
COMBINING EXPERIENTIAL AND THEORETICAL

KNOWLEDGE IN THE DOMAIN OF

SEMICONDUCTOR MANUFACTURING

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

by

John Llewelyn Mohammed

August 1994

ii

© Copyright by John L. Mohammed 1994

All Rights Reserved

iii

I certify that I have read this dissertation and that in my opinion it is
fully adequate, in scope and quality, as a dissertation for the degree of
Doctor of Philosophy.

Edward A. Feigenbaum (Principal Advisor)

I certify that I have read this dissertation and that in my opinion it is
fully adequate, in scope and quality, as a dissertation for the degree of
Doctor of Philosophy.

James Plummer (Associate Advisor)

I certify that I have read this dissertation and that in my opinion it is
fully adequate, in scope and quality, as a dissertation for the degree of
Doctor of Philosophy.

J. Martin Tenenbaum

I certify that I have read this dissertation and that in my opinion it is
fully adequate, in scope and quality, as a dissertation for the degree of
Doctor of Philosophy.

Paul Losleben

Approved for the University Committee on Graduate Studies:

iv

Abstract

Symbolic approaches to the diagnosis task have proven their utility in a variety of

domains, from medicine to electronic and mechanical engineering. The power of

systems based on these approaches derives from their ability to represent and reason

with the knowledge of experts. In addition to solving their primary diagnostic tasks,

these systems have the additional benefits of being able to explain their findings, and of

serving as repositories of corporate knowledge.

We represent diagnostic knowledge concerning semiconductor manufacturing

processes in two distinct symbolic forms. We capture experiential knowledge in the

form of a network of heuristic causal associations. We capture theoretical knowledge

concerning how the manufacturing processes work in qualitative, discrete-action models

of the manufacturing operations.

Both kinds of knowledge are applicable to the task of diagnosing manufacturing

failures. Each kind has strengths and weaknesses. Causal associations leave many

contextual assumptions implicit. In particular, they do not indicate how the causal

relationships depend on the structure of the manufacturing plan or on the structure of

the devices manufactured. This is primarily due to a lack of representational machinery

for describing this information. This leads to “brittleness”: an inability to adapt to

changes in context. This limitation is a severe one for the semiconductor manufacturing

domain, which is characterized by frequent changes in the manufacturing plans and the

products being manufactured. On the other hand, causal networks impose almost no

limitations on what phenomena can be represented.

Model-based techniques avoid brittleness by explicitly representing how causal

relationships depend on aspects of context and by appealing to principles applicable in

many contexts. However, the range of phenomena that can be represented is limited by

the expressiveness and tractability of the representational machinery and the lack of

theoretical knowledge concerning some of these phenomena.

v

We argue that the strengths and weaknesses of these two kinds of knowledge

are complementary. We describe a mechanism, which we call Generic Rules, by which

we can integrate the two kinds of knowledge in a synergistic fashion. Generic rules

retain the expressiveness of causal networks, but employ the model-based knowledge to

express contextual dependencies. The causal associations, qualitative discrete models

and Generic Rules are demonstrated by application to the Stanford BiCMOS process.

vi

Acknowledgements

Many people have helped me in the course of this work, either by providing needed

resources or technical assistance, by engaging in interesting discussions, by reading and

commenting on early drafts of the dissertation, or by providing much needed moral

support. All deserve my gratitude. I list here some among them that I would especially

like to thank.

For their advice, encouragement and support, I wish to thank the members of my

reading committee: Professor Ed Feigenbaum, Professor James Plummer, J. Martin

Tenenbaum, and especially Paul Losleben, without whose prodding the work may never

have been completed.

Reid G. Simmons, whose Gordius system forms the core of the model-based

reasoner, and who collaborated in the development of the early versions of the models

and the diagnostic reasoner.

Rick Reis, for his advice and encouragement and the financial support provided

through the Fellow/Mentor/Advisor program, and Barbara Hayes-Roth, who on

several occasions provided much needed resources.

John Shott, Wes Lukaszek, Peter Griffin and Margaret Prisbe, for unselfishly

contributing their expertise in semiconductor manufacturing.

The members and former members of the Manufacturing Science program

within the IC Lab and personnel from Enterprise Integration Technologies and Texas

Instruments who participated in it, including Jay Glicksman, Jeff Pan, Fah-Chun

Cheong, Byron Davies, Robert Hartzell, Ernest Wood, Don Basile, William Wong, Jack

Wendstrand and others, for numerous discussions regarding representation of

semiconductor processes. Also, the members of the CFI TCAD SPR working group,

including Duane Boning and Mike McIlrath

vii

The members and former members of the Heuristic Programming Project within

the Knowledge Systems Laboratory, including Peter Karp, Richard Keller, Tom Gruber,

Yumi Iwasaki, Pandurang Nayak, Janet Murdock, Bob Engelmore and Richard Fikes, for

discussions regarding model-based knowledge representation and reasoning.

The many administrative personnel at the KSL and CIS who kept these

organizations running smoothly, and who graced them with a touch of warmth and

human kindness while doing it, including Grace Smith, Linda Kovach, Michelle Perrie,

Susan Stout, Peche Turner, Carmen Miraflor, Ellie Engelmore and Margaret Timothy.

Colleagues at the former Schlumberger Palo Alto Research center, who

contributed to the early phases of the work, including J. Martin Tenenbaum, Richard O.

Duda, Harry Barrow and Jeff Pan.

The personal friends and colleagues who helped me to maintain my sanity and

keep a sense of perspective, including Ed Pednault and Marla Babcock, Fred and Carol

Shapiro, Margaret and Dennis Donohoe, Yvan Leclerc and Susy Davies, Roberto and

Alison Desimone, Richard Cohn, John Egar, Lee Iverson and Alison Phinney, and David

and Mary Kashtan. Especial thanks go to Yvan Leclerc for making much needed

computer resources available for the evaluation phase of the work.

Professor Steven W. Zucker, for inspiring me to pursue graduate work in the first

place, and for being a constant source of encouragement.

My mother and father, for giving me, through their love and encouragement, the

freedom and confidence to live my own life.

Finally, I would especially like to express my gratitude to my fiancée Nancy J.

Lerman, whose love and support have made it possible to complete the work.

This research was supported under the Stanford Semiconductor Manufacturing

Program supported by Grant N00014-90-J-4016, DARPA/CSTO.

viii

Table of Contents

Abstract iv

Acknowledgements vi

List of Tables xi

List of Figures xii

Chapter 1. Introduction 1

1.1. The Task: Diagnosis of Semiconductor Manufacturing Problems 2

1.2. The Symbolic Approach to Diagnosis ... 3

1.3. Problem Statement ... 5

1.4. Contributions of the Research .. 6

1.5. Overview of the Dissertation .. 7

Chapter 2. Background: Semiconductor Manufacturing 9

Chapter 3. Experiential Knowledge 13

3.1. What is Experiential Knowledge? .. 13

3.2. Representing Experiential Knowledge ... 14

3.3. HyperPIES ... 16

3.4. Strengths and Weaknesses of Experiential Knowledge 21

Chapter 4. Theoretical Knowledge 27

4.1. Model-Based Reasoning .. 27

4.2. Special Considerations of the Manufacturing Domain 29

4.3. The Modeling Technology .. 31

4.4. Symbolic Qualitative Modeling of Semiconductor Manufacturing 47

4.5. Summary ... 72

ix

Chapter 5. Process Representation 75

5.1. Representing the Process for DAS .. 76

5.2. Representing the Process for Display .. 81

5.3. The DIS Semiconductor Process Representation Server 85

5.4. Extracting the DAS representation from DIS ... 88

Chapter 6. Architecture for Integration 108

6.1. Phenomena Scope and Situation Scope .. 108

6.2. Generic Rules .. 111

6.3. Impact of Generic Rules .. 118

6.4. System Architecture ... 119

Chapter 7. Experimental Results 123

7.1. The Experiments ... 123

7.2. The Results .. 133

7.3. Summary of the Results .. 145

Chapter 8. Related Work 146

8.1. Model-Based Reasoning .. 146

8.2. Combining Rule-Based and Model-Based Reasoning 149

8.3. Modeling Manufacturing .. 151

8.4. Semiconductor Process Representation .. 157

8.5. Model Selection .. 159

Chapter 9. Conclusions 163

9.1. Future Work .. 163

9.2. Summary and Contributions .. 165

References 168

Appendix A: Modeling Objects 177

Appendix B: Modeling Actions 182

Appendix C: Axioms Supporting the Models 214

x

Appendix D: AESOP Causal Associations 223

Glossary .. 223

Causal Associations... 224

Appendix E: Generic Rules 225

Appendix F: Associations from Generic Rules 237

Legend .. 237

Category 1 Causal Associations .. 239

Category 2 Causal Associations .. 246

Category 3 Causal Associations .. 247

xi

List of Tables

7.1. Recovery of AESOP associations by Generic Rules ... 139

xii

List of Figures

3.1 HyperPIES top level control panel .. 18

3.2 Traversing Fault Concept Taxonomic Hierarchy ... 18

3.3 Fault Concept Editor ... 19

3.4 Causal Link Editor ... 20

3.5 PIES Causal Analysis Graph .. 21

3.6 Configuration just before Poly Gate Etch ... 23

3.7 Configuration after Poly Gate Etch ... 24

3.8 Formation of MOSFET .. 24

4.1 Example type definitions .. 39

4.2 Schema for describing processes (actions) ... 41

4.3 Sketch of Vertical Cross-Section Through BiCMOS Transistors 49

4.4 Cross-sectional drawing of a Collector-Under-Oxide resistor, and how

DAS represents this same structure .. 51

4.5 The basic operations modeled in DAS.. 56

4.6 The Basic Etch Model .. 61

4.7 Abstract model inherited by models in which layers can be changed 62

4.8 Qualitative example of a general Etch-Rate rule ... 63

4.9 Model of End-Detect-Etch .. 66

4.10 Model of diffusion across polysilicon material boundary 70

4.11 Definition of Create/Modify-Layers models ... 71

5.1 Simple example of a mask description. .. 79

5.2 Instance of an Oxidation operation ... 81

5.3 Semiconductor Process Representation Server scenario 87

5.4 Partial Step Taxonomy .. 93

5.5 Initial decomposition of semiconductor process plan .. 94

5.6 CIM versus TCAD notion of “step” .. 95

5.7 Breakdown of part of Isolation module.. 97

5.8 Language-Independent Semiconductor Process Representation Server 103

6.1 Graph of Phenomena Scope vs. Situation Scope ... 110

xiii

6.2 Syntax for Generic Rule .. 114

6.3 Interlevel Generic Rule for POLY-GATE-UNDER-ETCH example 116

6.4 Intralevel Generic Rule for POLY-GATE-UNDER-ETCH example 117

6.5 Impact of Generic Rules in Phenomena/Situation scope space 118

6.6 Architecture for integration using Generic Rules ... 120

8.1 Semiconductor Computer Tools as Information Transformers 155

Chapter 1. Introduction

There has been much recent interest and activity in applying the technology of “Expert

Systems” to engineering domains, including the domain of Semiconductor

Manufacturing [1] . The power of a system based on this technology lies in its use of the

experiential knowledge of people who are expert at the task for which the system is

being constructed.

Some of the limitations of this technology are now well known. A number of

these limitations can be traced to a single phenomenon: that the rules encoding the

knowledge often implicitly encode a dependence on the context in effect when the rules

were written. The knowledge contained in a system for diagnosing processing problems

in the semiconductor fabrication domain, for example, can implicitly depend on the

manufacturing plan used in the process being diagnosed and the structure of the devices

manufactured (especially those devices, called test-structures, used to obtain the

manifestations of the problems). These dependencies render much of the knowledge

impotent when the context changes, i.e., if the manufacturing plan changes or if the test-

structures change.

Modern manufacturing systems require adaptability to rapidly changing

environments. In particular, frequent changes in the products, processes, or equipment

in a semiconductor processing facility reduce the value of experiential models used in

more stable environments. Since the rules in an experiential knowledge base often do

not describe the rationale that justifies their inclusion, knowledge bases constructed of

such rules cannot be automatically adapted to changes in the environment that can

invalidate many of the rules. Thus, maintenance of experiential models is a difficult and

labour-intensive task.

Engineers temper and adapt their experiential knowledge by recourse to

theoretical knowledge. For other engineering domains, some of this theoretical

knowledge has been successfully captured in the form of declarative causal models [2,

2 Chapter 1: Introduction

3]. These models allow much of the context to be represented explicitly, thus allowing

changes in the context to be incorporated in a natural way.

The work reported on in this dissertation is concerned with the representation of

both experiential and theoretical knowledge bearing on the problem of end-to-end

diagnosis of semiconductor manufacturing processes. It also addresses the strengths and

weaknesses of these two types of knowledge. In particular, this dissertation argues that

their strengths and weaknesses are complementary, and presents a methodology for

combining them that enables the strengths of each to overcome the weaknesses of the

other.

1.1. The Task: Diagnosis of Semiconductor Manufacturing Problems

Semiconductor Technology is a broad and complex field encompassing many activities.

While the technologies to be discussed in this dissertation are applicable to many of the

reasoning tasks connected with these activities, this work focuses on one particular task:

end-to-end diagnosis of problems in semiconductor manufacturing processes.

Semiconductor manufacturing processes are the processes by which integrated

electronic circuits are manufactured. Integrated circuits are manufactured on the surface

of thin “wafers” of silicon or some other semiconducting material.

Semiconductor manufacturing plans typically involve a long sequence of

operations. Modern processes may have roughly 300 steps that are carried out on every

product wafer. The adjectival phrase “end-to-end” is included in the problem

description to emphasize that we will be concerned with diagnosing the entire

manufacturing process as a whole. We will not be concerned with diagnosis, monitoring

or control of individual processing operations or manufacturing equipment. Our focus

will be on disentangling the many varied ways that the processing operations can

interact.

New manufacturing processes are constantly in development. Furthermore,

semiconductor processes are continually modified to improve yield, to adjust for drift in

the characteristics of processing equipment, and/or to improve device characteristics. In

this work we assume that the manufacturing process as specified is correct. We are not

concerned with debugging new manufacturing plans, but in debugging problems in the

execution of “correct” plans. It is a major focus of the work to enable the knowledge we

1.1. The Task: Diagnosis of Semiconductor Manufacturing Problems 3

encode to adapt to changes in the manufacturing plan. Nonetheless, the knowledge

relates to attributing failures in the product to failures in processing, not to debugging

problems in the design of the processing plan.

The sequence of operations in a semiconductor manufacturing plan does not

completely specify the structures that are constructed on the wafer. The set of structures

defined on the wafer are determined by an input to the plan: the set of photolithography

masks . These masks are reticles of glass coated in a pattern with an opaque substance,

often a metal. The patterns in the masks determine how different areas of the wafer

surface are differentiated from one another to form devices and circuits. The masks

generally include patterns for the creation of special structures, called test structures .

These structures are designed so that their electronic behaviour is determined as much

as possible by a narrow set of process variables. They are included on the wafer so that

the quality of processing can be characterized, and so that errors in processing can be

isolated. Our work assumes that the devices and test structures are properly designed.

Finally, there is one additional caveat not alluded to in the brief description of

the problem domain. We are concerned primarily with the behaviour of the

manufacturing process, less so with the behaviour of the manufactured product. That is

to say, we focus on seeking causes for anomalies in the physical structure of the product

in terms of anomalies in processing. This is to be contrasted with identifying causes for

anomalies in the behaviour of the product (e.g., the electronic characteristics of the

devices, the electronic behaviour of the circuits) in terms of anomalies in the physical

structure of the product. The latter problem is addressed more fully in the work of Greg

Freeman [4, 5] .

1.2. The Symbolic Approach to Diagnosis

The characteristic that differentiates the symbolic approach to diagnosis from other

computational methods applicable to the same problem is the reliance on declarative

representations of knowledge. That is, knowledge of the problem domain in which

diagnosis is to be performed is not embedded in the design of a program, but is

explicitly represented in symbolic data-structures that can be communicated between

the computer and its users, and manipulated by the program. At some level of

description, the symbolic data-structures can be interpreted as statements of knowledge

about the domain and/or about how to perform the diagnostic task. There are well -

defined rules for how these data-structures can be manipulated, and these

4 Chapter 1: Introduction

manipulations correspond to various forms of logical or probabilistic inference. Overall,

the manipulation of the data structures is called reasoning.

The ability to communicate knowledge is a key feature of symbolic systems. The

knowledge that symbolic systems use is obtained from the users of the system through

such communication. Also, the system can refer to its knowledge to explain the

reasoning behind its findings. The accessibility of the knowledge makes symbolic,

knowledge-based systems useful for such functions as training, technology transfer, and

maintaining a corporate memory.

Other computational tools useful in diagnosis include statistical data exploration

tools, statistical characterization techniques, and quantitative simulators.

Statistical data exploration tools provide several ways of attempting to identify

the features of the system being diagnosed that best discriminate between success and

failure cases. These tools have no knowledge about the system being diagnosed. The

user employs his/her knowledge about the system being diagnosed to decide which of

possibly many hundreds of features are worth examining. Usually, only a relatively

small number of variables can be examined at a time. Therefore, the efficiency with

which these tools can be used for diagnosis is directly proportional to the amount and

quality of knowledge that the user can bring to bear.

Statistical characterization techniques employ experiments with a working

version of the system to be diagnosed, to capture a succinct representation of the

system’s input/output relationships. The experiments perturb the inputs in controlled

ways and record how these perturbations affect the outputs. The resulting input/output

characterizations are statistical models of the system. These techniques treat the system

as a “black box,” and assume that the relationships between the inputs and outputs of

the box are relatively simple. When this assumption is invalid, then the characterizations

are only accurate within the small space of variations for which experiments were

performed. Also, the number of inputs and outputs that the system is considered to have

must be kept relatively small. Otherwise the techniques require too many experiments

and the resulting models are too complex. It can be considered that statistical models

capture experiential knowledge about the system in a mathematical form.

1.2. The Symbolic Approach to Diagnosis 5

Quantitative simulators provide accurate predictions of the behaviour the system

being simulated over a wider range of conditions, and are based directly on theoretical

knowledge about the system. However, this knowledge takes the form of mathematical

models that are embedded within the simulator program. Unlike symbolic systems, a

quantitative simulator cannot explain the reasons for the results it predicts. The

simulator behaves just like the real world system it simulates, and is just as inscrutable.

For this reason, it is difficult to use quantitative simulators to compute the “inverse

transformation”: from effects to causes. One must guess at possible causes, and then test

the guesses by forward simulation.

All these technologies have a role to play in the complex task of diagnosing

semiconductor manufacturing processes. Although there is a tendency among people to

consider them as competitors, they fulfill complementary needs. In this work we focus

on the symbolic approach to diagnosis.

1.3. Problem Statement

This thesis is about representing knowledge concerning semiconductor manufacturing

that can support symbolic end-to-end diagnosis of stable semiconductor processes in a

manner that enables automatic adaptation of the knowledge base to new processes and

test structures.

Previous work in this domain has relied on experiential knowledge captured in

hand-crafted heuristic rules. The main drawback of this approach has been that such

knowledge is not amenable to automatic adaptation to new contexts. Thus, the principle

concern of this work is to address this drawback: to represent the knowledge in a

fashion that is robust in the face of changes to the manufacturing process and/or to the

structures used to characterize and test the success of the process.

Our solution to this problem has two principal aspects:

1) Representation of theoretical knowledge concerning semiconductor
manufacturing in the form of declarative, causal models. These models must be
capable of assimilating a description of the process to be diagnosed and
descriptions of the test-structures in the form of the masks used to create them,
and creating from these a representation of the causal pathways of the process
that can support diagnostic reasoning.

2) Representation of experiential diagnostic knowledge concerning phenomena that
lie outside the realm of the theoretical knowledge captured in our models. To

6 Chapter 1: Introduction

enable adaptation of this knowledge to new processes and test-structures, we
develop a new method for the integration of experiential knowledge and
theoretical knowledge. This method enables the theoretical knowledge to be used
to describe how the inferences sanctioned by the experiential knowledge depend
on the manufacturing plan and the test-structures.

Although we are motivated by a particular task, that of diagnosing

manufacturing problems, our main focus is the representation of knowledge and the

content of that knowledge. We will not be concerned with diagnostic strategies.

1.4. Contributions of the Research

This thesis makes the following contributions:

• It demonstrates that by careful selection of the appropriate level of abstraction
and granularity, it is possible to model semiconductor manufacturing processes
symbolically, thus making it possible to capture the causal and functional
dependencies in these processes.

• It does so by exhibiting an ontology for describing the structures created on the
wafers during processing that captures their geometry in one dimension and
their topology in two dimensions, and by exhibiting temporally discrete,
qualitative, declarative models of the 12 major classes of manufacturing
operations that affect the geometry and topology of these structures.

• It contributes to the development of a unified Semiconductor Process
Representation. In particular, it identifies a key problem to be solved by such a
representation: extraction of application-specific representations, and describes
an approach to solving this problem.

• It introduces two new concepts for characterizing knowledge representation
paradigms: Phenomena Scope and Situation Scope. These concepts facilitate
comparison of the strengths and weaknesses of different approaches to
representing knowledge. In particular, they help to demonstrate that the key
strengths and weaknesses of experiential and theoretical knowledge
representations are complementary.

• It introduces a new method, called Generic Rules, for synergistic interaction
between experiential and theoretical knowledge representations, in particular
between heuristic causal associations and behavioural models, that helps to
overcome the limitations of each approach taken separately.

• It describes an implemented system, called Language-Independent
Semiconductor Process Representation Server (LISPRS), for extracting a process
representation suitable for the theoretical reasoner from the Stanford
Specification Editor representation stored in the Distributed Information Server
(DIS).

• It describes an implemented system that incorporates models of semiconductor
manufacturing and generic rules for causal associations that can diagnose
manufacturing failures in a modern, complex BiCMOS process.

1.4. Contributions of the Research 7

• It describes the results of attempting to transfer the knowledge in an experiential
knowledge base developed for the Stanford CMOS process into a knowledge
base suitable for the Stanford BiCMOS process, by encoding the knowledge in
Generic Rules.

• It describes the results of attempting to diagnose several processing failures
using the aforementioned models and generic rules.

1.5. Overview of the Dissertation

In Chapter 2 the semiconductor manufacturing domain is described in greater detail.

Some of the key features of the domain are pointed out that contribute to the domain’s

complexity and to its suitability for symbolic reasoning.

The subject of Chapters 3 is the representation of experiential knowledge. Since

the concept of experiential knowledge is somewhat fuzzy, a working definition for

experiential knowledge is attempted. Heuristic rules are described as the means of

representing experiential knowledge. The concept of causal association is then

introduced, and the HyperPIES system, which serves as the exemplar of heuristic rule-

based representation of experiential knowledge for this work, is briefly described.

Finally, the strengths and limitations of experiential knowledge are discussed, and

illustrated with an example causal association.

Model-based reasoning is introduced as a means of representing theoretical

knowledge in Chapter 4. Special considerations of the manufacturing domain as it

relates to model-based reasoning are described. The features of the Gordius system, the

representational machinery we use to represent theoretical knowledge, are described in

some detail. Finally, the manner in which this machinery is used to represent wafer

structures and semiconductor manufacturing operations is presented. As this is a very

long chapter, a summary of the main conclusions of the chapter is included.

The theoretical knowledge can adapt to new manufacturing plans because the

plan is an input to the reasoner. This implies that a semiconductor process

representation is needed. The issue of semiconductor process presentation is discussed

in Chapter 5. This includes a description of the representation required by the theoretical

reasoner, and a discussion of how this representation can be extracted from a unified

process representation intended to serve all applications that require information about

the process plan.

8 Chapter 1: Introduction

The instrument of our method for combining experiential knowledge with

theoretical knowledge is a representation called the Generic Rule. The Generic Rule is

introduced in Chapter 6. The comparative strengths and limitations of experiential and

theoretical knowledge are reviewed. This comparison is facilitated by the introduction of

the Phenomena Scope and Situation Scope concepts. These concepts are also used to

evaluate the impact of encoding knowledge in generic rules. Finally, the architecture of a

system that employs generic rules is described.

Two experiments are described in Chapter 7. The first experiment is an attempt

to transfer experiential knowledge developed for one process to a knowledge base

applicable to another process, using generic rules. The second experiment attempts to

use both the transferred experiential knowledge and the theoretical knowledge captured

in models to diagnose processing failures. The results of these experiments are presented

and analysed.

Related work is described in Chapter 8. A summary of the main points of the

thesis and a discussion of possible directions for future work are included in Chapter 9.

Parts of this work have been published elsewhere. In particular, [6, 7] present

early versions of the models of manufacturing operations, and describe how they can be

used simulate manufacturing processes and to perform diagnoses of manufacturing

problems. For this reason, Chapter 4 incorporates these papers by reference. The

discussion in Chapter 5 of problem of extracting application-specific process

representations from the unified process representation is based on a similar

presentation of this problem in [8] . Finally, Chapter 5 avoids a lengthy discussion of the

representation of masks by incorporating [9] by reference.

Chapter 2. Background: Semiconductor
Manufacturing

Semiconductor manufacturing refers to the manufacture of integrated electronic circuits.

These are complete circuits, containing as many as a million transistors, which are

fabricated at the surface of a single, thin wafer of a crystalline form of a semiconducting

material such as silicon. Each transistor occupies a microscopically tiny area of the

wafer’s surface, and all the transistors are manufactured simultaneously. In fact, it is

usually the case that tens to hundreds of copies of the circuit are manufactured on a

single wafer, which is then diced into die containing a single circuit each. The

parallelism does not end there: many of the manufacturing operations are carried out

simultaneously on several wafers (as many as hundreds) that form a “lot.”

The process by which this technological miracle occurs is a mixture of techniques

analogous to printing and cooking. Most of the operations involve chemical reactions in

chambers, often at high temperatures, or in baths of liquid reagents. These reactions

operate across the entire surface of the wafer, to grow extensions to the crystal, deposit

films of other materials on the surface, grow oxides of the materials at the surface,

incrementally remove materials by etching, or redistribute impurities within the crystal

by diffusion.

One of the ways that impurities are introduced into the wafer is by accelerating

ions of the impurity in an electric field so as to implant them into the wafer surface.

There are two classes of impurities, called dopants, that are introduced. These are

elements from the groups III and V of the periodic table. Though semiconducting

materials are poor conductors when they are pure, their conductivity improves when

impurities from these two groups are introduced into the crystal lattice. Two different

mechanisms for conducting current occur. When group V elements such as arsenic or

phosphorous are incorporated into the lattice, they afford the crystal unbound electrons

for conduction, and the crystal is said to be n-type. When group III elements such as

boron are introduced, they afford the crystal a surplus of “holes” (covalent bond sites

10 Chapter 2: Background: Semiconductor Mamufacturing

lacking an electron) and the material is said to be p-type. (The terms derive from the

charge of the carrier of current: negative for electrons and positive for holes.) When n-

and p-type regions are adjacent in the wafer, diodes and bipolar transistors are formed.

The type of a region can be temporarily reversed by an electric field that repels one type

of carrier and attracts the other. This is the principle employed in the field-effect

transistor (MOSFET).

With few exceptions, all operations act homogeneously upon all parts of the

wafer surface. The primary way to create structures at the surface that differ from region

to region is to employ a photo-optical process similar to photography, called

photolithography. The lateral variations in processing desired must be reduced to a

sequence of binary patterns. These patterns are photographically reproduced as

alternately opaque and transparent areas on glass plates called masks. The wafer is

coated with an organic, light-sensitive material called photoresist. Then the pattern on

the mask is transferred to the wafer by shining a high intensity, high frequency light

through the mask, exposing the photoresist in only in those areas that are transparent on

the mask. This either has the effect of hardening the resist in those areas (if the resist is a

negative resist) or softening it (if the resist is a positive resist). The other exceptions are

directed-beam processes that eliminate the need for a physical mask by using an

electronic representation of it to vary the energy of a beam as it is scanned across the

wafer surface.

The exposed photoresist can then be developed. Development selectively

removes the resist in areas where it is soft. The remaining resist can then protect the

wafer against the impact of some processes, notably etching and implantation of

dopants. The photoresist could not survive the high temperatures employed for most

other operations, and it contains impurities that would ruin the characteristics of the

devices to be created if they were permitted to diffuse into the wafer crystal. Thus,

photolithography is often used in connection with etching to reproduce the pattern of

the mask in a layer of material on the wafer that can effectively mask the effects of these

other operations. Such layers are often completely removed after they have served their

purpose, and so are termed “sacrificial.”

It is a fact of life in semiconductor processing that almost every operation has

unintended, and often undesirable side-effects. The implantation of dopants can damage

the structure of the crystal at the wafer surface. All high-temperature operations,

11

whatever their intended purpose, cause further diffusion of any dopants already present

in the wafer. Growing an oxide can rob the wafer of some dopants, and cause other

dopants to “pile up” at the surface. The oxidation process can also change the diffusivity

coefficients that determine how much diffusion of dopants occurs. Temperatures

required for diffusion and oxidation can exceed the melting point of the metals used for

interconnecting wires.

These characteristics make semiconductor manufacturing a very complex

process. There are two aspects to this complexity. The first is that each operation is a

complex chemical process that must be carefully designed and carried out, and that is

difficult to model accurately. The efforts at creating accurate quantitative numerical

simulators are aimed squarely at overcoming this complexity. There have also been

many applications of expert systems technology to the problems created by this

complexity. Systems have been developed for diagnosis, monitoring and control, and

design of unit processes and equipment. Some of these are reviewed in [1] .

The second aspect of the complexity of semiconductor manufacturing stems from

the fact that they involve a large number of steps. All the structures created on the wafer

at any given point in the process are potentially affected by all subsequent steps. The

impact of a step on any part of the wafer depends critically on what structures are

present on the wafer when the step is executed. Many structures are created on the

wafer solely to influence the impact of intermediate steps in the process, and are later

removed.

In this work we consider how knowledge-based systems can help in handling

this second aspect of the complexity of semiconductor manufacturing. The complex

interactions between steps in the manufacturing process are well-known to process

engineers. However, for a long manufacturing process it can be difficult for a person to

keep track of all the details of the interactions that take place. Further, it can require a

great deal of time for even an experienced engineer to aquaint himself or herself with the

details of a new process. Recording and managing large amounts of information is a

forte of computer systems. Knowledge based systems can serve as a repository of

knowledge about these interactions, and they can systematically consider all relevant

interactions in the course of diagnosing a manufacturing problem.

12 Chapter 2: Background: Semiconductor Mamufacturing

In other ways, the semiconductor manufacturing domain is less complex than

other domains. Semiconductor manufacturing plans are mostly linear sequences of

operations. Unlike many physical systems, feedback and feedforward are not present to

any significant degree. Also, apart from rework loops in photolithography modules,

(which can be safely ignored for the most part) the plans have none of the recursions

and iterations that complicate reasoning about software programs. The parallelism

inherent in semiconductor manufacturing is strictly lock-step. There is no need to reason

about temporal interactions between concurrent asynchronous processes.

The problem of diagnosing manufacturing problems in this domain is

complicated, however, by the fact that the semiconductor industry is characterized by

fast-paced development. Advancing the state of the art is the key to remaining

competitive in this industry. New devices, circuits and manufacturing processes are

continually being designed. This places a high premium on adaptability.

To a degree one can identify a hierarchy of stability. The science that underlies

the design of new types of devices and the use of new materials is updated the least

frequently. New processing techniques and equipment are developed more frequently,

but not as frequently as are new manufacturing plans, and test-structures. This is one

reason that most applications of symbolic, knowledge-based reasoning have preferred to

concentrate on individual processing operations. It is difficult to represent knowledge

about complete manufacturing processes in an manner that enables it to adapt to

changes in the manufacturing plan. This is a primary focus of our research.

Chapter 3. Experiential Knowledge

In this chapter we briefly describe experiential knowledge, and introduce heuristic rules

as a method of representing and reasoning with experiential knowledge. We then

describe the concept of a causal association network, as a variant of the heuristic-rule

paradigm that is particularly appropriate for diagnostic tasks in engineering domains.

Next we describe the particular representational machinery we employ: the HyperPIES

system [10, 11]. Finally, we discuss the relative advantages and disadvantages of this

approach to knowledge representation in the context of diagnosis in the semiconductor

manufacturing domain.

3.1. What is Experiential Knowledge?

In this document we distinguish between experiential and theoretical knowledge as

though they were two categorically separate kinds of things. In truth, these two types of

knowledge are at best fuzzy categories. There is a spectrum in the degree to which

knowledge is based directly on experience, as opposed to being driven by aesthetic

universal principles. The content and the source of the knowledge determine whether it

should be deemed experiential or theoretical, and what advantages and limitations it

has. However, in practice content and form go hand in hand in symbolic representations

of knowledge, because of the way the knowledge is acquired and how it is used. Even

when the source of knowledge might be deemed theoretical, if it is represented in the

fashion usually reserved for experiential knowledge, it often inherits the same

limitations. Thus, our working definition of experiential knowledge necessarily confuses

content and form to a degree. For our purposes, experiential knowledge has several

traits:

a) Experiential knowledge consists of a relatively large collection of facts;

b) These facts usually concern quite specific situations, identified by a set of
characteristic properties, so that each fact has a limited range of applicability;

c) The facts make predictions about additional properties that should be expected
of the situation: for this reason, the facts represent potential inferences;

14 Chapter 3: Experiential Knowledge

d) The facts rarely invoke universal principles to articulate a rationale for belief in
the expected additional properties;

e) There is often uncertainty about the predictions, either because the situations are
not completely characterized (so that new situations that match the stated
characteristics are not truly sufficiently similar), or there is a source of noise or
randomness; and

f) The potential inferences that the facts represent tend to be “large.” That is, if one
could imagine explaining the rationale for the inference in more theoretical
terms, the explanation would be a long one.

Experiential knowledge is most often obtained through a process called

“knowledge acquisition,” and represents a codification of the experience of one or more

human experts in a specific domain. The desire for compactness and efficiency, and the

tedium involved in acquiring the knowledge both contribute to the tendency for the

individual inferences to be large. An example of a simple but large inference from

everyday experience is: in a car with a dead battery, turning the key does not start the

engine. Explaining this inference requires explaining the relationships between the

battery, the key and parts of the engine, such as the starter motor, the ignition system,

the spark plugs and the alternator.

3.2. Representing Experiential Knowledge

Heuristic rules [12] are the primary technology employed to represent experiential

knowledge. A rule is a conditional statement of the form “IF <situation> THEN

<action>.” Such rules directly associate observable conditions described in the

<situation> component of the rule with conclusions that can be drawn or actions that

should be taken described in the <action> component of the rule. They are called

“heuristic” because there is no guarantee that they are correct in all contexts: the

reasoning system assumes that the rules are independent of one another, except to the

degree that they “chain.” Rules chain when the conclusions drawn by one rule affect the

situation recognized by another.

An “inference engine” employs the rules, which are collected into a (rule-based)

“knowledge base,” to draw inferences in one of two ways. A forward-chaining inference

engine works by matching the <situation> components of the rules to its representation

of the state of the world. It then draws the conclusions warranted by the <action>

components of the rules for which the matching process succeeds. A backward-chaining

inference engine matches the <action> component of the rules against the world-state,

and hypothesizes that the <situation> descriptions of the rules that match are valid. The

3.2. Representing Experiential Knowledge 15

system may represent the state of the world using sentences in a simple declarative

language (such as object-attribute-value triples), or it may employ “frame-based”

representations that represent objects using descriptive “slots” and provide a

classification system with inheritance.

In many cases, the rules in diagnostic rule-based systems represent associations

between observable manifestations of failures, and the events that caused them. The

rules are often written in the causal direction, that is, they take the form “IF <fault

occurs> then <manifestation will be observed> .” Then a backward-chaining inference

engine uses the rules to determine what faults might explain those manifestations that

have been observed. When the knowledge base takes this form, the rules constitute a

partial causal model of the behaviour of the system being diagnosed. It is partial because

it only addresses causal connections between abnormal behaviours: it does not explicitly

model the mechanisms involved in the normal behaviour. Further, it can only weakly

address interactions between faults, as the causal associations are assumed to be

independent.

Some researchers have recognized the “partial causal model” nature of such

knowledge bases and made it explicit, representing diagnostic knowledge as an explicit

network of causal associations. Structuring the knowledge base this way facilitates

knowledge acquisition. The first system to use this approach, in the domain of medical

diagnosis, was called CASNET (Causal ASsociation NETwork) [13]. In this system the

causal network made it possible to capture the time-behaviour of progressive diseases.

The causal association network representation enables a hybrid of forward- and

backward-chaining reasoning highly suited to the diagnostic task. Following

associations backwards from manifestations to the faults that can explain them can be

used to generate hypotheses . The hypotheses can then be verified by following the

associations in the forward direction to determine whether additional manifestations

expected of the hypothesized faults are actually present.

16 Chapter 3: Experiential Knowledge

3.3. HyperPIES1

The first system that employed an explicit causal network for diagnosis in the

semiconductor manufacturing domain is described in [10]. This system, called PIES™

(Parametric Interpretation Expert System) was developed to perform the parametric

interpretation task. This diagnostic task consists of examining the results of parametric

measurements on the devices and special test structures manufactured, and

determining, for those wafers with measurements that fall outside acceptable range,

what might have caused the failure.

The system is designed to facilitate knowledge acquisition by domain experts. It

imposes a structure that is specific to the manufacturing domain, and organizes the

knowledge as a set of cases. The imposed structure consists of four levels at which

abnormalities can be described: Measurement-Deviation, Physical-Anomaly (wafer

structure), Process-Anomaly, and Root-Fault. Within each of these four main categories

of classification, the abnormalities can be further classified. For example, Root-Fault

abnormalities are further classified into four categories—equipment failure, human

error, bad source materials, and bad environment; Process-Anomaly abnormalities are

classified by type of process involved and type of deviation; Physical-Anomaly

abnormalities are classified by the type of structure involved; and Measurement-

Deviation abnormalities are classified by type of measurement and the structure on

which the measurement is made.

All causal associations are between nodes at one of these main levels (intralevel

associations) or between two adjacent levels (interlevel associations). The latter make up

the majority of the associations captured. For example, an abnormal structure on the

wafer is invoked to explain an abnormal measurement, by having an interlevel causal

association “link” in the network between a node at the Physical-Anomaly level and a

node at the Measurement-Deviation level. Abnormalities in processing, represented by

nodes at the Process-Anomaly level, are linked as possible causes of abnormal wafer

structures. Finally, Root-Fault nodes represent ultimate causes for manufacturing

failures, and are causally linked to nodes at the Process-Anomaly level. When viewing a

1PIES, HyperPIES, HyperClass, MetaClass and Class are trademarks of Schlumberger

Technologies, Inc.

3.3. HyperPIES 17

node in the network, one can immediately and easily see what nodes it is associated

with, and thus what the possible causes are for the abnormality it represents, and what

other abnormalities it potentially explains.

The PIES system was originally written in Common LISP with a character-based

interface intended to work on “dumb” terminals. Since then, the program has been

ported to the HyperClass™ environment developed by Schlumberger, Inc. This

environment extends Common Lisp with an object-oriented programming system called

Class™ and a set of objects, collectively called MetaClass™, that facilitate creating

graphical user interfaces (GUI’s). The net impact of this port is to provide PIES with a

mouse and windows graphical user interface. The ported system is called HyperPIES™.

This is the system that will be used to represent experiential knowledge in this work.

In HyperPIES™ the abnormalities are represented by a class of programming

objects called Fault Concepts , which are organized into a taxonomic hierarchy with the

four main levels as the first level of differentiation. For abnormalities that represent

deviations in a continuous physical quantity, the system requires separate fault concepts

for each of several qualitatively distinct classes of failure, indicated by the terms very-

low , low , high, and very-high (for example, IDSAT-VERY-LOW).

Causal associations among the fault concepts are represented by a class of

programming objects called Causal Links . Uncertainty is handled by a measure called

association-strength , that may take on one of several qualitative values: must , very-likely ,

likely , probably , and maybe . As the value names suggest, association-strength is a

probabilistic concept. However, it is entirely subjective, and the space of events over

which these probability densities might range is left undefined.

Figure 3.1 illustrates the top-level “control panel” editor that the user is

presented with upon starting the PIES system. It provides five top-level functions, which

are quite self-explanatory. Invoking the “INSPECT existing fault concept” function by

mouse-clicking on either the name/explanation text at the top of the editor or on the

leftmost of the “buttons” that span the central area of the editor causes a simple menu-

like editor to appear as at the left in figure 3.2 below.

18 Chapter 3: Experiential Knowledge

P I E S

INSPECT existing fault concept: Select to inspect an existing fault concept
DELETE fault concept: Select to delete a fault concept
ADD new fault concept: Select to introduce a new fault concept
ANALYSE test data: Select to perform Diagnosis on a data file
EXIT: Select to exit from PIES system

INSPECT existing fault concept Delete fault concept ADD new fault concept Analyze test data EXIT

Copyright (c) 1988,1989,1990 by the Manufacturing Knowledge System Group, ATE/Schlumberger Technologies, Inc. All Rights Reserved.
This software contains unpublished confidential and trade secret information belonging to Schlumberger Technologies, Inc. It may not be copied or modified
for any reason, without the express written consent of Schlumberger Technologies, Inc.

Figure 3.1 HyperPIES top level control panel

<abort>
<Back to Last Choice>

<Reset/Clear>

ROOT-FAULT
PROCESS-ANOMALY
PHYSICAL-ANOMALY

MEASUREMENT-DEVIATION

PIES at your service

<abort>
<Back to Last Choice>

<Reset/Clear>

VT-DEVIATION
IDSAT-DEVIATION
IDS35-DEVIATION

GM-DEVIATON

PIES at your service

Figure 3.2 Traversing Fault Concept Taxonomic Hierarchy

The first version of the menu indicates the top-level differentiation of fault

concepts into the four main abnormality levels. Selecting any one of these with a middle

mouse click causes the menu to disappear and reappear showing the children of the

fault concept class that was selected. In the figure, selecting MEASUREMENT-

DEVIATION results in a new menu showing the four classes of measurement

abnormalities captured in the knowledge base. Selecting a fault class with the left

mouse-button brings up a fault-concept editor that can be used to indicate causal

associations between the selected fault concept and others selected through a similar

process. However, the system intends that causal associations be established only

among fault concepts at the leaves of the fault-concept classification tree. If a user left-

clicks on a non-leaf fault-concept class, the system warns the user with a dialog box that

permits the user to change his/her mind or go ahead.

3.3. HyperPIES 19

FAULT CONCEPT EDITOR

FAULT CONCEPT: GATE-OXIDE-THIN
Edited: 14-Sept-87 16:01:56 PDT By: Dishaw

 LIST-OF-CAUSES: GATE-OX-TIME-SHORT [very-likely] and GATE-OX-
TEMP-LOW [maybe]

 LIST-OF-EFFECTS: VT-LOW-N/LONG [likely], VT-LOW-N/SHORT [likely],
VT-LOW-P/LONG [very-likely], GM-VERY-HIGH-N/LONG [likely], GM-HIGH-N/
SHORT [likely], GM-VERY-HIGH-P/LONG [likely], GM-VERY-HIGH-P/SHORT
[likely], IDS35-VERY-HIGH-N/LONG [likely], IDS35-VERY-HIGH-N/SHORT
[likely], IDSAT-VERY-HIGH-N/LONG [probably], IDSAT-VERY-HIGH-N/
SHORT [likely], IDS35-HIGH-P/LONG [likely], IDSAT-VERY-HIGH-P/LONG
[likely], VT-LOW-P/SHORT [very-likely], IDS35-HIGH-P/SHORT [likely], IDSAT-
HIGH-P/SHORT [likely], VT-VERY-LOW-N/LONG [maybe], and IDSAT-HIGH-
N/SHORT [maybe]

LIST-OF-EFFECTSQUIT LIST-OF-CAUSES

Figure 3.3 Fault Concept Editor

Figure 3.3 displays the fault concept editor for the fault concept GATE-OXIDE -

THIN. The two main fields displayed are the LIST-OF-CAUSES, which lists the causal

associations between this fault concept and those that might explain it, and the LIST-OF-

EFFECTS, which lists the causal associations between this fault concept and those that it

might explain. The buttons containing the names of these fields can be used to invoke a

menu that allows for the inspection, addition, or deletion of causal associations. The

inspection and addition options invoke the CAUSAL-LINK-EDITOR, shown below.

Clicking on the bold field names with the middle mouse button enables the user to edit

the contents of that field. Some fields, such as the CAUSE-LEVEL, EFFECT-LEVEL and

LINK-TYPE fields, are automatically determined by the user’s choices for other fields.

Diagnostic reasoning in PIES follows a multilevel hybrid approach similar to that

described in the previous section. The parametric measurements are first processed to

abstract qualitative symbolic symptoms from the quantitative data. Statistical techniques

are employed to remove invalid “outlying” data points considered to have arisen from

bad electrical contacts. Then mean and standard deviation statistics for each

measurement are computed for all the wafers in the lot being diagnosed. Finally, these

are compared with limits provided by process engineers to classify measurements as

20 Chapter 3: Experiential Knowledge

very low, low, normal, high, or very high. These classifications constitute the initial set

of measurement-level symptoms.

C A U S A L L I N K E D I T O R

CAUSAL LINK (name for reference only): GENERIC-CAUSAL-LINK-98
Edited: 10-Nov-87 13:58:04 PDT By: Dishaw
 CAUSE: GATE-OX-THIN
 CAUSE-LEVEL: PHYSICAL-STRUCTURE-LEVEL
 EFFECT: VT-LOW-P/SHORT
 EFFECT-LEVEL: MEASUREMENT-LEVEL
 LINK-TYPE: INTER-LEVEL-CAUSALITY
 ASSOCIATION-STRENGTH: VERY-LIKELY
 OBSERVATION-COUNT(^):
 REFERENCE-LIST(^): <...empty...>
 COMMENT-LIST(^): <...empty...>

QUIT

Figure 3.4 Causal Link Editor

The diagnostic procedure progresses level-by-level through the four levels of

abnormalities, repeating for each level the same hypothesis and verification cycle. The

causal links are followed backwards from the initial set of symptoms (or the hypotheses

at the previous level) to form a set of hypotheses at the next higher level. This set of

hypotheses is augmented by abnormalities at the same level linked through intralevel

causal associations. The causal links emanating from these hypotheses are then followed

in the forward direction to form expectations regarding additional symptoms at the next

lower level. These expectations are compared with the failure hypotheses at that level

that have been concluded thus far. These comparisons result in matching scores for each

failure hypothesis, indicating how well the hypothesis’ expected symptoms match the

current situation. The hypotheses are sorted by their scores, and hypotheses with

sufficiently low scores are eliminated. The remaining hypotheses form the symptom set

for the next stage of reasoning. In this way, Measurement-Deviation abnormalities are

used to generate and verify hypotheses at the Physical-Anomaly level, Physical-

Anomaly abnormalities generate and verify hypotheses at the Process-Anomaly level,

and Process-Anomaly abnormalities generate and verify hypotheses at the Root-Fault

level.

3.3. HyperPIES 21

The MetaClass™ system includes methods for generating displays of node-and-

arc graphs. This facility is primarily used to display the directed acyclic graphs induced

by the taxonomic relationships among classes. However it can also be invoked to display

other graphs. The HyperPIES system uses it to display the results of its diagnostic

reasoning as a graph. The leftmost nodes in the display are the hypothesized diagnoses

in order of likelihood from top to bottom. From these arcs extend to the nodes that

represent evidence for the hypotheses. This analysis-results graph is thus a sub-graph of

the complete causal association graph. Figure 3.5 illustrates a simple version of such a

causal analysis graph, for a case in which a single Process-Anomaly fault is concluded.

 P I E S CAUSAL ANALYSIS GRAPH

* (1):WELL-II-VERY-LOW(8.0/8.0)

WELL-CONC-VERY-LOW(6.0/6.0)

P-CH-CONC-LOW(5.2/5.2)

VT-VERY-LOW-P/LONG(1.0/1.0)

VT-VERY-LOW-P/SHORT(1.0/1.0)

GM-HIGH-P/LONG(1.0/1.0)

GM-HIGH-P/SHORT(1.0/1.0)

IDS35-HIGH-P/LONG(1.0/1.0)

IDSAT-HIGH-P/LONG(1.0/1.0)

IDS35-HIGH-P/SHORT(1.0/1.0)

IDSAT-HIGH-P/SHORT(1.0/1.0)

Figure 3.5 PIES Causal Analysis Graph

3.4. Strengths and Weaknesses of Experiential Knowledge

In a causal association network, only one predicate is being manipulated by the

computer. This predicate might be called CAUSES (as in A CAUSES B). A link in the

network indicates that the event or condition represented by one node is a potential

cause for the event or condition at the node it is linked to. Inversely, the event or

condition represented by the second node is a possible consequence or manifestation of

the event or condition represented by the first node. The nodes being linked, however,

are atomic and opaque: they can represent anything. Indeed, a node consists of little else

than a symbolic name for the condition or event it stands for.

This representational scheme provides great flexibility. One can indicate

potential causal relationships between any two phenomena that one can give names to.

However, this flexibility comes at a cost. There are two interrelated problems connected

22 Chapter 3: Experiential Knowledge

with it that together are often described as “brittleness” of the knowledge base. The term

brittleness refers to the inability of knowledge-based systems to adapt to changes in

context. The semiconductor world is characterized by rapid and continual change.

Semiconductor manufacturing plans have a short life-span. Thus, it is a serious

shortcoming if a system designed to diagnose a manufacturing plan cannot adapt

quickly to changes in the plan.

The first problem is that the applicability of the knowledge in an experiential

knowledge base depends on contextual assumptions that are not explicitly represented.

In our case, these contextual assumptions concern the structure of the manufacturing

plan. As a consequence, such knowledge might be applied inappropriately in a new

context. The second problem is that the applicability of the knowledge is unduly

restricted by the specificity of the terms employed (the choice of symbolic names used to

represent events and conditions). This can lead to the possibility that knowledge that is

relevant might not be applied.

These two problems are present to some degree in all knowledge-based systems,

regardless of the knowledge-representation used. However, systems based on direct

associations between high-level concepts are especially prone to these problems. In

particular, the contextual assumptions are not made explicit because they cannot be

usefully represented: the impact of a change in these assumptions cannot be deduced, as

the knowledge is not represented with sufficient detail to permit an indication of how

the associations depend on the assumptions. Similarly, knowledge encoders use overly

specific terms because they are unable to describe in a general way how classes of

concepts are interrelated. In both cases, alleviating the problem requires representing

knowledge of the domain with greater detail, at a finer level of “granularity.”

Consider this example of an association from the PIES knowledge base (entitled

AESOP) constructed by Patrick Dishaw [11]:

POLY-GATE-UNDER-ETCH →CHANNEL-LENGTH-LONG

This association reports a connection between a processing anomaly (under

etching of the polysilicon gate) and a physical structure anomaly (overly long channel

length). The association was determined by statistical experiments with a simulator.

However, much is understood concerning why such a connection should occur.

3.4. Strengths and Weaknesses of Experiential Knowledge 23

At one stage of processing, a layer of polysilicon sits over a thin layer of silicon

dioxide, which in turn sits over the single crystal silicon substrate. The polysilicon layer

has a layer of photo-sensitive resist above it which has been “patterned” (i.e., selectively

removed in some areas but not others) by a sequence of photolithography steps (figure

3.6).

An Etch step is then performed, during which the polysilicon in those areas not

covered by resist reacts with a plasma of a reagent, and is thus removed little by little,

working from the exposed surface towards the interface with the silicon dioxide. The

result is that the polysilicon is completely removed from the wafer in those areas not

covered by resist. The pattern in the resist is thus “transferred” into the polysilicon layer.

Oxide PolysiliconResist

Figure 3.6 Configuration just before Poly Gate Etch

An electric field directed perpendicular to the surface of the wafer helps to make

this etching process anisotropic: the process works faster in the “vertical” direction than

in the “horizontal” direction. Nonetheless, some material is removed laterally as well as

vertically, so that some material is removed from under the resist, and the “sidewalls” of

the remaining polysilicon are at a slant (about 70 degrees, in this case; figure 3.7).

Indeed, the etching process is purposely continued about twenty percent longer

than is required to etch through the vertical thickness of the polysilicon layer so that this

lateral etching can move the lateral boundaries of the polysilicon under the boundaries

of the covering resist.

24 Chapter 3: Experiential Knowledge

undercut 70° sidewall

Figure 3.7 Configuration after Poly Gate Etch

Later in the process an Ion Implantation step is performed. During this step, ions

of a dopant are directed at the wafer with sufficient energy that they penetrate the

surface and come to rest at some distance below the surface. In those areas not covered

by polysilicon, the ions enter the silicon substrate, whereas in the covered areas the ions

come to rest primarily in the polysilicon layer.

Source Gate Drain

channel length

Figure 3.8 Formation of MOSFET

Still later an Annealing step will cause the ions to be incorporated into the crystal

lattice of the silicon, forming p- or n-type doped regions, depending on the type of the

dopant. Thus, the inverse of the pattern of polysilicon is transferred into a pattern of p-

or n-type doped regions in the silicon substrate (figure 3.8).

The resulting structure is a Field Effect Transistor. The polysilicon serves as the

GATE of the transistor, and the doped regions form the transistor’s SOURCE and

3.4. Strengths and Weaknesses of Experiential Knowledge 25

DRAIN terminals. The CHANNEL LENGTH is the lateral distance between the edges of

the source and drain regions, i.e., the length of the region between them that lacks

dopant ions.

In the diagnostic association, the process-level anomaly named POLY-GATE-

UNDER-ETCH refers to a failure condition in which the ETCH step that defines the

POLYsilicon GATE is performed for too short a period time. The expected result is that

the lateral etching described above takes place for a shorter time, and thus the gate

structure is longer than it should be. Since the polysilicon of the gate acts as a mask to

the control the implantation of dopant ions in the Ion Implantation step, the increased

length of the gate is ultimately reflected as an increased CHANNEL LENGTH.

The context not represented in this case includes the following:

1) the process used by the Etch step in question is not completely anisotropic (it is
possible for the degree of anisotropy to be much higher, so that very little lateral
etching takes place at all; in this case a more isotropic process was employed
because the sloping walls that result make laying metal wires over the structure
less troublesome);

2) the etch operation is masked: in some areas the wafer is covered with a material
(photoresist) that resists etching, while in others the polysilicon is exposed to the
etch process, so that etching occurs only in the exposed areas;

3) the duration of the etch step is intentionally extended to compensate for the
sloping walls by moving them back under the resist;

4) the process is “self-aligned”: that is, the edges of the source and drain regions are
determined directly by the edges of the gate, rather than by photolithography
with another mask.

At the same time, the association is too specific. Clearly, any time that lateral

etching is taking place a failure to etch sufficiently will have an impact on the lateral

positions of the walls formed by the step. However, this association applies only when

polysilicon is being etched, and only refers to the impact on a single type of structure

(the MOSFET Gate), despite the fact that the very same etch step is also simultaneously

creating other structures, such as polysilicon wires and capacitors. Although additional

causal associations might link the over-etching of the polysilicon gate with physical

anomalies in other structures being simultaneously manufactured, there would be no

representation of the fact that these additional associations are instances of the same

general phenomenon. Each such association would have to be added independently.

This fact contributes to potential problems with the completeness of an experiential

26 Chapter 3: Experiential Knowledge

knowledge base. In truth, the AESOP knowledge base does not have these additional

associations, because the associations were obtained by simulating the manufacturing

plan using numerical simulators, and these other structures were not among those

whose manufacture was simulated. (Any model-based knowledge base would suffer the

same incompleteness when the structures reasoned about do not include all typical

structures being manufactured.)

Further, whenever an Ion Implantation step is masked by a structure on the

wafer, any deviation in the lateral positions of that masking structure’s edges will affect

the edges of the regions formed by the implanted dopants, but this association is

restricted to talking about the channel length of MOSFETs.

In part, the over-specificity in this example was an effort to incorporate

contextual information. There are several etch steps in any process, and there are many

structures created on the wafer, but it is necessary to identify the etch steps and

structures that correspond to each other: which etch steps define the edges of which

structures? Which etch steps and structures are appropriately CAUSALLY linked? In the

example, this question is finessed by referring to a specific etch step and a specific

structure known to be causally linked. This solution is necessary because the PIES

system has no representation of the manufacturing sequence, the wafer structures

created, or how these relate to one another in general.

Chapter 4. Theoretical Knowledge

In this chapter we briefly describe model-based reasoning as a method of representing

and reasoning with theoretical knowledge. We then discuss some aspects of the

manufacturing domain in general, and the semiconductor manufacturing domain in

particular, that introduce additional complexity to the model-based reasoning approach.

Next we describe the general character of the modeling technology we employ: the

Gordius system [14], comparing and contrasting it with first-order predicate logic and

calculus. After that introduction, we continue with a detailed discussion of the elements

of the representational machinery. Then we discuss in some detail how the machinery is

used to represent theoretical knowledge of the semiconductor manufacturing domain.

Finally, we summarize some of the main points of the chapter.

4.1. Model-Based Reasoning

One alternative to driving the diagnostic task with experiential knowledge is to appeal

to theoretical knowledge. In the case of engineered systems, the relevant theoretical

knowledge available concerns how the system works, or why it works the way it does.

The key idea is that understanding how the system works is an aid, though not a

prerequisite, to diagnosing why the system might be failing.

The term “Model-Based Reasoning” refers to reasoning about the behaviour of

systems using models of the mechanisms underlying that behaviour. The design of these

models supports generation of causal explanations for the behaviour of the system. In

some cases, causal descriptions are obtained from acausal (equation) models via a

process call causal analysis [15]. One can distinguish two approaches to model-based

reasoning. The first approach, which we term “holistic,” directly describes the behaviour

of the entire system [16]. This description is composed of functional dependencies and

behavioural events. The behavioural description may or may not reflect the structure of

the system. The system’s behaviour is described directly, not inferred from the system’s

structure. The second approach is “reductionist”: the system is decomposed into sub-

components which have behavioural models [3, 17-20]. The behaviour of the system as a

28 Chapter 4: Theoretical Knowledge

whole is then inferred from the models of the behaviour of the sub-components and the

description of how the sub-components are connected to form the system (the system’s

structural description).

Model-based techniques can represent knowledge at a greater level of detail than

is generally possible with direct causal associations or heuristic rules, without a

concomitant increase in the size of the knowledge base required. This is because the

models they employ are compact axiomatic systems from which large amounts of

detailed information can be derived by deduction. This is especially true for the

reductionist approach, wherein modeling the behaviour of a few components permits

the generation of behavioural descriptions for large complex systems composed from

those components.

Diagnosis is performed by propagating information about observed anomalies

backwards along the “causal pathways” of the system to identify what components of

the system might be responsible for the observations. The causal explanation description

of the system’s behaviour generated by model-based reasoning identifies these causal

pathways.

In addition to the small size of the knowledge base that one has to construct, the

key advantage of the model-based approach stems from the generality of the models,

which leads to a form of robustness. The models are written in a sufficiently general

fashion that they apply to a wide variety of potential situations. In the case of the holistic

approach, the models are written to correctly predict the response of the system to a

wide variety of possible stimuli. In the reductionist approach, the component models are

written to correctly predict the behaviour of the components (or correctly predict what

processes will act) in a wide variety of contexts in which the components may be used.

This in turn implies that the behaviour of a wide variety of systems composed of these

components can be predicted, and explained in causal terms.

The reductionist approach can be further subdivided into two categories: device-

centered and process-centered. The device-centered approach attaches a model of

behaviour directly to each sub-component of the system. It is called device-centered

because the construction of models is centered on describing how these sub-

components, or devices behave. A prime example of the device-centered approach to

reductionist model-based reasoning is the work on reasoning about digital circuits [20,

4.1. Model-Based Reasoning 29

21] . In this work, the behaviours of individual gates and/or sub-assemblies such as

registers are described, and the behaviour of a complex circuit composed of such

components is inferred.

Rather than attaching behaviours to devices, the process-centered approach

concentrates on describing the world in terms of continuous phenomena called

processes that spontaneously occur whenever specific circumstances hold [18]. These

processes act like Newtonian forces, influencing particular physical variables to change

continuously. Like forces, when several processes influence the same physical variables,

their impact is determined by summing these influences. This approach is most

successful when applied to systems describable using first-order ordinary differential

equations.

4.2. Special Considerations of the Manufacturing Domain

In our domain, the ‘system’ to be reasoned about is the manufacturing process, which is

driven by a manufacturing plan. The constituent components of the process are the

individual manufacturing operations called for in the plan. In manufacturing domains

which involve assembly of sub-assemblies, the topology of the system is a tree that

branches backwards in time: the assembly operations are the nodes with multiple

branches, because they bring together independently manufactured sub-assemblies. In

the semiconductor domain, the topology of the system’s structure is quite simple: the

operations are performed in linear sequence (we shall not be concerned, for the most

part, with the minor ways in which real semiconductor manufacturing processes deviate

from a linear sequence).

A device-centered reductionist approach is most appropriate for the

semiconductor manufacturing domain. In this domain, the ‘devices’ to be modeled are

the manufacturing operations. The models describe the behaviour of each operation by

describing the impact of each operation on the materials being processed. In this way the

diagnostic system can adapt to changes in the manufacturing plan, because the

manufacturing plan is an explicit input into this computational process. The causal

pathways through the manufacturing process are inferred by reasoning with models of

the individual operations.

There are different levels of granularity at which the manufacturing operations

might be modeled. At one level, each operation can be viewed as a discrete action which

30 Chapter 4: Theoretical Knowledge

has a well-defined impact on the product being manufactured. At another level, the

modeler can recognize that a single operation can span an interval of time during which

processes act continuously to modify attributes of the product being manufactured. Our

focus is on the manufacturing process as a whole. We will be concerned with how the

individual operations interact and combine to form a complete manufacturing process.

Thus, we will concentrate on the discrete action level of granularity. Indeed, for that

reason we call the model-based component of our reasoning system the Discrete Action

System (DAS). A system that focused on the diagnosis and/or control of a single

operation might prefer to reason at the continuous process level of granularity.

The manufacturing domain differs in one important respect from most domains

in which device-centered model-based reasoning has been applied previously. This

technique has been applied in domains in which the topology of the system’s structure is

fixed, and the signals that are transferred between the system’s components are

relatively simple. For example, in the digital circuit domain the structure of the system is

given by the topology of interconnections among the gates, and the signals that pass

between the gates are simple boolean values.

There are two ways to view the situation in the manufacturing domain. One way

is to consider that the components of the system are the operations, and that the

topology of the system’s structure is the fixed topology of the manufacturing plan. In

this view, the signals that pass between the components are descriptions of the products

being manufactured. These signals are quite complex. The description of the product is

highly structured, and does not necessarily have a fixed number of variables. For

example, in the semiconductor domain the product is the wafer and its description

includes many variables for the attributes of an a priori undetermined number of regions

and physical layers. The number of variables and the structure of the signal is

determined by the behaviour of the manufacturing process — what kind of product it

produces.

On the other hand, one could decide that the signals are the variables

representing individual attributes, and the topology of the system is the topology of

functional dependencies among these variables. In that case, the system’s topology is not

known a priori. One must simulate the manufacturing process to determine what the

variables are and what the topology of the functional dependencies is among them.

4.2. Special Considerations of the Manufacturing Domain 31

Further, when diagnosing failures, one must contend with the possibility that the mode

of failure induces a change in the topology of the functional dependencies.

Regardless of which view one prefers to take, the key issue is that before

diagnostic reasoning can take place it is necessary to assimilate the manufacturing plan

by symbolically simulating it to determine the structure of the signal and/or the

topology of the system. If fault modes that change the topology of the wafer are to be

handled, then it is also necessary to simulate such faults.

This need for assimilation is also true of systems that employ the process-

centered approach to model-based reasoning. It is necessary to perform what is called an

“envisionment” or at least a simulation to determine what processes might be acting,

and thus what functional dependencies exist in the system. An envisionment attempts to

create a finite discrete description of all states that the system might enter, and all ways

that the system might make a transition from one state to another. A simulation starts

from a single initial state and traces a single path or a forward-branching tree of paths

through states attainable from that initial state.

It is sometimes the case that one cannot directly observe characteristics of the

product manufactured. This is indeed true in the semiconductor domain. In such cases,

the failures to be diagnosed are detected as anomalies in the behaviour of the product.

Thus, as well as modeling and reasoning about the behaviour of the manufacturing

process, to perform diagnosis one must also model and reason about the behaviour of

the product that was manufactured. In this work we model the behaviour of the devices

and test-structures created on the wafer with simple analytical expressions. These

expressions describe the behavioural features of devices as functions of their physical

features. The efficacy of this approach was demonstrated in [6, 7] and in [4, 5] .

4.3. The Modeling Technology

4.3.1. The Gordius System

The Discrete Action System is built on a system called Gordius [14] that was designed

for reasoning qualitatively about plans. This subsection describes that system,

comparing it with Predicate Logic and the Predicate Calculus.

32 Chapter 4: Theoretical Knowledge

4.3.1.1 Gordius versus Predicate Logic
The key input to the Gordius system is a description of the actions of which plans are

composed. This description includes statements about the preconditions necessary for

execution of an action, the effects of executing an action, and any constraints that might

hold while the action is executed. The actions can be parameterized, in which case the

description names these parameters and indicates their types.

These statements are made in a formal language that consists of a Lisp syntax for

First-Order (Predicate) Logic (FOL) [22]. However there are several distinctions to be

made between the Gordius language and predicate logic. Predicate logic is a system for

expressing facts. The logic is concerned with the syntax for expressing facts, how

meaning is assigned to the resulting expressions, and what other facts are entailed by a

given set of facts. The predicate calculus is concerned with rules of inference: how new

facts are derived from old ones. This can also be viewed as: how the entailment of new

facts by old ones is proven. The Gordius language is an extension of the predicate logic,

but only a subset of the predicate calculus.

The first extension is that the Gordius language is a typed logic. All constants,

functions and variables in the language have a specific type, and quantified statements

are always quantified over individuals of a specific type or elements of a set that is a

subset of all individuals of a specific type. The language employs an object-oriented

approach to defining types and specifying for each object-type what attribute functions

apply to it. A simple form of taxonomic hierarchy is supported, and information about

the applicability of attribute functions is inherited.

The second extension is that the Gordius language includes a simple form of

nonmonotonicity. Reasoning about plans requires reasoning about time. Gordius

reasons about time explicitly. That is, time is an explicit variable in expressions

concerning the value of an object’s attributes and in statements about change. Any

system that explicitly indexes the values of functions or the truth of statements by time

incurs a problem known as the Frame problem [23]. Stated simply, the frame problem

arises because we cannot deduce anything about the world at a given time from

knowledge of the world at a previous time, unless we somehow axiomatize inertia —

the fact that truths tend to persist through time. Gordius handles this problem by

making persistence assumptions. Whenever an object is created or an attribute of an object

4.3. The Modeling Technology 33

is changed to a new value, Gordius explicitly assumes that the new object continues to

exist or the attribute retains its new value forever, unless it can prove otherwise.

Here is where nonmonotonicity comes in. Normally, in predicate logic the

addition of new facts to a knowledge base does not change the set of facts entailed by

those facts previously in the knowledge base. One says that the body of facts entailed

grows monotonically as new facts are added. In Gordius, the addition of new facts can

change the set of facts entailed, because the new facts can contradict the persistence

assumptions. For example, the discovery that an etching operation removes a layer from

the wafer contradicts the assumption that the layer continues to exist forever. Thus, the

Gordius system is nonmonotonic: facts previously held to be true, such as that a layer’s

existence persists beyond a certain time, can become false as new information is

obtained. This approach is similar to that of Yoav Shoham’s potential histories [24]. The

situation is simplified in Gordius by the fact Gordius does not have to reason about the

persistence of continuous change such as motion. All change is confined to occur within

the time intervals spanned by actions. Between these dynamic intervals, all values are

quiescent, and Gordius only reasons about the persistence of these quiescent values. The

fine time-structure of events internal to a dynamic interval is not reasoned about: only

the ultimate impact of the action is described. Thus, Gordius need not concern itself with

the problem of deciding when potential histories intersect.

4.3.1.2 Gordius versus Predicate Calculus
The reasoning mechanisms of Gordius differ from predicate calculus in two significant

ways. The first way concerns concrete versus abstract reasoning, and the second

concerns semantic attachment. Predicate calculus is said to be both sound and

complete. The soundness of predicate calculus implies that only facts that are entailed can

be deduced. The completeness of predicate calculus implies that every fact that is

entailed can be deduced. Unfortunately, predicate calculus is also only semi-decidable. If

a fact is not entailed, then the predicate calculus inference procedure is not guaranteed

to terminate. This means that it can take an infinite amount of time to decide whether a

given fact is deducible. Further, even when facts can be derived in a finite amount of

time, the amount of time it takes may be an exponential function of the number of facts

in the knowledge base. The two major ways that Gordius differs from predicate calculus

are both aimed at avoiding this time-complexity. Unfortunately, one difference (concrete

reasoning) makes Gordius incomplete, and the other (semantic attachment) makes the

soundness of Gordius difficult to demonstrate and maintain.

34 Chapter 4: Theoretical Knowledge

To describe the first difference, we introduce a distinction between abstract and

concrete reasoning. By abstract reasoning, we mean the inference of new general

statements from other general statements. Consider the two statements: (a) “Every

mammal is either male or female, but not both,” and (b) “If a mammal can bear children,

that mammal is female.” These are general statements about all mammals. From these

two statements, we can easily infer that (c) “If a mammal can bear children, that

mammal is not male.” This is also a general statement about all mammals. The inference

of (c) from (a) and (b) is an abstract inference: no reference to specific individuals was

required to make it. This sort of inference is within the purview of predicate calculus,

though the actual derivation might be longer than one would hope.

Abstract inference of this sort is not possible within Gordius. Gordius can only

perform concrete reasoning, which we define as reasoning about specific individuals.

Gordius accepts general statements of the form (a) and (b), but it can only apply them to

specific individuals. Thus, for every specific child-bearing individual Gordius will be

able to conclude that the individual is female and therefore not male, but it will not be

able to explicitly conclude the general statement that all child-bearing individuals are

not male. Note that this limitation does not in any way affect the meaning of the

statements made — it only affects the ability of the system to deduce the consequences

of these statements. In particular, the system will not deduce any general consequences.

While this may seem like a very severe limitation, it does not turn out to be very

important for our application, as we are primarily interested in how the general

statements about the effects of actions affect specific individuals (for example, specific

layers and regions on wafers). Also, it is a limitation that buys tremendous efficiency,

because it reduces reasoning in predicate logic to the complexity of reasoning in

propositional logic, which is completely decidable (though still exponential).

This limitation to concrete reasoning is due to the treatment of quantified

statements. General statements are made in predicate logic by introducing variables into

the expressions where terms representing individuals are appropriate, and quantifying

those variables. There are two types of quantification. Universal quantification is used to

express statements that apply to every member of a class of individuals. The statements

a and b in the example above are both universally quantified. We can rephrase the

English to better reflect how they would be written in predicate calculus: (a) “For every x

that is mammal, x is female and x is not male, or x is male and x is not female,” (b) “For

4.3. The Modeling Technology 35

every x that is mammal, if x can bear children then x is female.” Statement c above is also

a universally quantified statement. Gordius handles universally quantified statements

by doing two things: it applies the statement to all appropriate individuals that it knows

about and it sets up what is called a daemon . A daemon is a rule that fires whenever the

system determines that a new individual (of appropriate type) exists. The daemon

applies the quantified statement to every new individual that comes along. Applying the

quantified statement to an individual means substituting the constant naming the

individual for every occurrence of the quantified variable in the statement. This turns

the quantified statement into a ‘ground’ statement, which has no variables (and no

quantifiers). Ground statements can then be treated as propositions.

Existential quantification is used to express statements about the existence of

individuals with certain characteristics without naming the individuals. The statement

“John has a mother” employs existential quantification. This statement would be

expressed: “There exists x that is human, such that x is the mother of John.” For concrete

reasoners, existential quantification is problematic precisely because no specific

individuals are identified. For this reason, existentially quantified statements should not

be used as assertions in Gordius. They can be used, however, in places where they have

a negative sense. This is because the negative of an existential statement is a universal

statement, and vice versa. Thus, one can use an existentially quantified statement in the

‘if’ part of an ‘if-then’ implication, because the ‘if’ part has a negative sense. It is easy to

test whether it is known that, “John has a mother.” For the same reason, one should not

use universally quantified statements in the test part of an implication (or other place

where it would have a negative sense). The system can never be sure whether all

individuals of a given type satisfy a condition, because it can never know that it has met

all individuals of that type. It also means that neither type of quantified statement can be

used on either side of an equivalence statement. Both sides of an equivalence statement

have both positive and negative senses, as an equivalence statement such as “A if and

only if B” is logically equivalent to “if A then B and if B then A.” The exception to this

rule is universal quantification over the members of a finite closed set, since in this case

the system knows all the individuals involved (and knows that it knows!).

There is one exception to this rule regarding the use of existential quantification

in Gordius. Gordius provides a quantifier called “CREATED,” which can be used to

indicate that the effect of an action introduces a new individual of a given type at a

specific time. This is essentially an existential quantifier, equivalent to “There exists a

36 Chapter 4: Theoretical Knowledge

unique individual x whose life span starts at time t such that...” However, since the

statement refers to a specific new individual the system can create a constant name for

the individual and reduce the expression to a proposition by substituting this name for

the quantified variable, as it does for universal quantification. Thus, the CREATED

quantifier is an existential quantifier that can be used where it would have a positive

sense. Further, it generally does not make sense to use it where it would have a negative

sense, and this is not permitted.

The second major difference between Gordius and predicate calculus is that

Gordius relies heavily on semantic attachment [25] Semantic attachment (also known as

procedural attachment) is the technique of using specially coded reasoning procedures

to make inferences concerning certain predicates, rather than relying on axioms and the

general rules of inference. A common example of semantic attachment concerns the

treatment of numbers. One could perform all reasoning regarding natural numbers by

using Peano’s axioms of arithmetic. However, it is generally more useful and efficient to

use the computer’s built-in ability to represent and compute with numbers. Logic

programming languages such as Prolog [26, 27] do precisely this.

Gordius uses semantic attachment for two purposes, both aimed at reducing the

computational time-complexity of reasoning. The first purpose is to take advantage of

the fact that inference with iconic (or analogic) representations is often much more

efficient than formal manipulation of sentences in logic. An iconic representation is a

representation that employs a data structure or procedure that has an isometric

relationship to the logical relations of interest. For example, the ordinal relations ‘<,’ ‘=’

and ‘>’ induce a lattice among quantities. Gordius employs a subsystem called the

Quantity-lattice [28] to reason about such relationships among quantities. The quantity-

lattice subsystem employs a graph data structure that explicitly represents the lattice.

Inferences based on transitive closure over these relations can be computed efficiently by

traversing this data structure.

Objects called layers and regions are used to represent the structures built up on

a wafer during manufacturing. Semantic attachment is used to keep track of time-

varying relations among these, such as what layer is immediately above another at a

given time. It is more efficient to examine the data structure employed by this semantic

attachment to determine whether a given layer is above another at a given time than to

construct a proof (or disproof) of that fact, which would have to examine all

4.3. The Modeling Technology 37

manufacturing events occurring before the specified time. The data structures constitute

a symbolic ‘diagram’ of the spatial relationships among the layers and regions they

represent.

The second purpose for semantic attachment concerns equality reasoning.

Formal manipulation of logic sentences requires, as an integral operation, the matching

(unification) of terms. It is important to know when two terms represent the same

individual. This is not trivial because all individuals can be referred to in many ways.

For example, “Elsie” and “John’s mother” might represent the same individual, but

these two expressions are syntactically different (in predicate logic as well as in English).

For these two terms to be unified the system would have to prove that they represent the

same individual, and then use substitution of equals to make the two statements being

unified syntactically identical.

The Gordius system is built on another system, called the Reasoning Utilities

Package [29]. This subsystem is capable of performing this equality reasoning. However,

as one might expect, equality reasoning is very expensive. It requires an extensive search

for ways to prove that two terms might be equivalent every time it attempts to match the

terms. Matching terms, though, is a very frequent “inner loop” computation in logical

reasoning. Thus DAS has the equality reasoning feature within Gordius turned off.

Instead, where equality reasoning is important DAS relies on semantic attachment.

Every individual that DAS reasons about is represented by a Lisp object in the ‘diagram’

due to semantic attachment. This means that every individual in the universe of

discourse has a canonical name. For those circumstances where equality reasoning is

important, DAS uses semantic attachment to evaluate terms, determine the individuals

they represent, and substitute their canonical names.

For functions representing time-varying attributes of objects, semantic

attachment is automatic in Gordius, due to the object-oriented type system mentioned

above. For other predicates and functions, Gordius has two features for creating

semantic attachments. These are called generic-predicates and generic-functions . By

declaring a predicate to be a generic-predicate, one can provide arbitrary Lisp code to

implement that predicate. A prime use of generic-predicates is to perform the

substitution of canonical names required as a substitute for equality reasoning.

38 Chapter 4: Theoretical Knowledge

While use of semantic attachment can improve efficiency, it also reduces

confidence in the soundness of reasoning, as the reasoning procedure now incorporates

arbitrary Lisp code, and its soundness depends on the validity of that code.

4.3.2. Elements of the Representational Machinery

4.3.2.1. Temporal Objects and Attribute Functions
As mentioned in the previous subsection, the Gordius modeling language is a typed

logic. Gordius provides several basic types, including various types of real numbers (for

example finite-positive-real), time-points, time-intervals and sets. It also

provides a mechanism for creating user-defined types. All user-defined types are

subtypes directly or indirectly of the basic type ‘temporal-object.’ Temporal-objects

have a limited life span: each individual’s existence starts at a specific time-point, and

extends over a continuous interval of time, which may be indefinite in length.

The schema used to define new types of temporal objects also enables the user to

specify a set of functions applicable to individuals of the type being defined. These

functions specify time-varying attributes associated with these objects. There is a simple

inheritance mechanism by which the attribute functions that are applicable to

individuals of a given type also apply to individuals of any direct or indirect subtype.

Intuitively, an individual to which an attribute function applies is considered to have that

attribute.

Figure 4.1 below gives some examples of the schema for defining new types. The

schema is implemented as a Lisp macro called defGDobject. The first argument of the

macro is the name of the type being defined. The second argument is a list containing

the name of the supertype of which this type is a subtype. Finally, the third argument is

a list of attribute function specifications. Each attribute function specification is a list of

the name of the attribute function and a specification of the type of the function’s value.

As shown in the figure, the type horizontal-region is a subtype of temporal-object to

which the functions left, right, left-pos and right-pos apply. The values of the left and

right attribute functions are individuals of type horizontal-region, and the values of the

left-pos and right-pos attribute functions are finite real numbers. Thus, a horizontal-

region object has attributes called left and right, which indicate what other horizontal-

region object is to be found to the left and right, respectively, of the object at any given

time. It also has numerical time-varying attributes indicating its left and right spatial

extents.

4.3. The Modeling Technology 39

;;; Class of objects that describe the lateral topology
;;; and dimensions for a single laterally homogeneous region
(defGDobject HORIZONTAL-REGION (temporal-object)
 ((left horizontal-region) ;; neighbour
 (right horizontal-region)
 (left-pos finite-real) ;; position
 (right-pos finite-real)))

;;; Class of objects that describe the lateral topology
;;; and dimensions for a single laterally homogeneous region
;;; of a 2D slice through a structure on a wafer
(defGDobject WAFER-REGION (horizontal-region)
 ((region-type region-type)
 (pieces (set . wafer-region))))

;;; Class of objects that describe the lateral topology
;;; and dimensions for a single laterally homogeneous region
;;; of a mask for a 2D slice through a structure
(defGDobject MASK-REGION (horizontal-region)
 ((left-wafer-region wafer-region)
 (right-wafer-region wafer-region)
 (opacity (one-of (constant opaque)
 (constant transparent)))))

Figure 4.1 Example type definitions

The wafer-region type and the mask-region type are both indicated as subtypes

of the horizontal-region type. Thus, the attribute functions that apply to horizontal-

region individuals also apply to wafer-region and mask-region individuals. In addition,

wafer-region objects have an attribute called region-type whose value is an object of type

region-type, and an attribute called pieces whose value is a set of the sub-regions that

the region might be subdivided into. The expression given as the value type for the

opacity attribute of mask-region objects indicates that the value of this attribute must

always be one of the two specified constant values ‘opaque’ and ‘transparent.’

The value of any attribute function is actually a history. A history specifies the

value of the attribute as a function of time. It is similar in concept to a fluent [23]. A

history is composed of a sequence of time intervals, alternating between two types:

dynamic and quiescent . A dynamic time interval is a time interval during which the value

of the attribute undergoes some change. The bounds of a dynamic time interval are

determined by the time interval during which the action responsible for the change

occurs. The value of the attribute is considered to be known only at the time points that

begin and end the interval. A quiescent interval is a time interval during which the value

40 Chapter 4: Theoretical Knowledge

of the attribute is not changing. Thus, the value of the attribute is the same at all time

points within the interval.

The function ‘@’ is used to extract the value of an object’s attribute at a given time

point. Thus, if ‘mr-1’ is a mask-region, then the mask-region to its left at time ‘t’ is ‘(@

(left mr-1) t).’ When the type of the value of an attribute is itself a subtype of

temporal-object, then this syntax can be nested. The opacity of the mask-region to the

left of mr-1 at time t would be

‘(@ (opacity (@ (left mr-1) t)) t)’

To simplify expressions, Gordius permits elision of the interior applications of

the @ function when all applications refer to the same time point. Thus, the previous

expression can be rewritten as ‘(@ (opacity (left mr-1)) t).’ The time points

most commonly referred to are those that begin and end dynamic time intervals. The

two functions ‘start-of ’ and ‘end-of ’ applied to a time interval express the time

points that respectively begin and end the time interval.

4.3.2.2. Action Descriptions
Modeling activity in Gordius is principally concerned with describing the effects

of actions. These effects involve the creation and destruction of objects, and changes in

the values of objects’ attributes. The modeling language was originally developed for

reasoning in the domain of geologic processes, and so for historical reasons actions are

called ‘processes.’ Gordius provides a Lisp macro called defProcess that implements a

schema for describing these processes. Figure 4.2 indicates the syntax used. The

description may contain up to five components, each labelled with one of the five labels:

‘ako,’ ‘preconditions,’ ‘parameters,’ ‘effects’ and ‘constraints.’ Any component can be left

out (though a process description without the effects component would not be very

useful). To avoid confusion with other uses of the word ‘process’ in this document, we

will continue to use the term ‘action’ for what Gordius calls ‘process.’

Preconditions are statements that must hold so that it is possible for the action to

occur. Such statements are useful when attempting to synthesize plans. During plan

synthesis the preconditions of an action to be included in a plan become sub-goals that

must be satisfied in the context in which the instance of the action is to occur. As this

4.3. The Modeling Technology 41

dissertation is not concerned with synthesis, our models will not include descriptions of

preconditions.

(defprocess <process-name>
 ako <super-process>
 preconditions <list of precondition statements>
 parameters <list of (<parameter-name> <parameter-type>)>
 effects <list of effects statements>
 constraints <list of constraints>)

Figure 4.2 Schema for describing processes (actions)

Actions can be parameterized. In that case the names of the parameters are

explicitly listed in a separate component of the description. Associated with each

parameter name is a specification of the type of the acceptable values for the parameter.

The effects component of the description is a list of statements that indicate the

impact of an occurrence of the action. This corresponds to but extends the add and

delete lists of traditional discrete action representations ([30-32]. These extensions enable

the inclusion of effects that:

1. are expressed in terms which are relative to the input state (for example, “the
thickness of layer L1 decreases by 5”);

2. are conditioned on the input state (for example, “if the layer’s material is silicon,
then the thickness decreases”);

3. are universally quantified, allowing for world states with an a priori
undetermined number of individuals (for example, “for all layers, the thickness
decreases”); and

4. introduce new individuals, or terminate the existence of individuals.

 Changes to the attributes of objects are described by the “change” statement:

(change <type> <attribute> <change> <action> <interval>)

The form indicates that the <attribute> is affected by the <action> which

occurred during the <interval>. The <action> and <interval> specifications can

optionally be omitted, in which case the name of the instance of the action being

described and the interval during which it occurs are assumed. <attribute> is an

expression suitable as an argument to the ‘@’ function. It is an attribute function applied

to an object. <type> is either ‘=,’ or an arithmetic operator (+, -, *, /). If it is ‘=,’ then

42 Chapter 4: Theoretical Knowledge

an absolute change is being specified, and after the action occurs the value of the

<attribute> is equal to <change>. For example, the statement

(change = (above L1) THE-ENVIRONMENT ETCH1 I1)

represents the fact that after the ETCH1 instance of the ETCH action occurs during

interval I1, the layer above L1 is the surrounding environment (that is, L1 is at the

surface of the wafer, and no wafer layer is above it).

If <type> is an arithmetic operator, then a relative change is being specified and

after the action occurs the value of the <attribute> is equal to the result of applying the

operator to the initial value of the <attribute> and <change>. For example, the statement

(change - (thickness L1) 5 ETCH1 I1)

specifies that the ETCH1 event reduces the thickness of layer L1 by 5.

Change statements are only used where they would have a positive sense. One

does not assert that a specific change doesn’t happen, nor does one condition another

assertion on the truth of a change statement.

Effects statements can be combined using the logical operators of predicate logic:

conjunction, disjunction, negation, implication and equivalence. In Gordius, these

operators are denoted in prefix form, following the Lisp idiom. Conjunction is

represented by the logical operator ‘:AND,’ disjunction by ‘:OR ’ and negation by ‘:NOT .’

Conjunction and disjunction are n-ary rather than binary operators. Thus, if S1…Sn are

acceptable effects statements, then so are (:AND S1…Sn) and (:OR S1…Sn).

There are two distinct notations for implication. The syntax for normal

implication is: (:=> <antecedent> <consequent>). This is generally used when both

<antecedent> and <consequent> are relatively simple statements. When this form is

used, reasoning can occur in either the forward direction (from truth of antecedent

deduce truth of consequent) or the reverse (contrapositive) direction (from falsehood of

consequent deduce falsehood of antecedent).

Often it is the case that the contrapositive inference is not useful because

falsehood of the consequent will never be established. Gordius provides an alternate

4.3. The Modeling Technology 43

syntax for implications that are only intended to be used in the forward direction. The

syntax is identical to that for normal implication, except that the prefix operator is ‘:IF ’

(suggesting the programming-language IF-statement). When this form of implication is

used, Gordius does not attempt to evaluate the truth of the consequent until the truth of

the implication is established.

The syntax for logical equivalence is (:IFF Sa Sb). This statement asserts that

the truth of Sa is the same as that of Sb.

Gordius provides three versions of universal quantification. The first version

quantifies over all individuals of a given type that exist at a given time. The syntax is:

(FOR-ALL-EXISTING <var> : <type> <time> <statement>)

<var> is the name of the quantified variable, <type> is the type of individual that

<var> can be bound to, <time> is the time point at which the individuals that <var> can

be bound to must exist, and <statement> is an effects statement in which <var> appears

as a free variable. The statement indicates that <statement> is true of all objects of type

<type> that exist at time <time>.

The second version is more general. It can either quantify over all objects of a

given type or all members of a set (regardless of when these individuals exist). The

syntax is:

(FOR-ALL <var> <: or e> <type or set> <statement>)

<: or e> is either ‘:’ indicating quantification over a type, or ‘e,’ (suggesting

element) indicating quantification over the members of a set. <type or set> is either the

name of a type or a specification of a set, as appropriate to the type of quantification

indicated by <: or e>. This is the only form of universal quantification that can be used

where it would have a negative sense, and only when the quantification is over a finite

closed set. When the system is aware that it knows all the individuals being quantified

over, it can establish the truth of the quantified statement from the truth of the

<statement> for each binding of <var>.

44 Chapter 4: Theoretical Knowledge

The final version of universal quantification is similar to FOR-ALL, but realizes

an efficiency. The syntax is identical except that the prefix is FOR-ALL-TRUE. The

efficiency is that the <statement> is only evaluated when the truth of the quantified

statement is established.

Two versions of existential quantification are provided. The syntax for the

normal existential quantifier of predicate logic is:

(EXISTS <var> <: or e> <type or set> <statement>)

where the elements of the syntax are the same as for the FOR-ALL and FOR-

ALL-TRUE universal quantifiers. The quantified statement states <statement> is true

when <var> is replaced by some object(s) of type <type or set> or member(s) of the set

<type or set>.

The second version of existential quantification allows for the introduction of a

single new individual. The syntax is:

(CREATED (<var> <type> <time>) <statements>)

This statement asserts that a new individual of type <type> begins to exist at

time point <time>, and that the statements <statements> are true when <var> is

replaced in them by the name of this new individual. Note that this quantifier quantifies

any number of statements rather than a single statement. This syntax was chosen

because of the frequency with which the quantified statement is a conjunction of many

statements.

The termination of the life span of an object is indicated by the syntax:

(DESTROYED <object> <time>)

The constraints component of the process description contains statements that do

not indicate changes produced by the action, but rather describe how the changes

produced relate to one another. For example, a constraint might indicate that the total

dopant in a layer is the same before and after a diffusion operation occurs. The

4.3. The Modeling Technology 45

constraints component may also contain statements defining ‘macros’ that facilitate the

writing of effects statements. The syntax:

(DEFN <name> (<var1>…<varn>) <form>)

is a constraint that introduces new syntax. It states that expressions of the form

(<name> <val1>…<valn>) should be replaced by instances of <form>, with the values

<val1>…<valn> substituted for the corresponding variables <var1>…<varn>. This

feature can be used to create parameterized short-hand notation for frequently used

expressions.

Finally, the ‘ako’ component of the description allows for a taxonomic

organization and a simple form of inheritance among process descriptions. Ako is an

acronym for “a kind of.” Its argument is the name of a more abstract process that the

process being described is based upon. The inheritance is cumulative: the process being

described inherits all preconditions, parameters, effects and constraints of the super-

process and all its ancestors in the hierarchy, as well as those explicitly indicated in the

corresponding components of the description.

4.3.2.3. Generic Predicates and Functions
Along with the attribute functions defined by the specification of the object types that

will be used to represent elements in the domain, one can introduce predicates and

functions of arbitrary arity simply by giving them names and using them. Then the

models of actions must contain statements relating to these functions and predicates that

define what tuples of individuals satisfy the predicates and what values tuples of

individuals are mapped to by the functions.

However, it is also possible to attach Lisp procedures to predicates and functions

to help define them. Further, for the reasons mentioned in section 4.3.1.2 above, it is

sometimes necessary to employ the semantic attachment features of Gordius to handle

equality of terms through evaluation to canonical names for the individuals they

represent.

46 Chapter 4: Theoretical Knowledge

Gordius provides two Lisp functions for performing this semantic attachment.

The syntax for attaching a procedure to a predicate is:

(def-generic-predicate <predicate name>
 <list of (<argument name> <argument type>)>
 <optional body>)

The first argument to the function is the name of the predicate. The second

argument is a list specifying the arguments to the predicate. For each argument, a list of

the argument’s name and its type is specified. The remaining arguments form the

optional body of Lisp code that defines the predicate.

The terms given as arguments to the predicate are evaluated to determine the

Lisp objects representing the individuals that the terms represent, thus determining

canonical names for the individuals. Furthermore, each tuple of arguments passed to the

predicate are cached along with the truth-value of the predicate for that tuple, so that the

truth value is immediately accessible for any equivalent tuple of terms. If the optional

body is omitted, the truth-value is determined by the statements that employ the

statement.

If the optional body is included, it should ultimately assert a truth value for the

predicate for the tuple of arguments passed. Within this body of Lisp code, the name of

the predicate is bound to the statement whose truth-value is being determined, and the

symbols naming the arguments are bound to the Lisp objects representing the values of

the arguments. The function ‘assert-expr’ can be used to assert the truth-value

determined. Truth-values are specified by the keyword symbols :TRUE, :FALSE and

:UNKNOWN .

The syntax for attaching a procedure to a function is:

(def-generic-function <function name> <arguments> <value-type>
 <optional body>)

The first argument is the name of the function. The second is a list of argument

specifications, as for the def-generic-predicate function. The third argument specifies the

type of the value of the function. The remaining arguments form the optional body of

Lisp code that defines the function.

4.3. The Modeling Technology 47

The arguments to any call on the function are evaluated, and the tuple of Lisp

objects is cached along with the corresponding value. As in the case of predicates, the

Lisp code is optional. If omitted, the value of the term is determined by the statements

that employ it.

If the optional body is included, it should use the assert-expr function to assert

equality between the term being evaluated (to which the symbol naming the function is

bound within the body) and the term identifying the value. If a precise value cannot be

determined, it is also permissible for the body to make assertions that form a partial

description of the value. For example, if the type of the value is a real number, the body

may make assertions regarding how the value is ordinally related to other numbers,

thus bounding the value.

4.4. Symbolic Qualitative Modeling of Semiconductor Manufacturing

4.4.1. Goals of the modeling process

Although the models of semiconductor operations are structured around describing the

impact of each operation, their primary purpose is not to support the simulation task of

predicting the outcome of performing the operation. Indeed, as we shall see in the

chapter on process representation below (Chapter 5), the representation of the

manufacturing process used to drive the simulation will often contain explicit

statements describing the expected impact of performing the operation. The purpose of

these models will be to explicate the structure of the causal relationships in the

manufacturing process, to support the diagnostic task. Thus, in designing the models,

accurate prediction is not the main concern. Instead, the criterion to be satisfied is the

ability to generate a causal explanation why the operation achieves the impact that it

does.

In the context of supporting the use of generic rules (introduced in Chapter 6) to

perform diagnosis, the purpose of performing the simulation is even simpler. The rules

are about how anomalies in specific kinds of processing affect specific kinds of features

of the product being manufactured (in our case, specific kinds of structures on the

wafer). The purpose of the simulation is merely to perform the complex bookkeeping

chore of keeping track of which operations are causally involved in the creation and

modification of which features of the product.

48 Chapter 4: Theoretical Knowledge

Accomplishing this goal requires models with a certain degree of simplicity.

They should employ the kind of naive conceptualization of what’s going on in the

manufacturing process that admits of such causal explanations. The models described

here aspire to capture the “commonsense” model of semiconductor manufacturing

reflected in the two-dimensional depictions of vertical cross-sections through structures

on the wafer (such as figure 4.3) that semiconductor technologists typically draw for one

another in their daily communications.

It should be recalled that the major reason for going to all this trouble is to

achieve robustness in knowledge representation. The hope is that the same set of models

can be reused to reason about many different manufacturing processes. This implies that

the models must constitute a set of building blocks that can be put together in a variety

of ways to represent these different processes. The models must be designed to work

together, in the same sense that LEGO™2 bricks and parts are designed to work together

(for example, the form factors for LEGO™ windows always conform to the sizes and

shapes of holes that can be created with the bricks). Thus, it is important to pick a

conceptualization of the product and the manufacturing process and make the models of

all operations adhere to it. In deciding whether and how to represent phenomena, one

must consider how the decision affects the modeling of all operations represented.

4.4.2. Modeling the wafer

The models of operations describe the impact of the operations on the product being

manufactured. Further, the product’s state at the beginning of an operation can

influence the impact of performing the operation. Distinct operations in the

manufacturing process interact because they affect the same product. The effects of

subsequent operations mitigate the causal relationships between an operation and

features of the product. The product serves as the sole medium of communication for

this interaction. Thus, the description of the product carries the burden of this

communication during simulation.

2LEGO is a registered trademark of InterLEGO AG.

4.4. Symbolic Qualitative Modeling of Semiconductor Manufacturing 49

P P

N NP

PP P PP
P

P

N+ N +

N + N +

N +
N +

P-

P+ P+ P+

Figure 4.3 Sketch of Vertical Cross-Section Through BiCMOS Transistors
(from Prof. James Plummer, personal communication)

In the semiconductor domain, the product is the set of structures created on the

wafers processed. In modern manufacturing processes, literally millions of similar

structures are manufactured and connected into complex circuits. When reasoning about

the behaviour of the product, all these structures must be represented in order to reason

about the behaviour of the entire circuit. However, when reasoning about the

manufacturing process, one only reasons about prototypical examples of the kinds of

structures manufactured. One only recognizes that more than one instance of each

structure is being created when one is investigating nonuniformity of processing

distributed spatially across the wafer surface.

These structures are three-dimensional physical entities with potentially quite

complex geometrical shapes. However, most are designed with two axes of symmetry,

so that their geometries are adequately captured in two orthogonal “vertical” cross-

sections through the wafer. Furthermore, most processing occurs “from above.” The

manufacturing operations have effects that are ideally vertical. The “lateral” effects of

these operations are generally minimized.

For these reasons, the conceptual model adopted for describing wafer structures

employs what might be called a 11⁄2D approach. The wafer structures are represented by

50 Chapter 4: Theoretical Knowledge

a series of vertical strips. Each strip represents the sequence of layers one would

encounter in drilling a hole through the center of a laterally homogeneous region of the

structure. The strips retain their nominal lateral dimensions and the representation as a

whole maintains the lateral topology of the structure: which types of region are side by

side. However, no attempt is made to represent the complex geometry of the transitions

between regions. This fact is emphasized in the graphical representations of the wafer-

structure model by vertical gaps drawn between regions (Figure 4.4). This approach

allows the structures on the wafer to be composed entirely of simple rectangles. One

approach to creating a three-dimensional model of wafer structures using numerical

simulation uses a similar technique: many one-dimensional simulations are performed

simultaneously on a parallel computer and then juxtaposed [33].

This parallels the development of quantitative models of semiconductor

phenomena. The mathematical models used by the earliest quantitative simulators only

modeled a single, laterally homogeneous region of the wafer. Although two-

dimensional mathematical models [34, 35] , have been available now for several years,

most of the quantitative simulations performed still use one-dimensional models. This is

partly due to the computational complexity of these models, lack of faith in their

accuracy, and the general difficulty of getting university research results into

mainstream use. However, it is also the because the 1D simulations are sufficient for

many purposes, and the value of the additional information provided by higher-

dimension simulations does not warrant their additional computational expense.

Of course, such unavoidable lateral side effects cannot be ignored completely.

They can have an important impact on device behaviour. Also, modern processes

sometimes capitalize on these unavoidable effects by designing structures and processes

that depend on them. Nonetheless, it is very difficult to reason symbolically about the

inherently two-dimensional complex geometries that can occur at the transitions

between regions. It is an open research problem to develop an ontology for symbolically

describing two-dimensional shapes in a manner that facilitates reasoning about how

these shapes affect and are affected by the physical and chemical processes involved in

semiconductor manufacturing.

4.4. Symbolic Qualitative Modeling of Semiconductor Manufacturing 51

Region-type

Layer-Region

Layer-Region

 Distinct Wafer-Regions sharing the same Region-Type

Oxide SinkEpi layer

Buried
Collector

Figure 4.4 Cross-sectional drawing of a Collector-Under-Oxide resistor, and how
DAS represents this same structure.

Semiconductor technologists conceptualize regions of doped silicon in two

different ways. One way is to think of them as regions with well-defined boundaries

with homogeneous concentration of a single dopant. The depictions they draw, such as

Figure 4.3, reflect this conceptualization. Our models use this conceptualization. Doped

regions form distinct layers just as regions of distinct materials do.

The other conceptualization recognizes that concentrations of dopant vary

continuously, and that several dopants may exist simultaneously within the same region

52 Chapter 4: Theoretical Knowledge

of silicon. This conceptualization distinguishes between layers only when the basic

material is distinct. All the contiguous crystalline silicon is considered to be a single

layer, and dopant concentrations are represented by continuous curves called ‘dopant

profiles’ that indicate the concentration of each dopant species as a function of depth

below the surface of the layer. This alternate conceptualization is not considered in this

dissertation.

The actual definitions of the object types used to describe wafer structure as well

as processing materials is given in Appendix A. There is a hierarchical, part-whole

flavour to the representation. At the leaves of the hierarchy, the fundamental unit of

representation for geometry is called a layer-region . The name is chosen to reflect that

the object represents a single layer in a specific type of region. These layer-region’s are

grouped into vertical columns. Each is represented by an object called a region-type .

Each layer-region has attributes indicating which layer-region is above and below it, as

well as numerical attributes for the positions of its vertical boundaries (top-pos and

bottom-pos). For layer-regions at the wafer surfaces, the value of the above (below)

attribute is a constant called THE-ENVIRONMENT .

The region-type objects represent the different types of regions created due to

lateral differential processing. That is, processing operations that affect distinct lateral

regions in different ways. These objects have only two attributes. One called surface

indicates what layer-region lies at the wafer’s top surface in regions of its type. The

other, called regions , is the set of wafer-regions that wherein the region-type occurs.

Employing the region-type concept realizes an efficiency: the vertical topology and

geometry of layers in each type of region are represented only once, regardless of how

many times such types of region occur in the structures being simulated.

The lateral topology and nominal lateral geometry of the structures being

simulated is captured by objects of type wafer-region , which is a specialization of

horizontal-region . Another specialization of horizontal-region, mask-region , is

employed in the representation of the geometry of the masks used in photolithography

operations. These object types were shown in Figure 4.1 above. A horizontal-region has

attributes for the regions that neighbour it to the left and right , and for the positions of

its lateral edges, left-pos and right-pos . A wafer-region also has an attribute for its

region-type, and another for the sub-regions into which it might have been

differentiated. All lateral differentiation in semiconductor processing can be traced

4.4. Symbolic Qualitative Modeling of Semiconductor Manufacturing 53

ultimately to photolithography operations that use masks to expose only certain parts of

the wafer. Thus, in our simple model, all lateral edges of wafer-regions will be

determined by the edges of mask-regions.

Cut-lines through individual structures to be simulated are represented by

objects of type 2D-structure . These have attributes for the horizontal-regions (a set)

comprising them, and the left-most region in that set. Finally, there is an object type

called wafer which has an attribute indicating what 2D-structure’s appear on the wafer

being simulated.

In addition to the attributes for describing geometry and topology, layer-region

objects have attributes concerned with describing intrinsic properties. These include:

material , dopant and concentration . The material attribute encodes the basic material of

the layer, i.e., its chemical composition. The dopant attribute indicates the dominant

species of impurity that the layer contains, if any. The concentration attribute indicates

the concentration of the dominant impurity, over and above the concentration of

impurities of opposite polarity.

Finally, layer-regions have two additional attributes. The region-type attribute

specifies the region-type to which the layer-region belongs. The layer attribute specifies

the layer to which the layer-region belongs.

What is a layer? The notion of layer is prevalent in the discussions of

semiconductor technologists, but it is not anywhere well-defined. The terminology

stems from the imagery of integrated circuit structures being built up in layers like those

of a layer-cake. It is reinforced by the fact that materials are often deposited on the

surface of the wafer in layers that blanket the wafer uniformly (though they are

generally subsequently patterned by photolithography operations).

Consider the case of the ‘field oxide.’ This is a very thick layer of silicon dioxide

that is grown between areas where active devices will be situated as a form of insulation

between the devices. All pieces of the field oxide are created at the same time, and have

the same physical properties. However, the field oxide is restricted to growing only in

the areas between active device sites by covering the active device sites with silicon

nitride. This material oxidizes much more slowly than does crystalline silicon, so that no

thick oxide forms in those areas covered by it. Nonetheless, silicon nitride does oxidize.

54 Chapter 4: Theoretical Knowledge

This implies that an oxide grows on top of the nitride as well as on top of the silicon in

exposed areas. Further, this oxide is contiguous with the field oxide, and is made of the

same material: silicon dioxide. Yet, the oxide grown on the nitride and the oxide grown

on the exposed silicon are not considered to be part of the same layer. The oxide on the

nitride is ‘inconsequential,’ and will be stripped away along with the nitride, whereas

the field oxide will remain as a part of the product.

The effects of processing operations are most easily described in terms of their

impact on the individual layer-regions of the DAS wafer representation. However, it

will be beneficial, especially when supporting the development of generic rules, to

capture some version of the layer notion. The DAS representation represents layers by

collecting layer-regions into sets. Layer-regions must have the same intrinsic physical

properties and be created at the same time to be considered part of the same layer.

Further, they must be created in a ‘similar context,’ where the meaning of this varies

from one operation to the next. In oxidation steps, for example, the resulting oxide layer -

regions will be part of the same layer only if they were created by oxidizing layer -

regions that were initially part of the same layer. This definition comes close to the

informal notion of layer in engineers’ parlance, but will differ from it primarily by

making additional distinctions. For example, not all ‘field-oxide’ layer-regions will be

collected together into a single layer, if some of them are created by oxidizing silicon in a

p-doped region and others are created by oxidizing silicon in an n-doped region. This is

because the differently doped regions will necessarily not be part of the same layer.

DAS employs the object type layer to represent layers. Objects of this type have

one attribute, layer-regions , that is the set of layer-regions forming the layer. Since

layers are sets of layer-regions, and the intrinsic physical properties shared among these

layer-regions are attributes of the layer-regions themselves, an artifact of the

representation is that one has to select a specific layer-region to determine these physical

properties. To overcome this difficulty, DAS provides the function any-member, which

maps from a set to an arbitrarily selected member of the set.

In the course of simulating a process, the DAS simulator will introduce many

new objects representing layer-regions, layers, region-types and regions, as they are

discovered to be created by the effects of processing. These objects will be assigned

unique names of the form <type>-<number> (e.g., layer-region-16). It is often necessary

to refer to parts of the structure being manufactured in the description of the

4.4. Symbolic Qualitative Modeling of Semiconductor Manufacturing 55

manufacturing process. The names that will be assigned to these objects cannot be

predicted in advance. Multiple simulations will assign different names. Thus, one has to

refer to these objects by description rather than by name. For example, “the layer-regions

at the surface in the regions that were not covered by photoresist after step X.” This

practice can be quite cumbersome. Engineers often assign names to layers that reflect the

function that the layer performs either in the product, or in the process of creating the

product. To facilitate reference to parts of the structure being manufactured, DAS

provides a predicate, named , for assigning user-defined names to objects. Also, DAS

provides a predicate, created-during , which facilitates describing objects by the time of

their creation.

4.4.3. The basic kinds of steps modeled

The manufacturing plans used in the semiconductor industry can contain several

hundred steps (300 is a typical for a modern process). However, all these steps are

drawn from a relatively small repertoire of classes of operations. Our models are

sufficiently abstract that we can capture a large subset of all these operations in only

sixteen classes (four additional classes abstract the commonality among some of the

sixteen). Figure 4.5 shows the operations we chose to model. Those in shaded rectangles

are incomplete models: they are not executable. Lines in this figure indicate models

related by the AKO relationship. The Photo-Resist-Develop and Photo-Resist-Clean step

might have been modeled as specializations of the Etch step, but were not because the

specializations were much simpler than the subsuming abstract model. The hierarchy in

the diagram does not reflect the organization in the list below, because its organizing

principle reflects the utility of inheriting model descriptions.

Most operations in a semiconductor manufacturing plan will be instances or

specializations of the twelve listed below. The operations can be grouped into four

categories as follows:

Addition of Material: these operations cover the upper surface of the wafer with a
“blanket” layer of some material, although factors governing adhesion may
allow for selectively depositing material only in certain areas. The Add-Top-
Layer model abstracts the commonalities among these operations.

Spin-on-Resist — coats the wafer with a positive or negative photoresist.

Sputtering — coats the wafer with a layer of metal (e.g. aluminum).

Chemical-Vapor-Deposition — deposits silicon compounds such as silicon
dioxide and silicon nitride, as well as other materials, such as tungsten.

56 Chapter 4: Theoretical Knowledge

Epitaxial-Growth — grows a layer of crystalline silicon, possibly doped with an
impurity, as an extension of the crystalline silicon at the wafer surface.

Removal of Material: these operations selectively remove material from the upper
surface of the wafer, depending on the material’s characteristics.

Etch — removes those materials at the surface of the wafer that react with the
particular etchant used.

Photo-Resist-Clean — removes all photoresist on the wafer.

Photo-Resist-Develop — removes only “soft” photoresist (positive photoresist
that has been illuminated, or negative photoresist that has not been
illuminated).

Change of Chemical Properties: these modify certain chemical properties of layers
existing at the surface of the wafer.

Oxidation — combines silicon and/or silicon compounds with oxygen to form
silicon dioxide.

Mask-Expose — changes the “hardness” of photoresist by using light or other
radiation to alter chemical bonds. The radiation is patterned with a mask that
indicates how the wafer surface is to be differentiated into distinct lateral
regions.

Add-top-layer

Modify-layers

Photo-resist-clean

Mask-expose

Spin-on-resist

Sputtering

Chemical-vapor-deposition

Epitaxial-growth

Etch

Photo-resist-develop

Diffusion

Create/Modify-layers

End-detect-etch

Oxidation

Pre-deposition

Ion-implantation

Doped-chemical-vapor-deposition

Undoped-chemical-vapor-deposition

Ox/drive-in Poly-source-diffusion

Figure 4.5 The basic operations modeled in DAS

Change in Doping Profile: these operations introduce impurities into the silicon
crystal lattice and/or modify their distribution. Control over the distribution of
impurities is the key to the formation of electronic devices.

Ion-Implantation — implants ions of a dopant below the surface of the wafer by
accelerating them electromagnetically towards the wafer.

4.4. Symbolic Qualitative Modeling of Semiconductor Manufacturing 57

Pre-Deposition — introduces a very high concentration of impurity ions at the
surface of the wafer. The resulting concentration is a function of the dopant
type and the material of the layer, called the solid solubility of the dopant in
that material.

Diffusion — modifies the distribution of impurity ions by heating the wafer,
enabling ions to diffuse.

There are several types of steps which are not included in this set. We explicitly

chose not to model operations that do not have consequences for the topology and

geometry of structures on the wafer, such as cleaning steps and photoresist baking steps.

Also, operations that act on the backside of the wafer, such as those performed to

achieve a gettering effect, are not included because our models do not indicate the

effects of any operations on the wafer’s backside. (Gettering involves causing damage to

the structure of the crystal lattice on the backside of the wafer, because such damage

traps unwanted impurities, such as gold, thus reducing the concentration of such

impurities in the rest of wafer.)

Each operation is modeled in the Gordius system as a discrete action (a process in

Gordius terminology). The precise definitions of these models are recorded in Appendix

B. Descriptions of the structure of these models appear in [7] . The one major facet of

these models that is not described in that paper is the treatment of the layer concept. In

the next two subsections we will discuss in detail the structure of the two models that

have changed the most since the publication of [7] : the Etch and Diffusion models.

4.4.3.1. Writing Inheritable Models: The Etch Models
The Etch operation is the conceptually simplest operation that nonetheless demonstrates

many of the difficulties that must be overcome, and the techniques employed to

overcome these difficulties. As the name suggests, etching in the semiconductor world is

similar to etching and engraving in the world of arts and crafts. A chemical reaction is

induced that causes material at the surface of the wafer to combine with a reagent to

form a by-product that does not adhere to the wafer’s surface. In this fashion, material at

the surface of the wafer is incrementally removed.

The amount of material removed can depend on a variety factors. The most

important are: the chemical composition of the material being removed (and its physical

state, such as whether it is amorphous, crystalline or polycrystalline); the reagent used

and its concentration; and the length of time the reaction is permitted to proceed. Since

different materials react with the reagent at different rates, the speed at which material is

58 Chapter 4: Theoretical Knowledge

removed — the etch rate — is different for different layers. This makes it possible to

create patterns in a layer through selective etching, and to transfer patterns in one layer

into layers below it.

There are two basic subclasses of etching operations. In wet etch operations the

etch reagent is dissolved in water, forming an acid in liquid form that the wafer is

dipped into. Dry etching techniques employ an etchant in the form of a plasma. Some

dry etching techniques impose an electric field across the plasma that causes ions in the

plasma to drift toward the wafer surface. In dry etching operations, the etch rate also

depends on the characteristics of this plasma and the strength of any such applied

electric field.

In all these different types of etching techniques the activity taking place is

fundamentally the same. Material is incrementally being removed from the surface of

the wafer. Thus, we want to capture this commonality in our most abstract model in a

manner that allows it to be shared among all etch techniques. To do this, we assume a

simple linear model for all etch techniques: that is, we assume that the etch rate is

constant throughout the operation for any given material (though it will, in general, vary

from material to material).

If the wafer structure before the operation was a single homogeneous block, the

impact of any etch step would simply be to reduce the thickness of the block. The

amount by which the thickness was reduced would be the product of the etch-rate and

the duration of the step. However, things aren’t quite that simple. Our model must be

general enough to handle any wafer structure presented to the step. Wafer structures in

our representation can have any number of wafer-regions, any number of region-types

(subject to the constraint that the number of region-types is less than or equal to the

number of wafer-regions) and any number of layer-regions within each region-type.

Further, the layer-regions can have any thickness, any chemical composition known to

the system and any values for any other characteristics we ascribe to layer-regions.

Finally, we must contend with the possibility that the etch step might etch completely

through one or more layers in any given region-type, thus changing the topology of the

wafer structure.

Since the number of components to the wafer structure is unknown, our model

must use universal quantification to state how each component is affected by the

4.4. Symbolic Qualitative Modeling of Semiconductor Manufacturing 59

operation. As we do not model lateral effects, the etch step cannot have any impact on

the topology or geometry of wafer-regions. The fact that etching starts at the surface of

the wafer and proceeds downward suggests that we should quantify over region-types

(to handle the fact that the effect of the step is different for each region-type) and

somehow sequentially process the layer-regions in each region-type starting with the

one at the surface and progressing downward to each layer-region ultimately affected

by the step.

Unfortunately, logic does not readily lend itself to such sequential processing.

We can accomplish the effect of sequentially processing the layer-regions in a region-

type by keeping track of an incrementally growing set of the layer-regions affected by

the step, and quantifying over the members of that set. The set of affected layer-regions

would initially contain those layer-regions at the surface of each region-type. Each time

it is determined that a layer-region is etched completely through, the layer-region below

it is declared to be also a member of the set.

However, it is simpler to quantify over all layer-regions. The trade-off is that this

approach instantiates the effects statements for all layer-regions whether they are

actually affected by the step or not, but it avoids the necessity to create and manage an

explicit set of those layer-regions affected by the step.

For each layer-region l the model makes two conditional statements:

1. the layer-region l is destroyed if and only if the duration of the step is longer
than the time it takes to etch all the way from the surface of the wafer completely
through the layer-region;

2. if the duration of the step is greater than or equal to the time it takes to
completely etch through the layer-region directly above l, and less than the time
it takes to completely etch through l, then

a) if layer-region l wasn’t at the surface before the step then the layer-region at
the surface of the region-type containing l has changed to l, and THE-
ENVIRONMENT has become the layer-region above l; also

b) if the duration of the step is strictly greater than the time it takes to
completely etch through the layer-region above l and this etch step etches
layer-region l at a rate greater than zero then both the top-position and the
thickness of layer-region l are reduced.

These two statements cover all the possible ways that a layer-region can be

affected by the etch step, and explicitly indicate the changes in topology (does the layer-

60 Chapter 4: Theoretical Knowledge

region continue to exist? what is above it? what layer-region is at the surface?) and

geometry (how thick is the layer-region? where is its top-position?) that might be

involved.

The expression “the time it takes to etch all the way from the surface of the wafer

completely through the layer-region” is represented in the model by a function called

Etch-Destroy-Time . This function has a recursive definition. It is the sum of the quotient

of the layer-region’s thickness and the etch-rate, and the etch-destroy-time for the layer-

region above. The recursion bottoms out when the layer-region is THE-

ENVIRONMENT. This recursive definition is provided by making the function a

generic-function, with a semantic attachment that declares the function’s value to be

equal to the value of the expression described above.

Note that the discrete action nature of the model requires that we state the

ultimate impact directly in terms of the initial state and the step’s parameters. This

makes it awkward to model events that have an obvious internal time structure. In our

etch model, for example, the times when the etch process completely etches through a

layer-region are natural landmarks. It would be more natural to give these times names

and refer to them, or at least to give names to the sub-intervals indicating the time

remaining of the duration as each layer-region is destroyed in turn. Then, etch-destroy-

time could be a non-recursive function which refers just to the time it takes to etch

through a given layer-region. While it is possible to do this, it is somewhat clumsy (it

requires additional statements, for example). Also, the alternate approach we took has

some advantages.

In particular, the recursive etch-destroy-time function facilitates writing

statements that indicate what the process designer’s intention for the step is, and that

constrain the expected outcome of the step. Such constraints are necessary when one

simulates the step without quantitative information about the thickness of layers, the

duration of the step, or the expected etch rates. It is possible to give quantitative values

to the step parameters and wafer-structure attributes and have the system perform

arithmetic. However, the design of the system also enables it to reason qualitatively.

Reasoning qualitatively makes it possible to simulate a manufacturing plan before

quantitative values have been assigned for all parameters and to obtain qualitative

answers to incompletely specified questions.

4.4. Symbolic Qualitative Modeling of Semiconductor Manufacturing 61

(defprocess ETCH
 AKO Modify-Layers
 parameters
 (($etchant etchant-type) ($duration positive-real))
 effects
 ((for-all-existing $l : layer-region (SPI)
 (:AND
 (:IFF (>= $duration (etch-destroy-time $l (PI)))
 (destroyed $l (EPI)))
 (:=>
 (:AND
 (>= $duration
 (etch-destroy-time (@ (above $l) (SPI))) (PI)))
 (< $duration (etch-destroy-time $l (PI))))
 (:AND
 (:=>
 (:NOT
 (V= $l (@ (surface (region-type $l)) (SPI)))))
 (:AND
 (change = (surface (@ (region-type $l) (SPI))))
 $l)
 (change = (above $l) THE-ENVIRONMENT)))
 (:=>
 (:AND
 (> $duration (etch-destroy-time
 (@ (above $l) (SPI))) (PI)))
 (> (etch-rate $l (PI)) 0.0))
 (:AND
 (change - (top-pos $l) (amount-etched $l))
 (change - (thickness $l) (amount-etched $l))))))
 (:=>
 (destroyed $l (EPI)))
 (member (@ (layer $l) (SPI)))
 (changed-layers (PI))))))
 constraints
 ((DEFN PI () (process interval))
 (DEFN SPI () (start-of (process interval)))
 (DEFN EPI () (end-of (process interval)))
 (DEFN AMOUNT-ETCHED ($l)
 (* (- $duration
 (etch-destroy-time (@ (above $l) (SPI))) (PI)))
 (etch-rate $l (PI))))))

Figure 4.6 The Basic Etch Model

The description of the etch model given above is not quite complete, as it does

not specify the impact of the step on layers (as opposed to layer-regions). A side-effect of

destroying a layer-region is that the layer containing it is changed. If all layer-regions in

a layer are destroyed, then the layer itself is destroyed. To handle the impact on layers,

one additional statement is included in the statement quantified over layer-regions:

3. if layer-region l is destroyed then the layer containing layer-region l is a member
of the set of layers changed by the step.

62 Chapter 4: Theoretical Knowledge

Figure 4.6 shows how Etch Model statements are actually encoded in DAS.

A separate statement quantifies over the set of layers changed by the step. This

statement is inherited from the Modify-Layers model. It has three conjuncts that

summarize all ways that the layer might have changed. For every layer changed by the

step:

1. for every layer-region in the layer at the beginning of the step, the layer-region is
in the set called the new-layer-regions of the layer if and only if the layer-region
survives the step;

2. if all the layer-regions in the layer are destroyed by the end of the step, then the
layer itself is destroyed; and

3. if the layer is not destroyed, then the layer-regions in the layer at the end of the
step are the layer-regions in the set called new-layer-regions of the layer.

The first conjunct collects all the surviving layer-regions into a set. The second

conjunct destroys the layer if this set is empty, indicating that all layer-regions in the

layer were destroyed. The third conjunct updates the history of the layer-regions in the

layer if the layer survives the step. The use of the intermediary set allows us to avoid

referring to the set of layer-regions comprising a layer at a time when the layer might

not exist.

 Figure 4.7 shows the encoding of the Modify-Layers model.

(defprocess MODIFY-LAYERS
 effects
 ((for-all-true $l e (changed-layers (PI))
 (:AND
 (for-all-true $lr e (@ (layer-regions $l) (SPI))
 (:IFF (:NOT (destroyed $lr (EPI)))
 (member $lr (new-layer-regions $l (PI)))))
 (:IFF (for-all $lr e (@ (layer-regions $l) (SPI))
 (destroyed $lr (EPI)))
 (destroyed $l (EPI)))
 (:=> (:NOT (destroyed $l (EPI)))
 (change = (layer-regions $l)
 (new-layer-regions $l (PI)))))))
 constraints
 ((DEFN PI () (process interval))
 (DEFN SPI () (start-of (process interval)))
 (DEFN EPI () (end-of (process interval)))))

Figure 4.7 Abstract model inherited by models in which layers can be changed

4.4. Symbolic Qualitative Modeling of Semiconductor Manufacturing 63

In [7] , etch-rate was considered to be a function of the etchant used and the

material of the layer being etched. This approach did not allow for the possibility of

indicating the dependence of etch rates on other factors, such as dopant species and

concentration, and other parameters of the etch step, such as those that determine or

describe characteristics of the plasma in a dry etch step. Further, the factors influencing

etch rate are different for different etching techniques, so that it is not reasonable to

expect that we can specify a set of arguments for a general etch-rate function that will

satisfy all cases.

In our current etch model, rather than attempting to list all possible influences on

etch rate as arguments of a comprehensive Etch-Rate function, Etch-Rate is a function

only of the Layer-Region being etched, and the time-interval of the etch step. These two

arguments provide “handles” for getting at other factors determining etch rate. The

intention is that the functional dependence of the etch rate on these other factors be

specified in rules associated with the specific etching technique being modeled (perhaps

even with the specific instance of the etching technique within a process).

In the event that use of a given etchant necessarily implies a unique etching

technique and therefore a fixed set of factors influencing rate for all etch steps using that

etchant, a general rule can be written independently of specific etch steps. A macro,

DefEtchRateRule facilitates writing rules of this form. Within invocations of this macro,

the statement is implicitly quantified over all layer-regions and all etch step time-

intervals. Figure 4.8 shows an example of how qualitative information regarding the

etchant “Nitric Acid” might be specified.

;;; Nitric Acid etches silicon, nitride and oxide, but not photoresist
(defEtchRateRule Nitric-Acid ($L $I)
 (:AND
 (:=> (:OR (is-type silicon
 (@ (material $L) (start-of $I)))
 (is-type nitride
 (@ (material $L) (start-of $I)))
 (is-type oxide
 (@ (material $L) (start-of $I))))
 (> (etch-rate $L $I) 0.0))
 (:=> (is-type photo-resist
 (@ (material $L) (start-of $I)))
 (N= (etch-rate $L $I) 0.0))))

Figure 4.8 Qualitative example of a general Etch-Rate rule

64 Chapter 4: Theoretical Knowledge

More generally, however, specific rules which apply only to individual etch steps

will be attached to those etch steps. By this approach, all etch steps can inherit the same

description of their behaviour, written in terms of the Etch-Rate function, but the nature

of the dependence of etch rate on other factors can be individually specified for each

type of etch step. The information provided may be as specific as the actual etch rate

expected for the materials that the step is intended to etch, the “selectivity” (the ratio of

the etch-rates for the material to be etched and the material below it or the material

masking the etch), or it may specify an expression or function that gives the etch-rate for

a wide class of materials.

One special subclass of etching techniques might be called “End-Stopped

Etching.” End-stopped etch steps take advantage of the fact that some materials are

almost impervious to some etch techniques. When one wants to completely remove a

layer at the surface of the wafer, one chooses an etch technique that easily etches the

material of the layer to be removed, but has little impact on the material of the layer

beneath it. When it is possible to do this, one realizes the advantages that the etch step is

less sensitive to the duration of the step, and that one can remove a layer that has

different thicknesses in different regions. In our basic etch model, although the etch-rate

is considered to be constant throughout any given layer, it can be different for each

layer. Thus the basic etch model handles end-stopped etching without modification.

In a related but distinct etching technique, which we call “End-Detect Etching,” a

feedback mechanism is employed that enables the etch process to proceed until a

specific type of layer is exposed. While the duration parameter of the basic Etch model is

considered an independent variable that determines how much etching takes place, in

an End-Detect-Etch step the duration parameter is a dependent variable, determined by

the structure of the wafer. Usually, an additional parameter, which we call Overetch,

indicates how long the etch process should continue beyond the exposure of the

detected layer, as a function of the time it took to expose the layer. The feedback

mechanism reduces sensitivity of the process to actual etch-rates.

Our End-Detect-Etch model inherits from the Etch model. Modeling this sort of

operation poses a technical difficulty. The duration of the step is (apart from the

overetch stage) is determined by the length of time it takes to etch through the layers

above the layer that is detected. This time will in general be different in different regions

4.4. Symbolic Qualitative Modeling of Semiconductor Manufacturing 65

— for example, it would be extremely long in regions covered by a layer that masked the

etch. Thus, the model must select the regions for which this time is minimal.

This requires a universal quantification over all region-types in which the

detected layer is present, that states that the time to etch down to the detected layer in a

specific region-type is less than or equal to the corresponding time for all other region-

types.

Unfortunately, the truth of such a statement can never be established because the

set being quantified over is an open set. Its members are discovered incrementally as a

consequence of processing operations, particularly photolithography operations. Thus,

there is no point during the reasoning computation at which the modeling system

knows that all such region-types have been identified. In fact, we present the

manufacturing operations to the system in chronological order, so that the region-types

it knows about at the time of the etch step are the only ones to be concerned with. The

modeling system, however, does not “know” this. Note, furthermore, that this

information lies outside the domain being modeled. It concerns the simulation

computation, not the manufacturing plan being simulated.

To resolve this problem, we introduce a new generic function: Layer-Closure.

The Layer-Closure of a layer is the closed set of layer-regions known to be members of

the layer at the time the value of the expression is needed. Thus, by semantic

attachment, the layer-closure function takes the extra-logical step of making a closed-

world assumption, justified by the chronological presentation of the manufacturing

operations.

The layer-regions for which the etch-until-exposed time is minimal are collected

into a set called the Detected-Layer-Regions of the step interval. Another generic

function, Any-Member, selects an arbitrary member of this set as the determiner of the

etch duration. By reference to this set, the process specifier can provide constraints

helping to identify the appropriate layer-regions in the absence of quantitative

information about etch rates and layer thicknesses.

Figure 4.9 shows the encoding of the End-Detect-Etch model. It has three effects

statements. The first specifies that none of the layer-regions in the detected-layer are

destroyed, and that only those for which the etch-destroy-time of the layer-region above

66 Chapter 4: Theoretical Knowledge

is minimal are members of the detected-layer-regions set. The second statement

indicates that the vertical-etch-duration is the time it takes to etch down to any member

of the detected-layer-regions set. Finally, the last statement indicates that the total

duration of the step is the vertical-etch-duration plus the overetch time. Of course, this

model also inherits the statements of the Etch model and the Modify-Layers model.

(defprocess END-DETECT-ETCH
 AKO Etch
 parameters
 (($overetch positive-real) ($detected-layer layer))
 effects
 ((for-all-true $lr1 e (@ (layer-regions $detected-layer)
 (SPI))
 (:AND
 ;; Detected layer is not etched through.
 (< $duration (etch-destroy-time $lr1 (PI)))
 ;; Layer regions “closest” to surface (in terms of etch time) are detected.
 (:IFF
 (for-all $lr2 e (layer-closure $detected-layer (SPI))
 (<= (etch-destroy-time (@ (above $lr1)(SPI)) (PI))
 (etch-destroy-time (@ (above $lr2)(SPI)) (PI))))
 (member $lr1 (detected-layer-regions (PI))))))
 (N= (vertical-etch-duration (PI))
 (etch-destroy-time
 (@ (above
 (any-member (detected-layer-regions (PI))))
 (SPI))
 (PI)))
 (N= $duration
 (+ (vertical-etch-duration (PI))
 (* $overetch (vertical-etch-duration (PI))))))
 constraints
 ((DEFN PI () (process interval))
 (DEFN SPI () (start-of (process interval)))))

Figure 4.9 Model of End-Detect-Etch

4.4.3.2. Sacrificing Completeness to Limit Complexity: The Diffusion Models
Section 4.4.2 above points out that we use a very simplified representation of the

distribution of impurities within the wafer: each layer-region is considered to contain a

constant concentration of only one dopant. This representation matches the way wafer

structures are often depicted in cross-sectional diagrams. Additionally, the

representation (as presented in [7]) initially restricted the presence of dopants to layer -

regions of crystalline silicon. This captured the intuition that, for the most part, the

presence of dopants only has interesting consequences in crystalline silicon, and was

sufficient for capturing the early bipolar process we were representing at the time.

4.4. Symbolic Qualitative Modeling of Semiconductor Manufacturing 67

The assumption that dopants in other types of layers can be ignored is not valid

for modern MOS, CMOS and BiCMOS processes, in particular for the Stanford BiCMOS

process, for two reasons. First, polysilicon (polycrystalline silicon) is often used as

“wire” and as the gate material in the MOS transistors. This material is often doped to

reduce its resistivity. It is therefore important to capture the impact of implantation steps

aimed at controlling the resistivity of this material.

Second, the Stanford BiCMOS process employs a somewhat subtle technique to

minimize the number of steps in the process. A single ion implantation step introduces

dopant both into polysilicon regions that will be gates for NMOS transistors, and into

polysilicon regions sitting over the active area of the NPN bipolar transistors. In the gate

regions, the impact is to reduce the resistivity of the gate layer. The dopant in this layer

is prevented from diffusing into the crystalline silicon substrate by the thin gate oxide

layer interposed between the gate and the substrate. The dopant specie, arsenic,

segregates preferentially into polysilicon over oxide, and so the oxide acts as a barrier. In

the bipolar transistor regions, however, the polysilicon sits immediately above the

crystalline silicon substrate, over the p-type base layer-region. During a diffusion step

following the implantation step, the implanted ions diffuse across the boundary from

the polysilicon into the silicon. The number of ions that diffuse across the boundary is

sufficiently large that they outnumber the p-type ions in the base, and form a new n-

type layer-region that becomes the emitter of the NPN transistor. Effectively, the doped

polysilicon layer acts as a source of dopant for a pre-deposition step that creates the

emitter.

To adequately capture the logic of the BiCMOS manufacturing process, the

models of the wafer structure and of the ion-implantation and diffusion must allow for

the presence of dopant in layers of all types, and for the diffusion of dopants across

boundaries between dissimilar materials as well as within crystalline silicon.

Modifying the representation to allow for the presence of dopant in layer-regions

of any material is trivial. The only complication stems from the fact that the presence of

dopants can differentiate what was previously considered a single layer-region into

several layer-regions. Semiconductor engineers generally do not differentiate layers

according to doping except in the case of crystalline silicon. Thus, the representation

deviates more from the intuition of the engineers.

68 Chapter 4: Theoretical Knowledge

Allowing for diffusion of impurities across boundaries between dissimilar

materials is considerably more complicated. This is due to the discrete action nature of

the models and to our simplified ontology for dopant profiles. The crux of the problem

is the combinatorics involved in expressing all the possible scenarios and their

outcomes. For each layer-region, one must consider whether the adjacent layer-regions

are of the same or different materials (4 possibilities); whether they contain the same

dopant species, another species or no dopant at all (25 possibilities, stemming from four

commonly used dopant species and the no dopant option, squared due to two

neighbouring layer-regions); and whether the concentration of dopants in the adjacent

regions are higher or lower than the concentration of dopant within the layer-region

(and for a dopant of opposite polarity, if higher then whether it is sufficiently higher for

the influx of dopant to change the dominant species in the layer-region)(as many as

another 25 possibilities).

These choices multiply, leading to 2500 possibilities that define most of the

potential initial scenarios. Then one must consider all the possibilities for how long the

diffusion operation continues. For example, in the case of a layer-region sandwiched

between two layer-regions of different materials, when dopant is diffusing from one

neighbour into the layer-region, is the layer-region sufficiently thin and the operation

sufficiently long that the dopants also cross the second material boundary (i.e. is

diffusion through a thin film taking place)?

A completely general model would have to consider all these possibilities

because the discrete action, one-uniform-dopant representation does not permit the

influence of each of these factors to be computed independently and then combined.

There is no way to factor the problem into completely independent influences. However,

some of this combinatorial explosion could be avoided by other representational choices.

For example:

1. keeping track of the concentration of each dopant species independently rather
than figuring out which specie dominates and representing only one per layer,
avoids reasoning separately about each possible combination of dopants and
their relative concentrations;

2. keeping track of dopant profiles rather than having dopant variations induce
layer-region distinctions, avoids the necessity to identify situations that induce
changes in wafer topology;

4.4. Symbolic Qualitative Modeling of Semiconductor Manufacturing 69

3. using an incremental evolution modeling approach (such as continuous process
models) rather than a discrete action approach allows the many distinct
outcomes of a situation to be represented implicitly rather than explicitly.

The representational choices in the above list are effectively how quantitative

simulators avoid combinatoric complexity. While it is also possible to adopt these in a

symbolic simulator, it involves developing machinery that is beyond the scope of this

dissertation.

A very general model of diffusion is thus out of reach given our representational

machinery and our ontological choices. However, we can still capture the causation in a

modern process like the Stanford BiCMOS process by sacrificing generality. We

accomplish this by writing specific models that capture only those phenomena that we

expect to occur within a given step. For example, the diffusion step described above, in

which the polysilicon layer above the NPN base layer acts as a dopant source for the

creation of the emitter layer would be represented by a special Poly-Source-Diffusion

model that incorporated the within-silicon diffusion effects of the original diffusion

model by inheritance, and added effects statements that described the diffusion of the

arsenic across the polysilicon/silicon boundary to form a new layer-region.

Figure 4.10 exhibits the Poly-Source-Diffusion model. The model’s effects apply

only when the material of a layer is polysilicon, the material of the layer below it is not

polysilicon, and the concentration of the dopant in the first layer, multiplied by the

segregation coefficient for the layer’s dopant and the two layers’ respective materials is

greater than the concentration of dopant in the second layer. In that case a new layer is

created representing the dopant that diffuses across the material boundary. The large

number of “change” statements indicate the characteristics of this new layer, and the

topological relationships among the layers. The model depends on three functions that

define, respectively, the segregation coefficient for a given dopant and two materials; the

amount of dopant that would diffuse across the boundary given the duration and

temperature of the step; and the depth to which these dopants would penetrate the

lower layer (where the junction would form if the dopant type in the lower layer differs

from that of the upper layer).

70 Chapter 4: Theoretical Knowledge

(defprocess Poly-Source-Diffusion
 AKO Ox/Drive-in
 effects
 ((for-all-existing $l \: layer-region (SPI)
 (:IF
 (:AND
 (is-type polysilicon (@ (material $l) (SPI)))
 (:not (is-type polysilicon
 (@ (material (below $l)) (SPI))))
 (> (* (@ (concentration $l) (SPI))
 (polysilicon-segregation $l))))
 (@ (concentration (below $l)) (SPI))
 (CREATED ($NL layer-region (SPI))
 (member $NL (new-layer(@ (layer (below $l))(SPI)) (PI)))
 (member (@ (layer (below $l)) (SPI)) (new-layers (PI)))
 (change = (below $l) $nl)
 (change = (above (below $l)) $nl)
 (change = (region-type $nl) (@ (region-type $l) (SPI)))
 (change = (top-pos $nl) (@ (top-pos (below $l)) (SPI)))
 (change = (above $nl) $l)
 (change - (concentration $l)
 (/ (xfer-dose $l) (@ (thickness $l) (SPI))))
 (change - (top-pos (below $l)) (junction-depth $l))
 (change - (thickness (below $l)) (junction-depth $l))
 (change = (bottom-pos $nl)
 (- (@ (top-pos (below $l)) (SPI)) (junction-depth $l)))
 (change = (thickness $nl) (junction-depth $l))
 (change = (below $nl) (@ (below $l) (SPI)))
 (change = (dopant $nl) (@ (dopant $l) (SPI)))
 (:IF
 (v= (@ (dopant-type (dopant $l)) (SPI))
 (@ (dopant-type (dopant (below $l))) (SPI)))
 (change = (concentration $nl)
 (* (@ (concentration $l) (EPI))
 (polysilicon-segregation $l))))
 (:IF
 (:NOT (v= (@ (dopant-type (dopant $l)) (SPI))
 (@ (dopant-type (dopant (below $l))) (SPI))))
 (change = (concentration $nl)
 (- (* (@ (concentration $l) (EPI))
 (polysilicon-segregation $l))
 (@ (concentration (below $l)) (EPI))))
 (change = (material $nl)
 (@ (material (below $l)) (SPI)))))))
 constraints
 ((DEFN POLYSILICON-SEGREGATION ($l)
 (segregation-coefficient
 (@ (dopant $l) (SPI)) polysilicon
 (@ (material (below $l)) (SPI))))
 (DEFN XFER-DOSE ($l)
 (transferred-dose
 $duration $temperature $l (@ (below $l) (SPI))))
 (DEFN Junction-Depth ($l)
 (Diffused-Junction-depth
 $duration $temperature $l (@ (below $l) (SPI))))))

Figure 4.10 Model of diffusion across polysilicon material boundary

4.4. Symbolic Qualitative Modeling of Semiconductor Manufacturing 71

The model implicitly makes a couple of assumptions. First, it assumes that only

diffusion between polysilicon layers and the layers below them matter (it assumes no

dopants cross from the polysilicon layer to the layer above it). Second, it assumes that

the new layer does not completely wipe out the original lower layer: the lower layer is

not a thin film that the dopants saturate and cross. These assumptions, and the lack of

generality they entail, imply that the model will not correctly predict the outcome in

situations that vary slightly in certain ways from the situation in which it is assumed

that the model will be used. Thus, as models become less general, they take on more of

the undesirable characteristics of experiential causal associations. Experiential causal

associations can be thought of as “theoretical” models with an extreme degree of

specificity.

The Poly-Source-Diffusion model exhibits how the creation of new layers is

handled. The model creates new layer-regions individually. Within the CREATED form

that creates a new layer-region, two sub-statements are included to manage the

collection of these new layer-regions into layers. The first states that the new layer

(bound to the variable $NL) is a member of a set of layer-regions associated with the

layer of the layer-region below the polysilicon layer. This layer is considered to be the

layer that the new layer is “based on.” The second statement indicates that this “base”

layer is a member of the set (new-layers (process interval)) . These two

statements interact with those inherited from the Create/Modify-Layers model to create

the new layer. The relevant statements from the Create/Modify-Layers model are

shown in Figure 4.11.

(defprocess CREATE/MODIFY-LAYERS
 AKO Modify-Layers
 effects
 ((for-all-true $old-layer e (new-layers (PI))
 (CREATED ($new-layer layer (SPI))
 (for-all-true $lr e (new-layer $old-layer (PI))
 (:AND
 (member $lr (@ (layer-regions $new-layer) (EPI)))
 (change = (layer $lr) $new-layer)))))))

Figure 4.11 Definition of Create/Modify-Layers models

The essence of this model is that it creates a new layer for each base layer in the

new-layers set, and collects all layer-regions based on each base layer into the set of

layer-regions that comprise the new-layer.

72 Chapter 4: Theoretical Knowledge

4.5. Summary

Model-based reasoning techniques confer a degree of robustness on a diagnostic system.

Modeling technology is used to explicitly represent the mechanisms underlying a

system’s behaviour in a general way. This makes it possible to explicitly encode many

aspects of the context in which the system operates and how its behaviour depends on

this context. Moreover, the effects of changes in the context can be often be predicted.

Such contextual changes thus modify, rather than invalidate, the inferences of which the

diagnostic system is capable.

We employ a device-centered reductionist approach to modeling semiconductor

manufacturing. In this approach, we model the manufacturing operations as

parameterized discrete actions, and the manufacturing process as a sequence of these

actions. The models describe, in simplified terms, the overall effect of performing each

operation on the topology and geometry of the structures created on the wafers being

processed. This approach makes it possible to integrate the effects of the entire

manufacturing process, keeping track of which operations are causally involved in the

creation and modification of which features of the wafer structures.

The only communication between the operations of the manufacturing process is

mediated by the structures created on the wafer. Thus, it is necessary to represent these

structures explicitly. These structures are complex and three-dimensional. Representing

and reasoning about these structures requires reasoning about geometrical shapes and

relations, and how these are modified by chemical processes. The ontological choices

made in deciding how to represent the structures strongly affects the generality,

complexity and utility of the models. In particular, we choose to limit the complexity of

geometrical reasoning in our system by limiting ourselves to a simplified representation

that tracks geometry in only one dimension and topology in two dimensions.

Features of the semiconductor manufacturing domain complicate the

representational machinery needed to reason in this domain. Structures can be created

and destroyed, and their number depends on the precise sequence of operations

performed. The operations in the manufacturing process are distributed through time.

These characteristics imply a need for quantified statements in the description of an

operation’s effects, and a capability for at least a simple form of nonmonotonic

reasoning. To minimize the complexity of reasoning in such an environment, we limit

the capability of the reasoner to concrete inferences (forgoing the possibility of abstract

4.5 .Summary 73

inferences) and employ semantic attachment. Semantic attachment is used both to allow

economical algorithms for inference based on iconic representations, and to enable most

terms to evaluate to canonical names for the objects they refer to.

The choices we make when deciding how to model a domain limit the range of

phenomena that the resulting models can be used to reason about. In particular, our

decision to limit ourselves to one-dimensional geometry in the representation of wafer

state precludes reasoning about phenomena that hinge on intrinsically two- or three-

dimensional effects. Also, our decision not to represent some kinds of operations, such

as cleaning steps and photoresist baking steps, precludes reasoning about

manufacturing failures that stem from problems with these types of operations.

As we saw in section 4.4.3.2, the decision to represent operations as discrete

actions and to represent the distribution of dopant by discrete homogeneous layers

makes it difficult to represent the effects of diffusion operations in a completely general

way. This is because there is a combinatorial explosion in the number of possible

outcomes of a diffusion operation, and a discrete action representation requires that each

possible outcome be treated separately. Satisfactory treatment of diffusion operations

would require models of behaviour that represent change as incremental evolution, and

models of wafer structure that represent the distribution of dopants with greater

accuracy. In effect, it would require finer granularity in the representation of both time

and space. To limit the complexity of models within our present framework, it is

necessary to limit the generality of the models. This implies that when modeling a

particular diffusion operation in a manufacturing process, one must make an

assumption regarding the state of the wafer at the time of the operation, and choose the

model that is most appropriate. Thus, even our representation of theoretical knowledge

will contain contextual assumptions.

In conclusion, we note that using model-based techniques to represent

theoretical knowledge enables a diagnostic system to be robust in the face of changes in

context, because the dependency of the knowledge on such context is explicitly

represented. However, the range of phenomena that can be captured is limited. Some

phenomena will lie outside the scope of known theory. More importantly, our

representational machinery cannot capture some phenomena that are well-understood

theoretically, in a manner that admits both succinct representation and tractable

74 Chapter 4: Theoretical Knowledge

reasoning. Finally, even the representation of theoretical knowledge will include some

contextual assumptions.

Chapter 5. Process Representation

The model-based approach seeks to achieve a certain level of robustness by

automatically adapting to changes in the manufacturing plan. It can do so because the

manufacturing plan is an explicit input to the system, and all knowledge about the

causal relationships in the process is determined by symbolically simulating the process.

This implies that it is necessary to supply the system with a representation of the

manufacturing plan. Like any other simulator, the DAS qualitative simulator defines its

own idiosyncratic syntax for representing manufacturing plans. The first section of this

chapter briefly describes that syntax, indicating the information requirements of the

simulator.

The models of the actions, and the specifications of the manufacturing plan

employ qualitative information primarily. This is supplemented by some quantitative

information in the form of analytic equations, and numerical values for some

parameters. It was pointed out in section 4.4.1 above that the goal of the simulation is

not accurate prediction of the outcome of the manufacturing process, but explication of

the causal relationships inherent in it. We assert that to uncover these causal

relationships, only qualitative information is required. Further, some phenomena in the

domain may not be amenable to accurate quantitative representation by analytic

expressions of the sort used by the models. Thus, using primarily qualitative

information is both justified and necessary. However, it is useful during the

development of the process representation (as well as development of the models) to be

able to create a graphic display of the structure of the wafer after each operation. The

creation of a graphic display requires quantitative information, because of the necessity

to commit to specific coordinates for each wafer-region and layer-region. Accurate

values for all parameters and more importantly, accurate analytical expressions for all

functions employed in the models, may not be available. Hence, the DAS simulator

supports a display subsystem that employs faux values for parameters and function

definitions. These completely shadow and are kept separate from any true quantitative

information provided, to emphasize that they are only intended to facilitate

76 Chapter 5: Process Representation

visualization of the process, and not to reflect an accurate quantitative simulation of it.

The second section of this chapter describes this display subsystem.

The fact that every simulator has its own idiosyncratic requirements regarding

process representation, and that still other representations are required for running the

fabrication facility, leads to a serious maintenance and consistency problem for

semiconductor manufacturers. When several representations must each be created by

hand, it is very difficult to ensure that all these representations are consistent.

Furthermore, as the process is developed and refined, it is difficult to ensure that all the

representations in use are kept up to date. One result is that one cannot be certain

whether the process being run in the factory is the same as the process that was

simulated. Additionally, since each representation is tuned to serve a specific purpose,

none of these application-specific representations is sufficiently complete to serve the

purpose of documenting the process for technology transfer and corporate memory.

For this reason, research is currently ongoing aimed at developing a unified,

computer-readable process representation that can serve all the purposes for which

multiple representations are currently needed. The idea is that a single, very rich

representation of the process is developed and maintained in a logically centralized

process representation server . The representations needed for simulators, runsheets,

scheduling and other purposes are then automatically derived from this unified

representation. The third section of this chapter briefly describes the prototype unified

process representation being developed at Stanford in collaboration with Enterprise

Integration Technologies, Inc. (EIT), which is embodied in an object-oriented server with

persistent storage called the “Distributed Information Service (DIS)” [36]. Finally, a

fourth section describes how the information needed to drive the DAS simulator is

extracted from that representation.

5.1. Representing the Process for DAS

To perform a simulation, the Gordius qualitative symbolic simulator requires three basic

types of information about the specific process in addition to the general knowledge

described in the previous chapter. As the system is written in Common Lisp, each of

these types of information is specified using Lisp function and macro calls.

The first type of information required is a description of the initial world-state: a

description of the state of the world at the beginning of the simulation. For DAS, this is a

5.1. Representing the Process for DAS 77

description of the initial state of the wafer that is to be subjected to the manufacturing

process. For each structure whose manufacture is to be simulated, one must create a

structure , a wafer-region , a region-type , a layer-region and a layer (assuming that the

initial wafer is a homogeneous crystal of silicon). One must indicate the obvious

relationships among these, specify the dopant type of the background dopant if any, and

if desired, specify values for dopant concentration and geometric dimensions.

A Lisp function called Set-Up-Substrate is provided that will create the initial

substrate layer and region-type. Its arguments are: the name to be assigned to the

substrate layer (this name with a number appended is given to the initial layer-region of

the layer), the name to be assigned to the initial region-type, the name of the substrate

material, and the name of the first time-point (usually simply START). An optional

argument can be used to specify the species of the background dopant. The above and

below attributes of the initial layer-region are initialized to a constant object of type

ENVIRONMENT called THE-ENVIRONMENT .

Another Lisp function called Set-Up-Structure is provided that will create a

structure and the initial wafer-region spanning the width of the structure. Its argument

list consists of: the name to be assigned to the structure, the name to be assigned to the

wafer-region, the name of the initial region-type (which should already have been

created) and the name of the initial time-point. The left and right attributes of the

structure’s initial wafer-region are both initialized to be a constant object called

REGION-EDGE .

Finally, a Lisp function called Initialize-Run is provided that initializes a single

structure called STRUCTURE1 with an initial layer called SUBSTRATE , a material

called |Silicon|, an initial region-type called LD1, an initial dopant species of BORON,

and an initial region called REGION1 . This function takes only one argument, which

should be the name of a function that will construct the descriptions of the masks that

will be used by the process.

The second basic type of information required is a description of the topology

and geometry of each mask layer within each structure. One must create masks and

their constituent mask-regions , specify the opacity of each mask-region and describe the

relative placement of mask-region edges either qualitatively or quantitatively.

78 Chapter 5: Process Representation

To facilitate the construction of mask descriptions, a Lisp function called BUILD-

A-MASK is provided. The arguments to this function are: the name to be assigned to the

mask, the name of the initial time-point, and a list of mask-region descriptions in a

special syntax. BUILD-A-MASK assumes that the mask-regions described in the list are

adjacent to one another and specified in left-to-right order. Each mask-region

description is a list starting with one of the two symbols OPAQUE and

TRANSPARENT . Obviously, the mask-region descriptions will alternate between these

two. The remainder of each mask-region description list consists of optional constraints.

Each constraint is a list beginning with a keyword specifying the type of the constraint

followed by a single argument.

One type of constraint is specified by the keyword :CALLED. This constraint

permits the mask-region to be named, so that it can be referred to in the descriptions of

other masks. All other constraints constrain the horizontal extent and position of the

mask region by constraining the positions of the mask-region’s edges. The keywords

:FROM , :START-BEFORE and :START-AFTER constrain the position of the mask-

region’s left edge (its left-pos), by specifying how the position of the edge relates to the

position of other lateral features of either the structure being masked or the other masks.

The keywords :TO , :END-BEFORE and :END-AFTER similarly constrain the mask-

region’s right edge. The list of mask-regions in each mask should span the width of the

structure’s initial wafer-region. The first mask will be registered most often to the edges

of the initial wafer-region, and subsequent masks will be defined in relation to the edges

of mask-regions in previous masks. One could also use the :FROM and :TO constraints

to provide quantitative lateral coordinates for the mask edges. Figure 5.1 illustrates a

simple mask-description that defines mask edge positions relative to the edges of both

the initial wafer-region (REGION1) and mask-regions of a previous mask

(COLLECTOR-MASK).

It is necessary to give each mask level for each structure a unique name. Further,

any names given to mask-regions must be unique across all masks for all structures. A

generic-function called MASK-LEVEL is used to associate the appropriate mask with

each tuple of mask-level and structure.

5.1. Representing the Process for DAS 79

(build-a-mask 'ISOLATION-MASK 'START
 '((opaque (:CALLED ISOLATION-MASK-LEFT)
 (:FROM (left-pos REGION1))
 (:TO (right-pos COLLECTOR-MASK-LEFT)))
 (transparent (:CALLED ISOLATION-MASK-TRANSPARENT1))
 (opaque (:CALLED ISOLATION-MASK-MIDDLE))
 (transparent (:CALLED ISOLATION-MASK-TRANSPARENT2))
 (opaque (:CALLED ISOLATION-MASK-RIGHT)
 (:FROM (left-pos COLLECTOR-MASK-RIGHT))
 (:TO (right-pos REGION1))))

Figure 5.1 Simple example of a mask description.

The third basic type of information required for the simulation of the process is a

list of the processing operations comprising the manufacturing plan. Each operation is

expected to be an instance of one of the actions modeled. A Lisp macro called FAB-

PROCESS-INSTANTIATE is used to create each instance in the list. This macro takes

one required argument, the name of the action to be performed, and any number of

optional constraints. Generally, the constraints are statements in the same lisp-syntax

logic used in the models of the actions. However, some constraints need to be specified

with such regularity that special syntax is provided to facilitate their inclusion.

One set of constraints that should be included in the description of every action

concerns the time-interval during which the operation takes place. DAS must be told

explicitly how the time-intervals for each action relate to one another. Also, it is

generally useful to give the time-interval of each action a meaningful name. A special

syntactic form is provided that permits several constraints to be specified succinctly in a

single statement. The form of this statement is:

(INTERVAL <preceding> < <interval-name> < <following>)

where <preceding> and <following> are specifications of time-points. This single

statement indicates that the name of the time interval is <interval-name>, and that it

occurs after <preceding> and before <following>.

Since most of the action models are parameterized, it is necessary to specify or

somehow describe the values of these parameters. One way to do this is to include a

constraint statement of the form:

(called <parameter name> <parameter value>)

80 Chapter 5: Process Representation

Such a statement allows either a quantitative or symbolic value to be specified

for the parameter. It should be noted that providing quantitative values for numerical

parameters may not be sufficient to constraint the simulation to a unique outcome. They

will only be sufficient if arithmetic expressions or semantically attached lisp functions

are provided for all relevant functions mentioned in the action models. The alternative

approach is to write a statement that qualitatively constrains the value of the

parameter(s) by partially indicating the expected outcome of the operation. For example,

one might specify that the duration and temperature of an oxidation step are sufficient

to grow an oxide of a given thickness. Statements of this type not only help to constrain

the simulation, but also partially document the intention of the process designer.

Statements of this kind can be very weak, as long as they unambiguously define the

outcome of the action. For example, the constraint for the oxidation step may merely

indicate that the duration of the operation is not sufficient to completely oxidize the

entire substrate layer.

These qualitative constraints will generally require universal quantification,

because at the time the constraint is being written the number of individuals affected by

the constraint may not be known, and they are likely to be also to be anonymous. That

is, as processing proceeds new individuals, such as new layer-regions, are created. These

individuals will have system-assigned names, and their number will depend on how the

actions of the process interact. To facilitate the writing of such constraints, a predicate

called NAMED is provided. This predicate permits the process designer to provide

meaningful names for individuals that are expected to be created during an action, so

that these may be referred to by name in constraints associated with subsequent actions.

Figure 5.2 displays a simple example of how an oxidation step might be

specified. In the example, the time-interval is given the name STEP1 . This interval

occurs after START , which is the name of the initial time-point of the simulation. The

example illustrates the use of a time-point called *NOW* . The *NOW* time-point

merely serves to indicate that the STEP1 time-interval is finite. It is not necessary to

indicate that it ends before the beginning of the next step, as the description of the next

step will indicate that that step begins after the end of the current step. During a

simulation, if the execution is interrupted after any given step, the user can conveniently

use the *NOW* time-point to refer to the latest values of all time-dependent attributes.

5.1. Representing the Process for DAS 81

The operation described in figure 5.2 includes two additional constraints. The

first indicates that none of the layer-regions in the SUBSTRATE layer are completely

oxidized. The second indicates that any new layers created (only one is expected) should

be named INITIAL-OXIDE .

(fab-process-instantiate OXIDATION
 (interval start < STEP1 < *now*)
 (for-all-true $lr e (@ (layer-regions SUBSTRATE)
 (start-of STEP1))
 (< $duration
 (oxidation-destroy-time $lr
 $temperature (start-of STEP1))))
 (for-all-existing $l \: layer (end-of STEP1)
 (:=> (created-during $l STEP1)
 (named $l INITIAL-OXIDE))))

Figure 5.2 Instance of an Oxidation operation

5.2. Representing the Process for Display

The qualitative simulation process is a highly abstract computation that involves

forming literally thousands of formulas and determining for each whether they are true

or false. How can a user reassure his or herself that the simulation is proceeding

correctly, that the process specification, for example, is correct and sufficiently

unambiguous? Two standard techniques are to generate a log of the progress of the

simulation, and to provide ways to visualize it.

The DAS system generates a simple log indicating which step is being executed,

when it finishes, how long it took and how much time the entire simulation is

accumulating. The steps are identified by the name given to the time interval by the

INTERVAL constraint described in the previous section. The user can augment this

identification by providing a descriptive string to be displayed in the log. This is done

by adding to the process specification a special constraint of the form:

(display-message <descriptive string>).

For semiconductor manufacturing, the obvious visualization tool to provide is

one that creates a display of the structures being created on the wafer similar to the

drawing in figure 4.4 of the last chapter. However, this poses a difficulty. To create such

a display requires that numerical coordinates be determined for corners of each layer-

region displayed. The quantitative information required to determine such coordinates

will often be lacking for two reasons. First, quantitative values for the parameters to each

82 Chapter 5: Process Representation

model may be missing. During the early phases of design, one can use the DAS

simulator to qualitatively simulate the process design before such quantitative

information has been determined.

More importantly for our case, which is concerned more with diagnosis than

design, even when quantitative values are established for all real-valued parameters, the

simulator may not be able to determine quantitative values for the wafer structure

attributes that are determined by those parameters. The simulator can propagate

quantitative information through the analytic expressions in its models, whether that

information consists of unique values or interval bounds on the values. However, the

models will often employ functions for which no analytic expressions are known to the

simulator. This is due to the fact that the phenomena being modeled are not amenable to

accurate representation in analytic expressions. In these cases, the models employ

functions so as to indicate that a functional relationship exists between the value of the

function and the quantities given as arguments to the function. However, the models do

not try to express the relationship mathematically in terms of an analytic expression,

because no such analytic expression could accurately represent the relationship.

It is possible in many cases to provide analytic expressions for many of the

functional relationships that apply within a specific narrow range of operation. The

expressions employ “tuning” parameters, and are essentially curves fitted to empirical

data. This is the approach used in the Fabrics statistical simulator [37]. The focus of that

work was to provide a very fast quantitative simulator that could be used in Monte

Carlo simulations to characterize the behaviour of a process in the neighbourhood of the

operating point for which the analytic expressions were tuned. Even in the Fabrics work,

however, it was found that diffusion phenomena required numerical techniques because

analytic expressions were not sufficiently accurate.

Furthermore, the goal of the DAS simulator is not accurate quantitative

simulation. As was stressed in the previous chapter, the goal is to elucidate the causal

and functional relationships in the manufacturing process. In some cases, the curve -

fitting analytic expressions do not lend themselves easily to incorporation in a model

organized around the process engineer’s conceptual understanding of what is

happening in the process.

5.2. Representing the Process for Display 83

Finally, there is a pragmatic reason for avoiding the incorporation of such

analytic expressions. Process engineers have a great need for accurate quantitative

simulators, and that is what they have historically been offered. For this reason, once it is

possible to simulate the process quantitatively, improving the accuracy and precision of

the simulation becomes an overriding focus and priority, and lack of accuracy is seen as

a failing of the simulator and its models 3 . Keeping the DAS simulation strictly in the

qualitative domain helps to stress that DAS is not competing with numerical simulators

in the accurate quantitative prediction of the results of processing, but attempting to

serve a completely different purpose.

We desire a display that is qualitatively rather than quantitatively correct, that

reflects as much as possible what the simulator has determined to be true about the

structure of the wafer. To accomplish this, the DAS system determines symbolic

expressions for the geometric attributes of the layer-regions by tracing the dependencies

through the wafer history. The resulting symbolic expressions involve only the

parameters to the models of each step, and those functions that are not further defined

within the models. The expressions are then evaluated to determine the coordinates

needed for the visual display, using approximate values for the parameters and Lisp

functions that very roughly approximate the undefined functions. These approximate

values and functions constitute a faux quantitative simulation that is parallel and

independent of any quantitative reasoning done within the qualitative simulator.

By keeping these separate from the models and the parameter values provided in

the process specification, it is emphasized that their only purpose is to support

visualization, and that they can be left out entirely if visual displays are not desired. In

particular, it is emphasized that the faux Lisp functions do not attempt to achieve

numerically accurate estimates of the functions employed in the models. Rather, they

provide very simple, rough approximations suitable only for producing a reasonable-

looking diagram.

3This was the experience with the AI Process Simulator at Texas Instruments.(Robert

Hartzell, personal communication).

84 Chapter 5: Process Representation

To provide the faux values for parameters, the process specification can include

constraints of the form:

(display-parameters (<name1> <value1>)…(<nameN> <valueN>))

where <name1>…<nameN> are names of parameters and <value1>…<valueN> are

corresponding numerical values for the parameters.

The function fab-display-fn , if provided to the simulator as an argument at the

beginning of the simulation, will be used by the simulator to generate a display of the

wafer structure at the end of each step. Since the simulator creates a wafer history that

encodes the entire history of the structure of the wafer, the function also can be used to

view the wafer structure at any quiescent time-point that has already been simulated

(generally, the start-of or end-of any interval that has been simulated).

The display reflects the information known to the qualitative simulator because it

is based on symbolic expressions extracted from the wafer history produced by the

simulator. However, it should be noted that one should take considerable care in

interpreting the display. Some features in the display may be accidents produced by the

choice of faux parameter values and functions. For example, two layer-regions that

appear to have the same height on the diagram may not be known to have the same

height by the qualitative simulator. To check what the simulator actually knows, it is

necessary to evaluate sentences in the simulator’s logic to determine what the simulator

knows about their truth. This is facilitated by a lisp function called term-eval-print.

When the form (term-eval-print) is evaluated in a Lisp Listener window, a new

reader is invoked that reads formulas in the modeling language and evaluates them. If

the formula is a sentence, its truth value is printed (actually, the TMS node indicating its

truth value is printed). If the formula is a term, then the value of the term in the

semantically attached Lisp interpretation, if any, is printed. Furthermore, after a

sentence is evaluated, one can enter the symbol why . This invokes a simple explanation

system that facilitates determining why the system (dis)believes the sentence, by listing

the sentences that support the original sentence and their truth values. These sentences

are numbered, and one can recursively question why particular sentences are

(dis)believed by entering the corresponding number.

5.3. The DIS Semiconductor Process Representation Server 85

5.3. The DIS Semiconductor Process Representation Server

There are many different activities throughout the life cycle of a manufacturing process

that require some representation of exactly what the manufacturing process is. In

addition to the “runsheets” needed to actually run the manufacturing process in the

factory, other representations of the process are needed to drive technology simulators

to aid in designing, improving and debugging the process, as well as to drive factory

simulators and schedulers to aid in optimizing cost, resource utilization, product

throughput and other variables.

Each of these applications employs a different model of semiconductor

processing and processing plans, and each requires its own idiosyncratic representation

of the manufacturing process. The need to create and maintain multiple redundant

representations incurs a high cost in duplication of effort. As well, it is very difficult to

ensure that all these ad hoc representations are kept in synchrony as the process is

developed and modified. Furthermore, none of these specialized representations is a

sufficiently complete description of the process to serve the functions of technology

transfer and corporate memory.

To remedy these problems, several organizations encompassing both industry

and academia are developing the notion of a comprehensive “Semiconductor Process

Representation (SPR).” The intention is that only a single representation of the process

be developed and maintained, sufficiently rich to serve all the purposes that currently

require multiple ad hoc representations. In order to drive computer simulations, and

also to enable automation in the factory itself, this representation must take a machine

readable and manipulatable form.

The fact that manufacturing plans can be viewed as procedures for carrying out

the manufacturing has led some researchers to investigate the use of a programming

language approach to this representation problem [38-41]. However, manufacturing

plans are more than just procedures. Also, more information than just the

manufacturing plan itself (such as information about equipment and facilities, for

example) will eventually have to be represented in a fashion that permits a rich

interconnection with the representation of the manufacturing plan. Finally, the fact that

different applications model semiconductor manufacturing differently may imply a

need for the ability to reason about the structure of the plan, and suggests that the

representation of that structure should be more declarative than is generally the case in

86 Chapter 5: Process Representation

programming languages. These and other reasons have led to investigation of

declarative, object-based approaches to the problem [42-48].

The Distributed Information Service (DIS) [36] is an object-oriented system for

sharing knowledge with persistent storage in a client/server environment. It was

developed to be a logically central (though possibly physically distributed) electronic

reservoir of information concerning all aspects of semiconductor design and

manufacturing. It permits client applications to interact with it at two different levels of

abstraction: the “Abstract Object Interface (AOI)” defines an abstract object-oriented

framework for representing any kind of information, that features dynamic class

creation, dynamic reparenting (reclassification), and dynamic, multiple inheritance; the

“Domain Specific Language (DSL)” provides abstractions that correspond to important

concepts in a specific domain, and hides the implementation of these concepts in the

underlying AOI framework.

At the AOI level, applications interact with DIS in terms of OBJECTs, their

SLOTs, FACETs on those SLOTs, and METHODs written in a Scheme-like extension

language. The objects are identified by name, and exist in different NAMESPACEs. The

OBJECTs are organized into an inheritance hierarchy, or taxonomy (actually an

inheritance graph, as multiple inheritance is supported). The AOI level makes no

commitments regarding the ontology used to represent information: applications are

free to invent their own ontologies.

At the DSL level, interactions are in terms of concepts in an extensible, domain-

specific ontology to be shared by all applications, so that information-sharing is

enhanced. Although the DIS system is being used to represent information of many

different kinds useful for device design, facility management, and process design,

semiconductor process representation is currently the only domain for which a DSL has

been defined. The basic concepts in this DSL include STEPs, EQUIPMENT,

PARAMETERs, ATTRIBUTEs and DOMAINs. STEPs can be hierarchically composed of

other STEPs; STEPs and EQUIPMENT can have PARAMETERs; PARAMETERs can

have ATTRIBUTEs, and can belong to DOMAINs. STEPs and EQUIPMENT also

participate in an inheritance hierarchy (taxonomy). Extension of the ontology is through

the creation of specializations within the taxonomy, to represent specialized classes of

STEPs and EQUIPMENT (for example, to differentiate etch steps from diffusion steps).

The first-level partition of the STEP concept is into TOP-LEVEL-PROCESSes (intended

5.3. The DIS Semiconductor Process Representation Server 87

to represent “complete processes”), PROCESS-MODULEs (intermediate aggregations),

PROCESS-STEPs (roughly corresponding to the ill-defined but ubiquitous concept of a

“unit process”) and EQUIPMENT-OPERATIONs.

In addition to these two levels of abstraction, DIS provides operations for session

management, transaction management, client authentication and programmable

notifications to interested clients of when changes are made to particular objects in DIS.

Ongoing research is aimed at adding design configuration management and more

sophisticated access control.

Electronic Runsheet

Runsheet

DIS

DAS

Suprem

Process Specification

¥¥¥

Figure 5.3 Semiconductor Process Representation Server scenario

Communication with the server is through a (programming language

independent) protocol using character-strings over a stream-based network protocol

(TCP/IP). However, special support is provided for C++ applications in the form of a

88 Chapter 5: Process Representation

client library that provides an object-oriented interface that hides the string-based

protocol.

Figure 5.3 illustrates the scenario for use of the DIS system as a semiconductor

process representation server. A process specification system is used to compose the

process plan and store it in the DIS server, incorporating as much as possible pre -

existing steps from a public section of the inheritance hierarchy that serves as a

“component library” for semiconductor processes. Then, applications that require

information about the process plan , such as simulators and runsheet generators, obtain

the information by accessing the server.

5.4. Extracting the DAS representation from DIS

Given that a rich representation of the manufacturing process is stored in the DIS server,

the question arises as to how it can be used to drive the DAS qualitative simulator. Quite

apart from the low-level issues of communicating with the server over the network and

syntactically transforming the information obtained into the format required by the

simulator, there are two somewhat thornier issues. These issues arise not only for DAS,

but for any existing application that must access the information. Future applications

may be designed with the current process representation in mind, thus alleviating these

issues somewhat. However, they will probably continue to arise even for such “process

representation-aware” applications.

The first issue concerns the need to translate the representation of steps and their

parameters in the process representation into the conceptual vocabulary of the various

applications. The process representation in the server necessarily makes ontological

commitments concerning what kinds of operations occur in a process, and what

information is available about each operation. These commitments, the “language” used

to describe processes will not, in general, match the commitments made by the designers

of different simulators and other applications.

The second issue concerns the fact that different applications have different

views regarding what is to be considered an atomic operation (a “step”) versus a

composite operation (a “module”). The process representation in the server will have

made choices about the temporal boundaries of operations, and the compositional

granularity of the representation. Once again, these may not coincide with the way other

applications choose to make these decisions.

5.4. Extracting the DAS representation from DIS 89

We consider these two issues in turn in the next two subsections. Then we

describe how we would prefer that model selection be handled, and finally, how

pragmatic considerations force us to fall short of this goal.

5.4.1 Step Taxonomy and Model Selection

Different applications “think about” semiconductor processing differently, and no single

application needs all the information that all of them require collectively—therefore

some data reduction and translation is required. One way of looking at this problem is

to think of it in terms of determining how the steps in the representation of the process

are to be modeled for each application.

Each application defines its own vocabulary for describing what goes on in the

fab. Writing a specification, an “input deck” for SUPREM, for example, involves

mapping the activities that take place in the fab into the conceptual categories of

processing operations understood by the simulator, and its vocabulary for them.

The DIS representation permits steps to be organized into a taxonomy. The

taxonomy groups steps that have a common abstraction into classes. There are many

different ways to organize manufacturing operations into abstract classes. Indeed,

different users likely have different ideas about what the organizing principle in the

taxonomy should be.

We are not restricted to one such organizing principle: the representational

machinery allows for multiple-parent taxonomies, so that a given step can be situated

simultaneously within different abstract classes. Also, it is possible and sometimes

useful to use different abstraction principles at different levels in the taxonomy. Here we

will explore the relationship between the organizing principle of the taxonomy, and the

problem of selecting appropriate models for simulating a process.

The primary constituents in the description of a step are PARAMETERS. There

are at least three different categories of parameters. To support runsheet generation and

to drive the ‘programmable factory’ as well as to support equipment simulators, there

must be SETTINGS parameters that describe what the process equipment settings are for

the operation. Since such settings information is apt to be specific to the type of

equipment used, it can only appear in the description of steps that are sufficiently

specific and concrete that at least the type of the equipment has been assigned.

90 Chapter 5: Process Representation

Process simulations employ models which often operate at a more abstract level.

To support these simulations, two additional categories of parameters are required:

EFFECTS and ENVIRONMENT. The effects parameters describe the impact of

performing the operation. For a chemical vapor deposition step the effects parameters

might include the thickness of the layer deposited, and its chemical composition or

material type. Such information helps to document the intentions of the process designer

in employing the step, and is needed to drive some simulators that are not physically-

based.

The environment parameters describe the micro-environment created at the

surface of the wafer. These allow physically-based simulators to determine the impact of

performing the operation by determining what physical and chemical processes will

occur.

In well-designed equipment, one should expect the distinction between these

categories of parameters to blur: the purpose of the equipment is to achieve the desired

effects by manipulating the wafer’s environment. Thus, one will often find that the

equipment’s settings are directly calibrated in terms of environmental or (less

frequently) effects parameters. For example, one of the key environmental parameters in

a furnace is temperature. Through the use of continuous feedback control, this can also

be an equipment setting, and the power delivered to the RF coils or heating lamps can be

an internal variable hidden from the user. As another example, a ion implanter can have

a setting that directly specifies the dose (an effects parameter), because it can accurately

count the number of ions being implanted per unit time. Nonetheless, it is necessary to

have environment and effects parameters, because equipment is not always so well -

designed (suitable feedback mechanisms may not be available) and because it is often

desirable to simulate a process at an abstract level before equipment has been assigned

and settings parameters have been determined.

Given the nature of this representation of the process, there are two sources of

information concerning how each step should be modeled for simulation: the types of

parameters associated with the step and their values, and the abstract classes into which

the step has been placed in the taxonomy.

The CAFE system developed at MIT [45] attempts to identify the correct way to

model each step by looking only at the step’s parameters. For example, if the step

5.4. Extracting the DAS representation from DIS 91

description includes a temperature environment parameter with a high value, and an

ambient-gases parameter that indicates the presence of an oxidizing agent, then the

system can conclude that the step should be modeled as an oxidation/diffusion step.

This approach requires a fairly high degree of sophistication in the model selection

process. The model-selector is essentially an expert system that ‘understands’ enough

about the simulator and its models, and about semiconductor processing in general, to

automate the conceptual mapping between them.

An alternative approach is to rely primarily on the abstract classifications of the

step to indicate the appropriate model. This approach is computationally much simpler:

rather than trying to capture the expert’s knowledge about how steps can be modeled

within different simulators, it merely provides a mechanism by which the expert can

directly specify what model to use for each step by specifying what abstract classes the

step belongs to. Model information is associated with the abstract classes of steps, and

inherited to the specific steps in the process representation. Although this approach

avoids the problem of encoding the “first principles” knowledge of processes and

models, it imposes constraints on the form of the step taxonomy. The abstract classes in

the taxonomy have to correspond to the abstractions made by the simulator models.

It should be noted that the problem of determining how to model an operation

for a given purpose can be viewed as a classification problem: one wishes to know how

the operation should be classified within the conceptual framework of the given

application. Indeed, one way to perform description-based model-selection would be to

create a KL-ONE [49] type classification taxonomy for the operations understood and

modeled by the application, and use the description to classify the operation relative to

that taxonomy. The alternative approach merely prefers to allow this classification to be

done by hand by the experts who best understand what the operation is intended to

accomplish and how the applications work.

These two approaches can be combined in a simple fashion. A classification

scheme can be used to determine the appropriate model for a given simulator except in

those cases where manually-specified model information is inherited from an abstract

class. Also, the model information inherited from an abstract class can be ambiguous,

representing several models, and a classification scheme can be used to determine the

most appropriate model among them based on the values of the parameters.

92 Chapter 5: Process Representation

What abstraction principle provides step classes suitable for the attachment of

simulation models? In other words, what kinds of abstractions do simulator models

make? Three principles can be identified. These correspond to the parameter categories

discussed above.

Wafer-State Transformation: Some simulator models ignore equipment specifics

and physical mechanisms, describing operations directly in terms of the nature of the

induced transformation to wafer-state. These correspond to (and are often driven by)

effects parameters. Such models group together steps that have similar effects on wafer

structure, independently of how such effects are achieved. An example of this might be

the SUPREM model for Etching operations. Independently of whether a wet etch,

plasma etch, reactive ion etch or ion milling step is employed, the impact of the etch step

is to partially or completely remove a layer of a given material at the surface of the

wafer.

Physical Mechanism: Many simulator models distinguish steps on the basis of

the dominant physical or chemical process by which the steps achieve their effects.

These models are primarily driven by environment parameters, though effects

parameters may also play a role. The SUPREM Diffusion model is an example of this.

Most process steps that involve high temperatures, and thus involve diffusion of

impurities, are modeled by this parameterized class.

Equipment: Finally, some operations involve wafer micro-environments that are

not well-understood or easily described. Such operations are often simulated by models

that are equipment-specific and driven by settings parameters, or other equipment-

specific information, such as parameters describing machine-state .

Wafer-State Transformation models are more abstract than Physical Mechanism

models, which are more abstract than Equipment models. This suggests that it may be

possible to construct a single taxonomy that employs all three principles in turn. Near

the root of the taxonomy, the classes would be distinguished on the basis of how Wafer-

State Transformation is described. Further down in the hierarchy, the more specialized

classes of steps would distinguish sub-classes on the basis of the Physical Mechanism

(how the microenvironment at the surface of the wafer is described). Closer to the leaves

of the taxonomy, steps would be distinguished on the basis of Equipment specifics.

5.4. Extracting the DAS representation from DIS 93

Figure 5.4 below shows a small piece of a potential taxonomy of processing steps

that follows this principle. The Etch step merely indicates what parameters are used to

describe the effect of performing an etch step: the (possibly selective) removal of

material from the surface of the wafer. Its immediate specializations distinguish between

two major physical mechanisms used to accomplish etching, namely Wet Etch and Dry

Etch techniques. Finally, the most specialized objects in the hierarchy as shown indicate

how plasma etches on specific classes of equipment (AMT and Drytek plasma etchers)

are described.

Etch

Wet Etch

Wet Oxide Etch

Wet Nitride Etch

Dry Etch

Dry Etch to Thickness

Dry Etch End Stopped

AMT Dry Etch Timed

Drytek Dry Etch Timed

AMT Dry Etch End Stopped

Drytek Dry Etch End Stopped

Wafer State Effects

Physical Mechanism

Equipment

Figure 5.4 Partial Step Taxonomy

The DAS model of the etch operation is driven partly by effects information and

partly by environment information. Further, it can operate without any environment

information, if the effects are sufficiently specified. Thus, by attaching the general Etch

94 Chapter 5: Process Representation

model of DAS to the high-level ETCH step in the process representation taxonomy, it

would be inherited to every etch step in the taxonomy. More specific versions of the

DAS etch model, such as END-DETECT-ETCH, could be attached to suitable objects

slightly lower in the taxonomy, overriding the general etch model (but of course,

incorporating it through DAS’ own notion of inheritance of model descriptions).

5.4.2 Process Decomposition and Model Selection

In addition to organizing steps into a taxonomy, the representation also allows for the

hierarchical composition of steps into ever larger modules, until at the root a single

object represents the entire process.

The diagram in figure 5.5. represents what the initial level of decomposition of a

process might look like.4

Near the top of the composition hierarchy, the modules will represent quite

complex sequences of procedures, and it will make most sense to base their taxonomic

classification on the purpose they serve relative to the overall goals of the process. This

is indicated by the kinds of names I’ve chosen for these modules.

Closer to the bottom of the composition hierarchy, however, things get a little

messier. Objects which are clearly modules, in the sense that they are composed of other

steps, begin to enter the realm of what might be called steps from a particular viewpoint.

Process

Wafer
Preparation

Isolation Devices Interconnect Passivation

Figure 5.5 Initial decomposition of semiconductor process plan

4I am indebted to Wes Lucasek (personal communication) for this particular top-level

decomposition.

5.4. Extracting the DAS representation from DIS 95

For example, consider the simple situation in figure 5.6. We have a module

consisting of an oxidation step followed by an inspection step. From the perspective of

simulators and for other reasons, it makes sense to consider the oxidation and the

inspection as two separate steps. After all, the inspections are not simulated. On the

other hand, when it comes to generating a run-sheet, or driving the factory with an

electronic runsheet, there are good reasons for considering the combination of the

oxidation and inspection operations as a single step, because the measurements made

during the inspection (and the instructions for performing them) are to be closely

connected with the operation that made the structure being measured.

Grow
Oxide

Inspect
Oxide

Grow&Inspect
Oxide

Figure 5.6 CIM versus TCAD notion of “step”

Thus, what is a module from one perspective is a step from another.

This notion is driven home by the more complicated example in figure 5.7, which

I’ve simplified by removing all inspections, rework loops, etc. Which are the steps,

which are the modules, and which are the substeps?

Taking the CIM view, we might decide to classify the objects that have shading

behind them in the figure as steps. Notice that some objects classified as steps are

composed of other step-like objects, which might be called substeps. Thus, some of these

steps behave somewhat like modules. For the purpose of generating a runsheet, one

might go further, and classify the “Pattern Resist” operation as a “step.” This is because

it is frequently the case that the same photolithography procedure is used for every

mask, and so it is fully described only once at the beginning of the runsheet. Then,

instances of the procedure describe only how they differ from the generic procedure.

The initial description of the photolithography procedure is parameterized, and the

instances of it in the process specify the values for those parameters.

96
C

hapter 5: P
rocess R

epresentationFigure 5.7: Breakdown of part of Isolation module, showing parts that might be classified as steps from different perspectives.

• • •

Etch
Strip
Resist

Slow
Push

Ramp
Up

Dry Ox Wet Ox
Ramp
Down

Slow
Pull

Pattern
Resist

Pattern
Nitride

Isolation

Clean &
Singe

SoftBake Align &
Expose

HardBake

HF Clean Singe

Dip Rinse Rinse

Align Expose

Spin on
Resist

Develop Grow
Field Oxide

CIM Steps

Suprem
Steps

DAS Steps

5.4. Extracting the DAS representation from DIS 97

The objects framed by border lines in figure 5.7 indicate operations that might be

considered steps by the SUPREM simulator. SUPREM does not explicitly model the

photolithography operations of coating the wafer with resist, exposing and developing

the resist, and stripping it off. Instead, it has the concept of a patterned-etch, in which

the impact of an etch operation is magically confined to those areas of the wafer that

would be unprotected by resist. Thus, for SUPREM, the “Pattern Nitride” module would

be a step: as the application driving the simulation traversed the composition hierarchy,

it would want to stop at the level of the Pattern Nitride step and simulate that, without

bothering to look at the steps that the module is composed of. This means that like steps,

some modules must have parameters specifying effects, environment, settings, and so

on (in this case only effect parameters are needed). Also, we must be able to associate

modeling information with modules just as we do with steps, and in fact we desire that

these modules have a place in the step taxonomy so that they can inherit model

information as appropriate.

SUPREM can be used to model the oxidation step as a single step, or it can be

used to model the substeps individually, for greater accuracy. Thus, what we’ve said

about steps and modules also applies to sub-steps.

Finally, those objects containing small black triangles indicate how DAS would

view the situation. We show this example just to emphasize that not only do simulation

and CIM views differ, but there will also be differences among simulators and among

different ways of using simulators.

If each application made different decisions regarding where module boundaries lay,

then it would be very difficult to extract a reasonable abstraction of the process for the

application from the central representation. The rationale used by each application for

aggregating steps and modules into larger modules would have to be codified so that this

aggregation could be carried out automatically. However, thus far it has been our experience

that, although different applications have different views regarding what constitutes an atomic

operation, it is possible to construct a single system of aggregations that satisfies all

applications. With a sufficiently detailed and carefully designed system of aggregations, the

applications only disagree as to the granularity of the representation, and each can find

98 Chapter 5: Process Representation

aggregates in the composition hierarchy that correspond to their individual notions of atomic

operations.

The fact that different applications will treat modules at different aggregation

levels as steps is an argument in favour of a uniform mechanism for composition that

does not distinguish between modules, steps and substeps. Rather it should allow this

distinction to be made by each application according to its own need. In particular,

modules should be capable of having descriptive parameters, and should participate in

the same taxonomic hierarchy as steps, so that they can inherit modeling information.

Moreover, it should always be possible to refine the description of a “step,” by

indicating that it can be further decomposed.

5.4.3 A Simple Approach to Model Selection

In this subsection we assume that steps are organized into a taxonomic hierarchy

according to a succession of principles: Wafer-State Effects → Physical Mechanism →

Equipment Specifics, and that the distinction between modules, steps and substeps is

left to individual applications to make. We describe a simple, flexible mechanism by

which appropriate models for process steps can be selected for each application.

We illustrate the mechanism by indicating how a specific application, the DAS

qualitative simulator, would be added to the repertoire of applications supported by the

process representation.

The first step is to add a new parameter to STEP objects. The name of the

parameter is immaterial, as the parameter will be accessed solely by the domains to

which it belongs. However, a name appropriate to the use of the parameter would

consist of the name of the application concatenated with the word MODEL, separated by

a hyphen. In our case the parameter could be called DAS-MODEL. It may be necessary

or convenient to be able to attach more than one such parameter to the same step object,

in which case the names might be distinguished by a concatenated number. These

parameters are indicated as belonging in the domains DAS and MODEL, and perhaps

also others, such as SIMULATOR. The default value of any such parameter indicated on

the most general STEP object is NULL, which value is interpreted as specifying that no

model applies.

5.4. Extracting the DAS representation from DIS 99

Next, a taxonomy of MODEL-OBJECTs (in our case DAS-MODEL-OBJECTs) is

created. This taxonomy contains objects representing every DAS process step model.

The organizing principle for this taxonomy derives from the most appropriate

abstraction principles applicable to models of the application. For any simulator, this

may parallel somewhat the abstraction principles used to organize the taxonomy of

process step objects. However, it will not likely duplicate it completely. For the DAS

simulator, the taxonomy would reflect the organization indicated in figure 4.5 of the

previous chapter.

It is intended that the objects in this MODEL-OBJECT taxonomy are suitable

values for the <application>-MODEL (e.g. DAS-MODEL) parameters in the step objects.

An abstract (non-leaf) object in this taxonomy would be assigned as the value of the

model parameter when it is desirable to indicate that the choice of model is ambiguous.

In such a situation, the specializations of the model-object should represent possible

resolutions of the ambiguity.

Another way to indicate an ambiguous choice of model is to have more than one

model parameter for the same application on the step object for which ambiguous

assignment is desired, with each such parameter indicating a possible resolution of the

ambiguity. In either case, the idea is to allow a parameterized class of process steps to

have an ambiguous model assignment. On specializations of these steps, which inherit

the ambiguous model assignment, the ambiguity is resolved by examining the values of

the step’s parameters that distinguish the specific subclass to modeled.

The value(s) of the model-parameter(s) is(are) specified for each step object.

Hopefully, the organization of the step object taxonomy is such that it is only necessary

to make this manual specification for a small number of abstract step objects. Those

values can then be inherited automatically to more specialized step objects.

Next, it is necessary to indicate which parameters on step objects are pertinent to

the application that is attempting to model the step. This is accomplished by having a

domain name specific to each application, and indicating that the pertinent parameters

belong to that domain. In our case, the parameters on step objects that contain

information needed by the DAS simulator would be indicated as belonging to the DAS

domain.

100 Chapter 5: Process Representation

The precise content of the application MODEL-OBJECTs is a matter of taste. The

MODEL-OBJECT should contain sufficient information to enable the application to

process any step for which the model-object is the model-parameter value. The

judgment to be made concerns how much information can/should be declaratively

represented in the SPR server (and thus made accessible to other applications), versus

how much must/should be represented only in the application itself.

In the case of the DAS simulator, the models are qualitative statements in a

declarative language. It is therefore easy to incorporate the complete model in the

model-object held in persistent store in the DIS server. The advantage of doing so is that

the model is accessible to other applications, such as a process specification system.

Being able to see precisely how a model will treat a given step facilitates the model

assignment decision. The disadvantage of this approach is the inefficiency of having to

fetch the model across the network and reinterpret it each time it is used.

For other simulators, such as SUPREM, the models are embedded in the

application in the form of compiled code. For inspection purposes, the model-object

could at best contain a redundant description of the mathematical model that is so

embedded.

At a minimum, the model-objects should contain three types of information:

1. an indication of the model to be applied, whether by name, or description;

2. indications of how parameters of the step object map into the parameters of the
model (this is at least a mapping between parameter names, but might also
require an indication of mathematical relationships: for example, change in unit
of measure);

3. additional information required by the model that is not expected to be present
in the process representation (for example, specification of the time step or
gridding technique for a finite element type simulator).

An application driven by a representation of the process would extract that

representation by a variant of the following procedure.

The application would “walk” the decomposition tree of the process, examining

each object in turn, starting with the highest level module. For each object, the

application would request from DIS a list of all parameters that belong in the domain of

the application. If there are none and the object is a module, the application would

5.4. Extracting the DAS representation from DIS 101

proceed by asking for the substeps of the module and treating each returned object in

turn. If there are no application domain parameters and the object has no further

decomposition, then the object represents a step that did not inherit any model

information. The application has two choices at this point: either it can decide that such

steps are to be ignored (as, for example, cleaning steps would be ignored by a numerical

simulator); or that the appropriate model for the step must be determined by some other

means, such as a classification procedure.

If the object is a module and does have a model parameter for the application,

then the application again has two choices: it can choose to process the object as if it

were a leaf in the decomposition hierarchy; or it can decide to continue down the

decomposition hierarchy. The existence of a model associated with the module indicates

that the module can be treated as a step, but does not require it to be treated as a step.

This choice would be based on criteria specific to the application and/or the invocation

of the application. For example, the application could keep track of photolithography

modules it has processed. The first time a photolithography module is processed it

would be expanded into its constituent substeps, despite having a model at the module

level. The next time the same module is encountered, the module would not be

expanded, and the module-level model would be invoked. In this way, a run-sheet

generator could arrange to expand the details of each photolithography module only

once, and refer to these expansions when the same modules are used additional times.

As another example, a “wrapper” for the SUPREM simulator could decide, based on

preferences indicated by the user invoking the program, whether furnace steps are to be

simulated as monolithic steps or whether their equipment substeps should be separately

simulated.

As mentioned in the previous subsection, the model information associated with

a process object might be ambiguous in two different ways. More than one model

parameter for the same application might have been inherited. Also, the model object

that is the value of a model parameter might be an interior node in the model

specialization hierarchy, representing an abstract model for which there are several

specializations to choose from. Different applications might treat these situations

differently.

The existence of multiple models might require that the application decide which

is most appropriate, or it might require that all models be invoked. For example, a

102 Chapter 5: Process Representation

simulator that could simulate oxidation and diffusion, but not their interaction, might be

set up to treat an oxidation-enhanced-diffusion step as two steps performed in either

order: an oxidation step and an independent diffusion step. The OED step would have

both the oxidation and diffusion models associated with it for this simulator, and both

would be invoked. In most cases, however, the application would be designed to select

the most appropriate model based on further examination of the characteristics of the

step.

Similarly, the abstract model situation may be handled differently by different

applications. For some applications, the abstract model can be invoked directly. For

others, the application will have to decide which of the specializations of the model is

most appropriate based on the characteristics of the step.

In the simplest scenario, only process objects with a model parameter are

processed, each such object has or inherits only one model parameter in the domain of

the application, and that model has no specializations. Then the existence of a model

parameter serves to decide whether modules are expanded and whether steps are

processed, and the value of the parameter indicates how the object should be processed.

However, as the discussion above indicates, using this mechanism does not preclude

employing more sophisticated techniques to solve the model selection problem.

5.4.4 Implementation of Model Selection

In this subsection we describe how the model selection task was implemented for the

process representation defined by the Specification Editor developed at Stanford by

Robert Hartzell.

A simple version of the model selection process described in the previous

sections was implemented in a pass-through server that provides read-only language-

independent DSL level access to the representation. This server is called the Language

Independent Semiconductor Process Representation Server (LISPRS). This server is

written in C ++ so that it can directly employ a C++ API created to facilitate access to the

representation by programs written in C++. Figure 5.8 illustrates the scenario. The

LISPRS server accepts commands in a Specification Editor-specific DSL language, and

employs the C++ API to translate them into AOI calls on the representation as stored in

DIS.

5.4. Extracting the DAS representation from DIS 103

LISPRS
(C++ API)

DAS
(or other
non-C++

application)

DIS

AOISpecEdit DSL

Figure 5.8 Language-Independent Semiconductor Process Representation Server

The principal command provided by the LISPRS read-only pass-through server

is called “WALK-MODULE.” This command traverses the composition hierarchy of a

module, collecting into a list all steps that have parameters belonging to a specific

domain, along with the names and values of those parameters. By this method, a

flattened description of the process representation filtered for use by a specific

application is fetched in one step, rather than being fetched incrementally. It allows for

efficient access of the module structure without the need of complex cache management

in the pass-through server.

The Specification Editor makes a high-level distinction between Modules, Steps

and Equipment-Substeps. Modules can be composed only of other modules and steps.

Steps must be atomic, or composed of Equipment-Substeps. Equipment-Substeps must

be atomic. The representation currently only permits model information to be associated

with objects that represent Steps. When a step has no model associated with it, either

directly or via inheritance, the LISPRS server does not include the step in the flattened

description. This implies that the policy regarding such steps is that they are not to be

processed, rather than that some other mechanism should be invoked to determine the

most appropriate model. Note that one could implement the alternate policy by

associating the application’s root model-object with every step object as a default model

via inheritance. Then every step would appear in the list, and the root model-object

would be a highly ambiguous model assignment to be resolved by other means.

Currently, the DAS simulator associates at most one model-object with each step,

and the model-object associated is not abstract. Thus, there are no ambiguous model

assignments.

104 Chapter 5: Process Representation

The flattened description returned by the LISPRS WALK-MODULE command is

a list, with a sublist for each step to be simulated. The sublist for each step contains the

name of the step and the names and values of each parameter marked as being in the

DAS domain, including the unique model-parameter with the name of an unambiguous

model-object as value.

From this list, a process specification suitable for DAS is constructed. For each

step, an expression similar to that in figure 5.2 is generated from information in the

sublist for that step and information in the model-object. The name of the model-object

serves as the name of the process being simulated, e.g. OXIDATION. The name of the

step object serves as the name of the interval.

The model-objects have a slot for each of the parameters that might appear on a

step they are associated with that are relevant for the simulation of the model. The value

stored in each of these slots is a parameter-translation expression indicating how the value

and other attributes of the step parameter should be presented to the simulator. The

expressions take the form of constraints for the simulator written in the lisp “backquote”

syntax. For example, the DAS-ETCH model-object has a slot called “Chemical Bath”

because some of the etch step objects (in particular the WET-ETCH% objects) with which

this model-object can be associated have parameters with this name. The value of the

slot is the string:

"`(called $etchant ,value)".

The backward quote (`) indicates that the expression, when it is read by the lisp

reader and evaluated, should be taken “as is,” i.e. not evaluated, except that

subexpressions within the expression preceeded by a comma should be evaluated and

replaced in the expression by their value. This string is fetched during the processing of

the description of an etch step object, read by the lisp reader, and evaluated in a context

in which the symbol VALUE is bound to the value of the step’s “Chemical Bath”

parameter. This produces a constraint that will be passed to the simulator of the form,

e.g.:

(CALLED $ETCHANT |6:1 Buffered HF|)

which states that the $ETCHANT parameter of the DAS-ETCH model is that ETCHANT

called |6:1 Buffered HF|.

5.4. Extracting the DAS representation from DIS 105

The parameter-translation expression can access attributes of the parameter, as

well as its value. For example, the “Time” parameters of oxidation and diffusion steps

are translated by the string:

“`(N= $duration ,(minutes value (attribute units)))”.

In this expression, the subexpression following the comma is a lisp S-expression

that calls the function MINUTES (a function that converts times to minutes) with two

arguments. The first argument is the value of the symbol VALUE (which is bound to the

parameter’s value). The second argument is the value of the form (ATTRIBUTE

UNITS) . In the context in which the evaluation takes place, ATTRIBUTE is a macro that

takes the name of an attribute and returns the value that the parameter has for the

named attribute. The resulting constraint passed to the simulator specifies that the

model’s $DURATION parameter is numerically equal to the value of the step’s parameter

expressed in minutes.

More complicated translations are possible and necessary. For example, some

etch steps have a parameter called “Etch Material .” The import of this parameter is

that the etch step is intended to etch this material, whatever other materials it might

etch. The simulator is informed of this by the following parameter-translation string:

"`(for-all-existing $l \\: layer-region (start-of (process interval))
 (:=> (is-type ,value
 (@ (material $l) (start-of (process interval))))
 (> (etch-rate $l (process interval)) 0.0)))"

This states that if the material type of any layer-region is the value of the step’s

“Etch Material” parameter, then the etch-rate for that layer-region is positive.

There are two possible ways to deal with the issue of additional constraints. One

is to associate the constraints with the step object in the process representation, by

having a DAS-CONSTRAINT parameter in the DAS domain whose value simply lists

the constraints. The other is to create specialized versions of the model-objects and

associate the constraints with these specialized model-objects. The former technique

puts information into the general process representation that is highly specific to one

application, the DAS simulator. It can be argued that the information is potentially of

genuine interest to many applications, as it pertains to the goals and expected outcome

of performing the step. However, the language used to represent the information is per

106 Chapter 5: Process Representation

force highly DAS-specific. The latter approach would lead to a proliferation of model-

objects that differed only in the particulars of context-specific constraints. Many

constraints are specific to the context in which a step is used within a process.

My own preference and recommendation is to use both approaches. A

specialized model-object should be constructed when the constraints to be represented

can be written in a general fashion, so that the model-object can model a class of steps in

multiple contexts. Constraints that are highly context-specific should be associated with

the invocation of the step within a module. That is, constraints should migrate from the

step object to the model-object when they define a natural class of steps, and this would

gain efficiency by avoiding repetition.

There is one additional issue that we have not so far discussed. That is the

extraction of mask information from the process representation. Each photolithography

module contains a mask-expose step, for which the specific mask to use is a parameter

that must be specified in the module. Several things complicate this issue. First, each

different application may require different information concerning the mask. A CIM

electronic runsheet system requires an identification of the glass reticle that is to be used

in the fabrication facility. A scheduling system need only be made aware of the number

and identity of copies of these reticles available. Simulators require that the geometry of

the mask be represented electronically. Furthermore, simulators with different

capabilities require different versions of the geometry. A one-dimensional simulator

merely needs to know whether the mask is opaque or transparent in the region being

simulated. A two-dimensional simulator needs to know the one-dimensional mask

information along the cut-line whose cross-section is being simulated. The DAS

simulator falls into this category. Finally, a three-dimensional simulator requires the

geometry of the mask in two-dimensions for the structure being simulated.

Second, semiconductor processes are often employed to manufacture more than

one product. Also, there will in general be more than one structure, cut-line or region for

simulators to simulate. For each product there will be a distinct set of reticles to be used.

For each structure, cut-line or region to be simulated, there will be a distinct set of mask

descriptions.

Finally, the masks define circuits and structures. Although these must be

designed with a specific class of manufacturing process in mind, the development of

5.4. Extracting the DAS representation from DIS 107

processes and masks are independent from the perspective of version tracking and

configuration management.

For these reasons, the “mask” parameter in the mask-expose steps cannot specify

the mask information directly. Instead, the parameter must identify this information

indirectly, by specifying a “mask layer.” The SPR server must represent masks and

mask-sets as independent design objects, and allow for different classes of these objects

that specify the information needed by different classes of applications.

These issues are discussed at greater length in [9] . That paper includes a

suggestion regarding the protocol to be used for creating and accessing mask

information. The ideas presented in that paper were adopted to a large degree by the

Specification Editor. However, the Distributed Information Server (DIS) has as yet made

no commitment regarding the representation of mask information. In particular, the

Domains Specific Language (DSL) for the semiconductor domain was not augmented to

implement a version of the suggested protocol.

For the purposes of this work, we developed lisp functions that invoke the

Abstract Object Interface protocol to implement our suggested DSL protocol for mask

information on the client (application) side of the client-server boundary.

Chapter 6. Architecture for Integration

In previous chapters the strengths and weaknesses of representations of both

experiential and theoretical knowledge have been discussed. In this chapter we make the

argument that these strengths and weaknesses are complementary for the two types of

knowledge. To emphasize the complementary character of the two types of knowledge,

we introduce the concepts of Phenomena Scope and Situation Scope as two dimensions

along which knowledge representations can be classified.

We then present a key contribution of this work, which is one particular

approach to combining experiential and theoretical knowledge that we call Generic

Rules. Generic rules enable a synergistic interaction between experiential knowledge

and theoretical knowledge, capturing the strengths of both.

6.1. Phenomena Scope and Situation Scope

Let us briefly review the strengths and limitations of both forms of knowledge. For

experiential knowledge, represented in heuristic rules or causal associations, a major

strength is flexibility. Any phenomenon of interest can be included, provided only that it

can be named, and that it can be related to other phenomena, at least in some particular

context. It is not necessary to capture all ways that it might relate to other phenomena:

partial descriptions can be of use.

The primary limitation of experiential knowledge is brittleness, defined as the

inability to adapt knowledge encoded for one context to another context. The

representation of a causal relationship between two phenomena often does not represent

how that relationship is mitigated by other factors. When a change in context entails a

change in such other factors, the represented relationship may be invalidated. However,

there is no way to tell. Furthermore, the lack of a general mechanism for expressing how

classes of concepts are interrelated leads to the use of overly-specific terms. This unduly

restricts the applicability of relevant knowledge in a new context: the relevance of the

knowledge to the new context might not be recognized. In both cases, alleviating the

6.1. Phenomena Scope and Situation Scope 109

problem requires representing knowledge of the domain with greater detail, at a finer

level of granularity.

The chief advantage of theoretical knowledge is a reduction in brittleness. More

of the factors that influence the relationships among phenomena are explicitly

represented. Moreover, the effect of changes in these factors can often be predicted.

Thus, representations of theoretical knowledge can be applied to a wider range of new

contexts with a greater degree of confidence.

As we concluded in Chapter 4, the main limitation of our representations of

theoretical knowledge is that they do not treat all phenomena. It is a feature of the

models used in model-based techniques that they only represent a subset of the domain:

the subset is chosen so as to concentrate reasoning on those features and phenomena in

the domain that are relevant to the problem-solving task. The trade-off is to accept a

restriction in the scope of the problems that can be solved in order to achieve tractability

and efficiency in solving them. This restriction in scope is not only desirable, but

necessary: we can only model some phenomena properly if we adopt a very fine-

grained ontology that has a severe impact on computational complexity; we have not yet

devised satisfactory ways to model some other phenomena; and we do not understand

still other phenomena sufficiently to model them at all. Our understanding of

phenomena and our understanding of how best to represent and reason about

phenomena will both increase over time. However, it will always be case that some

phenomena lie outside the reach of our either our theoretical understanding or our

representation and reasoning ability.

For illustrative purposes, we define two terms: phenomena scope and situation

scope . The term phenomena scope is meant to be a measure of the flexibility of a

knowledge representation paradigm. It is a count of the number of phenomena that can

be usefully captured within the paradigm. Rule-based systems that encode experiential

knowledge tend to have high phenomena scope: many different phenomena can be

included in the representation, because very little detail concerning each phenomenon

needs to be encoded. Representations of theoretical knowledge, on the other hand,

attempt to encode a larger amount of detail concerning each phenomenon, sufficient to

constitute a predictive model of how the phenomenon relates to other phenomena in

many different contexts. The difficulties involved in creating such representations often

110 Chapter 6: Architecture for Integration

limit the range of phenomena that can be captured. Systems based on representations of

theoretical knowledge thus tend to have low phenomena scope.

The term situation scope is meant to be a measure of the robustness of a

knowledge representation paradigm. It is a count of the number of distinct situations or

scenarios — what I have been referring to as contexts — for which the knowledge can be

considered to be valid. As we have noted above, systems based on representations of

experiential knowledge tend to be brittle. The physical mechanisms underlying the

heuristic associations in such systems are often not represented with sufficient detail to

enable the system even to determine whether the associations are valid in a new context,

much less how their conclusions need to be modified for the new context. In contrast,

theoretical knowledge often takes the form of predictive models that explicitly represent

the physical mechanisms underlying behaviour. Such systems therefore tend to have a

relatively high situation scope.

Ph
en

om
en

a
Sc

op
e

Situation Scope

Experiential knowledge

Theoretical knowledge

Ideal

Figure 6.1 Graph of Phenomena Scope vs. Situation Scope

Figure 6.1 depicts phenomena scope and situation scope as two orthogonal axes

defining a two-dimensional space of potential reasoning systems. As shown in the

figure, systems based on experiential knowledge cluster in the upper left portion of the

6.1. Phenomena Scope and Situation Scope 111

quadrant, having high phenomena scope but low situation scope. Systems based on

theoretical knowledge cluster near the lower right portion of the graph, having high

situation scope but low phenomena scope. The ideal system would fall in the upper

right hand portion of the graph: capable of representing many phenomena of interest as

they occur and behave in a wide variety of situations.

We have defined these two ways of characterizing knowledge-based systems in

order to highlight the fact that our two fuzzy categories of knowledge, experiential and

theoretical, and their respective representations, high-level heuristic rules and models,

have complementary attributes with respect to these characteristics. The weakness of

one is the strength of the other, and vice versa. It is therefore natural to contemplate

methods for incorporating both into a single system, in a manner that would allow the

strengths of each to overcome the weaknesses of the other.

6.2. Generic Rules

A key contribution of this work is the identification of one such method for the

synergistic integration of these two forms of knowledge. The instrument of the method

is a representation we call the Generic Rule .

The intent of a generic rule is to represent a piece of knowledge concerning a

phenomenon that lies outside the scope of the available representations of theoretical

knowledge in a manner that preserves some of the robustness conferred by such

representations. The generic rule accomplishes this by combining the features of both

experiential and theoretical knowledge representations.

The generic rule, like the rules normally employed to represent experiential

knowledge, is a high-level heuristic association between characteristics of a situation and

conclusions that might be drawn concerning that situation. It differs from an ordinary

rule in that it employs the vocabulary and reasoning machinery of a representation of

theoretical knowledge in order to explicate, to the degree that the theoretical knowledge

is capable of doing so, how the inference sanctioned by the rule depends on contextual

information. A generic rule represents a general pattern for a class of heuristic rules that

can be instantiated for a given context.

112 Chapter 6: Architecture for Integration

Let us illustrate with an example. In Chapter 3 we introduced the example of a

causal association found within the AESOP PIES knowledge base. We repeat the

association here:

POLY-GATE-UNDER-ETCH → CHANNEL-LENGTH-LONG.

• Experiential representation is not robust:

In our discussion of this example we noted that this association is not robust,

because its validity depends on a series of relationships holding among the steps of the

manufacturing process and the structures on the wafer, which are not explicitly

represented in the association. We also noted that the terms employed in the association

were overly specific, to compensate for the fact that the PIES representational machinery

offers no mechanism for determining in general which etch operations are causally

involved in the shaping of which structures on the wafer.

• Theoretical representation cannot capture phenomena involved:

Our representation of theoretical knowledge described in Chapter 4 provides a

mechanism for representing some of the information that is missing: which etch

operations affect which wafer structures. Further, it provides a mechanism for

determining this information from a representation of the manufacturing process.

However, the phenomenon at work in this causal association lies outside the scope of

the phenomena that can be captured in our models. The phenomenon involves lateral

etching and sloping sidewalls, an inherently 2-dimensional geometric feature. Our

models do not admit any lateral effects of processing, and our representation of wafer

structure, though topologically 2-dimensional, is geometrically only 1-dimensional.

Thus, our causal association representation of experiential knowledge can

represent the phenomenon, but not in a robust fashion, and our model-based

representation of theoretical knowledge cannot capture the phenomenon.

6.2. Generic Rules 113

• Phenomena can be captured robustly in Generic Rules:

We can eliminate the overly specific terms in the causal association by

introducing variables. Denoting variable names with a ‘$’ prefix, the new, more general

rule would read:

($etch-step UNDER-ETCH)→($wafer-structure LONG).

Treating the variables as universally quantified, the rule can now be applied to

any process by instantiating the variables with etch steps and wafer-structures

associated with that process. Note that the process representation lists all etch steps, and

the representation of wafer structure computed by the Discrete Action System provides

many possible candidates for the overly-long wafer structure. The DAS system also

provides the machinery necessary for finding instances of such general statements.

The difficulty with this approach is that the general rule will have many invalid

instantiations. For example, one instantiation might posit a causal relationship between

under-etching during the ‘via’ etch step and excessive length of the bipolar transistor’s

collector region, whereas such a relation is highly improbable, if not impossible.

However, we can attempt to eliminate invalid instantiations by specifying constraints

that must be satisfied by the objects substituted for the variables. Here it is important to

note that, while it is not possible to capture the phenomena addressed by the original

rule in the DAS representations, it is possible to use the DAS representations to describe

most of the conditions that must be satisfied in order for those phenomena to occur.

DEFINITION: A Generic Rule is general pattern for a heuristic rule, employing variables

within the normal syntax for heuristic rules (in our case, causal associations), together

with a list of constraints that must be satisfied by potential values for the variables. The

vocabulary, syntax and reasoning machinery employed for theoretical reasoning is used

to specify the constraints and to determine whether they are satisfied within a given

context.

Figure 6.2 illustrates the syntax for specifying a generic rule. A Generic Rule is

itself a rule of the form “IF <conditions are met for bindings of variables> THEN <posit

rule-patterns with variable bindings substituted>.” However, the subject matter of the

rule is the formation of another rule. Thus, a Generic Rule might be considered a “meta-

114 Chapter 6: Architecture for Integration

rule.” However, the term meta-rule is reserved for rules concerned with control strategy

during reasoning. Since a generic rule describes an entire class of potential rules, we

prefer the adjective “generic,” in its sense: “descriptive of an entire group or class.” 5

(defGenericRule <rule-name>
 :variables ((<var> <type>) (<var> <type>) …)
 :conditions (<condition 1> <condition 2> …)
 :rule-patterns (…))

Figure 6.2 Syntax for Generic Rule

The conditions necessary for the phenomena involved in our example rule are

listed in Chapter 3. Let us examine them each in turn.

The first condition concerns the degree of anisotropy of the etch step. The

example original rule concerns the relationship between the length of an etch step and

the “horizontal” length of a physical structure. Thus, a necessary condition for the

phenomenon to occur is that the etch step in question involve lateral etching. The DAS

models cannot determine when an etch step will involve lateral etching. However, it is

reasonable to require that the process specification (the manufacturing plan) include this

information, either directly or indirectly. In an object-oriented process representation

system, the degree of anisotropy expected can be one of the traits by which etch steps

are classified, so that this trait can be specified for abstract etch steps and inherited to

specific etch steps. The Specification Editor process representation currently includes a

parameter call “ETCH-ANGLE” that is intended to capture the degree of anisotropy by

specifying the expected angle of the sidewalls. The test for the first condition can be

expressed as an ordinal relation between this etch-angle parameter and a suitable

threshold (beyond which the lateral etching is considered insignificant). Thus, the first

condition can be written:

;; Condition 1:
(:AND (is-type (process $etch-step) etch)
 (< (ETCH-ANGLE $etch-step) ANISOTROPY-THRESHOLD)).

5American Heritage Dictionary — Standard Edition

6.2. Generic Rules 115

The second condition is that the etch operation is masked. This condition is

determined by the state of the wafer when the etch step is executed: are some parts of

the wafer covered with a material that doesn’t etch well and other parts not? The state of

the wafer at given points in the process, and the impact of each etch step on the

materials at the surface of the wafer is determined in the course of qualitatively

simulating the manufacturing plan using the DAS models. Thus, this condition can be

expressed and tested within DAS. There are many ways this condition might be

expressed. Since we wish to identify the layer-region that is laterally etched, the

condition might best be expressed from the perspective of this layer-region. The

condition can be simply expressed as the conjunction of two conditions: that the layer-

region survives the etch step, and that the layer it belongs to is changed by the etch step

(i.e. some layer-regions in the layer do not survive the etch step):

;; Condition 2 (first version):
(:AND
 (:NOT (destroyed $wafer-structure (end-of $etch-step)))
 (member (@ (layer $wafer-structure) (end-of $etch-step))
 (changed-layers $etch-step)))

However, we can be more specific than this. If the layer-region is to be etched on

both sides, it must be a layer-region that survives the etch step, for which the layer-

regions in the same layer in adjacent regions are destroyed:

;; Condition 2:
(:AND
 (:NOT (destroyed $wafer-structure (end-of $etch-step)))
 (exists $wr : wafer-region
 (:AND
 (V= (@ (region-type $wr) (end-of $etch-step))
 (@ (region-type $wafer-structure) (end-of $etch-step)))
 (exists $lr e (@ (layer $wafer-structure)
 (start-of $etch-step))
 (:AND
 (V= (@ (region-type $lr) (start-of $etch-step))
 (@ (region-type (left $wr)) (start-of $etch-step)))
 (destroyed $lr (end-of $etch-step))))
 (exists $lr e (@ (layer $wafer-structure)
 (start-of $etch-step))
 (:AND
 (V= (@ (region-type $lr) (start-of $etch-step))
 (@ (region-type (right $wr)) (start-of $etch-step)))
 (destroyed $lr (end-of $etch-step)))))))

116 Chapter 6: Architecture for Integration

The third condition, that the duration of the step is normally longer than that

required to etch through the material in order to effect lateral etching, is easily expressed

within DAS. Furthermore, that the condition is satisfied for a given etch step is likely to

be specified directly as a constraint in the process specification. Once again, we express

the condition relative to the layer-region that is being laterally etched:

;; Condition 3:
(exists $lr e (@ (layer $wafer-structure) (start-of $etch-step))
 (> (duration $etch-step) (etch-destroy-time $lr $etch-step)))

At this point we should note that the original rule combined the results of two

distinct phenomena: lateral etching and masking an implant with the structure that was

etched. It would have been better expressed, even in PIES, as two rules: an interlevel

association between under-etching during the POLY-GATE-ETCH step (Process level)

and increased length of the POLY-GATE structure (Physical-Structure level) and an

intralevel association at the Physical-Structure level between the increased length of the

POLY-GATE structure and the resulting increase in CHANNEL-LENGTH. The two

rules would be expressed in PIES as follows:

POLY-GATE-UNDER-ETCH → POLY-GATE-LONG
POLY-GATE-LONG → CHANNEL-LENGTH-LONG.

A generic rule for the interlevel association would take the form indicated in

figure 6.3.

(defGenericRule Insufficient-Lateral-Etch
 :variables
 (($etch-step dynamic-interval)
 ($wafer-structure layer-region))
 :conditions
 (<Condition 1> <Condition 2> <Condition 3>)
 :rule-patterns
 ((($etch-step UNDER-ETCH) -->
 ((width $wafer-structure) high))))

Figure 6.3 Interlevel Generic Rule for POLY-GATE-UNDER-ETCH example

The fourth condition, that the process is self-aligned, applies only to the second,

intralevel rule. The condition must indicate that in some areas the implantation is

masked by a structure on the wafer other than photoresist. Figure 6.4 illustrates one way

to encode this condition and the generic rule for the intralevel association. Although the

causal association requires only two variables, for the two structures involved, it is

6.2. Generic Rules 117

necessary to include a third variable identifying the implantation step by which the two

structures are interrelated. The two structures are correctly identified if the masking

structure is at the surface of the wafer in the same regions as the masked structure and is

not photoresist, both structures are in layers affected by the same implantation

operation, and the masked structure is not itself modified by the operation.

(defGenericRule Structure-Masked-Implant
 :variables
 (($implant-step dynamic-interval)
 ($masking-structure layer-region)
 ($masked-structure layer-region))
 :conditions
 (;; The step is an implantation operation
 (is-type ion-implantation (process $implant-step))
 ;; The masking structure is at the wafer surface in the same region-type
 ;; as the masked structure.
 (V= (@ (surface (region-type $masked-structure))
 (start-of $implant-step))
 $masking-structure)
 ;; The masking structure is not photoresist
 (:NOT (is-type photoresist
 (@ (material $masking-structure)
 (start-of $implant-step))))
 ;; The layers that the masked and masking structures belong to are both
 ;; affected by the operation
 (member (@ (layer $masked-structure) (start-of $implant-step))
 (new-layers $implant-step))
 (member (@ (layer $masking-structure)(start-of $implant-step))
 (new-layers $implant-step))
 ;; The masked structure is not implanted.
 (> (ion-bottom (@ (region-type $masked-structure)
 (start-of $implant-step))
 (start-of $implant-step))
 (@ (top-pos $masked-structure) (start-of $implant-step))))
 :rule-patterns
 ((((width $masking-structure) HIGH) -->
 ((width $masked-structure) HIGH)))))

Figure 6.4 Intralevel Generic Rule for POLY-GATE-UNDER-ETCH example

Note that both rules refer to the widths of structures being too “high.” We could

have written the rules in terms of the lengths of structures being too long. However, in

the general case we do not know a priori whether the dimension in question is a width or

a length. Within the ontology of DAS, all lateral dimensions are widths. Whether the

lateral dimension of a particular structure is considered a width or a length depends on

the conventions for the device of which the structure is a part, and on what the

orientation is of the simulated cut-line relative to the standard orientation of the device.

In the case of the POLY-GATE example, the lateral dimension in question is considered

118 Chapter 6: Architecture for Integration

a length because this is the dimension along which current will flow through the device.

If the cut-line cuts the device longitudinally—along the path between source and

drain—then the width of the layer-region in DAS representing the gate corresponds to

the “length” of the gate. Similarly, the silicon layer-region below the gate is the channel,

and if the cut is longitudinal then the (DAS) width of this layer-region corresponds to

the CHANNEL-LENGTH. To recover the rules precisely, a concept classifier is needed.

The concept classifier must have sufficient knowledge to recognize when a structure, as

it is described in DAS, corresponds to a named device feature. The concept classifier is

described in the section on system architecture below.

Ph
en

om
en

a
Sc

op
e

Situation Scope

Experiential knowledge

Theoretical knowledge

Ideal

Impact of
Generic Rules

Figure 6.5 Impact of Generic Rules in Phenomena/Situation scope space

6.3. Impact of Generic Rules

We can view the impact of generic rules in several ways.

From the perspective of systems based on experiential knowledge, generic rules

provide a mechanism for using model-based techniques to increase the robustness of

heuristic rules, by representing what is known theoretically about when and where the

phenomena of interest in each rule can be expected to occur in new situations. From this

perspective, generic rules have the impact of increasing the situation scope of

6.3. Impact of Generic Rules 119

experience-based systems. This is represented by the arrow pointing to the right in

figure 6.5.

From the perspective of systems based on theoretical knowledge, generic rules

provide a mechanism for encoding partial knowledge about phenomena that would

otherwise lie outside the scope of the represented theory. From this perspective, generic

rules have the impact of increasing the phenomena scope of theory-based systems. This

is represented by the arrow pointing upward in figure 6.5.

In each case, the addition of generic rules moves the system closer to the ideal.

A third way to view Generic Rules is to note that they form a mechanism by

which experiential and theoretical knowledge can be combined in a synergistic fashion

to accomplish what neither alone can accomplish: robust codification of heuristic and

theoretical knowledge about a wide range of phenomena.

6.4. System Architecture

Figure 6.6 illustrates, as a data-flow diagram, the architecture that supports integration

of theoretical knowledge and experiential knowledge using generic rules. The rounded-

corner rectangles represent collections of data of varying kinds. The square-corner

rectangles represent computations. Arrows from data rectangles to computation

rectangles represent that the data are inputs to the corresponding computations. Arrows

from computation rectangles to data rectangles represent that the data are outputs of the

indicated computations.

The Language Independent Semiconductor Process Representation Server

(LISPRS), described in Chapter 5, extracts a representation of the manufacturing plan

from the Distributed Information Server (DIS). This representation of the plan, including

mask information, and the process models serve as inputs to the Discrete Action System

(DAS), which assimilates the plan by qualitatively simulating it. The output of this

computation is represented in the diagram as a “Dependency Graph,” because its main

purpose is to serve as a repository of information regarding the causal dependencies in

the plan. However, it also includes complete historical information regarding what the

wafer structure looked like at various points in the process (specifically at each

processing step interval boundary), when changes were made to the wafer structure and

120
C

hapter 6: A
rchitecture for Integration

Diagnoses
Dependency

Graph

Viewer

Specific
Rules

Situated
Rules

Generic
Rules

Rule
Instantiator

PIES

Observations
(From Parametric Test,

Merlin,
In-process Tests)

DAS
Simulator

Process
Models

LISPRS

Process
Specification

Concept
Classifier

Feature
Concepts

Figure 6.6: Architecture for Integration Using Generic Rules

6.4. System Architecture 121

why, and what the sequence of processing was. Thus, a Viewer can display the wafer

structure at the end of each step and respond to queries, as described in Chapter 4.

The Dependency Graph and a knowledge base of Generic Rules form the inputs

to the Rule Instantiator. The Rule Instantiator finds acceptable instantiations of each of

the generic rules and feeds them to the Concept Classifier. As shown on the diagram, the

output of the Concept Classifier is a set of Situated Rules. The Parametric Interpretation

Expert System (PIES) can then employ both the Situated Rules and Specific Rules to

produce Diagnoses from Observations.

Situated Rules are the instantiations of Generic Rules to the situation represented

by the process specification. Specific Rules are the normal context-specific PIES causal

associations. Although the diagram shows Situated Rules and Specific Rules as two

distinct sets of data, in fact the principle role of the Concept Classifier is to merge the

Situated Rules into the PIES knowledge base.

A PIES causal association network is most effective when the network has a high

degree of connectivity. That is, when there are many associations relating the various

fault concepts. The greater the number of causal links that a fault concept has to

manifestations, for example, the more opportunities the system has to seek verification

of the concept as a diagnostic hypothesis. It is therefore important that when two fault

concepts are equivalent that they are identified and represented uniquely. This is also

important to avoid having two equivalent fault concepts competing for support as the

correct diagnosis.

In the PIES system itself, identification of equivalent fault concepts is the

responsibility of the knowledge enterer. It is aided by the capability to classify fault

concepts within a taxonomic structure. The role of the Concept Classifier is to fix the

position within the taxonomy of the fault concepts mentioned within the situated

generic rules, and to recognize when a rule refers to a pre-existing fault concept.

In support of this function, a secondary role of the concept classifier is to

recognize when fault concepts (or the structures or processing steps they involve) in the

rules correspond to concepts for which process engineers have preferred names, and to

substitute these preferred names. For this reason the Concept Classifier has a second set

of inputs, entitled “Feature Concepts” in the illustration. This is a glossary of preferred

122 Chapter 6: Architecture for Integration

names for features, along with information regarding how to recognize them in DAS

descriptions.

Chapter 7. Experimental Results

This chapter describes the experiments performed to test the main theses of this

dissertation empirically. The first section describes two experiments. The results of

performing these experiments are documented in the second section. A third section

presents a summary of the results.

7.1. The Experiments

The work reported in this dissertation is about the robust representation of experiential

knowledge and theoretical knowledge concerning diagnosis of stable semiconductor

manufacturing processes. There are therefore two key hypotheses to test empirically:

1. That the knowledge is represented in a robust manner. That is to say, that the
theoretical knowledge can be applied to a new manufacturing process, and that
experiential knowledge gained from experience with one manufacturing process
can also be applied to a new manufacturing process; and

2. That the knowledge is effective for the task of diagnosing a stable semiconductor
manufacturing process.

The empirical portion of this work thus consists of two experiments. The first

experiment demonstrates that a diagnostic knowledge base can be adapted to a new

semiconductor process. The second demonstrates that this adapted knowledge base can

effectively diagnose manufacturing problems with the new process.

7.1.1. Adapting Diagnostic Knowledge to a New Process

To test the first hypothesis, we must apply the knowledge we have represented to a new

semiconductor manufacturing process. For the theoretical knowledge, the hypothesis is

considered verified if the models can be used to assimilate the process and build a

dependency network of the causal relationships inherent in the process. For the

experiential knowledge, it is necessary to have a body of experiential knowledge

relevant to another process. The experiment consists of using the ontology of our

theoretical models to represent the rules in the experiential knowledge base for the other

process with our Generic Rule representation technique. Then these generic rules are

124 Chapter 7: Experimental Results

instantiated in the context of the new process. The hypothesis is considered verified if

the instantiation process produces rules that are acceptable for the new process, and

produces few or no inappropriate rules.

The acceptability of the causal relationships produced by the assimilation of the

process, and the causal associations produced by the instantiation of generic rules is

determined in two ways. First, the subjective opinion of an expert is consulted. Second,

the diagnostic knowledge so obtained is tested by applying it to the diagnosis of

manufacturing faults in the second experiment described in the next subsection.

For the purpose of these experiments, we take the Stanford BiCMOS process [50]

as our representative of the new process. We employ the AESOP PIES knowledge base

[11] as our source of experiential knowledge regarding another process. The AESOP

knowledge base was created by performing a series of simulation experiments for the

Stanford CMOS process. The BiCMOS process was developed as a modification of the

CMOS process. It is therefore reasonable to assume that much of the knowledge gained

regarding the CMOS process should transfer to the BiCMOS process.

However, the BiCMOS is not a trivial incremental variation of the CMOS process.

The CMOS process creates two types of active devices on the wafer: p- and n-type field

effect transistors. The term CMOS is an acronym that means “Complementary

MOSFET,” where MOSFET is itself an acronym for “Metal Oxide Semiconductor Field

Effect Transistor.” The adjective “complementary” in the name refers to the fact that the

p- and n-type transistors have complementary characteristics: the same voltage turns

one on and the other off. The BiCMOS process creates these two types of transistor as

well as a third: an NPN bipolar transistor. The “Bi” in BiCMOS refers to this bipolar

device. To create this third type of device, the BiCMOS process augments the CMOS

process with additional steps. Also, to minimize the number of additional

photolithography operations, the steps in the CMOS process were modified and

rearranged to some degree so that steps that create parts of the CMOS devices

simultaneously create parts of the NPN bipolar device. For this reason, some causal

associations in the AESOP knowledge base may not apply directly to the BiCMOS

process. Also, the phenomena at work in some of the causal associations may actually

also occur in the manufacture of the bipolar structures.

7.1. The Experiments 125

7.1.1.1 Assimilating the Stanford BiCMOS process
Our source for the semiconductor process representation of the BiCMOS process is the

Specification Editor database managed by the Distributed Information Service. Our

methodology for extracting a representation suitable for the Discrete Action Simulator

involves modification of the database. In particular, it requires that:

1. we add the “DAS” domain to all parameters that are of interest to the DAS
simulator (this is how the LISPRS server identifies which parameters to report);

2. we add two new parameters to the root object of the step library, called DAS-
MODEL and DAS-CONSTRAINTS;

3. we specify values for the DAS-MODEL parameter in suitably abstract STEP
objects; the value of the DAS-MODEL parameter is the name of a model-object in
the database that corresponds to one of the symbolic models; the steps where the
model values are stored are chosen so that the correct models are inherited by
those steps that we wish to simulate; and

4. we specify values for the DAS-CONSTRAINTS parameter for those steps that
require context-specific constraints, as “parameter overrides” in the modules that
contain the steps.

Since the database is in daily use by fabrication personnel, these modifications

were not attempted on the public version of the database. Instead, a copy of the database

was created and kept for the exclusive use of this work. It was hoped that after the

modifications were made and tested on the private copy of the database, the same

modifications could be made on the public version. To this end, the software that was

used to make the modifications was designed to automatically build an executable

record of exactly what modifications are made, as well as an executable record of the

transactions that would be necessary to restore the database to its original state.

It turns out that the Specification Editor is not compatible with some of these

changes. Specifically, the Specification Editor implicitly assumes that parameters may

belong to only one domain. It ceases to recognize that a parameter belongs to the

SUPREM domain, for example, if the same parameter also belongs to the DAS domain.

Thus the precaution of attempting the modifications only on a private copy of the

database was warranted. The modifications cannot be transferred to the public database

until the Specification Editor is modified.

The representation employed by the Specification Editor does not incorporate the

flow control primitives developed by Don Basile [51]. Thus, operations performed only

on test wafers are represented by additional steps that, unfortunately, cannot be

126 Chapter 7: Experimental Results

distinguished from the steps that operate on product wafers using the Specification

Editor API. Since these steps could not be filtered out electronically, it was necessary to

make a copy of the process representation from which such steps were deleted. The

process also includes other steps that are superfluous from the perspective of the

simulator that can be distinguished electronically from steps that are relevant. These

include some steps that are performed only on test wafers in order to determine optimal

equipment settings. These also include steps that are performed on all wafers, but which

have effects that the simulator cannot meaningfully represent, such as cleaning steps,

photoresist baking steps, measurement steps and inspection steps. These steps are

electronically filtered out of the semiconductor process representation by virtue of not

having a non-null value for the DAS-MODEL parameter.

Mask data were created and stored in the database for 2-dimensional slices

through three devices: an NPN bipolar transistor, an NMOS transistor and a PMOS

transistor. Since the qualitative models cannot treat the kinds of problems that most

affect metal layers, only the first 14 (of 20) masks were created and only the first 18 (of

27) modules of the process were fetched. This represents the process up to the creation

of the transistor and resistor structures, but before the deposition of any interconnect

layers.

This editing and filtering reduces the number of steps in the BiCMOS process

from 754 to 96. This indicates the complexity of the process: in our early work we were

able to represent a Fairchild bipolar process with only 48 steps. The BiCMOS process

requires twice as many steps, and requires more sophisticated models for some of the

steps.

These 96 steps were qualitatively simulated on an IRIS workstation with 256

megabytes of random access memory. The simulation took one hour and thirty-one

minutes, and the resulting dependency graph takes up 109 megabytes of memory.

7.1.1.2 Generalizing and Instantiating AESOP Causal Associations
The purpose of this part of the experiment is to verify that experiential knowledge

gained concerning one manufacturing process can be represented in a manner that

enables the transfer of this expertise to a new manufacturing process. The experiment

consists of the following steps:

7.1. The Experiments 127

1. we identify a knowledge base containing experiential diagnostic knowledge
regarding a particular manufacturing process; in this case, we employ the
AESOP knowledge base regarding diagnosis of manufacturing faults in the
Stanford CMOS process;

2. for each causal association in the knowledge base, we attempt to discern the
criteria that determine the circumstances under which the phenomenon at work
in the association will operate;

3. we attempt to encode these contextual criteria using the ontology of our
theoretical models as the conditions for instantiation of one or more Generic
Rules; more than one Generic Rule may be required if there are identifiable
intermediate states that should be represented;

4. we instantiate these Generic Rules for a new process using the dependency
network created by the assimilation procedure mentioned in the previous
subsection; in our case, the new process is the Stanford BiCMOS process;

5. we examine the causal associations that result from this instantiation process,
assessing their quality with the help of an expert.

The focus of this work is on the causal relationships between processing events

and the physical structures that they create or modify. We therefore limit ourselves to

interlevel causal associations between the process level and the physical-structure level,

and to intralevel associations at each of these levels.

In fact, the AESOP knowledge base does not have any intralevel causal

associations at either of these two levels. As we discuss in Section 8.2 of the related work

chapter, and as we mentioned in Section 6.2 of the chapter on generic rules, the reason

for this is the manner in which the knowledge was acquired. A set of experiments with

numerical simulators was performed. Response Surface Map methods were employed to

codify the results of these experiments as a set of polynomials that represents the

multivariate transfer function between the identified inputs and outputs of the

manufacturing process. Then causal associations were extracted from this transfer

function. This approach treats the entire manufacturing process as “black box,” and

concentrates on determining the causal relationships between the inputs and the outputs

of the box. Thus, this methodology does not discover or represent the intermediate states

in the manufacturing process, and no intralevel causal associations are identified.

The knowledge base contains 52 interlevel causal associations between the

process level and the physical structure level. These are listed in abbreviated form in

Appendix D. Processing problems for only six steps are included: Initial wafer Selection

(5 problems), Gate Oxidation (9 problems), N-Channel Threshold Adjust Implant (5

128 Chapter 7: Experimental Results

problems), P-Channel Threshold Adjust Implant (4 problems), Polysilicon Etch (4

problems) and N-Well Implant (7 problems) for a total of 34 processing anomalies.

These are related to problems with 6 structures: Gate Oxide (6 problems), P-

Channel doping (4 problems), N-Channel doping (4 problems), Channel-Length (4

problems), Substrate doping (5 problems) and N-Well (5 problems) for a total of 28

physical structure anomalies.

The associations fall into three categories. The associations in the first category,

containing the bulk of the associations, treat phenomena that are already captured by

the theoretical knowledge. Those in the second category treat phenomena that involve

topological changes to the process and/or the physical structure of the devices. The

models are capable of handling these phenomena. However, the causal pathways

generated by the models cannot be trusted when topological changes are involved

unless these changes are simulated. The 12 associations in the final category treat

phenomena that lie outside the scope of the theoretical models.

7.1.1.3. Category 1: Associations within scope of theory
The AESOP knowledge base contains 34 causal associations in this category. An example

of a causal association in this category is the following:

Gate-Ox-Temp-High → Gate-Oxide-Thick (Maybe)

This association reflects the fact that the thickness of the gate oxide is determined

by (among other factors) the temperature at which the oxidation is performed. The

theoretical models “know” that there is a positive proportionality between the

temperature of any oxidation step and the thickness of the oxide layer that results from

that step. Thus, this association clearly falls within the Phenomena Scope of the models.

The contextual information required to identify instances of this phenomenon is the

following:

1. the oxide layer in question is created by a high-temperature oxidation process
(rather than low temperature deposition); and

2. the step in question is the one during which the layer was created.

The causal associations do not explicitly mention time. In this particular

association, the oxide layer survives to the end of the process (it is not etched away) and

7.1. The Experiments 129

no additional oxidation affecting this layer takes place. To reproduce this rule exactly we

might wish to add such conditions. However, it may be useful to create a more general

rule regarding sacrificial oxide layers and oxide layers that see several cycles of growth.

Whether instances of such a rule are interesting depends on whether the thickness of

such oxides ultimately affects the characteristics of the devices created or the variability

of other processing steps.

7.1.1.4. Category 2: Associations involving topological change
The AESOP knowledge base contains six causal associations in the second category. The

following is an example of an association in this category:

N-Vt-II-Not-Masked → P-Ch-Conc-High (Maybe)

This association states that if the PMOS active areas are not protected by

photoresist (because the photolithography step was omitted or not masked) when the N-

Channel threshold adjust implant is performed, then the concentration of dopant in the

channel of the PMOS transistor might be too high. The assimilation of the

manufacturing plan would indicate that in the PMOS active regions, the N-channel

threshold adjust implant does not reach the silicon layer because it does not get through

the photoresist layer. Further, there would be a logical dependence indicating that the

presence of the photoresist is predicated on the performance of the DAS-SPIN-ON-

RESIST (photoresist coat) operation, and the fact that the region was not exposed during

the intervening DAS-MASK-EXPOSE operation and thus not removed during the DAS-

PHOTORESIST-DEVELOP operation. However, tracing the functional and logical

dependencies from the quantity representing the PMOS channel concentration might or

might not lead to the hypothesis that the photoresist was not present during the

implantation step.

This is due to the frame problem, the nature of logical reasoning, and the nature

of implication. Recall that to overcome the frame problem, the system assumes that

conditions persist through time unless it can prove that they are changed. In the nominal

version of the manufacturing plan, the N-channel threshold adjust implant does not

affect the concentration in the P-channel regions. Thus, the system merely records that

the dopant concentration in those regions persists through the step just as it persists

through the photolithography, etching and some other steps. The dependency network

does not keep records of what it cannot prove.

130 Chapter 7: Experimental Results

The law of the excluded middle states that every well-formed statement must be

either true or false. However, in reasoning the question that is settled is not whether

statements are true or false, but whether they are entailed by (actually, provable from)

the truth or falsehood of other facts. In reasoning there is a third truth-value: unknown.

The ion-implantation model will actually form statements about changes to the dopant

concentration of every layer-region. If these statements can be proven true, then these

changes and the facts that they depend on are recorded. If they can be proven false, then

the logical dependencies leading to those conclusions are also recorded. However, for

those layer-regions that are not normally affected, it will often be the case that nothing

will be proven concerning whether they are changed, and the persistence assumption

will prevail.

A major reason that nothing will be proven is that the models are often based on

implications. That is, statements of the form A implies B, where A is a statement about

the conditions of processing, and B is a statement about the effects of that processing. If

the antecedent of the implication, A, is proven true, then the truth of the conclusion B

follows. However, if the truth of A is either false or unknown, then the truth of B is not

determined, and therefore unknown.

By tracing the dependency network, one can directly answer the question: what

factors lead to the truth or falsehood of statements whose truth has been determined,

and how do the values of quantities functionally depend on other variables. To arrive at

a diagnostic hypothesis involving a topological change, one must often answer a

different question: what changes in the truth of statements would lead to a proof that an

unexpected change occurred? Answering this type of question can involve an open-

ended search of possible counter-factuals.

If the topological change had been simulated, and the consequences of that

change had been labelled with their logical dependence on the assumption of the

topological change, then such hypotheses can be uncovered by straightforward search of

the dependency graph. However, this requires that such topological faults be

anticipated.

Thus, even though they treat phenomena that lie within the theory represented

by the models, causal associations in the second category make explicit a crucial piece of

knowledge: that certain topological-change hypotheses are worth considering. They also

7.1. The Experiments 131

make it possible to treat such problems without actually simulating the topological

change.

The criteria for instances of the generic rule for this causal association are:

1. that a layer-region unaffected by an implant step is in a region that was covered
by photoresist during the implant step;

2. that the layer-region would have been affected if the photoresist had been absent;

3. that the photoresist was patterned by a particular photomasking operation;

4. that the photoresist was placed on the wafer by a particular coat operation.

7.1.1.5. Category 3: Associations outside scope of theory
Generic Rules for causal associations in the first two categories facilitate diagnosis for

phenomena that are encompassed by the theory. Causal associations in the third

category go an important step further: they enable diagnosis of problems involving

phenomena that lie outside the competence of the theoretical models. In Chapter 6 we

discussed the Poly-Gate-Under-Etch causes Channel-Length-Long causal association. It

was explained there that this association involved lateral etching and therefore fell

outside the competence of our one-dimensional models. Variations of this particular

association and a similar one regarding the exposure of the photoresist masking the etch

account for 8 of the 12 category 3 causal associations in the AESOP knowledge base. The

remaining four causal associations in the third category are variations on the following:

Gate-Ox-Time-Long → P-Ch-Conc-High (Very-Likely)

This associates the length of time that the gate oxide is grown with the

concentration of dopant in the channel of the PMOS device. The phenomenon at work

here involves subtle interactions between oxidation and diffusion which, though fairly

well understood, are not captured in our discrete action models due to the extremely

coarse representation of dopant profiles, diffusion and oxidation that we employ.

Specifically, when doped silicon is oxidized, the dopants at the moving interface

between the growing oxide layer and the silicon layer can either enter the oxide layer or

stay in the silicon layer. P-type dopants such as boron are more soluble in silicon dioxide

than in silicon, and therefore they tend to enter the oxide layer. This depletes the silicon

layer of p-type dopants. N-type dopants like arsenic prefer to stay in the silicon layer,

and therefore “pile up” in that layer. The net effect is that the oxidation makes the

concentration of dopants in the silicon layer more n-type and less p-type. If the

132 Chapter 7: Experimental Results

dominant dopant is n-type, the effect is to increase the concentration, and if the

dominant dopant is p-type the effect is to decrease the concentration.

7.1.2. Testing Diagnostic Knowledge Against Faults

To test the effectiveness of the diagnostic knowledge, we must have factory data

concerning the manifestations of manufacturing problems that were deliberately

introduced. It is necessary that the problems be deliberately introduced in order to have

reliable ground truth regarding the correct diagnoses.

Obtaining this data would normally require pushing wafers through the

fabrication facility with several modified versions of the manufacturing process. This

would have to be done very carefully to avoid introducing faults other than the ones we

intend. Such an experiment would take considerable amounts of time, and expertise that

I do not possess. Fortunately, some experiments of this nature have already been

performed at Stanford by Greg Freeman [5] .

These experiments were performed to evaluate a knowledge-based diagnostic

tool called MERLIN. MERLIN employs symbolic and quantitative reasoning with

analytic equations to diagnose faults in device behaviour and device characteristics as

faults in device structure. Our focus is on diagnosing faults in device structure as faults

in processing. Thus, our work is complementary to that of Freeman. It should enable the

diagnoses performed by MERLIN to be carried to the next stage.

Thus, we test the knowledge obtained from the first experiment described in

section 7.1.1 by attempting to explain the device structure faults found by MERLIN in

terms of processing faults.

Freeman performed seven experiments. Six of the experiments involved

systematic structural perturbation, with data taken from the Stanford BiCMOS process.

The seventh involved a random structural integrity problem using data taken from the

literature. The causal dependencies generated by assimilation of a process with our

discrete action models, and the causal associations in the AESOP knowledge base are

relevant only to systematic perturbation problems: they are not competent to deal with

random integrity issues. Of the six systematic perturbation problems, five concerned the

N-channel MOS transistor and the sixth concerned interconnect. Our assimilation of the

process stopped short of dealing with the interconnect layers, and our models would not

7.1. The Experiments 133

be useful in treating interconnect problems. The AESOP knowledge base also lacks any

associations dealing with interconnect problems. Thus, only the first five of Freeman’s

problems are relevant for our evaluation.

The data for these experiments was obtained by running wafers through the

BiCMOS process with splits that intentionally introduced perturbations in the

processing conditions. His five experiments actually only involved three perturbations.

The perturbations introduced were:

1. reduced temperature during the source/drain drive-in;

2. increased energy in the NMOS threshold adjusting implant;

3. combination of: reduced source/drain drive-in temperature, increased gate
oxidation time, and reduced threshold implant dose.

For each of the first two perturbations in processing, two different scenarios

regarding the availability of data were investigated. Problem 1a involved

comprehensive data from a single die. Problem 1b involved only a subset of the data for

a single die. Problem 2a again involves a relatively complete dataset from a single die

that enables verification to be performed. Problem 2b involves data averaged over all the

die on a wafer.

7.2. The Results

7.2.1. Assessing Generic Rules

The 52 causal associations in the AESOP knowledge base can be grouped according to

the criteria for valid instantiation that they share. Thus, only 15 generic rules suffice to

cover the causal associations. These rules are listed in Appendix E. The rules were

applied against an extremely simplified representation of the CMOS process to

determine whether they would reproduce the causal associations that inspired them.

The resulting causal associations are presented in Appendix F. That appendix lists the

associations in a “raw” form, before a concept classifier has been applied. Then the

generic rules were applied to the simulation of the manufacture of three transistors side-

by-side (an NPN bipolar transistor, an NMOS transistor and a PMOS transistor) using

the BiCMOS process as extracted from the Specification Editor knowledge base. The

subsections below discuss the recovery of the original AESOP causal associations, and

the associations that were obtained from the BiCMOS process.

134 Chapter 7: Experimental Results

7.2.2.1 Category 1 Causal Associations
The first rule, entitled Ox-Temp-Determines-Ox-Thickness, handles the first eight of the

34 category 1 associations. It is instantiated whenever there is a layer of oxide created

during an oxidation step. When applied to the simplified CMOS process, this rule

instantiates all eight causal associations directly. As shown in Appendix F, 16 causal

associations are generated. They represent the same eight causal associations that were

present in the AESOP knowledge base, except that each is repeated twice because the

Gate-Oxide-Layer is represented by two distinct layers in two different regions of the

wafer (recall our comments in Chapter 4, Subsection 4.4.2 regarding the fact that the

models sometimes make distinctions not made by semiconductor technologists). As each

layer is named Gate-Oxide-Layer, a concept classifier could resolve these 16 associations

into the requisite eight.

Note that the rule only found associations concerning the gate oxidation.

However, this is due to the fact that our simplified CMOS process has only one

oxidation step: for a more realistic process instances would be found for every oxidation

step in the process. Indeed, this is what happens when the rule is applied to the BiCMOS

process: 144 instantiations are found, representing eight rules for each instance of an

oxidation creating a layer. The eighteen pairings of oxidation steps with layers created

involve ten oxidation steps. Two oxidation steps are paired with two layers each, and

three are paired with three layers each. All these pairings are correct. However, there are

two key facts to point out. First, the rule was written to instantiate only if the oxide layer

was “created” by the oxidation step, where this means that a new oxide layer is created

where none existed before. Thus, when an oxidation step merely increases the thickness

of an existing oxide, no instantiation occurs. This represents a problem for the Field

Oxide case. The Field Oxide is a very thick oxide that is grown from a relatively thin

oxide layer called the Pad Oxide. Thus, it is a significant oxide layer that is created more

by the second oxidation step affecting it than by the oxidation step that created the Pad

Oxide. A more sophisticated rule would consider all the oxidation steps that affect each

layer, and instantiate the rule for the “most significant” step, i.e., the step that most

contributed to the thickness of the layer. Secondly, oxidation steps often create oxide

layers that are “insignificant” and that are later stripped away. For example, the

oxidation step that grows the Field Oxide actually creates a very thin oxide layer by

oxidizing the Silicon Nitride layer that masks the growth of the Field Oxide.

7.2. The Results 135

The rules Implant-Dose-Affects-Concentration-1, Implant-Dose-Affects-

Concentration-2 and Implant-Dose-Affects-Concentration-3 handle the associations

concerning implants into doped layers. The first rule handles the case when the implant

element type is the same as the dopant in the receiving layer, the second handles the

case when the types are opposite and the implant is not expected to change the

dominant dopant type and the third rule handles the case when the implant is expected

to change the dominant dopant type. These three rules cover the associations concerning

the effects of N-Vt-II and P-Vt-II on the P-Ch-Conc and N-Ch-Conc. There are 12 of these

in the AESOP knowledge base.

When applied to the CMOS process, the generic rule instantiations recover 48

associations. The first rule generates 16 associations, the second generates eight

associations, and the third produces 24 associations. The four associations concerning

the effect of the N-Channel implant (N-Vt-II) on the N-Channel concentration (N-Ch-

Conc) are recovered directly by the first generic-rule. The four associations regarding the

effect of the P-Channel implant (P-Vt-II) on the P-Channel concentration (P-Ch-Conc)

are also recovered directly, by the second generic rule. The four associations regarding

the effect of the P-Channel implant on the N-Channel concentration are each captured

by two associations generated by the first rule: one association relates the P-Channel

implant dose to the concentration of Layer-3, which is the layer created in the NMOS

regions by the P-Channel implant; the second relates the concentration of Layer-3 to the

N-Channel concentration.

The remaining four associations found by the first rule concern the impact of the

substrate concentration on Layer-3, and thus ultimately on the N-Channel concentration.

The AESOP knowledge base lacks corresponding associations. The remaining four

found by the second rule relate the concentration in the N-Well to the concentration in

the P-Channel. These represent half of the pairs of associations that would together

account for the effect of the N-Well implant on the P-channel concentration. The other

four associations needed, concerning the effect of the N-Well implant on the N-Well

concentration, are found by the third rule. This rule also generates four associations

regarding the effects of the substrate concentration on the P-Channel concentration (via

its effect on the N-Well concentration).

The remaining 16 associations found by the third rule concern the effects of the

P+ and N+ Source/Drain implants on the sources and drains of their respective

136 Chapter 7: Experimental Results

transistors, and the influence of the channel concentrations on these layers. The AESOP

knowledge base also lacks these associations.

When these three rules are applied to the BiCMOS process, the first rule

generates 24 associations, the second rule generates no associations, and the third rule

generates 40 associations. The 24 associations found by the first rule concern the impact

of the implant dose for each of the Channel-Stop, P-Channel and N-Channel implants on

the layers created by each of them, and the impact of the Substrate and N-Well

concentrations on these layers. No associations are found by the second rule because,

unlike the CMOS process, the BiCMOS process has no implants involving an implant

species of opposite type to that already in the layer to be implanted, for which the

implant is not expected to change the dominant dopant type. The 40 associations found

by the third rule concern the effect of the implant dose on the implanted concentration

for each of the N-Well, Collector, Active-Base, N+ Source/Drain and P+ Source/Drain

implants, and the impact of the initial concentrations (Substrate, Substrate, Collector, N-

Channel and P-Channel respectively) on the resulting concentrations.

The four AESOP associations concerning the impact of the initial substrate

concentration on the final substrate concentration are recovered directly by the generic

rule Initial-Doping-Affects-Final when this rule is applied to the CMOS process. The

corresponding four associations are also found when the rule is applied to the BiCMOS

process.

7.2.2.2 Category 2 Causal Associations
The six causal associations in this category in the AESOP knowledge base were to be

recovered by four generic rules applied to the CMOS process. The first association in this

category, regarding omission of the Gate-Oxide step, is recovered directly by the generic

rule Oxidation-Step-Omitted. Applying this rule to the BiCMOS process generates 13

associations regarding the Pad Oxide, Gate Oxide, Poly Frame Oxide, Sidewall Oxide

and the Resistor Oxide. The rule Initial-Dopant-Type-Affects-Final directly recovers the

causal association regarding incorrect initial dopant species in the substrate (although it

is expressed in terms of dopant type rather than species) when applied to either process.

The generic rule Implant-Step-Omitted recovers the two associations regarding

omission of the Well implant and incorrect species for this implant. It also generates

eight associations regarding the two Source/Drain implants that are missing from the

7.2. The Results 137

AESOP knowledge base but seem perfectly reasonable. Applying this rule to the

BiCMOS process generates 14 associations regarding the N-Well, Collector, Active Base,

N+ Source/Drain and P+ Source/Drain implants. (The latter two implants create four

rules each, as they also affect the polysilicon layer.) All these associations are correct.

The generic rule Implant-Not-Masked was intended to recover the association

regarding omission of the Well implant. When applied to the CMOS process, this rule

recovers the association regarding the N-Well implant, but also generates two spurious

associations concerning the effect of the two Source/Drain implants on their respective

channel layers, and two correct associations regarding the impact of not masking these

implants on the polysilicon layer. The spurious associations are in fact due to an

inappropriate arrangement of mask regions for the channel implants, i.e., a failure on

my part to correctly represent the CMOS process. When applied to the BiCMOS process,

this rule also generates five associations. However, the spurious associations are not

present. The five associations found are the three correct associations corresponding to

the CMOS associations, and two more concerning the Collector and Active Base

implants.

This rule does not recover the association regarding failure to mask the N-

Channel implant because it is restricted to cases where the implant changes the

dominant dopant-type. An additional rule is required to handle this case.

7.2.2.3 Category 3 Causal Associations
The four associations relating over- and under-etching of the polysilicon gate to the

length of the channel are covered by twelve associations created by two generic rules:

Insufficient/Excess-Lateral-Etch and Structure-Masked-Implant applied to the CMOS

process. The first rule generates eight associations that establish that over- or under-

etching the gate affects the width of the gate itself, for each of the two MOS devices. The

second rule produces four associations that establish that the width of the gate affects

the width of the channel due to self-aligned implantation steps for each of the two

devices. Precisely the same twelve associations are found for the BiCMOS process.

The generic rules Insufficient/Excess-Photoresist-Exposure and Resist-Masked-

Etch generate interlevel and intralevel associations tying over- and under-exposure

during the photolithography step that patterns the resist for the gate structure to the

width of the poly gate. In this way, the four associations in the AESOP knowledge base

138 Chapter 7: Experimental Results

are each represented a by chain of three associations: exposure affects width of resist,

width of resist affects width of poly gate, width of poly gate affects width of channel.

When applied to the BiCMOS process, 36 instances of the Insufficient/Excess-

Photoresist-Exposure rule are found. The Active Area mask creates three sets of four

instances, one set for each of the three types of devices. Another set of four associations

is found for the bracketing of the NMOS device by the Channel Stop mask. The Buried

Contact mask produces two sets of four associations, one each for the NMOS and PMOS

devices because the contact holes bracket the gate oxide. The Poly Oxidation mask

generates four associations for the way the Poly Frame Oxide brackets the NPN Emitter

region. Finally, two sets of four associations are found for the Poly Etch mask, which

correspond to the definition of the Poly Gate structures in the NMOS and PMOS

devices. The Resist-Masked-Etch rule finds all the same situations (except the Channel-

Stop case, which does not involve an etch), but produces an even larger number of

associations (48), because in some cases more than one layer is etched.

The generic rule Thermal-Oxidation-Redistributes-Impurities-N correctly

recovers the four AESOP causal associations regarding the effect of extended gate

oxidation on the concentration of the P-Channel concentration. In addition, a companion

rule Thermal-Oxidation-Redistributes-Impurities-P adds four associations regarding the

impact on the N-Channel concentration that are missing from the AESOP knowledge

base. Applying these rules to the BiCMOS process generates a plethora of associations:

the first rule finds 88 associations (22 groups of four), and the second finds 72 (18 groups

of four). As I interpreted the underlying cause for the AESOP rule (i.e., oxidation surface

effects), these associations are all correct. However, I most likely misinterpreted the

physical mechanism underlying the causal association. This is discussed in the section

on “Expert Assessment.”

Table 7.1 summarizes the results regarding recovery of the AESOP causal

associations by application of the generic rules to a simplified representation of the

CMOS process. All but one of the 52 associations in the AESOP knowledge base are

effectively represented. In addition 30 more causal associations are found that might

prove useful. Only six spurious associations are generated: 2 due to poor representation

of the process, and 4 due to misinterpretation of the physical mechanism underlying an

AESOP association.

7.2. The Results 139

Category Recovered Missing Additional,

Correct

Additional.

Spurious

1 34 0 20 0

2 5 1 10 2

3 12 0 0 4

total 51 1 30 6
Table 7.1. Recovery of AESOP associations by Generic Rules

Applying the same 15 generic rules to the BiCMOS process results in over 500

causal associations. The definition of the Ox-Temp-Determines-Ox-Thickness rule (and

the manner in which the BiCMOS process constraints represent the creation of the Field

Oxide layer) prevented a instantiations for the Field Oxide layer. However, this is the

only significant set of “missing” causal associations. On the other hand, the phenomena

in several AESOP causal associations were discovered to be active in the creation of the

NPN Bipolar device in the BiCMOS process (these include causal associations

concerning the impact of implant dose on dopant concentration, the impact of existing

dopant on the concentration in implanted layers, the effects of omitting implant steps,

and the effects of failing to mask implant steps, for which instances were found for the

Collector and Active Base implants). Also, the phenomena reflected in some of the

associations were found to be at work in implants into CMOS structures that were not

considered by the AESOP knowledge base (i.e., the source/drain implants). The same

expansion of cases occurs for associations regarding oxidation phenomena.

It is also the case that some AESOP causal associations were eliminated as

inappropriate to the BiCMOS process. Specifically, associations concerning the impact of

the P-Channel threshold adjust implant in N-Channel regions. Other associations were

modified: the impact of the P-Channel implant on the P-Channel is the opposite in the

BiCMOS process to what it was in the CMOS process, as the implanted dopant is the

opposite type.

Finally, it should be noted that even when AESOP rules apply directly to the

BiCMOS process, they cannot always be used directly because some naming

conventions are different for the two processes (e.g., the threshold adjust implants of the

CMOS process are called channel implants in the BiCMOS context). The instantiation

process automatically adopts the naming conventions of the new process.

140 Chapter 7: Experimental Results

7.2.2. Expert Assessment

We consulted the principal designer of the Stanford BiCMOS process, John Shott, to

obtain the judgment of an expert concerning the quality of the diagnostic information

obtained by qualitative simulation and by application of generic rules,

A top-level comment concerned the lack of attention to issues of sensitivity: the

knowledge as represented tends to be qualitative and therefore potentially too inclusive.

For example, the AESOP knowledge base contained several causal associations

regarding the impact of the concentration of dopant initially in a layer on the

concentration resulting from an implantation into that layer (for example, Sub-Start -

Conc-High → P-Ch-Conc-Low). This association stems from the fact that the dopants

introduced into a layer add up (if they are opposite type, they subtract) to determine the

ultimate concentration. The DAS qualitative simulator and the generic rules concerning

this phenomenon ignore the relative sizes of the quantities being added, and assume

that a change in any of them results in a change in the sum. However, the concentration

of dopant introduced by an implant will often be one or more orders of magnitude

higher than the concentration already present in the layer, so that the impact of

variations in the existing concentration can be quite small. As a rule of thumb, implants

that are intended to change the dominant dopant introduce at least an order of

magnitude more dopant than is present in the layer to be implanted.

In a similar vein it was noted that some variations in geometric or other physical

attributes are not interesting unless they are large enough to produce catastrophic

results. For example, while the causal associations relating to lateral dimensions of the

buried contacts are correct, device and circuit performance are largely insensitive to such

variations.

The need for quantitative analysis is reflected in another way. The HyperPIES

causal associations include a qualitative estimate of likelihood. It is not clear whether

this represents the likelihood that the manifestation will occur if the problem occurs, or

the likelihood that the problem is the correct explanation of the manifestation. (The

original PIES system included two assessments of likelihood, but this approach was

dropped when the system was ported to HyperClass.) Currently, the generic rules

merely carry these likelihood assessments as given. This leads to two problems. First,

when a single causal association is represented by a chain of generic rules, it is not clear

how the likelihood should be distributed. Second, the author of a causal association

7.2. The Results 141

would probably assess likelihood differently for each instance of a corresponding

generic rule. The author’s assessment would probably depend on factors determining

the sensitivity of the phenomenon, and on subjective probability densities for the kinds

of failures being considered. It is not clear how all the factors that influence a subjective

likelihood assessment could be addressed. However, to the extent that the experts can

enunciate how their assessments depend on aspects of the situation, it should be

possible to record and make use of this information.

That information concerning intermediate states is represented was seen as an

advantage. In addition to the benefits of a richly interconnected causal network I have

already described in previous chapters, breaking an input/output relationship down

into several intermediate stages is useful because it is sometimes possible to make

measurements of these intermediate states. Fabrication facilities often routinely make

and record such “in-process” measurements. However, a diagnostic system that does

not represent such intermediate states cannot incorporate these measurements into its

strategy for discriminating among otherwise indistinguishable cases.

For similar reasons it was seen as an advantage that the system systematically

includes consideration of “unimportant” and “sacrificial” structures. For example, when

growing the field oxide and when oxidizing the polysilicon layer in the BiCMOS

process, a very thin oxide is simultaneously formed on top of the silicon nitride that is

used to pattern these oxidations. This oxide is an unintended side effect that is removed

very shortly afterward. It is not part of the final structure being manufactured and it

plays no significant processing role. It is thus easily ignored or forgotten. However, it

can be a source of problems, especially when its presence is overlooked. Also, some

oxides are deliberately grown only because doing so enhances a diffusion process. These

oxides are also etched away. However, their thickness is often measured as an indirect

means of establishing that the diffusion processing occurred as planned. Such

measurements are potentially useful diagnostic information.

Only one phenomenon was a source of surprise. The generic rules concerning the

surface effects of oxidation did not seem credible. Recall (Section 7.1.1.5) that the AESOP

rules relating the duration of the gate oxidation step to the concentration of the P-

Channel were assumed to involve the segregation of dopants into either the oxide or the

silicon layer, depending on dopant type. Normally, the impact of any high-temperature

142 Chapter 7: Experimental Results

step is to reduce the concentration of dopants. Thus, these surface effects were invoked

to explain how an extension of an oxidation step could increase dopant concentration.

This explanation lacks credibility because these surface effects are generally

“second order” effects that are swamped by the first order effect of oxidation and

diffusion, which is to reduce dopant concentration. This led to another possible

explanation for the phenomenon at work in this causal association, in terms of first order

effects. Namely, if a layer has both p-type dopant and n-type dopant, and the p-type

dopant diffuses faster than the n-type dopant, then the concentration of the p-type

dopant will decrease faster than the concentration of the n-type dopant, and the layer

will become more n-type. The p-type dopant can diffuse faster than the n-type dopant if

it has seen less high-temperature processing (so that its concentration gradient is

higher), or if the n-type dopant is Arsenic, which diffuses ten times more slowly than the

p-type dopant Boron. In the CMOS process, both conditions hold: the N-Well is formed

by an Arsenic implant, which is driven-in before the P-Channel implant is performed.

The generic rules do not explicitly refer to these secondary surface effects.

However, if the mechanism responsible for the original association is the first-order

effect just described, then the conditions under which the phenomenon will occur are

more restrictive. Most instances of the current rules would not satisfy these restrictions.

7.2.3. Assessing Diagnostic Capability

The decision to employ data from a set of experiments performed completely

independently of this work was taken for two reasons: to avoid the possibility of biasing

the evaluation by choosing problems that the system can handle easily, and to make it

possible for the evaluation to employ real factory data. This decision has led to a sparse

evaluation that is probably not a fair assessment of the system’s value.

The data from the five experiments performed by Greg Freeman really only

represent three experiments. The main distinction between experiments 1a and 1b, and

between 2a and 2b is the quality of the electrical measurement data. The input to our

diagnostic process is the output of the MERLIN diagnostic process. This output does not

strongly reflect the differences in the quality of the input data. For experiments 1a and

1b, the only distinction is that a second hypothesis is generated that cannot be

distinguished from the correct hypothesis. For experiments 2a and 2b, the same answer

is obtained, with only a change in the confidence associated with that answer.

7.2. The Results 143

The generic rules that we created were motivated by the causal associations in

the AESOP knowledge base. With one exception, those causal associations are not

relevant to the problems treated by Freeman. Thus, our BiCMOS causal associations,

generated from those generic rules are not relevant to the problems either. This means

that the problems can only be used to evaluate the dependency structure created by

qualitative simulation.

7.2.3.1 Experiments 1A and 1B: Low temperature Source/Drain Drive-in
MERLIN rejects all but one hypothesis for experiment 1a, and all but two for experiment

1B.

The winning hypothesis in experiment 1A is “DELTA_LD.” This is Freeman’s

term for a variation in the lateral diffusion under the gate. As this is a lateral diffusion

phenomenon, it lies outside the phenomena scope of the DAS models! However, we can

proceed by noting that diffusion is completely anisotropic, so that the amount of lateral

diffusion is reflected in the amount of vertical diffusion. Asking the DAS dependency

network for the processing parameters influencing this quantity yields a response that

includes the duration and temperature of the drive-in step, as well as the factors that

determine the implanted concentration and the concentration of the channel-layer (these

are included because the diffusion rate is partly determined by the gradient of the

dopant profile, which in DAS is represented by the difference between the

concentrations in the adjacent layers). Thus, the correct answer, a lower drive-in

temperature, is included in the response, but it is one among many.

Additional data, if it were available, could be used to filter this set of hypotheses.

For example, normal measurements of the sheet resistance of the polysilicon wires could

indicate that the implanted concentration was not abnormal. Also, in-process

measurement data might have indicated that the channel concentration was correct.

Assuming such data were available, the system could eliminate all hypotheses except for

the temperature and duration of the drive-in step. These two hypotheses could not be

distinguished by DAS, because it does not have quantitative models of the relative

influence of time and temperature on the oxidation rates. However, the hypotheses

could be distinguished on the basis of measurements of the oxide thickness if such

information were available.

144 Chapter 7: Experimental Results

The hypotheses returned by MERLIN for experiment 1B are “DELTA_LD” and

“DELTA_LG.” This second hypothesis refers to the difference between the gate

dimension as drawn, and the physical dimension. The BiCMOS version of the AESOP

rules concerning insufficient lateral etching of the gate, and under exposure of the resist

patterning the gate come into play here. These add additional hypotheses relating to the

duration of the Poly Etch step and to the exposure parameters for the Poly Etch mask

step. However, since they would also indicate the intermediate hypothesis that the

physical dimension of the polysilicon gate was too long, a diagnostic reasoner could try

to eliminate these hypotheses by an optical measurement of the actual gate length.

7.2.3.2 Experiments 2A and 2B: high energy channel implant
For these problems, MERLIN returns the hypothesis “D_TI,” which is Freeman’s term

for depth of the threshold implant. The phenomenon at work here is that the dopants

expected to modify the threshold voltage are implanted too deeply, so that the

concentration at the silicon surface is too low.

The constraints attached to the channel (= threshold adjust) implant indicate that

the region implanted lies at the silicon surface. Thus, this phenomenon involves a

topological change, introducing a layer between the silicon surface and the implanted

layer. There are two ways to continue the diagnosis to the process anomaly stage: one

way is to simulate the possibility of a threshold implant that lies beneath the surface,

then ask what factors would determine the actual depth. The other way is to have a

generic rule that relates this phenomenon to the mean implant depth (and thus to the

initial thickness of the implanted layer), and ask what factors determine that. In either

case, the result is the same: the hypotheses returned include the implant-energy of the

channel implant, as well as the factors that determine the thickness of the Cleanup

Oxide.

The factors determining the thickness of the Cleanup Oxide are included because

the channel implants are done through this oxide layer, and the thickness of the layer

would help to determine the implant depth. As the thickness of an oxide over silicon is

relatively easy to measure, and such thicknesses are routinely measured just after the

growth of the oxide (the BiCMOS process description includes such measurements),

these additional hypotheses might be eliminated by normal oxide thickness

measurements.

7.2. The Results 145

7.2.3.2 Experiment 3: Multiple Faults
Freeman performed one experiment in which the same wafers were subjected to three

process disturbances: lower temperature source/drain drive-in, longer gate oxidation

and lower threshold implant dose. Unfortunately, the principal purpose in performing

this experiment was to demonstrate a weakness in MERLIN’s diagnostic strategy, which

assumes a single point of failure. Thus, MERLIN incorrectly reports the physical

manifestation (“DELTA_LD”) of only one of the three problems (low source/drain

drive-in temperature).

Thus, the input to the next stage of diagnosis for this problem is the same as it is

for problem 1A, and DAS would return the same result.

7.3. Summary of the Results

It has been demonstrated that the theoretical models can be used to assimilate a new,

complex manufacturing process by qualitative simulation. The procedure is

computationally expensive, both in terms of time and space. However, this cost can be

amortized over the large number of diagnoses that the resulting dependency structure

can be used to perform. The causal dependency network includes many interior nodes

representing intermediate states of the wafer. This improves the discriminating power of

the network by providing many opportunities for seeking contradicting and confirming

information. In particular, in contrast to statistical input/output techniques, it affords

the capability to employ information from in-process and in-situ measurements.

A key weakness of the approach stems from its lack of quantitative information.

This reduces its ability to discriminate on the basis of sensitivity, leading perhaps to an

excessive number of hypotheses.

It has also been demonstrated that the dependency network can be used, in

conjunction with generic rules, to transfer experiential knowledge from one context to

another. To avoid creating spurious causal associations, it is important to identify and

properly encode as many as possible of the criteria restricting when phenomena can be

expected to occur. On the other hand, by capturing the description of the phenomena in

as general a fashion as possible, one reaps the benefit of additional knowledge when

new instances of the phenomena are discovered.

Chapter 8. Related Work

In this chapter we review other work related to the subject matter of this dissertation.

Where possible we note either how our work represents an advance in the state of the

art, or how our work might be improved by incorporating the ideas contained in these

other efforts. We begin with a brief review of the application of model-based reasoning

techniques in other domains. Then we contrast Generic Rules with other approaches to

combining rule-based and model-based reasoning. Next we examine other

computational tools for modeling semiconductor manufacturing. As this work touches

on issues in semiconductor process representation, we briefly describe other efforts in

this area. Finally, we discuss other approaches to the problem of deciding how

semiconductor manufacturing operations should be modeled for a specific application.

8.1. Model-Based Reasoning

One of the ways we attempt to achieve robust encoding of knowledge about

semiconductor manufacturing in this thesis is to decompose manufacturing plans into

their constituent parts, namely manufacturing steps, and encode knowledge about those

parts in a fashion that enables us to reason about plans composed of them. To admit

composition into manufacturing plans, the knowledge we encode about each step must

have a general character: it must apply in all occurrences of the step within plans. For

this reason, the knowledge tends to be theoretical in nature, and to constitute a model of

the step’s behaviour.

This idea is by no means new. Model-based reasoning techniques have been

applied in a variety of domains. The earliest symbolic model-based reasoning systems

were applied in the domain of electronic circuits — primarily digital circuits, but also

analog circuits — (e.g. [20, 52-55] .) It has also been applied in medical domains (e.g. [16,

56-59]). More recently, the techniques of qualitative reasoning have enabled the

application of model-based reasoning to many types of engineered systems [60],

including civil engineering structures (e.g. [61]), power plants (e.g. [62]), chemical plants

(e.g. [63, 64]), aircraft (e.g. [65, 66]) and spacecraft (e.g. [67-70]). In the semiconductor

8.1. Model-Based Reasoning 147

domain, it has been applied to reasoning about material surfaces and interfaces (e.g.

[71]). The techniques are now also being applied to financial domains (e.g. [72-75]).

In all cases the structure of the system being reasoned about is represented by a

graph in which the nodes are components of the system and the arcs are the conduits of

communication or interaction between the components. The main distinctions between

our work and these concern the complexity of the signals that pass along the conduits

between parts of the system structure, and the treatment of time. Both of these

distinctions derive from the nature of the domain about which we are reasoning. As

noted in section 4.2 of Chapter 4, the components of a manufacturing plan are the steps

in the plan, and the signal that passes between these components is the description of

the object that the manufacturing steps operate on. This is a highly structured object

with an a priori undetermined number of components. In almost all previous work the

signals that pass between components consist of scalar quantities. Furthermore, in much

of the work the number of such quantities is determined by the structure of the system

being reasoned about and is known at the outset of reasoning: i.e. no new quantities are

discovered in course of reasoning. As we mentioned in Chapter 4, the process-centered

reductionist techniques are an exception to this rule [18]. In these techniques new

quantities can be introduced by the discovery and activation of instances of processes.

However, it is often the case that systems based on this approach perform an

envisionment . This procedure identifies all potential instances of processes at the

beginning of reasoning, assimilating the structure of the system being reasoned about in

much the way we assimilate the structure of the manufacturing plan.

Regarding the treatment of time, previous work falls into four broad categories.

The first category ignores time altogether: the system being reasoned about has no state.

It is characterizable by a set of algebraic equations [76]. Much of the early work on

digital circuits considered only combinational logic, and fell into this category [3, 20, 21,

52-54]. The second category considers time as quantified into uniform intervals, with

discrete changes taking place instantaneously at the end of each interval. The

prototypical example of this is synchronous (i.e. clocked) digital sequential systems. The

third category treats dynamical systems. These can be characterized by sets of first-order

ordinary differential equations [17-19, 77, 78]. The scalar quantities change continuously,

and the evolution of the system is often determined by feedback loops [79]. The fourth

category allows for discontinuous change as well as continuous change in the values of

the quantities [80]. Some work in this area also attempts to reason simultaneously at

148 Chapter 8: Related Work

several different time-scales, treating the same changes as discontinuous at one scale,

and continuous at another scale [81].

Our work is based on that of Reid Simmons [14], which brings together ideas

from two disparate areas of artificial intelligence: qualitative model-based reasoning and

planning. The treatment of time within our system is that associated with reasoning

about plans. Changes occur only as a result of actions. Although it may be recognized

that the actions take place over an interval of time and some of the changes are actually

continuous changes in the values of quantities, actions are considered to be atomic. The

system considers an action as a direct mapping between the states of the world before

the action and after it, but allows for the possibility that the mapping involves algebraic

equations over continuous variables, with the duration of the action as an explicit

variable. Furthermore, we do not consider the possibility of concurrent actions. Thus,

our view of time is a very simple one. It can also be viewed as a hybrid of the first and

second ways of treating time mentioned above: time is discretized into intervals, with all

changes considered complete at the end of each interval, but the intervals are not

uniform in duration. The values of quantities after each interval are continuous algebraic

functions of the quantities in the prior world-state and the interval’s duration. Discrete

changes that introduce or remove objects are also possible.

Most semiconductor processing involves continuous change. Furthermore, the

complexity of some processes, such as diffusion, make it awkward and difficult to

describe them in a general way as discrete actions. Thus, it would seem that abstractions

allowing for continuous change, concurrent processes and feedback would be

appropriate for reasoning in greater detail about individual processing steps. However,

current techniques are not completely adequate: the physical processes in some

semiconductor operations can’t be characterized by ordinary differential equations.

They require partial differential equations, which lie outside the realm of current

techniques. There may be some useful intermediate level of abstraction for which the

ordinary differential equations that current techniques can handle are adequate. There

has already been some work in this direction. In [82] qualitative and semi-qualitative

continuous models are employed to aid in the diagnosis of individual processing steps

(in particular, a plasma enhanced chemical vapor deposition (PECVD) of silicon nitride).

Qualitative continuous models have also been used to model equipment and individual

manufacturing steps in other manufacturing domains for the purpose of monitoring and

control [83-85].

8.1. Model-Based Reasoning 149

Despite the difficulties involved in representing semiconductor processing steps

as discrete actions, this is the most appropriate level of abstraction for our purpose of

unraveling all the interactions among manufacturing operations.

8.2. Combining Rule-Based and Model-Based Reasoning

There have been other attempts to combine rule-based and model-based reasoning. In

most cases, the phenomena treated by each form of knowledge has been the same. The

large inferences sanctioned by high-level rules have been viewed as contributing to fast

reasoning. The detail with which model-based techniques handle phenomena has been

viewed as contributing to robustness, and/or the ability to resolve interactions between

diagnostic hypotheses [86, 87] .

Although we also distinguish between rules and models in our work, the key

distinction we wish to draw concerns the content of the knowledge represented. In

particular, the different forms of knowledge are distinguished by level of

approximation, granularity, abstraction and the degree to which the knowledge is

heuristic. It is our argument that by encoding heuristic knowledge at a high level of

abstraction and granularity, rule-based experiential knowledge bases can treat a larger

range of phenomena than it is possible to model effectively. The second part of our

argument is that to encode the dependency of that knowledge on various aspects of

context that are subject to change, a finer degree of granularity and a lower level of

abstraction are required.

It has been suggested that increased reasoning speed can be achieved by

“compiling” the knowledge contained in models into rules, perhaps designed for a

specific task [67, 88-90] .

We agree with Randall Davis [91] when he stipulates that most of these efforts

mistakenly emphasize form over content. As Tom Bylander points out [92], the

“compiled“ knowledge cannot be more competent for a given task than the knowledge

it is “compiled” from, unless the “compiler” is endowed with knowledge that it can add

during the compilation process. Also, if the compiled knowledge is to be more efficient

at the task than the knowledge it is compiled from , then it must be the case that the

problem-solving is an expensive, deliberative process with the knowledge in its original

form. If that is the case, then the compilation process is necessarily also very expensive.

It is Davis’ argument that model-based diagnosis is not a deliberative process.

150 Chapter 8: Related Work

The work of Simmons [93] illustrates an effective way to combine the advantages

of rule-based and model-based reasoning. In his Generate-Test-Debug paradigm,

heuristic rules are employed to synthesize an interpretation of a geological cross-section

as a possible sequence of geological processes. These rules recognize common

configurations of geologic features and posit geologic sequences capable of producing

them. Models of the behavior of geologic processes are then employed to test the

resulting synthesized sequence by simulating it to determine what geologic cross-section

would result, and comparing this with the original cross-section to be interpreted.

Finally, the dependencies generated during this symbolic simulation are used to debug

the sequence when discrepancies in the cross-sections are detected.

It should be noted that the heuristic rules employed in Simmons’ work do not

treat phenomena that are not already represented in the models he employs. Indeed, it is

necessary that the models be capable of correctly simulating all phenomena that the

rules discuss. One could imagine employing a general-purpose planner [30-32] to

synthesize a sequence directly from the models, though this would entail a combinatoric

search through a very large search space. The impact of the heuristic rules is to arrive at

a reasonable estimate of the correct sequence without a great deal of search. Any attempt

to compile these synthesis rules from the models would require that the compiler

perform an exhaustive search of the space of possible sequences of geological processes.

Modern chess-playing systems are perhaps prototypical examples of systems

that employ rule-based experiential knowledge, model-based theoretical knowledge and

rule-based knowledge compiled from the model-based knowledge. In the early phases

of a game, these systems employ an “opening book.” This is essentially a rule-base with

rules of the form: when in this situation, pseudo-randomly choose among these equally

good moves. These rules are encodings of the accumulated experience of chess-playing

experts. In the middle game, these systems employ model-based knowledge: the

systems know what moves are legal, and what the effect of each move is on the board

configuration. They employ this knowledge in a search of the space of possible move

sequences that is pruned by heuristic knowledge concerning the “value” of each board

position. Finally, in some systems there is also an “endgame book .” This, like the

opening book, is a rule-base of best moves for each situation. However, endgame books

are often generated by an exhaustive search using the model-based knowledge.

8.2. Combining Rule-Based and Model-Based Reasoning 151

The issue in Simmons’ work is performance : the efficiency with which each form

of knowledge can perform its part of the task. While model-based knowledge is not

expensive for diagnostic and debugging tasks, it is for the synthesis task. Performance is

also the issue for most work in knowledge compilation. In contrast, our work is

concerned with competence : the ability of the representational paradigm to capture the

knowledge, and the degree of robustness that can be achieved. However, there are two

ways in which the notion of knowledge compilation applies to this work.

First, our model-based knowledge (the models of the operations and the

representation of the manufacturing plan) cannot be used to perform the diagnostic task

directly with any degree of efficiency. Instead, it is necessary to assimilate the

manufacturing plan through a qualitative symbolic simulation procedure. This

procedure makes all the causal dependencies in the plan explicit. It is with this explicit

graph of the causal dependencies that it is possible to perform diagnosis efficiently. The

assimilation process is a transformation of the form of the knowledge into a form that is

efficient for the diagnostic task. Furthermore, as in the case of most software compilers,

the transformation involves considerable expansion in the size of the representation.

Thus, the assimilation process can be viewed as a knowledge compilation process in

which performance is improved by a computationally expensive process that makes

explicit the knowledge that is only implicit in the original representation.

Second, we noted in Chapter 7 that it can be useful to have generic rules for

phenomena that fall within the competence of the theoretical knowledge. It would seem

that the effect of instantiating the generic rule in such a case is to merely change the form

of the knowledge without changing its content. However, this is not entirely true. Even

when the generic rule pertains to a phenomenon already captured by the model-based

knowledge, the rule provides additional knowledge. Specifically, generic rules define

the level of abstraction and granularity at which it is most appropriate to represent the

phenomenon: what are the key concepts to be causally related, and what details can be

omitted. Also, generic rules can contain heuristic knowledge in the form of certainty

factors. Thus, the rule-instantiation process can be viewed as a knowledge-compilation

process in which knowledge is added.

8.3. Modeling Manufacturing

In this work we have explored the symbolic approach to modeling semiconductor

manufacturing in order to achieve robust representation of knowledge capable of

152 Chapter 8: Related Work

supporting diagnosis. There has been and continues to be much work focussed on other

approaches to modeling semiconductor manufacturing.

Our models are very approximate and qualitative. To the extent that they include

quantitative information at all, this quantitative information takes the form of simple

analytic mathematical models. The work of Strojwas and others [37, 94] also employs

simple analytic expressions to model semiconductor manufacturing operations. In that

work, the expressions are tuned with empirical data to provide a fairly high degree of

accuracy. The focus of that work is to provide quantitative simulation that is very fast, so

that it can be used to support statistical experimentation and analysis. The simulator is

called FABRICS, and is part of a larger suite of computational tools called the Process

Engineer’s Workbench.

While that work is similar to ours in its use of simplified analytic models of

semiconductor manufacturing operations, it is aimed at a different purpose. The

FABRICS simulator does not record logical and functional dependencies that can be

traced to generate diagnostic hypotheses. Also, it cannot accept qualitative information

— it is strictly quantitative. Its primary purpose is the statistical exploration of the

input/output behavior of the manufacturing process in a small space around the points

for which the analytic expressions were tuned with empirical data.

Early versions of the work reported in this dissertation inspired an effort similar

to ours at Texas Instruments, led by Robert Hartzell [95]. As in the FABRICS work, the

TI “deep level reasoning tool” employed quantitative analytic models embedded in code

rather than our qualitative, declarative models. However, they structured the models

with an object-oriented programming language in such a way that each model can

include methods that record dependency information. In this way they attempt to

achieve the best of both worlds: fast, quantitative simulation along with dependency

information that can be used to support diagnosis. In our work, the dependency

information is extracted automatically from the models, by virtue of reasoning with

declarative statements in a logic and employing a truth maintenance system (TMS). In

the TI work, the dependencies recovered for each operation are hand-crafted into a

method attached to the model of the operation independently of the coding of the model

itself.

8.3. Modeling Manufacturing 153

This approach has advantages and disadvantages in comparison with our

approach. Since the dependencies are hand-crafted, the level of detail and granularity in

them can be carefully selected to match the needs of the diagnostic system. In our

system the level of detail in the dependency network is determined by the demands of

the simulator. This leads to a highly detailed dependency graph with nodes for every

instance of every statement in each model. Also, since the TI models are compiled,

quantitative programs, the assimilation of a new process plan is much faster than it is

with our system. On the other hand, this approach places more of a burden on the

programmer, especially with regard to maintenance. When the models are modified, the

programmer must re-evaluate the coding of the dependency information. Also, the

inability of the system to reason qualitatively with partially-specified information limits

the utility of the models for other tasks that are carried out before a complete,

quantitative specification is available.

Symbolic simulation of semiconductor processing is also employed in a system

reported in [96]. This system checks newly designed manufacturing plans for violations

of rules regarding safety and standard operating procedures. The system requires a

representation of wafer state in order to check rules concerning constraints between

wafer state and process or equipment. As in our system, it uses a rule-based simulator to

create a representation of the wafer state at the start of each step from a representation of

the manufacturing plan. However, their system uses representations of wafer state and

processing steps that are even simpler than those we employ. They do not differentiate

between different regions on the wafer surface. Instead, they consider that they need

only keep track of what layers have been added to the wafer, and whether or not these

layers have been patterned. Thus, their representation of the entire wafer is a simple

stack of layers annotated with information regarding material, thickness, doping, and

whether each layer has been patterned by a mask (or by a process that transfers a pattern

between layers).

They are not concerned with extracting causal relationships between the

manufacturing plan and the wafer state. Thus, their models of semiconductor operations

are simple rules that directly specify the impact of the operation on their representation

of wafer state. These simulation rules, furthermore, are quite specific to processing

contexts. For example, one rule treats implantation into the polysilicon layer. This rule is

only applicable if the wafer has a polysilicon layer exposed at the surface, and the

154 Chapter 8: Related Work

implantation energy is not sufficient to penetrate the wafer beyond that layer. Rather

than a few general-purpose models, they employ about 50 specific simulation rules.

This work exemplifies the efficacy of symbolic reasoning with highly abstract

models tailored to the needs of the task to be performed. It also confirms our position

that an important use of computer systems is to manage the complexity stemming solely

from the length of manufacturing plans: most of the errors found by the system are

simple and obvious, but difficult for process engineers to spot due to the mass of detail

and the distance in long process flows between steps that can interact.

There is much work going on — especially at Stanford, but also elsewhere —

aimed at constructing highly accurate quantitative process simulators based on the best

available knowledge of the physics and chemistry involved in the processes. These

“physically-based” simulators use grid techniques to solve the systems of partial

differential equations that model this physics [34, 35, 97-101] . The simulators operate at a

very fine level of granularity and are consequently very computationally expensive. The

focus in this work is to achieve a high degree of accuracy in simulation, and by being

sufficiently comprehensive in capturing all relevant physical phenomena, to produce

simulators that can reliably predict the behaviour of the processes over a wide range of

operating conditions.

Figure 8.1 portrays some representative systems as “information transformers.”

The notion here is that these systems compute mappings between different levels of

description. The sizes of the arrows in the diagram reflect the relative utility of these

programs for transforming information in the forward and reverse direction.

Quantitative simulators are best suited to computing these mappings in the forward, or

predictive direction. For example, the SUPREM simulator computes a highly precise and

accurate description of the state of the wafer after processing, from a description of the

micro-environment created at the surface of the wafer during processing. Since

simulators can only run in this forward direction, obtaining the inverse transformation is

a trial-and-error process.

8.3. M
odeling M

anufacturing
155Figure 8.1 Semiconductor Computer Tools as Information Transformers

Levels of Description

Statistical
Characterization

Equipment
Settings

Machine
State

Process
µ-Environment

Wafer
State

Device
Behaviour

Circuit
Behaviour

Numeric

Analytic

Qualitative

Precision

SpicePisces

SPEEDIE

SUPREM

Fabrics

Merlin
DAS

Diagnosis

Monitoring
&Diagnosis

Design &
Optimization

RTM Guardian

Roles

PIES

156 Chapter 8: Related Work

Computing the inverse transformation is best achieved with symbolic

techniques. With DAS, for example, a forward simulation is performed to assimilate the

manufacturing plan. However, this simulation is neither very precise nor highly

accurate. Once the plan has been so assimilated, the dependencies recorded during

simulation can be used to compute the inverse transformation: from a description of

wafer state, determine the conditions of processing that led to it.

The complimentary character of the strengths of quantitative and symbolic

techniques suggest a possibility for synergy. During diagnosis symbolic techniques can

be used to generate hypotheses that can then be verified with quantitative simulation.

The AESOP work [11] represents another approach to achieving robustness in a

causal-association based system. In this work, a set of statistical experiments were

performed using the physically-based numerical simulators SUPREM and PISCES as a

substitute for the real world. Response surface methods were used to characterize the

overall input/output behaviour of the manufacturing process. From the resulting

response surface, causal associations were extracted. Paradoxically, although the source

of the knowledge is the theory embodied in the simulators, the content and form of the

knowledge captured in the knowledge base is experiential: it encodes a set of

experiences with the simulators, but doesn’t explicitly encode any of the theory behind

those experiences.

This illustrates another way to employ fine-grained theoretical knowledge to

achieve robustness. The advantage of this approach is that it is based on the best

theoretical knowledge available in computer-encoded form. As we pointed out in

Chapter 4, mathematical models solved by numerical techniques are better able to

capture many complex phenomena for which we do not yet know how to make

symbolic reasoning effective. Further, the accuracy of the simulators avoids some errors

(effectively quantization errors) that abstract, simplified models are subject to.

This method also has some disadvantages. Instead of a single, symbolic

simulation to assimilate the process, the method requires a large number of

computationally expensive numerical simulations. For this reason, the number of input

and output variables that can be studied is limited. Also, this method treats the entire

process as a “black box.” This leads, as we have seen, to a less densely connected causal

graph, because internal points of interaction are not identified. The example we

8.3. Modeling Manufacturing 157

discussed in Chapter 3 and Chapter 6 illustrates this: the AESOP knowledge base

associated under-etching during the polysilicon gate etch step directly with an increased

channel length. The intermediate anomaly of an increase in the width of the polysilicon

wire forming the gate was not identified. This implies that the hypothesis that under-

etching is responsible for an increased channel length cannot be verified by other

manifestations of the increased width in the polysilicon wire. Finally, this method is still

fairly labour intensive and computationally expensive. The variables of interest must be

selected, the experiments designed and run, and the results of the simulations must be

manually encoded as causal associations. As an example, the AESOP knowledge base

related only 6 processing variables to 6 physical structure variables and 20 measurement

variables (each variable assumes four or five values). This required 1100 simulations (1-

dimensional SUPREM-III and 2-dimensional PISCES simulations) and 61 CPU hours of

compute time on a Convex C1 mini-supercomputer.

8.4. Semiconductor Process Representation

This work touches on the problem of serving the needs of all tasks that require a

description of the semiconductor manufacturing process with a single, unified

representation of it. This is an area of much active research.

Early efforts in this area took a linguistic approach. This approach stresses the

similarity between manufacturing plans and software programs, and emphasizes the

role of the representation as a set of instructions for carrying out the manufacturing

process. The FABLE project [38] used an imperative procedural ALGOL-like language. It

identified several levels of description and took macro-expansion as the model for the

relationship between these levels. The higher levels of description were concerned with

the purpose of each operation. The lower levels successively added detail concerning

how to accomplish that purpose. The Berkeley Process Flow Language (BPFL) [40, 41,

102] also takes a linguistic approach. However, their LISP-based language is better able

to accomodate the information requirements of multiple tasks.

The programming metaphor is powerful, but also confining. There are many

activities requiring a process representation for which the “set of instructions” view is

not appropriate. The support of such activities as analysis, real-time process control,

scheduling and planning require the inclusion of information that does not readily find a

place in such a representation. The primary operations associated with programs are

syntax checking, transformation (macro-expansion and compilation) and execution.

158 Chapter 8: Related Work

Byron Davies [43] did a careful study of the myriad kinds of information that a

process representation must include in order to support multiple tasks. Duane Boning

developed a general framework for organizing information about semiconductor

manufacturing processes [103] . He and George Koppelman have outlined the

requirements for a semiconductor process representation [104] .

The major alternative to the linguistic approach is the object-oriented approach

[48]. This approach was eventually adopted by the FABLE project at Stanford [39]. The

Manufacturing Science Program there has adopted the Distributed Information Service

(DIS) [36] as its vehicle for research in this area, and developed the Specification Editor

[105, 106] based on it. The Process Flow Representation (PFR) of the MIT Computer -

Aided Fabrication Environment (CAFE) [45] also uses this approach. The approach is

similar to the AI notion of a framed-based knowledge representation. Computational

objects are employed to represent all the objects of interest in the semiconductor world.

In addition to process flows, this can include pieces of equipment, personnel, wafers,

wafer lots, instances of fabrication runs, test programs, inspection and measurement

data, device designs and simulation results. Objects have slots that can contain

descriptive information or represent relationships to other objects. They are organized

into type hierarchies, and information can be inherited from objects higher in the type

hierarchy to objects lower in it.

The efficacy for process representation of the object-oriented approach was

demonstrated by Jack Wenstrand [47, 107], who showed that inheritance and reuse of

objects significantly reduces the effort needed to specify a manufacturing process, and

that the same representation could be used both to generate a runsheet for the factory

floor and an input deck for a simulator. Don Basile [51] has investigated the issue of

representing the special timing and flow control information associated with

semiconductor manufacturing within this framework.

The object-oriented approach, with a client-server architecture and persistent

storage for the objects, is the approach being investigated as a possible standard for the

semiconductor industry by the CAD Framework Initiative Technology CAD

Semiconductor Process Representation Working Group [42, 46, 108] , which emphasizes

computer-aided design for manufacturing processes, and by the Microelectronics

Manufacturing Science Technology (MMST) program [109] and SEMATECH [110] ,

which emphasize computer-integrated manufacturing.

8.5. Model Selection 159

8.5. Model Selection

Chapter 5 contains a brief discussion of the issue of how the semiconductor process

representation (SPR) required by a particular application can be extracted from the

unified SPR. The solution advocated there treats the problem as one of model selection.

That is, the problem is reduced to identifying the appropriate application-specific model

for each object in the unified SPR. The approach to model selection described there is

very flexible, allowing for the possibility that different applications can handle this

problem in different ways. However, the primary method suggested was to rely on the

abstract classifications of the step to indicate the appropriate model.

As mentioned in Chapter 5, the MIT CAFE [45] system adopts a different

approach. It attempts to identify the correct way to model each step by looking only at

the step’s parameters. Our model selection approach is sufficiently flexible that both

methods can be used. The same application can even employ different methods in

different parts of the process. In particular, the MIT approach can be used to resolve

ambiguous model assignments in the step classification approach.

Both these approaches assume that there is an appropriate model that can be

identified before the application begins to execute the model. This may not always be

the case. It may not be possible to correctly identify the most appropriate model until

some reasoning (or computation) has been performed. Sanjaya Addanki, Roberto

Cremonini and Scott Penberthy [111] have addressed this issue. They introduced the

notion of a “graph of models.” In their scheme, an initial model is identified and applied

to the problem-solving task. During this application, it can become clear that the model

is inadequate to solve the problem. An external conflict occurs when the model’s

predictions disagree with empirical evidence. Another way for inadequacy of the model

to manifest itself is that the model generates contradictory conclusions. This is called an

interal conflict .

For example, in our situation the model is a description of the how the effects of

a processing step are determined by the state of the wafer and the processing conditions.

Generally, the model is given descriptions of both the initial wafer state and processing

conditions, and the expected outcome of processing (in the form of constraints attached

to the step). If the model is not adequate, it may conclude that the effects of the

processing step are different from those expected. The validity of a model is predicated

on the truth of modeling assumptions associated with the model. Another way for the

160 Chapter 8: Related Work

application of the model to generate a contradiction is for it to conclude that the

situation violates a modeling assumption. For example, a model of an oxidation step

might assume that the oxide thickness never reaches the stage where the process is

transport limited, and so a linear model of the growth rate is acceptable. However, using

that linear model the system might predict that the oxide reaches a thickness for which

the oxidation process would be transport limited.

When the model proves inadequate to the task, the system should seek to

identify a more appropriate model. In the graph-of-models approach, the models are

related to each other in a graph. The models are adjacent (connected to each other) in the

graph if they are alternate models for similar situations. The arcs of the graph are

annotated with information that helps to decide which alternate model to try next based

on the nature of the failure. In particular, the arcs are labelled with the modeling

assumptions that have to be changed in order to move from one model to the other. In

the graph-of-models methodology, the simplest (having the greatest number of

simplifying assumptions) apparently appropriate model is attempted first. Based on the

nature of the failure of this model to solve the problem, assumptions are relaxed and

increasingly more complex models are then attempted in succession until one is found

that proves adequate.

The graph-of-models approach still requires that there are models for every

situation explicitly represented before the situation to reasoned about is presented. As

we saw in the discussion of diffusion models in Chapter 4, for some domains

combinatorics in the characteristics of the problems can make the space of possible

models extremely large: sufficiently large to make an explicit representation of all

models impractical. Brian Falkenhainer and Ken Forbus [112] and Pandu Nayak [113]

and have investigated methods by which the most appropriate model is assembled from

model fragments. In this way the space of possible models is represented implicitly by

all the possible ways that model fragments can be composed into models.

The key notions are that it is possible to define model fragments that can be

combined to form models, modeling assumptions and constraints can be associated with

these fragments and features of the problem can be used to direct the search for an

appropriate combination of model fragments. The model fragments are organized into

equivalence classes based whether they make contradictory assumptions (if two model

fragments make inconsistent assumptions then only one of them can be included in a

8.5. Model Selection 161

model at any given time). The model fragments are partial descriptions of phenomena.

A relation over them indicates for each model fragment what classes of model fragments

can be used to complete them. The features of the problem that constrain the selection of

model fragments include constraints from the structure of the system and the behaviour

of the system as determined by an initial model. In the work of Falkenhainer and

Forbus, the problem to be solved takes the form of a query from the user and the terms

employed in the query provide additional constraints on the adequacy of a model. In the

work of Nayak, the problem to be solved is always to provide a causal explanation of

the system’s behaviour. Thus, the expected behaviour provides additional motivation

for and constraints on the inclusion of model fragments.

The domain of application for model fragments is physical systems describable

by sets of algebraic or differential equations in real variables. The model fragments are

themselves sets of equations that partially describe a phenomenon.

Our discrete action models of semiconductor manufacturing operations can be

composed sequentially to form a model of the manufacturing plan. Also, the individual

models are partly determined by composition in that the parameters, effects and

constraints of a model are formed by a cumulative inheritance mechanism. The set of

sentences that comprise the effects description of a discrete action model include those

local to the model as well as those of all its ancestors in the hierarchy. However, it is not

possible to combine two or more action models, e.g. a diffusion model and an oxidation

model, to obtain a single model in which the effects of all the models operate

concurrently (e.g. a model of oxidation enhanced diffusion).

To achieve compositional modeling of discrete actions, one must combine

declarative sentences concerning topological changes to wafer structure. This is

considerably more difficult than combining equations. With equations, model fragments

interact only through shared variables. Model fragments describing phenomena that

would interact in a more complex fashion are excluded from being composed by virtue

of the fact that they make contradictory assumptions — each assumes that the

interfering phenomenon from the other model is not occurring. It is necessary to have a

separate model fragment that encapsulates the interaction between the phenomena.

Given that model fragments in the discrete action world would have sentences

referring to the creation and destruction of individuals, and thus to changes in the

162 Chapter 8: Related Work

topological arrangements among individuals, it is an interesting question as to how any

two model fragments affecting overlapping sets of individuals could be written so as not

to assume that the other model cannot be operating simultaneously. While it is not

obvious how this could be achieved, neither is it obvious that it cannot be.

The work of Janet Murdock [114] goes one step further. In all prior work on

model-based reasoning, including the work on compositional modeling, the set of

individuals whose behaviour is to be modeled is determined a priori and fixed. The

system to be reasoned about is decomposed into a set of interconnected and interacting

discrete individuals. Murdock points out that in many cases the underlying physical

system is continuous and the most appropriate way to perform this decomposition

depends on the nature of the problem being solved. This can include the nature of the

question being asked and the behavioural state of the system. For example, a pipe in a

chemical plant might be considered an atomic individual in some circumstances, and a

composition of several connected sub-pipes in another. Murdock provides a mechanism

for performing this individuation automatically as an integral part of model-building.

This requires that the reasoning system maintain a representation of the continuous

physical geometry of the system being reasoned about that it can “carve up” into

individuals as needed to support its reasoning task.

Our discrete action models of semiconductor manufacturing operations also

individuate on the fly — an initially homogenous wafer is sub-divided laterally by

photolithography operations and vertically by implantation operations. However, they

do not entertain different views of the individuation as needed. Once a individual is

sub-divided, it remains sub-divided even when it would make more sense to consider it

as an undivided whole. For example, when a “blanket layer” is deposited on the wafer,

it makes sense to consider the wafer and the deposited layer as single individuals,

regardless of whether the wafer has been sub-divided by previous photolithography

operations. Instead, the discrete action system considers the deposited layer to be

composed of a set of layer-regions, each corresponding to a distinct region-type on the

wafer. Furthermore, to simplify the representation of geometry, the discrete action

models sub-divide layer-regions unnecessarily. Photolithography operations cause all

layers to be sub-divided, in anticipation of the possibility that because the photoresist at

the surface of the wafer is differentiated, all layers below it may eventually see

differential processing.

Chapter 9. Conclusions

This chapter discusses some potential avenues of future research. It then briefly

summarizes the dissertation and reiterates the contributions of the research.

9.1. Future Work

We have focussed on the form and content of the knowledge required to perform

diagnosis of semiconductor manufacturing processes. We have omitted discussion of

diagnostic strategies. Diagnostic strategy is a non-trivial research topic to which many

have applied their minds [5, 53]. An obvious direction in which to extend this work is to

incorporate the ideas that have been developed in the area of diagnostic strategies, and

to investigate whether this problem domain requires the development of new strategies.

The experiential causal associations include a qualitative, subjective measure of

likelihood or certainty. The theoretical models implicitly assume the world is

deterministic. There is a need to investigate how statistical information and uncertain

reasoning can be incorporated into the diagnosis. Statistical information regarding the

frequency of different classes of failures can be used to help order the diagnostic

hypotheses. Also, statistical and information theoretic concepts can be used to assess the

reliability of the data on which diagnoses are to be based [115, 116] . It would also be

interesting to consider whether symbolic models can be extended to include stochastic

as well as deterministic notions of causality.

The discussion of the diffusion model in Chapter 4 points up the need to discover

ways to achieve compositionality in discrete action models. When describing qualitative

criteria for topological changes to wafer structure within the discrete action paradigm,

are there conceptualizations that would allow for a superposition principle? The bond -

graph and Qualitative Process Theory paradigms are already capable of compositional

modeling. Is there a useful level of abstraction at which these techniques can apply in

this domain? How can the techniques for qualitative modeling be extended to treat

systems characterized by partial differential equations?

164 Chapter 9: Conclusions

It is probably unreasonable to expect that symbolic reasoning techniques will be

developed for the systems characterized by partial differential equations. AI techniques

generally attempt to achieve the competence demonstrated by human reasoners, and

usually lag far behind them. There is little evidence that people can reason qualitatively

about such systems. It is interesting to note how people do handle them, and how this

compares with the DAS simulator.

The DAS simulator is not often employed as a predictor of behaviour. Instead, it

is given information about the outcome of each action, and it builds a causal explanation

for the expected outcome. This, I believe, is how people tend to operate when faced with

complex systems. They employ numerical techniques and experiments to form

predictions, then use their conceptual understanding to interpret the results. Their

qualitative conceptual knowledge is not used to predict, but rather to rationalize.

This suggests that a better way to perform symbolic simulation is not to simulate

symbolically at all. Rather, the system should be simulated quantitatively, and the

symbolic models used to generate a post-hoc rational reconstruction of the result.

In the chapter on related work, we briefly discussed Janet Murdock’s work on

context-dependent individuation. Context-dependent individuation demands that there

be a “basic” representation that makes a minimal number of ontological commitments

concerning individuation, and that accurately describes the three-dimensional geometry

of the system. When employing symbolic reasoning as a rationalizer/explainer for

numerically computed predictions, the fine-grained gridded representation used by the

numerical simulator could serve as the basic representation. The symbolic “rationalizer”

would then be free to choose the manner in which that representation should be

quantized and individuated on the basis of the needs of the models being used to

construct the explanation.

One difficulty with this approach is that it subsumes a version of the visual

perception problem. The system must be able to use its models to perceive a huge array

of numbers as a configuration of larger individuals. However, the quantitative

representations of wafer structure are not as undifferentiated as the image data in

computer vision: the points in the representation are already identified as to material, for

example. Also, unlike the visual perception problem, there is no loss of information due

to projection of the three-dimensional world into two dimensional images.

9.2. Summary and Contributions 165

9.2. Summary and Contributions

This dissertation is about representing knowledge concerning semiconductor

manufacturing that can support symbolic end-to-end diagnosis of stable semiconductor

processes in a manner that enables automatic adaptation of the knowledge base to new

processes and test structures.

Previous work in this domain has relied on experiential knowledge captured in

hand-crafted heuristic rules. The main drawback of this approach has been that such

knowledge is not amenable to automatic adaptation to new contexts. Thus, the principle

concern of this work has been to address this drawback: to represent the knowledge in a

fashion that is robust in the face of changes to the manufacturing process and/or to the

structures used to characterize and test the success of the process.

Our solution to this problem has two principle aspects :

1) We represented theoretical knowledge concerning semiconductor manufacturing
in the form of declarative, causal models. These models are capable of
assimilating a description of the process to be diagnosed and descriptions of the
devices and test-structures in the form of the masks used to create them, and
creating from these a representation of the causal pathways of the process that
can support diagnostic reasoning.

2) We represented experiential diagnostic knowledge concerning phenomena that
lie outside the realm of the theoretical knowledge captured in our models. To
enable adaptation of this knowledge to new processes and test-structures, we
developed a new representation, called the Generic Rule, to integrate experiential
knowledge and theoretical knowledge. Generic Rules use theoretical knowledge
to describe how the inferences sanctioned by the experiential knowledge depend
on the manufacturing plan and the devices and test-structures.

Semiconductor manufacturing processes are extremely complex in two different

senses of the word. One sense of the word refers to the complexity of each individual

manufacturing operation. This aspect of complexity makes it difficult to model the

manufacturing operations accurately, or to define abstract levels of description that do

not discard too much information. The other sense of the word refers to the length of the

manufacturing plan, the large number of variables that characterize it, and the

multiplicity of ways that operations which are temporally remote can interact. We have

focussed on dealing with the latter form of complexity, taking advantage of the

proficiency with which computers can manage large amounts of data and systematically

track large numbers of relationships among them.

166 Chapter 9: Conclusions

Our focus on the latter form of complexity enables us to employ highly abstract

models of the manufacturing operations. Indeed, a high level of abstraction is necessary

to make diagnostic reasoning tractable. However, the fact of the first form of complexity

means there is always a strong tension between abstraction on the one hand and

accuracy and generality on the other. The ontological commitments one makes in the

name of simplification for tractability of reasoning severely limit the scope of

phenomena that can be adequately captured in a general way. We have tried to walk the

tightrope between oversimplification and excessive complexity, defining symbolic,

qualitative discrete action models of the semiconductor manufacturing operations that

most affect the geometry and topology of the structures produced on the wafer.

Experiential knowledge is usually represented at even higher levels abstraction

and granularity, in modular heuristic rules. Yet these representations can capture a

wider range of phenomena. The cost engendered by this approach is a lack of generality,

and a concommitent lack of robustness.

To simultaneously maximize the range of phenomena that can be represented

(what we call Phenomena Scope) and maximize the range of contexts for which the

knowledge is valid (what we call Situation Scope), we combine the features of model-

based representation of general theories with rule-based representation of experiential

knowledge in a synergistic manner. The high level of abstraction and coarse granularity

that afford flexibility to heuristic rules is retained, augmented by representations based

on theoretical knowledge, at a lower level of abstraction and a finer granularity, of the

criteria determining when and among which individuals the inference sanctioned by the

rules are valid in new contexts.

We have performed several experiments to evaluate our approach. We have

created 15 generic rules to generalize the causal associations contained in the AESOP

knowledge base regarding the Stanford CMOS process. A simplified version of this

process was qualitatively simulated, and the resulting causal dependency network was

used to find instances of the generic rules. In this way we assured ourselves that the

rules captured the knowledge in the original AESOP knowledge base. All but one of the

AESOP causal associations were recovered in this way, and about twenty additional

associations were found. Furthermore, some of the causal associations were represented

by chains of up to three associations, thereby making explicit the intermediate states

involved in the phenomena.

9.2. Summary and Contributions 167

 We also successfully extracted a representation of the Stanford BiCMOS process

from the Distributed Information Server, and qualitatively simulated that process using

our theoretical models. The resulting dependency network was employed both to find

instances of the generic rules, and to perform several diagnoses. These diagnoses

extended to the process level the diagnoses performed by Greg Freeman’s MERLIN

system.

Over 500 instances of the generic rules pertaining to the BiCMOS process were

obtained. Of these, the validity of roughly one third of the associations is questionable.

Some of the associations are invalid because the generic rules ignore sensitivity of the

functional dependency involved. In some cases this sensitivity may be so small as to

make the effect negligible. A larger number are invalid because of an incorrect

assessment of the mechanism responsible for the phenomena that gave rise to the

original associations. Despite these shortcomings, we believe that we have demonstrated

that the techniques can be successfully employed to improve the robustness of the

representations of experiential knowledge.

There is no sign on the horizon that the rapid pace of development in the

semiconductor industry will abate, and the trend is inexorably toward ever longer and

more complex manufacturing processes. Improvements in the ability to measure and

control the effects of individual processing operations will reduce the need for diagnosis

at the whole-process level, and may enable even more abstract representations to suffice

for diagnosis at that level. However, there will always be a need to keep track of the

complex ways that manufacturing operations can interact. As manufacturing processes

get longer it will become more important to do this in a systematic way, employing

computer tools such as are represented by this work and future extensions of it.

References

1. Mohammed, J.L. and P. Losleben, Applications of Artificial Intelligence to
Semiconductor Modeling. (Technical Report No. KSL-93-63). 1993. Knowledge
Systems Laboratory, Stanford University.

2. Bobrow, D.G., ed. Qualitative Reasoning About Physical Systems. 1985, Cambridge,
MA: MIT Press.

3. Davis, R., Diagnostic reasoning based on structure and behavior. Artificial
Intelligence, 1984. 24: p. 347–410.

4. Freeman, G.G. and W. Lukaszek, MERLIN: an automated IC process diagnosis tool
based on analytic device models, in The Stanford BiCMOS Project, J.D. Shott, Editor.
1990, Stanford University. p. 197–220.

5. Freeman, G.G., Application of Analytic Models to Computer-aided IC Device Diagnosis
and Parametric Test Selection. Ph.D. thesis, 1991. Stanford University.

6. Mohammed, J.L. and R.G. Simmons, Qualitative Simulation of Semiconductor
Fabrication , in AAAI-86 . Held: Philadelphia, PA, August 11–15, 1986. 1986, USA:
Morgan Kaufman. p. 794–9.

7. Simmons, R.G. and J.L. Mohammed, Causal Modeling of Semiconductor Fabrication.
Artificial Intelligence in Engineering, 1989. 4(1): p. 2–21.

8. Mohammed, J.L. and P. Losleben, Process Representation and Model Selection.
(Manufacturing Science Technical Note Series, Paper No. 2). 1992. Stanford
Integrated Circuits Laboratory.

9. Mohammed, J.L. and P. Losleben, Representation of Mask Information in the MKS
Process Representation. (Manufacturing Science Technical Note Series, Paper No.
1). 1992. Stanford Integrated Circuits Laboratory.

10. Pan, J.Y.-C. and J.M. Tenenbaum, PIES: An engineer’s do-it-yourself knowledge
system for interpretation of parametric test data. AI Magazine, 1986. 7(4): p. 62–9.

11. Dishaw, J.P. and J.Y.-C. Pan, AESOP: a simulation-based knowledge system for
CMOS process diagnosis. IEEE Transactions on Semiconductor Manufacturing,
1989. 2(3): p. 94–103.

References 169

12. Hayes-Roth, F., D.A. Waterman, and D.B. Lenat, Building Expert Systems.
Teknowledge series in knowledge engineering, 1983, Reading, MA: Addison-
Wesley Publishing Company. 444.

13. Weiss, S.M., C.A. Kulikowski, and A. Safir, A model-based consultation system for
the long-term management of glaucoma. , in International Joint Conference on Artificial
Intelligence . Held: Cambridge, MA, 1977, USA: Morgan Kaufman. p. 826–832.

14. Simmons, R.G., Representing and Reasoning About Change in Geologic Interpretation.
(AI Technical Report No. 749). 1983. MIT.

15. Iwasaki, Y. and H.A. Simon, Causality and model abstraction. Artificial Intelligence,
1994. 67(1): p. 143–94.

16. Patil, R.S., P. Szolovits, and W.B. Schwartz, Causal understanding of patient illness
in medical diagnosis. , in Proceedings of the Seventh International Joint Conference on
Artificial Intelligence . 1981, International Joint Conferences on Artificial
Intelligence, Inc. p. 893–899.

17. de Kleer, J. and J.S. Brown, A qualitative physics based on confluences. Artificial
Intelligence, 1984. 24: p. 7–83.

18. Forbus, K.D., Qualitative process theory. Artificial Intelligence, 1984. 24: p. 85–168.

19. Kuipers, B., Qualitative Simulation. Artificial Intelligence, 1986. 29: p. 289–338.

20. Genesereth, M.R., The use of design descriptions in automated diagnosis, in Qualitative
Reasoning About Physical Systems, D.G. Bobrow, Editor. 1985, Cambridge. MA:
The MIT Press. p. 411–436.

21. Barrow, H.G., VERIFY: A program for proving the correctness of digital hardware
designs, in Qualitative Reasoning About Physical Systems, D.G. Bobrow, Editor.
1985, Cambridge, MA: The MIT Press. p. 437–492.

22. Mendelson, E., Introduction to Mathematical Logic . 1964, Princeton, NJ: D. Van
Nostrand. .

23. McCarthy, J. and P.J. Hayes, Some philosophical problems from the standpoint of
Artificial Intelligence. Machine Intelligence, 1969. 4: p. 463-502.

24. Shoham, Y., Chronological Ignorance: Experiments in Nonmonotonic Temporal
Reasoning. Artificial Intelligence, 1988. 36: p. 279-331.

25. Weyhrauch, R.W., Prolegomena to a theory of mechanized formal reasoning. Artificial
Intelligence, 1980. 13: p. 133-170.

26. Roussel, P., Prolog: Manuel de reference et d’utilisation. 1975. Groupe d’Intelligence
Artificielle, Marseille-Luminy.

170 References

27. Warren, D.H.D., Logic Programming and Compiler Writing. (Res. Rep No. 44). 1977.
Dept. of Artificial Intelligence, University of Edinburgh.

28. Simmons, R.G., “Commonsense” Arithmetic Reasoning , in AAAI-86 . Held:
Philadelphia, PA, 1986, Morgan Kaufman. p. 118–124.

29. McAllester, D., The Use of Equality in Deduction and Knowledge
Representation. (AI Technical Report No. 550). 1980. Massachusetts Institute of
Technology.

30. Chapman, D., Planning for Conjunctive Goals. (Artificial Intelligence Technical
Report No. 802). 1985. Massachusetts Institute of Technology.

31. Fikes, R.E. and N.J. Nilsson, STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 1971. 2: p. 189-208.

32. Sacerdoti, E.D., A structure for plans and behavior. (Technical Note No. 109). 1975.
AI Center, SRI International Inc., Menlo Park, CA.

33. Goosens, R.J.G. and R.W. Dutton, Device CAD in the 90’s: At the Crossroads, in
IEEE Circuits & Devices Magazine . 1992, . p. 18–26.

34. Law, M.E., C.S. Rafferty, and R.W. Dutton, SUPREM–IV. (Technical Report) 1988.
Stanford Electronics Laboratories, Stanford University, Stanford, CA.

35. McVittie, J.P., et al., SPEEDIE: Simulation of Profile Evolution During Etching and
Deposition , in SPIE Symposium on Advanced Techniques for Integrated Circuits
Processing . 1990, p. 126-138.

36. Glicksman, J., DIS: The Distributed Information Service. (Reference and User’s
Guide, Version No. 2.0). 1992. Enterprise Integration Technologies.

37. Strojwas, A.J. and S.W. Directory, The process engineer’s workbench. IEEE Journal of
Solid State Circuits, 1988. 23(2): p. 377-386.

38. Ossher, H.L. and B.K. Reid, FABLE: A programming language solution to IC process
automation problems. ACM-SIGPLAN Notices, 1983. 18(6): p. 137-148.

39. Davies, B., et al., FABLE: Knowledge For Semiconductor Manufacturing . 1987, The
Center for Integrated Systems, Stanford University (Unpublished).

40. Williams, C.B. and L.A. Rowe, The Berkeley Process-Flow Language: Reference
Document. (Report No. UCB/ERL M87/73). 1987. Electronics Research
Laboratory, University of California, Berkeley.

41. Williams, C.B., Design and Implementation of the Berkeley Process-Flow Language
Interpreter. (Master’s Thesis No. UCB/ERL M88/72). 1988. Electronics Research
Laboratory, University of California, Berkeley.

References 171

42. SPR Working Group of the CAD Framework Initiative TCAD TSC, Semiconductor
Process Representation Requirements. (CFI Document No. TCAD-91-G-4). 1992.
CAD Framework Initiative, Inc.

43. Davies, B., Process Specification and Process Knowledge in Semiconductor
Manufacturing. Ph.D. thesis, 1991. Stanford University.

44. McIlrath, M.B. and D.S. Boning, Integrating process design and manufacture using a
unified flow representation , in Second International Conference on Computer Integrated
Manufacturing . Held: Troy, NY, 1990, IEEE Computer Society Press, Los
Alamitos, CA. p. 224–230.

45. McIlrath, M.B., et al., CAFE—the MIT Computer-Aided Fabrication Environment.
IEEE Transactions on Components, Hybrids, and Manufacturing Technology,
1992. 15(3): p. 353–60.

46. SPR Working Group of the CAD Framework Initiative TCAD TSC, Current
Concepts in Semiconductor Process Representation. (CFI Document No. TCAD-91-T-
2). 1991. CAD Framework Initiative, Inc.

47. Wendstrand, J.S., An Object-Oriented Model for Specification, Simulation, and Design
of Semiconductor Fabrication Processes. (Thesis No. ICL91-003). 1991. Stanford
Electronics Laboratories, Stanford University.

48. Pan, J.Y.-C., J.M. Tenenbaum, and J. Glicksman, A framework for knowledge-based
Computer Integrated Manufacturing. IEEE Transactions on Semiconductor
Manufacturing, 1989. 2(2): p. 33–46.

49. Schmolze, J.G. and T.A. Lipkis, Classification in the KL-ONE Knowledge
Representation System , in International Joint Conference on Artificial Intelligence.
Held: Karlsruhe, Germany, 1983, William Kaufman, Inc., Los Altos, CA. p. 330-
332.

50. Shott, J., Overview of the Stanford BiCMOS Process . 1988, Integrated Circuits
Laboratory, Stanford University (unpublished).

51. Basile, D., Flow Control for Object-Oriented Semiconductor Process Representations.
(Thesis No. ICL No. 92-018). 1992. Integrated Circuits Laboratory, Stanford
University.

52. de Kleer, J., Local methods for localizing faults in electronic circuits. (Memo No. 394).
1976. MIT Artificial Intelligence Laboratory.

53. de Kleer, J. and B.C. Williams, Diagnosing multiple faults. Artificial Intelligence,
1987. 32(1): p. 97–130.

54. Hamscher, W.C., Modeling digital circuits for trouble-shooting. Artificial
Intelligence, 1991. 51(1–3): p. 223–71.

172 References

55. Williams, B.C., Qualitative analysis of MOS circuits. Artificial Intelligence, 1984. 24:
p. 281–346.

56. First, M.B., et al., LOCALIZE: Computer-assisted localization of peripheral nervous
system lesions. Computers and Biomedical Research, 1982. 15(6): p. 525–543.

57. Uckun, S., B.M. Dawant, and D.P. Lindstrom, Model-based diagnosis in intensive
care monitoring: the YAQ approach. Artificial Intelligence in Medicine, 1993. 5(1): p.
31–48.

58. Ursino, M., G. Avanzolini, and P. Barbini, Qualitative simulation of dynamic
physiological models using the KEE environment. Artificial Intelligence in Medicine,
1992. 4(1): p. 53–73.

59. Weinberg, J.B., G. Biswas, and L.A. Weinberg, Adventures in qualitative modeling —
a qualitative heart model, in IEEE International Conference on Systems, Man and
Cybernetics. Held: Cambridge, MA, USA, 14–17 November 1989. 1989, USA: IEEE.
p. 1003–8.

60. Hunt, J.E. and et al, Applications of qualitative model-based reasoning. Control
Engineering Practice, 1993. 1(2): p. 253–66.

61. Fruchter, R. and et al, Qualitative Modeling and analysis of lateral load resistance in
frames. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing — AI EDAM, 1993. 7(4): p. 239–56.

62. Saarela, O., Model-based control of power plant diagnostics. International Journal of
Electrical Power & Energy Systems, 1993. 15(2): p. 101–8.

63. Feray-Beaumont, S.E., et al., Qualitative modelling of distillation columns , in
Advanced Control of Chemical Processes — ADCHEM. Held: Toulouse, France, 14–
16 October 1991. 1991, UK: Pergammon. p. 191–6.

64. Hangos, K.M., Z. Csaki, and S.B. Jorgensen, Qualitative model-based intelligent
control of a distillation column. Engineering Applications of Artificial Intelligence,
1992. 5(5): p. 431–40.

65. Pan, J.Y.-C., Qualitative reasoning with deep-level mechanism models for diagnoses of
mechanism failures , in CAIA-84 . Held: Denver, CO, 1984, .

66. Hamilton, T.P., HELIX: a helicopter diagnostic system based on qualitative physics.
International Journal for Artificial Intelligence in Engineering, 1988. 3(3): p. 141–
50.

67. Keller, R.M., et al., Compiling Special-Purpose Rules from General-Purpose Device
Models. (Technical Report No. KSL-89-49). 1989. Knowledge Systems Laboratory,
Stanford University.

References 173

68. Scarl, E., J.R. Jamieson, and C.I. Delaune, A fault detection and isolation method
applied to liquid oxygen loading for the space shuttle , in IJCAI-85 . Held: Los Angeles,
CA, 1985, San Mateo:Morgan Kaufman. p. 414–416.

69. Hofmann, M.O., T.L. Cost, and M. Whitley, Model-based diagnosis of the Space
Shuttle Main Engine. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing — AI EDAM, 1992. 6(3): p. 131–48.

70. Hofmann, M.O. and T.L. Cost, Model-based rocket engine diagnosis , in Fourth
International Conference on Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems. IEA/AIE-91 . Held: Kauai, HI, USA, 2–5 June 1991.
1991, USA: Univ. Tennessee Space Inst. p. 266–74.

71. Chen, S.-s., QUASI: A QUalitative Analysis of Surface and Interface program for
microelectronic materials processing , in Applications of Artificial Intelligence VIII .
Held: Orlando, FL, USA, April 17–19, 1990. 1990, USA: Proceedings of the SPIE—
The International Society for Optical Engineering 1293, pt. 2. p. 972–83.

72. Hamscher, W., Model-based reasoning in financial domains. Knowledge Engineering
Review, 1992. 7(4): p. 323–43.

73. Farley, A.M. and K.-P. Lin, Qualitative reasoning in microeconomics: an example , in
Decision Support Systems and Qualitative Reasoning. Proceedings of the IMACS
International Workshop . Held: Toulouse, France, 13–15 March 1991. 1991,
Netherlands: North-Holland. p. 303–6.

74. Karakoulas, G.J., Diagnostic reasoning about an economic system: a model-based
approach , in Decision Support Systems and Qualitative Reasoning. Proceedings of the
IMACS International Workshop. Held: Toulouse, France, 13–15 March 1991. 1991,
Netherlands: North-Holland. p. 293–6.

75. Daniels, H.A.M. and A.J. Feelders, Combining qualitative and quantitative methods
for model-based diagnosis of firms, in Decision Support Systems and Qualitative
Reasoning. Proceedings of the IMACS International Workshop. Held: Toulouse,
France, 13–15 March 1991. 1991, Netherlands: North-Holland. p. 255–60.

76. Schwartzler, G., An algebraic approach to knowledge-based modelling, in Artificial
Intelligence and Symbolic Mathematical Computing. International Conference AISMC-
1. Held: Karlsruhe, Germany, 3–6 Aug. 1992. 1993, Germany: Springer-Verlag. p.
85–95.

77. Crawford, J., A. Farquar, and B. Kuipers, QPC: A compiler from physical models into
qualitative differential equations , in AAAI-90 . 1990, San Mateo: Morgan Kaufman
Publishers. p. 365–372.

78. Xia, S., D.A. Linkens, and S. Bennett, Qualitative reasoning and applications to
dynamic systems: a bond graph approach , in Decision Support Systems and Qualitative
Reasoning. Proceedings of the IMACS International Workshop. Held: Toulouse,
France, 13–15 March 1991. 1991, Netherlands: North-Holland. p. 175–80.

174 References

79. Williams, B., Doing time: Putting qualitative reasoning on firmer ground , in AAAI-86 .
Held: Philadelphia, PA, 1986, San Mateo: Morgan Kaufman Publishers. .

80. Iwasaki, Y. and C.-M. Low, Model generation and simulation of device behavior with
continuous and discrete changes. (Technical Report No. KSL 91-69). 1991. Stanford
University, Knowledge Systems Laboratory.

81. Kuipers, B., Abstraction by time-scale in qualitative simulation , in AAAI-87 . Held:
Seattle, WA, 1987, San Mateo: Morgan Kaufman Publishers. p. 621–625.

82. Saxena, S. and A. Unruh, Diagnosis of Semiconductor Manufacturing Equipment and
Processes. IEEE Transactions on Semiconductor Manufacturing, 1994. 7(2): p. 220–
232.

83. Mina, I., A knowledge-based model for representation and reasoning in manufacturing,
in Proceedings of the Third International IMS ’87 Conference . Held: Long Beach, CA,
USA, 1987, USA: Intertec Commun. p. 270–87.

84. Mina, I., UMXD: a diagnosts expert system for manufacturing, in First Annual
ESD/SMI Expert Systems Conference and Exposition for Advanced Manufacturing
Technology . Held: Dearborn, MI, USA, 1987, USA: Eng. Soc. Detroit. p. 281–94.

85. Mina, I., PCMR: a language for process control modelling and reasoning , in Proceedings
of the 1987 American Control Conference. Held: Minneapolis, MN, USA, 10–12 June
1987. 1987, USA: American Autom. Control Council. p. 174–80.

86. Hart, P., Directions for AI in the Eighties, in SIGART Newsletter . 1982. p. 11–16.

87. Michie, D., High-Road and Low-Road Programs, in AI Magazine . 1981. p. 21–2.

88. Chandrasekaran, M.S., Deep vs compiled knowledge approaches to diagnostic problem
solving, in AAAI 82 . 1982, p. 349–354.

89. Keller, R.M., et al., Compiling Diagnosis Rules and Redesign Plans from a
Structure/Behavior Device Model: The Details. (Technical Report No. KSL-89-50).
1989. Knowledge Systems Laboratory, Stanford University.

90. Goel, A.K., et al., Knowledge Compilation: A symposium, in IEEE Expert . 1991. p. 71-
92.

91. Davis, R., Form and Content in Model Based Reasoning , in International Joint
Conference on Artificial Intelligence . Held: Detroit, MI, 1989, USA:Morgan
Kaufman. p. 11–27.

92. Bylander, T., A Simple Model of Knowledge Compilation, in IEEE Expert . 1991. p. 73–
74, 91–92.

References 175

93. Simmons, R.G., The roles of associational and causal reasoning in problem solving.
Artificial Intelligence, 1992. 53: p. 159–207.

94. Nassif, S.R., A.J. Strojwas, and S.W. Director, FABRICS II: a statistically-based IC
Fabrication process simulator. IEEE Transactions on Computer-Aided Design, 1984.
CAD-3 (1): p. 40-46.

95. Slaughter, S., R. Hartzell, and T.-C. Chang, A deep level reasoning tool for
semiconductor process simulation , in IEEE/SEMI International Semiconductor
Manufacturing Science Symposium—ISMSS ’89 . Held: Burlingame, CA, USA, May
22–24, 1989. 1989, USA: IEEE (Cat. No.89CH2699-7). p. 117.

96. Funakoshi, K. and K. Mizuno, A Rule-Based VLSI Process Flow Validation System
With Macroscopic Process Simulation. IEEE Transactions on Semiconductor
Manufacturing, 1990. 3(4): p. 239–246.

97. Ho, C.P., S.E. Hansen, and P.M. Fahey, SUPREM III—Program for Integrated
Circuit Process Modeling and Simulation. (Report No. SEL84-001). 1984. Stanford
Electronics Laboratories, Stanford University, Stanford, CA.

98. Mulvaney, B.J. and W.B. Richardson, PEPPER—a process simulator for VLSI. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
1989. 8(4): p. 336–49.

99. Pelka, J., Simulation of ion-enhanced dry-etch processes. Proceedings of the SPIE —
The International Society for Optical Engineering, 1991. 1392: p. 55–66.

100. Richardson, W.B. and B.J. Mulvaney, Modeling phosphorus diffusion in three
dimensions. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 1992. 11(4): p. 487–96.

101. Scheckler, E.W. and A.R. Neureuther, Models and algorithms for three-dimensional
topography simulation with SAMPLE-3D. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 1994. 13(2): p. 219–30.

102. Hegarty, C.J., Process-Flow Specification and Dynamic Run Modification for
Semiconductor Manufacturing. (Thesis No. UCB/ERL M91/40). 1991. Electronics
Research Laboratory, University of California, Berkeley.

103. Boning, D.S., et al., A general semiconductor press modeling framework. IEEE
Transactions on Semiconductor Manufacturing, 1992. 5(4): p. 266–80.

104. Boning, D.S. and G. Koppelman, Semiconductor Process Representation
Requirements. (Draft Internal Document No. tcad-911-G-4). 1991. TCAD
Framework Group, Semiconductor Process Representation Working Group,
CAD Framework Initiative, Inc.

105. Pelts, G.L. and D.G. Basile, SPEC SYSTEM: Modules User’s Guide. (Technical
Note No. 3). 1993. Integrated Circuits Laboratory, Stanford University.

176 References

106. Pelts, G.L. and D.G. Basile, SPEC SYSTEM: Overview — The Launcher. (Technical
Note No. 4). 1993. Integrated Circuits Laboratory, Stanford University.

107. Wendstrand, J.S., H. Iwai, and R.W. Dutton, A manufacturing-oriented environment
for synthesis of fabrication processes. , in ICCAD ’89 . Held: San Francisco, 1989, IEEE.
p. 376-379.

108. Boning, D. and J. Glicksman, Semiconductor Process Representation Procedural
Interface (PI). (Draft Specification, Version No. 0.7). 1993. CAD Framework
Initiative, Inc.

109. McGehee, J., The MMST Computer-Integrated Manufacturing System Framework.
IEEE Transactions on Semiconductor Manufacturing, 1994. 7(2): p. 107–16.

110. SEMATECH, Collaborative Manufacturing System Computer Integrated
Manufacturing Application Framework Specification 1.0. (technology transfer report
No. 9306197C-ENG). 1994. SEMATECH.

111. Addanki, S., R. Cremonini, and J.S. Penberthy, Graphs of Models. Artificial
Intelligence, 1991. 51: p. 145–77.

112. Falkenhainer, B. and K.D. Forbus, Compositional modeling: Finding the right model
for the job. Artificial Intelligence, 1991. 51: p. 95–143.

113. Nayak, P.P., Automated Modeling of Physical Systems. (Ph.D. Thesis — Report No.
STAN-CS-92-1443, also KSL-92-69). 1992. Department of Computer Science,
Stanford University.

114. Murdock, J.L., Model Matching and Individuation for Model-Based Diagnosis. 1994.
Ph.D. Thesis — in preparation. Department of Computer Science, Stanford
University.

115. Chang, N.H. and C.J. Spanos, Chronological equipment diagnosis using evidence
integration , in Applications of Artificial Intelligence VIII . Held: Orlando, FL, USA,
April 17–19, 1990. 1990, USA: Proceedings of the SPIE—The International Society
for Optical Engineering 1293, pt. 2. p. 944–55.

116. Shafer, G., A Mathematical Theory of Evidence . 1976. Princeton, N.J.: Princeton
University Press.

Appendix A: Modeling Objects

This appendix exhibits the definitions of the classes of temporal objects (and special

constants) employed in the semiconductor manufacturing ontology.

(defGDobject WAFER (temporal-object)
 ((structures (set . 2D-structure))
 (layers (set . layer))
 (region-types (set . region-type))))

;;; Abstract class of objects that keep track of
;;; lateral dimensions and topology
(defGDobject HORIZONTAL-DESCR (temporal-object)
 ((horizontal-regions (set . horizontal-region))))

;;; Class of objects that describe lateral topology of
;;; slices through wafer structures
(defGDobject 2D-STRUCTURE (horizontal-descr)
 ((horizontal-regions (set . wafer-region))
 (left-most wafer-region)))

;;; Class of objects that describe the lateral topology of
;;; masks for a 2D slice through a structure
(defGDobject MASK (horizontal-descr)
 ((horizontal-regions (set . mask-region))
 (left-most mask-region)))

(defGDobject REGION-OR-EDGE (temporal-object))

(defGDobject EDGE (region-or-edge)
 ((left region-or-edge)
 (left-pos finite-real)
 (right region-or-edge)
 (right-pos finite-real)
 (left-wafer-region wafer-region)
 (right-wafer-region wafer-region)
 (region-type region-type)
 (opacity (one-of (constant opaque)
 (constant transparent)))))

178 Appendix A:

;;; Class of objects that describe the lateral topology
;;; and dimensions for a single laterally homogeneous region
(defGDobject HORIZONTAL-REGION (region-or-edge)
 ((left region-or-edge)
 (left-pos finite-real)
 (right region-or-edge)
 (right-pos finite-real)))

;;; Class of objects that describe the lateral topology
;;; and dimensions for a single laterally homogeneous region
;;; of a 2D slice through a structure on a wafer
(defGDobject WAFER-REGION (horizontal-region)
 ((region-type region-type)
 (pieces (set . wafer-region))))

;;; Class of objects that describe the lateral topology
;;; and dimensions for a single laterally homogeneous region
;;; of a mask for a 2D slice through a structure
(defGDobject MASK-REGION (horizontal-region)
 ((left-wafer-region wafer-region)
 (right-wafer-region wafer-region)
 (opacity (one-of (constant opaque)
 (constant transparent)))))

;;; Class of objects that describe opaque 2D mask regions
(defGDobject OPAQUE-MASK-REGION (mask-region)
 ((opacity (constant opaque))))

;;; Class of objects that describe transparent 2D mask regions
(defGDobject TRANSPARENT-MASK-REGION (mask-region)
 ((opacity (constant transparent))))

;;; Class of objects that describe the vertical sequence of
;;; layers in a given region-type
(defGDobject REGION-TYPE (temporal-object)
 ((surface layer-region)
 (regions (set . wafer-region))))

;;; Class of objects that describe a given layer in a given region,
;;; encompassing also the "environment" at the wafer's surfaces
(defGDobject LAYER-OR-ENV (temporal-object))

;;; Class containing one instance: the environment at the wafer's
;;; surface (Same object is used at both front and back wafer surfaces.)
(defGDobject ENVIRONMENT (layer-or-env)
 ((gases (set . gas))))

;;; Class of objects representing layer-regions that have a common genesis
(defGDobject LAYER (temporal-object)
 ((layer-regions (set . layer-region))))

Modeling Objects 179

;;; Class of objects representing individual layers in individual region-types
(defGDobject LAYER-REGION (layer-or-env)
 ((region-type region-type)
 (layer layer)
 (top-pos finite-real)
 (above layer-or-env)
 (bottom-pos finite-real)
 (below layer-or-env)
 (material material-type)
 (dopant dopant)
 (concentration finite-non-negative-real)
 (thickness finite-non-negative-real)))

(defGDobject MATERIAL-TYPE (temporal-object))

(defGDobject METAL (material-type))

(defGDobject ALUMINUM (metal))

(defGDobject TUNGSTEN (metal))

(defGDobject SILICON (material-type))

(defGDobject POLYSILICON (silicon))

(defGDobject OXIDE (material-type))

(defGDobject NITRIDE (material-type))

(defGDobject PHOTORESIST (material-type))

(defGDobject EXPOSED-PHOTORESIST (photoresist))

(defGDobject POS-PHOTORESIST (photoresist))

(defGDobject NEG-PHOTORESIST (photoresist))

(defGDobject EXPOSED-POS-PHOTORESIST (exposed-photoresist))

(defGDobject EXPOSED-NEG-PHOTORESIST (exposed-photoresist))

(defGDobject DOPANT (temporal-object)
 ((dopant-type (one-of (constant N) (constant P)))))

(defGDobject N-DOPANT (dopant)
 ((dopant-type (constant N))))

180 Appendix A:

(defGDobject P-DOPANT (dopant)
 ((dopant-type (constant P))))

(defGDobject ETCHANT-TYPE (temporal-object))

(RUP:INIT-FORM (make-objectq START 'time))
(RUP:INIT-FORM (assert-expr '(< START *NOW*)))
(RUP:INIT-FORM (make-objectq THE-ENVIRONMENT 'environment
 :existence :always))
(RUP:INIT-FORM
 (make-objectq PHOTORESIST-THICKNESS 'finite-positive-real))
(RUP:INIT-FORM (make-objectq POSITIVE-PHOTORESIST
 'pos-photoresist :existence :always))
(RUP:INIT-FORM (make-objectq RESIST-1813 'pos-photoresist
 :existence :always))
(RUP:INIT-FORM (make-objectq NEGATIVE-PHOTORESIST
 'neg-photoresist :existence :always))
(RUP:INIT-FORM (make-objectq POS-PHOTORESIST-EXPOSED
 'exposed-pos-photoresist))
(RUP:INIT-FORM (make-objectq NEG-PHOTORESIST-EXPOSED
 'exposed-neg-photoresist))
(RUP:INIT-FORM (make-objectq PHOTORESIST-EXPOSED
 'exposed-photoresist))
(RUP:INIT-FORM (make-objectq MASK-EDGE 'edge :existence
 :always))
(RUP:INIT-FORM (make-objectq REGION-EDGE 'edge :existence
 :always))
(RUP:INIT-FORM (make-objectq *NO-DOPANT* 'dopant :existence
 :always))
(RUP:INIT-FORM (make-objectq |Oxide| 'oxide :existence
 :always))
(RUP:INIT-FORM (make-objectq |Silicon| 'silicon :existence
 :always))
(RUP:INIT-FORM (make-objectq |Polysilicon| 'polysilicon
 :existence :always))
(RUP:INIT-FORM (make-objectq |Nitride| 'nitride :existence
 :always))
(RUP:INIT-FORM (make-objectq |Aluminum| 'aluminum :existence
 :always))
(RUP:INIT-FORM (make-objectq |Tungsten| 'tungsten :existence
 :always))
(RUP:INIT-FORM (make-objectq ARSENIC 'n-dopant :existence
 :always))
(RUP:INIT-FORM (make-objectq PHOSPHORUS 'n-dopant :existence
 :always))
(RUP:INIT-FORM (make-objectq ANTIMONY 'n-dopant :existence
 :always))
(RUP:INIT-FORM (make-objectq BORON 'p-dopant :existence
 :always))
(RUP:INIT-FORM (make-objectq GALLIUM 'p-dopant :existence
 :always))
(RUP:INIT-FORM
 (history::tforcefully ^(@ (dopant-type ARSENIC) *NOW*)))
(RUP:INIT-FORM
 (history::tforcefully ^(@ (dopant-type PHOSPHORUS) *NOW*)))
(RUP:INIT-FORM
 (history::tforcefully ^(@ (dopant-type ANTIMONY) *NOW*)))

Modeling Objects 181

(RUP:INIT-FORM
 (history::tforcefully ^(@ (dopant-type BORON) *NOW*)))
(RUP:INIT-FORM
 (history::tforcefully ^(@ (dopant-type GALLIUM) *NOW*)))
(RUP:INIT-FORM (make-objectq |6:1 Buffered HF| 'etchant-type
 :existence :always))
(RUP:INIT-FORM (make-objectq REFLUXED-H3PO4 'etchant-type
 :existence :always))
(RUP:INIT-FORM (make-objectq |50:1 HF| 'etchant-type
 :existence :always))
(RUP:INIT-FORM
 (assert-expr '(N= Etch-Angle-Threshold 85.0) 'DOMAIN-MODEL))
(RUP:INIT-FORM
 (assert-expr '(> Poly-Etch-Etch-Rate 0.0) 'DOMAIN-MODEL))

Appendix B: Modeling Actions

This appendix exhibits the discrete action models of the semiconductor manufacturing

operations.

;;; Abstract parent of all processes that add a new “blanket” layer at the wafer surface.
(defprocess DAS-ADD-TOP-LAYER
 :NON-EXECUTABLE
 parameters (($mat material-type))
 effects
 ((for-all-existing $ld \: Region-Type (start-of (process interval))
 (:=>
 (pred1 (old-top $ld (process interval))
 (start-of (process interval)))
 (CREATED ($NL layer-region (start-of (process interval)))
 (member $NL (new-layer $mat (process interval)))
 (change = (surface $ld) $nl)
 (change = (region-type $nl) $ld)
 (change = (top-pos $nl)
 (+ (mat-thick $ld (process interval))
 (old-top-pos $ld (process interval))))
 (change = (above $nl) THE-ENVIRONMENT)
 (change = (bottom-pos $nl) (old-top-pos $ld (process interval)))
 (change = (below $nl) (old-top $ld (process interval)))
 (change = (material $nl) $mat)
 (change = (thickness $nl) (mat-thick $ld (process interval)))
 (change = (above (old-top $ld (process interval))) $nl))))
 (CREATED ($New-Layer layer (start-of (process interval)))
 (for-all-true $l e (new-layer $mat (process interval))
 (:AND (member $l (@ (layer-regions $new-layer)
 (end-of (process interval))))
 (change = (layer $l) $new-layer)))))
 constraints
 ((DEFN OLD-TOP-POS (ld i) (@ (top-pos (surface ld)) (start-of i)))
 (DEFN OLD-TOP (ld i) (@ (surface ld) (start-of i)))))

(defprocess DAS-SPIN-ON-RESIST
 AKO DAS-ADD-TOP-LAYER
 parameters (($mat photoresist))
 constraints
 ((DEFN PRED1 ($lr $t)
 (adherent $mat (@ (material $lr) $t)))
 (DEFN MAT-THICK ($ld $i)
 (- PHOTORESIST-TOP-POS (OLD-TOP-POS $ld $I)))))

Modeling Actions 183

(defprocess DAS-SPUTTERING
 AKO DAS-add-top-layer
 parameters (($mat metal) ($duration finite-positive-real))
 constraints
 ((n= (duration (process interval)) $duration)
 (DEFN MAT-THICK ($ld $i) (SPUTTERING-THICKNESS $duration))
 (> (SPUTTERING-THICKNESS $duration) 0.0)
 (DEFN PRED1 ($lr $t)
 (adherent $mat (@ (material $lr) $t)))))
(init-form
 (assert-expr '(FUNCTIONAL SPUTTERING-THICKNESS MI)))

(defprocess DAS-CHEMICAL-VAPOR-DEPOSITION
 :NON-EXECUTABLE
 AKO DAS-add-top-layer
 parameters
 (($mat material-type) ($duration finite-positive-real)
 ($temperature finite-positive-real)
 ($vapor-pressure finite-positive-real))
 constraints
 ((n= (duration (process interval)) $duration)
 (DEFN MAT-THICK ($ld $i)
 (CVD-THICKNESS $duration $temperature $vapor-pressure))
 (> (CVD-THICKNESS $duration $temperature $vapor-pressure)
 0.0)
 (DEFN PRED1 ($lr $t)
 (adherent $mat (@ (material $lr) $t)))))
(init-form
 (assert-expr '(FUNCTIONAL CVD-THICKNESS MI MI MI)))

(defprocess DAS-UNDOPED-CHEMICAL-VAPOR-DEPOSITION
 AKO DAS-CHEMICAL-VAPOR-DEPOSITION
 parameters ()
 effects
 ((for-all-existing $ld \: Region-type
 (end-of (process interval))
 (change = (dopant (@ (surface $ld)
 (end-of (process interval))))
 no-dopant))))

(defprocess DAS-DOPED-CHEMICAL-VAPOR-DEPOSITION
 AKO DAS-CHEMICAL-VAPOR-DEPOSITION
 parameters
 (($dopant dopant) ($concentration finite-positive-real))
 effects
 ((for-all-existing $ld \: Region-type
 (end-of (process interval))
 (:AND
 (change = (dopant (@ (surface $ld)
 (end-of (process interval))))
 $dopant)
 (change =
 (concentration (@ (surface $ld)
 (end-of (process interval))))
 $concentration)))))

184 Appendix B:

(defprocess DAS-EPITAXIAL-GROWTH
 AKO DAS-add-top-layer
 parameters
 (($mat silicon)
 ($duration finite-positive-real)
 ($temperature finite-positive-real)
 ($dopant dopant) ($concentration finite-positive-real))
 effects
 ((for-all-existing $ld \: Region-type
 (end-of (process interval))
 (:AND
 (change = (dopant (@ (surface $ld)
 (end-of (process interval))))
 $dopant)
 (change =
 (concentration (@ (surface $ld)
 (end-of (process interval))))
 $concentration))))
 constraints
 ((n= (duration (process interval)) $duration)
 (DEFN MAT-THICK ($ld $i)
 (EPI-THICKNESS $duration $temperature))
 (> (EPI-THICKNESS $duration $temperature) 0.0)
 (DEFN PRED1 ($lr $t)
 (is-type silicon (@ (material $lr) $t)))))
(init-form (assert-expr '(FUNCTIONAL EPI-THICKNESS MI MI)))

;;; Abstract parent of all process steps that can modify/destroy existing layers
;;; by selectively destroying layer-regions
(defprocess DAS-MODIFY-LAYERS
 effects
 ((for-all-existing $lr \: layer-region (SPI)
 (:IFF (:OR (destroyed $lr (EPI))
 (converted $lr (EPI)))
 (member (@ (layer $lr) (SPI))
 (changed-layers (PI)))))
 (for-all-true $l e (changed-layers (PI))
 (:AND
 (for-all-true $lr e (@ (layer-regions $l) (SPI))
 (:IFF (:NOT (destroyed $lr (EPI)))
 (member $lr (new-layer-regions $l (PI)))))
 (:IFF
 (for-all $lr e (layer-closure $l (SPI))
 (destroyed $lr (EPI)))
 (destroyed $l (EPI)))
 (:=> (:NOT (destroyed $l (EPI)))
 (change = (layer-regions $l)
 (new-layer-regions $l (PI)))))))
 constraints
 ((DEFN SPI () (start-of (process interval)))
 (DEFN EPI () (end-of (process interval)))
 (DEFN PI () (process interval))))

Modeling Actions 185

(defprocess DAS-PHOTO-RESIST-CLEAN
 effects
 ((for-all-existing $rt \: region-type (SPI)
 (:=>
 (is-type photoresist
 (@ (material (surface $rt)) (SPI)))
 (:AND
 (destroyed (@ (surface $rt) (SPI)) (EPI))
 (destroyed (@ (layer (surface $rt)) (SPI)) (EPI))
 (change = (surface $rt)
 (old-second-layer-region $rt (PI)))
 (change = (above (old-second-layer-region $rt (PI)))
 THE-ENVIRONMENT)))))
 constraints
 ((DEFN SPI () (start-of (process interval)))
 (DEFN EPI () (end-of (process interval)))
 (DEFN PI () (process interval))
 (DEFN OLD-SECOND-LAYER-REGION (rt i)
 (@ (below (surface rt)) (start-of i)))))

(defprocess DAS-PHOTO-RESIST-DEVELOP
 AKO DAS-MODIFY-LAYERS
 effects
 ((for-all-existing $ld \: region-type (SPI)
 (:AND
 (:IFF
 (is-soft-photoresist?
 (@ (material (surface $ld)) (SPI)))
 (destroyed (@ (surface $ld) (SPI)) (EPI)))
 (:IF
 (destroyed (@ (surface $ld) (SPI)) (EPI))
 (:AND
 (change = (surface $ld)
 (old-second-layer-region $ld (PI)))
 (change = (above (old-second-layer-region $ld (PI)))
 THE-ENVIRONMENT))))))
 constraints
 ((DEFN SPI () (start-of (process interval)))
 (DEFN EPI () (end-of (process interval)))
 (DEFN PI () (process interval))
 (DEFN OLD-SECOND-LAYER-REGION (ld i)
 (@ (below (surface ld)) (start-of i)))))

186 Appendix B:

(defprocess DAS-ETCH
 AKO DAS-MODIFY-LAYERS
 parameters (($etchant etchant-type) ($duration finite-positive-real))
 effects
 ((for-all-existing $l \: layer-region (SPI)
 (:AND
 (:IFF (>= $duration (etch-destroy-time $l (PI)))
 (consumed-by-etching $l (EPI)))
 (:IFF (consumed-by-etching $l (EPI))
 (destroyed $l (EPI)))
 (:IF
 (:AND (>= $duration
 (etch-destroy-time (@ (above $l) (SPI))
 (PI)))
 (:NOT (consumed-by-etching $l (EPI))))
 (:AND
 (:IF
 (:NOT (V= $l (@ (surface (region-type $l)) (SPI))))
 (:AND
 (change = (surface (@ (region-type $l) (SPI))) $l)
 (change = (above $l) THE-ENVIRONMENT)))
 (:IF
 (:AND (> $duration
 (etch-destroy-time (@ (above $l) (SPI))
 (PI)))
 (> (etch-rate $l (PI)) 0.0))
 (:AND (change - (top-pos $l) (amount-etched $l))
 (change - (thickness $l)
 (amount-etched $l)))))))))
 constraints
 ((DEFN SPI () (start-of (process interval)))
 (DEFN EPI () (end-of (process interval)))
 (DEFN PI () (process interval))
 (DEFN AMOUNT-ETCHED ($l)
 (* (- $duration
 (etch-destroy-time
 (@ (above $l)(start-of (process interval)))
 (process interval)))
 (etch-rate $l (process interval))))))

Modeling Actions 187

(defprocess DAS-END-DETECT-ETCH
 AKO DAS-Etch
 parameters
 (($overetch finite-non-negative-real)
 ($detected-layer layer)
 ($etch-angle finite-positive-real))
 effects
 ((for-all-true $lr1 e (@ (layer-regions $detected-layer)
 (start-of (process interval)))
 (:AND
 ;; Detected layer is not etched through
 (< $duration
 (etch-destroy-time $lr1 (process interval)))
 ;; Layer regions "closest" to surface (in terms of etch time) are detected.
 (:IFF
 (for-all $lr2 e (layer-closure $detected-layer
 (start-of (process interval)))
 (<= (etch-destroy-time
 (@ (above $lr1) (start-of (process interval)))
 (process interval))
 (etch-destroy-time
 (@ (above $lr2) (start-of (process interval)))
 (process interval))))
 (member $lr1
 (detected-layer-regions (process interval))))))
 (N= (vertical-etch-duration (process interval))
 (etch-destroy-time
 (@ (above (any-member (detected-layer-regions
 (process interval))))
 (start-of (process interval)))
 (process interval)))
 (N= $duration
 (+ (vertical-etch-duration (process interval))
 (* $overetch
 (vertical-etch-duration
 (process interval)))))))

;;; Abstract process for process steps that can create as well as destroy layer-regions.
;;; Newly created layers are associated with existing layers that help define and
;;; differentiate them. The set (new-layers (process interval)) contains the existing
;;; layers that each define a new layer. The sets (new-layer old-layer (process interval))
;;; contain the newly created layer-regions that are to belong to the new layers.
(defprocess DAS-CREATE/MODIFY-LAYERS
 AKO DAS-Modify-Layers
 effects
 ((for-all-true $old-layer e (new-layers (process interval))
 (CREATED ($new-layer layer (start-of (process interval)))
 (for-all-true $lr e (new-layer $old-layer
 (process interval))
 (:AND
 (member $lr (@ (layer-regions $new-layer)
 (end-of (process interval))))
 (change = (layer $lr) $new-layer)))))))

188 Appendix B:

(defprocess DAS-MASK-EXPOSE
 parameters (($mask mask) ($structure 2d-structure))
 effects
 ((change = (horizontal-regions $structure)
 (new-horizontal-regions $structure (PI)))
 (for-all-true $mask-region e (@ (horizontal-regions $mask) (spi))
 (for-all-true $reg e (@ (horizontal-regions $structure) (spi))
 ;; Overlap
 (:IF
 (:AND (< (@ (left-pos $mask-region) (spi))
 (@ (right-pos $reg) (spi)))
 (> (@ (right-pos $mask-region) (spi))
 (@ (left-pos $reg) (spi))))
 (:AND
 ;; Complete Overlap
 (:IF
 (:AND
 (<= (@ (left-pos $mask-region) (spi))
 (@ (left-pos $reg) (spi)))
 (>= (@ (right-pos $mask-region) (spi))
 (@ (right-pos $reg) (spi))))
 (:AND
 (member $reg (new-horizontal-regions $structure (PI)))
 (:IF
 (is-type photoresist
 (@ (material (surface (region-type $reg))) (spi)))
 (:AND
 (:IF
 (v= (@ (opacity $mask-region) (spi))
 (constant transparent))
 (:AND
 (member (@ (region-type $reg) (spi))
 (ALTERED-REGION-TYPES (PI)))
 (member $reg
 (ALTERED-REGIONS (@ (region-type $reg) (spi)) (PI)))))
 (:IF
 (v= (@ (opacity $mask-region) (spi))
 (constant opaque))
 (:AND (member (@ (region-type $reg) (spi))
 (UNALTERED-REGION-TYPES (process interval)))
 (member $reg
 (UNALTERED-REGIONS
 (@ (region-type $reg) (spi)) (PI)))))))
 (:IF
 (n= (@ (left-pos $mask-region) (spi))
 (@ (left-pos $reg) (spi)))
 (:AND
 (member $reg
 (CHANGING-NEIGHBOUR-WAFER-REGIONS (spi)))
 (change = (left-wafer-region $mask-region) $reg)))
 (:IF
 (n= (@ (right-pos $mask-region) (spi))
 (@ (right-pos $reg) (spi)))
 (:AND
 (member $reg (CHANGING-NEIGHBOUR-WAFER-REGIONS (spi)))
 (change = (right-wafer-region $mask-region) $reg)))
 (:IF
 (:NOT (v= (@ (left $reg) (spi)) REGION-EDGE))

Modeling Actions 189

 (:IF
 (:AND (< (@ (left-pos $mask-region) (spi))
 (@ (left-pos $reg) (spi)))
 (>= (@ (left-pos $mask-region) (spi))
 (@ (left-pos (left $reg)) (spi))))
 (member $reg (CHANGING-NEIGHBOUR-WAFER-REGIONS (spi)))))
 (:IF
 (:NOT (v= (@ (right $reg) (spi)) REGION-EDGE))
 (:IF
 (:AND (> (@ (right-pos $mask-region) (spi))
 (@ (right-pos $reg) (spi)))
 (<= (@ (right-pos $mask-region) (spi))
 (@ (right-pos (right $reg)) (spi))))
 (member $reg (CHANGING-NEIGHBOUR-WAFER-REGIONS (spi)))))))
 ;; Partial Overlap
 (:IF
 (:OR (> (@ (left-pos $mask-region) (spi))
 (@ (left-pos $reg) (spi)))
 (< (@ (right-pos $mask-region) (spi))
 (@ (right-pos $reg) (spi))))
 (CREATED ($new-reg wafer-region (spi))
 (change = (pieces $reg) (NEW-PIECES $reg (spi)))
 (member $new-reg (NEW-PIECES $reg (spi)))
 (member $new-reg (new-horizontal-regions $structure (PI)))
 (member $new-reg (CHANGING-NEIGHBOUR-WAFER-REGIONS (spi)))
 (change = (pieces $new-reg) NULL-SET)
 (:IF
 (:AND
 (is-type photoresist
 (@ (material (surface (region-type $reg))) (spi)))
 (v= (@ (opacity $mask-region) (spi))
 (constant transparent)))
 (:AND
 (member (@ (region-type $reg) (spi))
 (ALTERED-REGION-TYPES (process interval)))
 (member $new-reg
 (ALTERED-REGIONS (@ (region-type $reg) (spi)) (PI)))))
 (:IF
 (:NOT
 (:AND (is-type photoresist
 (@ (material (surface (region-type $reg))) (spi)))
 (v= (@ (opacity $mask-region) (spi))
 (constant transparent))))
 (:AND (member (@ (region-type $reg) (spi))
 (UNALTERED-REGION-TYPES (process interval)))
 (member $new-reg
 (UNALTERED-REGIONS (@ (region-type $reg) (spi)) (PI)))
 (change = (region-type $new-reg)
 (@ (region-type $reg) (spi)))))
 ;; Set Up Right Pointers And Right-Pos
 (:IFF
 (:NOT (V= (@ (right $reg) (spi)) REGION-EDGE))
 (:IF
 (> (@ (right-pos $mask-region) (spi))
 (@ (right-pos $reg) (spi)))
 (:AND
 (change = (right-pos $new-reg) (@ (right-pos $reg) (spi)))
 (:IF (> (@ (right-pos $mask-region) (spi))

190 Appendix B:

 (@ (right-pos (right $reg)) (spi)))
 (change = (right $new-reg) (@ (right $reg) (spi)))))))
 (:IF
 (<= (@ (right-pos $mask-region) (spi))
 (@ (right-pos $reg) (spi)))
 (:AND
 (change = (right-pos $new-reg)
 (@ (right-pos $mask-region) (spi)))
 (change = (right-wafer-region $mask-region) $new-reg)))
 ;; Set Up Left Pointers And Left-Pos
 (:IFF
 (:NOT (V= (@ (left $reg) (spi)) REGION-EDGE))
 (:IF
 (< (@ (left-pos $mask-region) (spi))
 (@ (left-pos $reg) (spi)))
 (:AND
 (change = (left-pos $new-reg) (@ (left-pos $reg) (spi)))
 (:IF (< (@ (left-pos $mask-region) (spi))
 (@ (left-pos (left $reg)) (spi)))
 (change = (left $new-reg) (@ (left $reg) (spi)))))))
 (:IF
 (>= (@ (left-pos $mask-region) (spi))
 (@ (left-pos $reg) (spi)))
 (:AND
 (change = (left-pos $new-reg)
 (@ (left-pos $mask-region) (spi)))
 (change = (left-wafer-region $mask-region) $new-reg)))
))))))

 (for-all-true $reg e (CHANGING-NEIGHBOUR-WAFER-REGIONS (spi))
 (for-all-true $mask-region e (@ (horizontal-regions $mask) (spi))
 (:AND
 (:IF
 (v= $reg (@ (left-wafer-region $mask-region) (epi)))
 (:AND
 (:IFF (:NOT (v= (@ (left $mask-region) (spi)) MASK-EDGE))
 (change = (left $reg)
 (@ (right-wafer-region (left $mask-region)) (epi))))
 (:IF (v= (@ (left $mask-region) (epi)) MASK-EDGE)
 (change = (left $reg) REGION-EDGE))))
 (:IF
 (v= $reg (@ (right-wafer-region $mask-region) (epi)))
 (:AND
 (:IFF (:NOT (v= (@ (right $mask-region) (spi)) MASK-EDGE))
 (change = (right $reg)
 (@ (left-wafer-region (right $mask-region)) (epi))))
 (:IF (v= (@ (right $mask-region) (epi)) MASK-EDGE)
 (change = (right $reg) REGION-EDGE))))
 (:IF
 (n= (@ (right-pos (left-wafer-region $mask-region)) (epi))
 (@ (left-pos $reg) (epi)))
 (change = (left $reg)
 (@ (left-wafer-region $mask-region) (epi))))
 (:IF
 (n= (@ (left-pos (right-wafer-region $mask-region)) (epi))
 (@ (right-pos $reg) (epi)))
 (change = (right $reg)
 (@ (right-wafer-region $mask-region) (epi)))))))

Modeling Actions 191

 (for-all-true $rt e (ALTERED-REGION-TYPES (PI))
 (:IF
 (is-type photoresist (@ (material (surface $rt)) (spi)))
 (:AND
 (:IF (member $rt (UNALTERED-REGION-TYPES (PI)))
 (CREATED ($new-rt region-type (spi))
 (change = (surface $new-rt)
 (EXPOSED-LAYER-REGION (@ (surface $rt) (epi)) (PI)))
 (v= (EXPOSED-REGION-TYPE $rt (process interval)) $new-rt)
 (change = (regions $new-rt) (ALTERED-REGIONS $rt (PI)))
 (for-all-true $reg e (ALTERED-REGIONS $rt (PI))
 (change = (region-type $reg) $new-rt))
 (change = (regions $rt) (UNALTERED-REGIONS $rt (PI)))))
 (:IF (:NOT (member $rt (UNALTERED-REGION-TYPES-CLOSURE (PI))))
 (change = (material (surface $rt))
 (EXPOSED-MATERIAL (@ (material (surface $rt)) (spi))))))))
 (for-all-existing $l \: layer-region (spi)
 (:IF
 (:AND
 (is-type photoresist
 (@ (material (surface (region-type $l))) (spi)))
 (member (@ (region-type $l) (spi))
 (ALTERED-REGION-TYPES (PI)))
 (member (@ (region-type $l) (spi))
 (UNALTERED-REGION-TYPES (PI))))
 (CREATED ($new-l layer-region (spi))
 (change = (layer-regions (layer $l))
 (new-layer-regions (@ (layer $l) (epi)) (PI)))
 (member $new-l
 (new-layer-regions (@ (layer $l) (epi)) (PI)))
 (change = (layer $new-l) (@ (layer $l) (epi)))
 (change = (region-type $new-l)
 (EXPOSED-REGION-TYPE (@ (region-type $l) (spi)) (pi)))
 (change = (top-pos $new-l) (@ (top-pos $l) (spi)))
 (:IF (v= (@ (above $l) (spi)) THE-ENVIRONMENT)
 (change = (above $new-l) (@ (above $l) (spi))))
 (:IF (:NOT (v= THE-ENVIRONMENT (@ (above $l) (spi))))
 (change = (above $new-l)
 (EXPOSED-LAYER-REGION (@ (above $l) (spi)) (pi))))
 (change = (bottom-pos $new-l) (@ (bottom-pos $l) (spi)))
 (:IF (:NOT (v= (@ (below $l) (spi)) THE-ENVIRONMENT))
 (change = (below $new-l)
 (EXPOSED-LAYER-REGION (@ (below $l) (spi)) (pi))))
 (:IF (v= (@ (below $l) (spi)) THE-ENVIRONMENT)
 (change = (below $new-l) THE-ENVIRONMENT))
 (change = (material $new-l)
 (EXPOSED-MATERIAL (@ (material $l) (spi))))
 (change = (dopant $new-l) (@ (dopant $l) (spi)))
 (change = (concentration $new-l) (@ (concentration $l) (spi)))
 (change = (thickness $new-l) (@ (thickness $l) (spi)))
 (v= (EXPOSED-LAYER-REGION $l (process interval)) $new-l))))
 (for-all-existing $l |:| layer (spi)
 (for-all-true $lr e (@ (layer-regions $l) (spi))
 (member $lr (@ (layer-regions $l) (epi))))))
 constraints ((DEFN PI () (process interval))
 (DEFN SPI () (start-of (process interval)))
 (DEFN EPI () (end-of (process interval)))))

192 Appendix B:

(defprocess DAS-PRE-DEPOSITION
 AKO DAS-Create/Modify-Layers
 parameters
 (($dopant dopant) ($duration finite-positive-real)
 ($temperature finite-positive-real)
 ($vapor-pressure finite-positive-real))
 effects
 ((for-all-existing $rt \: region-type (SPI)
 (:=>
 (pred1 (@ (surface $rt) (SPI))
 (SPI))
 (CREATED ($NL layer-region (SPI))
 (member $NL (new-layer (@ (layer (surface $RT)) (SPI)) (PI)))
 (member (@ (layer (surface $RT)) (SPI)) (new-layers (PI)))
 (change = (surface $rt) $nl)
 (change = (region-type $nl) $rt)
 (change = (top-pos $nl) (old-top-pos $rt (PI)))
 (change = (above $nl) THE-ENVIRONMENT)
 (change - (top-pos (old-top $rt (PI))) (mat-thick $rt (PI)))
 (change - (thickness (old-top $rt (PI))) (mat-thick $rt (PI)))
 (change = (bottom-pos $nl) (- (old-top-pos $rt (PI))
 (mat-thick $rt (PI))))
 (change = (below $nl) (old-top $rt (PI)))
 (change = (dopant $nl) $dopant)
 (change = (concentration $nl)
 (PRE-DEP-CONC $vapor-pressure
 (old-material $rt (PI))
 $dopant))
 (change = (material $nl) (old-material $rt (PI)))
 (change = (thickness $nl) (mat-thick $rt (PI)))
 (change = (above (old-top $rt (PI))) $nl)))))
 constraints
 ((DEFN PI () (process interval))
 (DEFN SPI () (start-of (process interval)))
 (DEFN OLD-TOP (rt i) (@ (surface rt) (start-of i)))
 (DEFN OLD-TOP-POS (rt i) (@ (top-pos (surface rt)) (start-of i)))
 (DEFN OLD-MATERIAL (rt i) (@ (material (surface rt)) (start-of i)))
 (DEFN MAT-THICK (rt i)
 (PRE-DEP-THICKNESS (@ (material (surface rt)) (start-of i))
 $dopant $duration $temperature))
 (for-all-existing $rt \: region-type (start-of (process interval))
 (:=>
 (Accepts-Dopant?
 (@ (material (surface $rt)) (start-of (process interval)))
 $dopant)
 (> (PRE-DEP-THICKNESS
 (@ (material (surface $rt)) (start-of (process interval)))
 $dopant $duration $temperature)
 0.0)))
 (DEFN PRED1 ($lr $t)
 (Accepts-Dopant? (@ (material $lr) $t) $dopant))))
(init-form
 (assert-expr '(FUNCTIONAL PRE-DEP-THICKNESS NA NA MI MI)))

Modeling Actions 193

(defprocess DAS-ION-IMPLANTATION
 AKO DAS-Create/Modify-Layers
 parameters
 (($dopant dopant) ($duration finite-positive-real)
 ($implant-energy finite-positive-real)
 ($dose finite-positive-real))
 effects
 ((for-all-existing $l \: layer-region (SPI)
 ;; Any overlap of implant span with this layer-region?
 (:IF
 (:AND (> (it) (lb)) (< (ib) (lt)))
 (:AND

 ;; Complete Overlap (make gross simplification that photo resist and
 ;; polysilicon always are totally implanted, if implanted at all)
 (:IF (:OR (is-type photoresist (@ (material $l) (spi)))
 (is-type polysilicon (@ (material $l) (spi)))
 (:AND (<= (ib) (lb)) (>= (it) (lt))))
 (:AND (dopant-concentration-change $l $l)
 (member $l (new-layer (@ (layer $l) (spi)) (PI)))
 (member (@ (layer $l) (spi)) (new-layers (PI)))
 (converted $l (epi))))

 ;; Partial Overlap From Top
 (:IF
 (:AND (> (ib) (lb)) (>= (it) (lt)))
 (CREATED ($nl layer-region (spi))
 (member $nl (new-layer (@ (layer $l) (spi)) (PI)))
 (member (@ (layer $l) (spi)) (new-layers (PI)))
 (dopant-concentration-change $nl $l)
 (change = (thickness $nl) (- (lt) (ib)))
 (change - (thickness $l) (- (lt) (ib)))
 (change = (top-pos $nl) (@ (top-pos $l) (spi)))
 (change = (top-pos $l) (ib))
 (change = (bottom-pos $nl) (ib))
 (change = (material $nl) (@ (material $l) (spi)))
 (change = (region-type $nl) (@ (region-type $l) (spi)))

 ;; Partially stitch together layer-regions
 (:IF (v= (@ (above $l) (spi)) THE-ENVIRONMENT)
 (:AND (change = (above $nl) THE-ENVIRONMENT)
 (change = (surface (@ (region-type $l) (spi))) $nl)))
 (:IF (:AND (:NOT (v= (@ (above $l) (spi)) THE-ENVIRONMENT))
 (n= (it) (lt)))
 (:AND (change = (above $nl) (@ (above $l) (spi)))
 (change = (below (above $l)) $nl)))
 (:IF (> (it) (lt))
 (member $l (overlapped-from-top-layer-regions (PI))))
 (change = (above $l) $nl)
 (change = (below $nl) $l)))

 ;; Partial Overlap From Below
 (:IF
 (:AND (< (it) (lt)) (<= (ib) (lb)))
 (CREATED ($nl layer-region (spi))

194 Appendix B:

 (member $nl (new-layer (@ (layer $l) (spi)) (PI)))
 (member (@ (layer $l) (spi)) (new-layers (PI)))
 (dopant-concentration-change $nl $l)
 (change = (thickness $nl) (- (it) (lb)))
 (change - (thickness $l) (- (it) (lb)))
 (change = (bottom-pos $nl) (@ (bottom-pos $l) (spi)))
 (change = (bottom-pos $l) (it))
 (change = (top-pos $nl) (it))

 ;; Partially stitch together layer-regions
 (:IF (v= (@ (below $l) (spi)) THE-ENVIRONMENT)
 (change = (below $nl) THE-ENVIRONMENT))
 (:IF (:AND
 (:NOT (v= (@ (below $l) (spi)) THE-ENVIRONMENT))
 (n= (ib) (lb)))
 (:AND (change = (below $nl) (@ (below $l) (spi)))
 (change = (above (@ (below $l) (spi))) $nl)))
 (:IF (< (ib) (lb))
 (member $l (overlapped-from-bottom-layer-regions (PI))))
 (change = (below $l) $nl)
 (change = (above $nl) $l)
 (change = (material $nl) (@ (material $l) (spi)))
 (change = (region-type $nl) (@ (region-type $l) (spi)))))

 ;; Complete Containment Within A Layer (Most Likely Case?)
 (:IF
 (:AND (> (ib) (lb)) (< (it) (lt)))
 ; ; "IMP" is the new implanted layer-region,
 ; ; "SPLIT" is split area below "IMP"
 (CREATED ($split layer-region (spi))
 (change = (layer $split) (@ (layer $l) (spi)))
 (change = (dopant $split) (@ (dopant $l) (spi)))
 (change = (concentration $split)
 (@ (concentration $l) (spi)))
 (change = (thickness $split) (- (ib) (lb)))
 (change = (top-pos $split) (ib))
 (change = (bottom-pos $split) (lb))
 (change = (below $split) (@ (below $l) (spi)))
 (change = (material $split) (@ (material $l) (spi)))
 (change = (region-type $split)
 (@ (region-type $l) (spi)))
 (:IF (:NOT (v= (@ (below $l) (spi)) THE-ENVIRONMENT))
 (change = (above (@ (below $l) (spi))) $split))
 (CREATED ($imp layer-region (spi))
 (member $imp (new-layer (@ (layer $l) (spi)) (PI)))
 (member (@ (layer $l) (spi)) (new-layers (PI)))
 (dopant-concentration-change $imp $l)
 (change = (thickness $imp) (- (it) (ib)))
 (change = (thickness $l) (- (lt) (it)))
 (change = (bottom-pos $imp) (ib))
 (change = (below $imp) $split)
 (change = (above $split) $imp)
 (change = (bottom-pos $l) (it))
 (change = (below $l) $imp)
 (change = (top-pos $imp) (it))
 (change = (above $imp) $l)
 (change = (material $imp) (@ (material $l) (spi)))

Modeling Actions 195

 (change = (region-type $imp) (@ (region-type $l) (spi)))))))))

 ;; Finish stitching together layer-regions
 (for-all-true $lr e (overlapped-from-top-layer-regions (PI))
 (:AND
 (:IF (member (@ (above $lr) (spi))
 (overlapped-from-bottom-layer-regions (PI)))
 (change = (above (@ (above $lr) (EPI)))
 (@ (below (@ (above $lr) (SPI))) (EPI))))
 (:IF (converted (@ (above $lr) (SPI)) (epi))
 (:AND
 (change = (above (@ (above $lr) (EPI)))
 (@ (above $lr) (SPI)))
 (change = (below (above $lr))
 (@ (above $lr) (EPI)))))))
 (for-all-true $lr e (overlapped-from-bottom-layer-regions (PI))
 (:AND
 (:IF (member (@ (below $lr) (spi))
 (overlapped-from-top-layer-regions (PI)))
 (change = (below (@ (below $lr) (EPI)))
 (@ (above (@ (below $lr) (SPI))) (EPI))))
 (:IF (converted (@ (below $lr) (SPI)) (epi))
 (:AND
 (change = (below (@ (below $lr)(EPI))) (@ (below $lr) (SPI)))
 (change = (above (below $lr)) (@ (below $lr) (EPI))))))))
 constraints
 ((DEFN PI () (process interval))
 (DEFN SPI () (start-of (process interval)))
 (DEFN EPI () (end-of (process interval)))
 (DEFN IT ()
 (ion-top (@ (region-type $l) (start-of (process interval)))
 (process interval)))
 (DEFN IB ()
 (ion-bottom (@ (region-type $l) (start-of (process interval)))
 (process interval)))
 (DEFN LT () (@ (top-pos $l) (start-of (process interval))))
 (DEFN LB () (@ (bottom-pos $l) (start-of (process interval))))
 (for-all-existing $l \: layer-region (start-of (process interval))
 (:=>
 (:AND
 (>= $implant-energy
 (transmission-energy
 (@ (above $l) (start-of (process interval)))
 (start-of (process interval))))
 (< $implant-energy
 (transmission-energy $l (start-of (process interval)))))
 (:AND
 (n= (median-implant-distance
 (@ (region-type $l) (spi)) (pi))
 (+ (- (@ (top-pos (surface (region-type $l)))
 (start-of (process interval)))
 (@ (top-pos $l) (spi)))
 (* (- $implant-energy
 (transmission-energy
 (@ (above $l) (start-of (process interval)))
 (start-of (process interval))))
 (energy-loss-rate
 (@ (material $l) (start-of (process interval)))))))

196 Appendix B:

 (<= (median-implant-position (@ (region-type $l) (spi)) (pi))
 (@ (top-pos $l) (spi)))
 (> (median-implant-position (@ (region-type $l) (spi)) (pi))
 (@ (bottom-pos $l) (spi))))))
 (DEFN DOPANT-CONCENTRATION-CHANGE ($nl $l)
 (:AND
 (:=>
 (v= (@ (dopant $l) (start-of (process interval))) *NO-DOPANT*)
 (:AND (change = (dopant $nl) $dopant)
 (change = (concentration $nl)
 (implanted-conc
 (@ (region-type $l) (start-of (process interval)))
 (process interval)))))
 (:=>
 (v= (@ (dopant $l) (start-of (process interval)))
 $dopant)
 (:AND
 (:=> (:NOT (v= $l $nl))
 (change = (dopant $nl)
 (@ (dopant $l) (start-of (process interval)))))
 (change = (concentration $nl)
 (+ (@ (concentration $l) (start-of (process interval)))
 (implanted-conc
 (@ (region-type $l) (start-of (process interval)))
 (process interval))))))
 (:=>
 (:NOT (:OR (v= (@ (dopant $l) (start-of (process interval)))
 NO-DOPANT)
 (v= (@ (dopant $l) (start-of (process interval)))
 $dopant)))
 (:AND
 (:=>
 (> (@ (concentration $l)
 (start-of (process interval)))
 (implanted-conc
 (@ (region-type $l)
 (start-of (process interval)))
 (process interval)))
 (:AND
 (change = (concentration $nl)
 (- (@ (concentration $l)
 (start-of (process interval)))
 (implanted-conc
 (@ (region-type $l)
 (start-of (process interval)))
 (process interval))))
 (change = (dopant $nl)
 (@ (dopant $l)
 (start-of (process interval))))))
 (:=> (:NOT (> (@ (concentration $l)
 (start-of (process interval)))
 (implanted-conc
 (@ (region-type $l)
 (start-of (process interval)))
 (process interval))))
 (:AND
 (change = (dopant $nl) $dopant)
 (change = (concentration $nl)

Modeling Actions 197

 (- (implanted-conc
 (@ (region-type $l)
 (start-of (process interval)))
 (process interval))
 (@ (concentration $l)
 (start-of (process interval)))))))
))))))

(defprocess DAS-DIFFUSION
 AKO DAS-Create/Modify-Layers
 parameters
 (($temperature finite-positive-real)
 ($duration finite-positive-real))
 preconds ((> $temperature MINIMUM-DIFFUSION-TEMPERATURE))
 effects
 ((for-all-existing $l \: layer-region (spi)
 (:AND
 (:IFF (consumed-by-diffusion $l (epi))
 (destroyed $l (epi)))
 ;; Diffusion from/to the top only--same basic material
 (:IF
 (:AND
 (v= (@ (material $l) (spi))
 (@ (material (above $l)) (spi)))
 (:OR (v= (@ (below $l) (spi)) THE-ENVIRONMENT)
 (:NOT (v= (@ (material $l) (spi))
 (@ (material (below $l)) (spi))))))
 (:AND
 (:IFF (<= (@ (thickness $l) (spi))
 (diffusion-distance
 $duration $temperature
 (@ (concentration (above $l)) (spi))
 (@ (concentration $l) (spi))))
 (consumed-by-diffusion $l (epi)))
 (:IF (consumed-by-diffusion $l (epi))
 (:AND
 (change = (below (above $l))
 (@ (below $l) (spi)))
 (:IF (:NOT (V= (@ (below $l) (spi))
 THE-ENVIRONMENT))
 (change = (above (below $l))
 (@ (above $l) (spi))))))
 (:IF
 (:AND
 (:NOT (consumed-by-diffusion $l (epi)))
 (<> 0.0 (diffusion-distance
 $duration $temperature
 (@ (concentration (above $l)) (spi))
 (@ (concentration $l) (spi)))))
 (:AND
 (change - (thickness $l)
 (diffusion-distance
 $duration $temperature
 (@ (concentration (above $l)) (spi))
 (@ (concentration $l) (spi))))
 (change - (top-pos $l)
 (diffusion-distance
 $duration $temperature

198 Appendix B:

 (@ (concentration (above $l)) (spi))
 (@ (concentration $l) (spi))))
 (:=> (> (@ (concentration $l) (spi))
 (@ (concentration (above $l)) (spi)))
 (change - (concentration $l)
 (diffusion-depletion
 $duration $temperature
 (@ (concentration $l) (spi))
 (@ (concentration (above $l)) (spi)))
))))))
 ;; Diffusion from/to the bottom only--same basic material
 (:IF
 (:AND
 (v= (@ (material $l) (spi))
 (@ (material (below $l)) (spi)))
 (:OR (v= (@ (above $l) (spi)) THE-ENVIRONMENT)
 (:NOT (v= (@ (material $l) (spi))
 (@ (material (above $l)) (spi))))))
 (:AND
 (:IFF
 (:NOT (> (@ (thickness $l) (spi))
 (diffusion-distance $duration $temperature
 (@ (concentration (below $l)) (spi))
 (@ (concentration $l) (spi)))))
 (consumed-by-diffusion $l (epi)))
 (:IF
 (consumed-by-diffusion $l (epi))
 (:AND
 (:IF (V= $l (@ (surface (region-type $l)) (spi)))
 (change = (surface (@ (region-type $l) (spi)))
 (@ (below $l) (spi))))
 (change = (above (below $l)) (@ (above $l) (spi)))
 (:IF (:NOT (V= (@ (above $l) (spi))
 THE-ENVIRONMENT))
 (change = (below (above $l))
 (@ (below $l) (spi))))))
 (:IF
 (:AND (:NOT (consumed-by-diffusion $l (epi)))
 (<> 0.0 (diffusion-distance $duration
 $temperature
 (@ (concentration (below $l)) (spi))
 (@ (concentration $l) (spi)))))
 (:AND
 (change - (thickness $l)
 (diffusion-distance $duration $temperature
 (@ (concentration (below $l)) (spi))
 (@ (concentration $l) (spi))))
 (change + (bottom-pos $l)
 (diffusion-distance $duration $temperature
 (@ (concentration (below $l)) (spi))
 (@ (concentration $l) (spi))))
 (:IF (> (@ (concentration $l) (spi))
 (@ (concentration (below $l)) (spi)))
 (change - (concentration $l)
 (diffusion-depletion $duration $temperature
 (@ (concentration $l) (spi))
 (@ (concentration (below $l)) (spi))))
)))))

Modeling Actions 199

 ;; Diffusion from/to both top and bottom--same basic material
 (:IF
 (:AND (v= (@ (material $l) (spi))
 (@ (material (below $l)) (spi)))
 (v= (@ (material $l) (spi))
 (@ (material (above $l)) (spi))))
 (:AND
 (:IFF
 (:NOT
 (> (@ (thickness $l) (spi))
 (+ (diffusion-distance $duration $temperature
 (@ (concentration (above $l)) (spi))
 (@ (concentration $l) (spi)))
 (diffusion-distance $duration $temperature
 (@ (concentration (below $l)) (spi))
 (@ (concentration $l) (spi))))))
 (consumed-by-diffusion $l (epi)))
 (:IF (consumed-by-diffusion $l (epi))
 (:AND
 (change = (above (below $l))
 (@ (above $l) (spi)))
 (change = (below (above $l))
 (@ (below $l) (spi)))))
 (:IF
 (:AND
 (> (@ (thickness $l) (spi))
 (+ (diffusion-distance $duration $temperature
 (@ (concentration (above $l)) (spi))
 (@ (concentration $l) (spi)))
 (diffusion-distance $duration $temperature
 (@ (concentration (below $l)) (spi))
 (@ (concentration $l) (spi)))))
 (:OR (<> 0.0 (diffusion-distance $duration
 $temperature
 (@ (concentration (above $l)) (spi))
 (@ (concentration $l) (spi))))
 (<> 0.0 (diffusion-distance $duration
 $temperature
 (@ (concentration (below $l)) (spi))
 (@ (concentration $l) (spi))))))
 (:AND
 (change - (thickness $l)
 (+ (diffusion-distance $duration
 $temperature
 (@ (concentration (above $l)) (spi))
 (@ (concentration $l) (spi)))
 (diffusion-distance $duration
 $temperature
 (@ (concentration (below $l)) (spi))
 (@ (concentration $l) (spi)))))
 (:=> (<> 0.0 (diffusion-distance $duration
 $temperature
 (@ (concentration (above $l)) (spi))
 (@ (concentration $l) (spi))))
 (change - (top-pos $l)
 (diffusion-distance $duration
 $temperature
 (@ (concentration (above $l)) (spi))

200 Appendix B:

 (@ (concentration $l) (spi)))))
 (:=> (<> 0.0 (diffusion-distance $duration
 $temperature
 (@ (concentration (below $l)) (spi))
 (@ (concentration $l) (spi))))
 (change + (bottom-pos $l)
 (diffusion-distance $duration
 $temperature
 (@ (concentration (below $l)) (spi))
 (@ (concentration $l) (spi)))))
 (:=> (:OR (> (@ (concentration $l) (spi))
 (@ (concentration (above $l)) (spi)))
 (> (@ (concentration $l) (spi))
 (@ (concentration (below $l)) (spi))))
 (change - (concentration $l)
 (+ (diffusion-depletion
 $duration $temperature
 (@ (concentration $l) (spi))
 (@ (concentration (above $l)) (spi)))
 (diffusion-depletion
 $duration $temperature
 (@ (concentration $l) (spi))
 (@ (concentration (below $l)) (spi))))
)))))))))
 constraints
 ((for-all-existing $l \: layer-region (epi)
 (:AND
 (:=> (> (@ (concentration $l) (spi))
 (@ (concentration (above $l)) (spi)))
 (>= (@ (concentration $l) (epi))
 (@ (concentration (above $l)) (epi))))
 (:=> (< (@ (concentration $l) (spi))
 (@ (concentration (above $l)) (spi)))
 (<= (@ (concentration $l) (epi))
 (@ (concentration (above $l)) (epi))))
 (n= (@ (top-pos $l) (epi))
 (@ (bottom-pos (above $l)) (epi)))))
 (DEFN SPI () (start-of (process interval)))
 (DEFN EPI () (end-of (process interval)))))

Modeling Actions 201

;; Simultaneous oxidation and diffusion, barring diffusion-induced topological
;; changes.
(defprocess DAS-OXIDATION
 AKO DAS-Create/Modify-Layers
 parameters (($temperature finite-positive-real)
 ($duration finite-positive-real)
 ($ox-duration finite-positive-real))
 preconds ((> $temperature MINIMUM-DIFFUSION-TEMPERATURE))
 effects
 (;; Layer-regions can be consumed by oxidation only
 (for-all-existing $l \: layer-region (spi)
 (:IFF (destroyed $l (epi))
 (consumed-by-oxidation $l (epi))))

 ;; If the surface layer oxidizes, there will be an oxide at the
 ;; surface at the end of the process
 (for-all-existing $rt \: region-type (spi)
 (:=>
 (:AND
 (:NOT (is-type oxide
 (@ (material (surface $rt)) (spi))))
 (> (oxidation-rate $temperature
 (@ (material (surface $rt)) (spi)) 0.0)
 0.0))
 (CREATED
 ($oxide-layer-region layer-region (spi))
 (member $oxide-layer-region
 (new-layer (@ (layer (surface $rt)) (spi)) (PI)))
 (member (@ (layer (surface $rt)) (spi))
 (new-layers (process interval)))
 (change = (surface $rt) $oxide-layer-region)
 (change = (region-type $oxide-layer-region) $rt)
 (change = (above $oxide-layer-region) THE-ENVIRONMENT)
 (change = (material $oxide-layer-region) |Oxide|)
 (change = (dopant $oxide-layer-region) *NO-DOPANT*))))

 (for-all-existing $l \: layer-region (spi)
 (:=>
 (:NOT (is-type oxide (@ (material $l) (spi))))
 (:AND
 ;; Oxidation effects
 (:IFF
 (>= $ox-duration
 (oxidation-destroy-time $l $temperature (spi)))
 (consumed-by-oxidation $l (epi)))

 (:IFF
 (:AND
 (>= $ox-duration
 (oxidation-destroy-time (@ (above $l) (spi))
 $temperature (spi)))
 (:NOT (consumed-by-oxidation $l (epi))))
 (uppermost-oxidation-survivor $l (process interval)))

 ;; $l is uppermost layer that survives oxidation

202 Appendix B:

 (:IF
 (uppermost-oxidation-survivor $l (process interval))
 ;; Oxidation without diffusion (no diffusion between materials)
 (:IF
 (:OR (v= (@ (dopant $l) (spi)) *no-dopant*)
 (:NOT (v= (@ (material $l) (spi))
 (@ (material (below $l)) (spi)))))
 (:IF
 (:AND
 (> $ox-duration
 (oxidation-destroy-time (@ (above $l) (spi))
 $temperature (spi)))
 (> (oxidation-rate $temperature
 (@ (material $l) (spi))
 (oxide-thickness-above
 (@ (above $l) (spi)) (spi)))
 0.0))
 (change - (top-pos $l) (amount-oxidized $l)))))

 (:IF
 (:NOT (consumed-by-oxidation $l (epi)))
 (:AND
 ; ; Diffusion effects
 ; ; Diffusion from/to the top only--same basic material (no oxidation)
 (:IF
 (:AND
 (:NOT (uppermost-oxidation-survivor $l (PI)))
 (v= (@ (material $l) (spi))
 (@ (material (above $l)) (spi)))
 (:OR (v= (@ (below $l) (spi)) THE-ENVIRONMENT)
 (:NOT (v= (@ (material $l) (spi))
 (@ (material (below $l)) (spi))))))
 (:AND
 (:=>
 (<> 0.0 (diffusion-distance $duration $temperature
 (@ (concentration (above $l)) (spi))
 (@ (concentration $l) (spi))))
 (:AND
 (change - (top-pos $l)
 (diffusion-distance $duration $temperature
 (@ (concentration (above $l)) (spi))
 (@ (concentration $l) (spi))))
 (:IF
 (> (@ (concentration $l) (spi))
 (@ (concentration (above $l)) (spi)))
 (change - (concentration $l)
 (diffusion-depletion $duration $temperature
 (@ (concentration $l) (spi))
 (@ (concentration (above $l)) (spi)))
))))))

 ;; Diffusion from/to the bottom only--
 ;; same basic material (oxidation may be involved)
 (:IF
 (:AND
 (:NOT (v= (@ (below $l) (spi)) THE-ENVIRONMENT))
 (v= (@ (material $l) (spi))

Modeling Actions 203

 (@ (material (below $l)) (spi)))
 (:OR (v= (@ (above $l) (spi)) THE-ENVIRONMENT)
 (:NOT (v= (@ (material $l) (spi))
 (@ (material (above $l)) (spi))))
 (uppermost-oxidation-survivor $l (PI))))
 (:AND
 (:IFF (:NOT (uppermost-oxidation-survivor $l (PI)))
 (N= (oxidation-reduced-thickness $l (spi))
 (@ (thickness $l) (spi))))
 (:IFF (uppermost-oxidation-survivor $l (PI))
 (N= (oxidation-reduced-thickness $l (spi))
 (- (@ (thickness $l) (spi))
 (amount-oxidized $l))))
 (:IF (uppermost-oxidation-survivor $l (PI))
 (change - (top-pos $l) (amount-oxidized $l)))

 (:IF
 (<> 0.0
 (diffusion-distance $duration $temperature
 (@ (concentration (below $l)) (spi))
 (@ (concentration $l) (spi))))
 (:AND
 (change + (bottom-pos $l)
 (diffusion-distance $duration $temperature
 (@ (concentration (below $l)) (spi))
 (@ (concentration $l) (spi))))
 (:IF (> (@ (concentration $l) (spi))
 (@ (concentration (below $l)) (spi)))
 (change - (concentration $l)
 (diffusion-depletion $duration
 $temperature
 (@ (concentration $l) (spi))
 (@ (concentration (below $l)) (spi))))
)))))

 ;; Diffusion from/to both top and bottom--
 ;; same basic material (no oxidation)
 (:IF
 (:AND
 (:NOT (v= (@ (above $l) (spi)) THE-ENVIRONMENT))
 (:NOT (v= (@ (below $l) (spi)) THE-ENVIRONMENT))
 (v= (@ (material $l) (spi))
 (@ (material (below $l)) (spi)))
 (v= (@ (material $l) (spi))
 (@ (material (above $l)) (spi)))
 (:NOT (uppermost-oxidation-survivor $l (PI))))
 (:IF
 (:OR
 (<> 0.0
 (diffusion-distance $duration $temperature
 (@ (concentration (above $l)) (spi))
 (@ (concentration $l) (spi))))
 (<> 0.0
 (diffusion-distance $duration $temperature
 (@ (concentration (below $l)) (spi))
 (@ (concentration $l) (spi)))))
 (:AND

204 Appendix B:

 (:IF
 (<> 0.0
 (diffusion-distance $duration $temperature
 (@ (concentration (above $l)) (spi))
 (@ (concentration $l) (spi))))
 (change - (top-pos $l)
 (diffusion-distance $duration $temperature
 (@ (concentration (above $l)) (spi))
 (@ (concentration $l) (spi)))))
 (:IF
 (<> 0.0
 (diffusion-distance $duration $temperature
 (@ (concentration (below $l)) (spi))
 (@ (concentration $l) (spi))))
 (change + (bottom-pos $l)
 (diffusion-distance $duration $temperature
 (@ (concentration (below $l)) (spi))
 (@ (concentration $l) (spi)))))
 (:IF
 (:OR (> (@ (concentration $l) (spi))
 (@ (concentration (above $l)) (spi)))
 (> (@ (concentration $l) (spi))
 (@ (concentration (below $l)) (spi))))
 (change - (concentration $l)
 (+ (diffusion-depletion $duration
 $temperature
 (@ (concentration $l) (spi))
 (@ (concentration (above $l)) (spi)))
 (diffusion-depletion $duration
 $temperature
 (@ (concentration $l) (spi))
 (@ (concentration (below $l)) (spi))))))
))))))))

 ;; Handle changes in layer thickness for non-oxide layers
 (for-all-existing $l |:| layer-region (epi)
 (:IF
 (:NOT (:OR (is-type oxide (@ (material $l) (spi)))
 (:AND (n= (@ (top-pos $l) (spi))
 (@ (top-pos $l) (epi)))
 (n= (@ (bottom-pos $l) (spi))
 (@ (bottom-pos $l) (epi))))))
 (change = (thickness $l)
 (- (@ (top-pos $l) (epi))
 (@ (bottom-pos $l) (epi))))))
 ;; Handle effects on the Oxide layer
 (for-all-existing $l \: layer-region (spi)
 (:IF
 (:AND
 (:NOT (is-type oxide (@ (material $l) (spi))))
 (uppermost-oxidation-survivor $l (process interval))
 (is-type oxide
 (@ (material (oxide-layer-region $l)) (epi))))
 (:AND
 (change = (thickness (oxide-layer-region $l))
 (+ (oxide-thickness-above (@ (above $l) (spi)) (spi))
 (* (amount-oxidized $l)
 (oxide-density-ratio (@ (material $l) (spi)))

Modeling Actions 205

)))
 (change = (bottom-pos (oxide-layer-region $l))
 (- (@ (top-pos $l) (spi))
 (amount-oxidized $l)))
 (change = (top-pos (oxide-layer-region $l))
 (+ (+ (oxide-thickness-above (@ (above $l) (spi))
 (spi))
 (* (amount-oxidized $l)
 (oxide-density-ratio (@ (material $l)
 (spi)))))
 (- (@ (top-pos $l) (spi))
 (amount-oxidized $l))))
 (change = (above $l) (oxide-layer-region $l))
 (change = (below (oxide-layer-region $l)) $l)))))
 constraints
 ((<= $ox-duration $duration)
 (for-all-existing $l \: layer-region (spi)
 (:=> (:AND (:not (v= (@ (above $l) (spi))
 THE-ENVIRONMENT))
 (v= (@ (material $l) (spi))
 (@ (material (above $l)) (epi)))
 (:not (destroyed $l (epi)))
 (v= (@ (above $l) (spi))
 (@ (above $l) (epi))))
 (:AND (:=> (> (@ (concentration $l) (spi))
 (@ (concentration (above $l)) (spi)))
 (>= (@ (concentration $l) (epi))
 (@ (concentration (above $l))
 (epi))))
 (:=> (< (@ (concentration $l) (spi))
 (@ (concentration (above $l)) (spi)))
 (<= (@ (concentration $l) (epi))
 (@ (concentration (above $l))
 (epi)))))))
 (for-all-existing $lr |:| layer-region (end-of (PI))
 (:AND
 (> (@ (top-pos $lr) (end-of (process interval)))
 (@ (bottom-pos $lr) (end-of (process interval))))
 (> (@ (thickness $lr) (end-of (process interval)))
 0.0)))
 (for-all-existing $l \: layer-region (epi)
 (:=> (:not (v= (@ (above $l) (epi)) THE-ENVIRONMENT))
 (n= (@ (top-pos $l) (epi))
 (@ (bottom-pos (above $l)) (epi)))))
 (DEFN AMOUNT-OXIDIZED ($l)
 (* (- $ox-duration
 (oxidation-destroy-time
 (@ (above $l) (start-of (process interval)))
 $temperature (start-of (process interval))))
 (oxidation-rate
 $temperature
 (@ (material $l) (start-of (process interval)))
 (oxide-thickness-above
 (@ (above $l) (start-of (process interval)))
 (start-of (process interval))))))
 (DEFN OXIDE-LAYER-REGION ($lr)
 (@ (surface (region-type $lr))
 (end-of (process interval))))

206 Appendix B:

 (DEFN SPI () (start-of (process interval)))
 (DEFN PI () (process interval))
 (DEFN EPI () (end-of (process interval)))))

;; Simultaneous oxidation and drive-in diffusion. Does not handle enhancement of
;; diffusion by oxidation, nor diffusion across material boundaries. Also, does
;; not handle loss or pile-up of dopant due to advancing oxide-silicon boundary.
(defprocess DAS-OX/DRIVE-IN
 AKO DAS-Create/Modify-Layers
 parameters (($temperature finite-positive-real)
 ($duration finite-positive-real)
 ($ox-duration finite-positive-real))
 preconds ((> $temperature MINIMUM-DIFFUSION-TEMPERATURE))
 effects
 (;; Layer-regions can be consumed by oxidation or diffusion only
 (for-all-existing $l \: layer-region (spi)
 (:IFF (destroyed $l (epi))
 (:OR (consumed-by-oxidation $l (epi))
 (consumed-by-diffusion $l (epi)))))

 ;; If the surface layer oxidizes, there will be an oxide at the
 ;; surface at the end of the process
 (for-all-existing $rt \: region-type (spi)
 (:=>
 (:AND
 (:NOT (is-type oxide
 (@ (material (surface $rt)) (spi))))
 (> (oxidation-rate $temperature
 (@ (material (surface $rt)) (spi)) 0.0)
 0.0))
 (CREATED
 ($oxide-layer-region layer-region (spi))
 (member $oxide-layer-region
 (new-layer (@ (layer (surface $rt)) (spi)) (PI)))
 (member (@ (layer (surface $rt)) (spi))
 (new-layers (PI)))
 (change = (surface $rt) $oxide-layer-region)
 (change = (region-type $oxide-layer-region) $rt)
 (change = (above $oxide-layer-region) THE-ENVIRONMENT)
 (change = (material $oxide-layer-region) |Oxide|)
 (change = (dopant $oxide-layer-region) *no-dopant*))))

 (for-all-existing $l \: layer-region (spi)
 (:=>
 (:NOT (is-type oxide (@ (material $l) (spi))))
 (:AND
 ;; Oxidation effects
 (:IFF
 (>= $ox-duration
 (oxidation-destroy-time $l $temperature (spi)))
 (consumed-by-oxidation $l (epi)))
 (:IFF
 (:AND
 (>= $ox-duration
 (oxidation-destroy-time (@ (above $l) (spi))
 $temperature (spi)))

Modeling Actions 207

 (:NOT (consumed-by-oxidation $l (epi))))
 (uppermost-oxidation-survivor $l (process interval)))
 ;; $l is uppermost layer that survives oxidation
 (:IF
 (uppermost-oxidation-survivor $l (process interval))
 ;; Oxidation without diffusion (no diffusion between materials)
 (:IF
 (:OR (v= (@ (dopant $l) (spi)) *NO-DOPANT*)
 (:NOT (v= (@ (material $l) (spi))
 (@ (material (below $l)) (spi)))))
 (:IF
 (:AND
 (> $ox-duration
 (oxidation-destroy-time (@ (above $l) (spi))
 $temperature (spi)))
 (> (oxidation-rate $temperature
 (@ (material $l) (spi))
 (oxide-thickness-above
 (@ (above $l) (spi)) (spi)))
 0.0))
 (change - (top-pos $l) (amount-oxidized $l)))))

 (:IF
 (:NOT (consumed-by-oxidation $l (epi)))
 (:AND
 ; ; Diffusion effects
 ; ; Diffusion from/to the top only--same basic material (no oxidation)
 (:IF
 (:AND
 (:NOT (uppermost-oxidation-survivor $l (PI)))
 (v= (@ (material $l) (spi))
 (@ (material (above $l)) (spi)))
 (:OR (v= (@ (below $l) (spi)) THE-ENVIRONMENT)
 (:NOT (v= (@ (material $l) (spi))
 (@ (material (below $l)) (spi))))))
 (:AND
 (:IFF (<= (@ (thickness $l) (spi))
 (diffusion-distance $duration
 $temperature
 (@ (concentration (above $l)) (spi))
 (@ (concentration $l) (spi))))
 (consumed-by-diffusion $l (epi)))
 (:IF
 (consumed-by-diffusion $l (epi))
 (:AND
 (change = (below (above $l))
 (@ (below $l) (spi)))
 (:=> (:NOT (V= (@ (below $l) (spi))
 THE-ENVIRONMENT))
 (change = (above (below $l))
 (@ (above $l) (spi))))))
 (:=>
 (:AND
 (> (@ (thickness $l) (spi))
 (diffusion-distance $duration $temperature
 (@ (concentration (above $l)) (spi))
 (@ (concentration $l) (spi))))

208 Appendix B:

 (<> 0.0 (diffusion-distance $duration
 $temperature
 (@ (concentration (above $l)) (spi))
 (@ (concentration $l) (spi)))))
 (:AND
 (change - (top-pos $l)
 (diffusion-distance $duration $temperature
 (@ (concentration (above $l)) (spi))
 (@ (concentration $l) (spi))))
 (:IF
 (> (@ (concentration $l) (spi))
 (@ (concentration (above $l)) (spi)))
 (change - (concentration $l)
 (diffusion-depletion $duration $temperature
 (@ (concentration $l) (spi))
 (@ (concentration (above $l)) (spi)))
))))))

 ;; Diffusion from/to the bottom only--
 ;; same basic material (oxidation may be involved)
 (:IF
 (:AND
 (:NOT (v= (@ (below $l) (spi)) THE-ENVIRONMENT))
 (v= (@ (material $l) (spi))
 (@ (material (below $l)) (spi)))
 (:OR (v= (@ (above $l) (spi)) THE-ENVIRONMENT)
 (:NOT (v= (@ (material $l) (spi))
 (@ (material (above $l)) (spi))))
 (uppermost-oxidation-survivor $l (PI))))
 (:AND
 (:IFF (:NOT (uppermost-oxidation-survivor $l (PI)))
 (N= (oxidation-reduced-thickness $l (spi))
 (@ (thickness $l) (spi))))
 (:IFF (uppermost-oxidation-survivor $l (PI))
 (N= (oxidation-reduced-thickness $l (spi))
 (- (@ (thickness $l) (spi))
 (amount-oxidized $l))))
 (:IFF (<= (oxidation-reduced-thickness $l (spi))
 (diffusion-distance $duration
 $temperature
 (@ (concentration (below $l)) (spi))
 (@ (concentration $l) (spi))))
 (consumed-by-diffusion $l (epi)))
 (:IF
 (consumed-by-diffusion $l (epi))
 (:IF
 (:NOT (uppermost-oxidation-survivor $l (PI)))
 (:AND (change = (above (below $l))
 (@ (above $l) (spi)))
 (change = (below (above $l))
 (@ (below $l) (spi))))))
 (:IF
 (:NOT (consumed-by-diffusion $l (epi)))
 (:AND
 (:IF (uppermost-oxidation-survivor $l (PI))
 (change - (top-pos $l)
 (amount-oxidized $l)))
 (:IF

Modeling Actions 209

 (<> 0.0
 (diffusion-distance $duration $temperature
 (@ (concentration (below $l)) (spi))
 (@ (concentration $l) (spi))))
 (:AND
 (change + (bottom-pos $l)
 (diffusion-distance $duration $temperature
 (@ (concentration (below $l)) (spi))
 (@ (concentration $l) (spi))))
 (:IF (> (@ (concentration $l) (spi))
 (@ (concentration (below $l)) (spi)))
 (change - (concentration $l)
 (diffusion-depletion $duration
 $temperature
 (@ (concentration $l) (spi))
 (@ (concentration (below $l)) (spi)))
))))))))

 ;; Diffusion from/to both top and bottom--
 ;; same basic material (no oxidation)
 (:IF
 (:AND
 (:NOT (v= (@ (above $l) (spi)) THE-ENVIRONMENT))
 (:NOT (v= (@ (below $l) (spi)) THE-ENVIRONMENT))
 (v= (@ (material $l) (spi))
 (@ (material (below $l)) (spi)))
 (v= (@ (material $l) (spi))
 (@ (material (above $l)) (spi)))
 (:NOT (uppermost-oxidation-survivor $l (PI))))
 (:AND
 (:IFF
 (<= (@ (thickness $l) (spi))
 (+ (diffusion-distance $duration $temperature
 (@ (concentration (above $l)) (spi))
 (@ (concentration $l) (spi)))
 (diffusion-distance $duration $temperature
 (@ (concentration (below $l)) (spi))
 (@ (concentration $l) (spi)))))
 (consumed-by-diffusion $l (epi)))
 (:IF
 (consumed-by-diffusion $l (epi))
 (:AND (change = (above (below $l))
 (@ (above $l) (spi)))
 (change = (below (above $l))
 (@ (below $l) (spi)))))
 (:IF
 (:AND
 (:NOT (consumed-by-diffusion $l (epi)))
 (:OR
 (<> 0.0
 (diffusion-distance $duration $temperature
 (@ (concentration (above $l)) (spi))
 (@ (concentration $l) (spi))))
 (<> 0.0
 (diffusion-distance $duration $temperature
 (@ (concentration (below $l)) (spi))
 (@ (concentration $l) (spi))))))
 (:AND

210 Appendix B:

 (:IF
 (<> 0.0
 (diffusion-distance $duration $temperature
 (@ (concentration (above $l)) (spi))
 (@ (concentration $l) (spi))))
 (change - (top-pos $l)
 (diffusion-distance $duration
 $temperature
 (@ (concentration (above $l)) (spi))
 (@ (concentration $l) (spi)))))
 (:IF
 (<> 0.0
 (diffusion-distance $duration $temperature
 (@ (concentration (below $l)) (spi))
 (@ (concentration $l) (spi))))
 (change + (bottom-pos $l)
 (diffusion-distance $duration $temperature
 (@ (concentration (below $l)) (spi))
 (@ (concentration $l) (spi)))))
 (:IF
 (:OR (> (@ (concentration $l) (spi))
 (@ (concentration (above $l)) (spi)))
 (> (@ (concentration $l) (spi))
 (@ (concentration (below $l)) (spi))))
 (change - (concentration $l)
 (+ (diffusion-depletion $duration $temperature
 (@ (concentration $l) (spi))
 (@ (concentration (above $l)) (spi)))
 (diffusion-depletion $duration $temperature
 (@ (concentration $l) (spi))
 (@ (concentration (below $l)) (spi))))))
)))))))))
 ;; Handle changes in layer thickness for non-oxide layers
 (for-all-existing $l |:| layer-region (epi)
 (:IF
 (:NOT
 (:OR (is-type oxide (@ (material $l) (spi)))
 (:AND (n= (@ (top-pos $l) (spi))
 (@ (top-pos $l) (epi)))
 (n= (@ (bottom-pos $l) (spi))
 (@ (bottom-pos $l) (epi))))))
 (change = (thickness $l)
 (- (@ (top-pos $l) (epi))
 (@ (bottom-pos $l) (epi))))))
 ;; Handle effects on the Oxide layer
 (for-all-existing $l \: layer-region (spi)
 (:IF
 (:AND
 (:NOT (is-type oxide (@ (material $l) (spi))))
 (uppermost-oxidation-survivor $l (process interval))
 (is-type oxide
 (@ (material (oxide-layer-region $l)) (epi))))
 (:AND
 (change = (thickness (oxide-layer-region $l))
 (+ (oxide-thickness-above (@ (above $l) (spi)) (spi))
 (* (amount-oxidized $l)
 (oxide-density-ratio (@ (material $l) (spi))))))
 (change = (bottom-pos (oxide-layer-region $l))

Modeling Actions 211

 (- (@ (top-pos $l) (spi))
 (amount-oxidized $l)))
 (change = (top-pos (oxide-layer-region $l))
 (+ (+ (oxide-thickness-above
 (@ (above $l) (spi)) (spi))
 (* (amount-oxidized $l)
 (oxide-density-ratio
 (@ (material $l) (spi)))))
 (- (@ (top-pos $l) (spi))
 (amount-oxidized $l))))
 (:IF (destroyed $l (epi))
 (:AND
 (change = (above (below $l))
 (oxide-layer-region $l))
 (change = (below (oxide-layer-region $l))
 (@ (below $l) (spi)))))
 (:IF (:NOT (destroyed $l (epi)))
 (:AND
 (change = (above $l) (oxide-layer-region $l))
 (change = (below (oxide-layer-region $l))
 $l)))))))
 constraints
 ((<= $ox-duration $duration)
 (for-all-existing $l \: layer-region (spi)
 (:=>
 (:AND (:not (v= (@ (above $l) (spi))
 THE-ENVIRONMENT))
 (v= (@ (material $l) (spi))
 (@ (material (above $l)) (epi)))
 (:not (destroyed $l (epi)))
 (v= (@ (above $l) (spi)) (@ (above $l) (epi))))
 (:AND (:=> (> (@ (concentration $l) (spi))
 (@ (concentration (above $l)) (spi)))
 (>= (@ (concentration $l) (epi))
 (@ (concentration (above $l)) (epi))))
 (:=> (< (@ (concentration $l) (spi))
 (@ (concentration (above $l)) (spi)))
 (<= (@ (concentration $l) (epi))
 (@ (concentration (above $l)) (epi)))))))
 (for-all-existing $lr |:| layer-region (EPI)
 (:AND
 (> (@ (top-pos $lr) (end-of (process interval)))
 (@ (bottom-pos $lr) (end-of (process interval))))
 (> (@ (thickness $lr) (end-of (process interval)))
 0.0)))

 (for-all-existing $l \: layer-region (epi)
 (:=> (:not (v= (@ (above $l) (epi)) THE-ENVIRONMENT))
 (n= (@ (top-pos $l) (epi))
 (@ (bottom-pos (above $l)) (epi)))))
 (DEFN AMOUNT-OXIDIZED ($l)
 (* (- $ox-duration
 (oxidation-destroy-time
 (@ (above $l) (start-of (process interval)))
 $temperature (start-of (process interval))))
 (oxidation-rate
 $temperature
 (@ (material $l) (start-of (process interval)))

212 Appendix B:

 (oxide-thickness-above
 (@ (above $l) (start-of (process interval)))
 (start-of (process interval))))))
 (DEFN OXIDE-LAYER-REGION ($lr)
 (@ (surface (region-type $lr))
 (end-of (process interval))))
 (DEFN PI () (process interval))
 (DEFN SPI () (start-of (process interval)))
 (DEFN EPI () (end-of (process interval)))))

;; Diffusion from polysilicon into silicon, creating a new doped region
;; Highly specific to the Stanford BiCMOS process---used to create emitter region
;; and N+ Source/Drain contacts.
(defprocess DAS-Poly-Source-Diffusion
 AKO DAS-Ox/Drive-in
 effects
 ((for-all-existing $l \: layer-region (SPI)
 (:IF
 (:AND
 (:NOT (consumed-by-oxidation $l (EPI)))
 (is-type polysilicon (@ (material $l) (SPI)))
 (is-type silicon (@ (material (below $l)) (SPI)))
 (:NOT (is-type polysilicon
 (@ (material (below $l)) (SPI)))))
 (:IF
 (> (@ (concentration $l) (SPI))
 (@ (concentration (below $l)) (SPI)))
 (CREATED ($NL layer-region (SPI))
 (member $NL (new-layer
 (@ (layer (below $l)) (SPI)) (PI)))
 (member (@ (layer (below $l)) (SPI))
 (new-layers (process interval)))
 (change = (below $l) $nl)
 (change = (region-type $nl)
 (@ (region-type $l) (SPI)))
 (change = (top-pos $nl)
 (@ (top-pos (below $l)) (SPI)))
 (change = (above $nl) $l)
 (change - (concentration $l)
 (/ (xfer-dose $l) (@ (thickness $l) (SPI))))
 (change - (top-pos (below $l)) (junction-depth $l))
 (change - (thickness (below $l)) (junction-depth $l))
 (change = (bottom-pos $nl)
 (- (@ (top-pos (below $l)) (SPI))
 (junction-depth $l)))
 (change = (thickness $nl) (junction-depth $l))
 (change = (below $nl) (@ (below $l) (SPI)))
 (change = (dopant $nl) (@ (dopant $l) (SPI)))
 (:IF (v= (@ (dopant-type (dopant $l)) (SPI))
 (@ (dopant-type (dopant (below $l))) (SPI)))
 (change = (concentration $nl)
 (@ (concentration $l) (EPI))))
 (:IF
 (:NOT
 (v= (@ (dopant-type (dopant $l)) (SPI))
 (@ (dopant-type (dopant (below $l))) (SPI))))
 (change = (concentration $nl)
 (- (@ (concentration $l) (EPI))

Modeling Actions 213

 (@ (concentration (below $l)) (SPI)))))
 (change = (material $nl)
 (@ (material (below $l)) (SPI)))
 (change = (above (below $l)) $nl)))
)))
 constraints
 ((DEFN XFER-DOSE ($l)
 (transferred-dose $duration $temperature $l
 (@ (below $l) (SPI))))
 (DEFN Junction-Depth ($l)
 (Diffused-Junction-depth $duration $temperature $l
 (@ (below $l) (SPI)))))
)

Appendix C: Axioms Supporting the Models

This appendix exhibits the generic predicate and generic functions, as well as a few

“daemons” employed by the DAS qualitative simulator.

(defnoticer Is-Type ((IS-TYPE ?type ?object) :intern Gordius::*process*)
 (unless (rup:free-var ^(IS-TYPE ?type ?object))
 (let ((class (rup::term-name ^?type))
 (instance (history::term-teval ^?object)))
 (unless (unknown? instance)
 (assert-expr ^(IS-TYPE ?type ?object) 'DOMAIN-MODEL
 (if (typep instance class) :TRUE :FALSE))))))

(def-generic-function Any-Member ((set (set . temporal-object)))
 temporal-object
 (when (not (null (history::set-members set)))
 (gd::set-term-value Any-Member (first (history::set-members set)))))

(def-generic-predicate Is-Soft-Photoresist? ((object temporal-object))
 (assert-expr ^?Is-Soft-Photoresist? 'DOMAIN-MODEL
 (if (typep object '(and
 (or exposed-pos-photoresist
 exposed-photoresist
 neg-photoresist)
 (not exposed-neg-photoresist)))
 :TRUE :FALSE)))

(def-generic-predicate Destroyed ((object temporal-object) (time time)))
(def-generic-predicate Converted ((object temporal-object) (time time)))
(def-generic-predicate Consumed-by-Etching
 ((object temporal-object) (time time)))
(def-generic-predicate Consumed-by-Oxidation
 ((object temporal-object) (time time)))
(def-generic-predicate Consumed-by-Diffusion
 ((object temporal-object) (time time)))
(def-generic-predicate Uppermost-Oxidation-Survivor
 ((l layer-region) (i time-interval)))

(def-generic-predicate Adherent
 ((super-mat material-type) (sub-mat material-type))
 (assert-expr ^?Adherent 'DOMAIN-MODEL
 (if (cond ((typep super-mat 'polysilicon)
 (not (typep sub-mat 'photoresist)))
 ((typep super-mat 'nitride)
 (or (typep sub-mat 'oxide) (typep sub-mat 'polysilicon)))
 ((typep super-mat 'photoresist)
 (not (typep sub-mat 'photoresist)))
 ((typep super-mat 'tungsten) (typep sub-mat 'polysilicon))

Axioms Supporting the Models 215

 ((typep super-mat 'oxide)
 (not (typep sub-mat 'photoresist)))
 ((typep super-mat 'metal)
 (not (typep sub-mat 'photoresist)))
 ((typep super-mat 'silicon) (typep sub-mat 'silicon)))
 :TRUE :FALSE)))

(def-generic-predicate Accepts-Dopant?
 ((mat material-type) (dop dopant))
 ;; For now, allow any material to accept any dopant
 (assert-expr ^?Accepts-Dopant? 'DOMAIN-MODEL :TRUE))

(def-generic-function New-Layer
 ((old-layer layer) (step time-interval)) (set . layer-region))

(def-generic-function Etch-Destroy-Time
 ((l layer-region) (i time-interval)) real
 (if (typep l 'ENVIRONMENT)
 (assert-expr ^(n= ?Etch-Destroy-Time 0.0) 'DOMAIN-MODEL)
 (let ((layer (rup:seal l))
 (i-term (second (rup::subterms (rup:seal (start-of i))))))
 (assert-expr
 ^(n= ?Etch-Destroy-Time
 (+ (etch-destroy-time (@ (above ?layer)
 (start-of ?i-term)) ?i-term)
 (/ (@ (thickness ?layer) (start-of ?i-term))
 (etch-rate ?layer ?i-term))))
 'DOMAIN-MODEL))))

;;; All etchants have finite, non-negative etch-rates for all materials
(defnoticer All-Etch-Rates-Finite
 ((PARAMETER-OF ?process $ETCHANT ?etchant) :TRUE GD::*process*)
 (let ((I (process::get-time-of-process ^?process)))
 (assert-expr
 ^(FOR-ALL-EXISTING $L \: Layer-Region (start-of ?I)
 (:AND
 (<= 0.0 (etch-rate $L ?I))
 (< (etch-rate $L ?I) +INFINITY)))
 'DOMAIN-MODEL)))

(eval-when (load eval compile)
 (defmacro defEtchRateRule (etchant (layer-region interval) rule-form)
 `(defnoticer ,(intern (concatenate 'string
 (symbol-name etchant) "-ETCH-RATE"))
 ((PARAMETER-OF ?process $ETCHANT ,etchant) :TRUE GD::*process*)
 (let ((I (process::get-time-of-process ^?process)))
 (assert-expr
 ,(rup::term-expand
 (rup::parse-term
 `(FOR-ALL-EXISTING ,layer-region \: Layer-Region
 (start-of ?I)
 ,(subst '?I interval rule-form))))
 'DOMAIN-MODEL)))))

216 Appendix C:

;;; |6:1 Buffered HF| etches Oxide, but not silicon or nitride?
(defEtchRateRule |6:1 Buffered HF| ($L $I)
 (:AND
 (:=> (is-type oxide (@ (material $L) (start-of $I)))
 (> (etch-rate $L $I) 0.0))
 (:=> (:OR
 (is-type nitride (@ (material $L) (start-of $I)))
 (is-type silicon (@ (material $L) (start-of $I)))
 (is-type photoresist (@ (material $L) (start-of $I))))
 (N= (etch-rate $L $I) 0.0))))

;;; |50:1 HF| etches Oxide, but not silicon or nitride?
(defEtchRateRule |50:1 HF| ($L $I)
 (:AND
 (:=> (is-type oxide (@ (material $L) (start-of $I)))
 (> (etch-rate $L $I) 0.0))
 (:=> (:OR
 (is-type nitride (@ (material $L) (start-of $I)))
 (is-type silicon (@ (material $L) (start-of $I)))
 (is-type photoresist (@ (material $L) (start-of $I))))
 (N= (etch-rate $L $I) 0.0))))

;;; Refluxed-H3PO4 etches oxide and nitride but not silicon?
(defEtchRateRule Refluxed-H3PO4 ($L $I)
 (:AND
 (:=> (:OR
 (is-type nitride (@ (material $L) (start-of $I)))
 (is-type oxide (@ (material $L) (start-of $I))))
 (> (etch-rate $L $I) 0.0))
 (:=> (:OR
 (is-type silicon (@ (material $L) (start-of $I)))
 (is-type photoresist (@ (material $L) (start-of $I))))
 (N= (etch-rate $L $I) 0.0))))

(def-generic-function Layer-Closure ((layer layer) (time time))
 (set . layer-region)
 (assert-expr
 ^(v= ?Layer-Closure
 ?(rup::termhashcons2
 (cons ^set
 (mapcar #'rup::seal
 (history::set-members
 (attribute-at-time
 layer 'layer-regions time))))))
 'Closed-World-Assumption))

(def-generic-function Detected-Layer-Regions
 ((step time-interval)) (set . layer-region))

(def-generic-function Solid-Solubility
 ((mat material-type) (dopant dopant)) positive-real
 (assert-expr ^(> ?Solid-Solubility ++CONCENTRATION) 'DOMAIN-MODEL))

Axioms Supporting the Models 217

(defnoticer Pre-Dep-Conc ((PRE-DEP-CONC ?vapor-pressure ?mat ?dopant)
 :intern Gordius::*process*)
 (unless (rup:free-var ^(PRE-DEP-CONC ?vapor-pressure ?mat ?dopant))
 (let ((solid-solubility ^(solid-solubility ?mat ?dopant)))
 (assert-expr
 ^(:and (<= (PRE-DEP-CONC ?vapor-pressure ?mat ?dopant)
 ?solid-solubility)
 (:=> (>= ?vapor-pressure PRE-DEP-THRESHOLD)
 (n= (PRE-DEP-CONC ?vapor-pressure ?mat ?dopant)
 ?solid-solubility)))
 'DOMAIN-MODEL))))
(rup:init-form (assert-expr '(FUNCTIONAL PRE-DEP-CONC
 (((>= ARG1 PRE-DEP-THRESHOLD) IND)
 ((< ARG1 PRE-DEP-THRESHOLD) MI))
 NA NA)))

;;; Generic functions and predicates for photolithography model.
(def-generic-function EXPOSED-REGION-TYPE
 ((ld region-type) (i time-interval)) region-type)
(def-generic-function EXPOSED-LAYER-REGION
 ((l layer-region) (i time-interval)) layer-region)
(def-generic-function ALTERED-REGIONS
 ((ld region-type) (i time-interval)) (set . wafer-region))
(def-generic-function UNALTERED-REGIONS
 ((ld region-type) (i time-interval)) (set . wafer-region))
(def-generic-function UNALTERED-REGION-TYPES
 ((i time-interval)) (set . region-type))
(def-generic-function UNALTERED-REGION-TYPES-CLOSURE
 ((i time-interval)) (set . region-type)
 (let* ((i-term (second (rup::subterms (rup:seal (start-of i)))))
 (set (gd::term-teval ^(UNALTERED-REGION-TYPES ?i-term))))
 (if (history::unknown-object-p set)
 (assert-expr
 ^(:NOT (exists $rt e ?Unaltered-Region-Types-Closure))
 'Closed-World-Assumption)
 (assert-expr
 ^(v= ?Unaltered-Region-Types-Closure
 ?(rup::termhashcons2
 (cons ^set
 (mapcar #'rup::seal (history::set-members set)))))
 'Closed-World-Assumption))))

(proclaim '(special neg-photoresist-exposed pos-photoresist-exposed
 photoresist-exposed))

(def-generic-function EXPOSED-MATERIAL
 ((mat material-type)) material-type
 (gd::set-term-value
 exposed-material (exposed-material mat) 'DOMAIN-MODEL))

(gd::init-form
 (assert-expr '(OLD-MASK-REGION-TYPE LD1 *BOTTOM*) 'DOMAIN-MODEL))

(defnoticer Old-Mask-Region-Type
 ((EXPOSED-REGION-TYPE ?ignore ?ignore) :INTERN GD::*PROCESS*)
 (unless (gd::free-var ^(EXPOSED-REGION-TYPE ?ignore ?ignore))
 (gd::add-value-noticer gd::*process*
 #'old-mask-region-type ^(EXPOSED-REGION-TYPE ?ignore ?ignore))))

218 Appendix C:

(defun old-mask-region-type (term)
 (when (gd::real-object? (gd::term-value term))
 (assert-expr
 ^(OLD-MASK-REGION-TYPE
 ?(gd::seal (gd::term-value term))
 ?(gd::seal (gd::term-value (second (gd::subterms term)))))
 'DOMAIN-MODEL)))

(def-generic-function DIFFUSION-DISTANCE
 (($duration positive-real) ($temperature positive-real)
 ($concentration1 real) ($concentration2 real))
 REAL
 (assert-expr
 ^(?(gd::term (gd::qrelations $concentration1 $concentration2))
 ?Diffusion-Distance 0.0)
 'DOMAIN-MODEL)
 (let* ((args (cdr (gd::subterms Diffusion-Distance)))
 (duration (first args))
 (temperature (second args))
 (c1 (third args))
 (c2 (fourth args)))
 (assert-expr
 ^(n= ?Diffusion-Distance
 (minus (diffusion-distance
 ?duration ?temperature ?c2 ?c1))))))

(gd::init-form
 (assert-expr
 '(FUNCTIONAL DIFFUSION-DISTANCE
 (((N= ARG3 ARG4) IND) ((< ARG3 ARG4) MD) ((> ARG3 ARG4) MI))
 (((N= ARG3 ARG4) IND) ((< ARG3 ARG4) MD) ((> ARG3 ARG4) MI))
 MI MD)))

(def-generic-function DIFFUSION-DEPLETION
 (($duration positive-real) ($temperature positive-real)
 ($encroacher-concentration real) ($encroachee-concentration real))
 REAL
 (cond ((gd::qis-true? $encroacher-concentration '>
 $encroachee-concentration)
 (assert-expr ^(> ?Diffusion-Depletion 0.0) 'DOMAIN-MODEL)
 (assert-expr ^(<= ?Diffusion-Depletion
 (- ?(gd::seal $encroacher-concentration)
 ?(gd::seal $encroachee-concentration)))
 'DOMAIN-MODEL))
 (t (assert-expr ^(n= ?Diffusion-Depletion 0.0) 'DOMAIN-MODEL))))

(gd::init-form
 (assert-expr '(FUNCTIONAL DIFFUSION-DEPLETION MI MI MI MD)))

(def-generic-function Transmission-Energy
 ((l layer-region) (time time)) non-negative-real
 (let ((layer (gd::seal l))
 (time-term (gd::seal time)))
 (cond ((typep l 'environment)
 (assert-expr ^(n= ?Transmission-Energy 0.0) 'DOMAIN-MODEL))
 ((typep (history::@ (history::oget-safe l 'material) time)
 'photoresist)

Axioms Supporting the Models 219

 ;; Assume implants never pass through photoresist
 (assert-expr
 ^(n= ?Transmission-Energy +INFINITY)
 'DOMAIN-MODEL))
 (T
 (assert-expr
 ^(n= ?Transmission-Energy
 (+ (transmission-energy
 (@ (above ?layer) ?time-term) ?time-term)
 (/ (@ (thickness ?layer) ?time-term)
 (energy-loss-rate
 (@ (material ?layer) ?time-term)))))
 'DOMAIN-MODEL)))))

(def-generic-function Energy-Loss-Rate
 ((mat material-type)) positive-real)

(def-generic-function Ion-Spread
 ((median-distance positive-real)) positive-real)
(gd::init-form (assert-expr '(FUNCTIONAL ION-SPREAD MI)))

(def-generic-function Implanted-Conc
 ((r region-type) (i time-interval)) positive-real
 (let* ((i-term (second (rup::subterms (rup:seal (start-of i)))))
 (region-term (gd::seal r))
 (dose-term (process::get-process-parameter
 ^$dose (process::get-process-at i-term))))
 (assert-expr
 ^(n= ?implanted-Conc
 (ion-conc ?dose-term
 (ion-spread (median-implant-distance
 ?region-term ?i-term)))))))

(def-generic-function Ion-Conc
 ((dose positive-real) (spread positive-real)) positive-real
 (let ((dose-term (gd::seal dose))
 (spread-term (gd::seal spread)))
 (assert-expr ^(n= ?ion-conc (/ ?dose-term ?spread-term)))))
(gd::init-form (assert-expr '(FUNCTIONAL ION-CONC MI MD)))

(def-generic-function Ion-Top ((rt region-type) (I time-interval)) real
 (let ((r-term (gd::seal rt))
 (i-term (second (rup::subterms (rup:seal (start-of I))))))
 (assert-expr
 ^(N= ?Ion-Top
 (+ (median-implant-position ?r-term ?i-term)
 (ion-spread (median-implant-distance ?r-term ?i-term)))))
 (assert-expr ^(> ?Ion-Top (ion-bottom ?r-term ?i-term)))))

(def-generic-function Ion-Bottom
 ((rt region-type) (I time-interval)) real
 (let ((r-term (gd::seal rt))
 (i-term (second (rup::subterms (rup:seal (start-of I))))))
 (assert-expr
 ^(N= ?Ion-Bottom
 (- (median-implant-position ?r-term ?i-term)
 (ion-spread (median-implant-distance ?r-term ?i-term)))))
 (assert-expr ^(> (ion-top ?r-term ?i-term) ?Ion-Bottom))))

220 Appendix C:

(def-generic-function Median-Implant-Distance
 ((rt region-type) (I time-interval)) positive-real)

(def-generic-function Median-Implant-Position
 ((rt region-type) (I time-interval)) real
 (let* ((r-term (gd::seal rt))
 (t-term (rup:seal (start-of I)))
 (i-term (second (rup::subterms t-term))))
 (assert-expr ^(N= ?Median-Implant-Position
 (- (@ (top-pos (surface ?r-term)) ?t-term)
 (median-implant-distance ?r-term ?i-term))))))

(def-generic-function IMPLANTED-LAYER-REGION
 ((l layer-region) (i time-interval)) layer-region)

(def-generic-function Oxidation-Rate
 ((temperature positive-real) (mat material-type)
 (oxide-thickness-above positive-real)) finite-non-negative-real
 (cond ((typep mat 'silicon)
 (assert-expr
 ^(n= ?Oxidation-rate silicon-oxidation-rate)))
 ((typep mat 'nitride)
 (assert-expr
 ^(n= ?Oxidation-rate silicon-nitride-oxidation-rate)))))
(gd::init-form (assert-expr '(> silicon-oxidation-rate 0.0)))
(gd::init-form (assert-expr '(> silicon-nitride-oxidation-rate 0.0)))
(gd::init-form
 (assert-expr
 '(> silicon-oxidation-rate silicon-nitride-oxidation-rate)))
(gd::init-form (assert-expr '(FUNCTIONAL OXIDATION-RATE MI NA MD)))

(def-generic-function Oxidation-Destroy-Time
 ((l layer-region) (temperature positive-real) (time time))
 non-negative-real
 (let ((layer (gd::seal l))
 (temperature-term (gd::seal temperature))
 (time-term (gd::seal time)))
 (cond
 ((typep l 'environment)
 (assert-expr ^(n= ?Oxidation-Destroy-Time 0.0)))
 ((typep (history::@ (history::oget-safe l 'material) time) 'oxide)
 (assert-expr
 ^(n= ?Oxidation-Destroy-Time
 (oxidation-destroy-time
 (@ (above ?layer) ?time-term)
 ?temperature-term ?time-term))))
 (T
 (assert-expr
 ^(n= ?Oxidation-Destroy-Time
 (+ (oxidation-destroy-time (@ (above ?layer) ?time-term)
 ?temperature-term ?time-term)
 (/ (@ (thickness ?layer) ?time-term)
 (oxidation-rate
 ?temperature-term (@ (material ?layer) ?time-term)
 (oxide-thickness-above
 (@ (above ?layer) ?time-term) ?time-term))))))))))

Axioms Supporting the Models 221

(def-generic-function Oxide-Density-Ratio
 ((mat material-type)) finite-positive-real
 (cond ((typep mat 'silicon)
 (assert-expr
 ^(n= ?Oxide-Density-Ratio silicon-oxide-density-ratio)))
 ((typep mat 'nitride)
 (assert-expr
 ^(n= ?Oxide-Density-Ratio
 silicon-nitride-oxide-density-ratio)))))
(gd::init-form
 (assert-expr
 '(n= silicon-oxide-density-ratio #.(/ 1 0.44)) 'DOMAIN-MODEL))
(gd::init-form
 ‘(assert-expr '(> silicon-nitride-oxide-density-ratio 0.0)
 'DOMAIN-MODEL))
(gd::init-form
 (assert-expr
 '(> silicon-oxide-density-ratio silicon-nitride-oxide-density-ratio)
 'DOMAIN-MODEL))

(def-generic-function Oxide-Thickness-Above
 ((l layer-region) (time time)) finite-non-negative-real
 (let ((layer (gd::seal l))
 (time-term (gd::seal time)))
 (cond ((typep l 'environment)
 (assert-expr ^(n= ?Oxide-Thickness-Above 0.0) 'DOMAIN-MODEL))
 ((typep (attribute-at-time l 'material time) 'oxide)
 (assert-expr
 ^(n= ?Oxide-Thickness-Above
 (+ (@ (thickness ?layer) ?time-term)
 (oxide-thickness-above
 (@ (above ?layer) ?time-term) ?time-term)))))
 (t
 (assert-expr
 ^(N= ?Oxide-Thickness-Above
 (+ (oxide-thickness-above
 (@ (above ?layer) ?time-term) ?time-term)
 (* (@ (thickness ?layer) ?time-term)
 (oxide-density-ratio
 (@ (material ?layer) ?time-term))))))))))

(def-generic-function Resistance
 ((l layer-region) (fr wafer-region) (time time)
 (orientation (one-of (constant :horizontal)
 (constant :vertical))))
 positive-real
 (let ((layer (gd::seal l)) (wafer-region (gd::seal fr))
 (time-term (gd::seal time)))
 (assert-expr
 ^(N= ?Resistance
 (* (resistivity ?layer ?time-term)
 ?(case orientation
 (:HORIZONTAL ^(/ (width ?wafer-region ?time-term)
 (* (@ (thickness ?layer) ?time-term)
 (depth ?layer ?time-term))))
 (:VERTICAL ^(/ (@ (thickness ?layer) ?time-term)
 (* (width ?wafer-region ?time-term)
 (depth ?layer ?time-term))))))))))

222 Appendix C:

(def-generic-function Resistivity
 ((l layer-region) (time time)) finite-positive-real
 (let* ((layer (gd::seal l)) (time-term (gd::seal time))
 (dopant ^(@ (dopant ?layer) ?time-term))
 (concentration ^(@ (concentration ?layer) ?time-term))
 (sigma (cond ((typep (term-teval dopant) 'N-DOPANT)
 ^(+ (* (electron-mobility ?concentration)
 ?concentration)
 (* (hole-mobility ?concentration)
 (/ intrinsic-*-squared ?concentration))))
 (T ^(+ (* (hole-mobility ?concentration)
 ?concentration)
 (* (electron-mobility ?concentration)
 (/ intrinsic-*-squared
 ?concentration)))))))
 (assert-expr ^(N= ?Resistivity (/ 1.0 (* Q ?sigma))))))

(def-generic-function Hole-Mobility
 ((concentration real)) finite-positive-real)
(def-generic-function Electron-Mobility
 ((concentration real)) finite-positive-real)

(def-generic-function Width
 ((wr wafer-region) (time time)) finite-positive-real)
(def-generic-function Depth
 ((l layer-region) (time time)) finite-positive-real)

(gd::init-form
 (progn (make-objectq Q 'finite-positive-real :CONSTANT-QUANTITY-P T)
 (make-objectq intrinsic-*-squared 'finite-positive-real
 :CONSTANT-QUANTITY-P T)))

Appendix D: AESOP Causal Associations

This appendix lists in an abbreviated form the causal associations between the Process-

Anomaly level and the Physical-Structure-Anomaly level in the AESOP knowledge base.

The first column of the table contains a number classifying the type of the association

with respect to our theoretical models. Associations labelled with a 1 treat phenomena

that lie with the Phenomena Scope of the models. Associations labelled with a 2 also

treat phenomena “understood” by the models, but that involve topological changes to

either the process plan or the wafer structure . Causal associations labelled with a 3 treat

phenomena that fall outside the competence of the theoretical models.

The remaining columns in the table express the association in the causal

direction. The second column is the name of a Process-Anomaly. The column after the

right-pointing arrow names a Physical-Structure-Anomaly that might be caused by the

Process-Anomaly. The final column lists the qualitative estimate of the likelyhood that

occurence of the indicated Process-Anomaly will manifest the Physical-Structure-

Anomaly.

For example, the 2nd category causal association in the table indicates that Gate-

Ox-Not-Done (omission of the step that grows the gate oxide layer) necessarily causes

the condition Gate-Oxide-Non-Existent .

Glossary
Gate-Ox[ide]: The thin layer of silicon dioxide that forms the dielectric insulator between

the gate and the channel of a MOS transistor;
N[P]-Vt-II: The implanted dose of the NMOS[PMOS] threshold adjust implantation step;
Poly-Gate-Under[Over]-Etch: insufficient[excessive] etching during the etch step that

patterns the polysilicon layer used as the gate in the MOS transistors.
Sub-Start-Conc: The concentration of dopant in the initial wafer substrate.
Well-II: Theimplanted dose of the N-Well implantation step.
N[P]-Ch-Conc: The concentration of dopant in the channel of the NMOS[PMOS] device;
Channel-Length: The distance between the source and drain of a MOS device.
Sub[Well]-Conc: The concentration of dopant in the substrate[N-Well].

224 Appendix D:

Causal Associations
1 Gate-Ox-Temp-High.......... → .. Gate-Oxide-Thick Maybe
1 Gate-Ox-Temp-Low........... → .. Gate-Oxide-Thin Maybe
1 Gate-Ox-Temp-Very-High..... → .. Gate-Oxide-Very-Thick Maybe
1 Gate-Ox-Temp-Very-Low...... → .. Gate-Oxide-Very-Thin Maybe
1 Gate-Ox-Time-Long.......... → .. Gate-Oxide-Thick Very-Likely
1 Gate-Ox-Time-Short......... → .. Gate-Oxide-Thin Very-Likely
1 Gate-Ox-Time-Very-Long..... → .. Gate-Oxide-Very-Thick Very-Likely
1 Gate-Ox-Time-Very-Short.... → .. Gate-Oxide-Very-Thin Very-Likely
1 N-Vt-II-High............... → .. N-Ch-Conc-High Must
1 N-Vt-II-Low................ → .. N-Ch-Conc-Low Must
1 N-Vt-II-Very-High.......... → .. N-Ch-Conc-Very-High Must
1 N-Vt-II-Very-Low........... → .. N-Ch-Conc-Very-Low Must
1 P-Vt-II-High............... → .. N-Ch-Conc-High Very-Likely
1 P-Vt-II-High............... → .. P-Ch-Conc-Low Likely
1 P-Vt-II-Low................ → .. N-Ch-Conc-Low Very-Likely
1 P-Vt-II-Low................ → .. P-Ch-Conc-High Very-Likely
1 P-Vt-II-Very-High.......... → .. N-Ch-Conc-Very-High Very-Likely
1 P-Vt-II-Very-High.......... → .. P-Ch-Conc-Very-Low Very-Likely
1 P-Vt-II-Very-Low........... → .. N-Ch-Conc-Very-Low Very-Likely
1 P-Vt-II-Very-Low........... → .. P-Ch-Conc-Very-High Likely
1 Sub-Start-Conc-High........ → .. P-Ch-Conc-Low Very-Likely
1 Sub-Start-Conc-High........ → .. Sub-Conc-High Very-Likely
1 Sub-Start-Conc-Low......... → .. Sub-Conc-Low Very-Likely
1 Sub-Start-Conc-Very-High... → .. P-Ch-Conc-Low Very-Likely
1 Sub-Start-Conc-Very-High... → .. Sub-Conc-Very-High Very-Likely
1 Sub-Start-Conc-Very-Low.... → .. Sub-Conc-Very-Low Very-Likely
1 Well-II-High............... → .. P-Ch-Conc-High Likely
1 Well-II-High............... → .. Well-Conc-High Very-Likely
1 Well-II-Low................ → .. P-Ch-Conc-Low Very-Likely
1 Well-II-Low................ → .. Well-Conc-Low Very-Likely
1 Well-II-Very-High.......... → .. P-Ch-Conc-Very-High Very-Likely
1 Well-II-Very-High.......... → .. Well-Conc-Very-High Very-Likely
1 Well-II-Very-Low........... → .. P-Ch-Conc-Very-Low Likely
1 Well-II-Very-Low........... → .. Well-Conc-Very-Low Very-Likely
2 Gate-Ox-Not-Done........... → .. Gate-Oxide-Non-Existent Must
2 N-Vt-II-Not-Masked......... → .. P-Ch-Conc-High Maybe
2 Sub-Start-Conc-Wrong-Type.. → .. Sub-Conc-Wrong-Type Very-Likely
2 Well-II-Not-Done........... → .. Well-Non-Existent Very-Likely
2 Well-II-Not-Masked......... → .. Sub-Conc-Wrong-Type Maybe
2 Well-II-Wrong-Species...... → .. Well-Non-Existent Maybe
3 Gate-Ox-Time-Long.......... → .. P-Ch-Conc-High Very-Likely
3 Gate-Ox-Time-Short......... → .. P-Ch-Conc-Low Very-Likely
3 Gate-Ox-Time-Very-Long..... → .. P-Ch-Conc-High Likely
3 Gate-Ox-Time-Very-Short.... → .. P-Ch-Conc-Low Very-Likely
3 Poly-Gate-Over-Etch........ → .. Channel-Length-Short Maybe
3 Poly-Gate-Over-Etch........ → .. Channel-Length-Very-Short . Very-Likely
3 Poly-Gate-Over-Expose...... → .. Channel-Length-Short Very-Likely
3 Poly-Gate-Over-Expose...... → .. Channel-Length-Very-Short . Very-Likely
3 Poly-Gate-Under-Etch....... → .. Channel-Length-Long Maybe
3 Poly-Gate-Under-Etch....... → .. Channel-Length-Very-Long .. Very-Likely
3 Poly-Gate-Under-Expose..... → .. Channel-Length-Long Very-Likely
3 Poly-Gate-Under-Expose..... → .. Channel-Length-Very-Long .. Very-Likely

Appendix E: Generic Rules

;;;; Generic Rules for the causal associations in the AESOP PIES knowledge base.
;;;; John L. Mohammed, 1994

;;; Generic Rules for Type 1 causal associations: phenomenon captured by models,
;;; and no topological/catastrophic changes involved.

;; Oxide thicknesses depend on Oxidation temperatures and times
(defGenericRule Ox-Temp-Determines-Ox-Thickness
 :variables
 (($oxidation-step |:| time-interval)
 ($oxide-layer |:| layer))
 :conditions
 ((:OR
 (is-type das-oxidation (process-at $oxidation-step))
 (is-type das-ox/drive-in (process-at $oxidation-step)))
 (created-during $oxide-layer $oxidation-step)
 (is-type oxide
 (@ (material (any-member
 (@ (layer-regions $oxide-layer)
 (end-of $oxidation-step))))
 (end-of $oxidation-step))))
 :rule-patterns
 (
 (((parameter $temperature $oxidation-step) HIGH) -->
 ((thickness $oxide-layer) THICK) MAYBE)
 (((parameter $temperature $oxidation-step) LOW) -->
 ((thickness $oxide-layer) THIN) MAYBE)
 (((parameter $temperature $oxidation-step) VERY-HIGH) -->
 ((thickness $oxide-layer) VERY-THICK) MAYBE)
 (((parameter $temperature $oxidation-step) VERY-LOW) -->
 ((thickness $oxide-layer) VERY-THIN) MAYBE)
 (((parameter $duration $oxidation-step) LONG) -->
 ((thickness $oxide-layer) THICK) VERY-LIKELY)
 (((parameter $duration $oxidation-step) SHORT) -->
 ((thickness $oxide-layer) THIN) VERY-LIKELY)
 (((parameter $duration $oxidation-step) VERY-LONG) -->
 ((thickness $oxide-layer) VERY-THICK) VERY-LIKELY)
 (((parameter $duration $oxidation-step) VERY-SHORT) -->
 ((thickness $oxide-layer) VERY-THIN) VERY-LIKELY)
))

226 Appendix E:

;; Initial concentrations and implant doses determine implant concentrations
;; Same dopant species
(defGenericRule Implant-Dose-Affects-Concentration-1
 :variables
 (($implant-step |:| time-interval)
 ($old-layer e (new-layers $implant-step)))
 :conditions
 (;; The step is an implantation step
 (is-type das-ion-implantation (process-at $implant-step))
 (is-type silicon
 (@ (material (any-member (@ (layer-regions $old-layer)
 (start-of $implant-step))))
 (start-of $implant-step)))
 ;; The implant element type is the same as the existing dominant dopant
 (V=
 (@ (dopant-type (parameter $dopant $implant-step))
 (start-of $implant-step))
 (@ (dopant-type (dopant (any-member (@ (layer-regions $old-layer)
 (start-of $implant-step)))))
 (start-of $implant-step))))
 :rule-patterns
 (
 ((($dose $implant-step) HIGH) -->
 ((concentration
 (@ (layer (any-member (new-layer $old-layer $implant-step)))
 (end-of $implant-step))) HIGH) MUST)
 ((($dose $implant-step) LOW) -->
 ((concentration
 (@ (layer (any-member (new-layer $old-layer $implant-step)))
 (end-of $implant-step))) LOW) MUST)
 ((($dose $implant-step) VERY-HIGH) -->
 ((concentration
 (@ (layer (any-member (new-layer $old-layer $implant-step)))
 (end-of $implant-step))) VERY-HIGH) MUST)
 ((($dose $implant-step) VERY-LOW) -->
 ((concentration
 (@ (layer (any-member (new-layer $old-layer $implant-step)))
 (end-of $implant-step))) VERY-LOW) MUST)
 (((concentration $old-layer) HIGH) -->
 ((concentration
 (@ (layer (any-member (new-layer $old-layer $implant-step)))
 (end-of $implant-step))) HIGH) VERY-LIKELY)
 (((concentration $old-layer) LOW) -->
 ((concentration
 (@ (layer (any-member (new-layer $old-layer $implant-step)))
 (end-of $implant-step))) LOW) VERY-LIKELY)
 (((concentration $old-layer) VERY-HIGH) -->
 ((concentration
 (@ (layer (any-member (new-layer $old-layer $implant-step)))
 (end-of $implant-step))) VERY-HIGH) VERY-LIKELY)
 (((concentration $old-layer) VERY-LOW) -->
 ((concentration
 (@ (layer (any-member (new-layer $old-layer $implant-step)))
 (end-of $implant-step))) VERY-LOW) VERY-LIKELY)
))

Generic Rules 227

;; Opposite dopant species, implant does not change dominant dopant type
(defGenericRule Implant-Dose-Affects-Concentration-2
 :variables (($implant-step |:| time-interval)
 ($old-layer e (new-layers $implant-step)))
 :conditions
 ((is-type das-ion-implantation (process-at $implant-step))
 (is-type silicon
 (@ (material (any-member (@ (layer-regions $old-layer)
 (start-of $implant-step))))
 (start-of $implant-step)))
 ;; The implant element type is not the same as the existing dominant dopant
 (:NOT (V= (@ (dopant-type (parameter $dopant $implant-step))
 (start-of $implant-step))
 (@ (dopant-type
 (dopant (any-member (@ (layer-regions $old-layer)
 (start-of $implant-step)))))
 (start-of $implant-step))))
 ;; The implant doesn't change the dominant dopant type
 (V= (@ (dopant-type
 (dopant (any-member (new-layer $old-layer $implant-step))))
 (end-of $implant-step))
 (@ (dopant-type
 (dopant (any-member (@ (layer-regions $old-layer)
 (start-of $implant-step)))))
 (start-of $implant-step))))
 :rule-patterns
 (((($dose $implant-step) HIGH) -->
 ((concentration
 (@ (layer (any-member (new-layer $old-layer $implant-step)))
 (end-of $implant-step))) LOW) VERY-LIKELY)
 ((($dose $implant-step) LOW) -->
 ((concentration
 (@ (layer (any-member (new-layer $old-layer $implant-step)))
 (end-of $implant-step))) HIGH) VERY-LIKELY)
 ((($dose $implant-step) VERY-HIGH) -->
 ((concentration
 (@ (layer (any-member (new-layer $old-layer $implant-step)))
 (end-of $implant-step))) VERY-LOW) VERY-LIKELY)
 ((($dose $implant-step) VERY-LOW) -->
 ((concentration
 (@ (layer (any-member (new-layer $old-layer $implant-step)))
 (end-of $implant-step))) VERY-HIGH) VERY-LIKELY)
 (((concentration $old-layer) HIGH) -->
 ((concentration
 (@ (layer (any-member (new-layer $old-layer $implant-step)))
 (end-of $implant-step))) HIGH) VERY-LIKELY)
 (((concentration $old-layer) LOW) -->
 ((concentration
 (@ (layer (any-member (new-layer $old-layer $implant-step)))
 (end-of $implant-step))) LOW) VERY-LIKELY)
 (((concentration $old-layer) VERY-HIGH) -->
 ((concentration
 (@ (layer (any-member (new-layer $old-layer $implant-step)))
 (end-of $implant-step))) VERY-HIGH) VERY-LIKELY)
 (((concentration $old-layer) VERY-LOW) -->
 ((concentration
 (@ (layer (any-member (new-layer $old-layer $implant-step)))
 (end-of $implant-step))) VERY-LOW) VERY-LIKELY)))

228 Appendix E:

;; Opposite dopant species, implant does change dominant dopant type
(defGenericRule Implant-Dose-Affects-Concentration-3
 :variables (($implant-step |:| time-interval)
 ($old-layer e (new-layers $implant-step)))
 :conditions
 ((is-type das-ion-implantation (process-at $implant-step))
 (is-type silicon
 (@ (material (any-member (@ (layer-regions $old-layer)
 (start-of $implant-step))))
 (start-of $implant-step)))
 ;; The old-layer is not undoped
 (:NOT (V= (@ (dopant (any-member (@ (layer-regions $old-layer)
 (start-of $implant-step))))
 (start-of $implant-step))
 NO-DOPANT))
 ;; The implant element type is not the same as the existing dominant dopant
 (:NOT (V= (@ (dopant-type (parameter $dopant $implant-step))
 (start-of $implant-step))
 (@ (dopant-type
 (dopant (any-member (@ (layer-regions $old-layer)
 (start-of $implant-step)))))
 (start-of $implant-step))))
 ;; The implant changes the dominant dopant type
 (:NOT
 (V= (@ (dopant-type
 (dopant (any-member (new-layer $old-layer $implant-step))))
 (end-of $implant-step))
 (@ (dopant-type
 (dopant (any-member (@ (layer-regions $old-layer)
 (end-of $implant-step)))))
 (end-of $implant-step)))))
 :rule-patterns
 (((($dose $implant-step) HIGH) -->
 ((concentration
 (@ (layer (any-member (new-layer $old-layer $implant-step)))
 (end-of $implant-step))) HIGH) VERY-LIKELY)
 ((($dose $implant-step) LOW) -->
 ((concentration
 (@ (layer (any-member (new-layer $old-layer $implant-step)))
 (end-of $implant-step))) LOW) VERY-LIKELY)
 ((($dose $implant-step) VERY-HIGH) -->
 ((concentration
 (@ (layer (any-member (new-layer $old-layer $implant-step)))
 (end-of $implant-step))) VERY-HIGH) VERY-LIKELY)
 ((($dose $implant-step) VERY-LOW) -->
 ((concentration
 (@ (layer (any-member (new-layer $old-layer $implant-step)))
 (end-of $implant-step))) VERY-LOW) VERY-LIKELY)
 (((concentration $old-layer) HIGH) -->
 ((concentration
 (@ (layer (any-member (new-layer $old-layer $implant-step)))
 (end-of $implant-step))) LOW) VERY-LIKELY)
 (((concentration $old-layer) LOW) -->
 ((concentration
 (@ (layer (any-member (new-layer $old-layer $implant-step)))
 (end-of $implant-step))) HIGH) VERY-LIKELY)
 (((concentration $old-layer) VERY-HIGH) -->
 ((concentration

Generic Rules 229

 (@ (layer (any-member (new-layer $old-layer $implant-step)))
 (end-of $implant-step))) VERY-LOW) VERY-LIKELY)
 (((concentration $old-layer) VERY-LOW) -->
 ((concentration
 (@ (layer (any-member (new-layer $old-layer $implant-step)))
 (end-of $implant-step))) VERY-HIGH) VERY-LIKELY)))

(defGenericRule Initial-Doping-Affects-Final
 :variables (($layer |:| layer))
 :conditions
 (;; The layer existed at the beginning of the process
 (exists-at $layer start)
 ;; The layer was initially doped
 (:NOT (v= (@ (dopant
 (any-member (@ (layer-regions $layer) start))) start)
 NO-DOPANT))
 ;; The layer survives to the end of the process
 (exists-at $layer end))
 :rule-patterns
 ((((start-concentration $layer) HIGH) -->
 ((concentration $layer) HIGH) VERY-LIKELY)
 (((start-concentration $layer) LOW) -->
 ((concentration $layer) LOW) VERY-LIKELY)
 (((start-concentration $layer) VERY-HIGH) -->
 ((concentration $layer) VERY-HIGH) VERY-LIKELY)
 (((start-concentration $layer) VERY-LOW) -->
 ((concentration $layer) VERY-LOW) VERY-LIKELY)))

;;; Generic Rules for Type 2 causal associations: phenomenon captured by models,
;;; but topological/catastrophic changes involved.

;; If the substrate dopant type is initially wrong, it is wrong forever.
(defGenericRule Initial-Dopant-Type-Affects-Final
 :variables (($layer |:| layer))
 :conditions
 (;; The layer existed at the beginning of the process
 (exists-at $layer start)
 ;; The layer was initially doped
 (:NOT (v= (@ (dopant
 (any-member (@ (layer-regions $layer) start))) start)
 NO-DOPANT))
 ;; The layer survives to the end of the process
 (exists-at $layer end))
 :rule-patterns
 ((((start-dopant-type $layer) wrong-type) -->
 ((dopant-type $layer) wrong-type) VERY-LIKELY)))

230 Appendix E:

;; An oxide that normally survives to the end of the process will not be present
;; if the oxidation step that creates it is not performed.
(defGenericRule Oxidation-Step-Omitted
 :variables (($oxidation-step |:| time-interval)
 ($oxide-layer |:| layer))
 :conditions
 (;; The step was an oxidation step
 (:OR (is-type das-oxidation (process-at $oxidation-step))
 (is-type das-ox/drive-in (process-at $oxidation-step)))
 ;; The oxide layer was created during it.
 (created-during $oxide-layer $oxidation-step)
 (is-type oxide
 (@ (material (any-member (@ (layer-regions $oxide-layer)
 (end-of $oxidation-step))))
 (end-of $oxidation-step)))
 ;; The layer normally survives to the end of the process
 (exists-at $oxide-layer end))
 :rule-patterns
 ((($oxidation-step not-done) -->
 ($oxide-layer non-existent) VERY-LIKELY)))

;; If an implant creates a structure by changing the dominant dopant type,
;; then the structure will not exist if the implant is not performed, or if
;; the wrong species is implanted.
(defGenericRule Implant-Step-Omitted
 :variables (($implant-step |:| time-interval)
 ($old-layer e (new-layers $implant-step)))
 :conditions
 ((is-type das-ion-implantation (process-at $implant-step))
 ;; The old-layer is doped
 (:NOT (V= (@ (dopant-type
 (dopant (any-member (@ (layer-regions $old-layer)
 (start-of $implant-step)))))
 (start-of $implant-step))
 NO-DOPANT))
 ;; The implant element type is not the same as the existing dominant dopant
 (:NOT (V= (@ (dopant-type (parameter $dopant $implant-step))
 (start-of $implant-step))
 (@ (dopant-type
 (dopant (any-member (@ (layer-regions $old-layer)
 (start-of $implant-step)))))
 (start-of $implant-step))))
 ;; The implant changes the dominant dopant type
 (V= (@ (dopant-type (parameter $dopant $implant-step))
 (start-of $implant-step))
 (@ (dopant-type
 (dopant (any-member (new-layer $old-layer $implant-step))))
 (end-of $implant-step))))
 :rule-patterns
 ((($implant-step not-done) -->
 ((@ (layer (any-member (new-layer $old-layer $implant-step)))
 (end-of $implant-step)) non-existent) VERY-LIKELY)
 (((parameter $dopant $implant-step) wrong-type) -->
 ((@ (layer (any-member (new-layer $old-layer $implant-step)))
 (end-of $implant-step)) non-existent) MAYBE)))

Generic Rules 231

;; If a normally masked implant that creates a structure by changing the dominant
;; dopant type is not masked, then the dopant type will be wrong in the regions
;; that would normally be masked.
(defGenericRule Implant-Not-Masked-1
 :variables (($implant-step |:| time-interval)
 ($old-layer e (new-layers $implant-step)))
 :conditions
 ((is-type das-ion-implantation (process-at $implant-step))
 ;; The implant element type is not the same as the existing dominant dopant
 (:NOT (V= (@ (dopant-type (parameter $dopant $implant-step))
 (start-of $implant-step))
 (@ (dopant-type
 (dopant (any-member (@ (layer-regions $old-layer)
 (start-of $implant-step)))))
 (start-of $implant-step))))
 ;; The implant changes the dominant dopant type
 (V= (@ (dopant-type (parameter $dopant $implant-step))
 (start-of $implant-step))
 (@ (dopant-type
 (dopant (any-member (new-layer $old-layer $implant-step))))
 (end-of $implant-step)))
 ;; The implant is normally masked
 (exists $lr e (@ (layer-regions $old-layer) (start-of $implant-step))
 (is-type photoresist (@ (material (surface (region-type $lr)))
 (start-of $implant-step)))))
 :rule-patterns
 ((($implant-step not-masked) --> ((dopant-type $old-layer) wrong-type)
 Maybe)))

232 Appendix E:

;;; Generic Rules for Type 3 causal associations: phenomenon not captured by models,
;;; and may or may not involve topological/catastrophic changes.

;; Intra-level rule for rules concerning effect of lateral changes
;; in dimensions of self-aligned structures.
(defGenericRule Structure-Masked-Implant
 :variables
 (($implant-step |:| time-interval)
 ($masking-layer e (new-layers $implant-step))
 ($masked-layer e (new-layers $implant-step))
 ($masking-structure e (@ (layer-regions $masking-layer)
 (start-of $implant-step)))
 ($masked-structure e (@ (layer-regions $masked-layer)
 (start-of $implant-step)))
 ($implanted-region e (@ (regions (region-type $masking-structure))
 (start-of $implant-step))))
 :conditions
 ((is-type das-ion-implantation (process-at $implant-step))
 (:NOT (V= $masking-layer $masked-layer))
 (V= (@ (region-type $masking-structure) (start-of $implant-step))
 (@ (region-type $masked-structure) (start-of $implant-step)))
 (:NOT (V= (@ (left $implanted-region) (start-of $implant-step))
 REGION-EDGE))
 (:NOT (V= (@ (right $implanted-region) (start-of $implant-step))
 REGION-EDGE))
 (:NOT (is-type photoresist
 (@ (material (surface (region-type $implanted-region)))
 (start-of $implant-step))))
 (:NOT (is-type photoresist
 (@ (material (surface (region-type (left $implanted-region))))
 (start-of $implant-step))))
 (:NOT (is-type photoresist
 (@ (material
 (surface (region-type (right $implanted-region))))
 (start-of $implant-step))))
 (< (ion-bottom (@ (region-type $implanted-region)
 (start-of $implant-step))
 $implant-step)
 (@ (top-pos $masking-structure) (start-of $implant-step)))
 (> (ion-bottom (@ (region-type $implanted-region)
 (start-of $implant-step))
 $implant-step)
 (@ (top-pos $masked-structure) (start-of $implant-step)))
 (exists $lr e (new-layer $masked-layer $implant-step)
 (V= (@ (region-type $lr) (end-of $implant-step))
 (@ (region-type (left $implanted-region))
 (end-of $implant-step))))
 (exists $lr e (new-layer $masked-layer $implant-step)
 (V= (@ (region-type $lr) (end-of $implant-step))
 (@ (region-type (right $implanted-region))
 (end-of $implant-step)))))
 :rule-patterns
 ((((width $masking-layer in $implanted-region) HIGH) -->
 ((width $masked-layer in $implanted-region) HIGH) VERY-LIKELY)
 (((width $masking-layer in $implanted-region) LOW) -->
 ((width $masked-layer in $implanted-region) LOW) VERY-LIKELY)))

Generic Rules 233

(defGenericRule Insufficient/Excess-Lateral-Etch
 :variables
 (($etch-step |:| time-interval)
 ($layer e (changed-layers $etch-step))
 ($layer-region e (@ (layer-regions $layer) (start-of $etch-step)))
 ($wr e (@ (regions (region-type $layer-region)) (start-of
$etch-step))))
 :conditions
 (
 ;; Condition 1: The step is an etch step involving lateral etching
 (is-type das-etch (process-at $etch-step))
 (< (parameter $etch-angle $etch-step) etch-angle-threshold)
 (:NOT (V= (@ (left $wr) (start-of $etch-step)) REGION-EDGE))
 (:NOT (V= (@ (right $wr) (start-of $etch-step)) REGION-EDGE))

 ;; Condition 2: The layer-region survives the etch step
 (:NOT (destroyed $layer-region (end-of $etch-step)))

 ;; Condition 3: Those around it don't, and the step involves overetching
 (exists $lr e (@ (layer-regions $layer) (start-of $etch-step))
 (:AND
 (V= (@ (region-type $lr) (start-of $etch-step))
 (@ (region-type (left $wr)) (start-of $etch-step)))
 (> (parameter $duration $etch-step)
 (etch-destroy-time $lr $etch-step))))

 (exists $lr e (@ (layer-regions $layer) (start-of $etch-step))
 (:AND
 (V= (@ (region-type $lr) (start-of $etch-step))
 (@ (region-type (right $wr)) (start-of $etch-step)))
 (> (parameter $duration $etch-step)
 (etch-destroy-time $lr $etch-step))))
)
 :rule-patterns
 (
 (($etch-step under-etch) --> ((width $layer in $wr) HIGH) MAYBE)
 (($etch-step under-etch) --> ((width $layer in $wr) VERY-HIGH)
 VERY-LIKELY)
 (($etch-step over-etch) --> ((width $layer in $wr) LOW) MAYBE)
 (($etch-step over-etch) --> ((width $layer in $wr) VERY-LOW)
 VERY-LIKELY)
))

;; Insufficient/excess exposure of resist can change the lateral dimensions of
;; the structures patterned by the resist.
(defGenericRule Insufficient/Excess-Photoresist-Exposure
 :variables
 (($expose-step |:| time-interval)
 ($region-type |:| region-type)
 ($wr e (@ (regions $region-type) (end-of $expose-step))))
 :conditions
 (
 (is-type das-mask-expose (process-at $expose-step))

 (is-type photoresist (@ (material (surface $region-type))
 (end-of $expose-step)))

234 Appendix E:

 (:NOT (is-soft-photoresist? (@ (material (surface $region-type))
 (end-of $expose-step))))

 (:NOT (V= (@ (left $wr) (start-of $expose-step)) REGION-EDGE))
 (:NOT (V= (@ (right $wr) (start-of $expose-step)) REGION-EDGE))

 (is-soft-photoresist?
 (@ (material (surface (region-type (left $wr))))
 (end-of $expose-step)))
 (is-soft-photoresist?
 (@ (material (surface (region-type (right $wr))))
 (end-of $expose-step)))
)
 :rule-patterns
 (
 (($expose-step under-expose) --> ((width photoresist in $wr) HIGH)
 MAYBE)
 (($expose-step under-expose) -->
 ((width photoresist in $wr) VERY-HIGH) VERY-LIKELY)
 (($expose-step over-expose) --> ((width photoresist in $wr) LOW)
 MAYBE)
 (($expose-step over-expose) -->
 ((width photoresist in $wr) VERY-LOW) VERY-LIKELY)
))

;; Intra-level rule for transfer of incorrect lateral dimension in resist to
;; layer patterned by resist.
(defGenericRule Resist-Masked-Etch
 :variables
 (($etch-step |:| time-interval)
 ($etched-layer e (changed-layers $etch-step))
 ($etched-lr e (@ (layer-regions $etched-layer)
 (start-of $etch-step)))
 ($wr e (@ (regions (region-type $etched-lr))
 (start-of $etch-step))))
 :conditions
 (
 (is-type das-etch (process-at $etch-step))

 (exists-at $etched-lr (start-of $etch-step))
 (:NOT (is-type photoresist (@ (material $etched-lr)
 (start-of $etch-step))))
 (is-type photoresist (@ (material (surface (region-type $etched-lr)))
 (start-of $etch-step)))

 (:NOT (V= (@ (left $wr) (start-of $etch-step)) REGION-EDGE))
 (:NOT (V= (@ (right $wr) (start-of $etch-step)) REGION-EDGE))

 (exists $lr e (@ (layer-regions $etched-layer) (start-of $etch-step))
 (:AND
 (V= (@ (region-type $lr) (start-of $etch-step))
 (@ (region-type (left $wr)) (start-of $etch-step)))
 (destroyed $lr (end-of $etch-step))))
 (exists $lr e (@ (layer-regions $etched-layer) (start-of $etch-step))
 (:AND
 (V= (@ (region-type $lr) (start-of $etch-step))

Generic Rules 235

 (@ (region-type (right $wr)) (start-of $etch-step)))
 (destroyed $lr (end-of $etch-step))))
)
 :rule-patterns
 (
 (((width photoresist in $wr) HIGH) -->
 ((width $etched-layer in $wr) HIGH) MUST)
 (((width photoresist in $wr) LOW) -->
 ((width $etched-layer in $wr) LOW) MUST)
 (((width photoresist in $wr) VERY-HIGH) -->
 ((width $etched-layer in $wr) VERY-HIGH) MUST)
 (((width photoresist in $wr) VERY-LOW) -->
 ((width $etched-layer in $wr) VERY-LOW) MUST)
))

;; When a silicon layer containing Boron or Arsenic is partially oxidized, some of the boron
;; is lost into the oxide, while the arsenic “piles up” in the silicon at the interface.
;; If the dominant dopant type is N, then the concentration increases. else it decreases.
(defGenericRule Thermal-Oxidation-Redistributes-Impurities-N
 :variables
 (($oxidation-step |:| time-interval)
 ($doped-layer |:| layer)
 ($doped-lr e (@ (layer-regions $doped-layer)
 (end-of $oxidation-step))))
 :conditions
 ((:OR (is-type das-oxidation (process-at $oxidation-step))
 (is-type das-ox/drive-in (process-at $oxidation-step)))
 (exists-at $doped-lr (end-of $oxidation-step))
 (V= |Silicon| (@ (material $doped-lr) (start-of $oxidation-step)))
 (uppermost-oxidation-survivor $doped-lr $oxidation-step)
 (is-type N-dopant (@ (dopant $doped-lr) (start-of $oxidation-step)))
 (> (parameter $duration $oxidation-step)
 (oxidation-destroy-time
 (@ (above $doped-lr) (start-of $oxidation-step))
 (parameter $temperature $oxidation-step)
 (start-of $oxidation-step))))
 :rule-patterns
 (
 (((parameter $duration $oxidation-step) LONG) -->
 ((concentration $doped-layer) HIGH) VERY-LIKELY)
 (((parameter $duration $oxidation-step) VERY-LONG) -->
 ((concentration $doped-layer) HIGH) LIKELY)
 (((parameter $duration $oxidation-step) SHORT) -->
 ((concentration $doped-layer) LOW) VERY-LIKELY)
 (((parameter $duration $oxidation-step) VERY-SHORT) -->
 ((concentration $doped-layer) LOW) VERY-LIKELY)
))

236 Appendix E:

(defGenericRule Thermal-Oxidation-Redistributes-Impurities-P
 :variables
 (($oxidation-step |:| time-interval)
 ($doped-layer |:| layer)
 ($doped-lr e (@ (layer-regions $doped-layer)
 (end-of $oxidation-step))))
 :conditions
 ((:OR (is-type das-oxidation (process-at $oxidation-step))
 (is-type das-ox/drive-in (process-at $oxidation-step)))
 (exists-at $doped-lr (end-of $oxidation-step))
 (V= |Silicon| (@ (material $doped-lr) (start-of $oxidation-step)))
 (uppermost-oxidation-survivor $doped-lr $oxidation-step)
 (is-type P-dopant (@ (dopant $doped-lr) (start-of $oxidation-step)))
 (> (parameter $duration $oxidation-step)
 (oxidation-destroy-time
 (@ (above $doped-lr) (start-of $oxidation-step))
 (parameter $temperature $oxidation-step)
 (start-of $oxidation-step))))
 :rule-patterns
 (
 (((parameter $duration $oxidation-step) LONG) -->
 ((concentration $doped-layer) LOW) VERY-LIKELY)
 (((parameter $duration $oxidation-step) VERY-LONG) -->
 ((concentration $doped-layer) LOW) LIKELY)
 (((parameter $duration $oxidation-step) SHORT) -->
 ((concentration $doped-layer) HIGH) VERY-LIKELY)
 (((parameter $duration $oxidation-step) VERY-SHORT) -->
 ((concentration $doped-layer) HIGH) VERY-LIKELY)
))

Appendix F: Associations from Generic Rules

This appendix lists the instantiations of the Generic Rules listed in Appendix E that were

obtained by applying the rules to a very simplified representation of the CMOS process.

Legend

Processes:

Oxidation Processes:
Oxidation[1] Gate Oxidation

Implantation Processes:
Implant[5] N+ Source/Drain Implant
Implant[4] P+ Source/Drain Implant
Implant[3] N-Channel Implant
Implant[2] P-Channel Implant
Implant[1] N-Well Implant

Etch Processes:
Etch[1] Poly Gate Etch

Photolithography Processes:
"Select Mask"[5] N+Source/Drain mask
"Select Mask"[4] P+Source/Drain mask
"Select Mask"[3] Gate mask
"Select Mask"[2] N-Channel mask
"Select Mask"[1] N-Well mask

Wafer Regions appearing in rules:
Wafer-Region-4 = PMOS gate region
Wafer-Region-7 = NMOS gate region

238 Appendix F:

Numbered Layers:
No. Name Material Dopant
 1 = Layer-1 Resist-1813
 2 = N-Well-Layer Silicon Arsenic
 3 = Layer-3 Silicon Boron
 4 = P-Channel-Layer Silicon Arsenic
 5 = Layer-5 Resist-1813
 6 = N-Channel-Layer Silicon Boron
 7 = Gate-Oxide-Layer Oxide
 8 = Gate-Oxide-Layer Oxide
 9 = Polysilicon-Layer Polysilicon
10 = Layer-10 Resist-1813
11 = Layer-11 Resist-1813
12 = P+Doped-Poly-Layer Polysilicon Boron
13 = P+Source/Drain-Layer Silicon Boron
14 = Layer-14 Resist-1813
15 = N+Doped-Poly-Layer Polysilicon Arsenic
16 = N+Source/Drain-Layer Silicon Arsenic

Forms appearing in rules:
(@ (LAYER (ANY-MEMBER (NEW-LAYER SUBSTRATE |Implant[2]|)))
 (END-OF |Implant[2]|)) = LAYER-3
(@ (LAYER (ANY-MEMBER (NEW-LAYER LAYER-3 |Implant[3]|)))
 (END-OF |Implant[3]|)) = N-CHANNEL-LAYER
(@ (LAYER (ANY-MEMBER (NEW-LAYER N-WELL-LAYER |Implant[2]|)))
 (END-OF |Implant[2]|)) = P-CHANNEL-LAYER
(@ (LAYER (ANY-MEMBER (NEW-LAYER SUBSTRATE |Implant[1]|)))
 (END-OF |Implant[1]|)) = N-WELL-LAYER
(@ (LAYER (ANY-MEMBER
 (NEW-LAYER P-CHANNEL-LAYER |Implant[4]|)))
 (END-OF |Implant[4]|)) = P+SOURCE/DRAIN-LAYER
(@ (LAYER (ANY-MEMBER
 (NEW-LAYER POLYSILICON-LAYER |Implant[4]|)))
 (END-OF |Implant[4]|)) = P+DOPED-POLY-LAYER
(@ (LAYER (ANY-MEMBER
 (NEW-LAYER N-CHANNEL-LAYER |Implant[5]|)))
 (END-OF |Implant[5]|)) = N+SOURCE/DRAIN-LAYER
(@ (LAYER (ANY-MEMBER
 (NEW-LAYER POLYSILICON-LAYER |Implant[5]|)))
 (END-OF |Implant[5]|)) = N+DOPED-POLY-LAYER

Associations from Generic Rules 239

Category 1 Causal Associations
Running rule OX-TEMP-DETERMINES-OX-THICKNESS -- Executed in 0.4 seconds
Running rule OX-TEMP-DETERMINES-OX-THICKNESS produces 16 rules:

((((PARAMETER $DURATION |Oxidation[1]|) VERY-SHORT) -->
 ((THICKNESS LAYER-7) VERY-THIN) VERY-LIKELY)
 (((PARAMETER $DURATION |Oxidation[1]|) VERY-LONG) -->
 ((THICKNESS LAYER-7) VERY-THICK) VERY-LIKELY)
 (((PARAMETER $DURATION |Oxidation[1]|) SHORT) -->
 ((THICKNESS LAYER-7) THIN) VERY-LIKELY)
 (((PARAMETER $DURATION |Oxidation[1]|) LONG) -->
 ((THICKNESS LAYER-7) THICK) VERY-LIKELY)
 (((PARAMETER $TEMPERATURE |Oxidation[1]|) VERY-LOW) -->
 ((THICKNESS LAYER-7) VERY-THIN) MAYBE)
 (((PARAMETER $TEMPERATURE |Oxidation[1]|) VERY-HIGH) -->
 ((THICKNESS LAYER-7) VERY-THICK) MAYBE)
 (((PARAMETER $TEMPERATURE |Oxidation[1]|) LOW) -->
 ((THICKNESS LAYER-7) THIN) MAYBE)
 (((PARAMETER $TEMPERATURE |Oxidation[1]|) HIGH) -->
 ((THICKNESS LAYER-7) THICK) MAYBE)
 (((PARAMETER $DURATION |Oxidation[1]|) VERY-SHORT) -->
 ((THICKNESS LAYER-8) VERY-THIN) VERY-LIKELY)
 (((PARAMETER $DURATION |Oxidation[1]|) VERY-LONG) -->
 ((THICKNESS LAYER-8) VERY-THICK) VERY-LIKELY)
 (((PARAMETER $DURATION |Oxidation[1]|) SHORT) -->
 ((THICKNESS LAYER-8) THIN) VERY-LIKELY)
 (((PARAMETER $DURATION |Oxidation[1]|) LONG) -->
 ((THICKNESS LAYER-8) THICK) VERY-LIKELY)
 (((PARAMETER $TEMPERATURE |Oxidation[1]|) VERY-LOW) -->
 ((THICKNESS LAYER-8) VERY-THIN) MAYBE)
 (((PARAMETER $TEMPERATURE |Oxidation[1]|) VERY-HIGH) -->
 ((THICKNESS LAYER-8) VERY-THICK) MAYBE)
 (((PARAMETER $TEMPERATURE |Oxidation[1]|) LOW) -->
 ((THICKNESS LAYER-8) THIN) MAYBE)
 (((PARAMETER $TEMPERATURE |Oxidation[1]|) HIGH) -->
 ((THICKNESS LAYER-8) THICK) MAYBE))

240 Appendix F:

Running rule IMPLANT-DOSE-AFFECTS-CONCENTRATION-1 -- Executed in 0.4
seconds
Running rule IMPLANT-DOSE-AFFECTS-CONCENTRATION-1 produces 16 rules:

((((CONCENTRATION SUBSTRATE) VERY-LOW) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER SUBSTRATE |Implant[2]|)))
 (END-OF |Implant[2]|)))
 VERY-LOW)
 VERY-LIKELY)
 (((CONCENTRATION SUBSTRATE) VERY-HIGH) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER SUBSTRATE |Implant[2]|)))
 (END-OF |Implant[2]|)))
 VERY-HIGH)
 VERY-LIKELY)
 (((CONCENTRATION SUBSTRATE) LOW) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER SUBSTRATE |Implant[2]|)))
 (END-OF |Implant[2]|)))
 LOW)
 VERY-LIKELY)
 (((CONCENTRATION SUBSTRATE) HIGH) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER SUBSTRATE |Implant[2]|)))
 (END-OF |Implant[2]|)))
 HIGH)
 VERY-LIKELY)
 ((($DOSE |Implant[2]|) VERY-LOW) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER SUBSTRATE |Implant[2]|)))
 (END-OF |Implant[2]|)))
 VERY-LOW)
 MUST)
 ((($DOSE |Implant[2]|) VERY-HIGH) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER SUBSTRATE |Implant[2]|)))
 (END-OF |Implant[2]|)))
 VERY-HIGH)
 MUST)
 ((($DOSE |Implant[2]|) LOW) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER SUBSTRATE |Implant[2]|)))
 (END-OF |Implant[2]|)))
 LOW)
 MUST)
 ((($DOSE |Implant[2]|) HIGH) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER SUBSTRATE |Implant[2]|)))
 (END-OF |Implant[2]|)))
 HIGH)
 MUST)
 (((CONCENTRATION LAYER-3) VERY-LOW) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER LAYER-3 |Implant[3]|)))
 (END-OF |Implant[3]|)))
 VERY-LOW)
 VERY-LIKELY)

Associations from Generic Rules 241

 (((CONCENTRATION LAYER-3) VERY-HIGH) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER LAYER-3 |Implant[3]|)))
 (END-OF |Implant[3]|)))
 VERY-HIGH)
 VERY-LIKELY)
 (((CONCENTRATION LAYER-3) LOW) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER LAYER-3 |Implant[3]|)))
 (END-OF |Implant[3]|)))
 LOW)
 VERY-LIKELY)
 (((CONCENTRATION LAYER-3) HIGH) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER LAYER-3 |Implant[3]|)))
 (END-OF |Implant[3]|)))
 HIGH)
 VERY-LIKELY)
 ((($DOSE |Implant[3]|) VERY-LOW) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER LAYER-3 |Implant[3]|)))
 (END-OF |Implant[3]|)))
 VERY-LOW)
 MUST)
 ((($DOSE |Implant[3]|) VERY-HIGH) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER LAYER-3 |Implant[3]|)))
 (END-OF |Implant[3]|)))
 VERY-HIGH)
 MUST)
 ((($DOSE |Implant[3]|) LOW) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER LAYER-3 |Implant[3]|)))
 (END-OF |Implant[3]|)))
 LOW)
 MUST)
 ((($DOSE |Implant[3]|) HIGH) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER LAYER-3 |Implant[3]|)))
 (END-OF |Implant[3]|)))
 HIGH)
 MUST))

242 Appendix F:

Running rule IMPLANT-DOSE-AFFECTS-CONCENTRATION-2 -- Executed in 0.2
seconds
Running rule IMPLANT-DOSE-AFFECTS-CONCENTRATION-2 produces 8 rules:

(((($DOSE |Implant[2]|) VERY-LOW) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER N-WELL-LAYER |Implant[2]|)))
 (END-OF |Implant[2]|)))
 VERY-HIGH)
 VERY-LIKELY)
 ((($DOSE |Implant[2]|) VERY-HIGH) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER N-WELL-LAYER |Implant[2]|)))
 (END-OF |Implant[2]|)))
 VERY-LOW)
 VERY-LIKELY)
 ((($DOSE |Implant[2]|) LOW) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER N-WELL-LAYER |Implant[2]|)))
 (END-OF |Implant[2]|)))
 HIGH)
 VERY-LIKELY)
 ((($DOSE |Implant[2]|) HIGH) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER N-WELL-LAYER |Implant[2]|)))
 (END-OF |Implant[2]|)))
 LOW)
 VERY-LIKELY)
 (((CONCENTRATION N-WELL-LAYER) VERY-LOW) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER N-WELL-LAYER |Implant[2]|)))
 (END-OF |Implant[2]|)))
 VERY-LOW)
 VERY-LIKELY)
 (((CONCENTRATION N-WELL-LAYER) VERY-HIGH) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER N-WELL-LAYER |Implant[2]|)))
 (END-OF |Implant[2]|)))
 VERY-HIGH)
 VERY-LIKELY)
 (((CONCENTRATION N-WELL-LAYER) LOW) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER N-WELL-LAYER |Implant[2]|)))
 (END-OF |Implant[2]|)))
 LOW)
 VERY-LIKELY)
 (((CONCENTRATION N-WELL-LAYER) HIGH) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER N-WELL-LAYER |Implant[2]|)))
 (END-OF |Implant[2]|)))
 HIGH)
 VERY-LIKELY))

Associations from Generic Rules 243

Running rule IMPLANT-DOSE-AFFECTS-CONCENTRATION-3 -- Executed in 0.3
seconds
Running rule IMPLANT-DOSE-AFFECTS-CONCENTRATION-3 produces 24 rules:

((((CONCENTRATION SUBSTRATE) VERY-LOW) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER SUBSTRATE |Implant[1]|)))
 (END-OF |Implant[1]|)))
 VERY-HIGH)
 VERY-LIKELY)
 (((CONCENTRATION SUBSTRATE) VERY-HIGH) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER SUBSTRATE |Implant[1]|)))
 (END-OF |Implant[1]|)))
 VERY-LOW)
 VERY-LIKELY)
 (((CONCENTRATION SUBSTRATE) LOW) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER SUBSTRATE |Implant[1]|)))
 (END-OF |Implant[1]|)))
 HIGH)
 VERY-LIKELY)
 (((CONCENTRATION SUBSTRATE) HIGH) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER SUBSTRATE |Implant[1]|)))
 (END-OF |Implant[1]|)))
 LOW)
 VERY-LIKELY)
 ((($DOSE |Implant[1]|) VERY-LOW) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER SUBSTRATE |Implant[1]|)))
 (END-OF |Implant[1]|)))
 VERY-LOW)
 VERY-LIKELY)
 ((($DOSE |Implant[1]|) VERY-HIGH) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER SUBSTRATE |Implant[1]|)))
 (END-OF |Implant[1]|)))
 VERY-HIGH)
 VERY-LIKELY)
 ((($DOSE |Implant[1]|) LOW) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER SUBSTRATE |Implant[1]|)))
 (END-OF |Implant[1]|)))
 LOW)
 VERY-LIKELY)
 ((($DOSE |Implant[1]|) HIGH) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER SUBSTRATE |Implant[1]|)))
 (END-OF |Implant[1]|)))
 HIGH)
 VERY-LIKELY)
 (((CONCENTRATION P-CHANNEL-LAYER) VERY-LOW) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER P-CHANNEL-LAYER |Implant[4]|)))
 (END-OF |Implant[4]|)))
 VERY-HIGH)
 VERY-LIKELY)

244 Appendix F:

 (((CONCENTRATION P-CHANNEL-LAYER) VERY-HIGH) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER P-CHANNEL-LAYER |Implant[4]|)))
 (END-OF |Implant[4]|)))
 VERY-LOW)
 VERY-LIKELY)
 (((CONCENTRATION P-CHANNEL-LAYER) LOW) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER P-CHANNEL-LAYER |Implant[4]|)))
 (END-OF |Implant[4]|)))
 HIGH)
 VERY-LIKELY)
 (((CONCENTRATION P-CHANNEL-LAYER) HIGH) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER P-CHANNEL-LAYER |Implant[4]|)))
 (END-OF |Implant[4]|)))
 LOW)
 VERY-LIKELY)
 ((($DOSE |Implant[4]|) VERY-LOW) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER P-CHANNEL-LAYER |Implant[4]|)))
 (END-OF |Implant[4]|)))
 VERY-LOW)
 VERY-LIKELY)
 ((($DOSE |Implant[4]|) VERY-HIGH) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER P-CHANNEL-LAYER |Implant[4]|)))
 (END-OF |Implant[4]|)))
 VERY-HIGH)
 VERY-LIKELY)
 ((($DOSE |Implant[4]|) LOW) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER P-CHANNEL-LAYER |Implant[4]|)))
 (END-OF |Implant[4]|)))
 LOW)
 VERY-LIKELY)
 ((($DOSE |Implant[4]|) HIGH) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER P-CHANNEL-LAYER |Implant[4]|)))
 (END-OF |Implant[4]|)))
 HIGH)
 VERY-LIKELY)
 (((CONCENTRATION N-CHANNEL-LAYER) VERY-LOW) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER N-CHANNEL-LAYER |Implant[5]|)))
 (END-OF |Implant[5]|)))
 VERY-HIGH)
 VERY-LIKELY)
 (((CONCENTRATION N-CHANNEL-LAYER) VERY-HIGH) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER N-CHANNEL-LAYER |Implant[5]|)))
 (END-OF |Implant[5]|)))
 VERY-LOW)
 VERY-LIKELY)
 (((CONCENTRATION N-CHANNEL-LAYER) LOW) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER N-CHANNEL-LAYER |Implant[5]|)))
 (END-OF |Implant[5]|)))

Associations from Generic Rules 245

 HIGH)
 VERY-LIKELY)
 (((CONCENTRATION N-CHANNEL-LAYER) HIGH) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER N-CHANNEL-LAYER |Implant[5]|)))
 (END-OF |Implant[5]|)))
 LOW)
 VERY-LIKELY)
 ((($DOSE |Implant[5]|) VERY-LOW) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER N-CHANNEL-LAYER |Implant[5]|)))
 (END-OF |Implant[5]|)))
 VERY-LOW)
 VERY-LIKELY)
 ((($DOSE |Implant[5]|) VERY-HIGH) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER N-CHANNEL-LAYER |Implant[5]|)))
 (END-OF |Implant[5]|)))
 VERY-HIGH)
 VERY-LIKELY)
 ((($DOSE |Implant[5]|) LOW) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER N-CHANNEL-LAYER |Implant[5]|)))
 (END-OF |Implant[5]|)))
 LOW)
 VERY-LIKELY)
 ((($DOSE |Implant[5]|) HIGH) -->
 ((CONCENTRATION
 (@ (LAYER (ANY-MEMBER (NEW-LAYER N-CHANNEL-LAYER |Implant[5]|)))
 (END-OF |Implant[5]|)))
 HIGH)
 VERY-LIKELY))

Running rule INITIAL-DOPING-AFFECTS-FINAL -- Executed in 0.2 seconds
Running rule INITIAL-DOPING-AFFECTS-FINAL produces 4 rules:

((((START-CONCENTRATION SUBSTRATE) VERY-LOW) -->
 ((CONCENTRATION SUBSTRATE) VERY-LOW) VERY-LIKELY)
 (((START-CONCENTRATION SUBSTRATE) VERY-HIGH) -->
 ((CONCENTRATION SUBSTRATE) VERY-HIGH) VERY-LIKELY)
 (((START-CONCENTRATION SUBSTRATE) LOW) -->
 ((CONCENTRATION SUBSTRATE) LOW) VERY-LIKELY)
 (((START-CONCENTRATION SUBSTRATE) HIGH) -->
 ((CONCENTRATION SUBSTRATE) HIGH) VERY-LIKELY))

246 Appendix F:

Category 2 Causal Associations
Running rule INITIAL-DOPANT-TYPE-AFFECTS-FINAL -- Executed in 0.1
seconds
Running rule INITIAL-DOPANT-TYPE-AFFECTS-FINAL produces 1 rule:

((((START-DOPANT-TYPE SUBSTRATE) WRONG-TYPE) -->
 ((DOPANT-TYPE SUBSTRATE) WRONG-TYPE) VERY-LIKELY))

Running rule OXIDATION-STEP-OMITTED -- Executed in 0.5 seconds
Running rule OXIDATION-STEP-OMITTED produces 2 rules:

((|Oxidation[1]| NOT-DONE) --> (LAYER-7 NON-EXISTENT) VERY-LIKELY)
((|Oxidation[1]| NOT-DONE) --> (LAYER-8 NON-EXISTENT) VERY-LIKELY)

Running rule IMPLANT-STEP-OMITTED -- Executed in 0.2 seconds
Running rule IMPLANT-STEP-OMITTED produces 10 rules:

((((PARAMETER $DOPANT |Implant[1]|) WRONG-TYPE) -->
 ((@ (LAYER (ANY-MEMBER (NEW-LAYER SUBSTRATE |Implant[1]|)))
 (END-OF |Implant[1]|))
 NON-EXISTENT)
 MAYBE)
 ((|Implant[1]| NOT-DONE) -->
 ((@ (LAYER (ANY-MEMBER (NEW-LAYER SUBSTRATE |Implant[1]|)))
 (END-OF |Implant[1]|))
 NON-EXISTENT)
 VERY-LIKELY)
 (((PARAMETER $DOPANT |Implant[4]|) WRONG-TYPE) -->
 ((@ (LAYER (ANY-MEMBER (NEW-LAYER P-CHANNEL-LAYER |Implant[4]|)))
 (END-OF |Implant[4]|))
 NON-EXISTENT)
 MAYBE)
 ((|Implant[4]| NOT-DONE) -->
 ((@ (LAYER (ANY-MEMBER (NEW-LAYER P-CHANNEL-LAYER |Implant[4]|)))
 (END-OF |Implant[4]|))
 NON-EXISTENT)
 VERY-LIKELY)
 (((PARAMETER $DOPANT |Implant[4]|) WRONG-TYPE) -->
 ((@ (LAYER (ANY-MEMBER (NEW-LAYER POLYSILICON-LAYER |Implant[4]|)))
 (END-OF |Implant[4]|))
 NON-EXISTENT)
 MAYBE)
 ((|Implant[4]| NOT-DONE) -->
 ((@ (LAYER (ANY-MEMBER (NEW-LAYER POLYSILICON-LAYER |Implant[4]|)))
 (END-OF |Implant[4]|))
 NON-EXISTENT)
 VERY-LIKELY)
 (((PARAMETER $DOPANT |Implant[5]|) WRONG-TYPE) -->
 ((@ (LAYER (ANY-MEMBER (NEW-LAYER N-CHANNEL-LAYER |Implant[5]|)))
 (END-OF |Implant[5]|))
 NON-EXISTENT)
 MAYBE)
 ((|Implant[5]| NOT-DONE) -->
 ((@ (LAYER (ANY-MEMBER (NEW-LAYER N-CHANNEL-LAYER |Implant[5]|)))

Associations from Generic Rules 247

 (END-OF |Implant[5]|))
 NON-EXISTENT)
 VERY-LIKELY)
 (((PARAMETER $DOPANT |Implant[5]|) WRONG-TYPE) -->
 ((@ (LAYER (ANY-MEMBER (NEW-LAYER POLYSILICON-LAYER |Implant[5]|)))
 (END-OF |Implant[5]|))
 NON-EXISTENT)
 MAYBE)
 ((|Implant[5]| NOT-DONE) -->
 ((@ (LAYER (ANY-MEMBER (NEW-LAYER POLYSILICON-LAYER |Implant[5]|)))
 (END-OF |Implant[5]|))
 NON-EXISTENT)
 VERY-LIKELY))

Running rule IMPLANT-NOT-MASKED-1 -- Executed in 0.4 seconds
Running rule IMPLANT-NOT-MASKED-1 produces 5 rules:

(((|Implant[1]| NOT-MASKED) -->
 ((DOPANT-TYPE SUBSTRATE) WRONG-TYPE) MAYBE)
 ((|Implant[4]| NOT-MASKED) -->
 ((DOPANT-TYPE P-CHANNEL-LAYER) WRONG-TYPE) MAYBE)
 ((|Implant[4]| NOT-MASKED) -->
 ((DOPANT-TYPE POLYSILICON-LAYER) WRONG-TYPE) MAYBE)
 ((|Implant[5]| NOT-MASKED) -->
 ((DOPANT-TYPE N-CHANNEL-LAYER) WRONG-TYPE) MAYBE)
 ((|Implant[5]| NOT-MASKED) -->
 ((DOPANT-TYPE POLYSILICON-LAYER) WRONG-TYPE) MAYBE))

Category 3 Causal Associations
Running rule STRUCTURE-MASKED-IMPLANT -- Executed in 1.0 seconds
Running rule STRUCTURE-MASKED-IMPLANT produces 4 rules:

((((WIDTH POLYSILICON-LAYER IN WAFER-REGION-7) LOW) -->
 ((WIDTH P-CHANNEL-LAYER IN WAFER-REGION-7) LOW) VERY-LIKELY)
 (((WIDTH POLYSILICON-LAYER IN WAFER-REGION-7) HIGH) -->
 ((WIDTH P-CHANNEL-LAYER IN WAFER-REGION-7) HIGH) VERY-LIKELY)
 (((WIDTH POLYSILICON-LAYER IN WAFER-REGION-4) LOW) -->
 ((WIDTH N-CHANNEL-LAYER IN WAFER-REGION-4) LOW) VERY-LIKELY)
 (((WIDTH POLYSILICON-LAYER IN WAFER-REGION-4) HIGH) -->
 ((WIDTH N-CHANNEL-LAYER IN WAFER-REGION-4) HIGH) VERY-LIKELY))

248 Appendix F:

Running rule INSUFFICIENT/EXCESS-LATERAL-ETCH -- Executed in 0.3 seconds
Running rule INSUFFICIENT/EXCESS-LATERAL-ETCH produces 8 rules:

(((|Etch[1]| OVER-ETCH) -->
 ((WIDTH POLYSILICON-LAYER IN WAFER-REGION-7) VERY-LOW) VERY-LIKELY)
 ((|Etch[1]| OVER-ETCH) -->
 ((WIDTH POLYSILICON-LAYER IN WAFER-REGION-7) LOW) MAYBE)
 ((|Etch[1]| UNDER-ETCH) -->
 ((WIDTH POLYSILICON-LAYER IN WAFER-REGION-7) VERY-HIGH) VERY-LIKELY)
 ((|Etch[1]| UNDER-ETCH) -->
 ((WIDTH POLYSILICON-LAYER IN WAFER-REGION-7) HIGH) MAYBE)
 ((|Etch[1]| OVER-ETCH) -->
 ((WIDTH POLYSILICON-LAYER IN WAFER-REGION-4) VERY-LOW) VERY-LIKELY)
 ((|Etch[1]| OVER-ETCH) -->
 ((WIDTH POLYSILICON-LAYER IN WAFER-REGION-4) LOW) MAYBE)
 ((|Etch[1]| UNDER-ETCH) -->
 ((WIDTH POLYSILICON-LAYER IN WAFER-REGION-4) VERY-HIGH) VERY-LIKELY)
 ((|Etch[1]| UNDER-ETCH) -->
 ((WIDTH POLYSILICON-LAYER IN WAFER-REGION-4) HIGH) MAYBE))

Running rule INSUFFICIENT/EXCESS-PHOTORESIST-EXPOSURE -- Executed in 1.2
seconds
Running rule INSUFFICIENT/EXCESS-PHOTORESIST-EXPOSURE produces 8 rules:

(((|"Select Mask"[3]| OVER-EXPOSE) -->
 ((WIDTH PHOTORESIST IN WAFER-REGION-4) VERY-LOW) VERY-LIKELY)
 ((|"Select Mask"[3]| OVER-EXPOSE) -->
 ((WIDTH PHOTORESIST IN WAFER-REGION-4) LOW) MAYBE)
 ((|"Select Mask"[3]| UNDER-EXPOSE) -->
 ((WIDTH PHOTORESIST IN WAFER-REGION-4) VERY-HIGH) VERY-LIKELY)
 ((|"Select Mask"[3]| UNDER-EXPOSE) -->
 ((WIDTH PHOTORESIST IN WAFER-REGION-4) HIGH) MAYBE)
 ((|"Select Mask"[3]| OVER-EXPOSE) -->
 ((WIDTH PHOTORESIST IN WAFER-REGION-7) VERY-LOW) VERY-LIKELY)
 ((|"Select Mask"[3]| OVER-EXPOSE) -->
 ((WIDTH PHOTORESIST IN WAFER-REGION-7) LOW) MAYBE)
 ((|"Select Mask"[3]| UNDER-EXPOSE) -->
 ((WIDTH PHOTORESIST IN WAFER-REGION-7) VERY-HIGH) VERY-LIKELY)
 ((|"Select Mask"[3]| UNDER-EXPOSE) -->
 ((WIDTH PHOTORESIST IN WAFER-REGION-7) HIGH) MAYBE))

Associations from Generic Rules 249

Running rule RESIST-MASKED-ETCH -- Executed in 0.3 seconds
Running rule RESIST-MASKED-ETCH produces 8 rules:

((((WIDTH PHOTORESIST IN WAFER-REGION-7) VERY-LOW) -->
 ((WIDTH POLYSILICON-LAYER IN WAFER-REGION-7) VERY-LOW) MUST)
 (((WIDTH PHOTORESIST IN WAFER-REGION-7) VERY-HIGH) -->
 ((WIDTH POLYSILICON-LAYER IN WAFER-REGION-7) VERY-HIGH) MUST)
 (((WIDTH PHOTORESIST IN WAFER-REGION-7) LOW) -->
 ((WIDTH POLYSILICON-LAYER IN WAFER-REGION-7) LOW) MUST)
 (((WIDTH PHOTORESIST IN WAFER-REGION-7) HIGH) -->
 ((WIDTH POLYSILICON-LAYER IN WAFER-REGION-7) HIGH) MUST)
 (((WIDTH PHOTORESIST IN WAFER-REGION-4) VERY-LOW) -->
 ((WIDTH POLYSILICON-LAYER IN WAFER-REGION-4) VERY-LOW) MUST)
 (((WIDTH PHOTORESIST IN WAFER-REGION-4) VERY-HIGH) -->
 ((WIDTH POLYSILICON-LAYER IN WAFER-REGION-4) VERY-HIGH) MUST)
 (((WIDTH PHOTORESIST IN WAFER-REGION-4) LOW) -->
 ((WIDTH POLYSILICON-LAYER IN WAFER-REGION-4) LOW) MUST)
 (((WIDTH PHOTORESIST IN WAFER-REGION-4) HIGH) -->
 ((WIDTH POLYSILICON-LAYER IN WAFER-REGION-4) HIGH) MUST))

Running rule THERMAL-OXIDATION-REDISTRIBUTES-IMPURITIES-N -- Executed in
0.5 seconds
Running rule THERMAL-OXIDATION-REDISTRIBUTES-IMPURITIES-N produces 4
rules:

((((PARAMETER $DURATION |Oxidation[1]|) VERY-SHORT) -->
 ((CONCENTRATION LAYER-4) LOW) VERY-LIKELY)
 (((PARAMETER $DURATION |Oxidation[1]|) SHORT) -->
 ((CONCENTRATION LAYER-4) LOW) VERY-LIKELY)
 (((PARAMETER $DURATION |Oxidation[1]|) VERY-LONG) -->
 ((CONCENTRATION LAYER-4) HIGH) LIKELY)
 (((PARAMETER $DURATION |Oxidation[1]|) LONG) -->
 ((CONCENTRATION LAYER-4) HIGH) VERY-LIKELY))

Running rule THERMAL-OXIDATION-REDISTRIBUTES-IMPURITIES-P -- Executed in
0.2 seconds
Running rule THERMAL-OXIDATION-REDISTRIBUTES-IMPURITIES-P produces 4
rules:

((((PARAMETER $DURATION |Oxidation[1]|) VERY-SHORT) -->
 ((CONCENTRATION LAYER-6) HIGH) VERY-LIKELY)
 (((PARAMETER $DURATION |Oxidation[1]|) SHORT) -->
 ((CONCENTRATION LAYER-6) HIGH) VERY-LIKELY)
 (((PARAMETER $DURATION |Oxidation[1]|) VERY-LONG) -->
 ((CONCENTRATION LAYER-6) LOW) LIKELY)
 (((PARAMETER $DURATION |Oxidation[1]|) LONG) -->
 ((CONCENTRATION LAYER-6) LOW)
 VERY-LIKELY))

Running 15 generic rules produces 122 instantiations.

