIPMENT

D.3.5 Executing the Model
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INPUTS:
(EXECUTE -MODEL assoc-list (first vector-list))

OUTPUTS:
(WALL-H-TRANS-COEFF-C)

SIDE-EFFECTS: The Parameter Object, HEAT-TRANS-COEFF, is created with attributes
and links shown.

WALL-t-i-TRANS-COEFF-C
time: jnO-------------
time-dimension: 1 -1-----w
time-units:  min I - - - - - - - - - -
time-type: real - - - - - w - - w - -
time-interval-type: point - - - - -
time-precision-type: absolute l - -
time-cwecision:  f10 - - - - - - - -
time-max:  nil
time-mln: nil

value: 2087.4116 -----1--w
value-dimension: 1 - - - - - - - -
value-units : btu/hr-sq-ft-deg-f-  - -
value-type: real - e - w - - - - - -
value-interval-type: point - - - - -
value-precision-type: nil
value-precison: nil
value-max: nil
value-min: nil

“location” attributes are all nil.

- carried
- specified

l  - c a r r i e d

- -carried
- -carried
m - carried
* - carried

exemplifies

I

> HEAT-TRANS-COEFF

iif
(functional-type)

81.
K
4 T!547*

n - calculated
m - specified
- -specified
- -specified
- -specified

KEY
calculated-- attribute value calculated by model
specified-- attribute value specified in model param
carried-- attribute value copied from another parameter

as specified in the “carried variables” list of
the model description

l name of parameter object is created by the GENTEMP function which
generates unique names, all beginning with “T” followed by an integer.
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D . 3 . 6 Summary of Merges and Splits Tested

Assoc-list of model objects Reconfiguration Reconfigurations
(indicates order of matching) notes type tried

0 m2- heat -transfer-coefficient req-p
1 m2-port3b P-W
2 n-12-  stream 3 P-04
3 m2- pipe P-W
4 m2-edge-2a P-W
5 m2- edge-l b P-W
6 m2-port3a P-W
7 m2- pipe -inside diameter req-P
B m2- port-2 a P-W
9 m2-port-l b P-W
1 0  m2-fluid-in-pipe Wb
11 m2- stream -2 P-W
12 n-Q-stream-1 P-04 intensive (region-c region-y)

(region-c region -b)
(region-c region d)
(region -c region -e)
(region-c region -y region d)
(region -c region-y region-e)
(region c region-y region-b)
(region-c region-b region-d)
(region-c region-b region-e)

13 m2- mass -flow - rate
(region-c region -b region-a)

req-P
14 m2- heat -capacity W-P
15 n-Q- density req-P
16 m2- thermal -conductivity req-P
17 m2- viscosity req-P
18 m2- pipe -wall -temperature opt -P
19 m2- pipe -length opt -P
20 m2- pipe -axial direction opt-p
21 m2- outlet -temperature opt-p
2 2  m2-surface-normal-2a opt -P
23 m2- inlet -temperature opt-p

req-P -- required parameter opt-p -- optional parameter
p-obj -- positive object neg-n -- member of the nth negative set matched
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Assoc-list of model objects
(indicates order of matching)

24 m2- surface -normal -1 b

Reconfiguration Reconfigurations
notes type tried

opt -P intensive (region-c region d region-e)
(region -c region -y region d
region-b)
(region -c region-y region d
region -e)
(region-c region -y region -e
region-b)
(region c region-y region-b
region -a)
(region-c region -b region-d
region -e)
(region c region-b region-d
reg ion  -a )
(region -c region-b region-e
region -a)
(region c region-b region-a
region -x)
(region -c region-y region d
region -b region -e)
(region-c region -y region d
region-b region -a)
(region -c region -y region -e
region-b region -a)
(region c region -y region-b
region -a region-x)
(region c region-b region-d

2 5  m2-neg-endpt-2a
26 m2-neg-endpt-1  b
2 7  m2-neg-edgeaa
23 n-Q-neg-edge-2a
29 m2- neg -s-normal-2 a
30 m2-neg-edge-1  b
31 m2- neg -s-normal-l b
32 m2- neg -port

region-e region -a)

I

req-P -- required parameter
p-obj -- positive object

opt-p -- optional parameter
neg-n -- member of the nth negative set matched
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D.4 Dittus-Boelter Model and PIPES-2 Equipment
Description

D.4.1 Statistics on the Matching

Equipment Description:
Model Description:

Goal:

Max. partial matches:
Complete Matches:

Rematches:
Run time:

Objects created (kept):
Links created (kept):

Separately triggered reconfigurations:

Used simple matching?
Used negative matching?

Used intensive reconfiguration?
Used part-whole reconfiguration?

Positive object triggered reconfiguration?
Parameter triggered reconfiguration?

Negative set triggered reconfiguration?

D.4.2 Generating the Potential Match Set

(SELECT-MODELS ‘wall-h-trans-coeft-a ‘value ‘describes  ‘pipe-2-port-3 ‘values

OUTPUTS;
(
(wall- h-trans-coeff  -a value describes pipe-2-port-3 values m2- heat-transfer -coeff icient

m2-port3b)

PIPES-2
DIT-TUS-BOELTER
calculate VALUES

120
1
35
1:25 (hr:min)
338 (12)
3373 (56)
3

Yes
Yes
Yes
No

No
No
Yes
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DA.3  Match/Reconfigure
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JNPUTS:
(DC-SIMPLE-MATCH ‘m2-pot-tab ‘n-&heat-transfer-coefficient ‘pipe-2-port-3

‘wall- k trans-coeff  -a)
OUTPUTS: (association-list and vector-list)

Vector-list of matching
Assoc-List of Model Equipment Objects Returned
Objects Returned notes vector #l 1 vector #2

0 m2- heat -transfercoeff  icient opt-p wall- h-trans -coeff -a I
1 m2-port3b P-o@ pipe-2-port-3
2 m2- stream 3 P-W stream -pipe -2-a3 I
3 m2- pipe P-W pipe -2
4 m2-edge-2a p-obj t385

I
5 m2-edge-l b P-W t389 I
6 m2-port3a P-W t390
7 m2- pipe -inside diameter W-P pipe-2-id I
0 m2- port-2 a p-obj t384
9 m2-port-l b p-obj t388

I
1 0  m2-fluid-in-pipe p-obj t363 I
11 m2- stream -2 P-00 t387
12 m2- stream -1 P-W t267 I
13 m2- mass -flow - rate W-P t265
14 m2- heat -capacity

I
W-P heat- capacity- a

15 m2- density W-P rho-a I
16 m2- thermalconductivity W-P thermal-cond-a
17 m2- viscosity req-p mu-a I
18 m2- pipe -wall -temperature opt-p nil
1 9  m2-pipe-length

I
opt-p nil

20 m2- pipe -axial direction opt-p pipe-2-axial  direction I
21 m2-outlet  -temperature opt-p nil
22 m2- surface-normal-2 a opt-p port- normal-a2 I
23 m2- inlet -temperature opt-p nil
24 m2-surface-normal-1  b

I
opt-p port- normal-a 1

25 m2- neg -endpt-2a neg -1 nil I
26 m2-neg-endpt-1  b neg -2 nil
2 7  m2-neg-edgeaa w - 3 nil I
28 m2- neg edge-2 a wd nil I
29 m2- neg-s-normal-2 a w* nil
30 m2-neg-edge-1  b WI* nil I
31 m2- neg -s-normal-l b neg -7 nil
32 m2- neg -port w* nil I

l different than vector #l. p-obj -- positive object neg-n -- member of the nth
req-P -- required parameter opt-p -- optional parameter negative set matched
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SIDE FFFECTS;

REGION-A

REGION* REGIONC REGION-D REGION-E
Before

T323

After

D.4.4 Checking Model Conditions

INPUTS:
(CHECK-MODEL-CONDITIONS ‘approx-conditions assoc-list (first vector-list)

OUTPUTS:
T

(( m%dittus-boelter:  pipe-temperatures-d<?
m2- inlet -temperature value

m2-outlet-temperature value
m2- pipe-wall -temperature value)

(m%dittus-  boelter:I-overd-ok?
m2- pipe-length value m2- pipe-inside-diameter value)

(any-common -portion?
m2- viscosity time m2- viscosity time -type
m2- viscosity time -interval-type m2- viscosity time -precision
m2- viscosity time -precision-type m2- inlet -temperature time
m2- inlet -temperature time -type m2- inlet -temperature time -interval-type
n-Q- inlet -temperature time -precision m2- inlet -temperature time-precision-type)

(any*ommon-portion?
m2- viscosity time m2- viscosity time -type
m2- viscosity time -interval-type m2- viscosity time -precision
m2- viscosity time -precision-type m2-outlet  -temperature time
m2- outlet -temperature time -type m2-outlet  -temperature time -intewal-type
m2- outlet -temperature time -precision n-12- outlet -temperature time -precision-type)

(ariy-common-portion?
m2- viscosity time m2- viscosity time -type
m2- viscosity time -interval-type m2- viscosity time -precision
m2- viscosity time -precision-type m2- pipe-wall -temperature time
m2- pipe -wall -temperature time -type m2- pipe-wall -temperature time -interval-type
m2- pipe-wall -temperature time -precision m2- pipe-wall -temperature time -precision-type)

(equal m2-viscosity  time -type m2-pipe -wall -temperature time-type)

(equal m2- viscosity time -type m2-outlet  -temperature time -type)

(equal m2- viscosity time -type m2- inlet-temperature time-type)
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(equal m2-viscosity  timedimension m2- pipe -wall-temperature time dimension)

(equal m2-viscosity  time dimension m2-outiet-temperature  time-dimension)

(equal m2-viscosity  time dimension m2- inlet-temperature time dimension)

(equal m2- viscosity time -units m2-pipe-wall-temperature time-units)

(equal n-&viscosity time-units m2-outlet-temperature  time-units)

(equal m2-viscosity  time -units m2- inlet -temperature time -units))

D.4.5 Executing the Model

*name of parameter object is created by the GENTEMP function which
generates unique names, all beginning with “T” followed by an integer.

INPUTS:
(EXECUTE -MODEL assoc-list (first vector-list))

OUTPUTS:
(WALL-H-TRANS-COEFF-A)

SIDE-EFFECTS: The parameter object, HEAT-TRANS-COEFF-A, is created with attributes
and links shown.

WALL-H-TRANS-COEFF-A
time: 1770 - - - - - - - - - - - - -
time-dimension: 1 - - - - - - - -
time-units:  min . - - - - - - - - - -
time-type: real - - - - - - - - - - -
time-interval-type: point - - - - -
time-precision-type: absolute . - -
time-precision: +lO - - - - - - - -
time-max: nil
time-min: nil

value:  2087.4116 - - - - - - - - -
value-dimension: 1 - - - - - - - -
value-units: btu/hr-sq-ft-deg-f-  - -
value-type: real - - - - - - - - - -
value-interval-type: point - - - - -
value-precision-type: nil
value-precison: nil
value-max: nil
value-min: nil

“location” attributes are all nil.

exemplifies

- carried
iif

(functional-type)
- specified

 1 HE AT - T R A N S - C O E F F

-carried 81.
-carried
-carried

Fi

- carried pipe-2-port-3
- carried

- calculated
- specified
- specified

n -specified
5 -specified

KEY
I

calculated-- attribute value calculated by model
specified-- attribute value specified in model param
carried-- attribute value copied from another paramete

as specified in the “carried variables” list of
the model description 1


