
KEY OBJECTS IN GARBAGE COLLECTION

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

Barry Hayes

March 1993

c
 Copyright 1993 by Barry Hayes

All Rights Reserved

ii

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Robert W Floyd
(Principal Advisor)

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Hans-Juergen Boehm

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

John L. Hennessy

Approved for the University Committee

on Graduate Studies:

iii

Abstract

When the cost of global garbage collection in a system grows large, the system can

be redesigned to use generational collection [28, 30, 40]. The newly-created objects

usually have a much shorter half-life than average, and by concentrating the collector's

e�orts on them a large fraction of the garbage can be collected at a tiny fraction of

the cost.

The objects that survive generational collection may still become garbage, and

the current practice is to perform occasional global garbage collections to purge these

objects from the system, and again, the cost of doing these collections may become

prohibitive when the volume of memory increases. Previous research has noted that

the objects that survive generational collection often are born, promoted, and col-

lected in large clusters[41, 21].

In this dissertation I show that carefully selected semantically or structurally

important key objects can be drawn from the clusters and collected separately; when

a key object becomes unreachable, the collector can take this as a hint to collect the

cluster from which the key was drawn.

To gauge the e�ectiveness of key objects, their use was simulated in ParcPlace's

ObjectworksnSmalltalk system[31]. The objects selected as keys were those that, as

young objects, had pointers to them stored into old objects. The collector attempts

to create a cluster for each key by gathering together all of the objects reachable from

that key and from no previous key.

Using this simple heuristic for key objects, the collector �nds between 41% and

92% of the clustered garbage in a suite of simple test programs. Except for one

program in the suite, about 95% of the time these key objects direct the collector to

iv

a cluster that is garbage. The exception should be heeded in improving the heuristics.

In a replay of an interactive session, key object collection �nds 59% of the clustered

garbage and 66% of suggested targets are indeed garbage.

v

Acknowledgements

It is a rare event for more than one person to be listed as the author of a thesis, but

I doubt that one person could write a thesis alone. To mention by name all of the

contributors to the intellectual exploration that has lead me to write this would be a

Herculean task, and I regret that I can't thank everyone personally.

The work presented here is the product of collaboration with many people at the

Xerox Palo Alto Research Center, where I have been ensconced for several years now1.

I was initially hired by Mark Weiser to work on a garbage collector for Cedar devised

by Danny Bobrow and still haven't quite left yet.

There was widespread interest in the initial project and follow-up. The expertise

about the internal workings of Cedar was well-distributed around the lab | I seem

to recall most of my help coming from Russ Atkinson, Bob Hagman, Peter Kessler,

Carl Hauser, Alan Demers, and Mike Spreitzer | able navigators all. Willie-Sue Orr

was particularly brave | together we made the last Dorado microcode change.

The population of collector-heads in my environment has been changing through

the years. Hans Boehm has been the continuing local presence, ready to hear my new

ideas and share his. His questioning keeps me on my toes and makes me think at least

a bit more than I talk. Frank Jackson found me a raft of guinea pigs at ParcPlace

systems for the �rst experiment that supported key objects, arranged a source license

of Objectworks for me, and has been my native guide in that territory. Paul Wilson

generates more ideas over a beer than any three other people I know. I look forward

to continuing our friendship.

1Special thanks to Lia Adams, who taught me never to subtract years from each other | you
only learn things you'd rather not know.

vi

Chapter 3 would not have been possible without the volunteers who allowed me

to slow down their Dorados with my data-gathering code. Thanks go out to Rick

Beach on Shangrila, Peter Kessler on Bennington, Subhana Menis on Saratoga, Steve

Wallgren on Fremont and many others. Both Steve Wallgren and Polle Zellweger

went far beyond the call of duty and endured unreliable and painfully slow beta-test

versions of the code.

The continuing support from Xerox has been invaluable. Sharon Johnson managed

to �nd disk space for the unreasonable volume of data I was generating. Lorna Fear

and Anne Dobson did more support work on my behalf than I could ever repay. I am

glad that John White, if he subtracts years, has put up with my continued presence

for so long.

Continuing �nancial support for this work was supplied by the Northern California

Chapter of ARCS, Inc. Some of the gaps were �lled by the Dr. John Koza Fellowship,

and the Schlumberger Foundation Collegiate Award Fellowship in Computer Science.

I would have been unable to continue in graduate school if my patchwork funding

had not been pieced together, year after year, by the Reverend Dr. Carolyn Tajnai.

My parents and sister have been supportive of my work and life in all ways, and

without the sense of curiousity and willingness to risk failure that they gave me I

would have neither started nor �nished graduate school.

I would have been a quivering mass of ooze long ago if all I did was work on

garbage collection. Thanks go out to The Diners | Yglennie, Ystewie, Yjohnny,

Yrichie, and Ycraigie founding members | who saw to it that if I wasn't happy, at

least I was fat. Brian and Victoria encouraged me to go to graduate school in the

�rst place, and I don't hold it against them. Don talked me into staying when I was

ready to chuck it, and I don't hold it against him, either. Marshall, Aaron, Penni,

and Pavel have put up with more of my bad bidding and bad play than I can thank

them for. If the four of them had been in the same place at the same time, I would

have had to �nd other things to do at lunch. Miriam, Geo�, Kate, and a few hundred

other people are a joy to sing with, and Bill kept us all sounding good. A collection

of sisters, cousins, aunts, police, pirates, tars, daughters, dragoons, ancestors, and a

fair number of electricians, carpenters, and painters also helped my sanity | Bonnie,

vii

Paul, Jay, and Richard can, I hope, stand for the supernumeraries. Mike, Amy and

David have been good friends to me for years, and I couldn't have �nished without

them and all my other friends.

viii

Contents

Abstract iv

Acknowledgements vi

1 Introduction 1

1.1 Tracing Garbage Collection : 2

1.1.1 Mark and Sweep Collection : : : : : : : : : : : : : : : : : : : 3

1.1.2 Copying Collection : 3

1.2 Parallel, Incremental, and Real Time Collection : : : : : : : : : : : : 4

1.3 Generational Garbage Collection : 7

1.3.1 Multiple Generations : 9

1.4 Reference Counting : 10

1.5 Finalization : 12

1.5.1 Promptness : 14

1.6 Garbage Collector Design : 15

1.6.1 Special Cases in the Heap : 16

1.7 Contributions of the Thesis : 16

1.8 Organization of this Document : 17

2 Collecting Large Memories 18

2.1 Finding Rescuing Pointers : 19

2.2 Partial Collection : 21

2.2.1 Restricted Partial Collections : : : : : : : : : : : : : : : : : : 21

2.3 Full Collections : 23

ix

2.4 Bene�ts of Areas : 24

2.5 Areas in Programming Languages : 24

2.6 Age-based Areas : 25

3 E�ectiveness of Generations 26

3.1 Multiple Generations : 27

3.1.1 Permanent Object Creation : : : : : : : : : : : : : : : : : : : 28

3.2 Object Collection Rates and Half-lifes : : : : : : : : : : : : : : : : : : 29

3.3 Collection Rates in CEDAR : 30

3.4 Generation Size : 35

3.5 Age-based Clusters : 38

4 Key Objects 39

4.1 Hints : 41

4.2 Key Objects : 42

4.3 An Example : 43

4.4 Using Finalization : 46

4.5 Finding Key Objects : 48

4.5.1 Random Selection : 48

4.5.2 Key Discovery : 49

4.5.3 Stack-Based Key Objects : 51

4.5.4 Serendipity : 54

4.5.5 User Supplied Hints : 55

5 Simulation of Key Objects 56

5.1 Inter-generational Pointers : 57

5.2 Marshaling Objects For Promotion : : : : : : : : : : : : : : : : : : : 58

5.3 Simulation of Key Object Collection : : : : : : : : : : : : : : : : : : 59

5.4 Allocation Examples : 61

5.5 Session Data : 62

5.6 Analysis : 66

x

6 Conclusions 70

6.1 Future Work : 72

Bibliography 75

A Cedar Data 81

B Smalltalk Benchmark Sources 101

xi

List of Tables

5.1 Key Object Sessions : 63

5.2 Key Object Costs : 64

5.3 Key Object Quality : 65

A.1 Dorados Monitored : 82

A.2 Session Sizes for each Dorado : 83

xii

List of Figures

1.1 \Last Rites" Finalization : 13

1.2 \Almost Unreachable" Finalization : : : : : : : : : : : : : : : : : : : 14

3.1 Cumulative Survival of Bytes : 32

3.2 Half-life of Allocated Storage by Age : : : : : : : : : : : : : : : : : : 33

3.3 Instantaneous Half-life of Allocated Storage by Age : : : : : : : : : : 34

3.4 A Cascade of Generations : 36

3.5 Generation Size Needed for 90% Collection Rate : : : : : : : : : : : : 37

4.1 An Example of Key Object Opportunism : : : : : : : : : : : : : : : : 44

4.2 Backpointers to a Key : 46

4.3 Backpointers to a Key, Ignored by Finalization : : : : : : : : : : : : : 46

4.4 Keys Found by Stack Traversal : 53

4.5 Unreachable Stack Keys : 53

4.6 After Key Collection : 54

A.1 Baobab 1, Decay of volume with time : : : : : : : : : : : : : : : : : : 84

A.2 Baobab 1, Generation size needed for 90% collection rate : : : : : : : 84

A.3 Baobab 2, Decay of volume with time : : : : : : : : : : : : : : : : : : 85

A.4 Baobab 2, Generation size needed for 90% collection rate : : : : : : : 85

A.5 Bennington 1, Decay of volume with time : : : : : : : : : : : : : : : 86

A.6 Bennington 1, Generation size needed for 90% collection rate : : : : : 86

A.7 Bennington 2, Decay of volume with time : : : : : : : : : : : : : : : 87

A.8 Bennington 2, Generation size needed for 90% collection rate : : : : : 87

xiii

A.9 Bluebell 1, Decay of volume with time : : : : : : : : : : : : : : : : : 88

A.10 Bluebell 1, Generation size needed for 90% collection rate : : : : : : : 88

A.11 Bluebell 2, Decay of volume with time : : : : : : : : : : : : : : : : : 89

A.12 Bluebell 2, Generation size needed for 90% collection rate : : : : : : : 89

A.13 Fairmont 1, Decay of volume with time : : : : : : : : : : : : : : : : : 90

A.14 Fairmont 1, Generation size needed for 90% collection rate : : : : : : 90

A.15 Fairmont 2, Decay of volume with time : : : : : : : : : : : : : : : : : 91

A.16 Fairmont 2, Generation size needed for 90% collection rate : : : : : : 91

A.17 Leyte 1, Decay of volume with time : : : : : : : : : : : : : : : : : : : 92

A.18 Leyte 1, Generation size needed for 90% collection rate : : : : : : : : 92

A.19 Queen�sh 1, Decay of volume with time : : : : : : : : : : : : : : : : 93

A.20 Queen�sh 1, Generation size needed for 90% collection rate : : : : : : 93

A.21 Queen�sh 2, Decay of volume with time : : : : : : : : : : : : : : : : 94

A.22 Queen�sh 2, Generation size needed for 90% collection rate : : : : : : 94

A.23 Saratoga 1, Decay of volume with time : : : : : : : : : : : : : : : : : 95

A.24 Saratoga 1, Generation size needed for 90% collection rate : : : : : : 95

A.25 Saratoga 2, Decay of volume with time : : : : : : : : : : : : : : : : : 96

A.26 Saratoga 2, Generation size needed for 90% collection rate : : : : : : 96

A.27 Shangrila 1, Decay of volume with time : : : : : : : : : : : : : : : : : 97

A.28 Shangrila 1, Generation size needed for 90% collection rate : : : : : : 97

A.29 Shangrila 2, Decay of volume with time : : : : : : : : : : : : : : : : : 98

A.30 Shangrila 2, Generation size needed for 90% collection rate : : : : : : 98

A.31 Skipjack 1, Decay of volume with time : : : : : : : : : : : : : : : : : 99

A.32 Skipjack 1, Generation size needed for 90% collection rate : : : : : : 99

A.33 Skipjack 2, Decay of volume with time : : : : : : : : : : : : : : : : : 100

A.34 Skipjack 2, Generation size needed for 90% collection rate : : : : : : 100

B.1 The \Array" Test : 102

B.2 The \TreeSort" Benchmark : 103

B.3 The \TreeSort" benchmark [cont.] : 104

B.4 The \TreeSort" benchmark [TreeSortNodeBenchmark] : : : : : : : : : 105

xiv

B.5 The \IntMM" Benchmark : 106

B.6 The \IntMM" Benchmark [cont.] : 107

B.7 The \MM" benchmark : 108

B.8 The Key-Friendly \MM" Benchmark : : : : : : : : : : : : : : : : : : 109

xv

Chapter 1

Introduction

Explicit resource management in a complex system can be a daunting task, even for

a small number of resources. When the resources include hundreds of millions of

bytes of memory partitioned into tens of millions of smaller resources, systems must

follow a carefully thought-out discipline for explicitly managing memory. For every

memory resource or object there must be a point in the system that is responsible

for freeing that resource. Many programming languages require the programmer to

explicitly release memory no longer in use, but leave it to the programmer to design

the memory management discipline.

If this memory management discipline is not complete, correct, or followed pre-

cisely, two types of errors in memory management will occur: memory leaks and

multiple allocations. A leak occurs when a resource is not released, even though it is

no longer needed. A leak is particularly dangerous in a long-running program since

even a small leak in a large resource | memory, for example | may eventually con-

sume enough of the resource to cause program failure. For scarcer or less fungible

resources | tape drives, for example | a leak can almost never be tolerated. Tools

that �nd resource leaks can point out where the resource was allocated and the last

time it is used, but they do not �nd the logical errors in resource management that

lead to the leak.

Multiple allocation errors occur when the management discipline incorrectly re-

leases a resource that is still in use. The resource is now in an inconsistent state: it

1

CHAPTER 1. INTRODUCTION 2

is in use, but not allocated. Often the user can continue using the resource without

perceptible problems, and the system can advance well beyond the point where this

error occurred. Serious trouble may become apparent only when the resource is allo-

cated again. The resource is now in use for two di�erent purposes, but this may not

become apparent until well after the double allocation.

It is di�cult to avoid these errors in resource management discipline, and resource

management is a major development and maintenance burden. Explicit storage man-

agement was estimated to take 40% of the development time in the Mesa system

[33]. The resource management problem needs global information for its solution,

and modular decomposition of programs makes this information hard to collect in a

coherent way that re
ects the information hiding aspects of the modules.

1.1 Tracing Garbage Collection

Garbage collection is broadly used to mean any automatic method of reclaiming mem-

ory addresses that are no longer used. It is a memory management technique that

avoids the problems inherent in resource management disciplines by allowing a set

of processes | the collector | access to all the objects used by the other processes

| the mutator1. Memory is modeled as a �nite directed graph where the nodes are

objects and there is an edge from one node to another if and only if the �rst object

contains a pointer to the second. The mutator can reach a �xed set of root nodes and

any objects reachable by following a chain of edges from a root.

Periodically, the collector partitions the memory resources into reachable and non-

reachable. It does this by starting with the reachable roots and traversing the edges

of the graph. All of the memory thus traversed may be reachable to the mutators2.

1Interested readers should refer to Cohen's survey article [11] for more sources of information
about early garbage collection techniques, and Wilson's survey for more recent techniques[45].

2If the collector had further information, it might be able to determine that the mutator would
not access some of the traversed memory. For example, a pointer value in a register in the mutator
might never actually be used in the future, and so some storage identi�ed as reachable in the model
can be freed without causing a double allocation bug. In fact, not freeing the storage causes a kind
of memory leak, but presumably the collector will �nd the memory in the future, when the register
value has been destroyed. The collector should always err on the side of leaking rather than double
allocating.

CHAPTER 1. INTRODUCTION 3

The memory not traversed is the garbage. This memory can be released without

a�ecting the mutator, since the mutator can not possibly reach it if operating within

the model.

Within this framework there is a great variety of tracing garbage collectors. One

major di�erence among these collectors is the implementation of the method used to

keep track of the non-garbage objects that have already been visited as part of the

transitive traversal of the storage.

1.1.1 Mark and Sweep Collection

The earliest collectors were mark-and-sweep collectors[29]. With these collectors, a

bit is reserved either in the object itself or in a table, and as each object is reached

in the traversal, the associated bit is set to indicate that the object is reachable.

This ensures termination of the traversal, and when the traversal is �nished the bits

indicate which objects are garbage and which are not. In addition, the collector

must have another data structure to distinguish the marked objects that may contain

pointers to unmarked objects | the objects that are on the frontier of the traversal.

Typically the frontier is kept as a stack, leading to a depth-�rst traversal of the

reachable objects, but the collector may bene�t from being able to explore frontier

elements based on other considerations. For example, a collector that favored tracing

through objects already in fast memory would be expected to cause fewer page faults.

When all the reachable objects have been marked, the collector can �nd and release

the unmarked garbage. This sweep phase is often combined with a compaction phase,

allowing the collector to regain memory and at the same time combine all unreachable

memory into a single block. Allocation in a compacted heap, with only a single block

of free memory, is much simpler than allocation in a heap where the free memory is

scattered throughout.

1.1.2 Copying Collection

Most modern collectors are copying collectors[3, 19, 9]. In these collectors, memory is

divided into two semispaces. At any time when the garbage collector is not running,

CHAPTER 1. INTRODUCTION 4

one semispace is empty and the other contains all the objects in the system. The

garbage collector copies all objects reached by a traversal of the from-space into the

previously empty to-space. At the end of the collection, all reachable objects have

been copied and compacted into the to-space, and any objects remaining in the from-

space are garbage. The roles of the two spaces are now
ipped, so that the previous

to-space will be where all new allocations occur, and the previous from-space will be

treated as empty at the next collection.

Unlike mark-and-sweep collection, the frontier of the collection need not be kept

as a separate list. If the to-space is treated as a queue of objects, with the least-

recently copied object always selected as the next to traverse, the collector need only

maintain one additional pointer, dividing the traversed objects from the objects not

yet traversed or scanned, and the collector can do a complete breadth-�rst traversal

of the live objects. The basic copying collection algorithm is easy to implement, as is

the basic mark-and-sweep algorithm.

1.2 Parallel, Incremental, and Real Time Collec-

tion

As heaps grow, the simple tracing schemes outlined begin to su�er from the increased

scale of the problem. The simple implementations of the collectors assume that

the mutator has been stopped | no allocations are occurring, and the structure of

the graph of objects is constant throughout the collection. As collections begin to

take more time, the users see longer pauses due to garbage collection, the system's

responsiveness becomes an issue, and the algorithms need to be modi�ed to allow the

mutator to make progress even when a collection is running3.

Copying garbage collectors can be altered to allow the mutator and the collector

to run in parallel[3]. Rather than copying all of the heap at a garbage collection,

3Much of the vocabulary of parallel garbage collection is due to Edsger Dijkstra[17], who examined
parallel garbage collection as an example of cooperation between seqential processes. His paper is
valuable as an outline, and identi�es the major concerns of parallel collection, but is concerned with
collector correctness more than e�ciency.

CHAPTER 1. INTRODUCTION 5

the collector presents to the mutator the illusion that the copy has been done by

use of a read barrier. The collector guarantees that after the collection has begun,

the mutator will never have a from-space addresses in its registers. The collector's

�rst actions include making to-space copies of all of the objects directly reachable

from the mutator's registers, and changing the registers to point to these unscanned

copies. Making the copies also involves establishing a path between the old copy and

the new | a forwarding pointer that will allow a pointer to the old copy to be ued

to �nd the new copy. When the mutator loads a pointer from memory into a register

and there is a garbage collection being done in parallel, the collector checks to see if

the to-space object addressed has been scanned. If it hasn't been, the collector scans

the object and the load returns the pointer contained in the now-scanned to-space

copy, guaranteed to be a pointer into to-space. The collector continues to copy other

objects as well, to ensure that the collection �nishes.

Using stock hardware, the memory-protection facilities can provide the garbage

collector with a way to monitor the mutator's loads, but the added expense of the

protection violations on most operating systems is large enough to cripple the muta-

tor's response time, and while the mutator can still make progress, the sluggishness

due to collection is quite apparent[2, 18].

Using a read barrier in a marking, compacting collector | rather than in a copying

collector | is complex[37]. The collector must, as with the copying collector, keep

forwarding pointers to �nd the correct copy of the object if it has been moved for

compaction. In addition, when a pointer to an unmarked object is stored into a

marked object by the mutator, the collector must be told to visit the unmarked

object, since the only pointer to it may be in a marked object. Thus, not only is a

read barrier required, but a write barrier is required as well.

Managing parallelism in non-copying, non-compacting collectors is somewhat eas-

ier, since the collector and the mutator will never disagree on the identity of an object.

Both can use the address of the object throughout the collection, but the connections

between objects and the structure of the object-graph can change.

One way to construct a parallel trace-and-sweep collector is to take a snap-shot

of the heap in a consistent state and garbage collect over the snap-shot[1, 42]. When

CHAPTER 1. INTRODUCTION 6

the collection is done the collector will have a list of objects that were free at the

point in the past when the snap-shot was taken. A well-behaved mutator cannot

access garbage from the past, and so that past garbage will still be garbage. If the

allocator and collector are written to use the same data structures, the collector need

only make one atomic write and the structure representing the collector's garbage

can become the structure representing the allocator's free-list.

Taking the snap-shot need not be as expensive as copying the entire heap | any

objects not changed by the mutator can be shared between the mutator and collector.

It is only necessary that the collector be able to get the old copy of a changed object

when tracing, and the mutator be able to get the new copy.

A slightly more complex way to parallelize a mark-and-sweep collector is to allow

the marker to run in parallel as the mutator is changing the heap. When the marker

is done, it has marked an approximation of the live objects | some live objects may

be unmarked, and some marked objects may be no longer reachable. The live objects

that are still unmarked, the undiscovered objects, must be found to ensure that the

collector does not produce double allocations. For any undiscovered object, there

must be a pointer to it from some other live object, since it is alive, and that object

must be either undiscovered or be an object altered by the mutator after it was traced

by the collector | a dirty object.

The collector can now begin trying to catch up with the mutator, starting another

marking phase that uses the dirty objects as a new frontier, and marking objects

altered by the mutator in the added phase as dirty. If at the end of some marking

phase there are no dirty objects, the marking is complete and all reachable objects

objects have been marked. It may require cooperation from the scheduler to guarantee

that the collector catches up to the mutator eventually[7].

The two methods of making a mark-and-sweep collector parallel are roughly com-

parable. The interlocking between the mutator and the collector is minor | in both

cases, objects changed by the mutator while the collector is running must be given

special attention. For the snap-shot collector, these objects need to be copied, requir-

ing extra memory for this collector, but for the catch-up collector these objects need

only be noted or marked.

CHAPTER 1. INTRODUCTION 7

The objects marked by the snap-shot collector are exactly the objects live at

the beginning of the collection, while the catch-up collector has marked all of the

objects reachable at the end of the collection plus some of the objects that became

garbage while the collector was running. But the extra marking done by the catch-up

collector has an extra bene�t | an object that is created and becomes garbage while

the collector is running may be collected by the catch-up collector, but not by the

snap-shot collector.

In fact, empirical measurements show that almost all objects created become

garbage very soon after their creation, and almost all of the objects created while

the collector is running would be garbage by the end of the collection. Fortunately,

generational garbage collection provides a simple and e�cient way to focus collection

e�orts on these objects. If the objects allocated during the full collection are in

the province of a generational collector, the full collection's actions on them are

unimportant.

1.3 Generational Garbage Collection

Generational garbage collectors grow from the observation that a large fraction of

the memory allocated becomes unreachable garbage soon after it is allocated. If the

collector is repeatedly doing full collections, naively tracing the entire live heap, it

will be using much of its time examining objects that are old and unlikely to have

become unreachable. If the collector can focus its e�orts on the young objects, it can

�nd almost all the garbage for a fraction of the cost. This is the basis of generational

collection.

Data gathered on a variety of systems, languages, and applications supports the

notion that most objects have short lifetimes. This observation was �rst made for

systems that have a large volume of system- and language-based allocations. An

interpreted system, for example, may create a large volume of objects to drive the

mechanism of the interpreter, but a large number of these objects are garbage after a

signle step of the interpreted program. Even some non-interpreted systems can have

large overheads. Some Smalltalk systems create objects for every mouse-move event

CHAPTER 1. INTRODUCTION 8

and rely on cheap generational collection to clean up after them4.

Other languages have no allocations but those explicitly included in the code by

the programmer, but do not avoid the generational e�ect[48]. Part of this may be

due to common programming techniques. For example, a procedure may produce a

volume of related information packaged in a returned object | the individual callers

of the procedure may immediately extract the information they desire and discard

the returned structure.

A generational collector can be designed using any of the tracing techniques so

far described. In the simplest implementations, the objects are partitioned into two

classes by age, the young objects and the old objects. A full collection will behave

as before, and any garbage in the heap will be collected. A generational collection

treats the old objects as if they were part of the root set | the old objects are not

transitively traversed, but any young objects reachable from them are.

Only the young objects are threatened in a generational collection, but not all the

garbage in the threatened set of objects will actually be collected. There may be old,

unreachable objects that point to new, unreachable objects. Since the old objects

are all treated as reachable roots in the generational traversal of the young objects,

some young objects will also falsely be seen as reachable. By carefully choosing the

generation gap, the collector can ignore a large fraction of the objects | the old |

and still recover almost all the garbage.

Along with the costs previously associated with garbage collection, a generational

collector magni�es a cost that previous collectors could usually ignore: the cost of

�nding the pointers from the non-threatened objects to the threatened objects. In full

collections, the entire heap is threatened, and only the global objects, the registers,

and the stacks are in the root set. The generational collection may add megabytes of

old heap objects to the root set. The �rst objects marked or copied are those objects

pointed to by the roots, but �nding those initial objects can now be a large portion

of the cost of collection[23].

The search for initial objects is also expensive if there is a large volume of global

4Section 3.1 discusses just how quickly objects must become unreachable before they are useful
as an identi�ed subset.

CHAPTER 1. INTRODUCTION 9

and stack memory, even without a generational collector. Multi-threaded and highly

recursive programs, for example, may generate large stacks and force �nding the roots

of the collection to be re-engineered for better real-time response[3].

The most generally applicable method to speed up the search for roots of a collec-

tion is to rely on locality e�ects in computer systems, and cache results of previous

searches for roots. If the system has previously produced a list of old objects that

point to new objects, there are only a two ways that this list can become invalid:

some previously young objects can be re-classi�ed as old, or some old objects can

be changed. Both of these events are rare enough in most systems and the caching

makes the collector faster and better able to meet real-time requirements. The initial

root-�nding phase of tracing collection becomes a \cache rebuilding" phase as well.

Section 2.1 will detail some of the techniques used to keep the cost of the root-�nding

phase down.

1.3.1 Multiple Generations

While many implemented generational collectors maintain two classes of objects |

young and old | the original generational collector partitioned the objects into many

generations by age[28]. The caches kept track of all pointers across age partitions that

point from an object to an object younger than itself. In a mostly-functional language

like LISP, these pointers were relatively rare, since they are caused by destructive

operations like RPLACA, and these operations were avoided in most LISP styles of

the time.

The traversal of any individual partition can be started by using the caches to �nd

all the pointers from older partitions, and explicitly scanning the younger partitions.

If the younger partitions are being collected at the same time, they need not be

explicitly scanned, since they will be traversed. The collector was able to cope with

concurrent collections focusing on various regions | a collector unable to perform

collections on the youngest objects while a full collection was running would allow a

build-up of young garbage that might be unacceptable. The collection of partitions

was based on a real-time variant of a two-space copying collector[3].

CHAPTER 1. INTRODUCTION 10

The mechanisms for partitioning the memory into regions and being able to have

the collector work more or less independently in the various regions are orthogonal to

generational collectors[5]. The innovation in generational collectors is to use the age

of the regions to drive the policy for garbage collections. As the partitions proliferate

the policies for deciding when to threaten any particular subset of the objects become

complex.

In a multi-threaded system it may be an advantage to collect all of the memory

allocated to a particular thread when that thread terminates. Again, the mechanisms

in the collector should be robust enough to allow thread-by-thread collection to run

without interfering with generational or full collection, and to allow other collection

policies to be implemented safely. I will use \generational collection" to refer to

collection policies where an age-based cut-o� is used to de�ne a threatened set of

objects. In general, collectors that partition the heap and threaten some partitions

will be called \partial collectors".

1.4 Reference Counting

In the typical taxonomy of memory management, reference counting is a sibling to

tracing collection. In reference counting, each object has associated with it the num-

ber of pointers to that object that currently exist within the memory. When a ref-

erence is copied, the count must be incremented, and when a reference is destroyed,

the count must be decremented. When the count becomes zero the object is garbage

and the memory may be safely recovered[12].

Reference counting has many advantages: it is simple to modify it to get some

real-time features[11, 3, 20], the memory and CPU overhead is predictable, and it

is simple to implement and maintain. The main drawback usually attributed to

reference counting is that it fails to recover garbage that is linked in cycles | if two

objects point to one another and no other pointers to either exist, each will have a

non-zero reference count and neither will be recovered.

This is exactly the same e�ect that occurs in partial collectors when a cycle of

objects is split across partitions: collecting either partition alone does not collect

CHAPTER 1. INTRODUCTION 11

either member of the cycle, but threatening both of the partitions at the same time

will collect them both. Reference counting can be seen as a degenerate case of partial

collection, where each and every object is assigned to its own partition. Collecting any

single partition is trivial: the threatened set contains only one object, and examining

all of the caches, as embodied in the reference count, �nds either that there is a

pointer to the object or that there is not. In either of these cases, the traversal of the

threatened objects is trivial.

While it did not grow from generational collection, it is useful to view reference

counting as a method of keeping caches of information about references up to date.

While a partial collector needs to know which objects in a region are reachable from

the other other partitions, the reference counter has only one object in a partition,

and so needs to know only the count. Many improvements to reference counting are

applicable to partial collection as well.

For example, cycles in reference-counted structures can be reclaimed if the system

maintains a group reference count for a collection of objects that counts references

to objects in the group from objects not in the group. Even if no object in the

collection has a zero reference, all of the objects in the group can be reclaimed when

the group count is zero[6]. In partial collection terms, the collections are the partitions

of the heap, and partitioning the heap into logical groups for a partial collector likely

to improve performance. When a collection is done on a group of related objects

and their reference count would be zero, the collector will �nd no pointers to the

threatened group from outside of it, and the objects will all be collected.

Another improvement is deferred reference counting[16]. Many of the changes to

objects' reference counts come about from pointers stored into or deleted from the

stack and registers. These are much more common than stores and deletions in the

heap. The reference counter can take advantage of this by keeping an accurate count

of the heap references, but not counting references in the stacks, registers, and other

frequently-changed locations. The mutator can be stopped occasionally, and the \hot

locations" scanned. Any objects with both a zero reference count and no pointers to

them in the hot locations are garbage.

Similar trade-o�s are made in maintaining the caches for partial collectors. Some

CHAPTER 1. INTRODUCTION 12

caches may be easily kept up to date and accurate without great expense by adding

code to pointer manipulations, just as there is code that would change the reference

counts. Other caches are best re-built with each collection, and the collector may keep

just one bit of information to let it know that the cached information is no longer

valid.

1.5 Finalization

Sometimes the collection system must be concerned with valuable resources other

than address space. For example, many operating systems limit the number of �les

a single process can keep open at a single time, and the �le system itself may have a

limit on the number of open �les. Much as memory management can be a di�cult

chore for the application writer, so can management of these other resources. It may

be di�cult for an application to know that it has no further need for a particular

open �le.

Finalization is a part of the client interface to the collector that allows other

resources to be managed exactly the same way as memory by associating the resource

with some storage allocated by the user[22].

The simplest form of �nalization simply noti�es the user process when an object

associated with a resource is collected. Finalization is associated with weak pointers

| a special kind of pointer with added semantics. If an object is only reachable by

paths involving weak pointers, the collection system recycles the object, and zeros

the weak pointers to ensure that there are no pointers to deallocated space. To get

�nalization from weak pointers, we need only add noti�cation. When the collection

system zeros a weak pointer, it sends a message to a user object, and that object

may deal with �nalization. Since the user is noti�ed when the �nalizable object is

collected, any data needed for �nalization must be kept somewhere other than the

�nalizable object[31].

Figure 1.1 shows an example of this style of �nalization. When the set of objects

that implement a �le become unreachable, the �le manager would like to
ush the

�le and then close it. Typically, this is done by adding a level of indirection. All

CHAPTER 1. INTRODUCTION 13

Clients File Package

header

executor

weak pointer

Clients File Package

header

executor

weak pointer

Figure 1.1: \Last Rites" Finalization

normal users of the �le have a pointer to an open-�le header, and from that header

the rest of the �le's functionality is available. However, the �le manager maintains a

pointer that bypasses the header and a weak pointer to the header. After all of the

clients of the �le manager have deleted their pointers to the �le, the header will be

collected. At that point, the weak pointer is disabled and the collector noti�es the

�le manager. The �le manager cannot dereference the disabled weak pointer, but can

use the bypass pointer to
ush and close the �le. This style of �nalization is called

\executor �nalization," since some process in the system is noti�ed of an object's

\death" and expected to execute its \will."

Another style of �nalization involves notifying the user when an object has become

\almost unreachable." This is sometimes called \resurrection semantics" because it

can appear to some processes that an unreachable object is given back to the user

by the collector. This is misleading, since the object isn't unreachable, just a bit out

of the way. In this variation, the user identi�es some pointers to be ignored by the

collector. When every path to a �nalizable object from a root includes an ignored

pointer, the object is almost unreachable, and interested processes are informed[33].

Unlike weak pointers, these ignored pointers are not zeroed by the collector, nor is

the object's memory recycled.

Figure 1.2 shows a �le manager using these semantics. To get �nalizable �les

with this semantics, the �le manager would keep one or more pointers to the �le, but

would designate them as package pointers to the collection system. When all of the

CHAPTER 1. INTRODUCTION 14

File PackageClients

package pointers

File PackageClients

package pointers

Figure 1.2: \Almost Unreachable" Finalization

clients of the �le manager have deleted their pointers to a �le, the package pointers

remain. Since every path to the object is through a package pointer, the collection

system will notify the �le manager that the object is barely reachable. The manager

may then
ush and close the �le.

Under either semantics the results are the same. The collection system for address

space can help manage other resources, even user-de�ned resources. In Section 4.4 the

use of \almost unreachable" objects will surface again as a solution to some problems

with key objects.

1.5.1 Promptness

Managing user-de�ned structures through �nalization brings the problem of prompt-

ness into sharp relief. When a resource is recycled soon after it is no longer needed,

the management of that resource is said to be \prompt." For example, since full ref-

erence counting �nds unreachable memory as soon as the last pointer to it is deleted,

it is prompt for all collected objects5.

Full tracing collectors only �nd unreachable storage when they are run, and so

are less prompt than reference counters. Partial collectors have di�ering degrees of

promptness for di�erent objects. Objects that the collector focuses on often will be

collected more promptly than objects examined less frequently. In addition, cycles of

5Of course, circular structures are never recovered, so it's only prompt when it works.

CHAPTER 1. INTRODUCTION 15

objects that cross partition boundaries might be collected less promptly than objects

that do not, since the cycle can only be collected when all objects involved in the

cycle are threatened at the same time.

Since memory is reasonably abundant and fungible, promptness of memory collec-

tion is less of an issue than promptness of �nalization of other more scarce resources.

Unfortunately, neither promptness nor �nalization has been addressed adequately by

current research, and there are no systems that allow users and applications to specify

the importance of promptness across classes of objects.

1.6 Garbage Collector Design

There is no \best" garbage collection technique | like most system design problems,

there is a large design space for garbage collectors and the choice of technique depends

a great deal on the properties of the input. As the volume of storage grows, the design

of the collection system may become more complex, with the collector choosing one

technique for one sub-population of the objects and a di�erent technique for another.

For example, when the volume of threatened objects is small and the collector

expects that most of them are garbage, a copying collection seems the reasonable

choice | the live objects are copied, and the garbage can be returned to the system

without attending to each garbage object in turn. But copying techniques are less

attractive when the volume of threatened objects is large and most of the threatened

objects survive | this would require a large to-space, making the space use ine�cient.

In addition, the collection with a large volume of survivors will take a long time,

and many mutators would require parallel or incremental collection to meet response

requirements. This in turn puts burdens on the mutator, and that alone may swing

the choice on collection style.

The usual pattern is that a large fraction of the objects in the heap have unpre-

dictable lifetimes, and the policy used to collect them involves occasional collections

over the entire heap. These collections must be frequent enough to satisfy promptness

constraints in the system, but as the heaps grow larger and larger these collections

begin to take more and more time.

CHAPTER 1. INTRODUCTION 16

The best way to avoid the overhead of these collections is to look for subsets of the

heap objects that have more predictable lifetimes. These objects can be segregated

and a special-case memory management policy can be designed for these subsets.

Among garbage-collected objects, the two most important subsets discovered to date

are the permanent objects and the short-lived objects.

1.6.1 Special Cases in the Heap

An obvious improvement to full collections over all objects involves segregating all

objects that will be required for the entire lifetime of the application, and will never

be collected. Even if the permanent objects are just the system objects and no user

objects are recognized as permanent, this can be a large improvement. The permanent

objects can still be threatened at the user's request, but by not exposing them to the

usual treatment the garbage collection overhead can drop signi�cantly.

As noted in Section 1.3, generational collectors address the short-lived objects as

a special case. Recently-created objects are collected more frequently than the rest

of the heap. The cost of these collections is independent of the total size of the heap,

and can still �nd a large fraction of the garbage soon after it becomes unreachable.

When an object has survived the initial generational collections, it is reclassi�ed.

As heaps grow, collectors must mature and �nd more special cases to carve out of

the idiosyncratic storage patterns. The collection methods for these may be mixed,

involving copying, marking, and reference counting when most appropriate, and col-

lection mechanisms will incorporate more tools from the bag of tricks that has been

developed in the past.

1.7 Contributions of the Thesis

Measurements of object life-time distribution in Cedar shows the rapid decrease in

value of lifetime information. Objects that are newly-created have a much shorter

expected lifetime than older objects, but even a short wait, allowing another half Mb

of storage to be allocated, will usually tell if the object will become unreachable

CHAPTER 1. INTRODUCTION 17

quickly. There is little value in attempting generational collection past that point.

The �rst contribution of this dissertation is establishing this decrease in value.

The central contribution of this thesis is the introduction of key object oppor-

tunism as a policy decision to address scheduling of collections. As more special

cases are identi�ed in a partitioned heap, a uni�ed way of triggering the collection

of the partitions is needed. If the heap is partitioned into loosely connected compo-

nents, where all of the objects in a component have roughly the same lifetime, the

components can be scheduled e�ciently by waiting for a carefully selected subset of

the component to become unreachable and only then collecting the whole component.

This opens the heap to any number of system- and application-speci�c specializations.

1.8 Organization of this Document

Problems particular to collecting large heaps are introduced in Section 2. Mechanisms

to address problems in large heaps are discussed in Bishop's dissertation [5], but

policy is not addressed by that work. Section 3 presents measurements that suggest

the limitations of generational collection. Section 4 introduces key objects and key

object opportunism. Experimental evidence in support of key object opportunism is

given in Section 5.

Chapter 2

Collecting Large Memories

One issue that soon comes up in design of a collection system is the scaling of the

collector to larger and larger memories. There is a limit to how much memory can be

traced while interactive mutators are paused | pauses over about 500 milliseconds

are disruptive. Once the traced portion of the heap grows beyond that point, the

collector must be able to access the heap in parallel with the mutator in order to

maintain interactive response.

Beyond the simple matter of responsiveness, a tracing collector has to worry about

the overhead costs it imposes on a large system. If it collects too frequently, it

may trace large volumes of objects and recover very little each time | if it collects

infrequently, large volumes of memory will become �lled with unreachable objects.

If memory were uniform in access time and cost, a tracing collector could keep its

total overhead limited by triggering full collections when the heap had grown some

multiplicative fraction larger than the heap's total volume at the previous full garbage

collection. For example, if in the steady state the heap contains 100 megabytes of

live storage, and it allows the heap to grow to 125 megabytes before triggering a full

collection, the collector will recover 25 megabytes having traced 100 megabytes | it

had to trace four bytes for every byte recovered. If instead it allows the heap to double

to 200 megabytes before collecting, it will recover 100 megabytes having traced 100

megabytes | a one-to-one ratio. By �xing the cost in bytes swept that the system

would be willing to pay for each byte recovered, the cost of tracing collections can be

18

CHAPTER 2. COLLECTING LARGE MEMORIES 19

limited by �xing the collection triggering threshold.

Almost all of the assumptions involved in this calculation are false: memory is non-

uniform in access time and cost, and the heap does not usually maintain a steady

state. The collector is competing with the mutator for the right to use the fast

main memory and cache, and the costs of moving objects up and down the memory

hierarchy begins to dominate. Even if giving up 30% of the main memory for fast,

e�ective, frequent, generational scavenges is a good idea, it doesn't mean that giving

up 30% of the disks for long-running, infrequent, full collections is1.

The most common suggestion for handling the scaling problems is to partition

the allocated memory into parts that can be collected in a reasonable time given the

hardware. This also avoids some of the problems introduced by having a memory

hierarchy. The partitions can be sized so that each one �ts comfortably into the

appropriate cache, and the bottlenecks associated with moving data back and forth

between di�erent levels in the memory hierarchy can be avoided.

2.1 Finding Rescuing Pointers

As mentioned in Section 1.3, a generational collector pays an increased cost in �nding

the roots of its young partition. It cannot a�ord to scan all of the old space for

pointers to new space, and needs to cache the results of previous searches and update

them. This section will explore some of the methods for �nding the inter-generational

pointer information in a collector.

Recall that all objects not being collected | the older objects | are assumed to

be reachable and not garbage, and these objects are treated as roots. The collector

needs to �nd all of the rescuing pointers from the old objects to all of the young

objects in order to begin a traversal of the young objects. If the rescuing pointers are

in a small fraction of the non-threatened objects, caching the results of a scan of the

non-threatened objects should be an e�ective way of �nding the pointers from the

1White [42] goes to the extreme on this topic and suggests that garbage collections on large
address spaces should occur as infrequently as possible| perhaps once each year| and be supported
by enormous volumes of secondary and tertiary memory. Memory may be cheap, but it doesn't seem
to be cheap enough for this scheme yet.

CHAPTER 2. COLLECTING LARGE MEMORIES 20

older objects to the younger objects.

The cache of rescuing pointers can become inaccurate only when a pointer is stored

in an old object or a new object is promoted. New cross-area pointers may have been

created, and old ones may have been deleted. The problems involved in keeping an

accurate set of rescuing pointers are nearly the same as those involved in building

reference counted systems, and the solutions proposed are nearly the same[23].

The system can interpret each store and keep the cross-area pointer cache always

accurate. This is much like keeping fully accurate reference counts for just the young

objects | note that if the collector had the inter-area reference counts for young

objects, that's all it would need to start a generational garbage collection. It is

possible to build into the system a store-trap so that when a pointer to a young

object is stored into an old object, the collection system can gain control long enough

to make a note of the interesting pointer. Since most old objects are not frequently

changed, trapped stores would not be common, and special purpose hardware seems

uncalled for | it would be unused almost all of the time. Likewise, a software check

that is executed on every store may be expensive and would not often �nd changes

to the cache.

Systems can use standard page protection mechanisms to trap all stores to the old

objects. Any page that contains an old object can be write-protected, and a store to

these pages can be interpreted to see if it changes the cross-area pointers. This has

the bene�ts of the store-trap, but uses no special hardware, and does not delay the

write if the fault is not taken. Unfortunately, most operating systems do not make

user control of the protection mechanism cheap. To take a write-fault, note all the

changes to the inter-area pointers, interpret the write, and re-set the protection can

take thousands of instructions if that path in the operating system is unoptimized.

Another method is to take advantage of the locality of the writes, and simply

invalidate the parts of the cache that pertain to a page when it is �rst written to,

faulting only once for any given page. At some point the collection system will have

to rebuild the cache of rescuing pointers, but it need only rebuild the parts of the

cache that have been invalidated. The e�ort to rebuild may be smaller than would be

needed to scan the entire heap, since only targets of stores to non-threatened objects

CHAPTER 2. COLLECTING LARGE MEMORIES 21

have been invalidated. In addition, the collector can attempt to gather the frequently

written objects on a few pages, and not even bother with protecting them.

Finding an optimal bookkeeping system for the cross-generation pointers depends

on many things including the cost of write-protecting pages, the cost of taking and

recovering from write-protection violations, the frequency of these writes, and the

cost of rebuilding the cache from a dirtied page.

The important commonality of these systems is that having determined a threat-

ened set the collection system can construct the set of pointers from the old objects

to the new objects.

2.2 Partial Collection

By noting the points that make it e�ective to focus collection e�orts on young objects

and looking for other classes of objects that meet these same criteria generational

collection can be generalized :

� There are few pointers from objects outside the class to objects inside the class.

� The objects in the class have the same expected collection time.

The �rst ensures that the bookkeeping for the cross-class pointers is not too complex,

and the second ensures that at some point the area can be collected with a large

fraction of the storage getting recycled.

In general, a system can divide the memory into logical areas, and be able to

collect these areas more or less independently. The areas need not be physical, in

that objects from di�erent areas may share disk pages, but many of the algorithms

are easier to envision if we assume that the logical areas are physically realized, and

that simple examination of a pointer value will tell what area the pointer's referent

is in.

2.2.1 Restricted Partial Collections

If the system retains the
exibility to collect one or more areas at a time, it may be

that collection of some area will only occur in conjunction with collection of another.

CHAPTER 2. COLLECTING LARGE MEMORIES 22

For example, several gradations of time-based areas might exist, with objects moving

from the youngest to the oldest in their lifetime. Collections would be most frequent

in the youngest generation and least frequent in the oldest, but collection of any area

might only occur in conjunction with collection of all younger areas.

If the collection system will never collect area A without collecting area B as well,

then it will never need to know if there are any pointers from objects in B to objects

in A, and it need not make this information easy to recover. Conversely, if it would

be di�cult to �nd the pointers from objects in B to objects in A, the system need

not be concerned if it is willing to always collect B when it collects A.

Two systems that explore partial collection are the ORSLA memory system [5]

and the A/F collector [14]. The ORSLA system is more concerned with being able

to collect relatively static areas even when an active process has pointers into those

areas without keeping track of all of the cross-area links explicitly. It notes dynamicly

when a local computation area of a process has pointers to a static area by creating

a mono-directional cable from the LCA to the static area. The cable tells the system

that it need not keep track of pointers from the LCA to the static area, and that

when the static area is collected the LCAs cabled to it must be collected at the same

time.

The A/F system formalizes what cross-area information a collection system must

keep and what can be lost if collection of one area implies collection of another. The

avor of this system is more static. The areas are put in a partial order and collection

of one area requires collection of all areas above it in the partial order. Cross-area

pointers can be ignored, then, if the tail of the pointer is in an area below | in

the sense of the partial order | the area containing the object at the head of the

cross-area pointer.

The most valuable contribution of the A/F system is that it shows how various

views of the objects can be combined and what cross-area information must be main-

tained when views are combined. For example, it is a good idea to be able to collect

the young objects, all else being equal. It might turn out to be a good idea to be

able to collect all of the objects created by a single process as well, regardless of age.

Under the A/F system, these two collection schemes can be represented as two partial

CHAPTER 2. COLLECTING LARGE MEMORIES 23

orders, and a new collection scheme can be constructed which allows either collection

by age or collection by creating process.

2.3 Full Collections

There is not enough experience with large persistent object stores to know how much

of a problem full collections would be. When a large heap begins to be used as a �le

system, it may be that, like a �le system, objects never are deallocated but just moved

between di�erent media. Most �le systems include an ability to restore \unreachable"

�les by using archive tapes or write-once memory. A persistent object store, when

used as a �le system, would need to duplicate this feature. Once an object is part

of a �le, there may be no need to try to collect it if the semantics of the �le system

guarantees its continued existence. The memory manager should include a way to

make these objects permanent.

In order to eliminate unreachable storage, there is no substitute for full collection.

No set of partial collections will be able to guarantee recovery of all of the unreachable

objects, since each partial collection must expand the root-set of the collection, and

the expanded root-set may contain unreachable objects, which may in turn contain

pointers to other unreachable objects. The partial collections may attempt to collapse

unreachable loops into the same partition by moving objects from one partition to

another[4, 24]2. When all of the unreachable objects in a clique are in the same

partition, then a partial collection can recover the storage.

Partial collections can be used as helpful stepping-stones in full collections. As

soon as a full collection establishes that the set of true roots is a superset of some

set of roots used for a partial collection, the results of that partial collection can be

accepted, provided that none of the objects collected by the partial collection have

been changed.

A simple example of this arises with multiple collections, both full and partial,

2This may be in con
ict with other goals of the system. If there are multiple processors, moving
related objects into the same partition may cause page-sharing to increase and shared pages to
thrash. The collector is not the only system consideration in placing objects in memory.

CHAPTER 2. COLLECTING LARGE MEMORIES 24

over a �le system. Most �le systems are essentially tree-structured, with few access

paths to a �le. Each �le is in one directory, or perhaps a small number of directories.

The data in most �les are not changed often. If a previous partial collection has found

a subtree that is rooted at a node and no elements of the subtree have been altered

since the partial collection, the full collection need not trace the entire subtree once

it �nds the node reachable. The full collection need only touch a small fraction of the

objects.

2.4 Bene�ts of Areas

Areas can be optimized to meet goals other than ease of garbage collection. Groups of

objects may have common intentional or extensional features that are of interest. For

example, access to some objects by some users may be restricted, or objects may use a

non-standard byte order or
oating point format. Objects in an area may all have the

same type, or may have all been allocated with the same language-speci�c allocator.

Keeping those objects in isolated physical areas allows other system components to

check for these object features with a simple pointer range check.

There are other reasons to gather certain objects together. One of the most

compelling is that access patterns of objects tend to be grouped. Knowing that a

process has read or written one object in a cluster of related objects suggests that

other objects related either logically or by a chain of pointers might soon be accessed.

The system has many opportunities to notice the formation of these working sets,

and can try to treat them as connected units. All of the pages in such a unit can

be swapped in when any one of them is requested, and if the collection of objects is

well-constructed, this would decrease paging delays.

2.5 Areas in Programming Languages

Areas have been implemented as language-level structures, visible to the programmer,

but di�erent models for areas are implemented for di�erent styles of languages. In

PL/I, storage management is the responsibility of the user, with explicit freeing of

CHAPTER 2. COLLECTING LARGE MEMORIES 25

data rather than garbage collection[27, 25]. Areas are regions of memory that are

speci�ed when an object is allocated, and the memory for that object will be take

from the named area or a default area. The programmer, rather than explicitly freeing

each object in an area, can free all of the objects in an area in one operation, thus

avoiding the cost of the individual freeing operations and the complexity of walking

the data structures. Of course, the same dangling pointer problems are present here

as in explicit storage management without areas.

In some Lisp dialects, areas are available with the same kind of allocation seman-

tics as in PL/I[30]. Objects are allocated in an area if one is speci�ed or a default

area otherwise, but the deallocation is done by a garbage collection system rather

than an explicit free. Areas are mostly a way to let the user ensure that pointers tend

to be local for paging, and e�ectiveness of garbage collection is a secondary bene�t.

2.6 Age-based Areas

While it might seem to be di�cult to �nd a good division of the objects into areas,

there is evidence that the information present in the program execution is useful for

predicting locality [10] as well as lifetime[21, 41]. Objects allocated nearby in time

tend to have pointers to one another and tend to have roughly the same lifetimes.

This should come as no surprise, considering that programs are often designed to

build a single interconnected data structure at a time, moving on only when the

structure is complete.

Chapter 3

E�ectiveness of Generations

As mentioned in Section 2.1, simple generational collection has proven to be a bene�t

in many situations. By segregating the young objects from the old objects, almost

all of the unreachable storage can be reclaimed with almost none of the e�ort. The

success of generational collection is due to two measurable facts:

� Most objects that become unreachable do so very soon after they are created.

� It is easy to keep track of the pointers from old objects to young objects.

These facts are usually veri�ed indirectly, by building a generational collector and

seeing the improvement in collector e�ciency[28, 30, 40].

The young generations in a collection system o�er
exibility to the system de-

signer. Some static analysis at compile time might be able to lower the allocation

volume of an application by changing dynamic allocations to stack or static alloca-

tions. Inter-procedural analysis would even allow the compiler to get rid of objects

that are created to return composite values, only to be dismantled and discarded by

the caller, but e�cient generational collection makes this analysis less pressing.

The lifetimes of other objects will be dynamically dependent on the input data and

not open to analysis. The young generations will pick up many of the objects that are

not easily analyzed. This trade-o� of static and dynamic analysis is analogous to the

analysis involved in static register allocation, where the hot locations that perhaps

26

CHAPTER 3. EFFECTIVENESS OF GENERATIONS 27

should be in registers end up in the cache instead. Things need not be that much

slower, and the analysis can be limited.

The e�ect of youngest generations is strongly in
uenced by the language, style, and

system used by the mutators. In languages where objects are created as part of the

underlying computational model or of a hidden mechanism like a Lisp interpreter, the

volume of objects unreachable soon after creation will be quite high for any mutator.

Languages like C and Cedar have no computational allocation | every allocation is

at the user's request. The allocation volumes are lower in these languages.

Since all of these languages o�er roughly the same data model, most of the dif-

ference in allocation volume comes from the computational allocation. When the

language-dependent creations are picked up by the young generations, the lifetime

distribution of the remaining objects is based on the data structures of the task at

hand, rather than the implementation language.

3.1 Multiple Generations

For any tenuring policy in a simple two-level generational collector, there will be some

objects that live long enough to be tenured, and will become unreachable after the

initial generational period. Collection policy among tenured objects has only recently

begun to receive direct attention[43, 24].

Many collection systems have been built around a generalization of generational

collection. As objects age, they go through a series of generations, each with an

age-based tenuring threshold. The older generations are threatened less and less

frequently compared to the younger generations.

This involves two tacit assumptions parallel to the two that make generational

collection so successful:

� For any age break, relatively younger objects become unreachable at a rate

faster that relatively older objects.

� It is easy to keep track of the pointers from relatively old objects to relatively

young objects.

CHAPTER 3. EFFECTIVENESS OF GENERATIONS 28

These two assumptions constitute the strong generational hypotheses, in contrast to

the weak generational hypotheses, where these are restricted to the newly created

objects. Neither of these necessary conditions for the success of multi-generational

collectors has been well documented. Some studies have been published that are useful

in estimating the applicability of the strong generational hypotheses[34, 15, 47].

To validate the strong generational hypotheses, it is necessary to measure object

creation over a long period of time. Enough objects must be survive the initial

generational collection, only to become unreachable later, to gather any meaningful

statistics or make meaningful projections. Benchmarks traditionally used for garbage

collection focus on generational collection, and are fairly short | collectors with large

tenuring thresholds can run the entire suite without having any objects tenured.

3.1.1 Permanent Object Creation

Many mutators create some objects that are meant to survive for a long time relative

to the span of time used for plotting the decay rates. These objects may be part of the

internal history of the mutator, useful for undoing commands, recovering from errors,

or just internal tracking. Other long-lived objects may be the results of requests from

users, and will have life-times akin to the lifetimes of �les.

These \permanent" objects limit the collection rates. When permanent objects

make up a large fraction of a generation, then the survival rate for that generation

cannot be smaller than the volume of these objects divided by the volume of the

generation.

Some of the studies of object lifetimes have explicitly ignored objects that live

longer than the sample time[15, 21, 41], and others use only benchmarks that create

no permanent objects[49]. By its nature, it is hard to measure the creation rate of

permanent objects, since any measurement is limited in duration, and perhaps the

objects would be collected if the traces collected were only slightly longer. But for any

non-zero creation rate of permanent objects, we cannot expect to get high collection

rates generation after generation. Even four generations with a collection rate of 80%

produce an overall survival rate of .16%. A permanent object creation rate above

CHAPTER 3. EFFECTIVENESS OF GENERATIONS 29

that rules out the possibility of an four generation collector with only 20% survival

rates at each generation.

3.2 Object Collection Rates and Half-lifes

Object collection and survival rate curves have been published for Lisp [34], Cedar

[21], Modula-2 [15], and Smalltalk [41]. The curves are di�cult to compare. One

source of confusion is the di�erent metrics used by the various sources to measure the

age of objects. While some use wall-clock time, most use mutator allocation rate to

age objects. The latter has many advantages over the former, perhaps foremost that

it takes account of processor speed in aging objects. Allocation-bound mutators will

have age curves independent of processor speed.

Another problem in comparing the curves is that most presentations compress

the time-scale by showing the data logarithmically. While this is a natural way to

compress the data, it interferes with the ability to compare the actual survival rates

with the rates that would be seen if age had no predictive ability. If age does not

predict lifetime the survival function of fraction surviving by age will be exponentially

decaying, with some half-life, and the plot would be an exponential curve.

By plotting the data with a logarithmic time scale, the shape expected if age had

no predictive value is not a simple line or exponential curve. The actual data shows a

shape similar to that of a curve when lifetime has no predictive value, but it doesn't

seem to be easy to visually compare curves of this shape. When data is presented

this way, it is hard to tell if age has any predictive value whatever.

Presentations of the survival-rate data also sometimes show the data cumulatively

as the fraction of total memory that survives past some threshold. This has the

property of guaranteeing that the plot is monotonic, and the tendency to make the

curves continuous, but has beguiled researchers into thinking of the half-life of objects

as changing smoothly and monotonicly with object age.

The statistic of interest is not the cumulative surviving fraction, but the instan-

taneous half-life. When age is not a factor in predicting the lifetimes of objects, this

is simply a
at line. It can be derived from same data as the cumulative surviving

CHAPTER 3. EFFECTIVENESS OF GENERATIONS 30

fraction. For every age where objects are collected, T , assume that T is the tenuring

threshold for the next, older generation, and that these objects are the last to be

collected by the previous, younger generation. Now look for the �rst few objects to

be collected in the older generation. They have survived in the old generation for

additional time �T .

If the instantaneous half-life at time T is hT ; and the volume of objects that

survive to be promoted is VT , then the volume of objects that we should expect at

time T + �T is VT+�T = VT (1=2)
�T=hT : Taking the logarithm base 1=2 and solving

for hT , the half-life at time T is seen to be �T=� log1=2 V . This is the time we could

expect to wait for half of the older generation to be collected if its decay rate is

re
ected by the early decays.

Generational collection shows us that for many cases, in fact, the instantaneous

half-life curve must rise, and the fraction surviving must be steeper than exponential

| generational collection is e�ective when the half-life rate for the young objects is

shorter than that of the old objects. There is, among the young objects, a much

higher decay rate than there is for the older objects, and by simply plotting the

instantaneous half-life, any such patterns will be evident.

3.3 Collection Rates in CEDAR

Over a period of four months, the code in ten Dorados [32] at Xerox PARC was mod-

i�ed to record object allocation and deallocation. Not all machines were enabled at

all times. The mutator code comprises a wide variety of applications including com-

pilers, mail and network servers, editors for graphics and text, debuggers, �le servers,

and window managers [39]. All users incorporated a large number of applications in

their daily lives, and storage traces covering more than a few hours usually include

allocations from many di�erent tools.

Nearly all of the mutator code is written in Cedar, a Modula-like language devel-

oped at Xerox. Dynamic storage is an integral part of the language, but it is not used

as part of the primitive operation set. All object allocations are explicitly included

in the Cedar code.

CHAPTER 3. EFFECTIVENESS OF GENERATIONS 31

Deallocation is done by a deferred reference-counting collector [33]. Pointers to

allocated objects can be unambiguously identi�ed except for those pointers on the

stacks and in the registers. These regions are treated conservatively, so a bit-pattern

on the stack that looks like a pointer to an allocated object will keep the object from

being deallocated[8].

Care was taken to ensure that the monitoring code would not interfere with the

performance of the mutator. Some slowdown was inevitable, but most users reported

little interference with their work. One user provided several long graphical editing

sessions, but while watching him at work we decided that the response time of the

editor had dropped below an acceptable level, and it would interfere with his work

to ask for more samples. Other users may have biased their work load to avoid some

tasks while the monitoring was installed.

Dorado users invoked monitoring code after the machine was booted and funda-

mental modules were already running. Objects created before the monitoring be-

gan did not have their creations recorded. These objects can produce deallocation

records without having produced allocation records. Likewise, objects created while

the monitoring code is running but that survive past system shut-down have allo-

cation records, but no deallocation record. Some objects have neither an allocation

record nor a deallocation record. These objects were created before the monitoring

began and survived until the system was shut down.

To determine lifetimes of objects, a cohort of objects was taken from each sample.

All objects except those in the last 5 Mb allocated in the sample are in the cohort.

The age of any object in the cohort can be determined up to the age of 5 Mb, or

kept as \greater than 5 Mb." Some samples did not contain 5 Mb of allocated data,

and so yielded no results. Creations, deletions, and thus lifetimes are only accurate

to the granularity of the garbage collections. Any objects that survive the same set

of collections will be given the same age. This is probably accurate to within about

32 kilobytes.

To limit any particular user's e�ect, the two largest samples from each machine

will be used in this section | a range in volume allocated of about 60 Mb to 1 Mb.

Three of these twenty samples are smaller than 5 Mb, and so cannot be used to �nd

CHAPTER 3. EFFECTIVENESS OF GENERATIONS 32

0 1e+06 2e+06 3e+06 4e+06 5e+06
Tenuring Threshold

0

1

0.2

0.4

0.6

0.8

Fr
ac

tio
n

Su
rv

iv
in

g

0.118

0 1e+06 2e+06 3e+06 4e+06 5e+06
Tenuring Threshold

0

1

0.2

0.4

0.6

0.8

Fr
ac

tio
n

Su
rv

iv
in

g

0.118

Figure 3.1: Cumulative Survival of Bytes

objects living longer than 5 Mb. The smallest acceptable sample is just 6 Mb, and

so generates only about 1 Mb of allocations whose life-times can be tracked. The

total is about 262 Mb of allocated objects. This section will present data that is a

balanced sum of all the samples that produced more than 5 Mb of allocated storage

{ the 6 Mb sample will be given the same weight as the 60 Mb sample1.

Figure 3.1 shows the cumulative decay of the allocated storage as a function of

age. Any particular byte of allocated storage has about a 10% chance of surviving

after 5 Mb more has been allocated. It is di�cult to tell from a graph such as this

how
at the curve is getting and it is hard to project what fraction of the objects

would be permanent and uncollected if the applications were run for a very long time.

This curve is sometimes mistakenly called \exponential," since it has the fast

drop-o� and long tail often associated with an exponential curve, but even a quick

examination shows that this curve is not exponential. Exponential curves display the

same fractional drop across the same X-distance anywhere along the curve | the

ratio of the values is the same if the di�erence in X is the same.

1Appendix A includes details about each sample.

CHAPTER 3. EFFECTIVENESS OF GENERATIONS 33

0 12000020000 40000 60000 80000 100000
Tenuring Threshold

10000

1e+07
M

ea
su

re
d

H
al

fl
if

e
(i

n
by

te
s

al
lo

ca
te

d)

100000

1e+06

0 12000020000 40000 60000 80000 100000
Tenuring Threshold

10000

1e+07
M

ea
su

re
d

H
al

fl
if

e
(i

n
by

te
s

al
lo

ca
te

d)

100000

1e+06

Figure 3.2: Half-life of Allocated Storage by Age

Figure 3.1 shows no constant half-life. The �rst 50% of the objects are collected in

under 16 kb of allocation. The remaining 50% of the objects have a half-life of about

48 kb. Half of the hardy 25% of the objects, which have survived the �rst 16 kb and

the second 48 kb, survive another 816 kb of allocations. This puts the data well on

the
at section of the curve, and another 4.3 Mb of allocation brings us to the 5 Mb

mark, where we can no longer gauge the age of objects. But the oldest 12.5% of the

objects has only been reduced to 9.8% of the initial total. The last 4.3 Mb has only

removed about 1 byte in 5.

Figure 3.2 shows the half-life of allocated objects as a function of age. Since fewer

than 2�9:8% = 19:6% of the allocated bytes survive 176 kb of allocation, the half-life

of objects that have aged more than that can not be found in the data | more than

half the bytes that survive 176 kb of allocations survive past the 5 Mb horizon.

However, the survival curve from Figure 3.1 can be directly translated into a

curve showing instantaneous half-life, Figure 3.3. Since there are few objects that are

collected after a very long time, �T is allowed to get larger over time, to smooth the

plot.

CHAPTER 3. EFFECTIVENESS OF GENERATIONS 34

0 1e+06 2e+06 3e+06 4e+06 5e+06
Tenuring Threshold

10000

1e+09
In

st
an

ta
ne

ou
s

H
al

fl
if

e
(i

n
by

te
s

al
lo

ca
te

d)

100000

1e+06

1e+07

1e+08

0 1e+06 2e+06 3e+06 4e+06 5e+06
Tenuring Threshold

10000

1e+09
In

st
an

ta
ne

ou
s

H
al

fl
if

e
(i

n
by

te
s

al
lo

ca
te

d)

100000

1e+06

1e+07

1e+08

Figure 3.3: Instantaneous Half-life of Allocated Storage by Age

Figure 3.3 also incorporates Figure 3.2, the real half-life seen as the sharply rising

line on the left. The real half-life is always greater than the calculated instantaneous

half-life because the later assumes that the present half-life will continue into the

future, but the half-life rises as objects age. When the future instantaneous half-life

is larger than the present, as it must be if generational collection should be used, the

instantaneous half-life is a low estimate of the true half-life.

The half-life can be scaled to �nd the waiting period for fractional decays other

than 1=2. For example, if all of the bytes in a generation are 2 Mb old, the half-life

is about 10 Mb of base level allocation, as taken from Figure 3.3. That means that

after 30 Mb, 12.5% of the bytes can be expected to remain if the current decay rate

continues to apply to those bytes.

The half-life is tied to the base-level allocation rate in the Cedar language and

system, and di�ering results would be obtained for other languages or systems. But

if the same application using the same data structures were written in two di�erent

languages, the language used would not e�ect the collection rates of the algorithm's

data structures relative to one another | only the rates relative to the allocations

CHAPTER 3. EFFECTIVENESS OF GENERATIONS 35

required by the language would change.

If almost all of the di�erences between the languages are in the short-lived ob-

jects, and the early generations of a multi-generational collector would remove the

language-dependent di�erences in the allocations, then the later generations would

contain only the data structures required by the algorithm. Of course, the early gener-

ations will also pick up short-lived objects that come from the algorithm. By looking

farther and farther down the curves, the allocations related the language make up a

smaller fraction of the remaining objects, and the allocation structures inherent in

the algorithms dominates.

When the half-life is constant, the age of an object is not a good predictor of its

remaining lifetime. When the half-life is increasing, as in the early parts of Figure 3.3,

collecting the young objects and old objects at di�ering rates might be a good idea.

If the half-life is decreasing, the older objects are being collected at a faster rate than

the young, and generational collection would be a poor idea. But while the half-life

shows a marked increasing tendency in the young objects, the tendency among the

older objects is less clear. In addition, the half-life itself has increased substantially.

The next section will develop generation size as a measure of the di�erence between

the young and not-so-young objects.

3.4 Generation Size

By using allocation rate as a measure of time, the half-life curve is tied to the language.

The dependency can be eliminated by correcting the collection rate at every age for

the arrival rate, the rate at which bytes are promoted past the threshold age. The

most convenient measure for expressing this is generation size.

Figure 3.4 shows a simple model of a cascading generational collector, centered

on one generation. The previous generation has just been collected, and so is entirely

empty. The current generation is full, but some of it is unreachable. If this generation

has not been threatened by a collection recently, the unreachable objects have not yet

been discovered. The next generation also contains a mixture of reachable and un-

reachable objects, but has not yet been �lled to its capacity. The current generation,

CHAPTER 3. EFFECTIVENESS OF GENERATIONS 36

unreachable

reachable

previous current generation next

empty empty

unreachable

reachable

previous current generation next

empty empty

Figure 3.4: A Cascade of Generations

since it contains no empty space, will be collected soon.

The earlier generations, when collected, will promote to the next generation only

objects that have survived T bytes of allocation. For every byte that is allocated,

some fraction of a byte, a; survives T more allocations to arrive at the new generation.

Arrival from the earlier generation continues until the current generation is full. If

its volume is V , the current generation will be full after V
a
bytes have been allocated

at the top level. The objects in the generation have been aging for a range of time |

the newest arrivals have been there for no time at all, and the oldest have been there

for V
a
allocations.

Notice that we are taking some liberty by assuming that the survivors from the

previous generation are promoted after they have survived some length of time, but

the current generation is being collected when it is full. The two descriptions of

the tenuring policy do not di�er by much if each generation is collected many times

before the next generation �lls. If this were not the case and the two generations were

collected at comparable rates, there would be no reason to have two generations.

The half-life h at time T can be translated into a retention rate, r by using the

half-life formula, rh = 1=2: The rate r is the fraction of a byte that will remain for

each byte allocated at the top level. If this retention rate at time T continues to

hold at later times, the fraction of bytes that will survive a collection of the older

generation is

F =
a

V

Z V

a

0

rtdt:

The charts indicate that, in fact, the half-life rises with time, and thus the retention

CHAPTER 3. EFFECTIVENESS OF GENERATIONS 37

0 1e+06 2e+06 3e+06 4e+06 5e+06
Tenuring Threshold

100000

1e+09
G

en
er

at
io

n
Si

ze
 f

or
 1

0%
 P

ro
m

ot
io

n

1e+06

1e+07

1e+08

0 1e+06 2e+06 3e+06 4e+06 5e+06
Tenuring Threshold

100000

1e+09
G

en
er

at
io

n
Si

ze
 f

or
 1

0%
 P

ro
m

ot
io

n

1e+06

1e+07

1e+08

Figure 3.5: Generation Size Needed for 90% Collection Rate

rates in the future will be higher than the instantaneous retention rate | the integral

underestimates the generation size.

Solving this integral gives the basic relation between the volume V of a generation

and the fraction of storage that will be tenured from that generation, given a �xed

promotion rate a and instantaneous retention rate r:

F =
a

V ln r
(r

V

a � 1):

The measured data supplies values for a and r for all times up to 5 Mb allocated.

Figure 3.5 shows the generation size that would be required to have a cascaded gen-

eration that contains only objects that have already survived T bytes of allocation,

and a survival rate of 10%.

The volumes needed are small for the early generations, but to maintain a 10%

survival rate for generations with longer tenuring thresholds, the volumes grow to

hundreds of megabytes. Recall also that these calculations are based on the instanta-

neous retention rate, and the volume calculated is a conservative estimate since the

half-life continues to rise.

CHAPTER 3. EFFECTIVENESS OF GENERATIONS 38

The desire for a high collection rate in later generations is in con
ict with the

desire to keep the generations small. The model of a cascade of generations leads to

either large heaps with infrequent collection and poor storage use or poor collection

rates in later generations and large costs for tracing. This is a direct consequence of

the long half-lives seen among the older objects. A system that makes promptness

guarantees for �nalizable objects and collects generations only when full can not

a�ord to have large generations. Objects would be threatened infrequently, and the

promptness guarantees would be hard to meet.

3.5 Age-based Clusters

While using age directly as a predictor of life-time seems unpromising, further analysis

of lifetime data both in Cedar[21] and in Smalltalk[41] shows that for individual

applications object life-time graphs are not smooth | there are clusters of objects

that are created at roughly the same time and that become unreachable at the same

time2.

These clusters of objects do not necessarily get collected in a stack-like manner,

as would be�t multi-generation collection, but seem to be more idiosyncratic. While

generational collection can collect the young objects, the clusters that are tenured

from the generational collection need other methods to keep the costs of collection

low. The next two chapters will show how these clusters can be detected and collected

e�ciently.

2These clusters can be inferred from many of the \Generation size" charts in Appendix A. The
gaps in these charts show ages where no objects are collected, and the spikes show ages where objects
are. In addition, near-by spikes are not the same height | the volumes needed for 10% promotion
rates can change ten-fold when volumes of objects are just on the cusp of the tenuring threshold.

Chapter 4

Key Objects

Early garbage collectors scheduled collections only when memory ran out. For large

memories this leads to long times between collections, but the collections themselves

can be lengthy, and can occur at inconvenient times. In addition, if collections are

scheduled only after no more memory can be allocated, the mutator will only be able

to run in parallel with the collector as long as it tries to do no allocations, and much

potential parallelism will be lost.

One simple allowance for parallelism between the collector and the mutator is to

begin collection when the available space, used at a projected rate, will run out at

the same time the collection is projected to be �nished[26]. If these projections are

correct, no mutator will ever be denied memory. The heap must still be guarded

against simultaneous access by the mutator and collector to ensure that collections

are correct, but this is a �rst step towards recognizing scheduling of collections as a

major problem in complex collection systems.

The drive to consider garbage collection as a scheduling problem is often classed

under the rubric of opportunism. When the heap is divided into areas, the collection

system must have a policy to decide not only when to collect, but also a policy to

select some subset of areas for collection. The policy must also be in agreement with

the mechanisms available to the collector.

With a typical multi-generational collector, collection of a middle-aged generation

can only be done in conjunction with a collection that threatens all objects younger

39

CHAPTER 4. KEY OBJECTS 40

than middle-age as well. This restriction to the collection system's ability to choose

areas to threaten independently is coupled with the decision to remember only point-

ers from older objects to younger objects. In general, if the collector does not have

access to the list of pointers from objects in area A to objects in area B, area B

cannot be threatened without threatening or scanning area A [14]. Limited by the

availability of this cross-area pointer information, the collection system has a set of

choices in selecting a set of areas to threaten with garbage collection and choosing

times for performing these collections.

One form of opportunism looks for times when the garbage collector could be run

without having the user notice[43]. For example, if the processor has been idle for an

hour, it is likely that it will remain idle for a while longer, and a ten second garbage

collection is unlikely to be noticed. On the other extreme, if CPU-bound processes

are already making interactive response poor, running the garbage collector will not

degrade the response much further. The goal is to make sure that the collection

system does not get in the user's way.

A second form of opportunism looks for times when the garbage collector could be

run with great e�ect and in minimal time. This involves trying to �nd areas rich in

unreachable objects soon after they become rich, and avoiding running the collector

in areas that are unlikely to contain unreachable objects. Generational collection is

the exemplar of this form. The areas containing the youngest objects are almost

always rich in garbage, and so are scheduled for collection frequently.

Unlike the �rst kind of opportunism, the second kind can increase the actual

e�ciency of the collection system. The two kinds of opportunism are orthogonal |

a well designed collection system will have both. The emphasis in this dissertation

will be on the second, e�ciency-enhancing kind of opportunism, and will assume that

designers of collection systems will see to the �rst.

In order for the collection system to do a good job of scheduling e�ective col-

lections, it must be willing to gather information about the running system from

di�erent sources. Often the best way to view the input to the collection system is as

a series of \hints" about the areas where garbage collection might be considered and

the scheduling of the collections. This decouples the implementation of the collection

CHAPTER 4. KEY OBJECTS 41

system from the scheduling policy.

4.1 Hints

Hints can take various forms, from demands for garbage collection to suggestions, and

can include predictions of the amount of storage that would be freed by the suggested

course of action as well as the projected costs. The collector can then determine what

areas to collect, if any, by integrating the hints with global system information |

current and projected real-time demands, CPU load, and even time of day.

Generational garbage collection can be viewed as opportunistic collection where

the hints tell the collector what areas of memory have been used for new objects.

By concentrating its collection e�orts in just those areas and ignoring areas where no

allocations have occurred, the collector �nds all of the young objects that have become

unreachable. Of course, a generational collector is designed around this particular

hint. There are few areas where new objects are allocated, and the hint is always

applicable to these areas.

Other suggestions for the sources of hints include looking for sections of the dy-

namic trace of the program where the allocation is essentially stack-like. At the

beginning of the section and at the end of the section, the heap is in more or less the

same state, but between many objects have been allocated (pushed) and become un-

reachable (popped) [35]. These sections of code could be marked by the programmer,

discovered by compiler analysis or pro�ling, or noticed dynamically by the allocation

system 1.

Such a section of the program will de�ne a group of objects that can be placed

together in an area. When the program execution reaches the beginning of the section,

the new area is set up and all allocations are directed to that area. When the program

execution reaches the end of the section the area is closed o� to allocations and garbage

collected. Depending on the particular collection system involved and the length of

1Programmers are notoriously bad at identifying CPU hot spots in programs when hand optimiz-
ing. It would be unreasonable to expect that they would be any better at generating good garbage
collection hints without the aid of pro�ling tools.

CHAPTER 4. KEY OBJECTS 42

time the new area is active, generational collections might be run on the area as well.

Because the allocation is stack-like, most of the objects that have been pushed after

the beginning have been popped by the end, and a collection of the area will �nd few

objects reachable.

In an application where much of the allocation is stack-like, the state of the heap

is re
ected in the state of the activation stack. If the collection system monitored the

invocation stack, it could schedule collections for times when the stack has recently

shrunk, and avoid times when the stack is large. By doing this, it is likely that the

collections will occur when the active heap has recently shrunk.

One simple way to monitor the stack is to alter the activation records so that

the return address of some chosen frame is changed to call into the collection system

interface. The system can note that the return occurred and return to the original

caller [43]. This approach aims at invoking collections on all of the objects allocated by

an application when the application terminates, and high-level semantic information

can give the collection system good places to mark the stack.

Sections 4.2 and 4.3 de�ne key objects and show how key objects can be used

to o�er hints to the collection system, both to �nd areas to be collected and to �nd

good times to collect them. Section 4.4 shows how �nalization, a mechanism already

in place in some collection systems, can be used to build keys and hints. Section 4.5

o�ers some suggestions on how keys might be discovered.

4.2 Key Objects

When the entire object space is partitioned into areas, the collection system must

decide if a particular area is ripe for collection. One possibility would be to take a

\core sample" of an area, consisting of a randomly chosen set of objects from that

area. If the collection of the core sample proved to be e�ective, then the collection

system could schedule a collection of the entire area.

Core sampling allows the system to expend a small e�ort to predict the e�ective-

ness of a collection on an area. Unfortunately, choosing a random subset as a core

sample seems unlikely to produce good results. Imagine an area where the objects in

CHAPTER 4. KEY OBJECTS 43

the area are all unreachable from the roots, and thus collectible, and are connected in

a tree. Any subset that does not include the root of the tree will have no unreachable

objects in it, since the root of the tree will be a root of the collection.

One goal of key object opportunism is to choose these representative subsets in

a way that will allow generation of useful hints. A good key object is an allocated

memory object that the collector can choose to threaten in order to get statistical

information on the distribution of reachable and unreachable objects.

4.3 An Example

Figure 4.1 shows how a sample cluster and its key interact with the collection sys-

tem. This example will be couched in terms of a copying collector to simplify the

bookkeeping, but a collector can do the bookkeeping without doing the copying [14].

a) A cluster, in this case a tree, is created in the area reserved for new and young

storage. The objects in the \new" area tend to die quickly, and tend to be

written more than old objects. In a pure form, access to the cluster would be

through the key objects only, in this case the root of the tree. The only access

to the root is through a global pointer held in an old object or global variable.

b) After the cluster has passed some age or survived some number of collections,

it is copied out of the young area. But rather than being copied to an age-

segregated area, each cluster is moved to an area of its own. The time-based

generational collector will try less frequently to collect the cluster. In a standard

time-based generational collector, this is the \promotion" step.

The key objects for the cluster are copied to a separate area. The collector will

continue to try to collect the key objects, but the remainder of the cluster will

be promoted and faced with fewer or no collection attempts.

c) It may be that not all the objects will be copied from the young area at the

same time, as they may have a range of ages, and objects created later may be

hung from various branches of the tree.

CHAPTER 4. KEY OBJECTS 44

Young Objects

Tenured
Objects

a)

Young Objects

Tenured
Objects

Keyed Area

Key
Object

b)

Young Objects

Tenured
Objects

Keyed Area

Key
Object

c)

Keyed Area

Key Object

Tenured
Objects

e)

Tenured
Objects

Keyed Area

Key Object

d)

Keyed Area

Key Object

Tenured
Objects

f)

Young Objects

Tenured
Objects

a)

Young Objects

Tenured
Objects

Keyed Area

Key
Object

b)

Young Objects

Tenured
Objects

Keyed Area

Key
Object

c)

Keyed Area

Key Object

Tenured
Objects

e)

Tenured
Objects

Keyed Area

Key Object

d)

Keyed Area

Key Object

Tenured
Objects

f)

Figure 4.1: An Example of Key Object Opportunism

CHAPTER 4. KEY OBJECTS 45

After looking at the pre-existing keyed areas that point to new objects, copying

can be used to promote new objects to areas that already pin the objects rather

than to a general \old" area[5], or the objects can be self-identifying, indicating

which cluster they would like to belong to when they are promoted.

d) When the mutator is done with the cluster it writes the variable leading to the

key object. In a cyclic program, this will happen when the next cycle stores a

pointer to the new root. A program aware of the garbage collection strategy

might explicitly zero the pointer, just as cycles are broken for reference-counting

collectors.

Pointers to other parts of the cluster may continue to be active, either because

a part of the cluster is being actively saved, or a pointer was created which was

never zeroed.

e) Since the collection system has not promoted the key objects, they are not out

of harm's way. Eventually, the un-referenced key object will be reclaimed. At

that time, the collector can take this as a strong \hint" at an opportunity to

collect the associated keyed area.

Note that the collector can not simply deallocate all of the objects in the cluster,

since some of them may still be alive through pointers that bypass the key

objects of the cluster. The bookkeeping information will show all of these cross-

area pointers.

f) A collection over the keyed area is, in this case, fruitful. Most of the objects in

the cluster are not saved by outside pointers and can be reclaimed.

The collection system must employ a policy to handle those objects that live

longer than their keys. A simple solution would be to copy those objects to a

permanent tenured area to wait for the next full collection. Instead, they could

be combined with a cluster they are rooted in, or even analyzed to �nd a new

key among them[5]. Further research and measurement would be needed to

�nd good policies for objects that escape both generational collection and key

object collection in some particular collection system.

CHAPTER 4. KEY OBJECTS 46

key

keyed area

key

keyed area

Figure 4.2: Backpointers to a Key

key

keyed area

key

keyed area

Figure 4.3: Backpointers to a Key, Ignored by Finalization

4.4 Using Finalization

In some systems with �nalization, the mechanism used for �nalization noti�cation can

be used to issue garbage collection hints. Finalization, as mentioned in Section 1.5,

allows an object to have code associated with it that is run when the object becomes

unreachable or nearly unreachable. This is exactly what key object opportunism

demands | when the key object is nearly unreachable, it can use the �nalization to

�le its hint with the garbage collector.

Figure 4.2 shows one of the problems that can occur with otherwise good choices

CHAPTER 4. KEY OBJECTS 47

for key objects | some objects in the key's cluster contains a pointer to the key

object. Using the inaccessibility of the key to trigger a collection of the objects in

the cluster will not work if objects in the cluster have pointers to the key. With

back pointers, attempting to collect the key more often than the cluster is doomed

to failure. The cycle involving the key object and the objects in the keyed areas will

keep either from being collected until they are both threatened by the same collection.

The repeated attempts to collect the key alone are futile.

However, if the semantics for �nalization allow the key object's �nalization code to

run when the object is \nearly unreachable," then the root can be used as a key, even

in the presence of back pointers. All that is needed is to register the back pointers as

irrelevant to the �nalization, as in Figure 4.3, using the same mechanism that allows

package pointers to be ignored. Whatever mechanism is used to determine that a

certain object should be used as a key for a certain cluster will also automatically

de�ne the set of back pointers that would have to be ignored | the pointers to ignore

are just those pointers from a keyed area back to a key that controls collections of

that area.

When the root becomes unreachable except by a path that uses these back point-

ers, the �nalization code | now being used to issue a garbage collection hint | will

run and register a hint to collect the cluster keyed from the root.

This use of designated pointers to break cycles resembles weak pointers, as dis-

cussed in Section 1.5. One of the chief uses of weak pointers is to break cycles in

data structures for reference counting collection systems[38]. In such systems, the

weak pointers are not counted in the reference counts. Reference counting systems

cannot easily collect loops, but if at least one pointer in a simple closed loop is weak,

some object will have a reference count of zero rather than one. That object can be

collected, and the cycle will be broken. But the collection system cannot change a

strong pointer to a weak pointer without risking a change in the semantics of the

program. The programmer has to consider what data structures would produce loops

and where weak pointers could be placed to allow the collection system to deal with

the loop, and must be very careful that the intended semantics of the program are

not e�ected by the change.

CHAPTER 4. KEY OBJECTS 48

The package pointers used by �nalization and the designated back pointers used

for key objects are not weak pointers. If they were, then key objects would be collected

when the remaining non-weak pointers were eliminated, even if some objects in the

cluster were still reachable. The key object would be collected even though it is still

reachable from a reachable object in the cluster.

If the system provides only \executor" semantics for �nalization, there is no simple

way to use �nalization to register hints. Under these semantics, the �nalization can

only be run when the object becomes thoroughly unreachable. In the presence of

back pointers, this could only be established by collecting the key object along with

the cluster where the back pointers come from, rending moot the hint to collect that

cluster.

4.5 Finding Key Objects

Some key objects are objects through which accesses to a cluster are usually made, for

example the root of a tree or the head of a list. The life-times of these objects re
ect

the lifetimes of a larger set of objects, and often data structures are designed so that

there are few external pointers to the list or tree other than the root. A generational

garbage collector may traverse the young objects many times before they are handed

o� to the key object collector, and so has many opportunities to discover which objects

are the roots of large structures. But other objects may re
ect the lifetime of a larger

set, and so could be used to signal an opportunity for collection.

4.5.1 Random Selection

A collector could promote half of the objects that had lived past the tenuring threshold

and use the rest for keys 2. There will be some correlation between the fraction of

garbage in the half not promoted and the fraction in the half promoted. When the

collector notices an unusually large number of unpromoted objects of roughly the same

age being collected, it could then examine the objects promoted at the same time.

2Paul Wilson suggested this at an informal discussion at the OOPSLA '90 garbage collection
workshop.

CHAPTER 4. KEY OBJECTS 49

Since objects that are created at roughly the same time tend to become unreachable

at the same time, this approach might be expected to work well.

Many objects among the unpromoted would be kept alive only by pointers from

other objects in the cluster, but no pointers from outside the cluster. There would be

many pointers from the promoted half to the unpromoted half. This would increase

the bookkeeping costs by expanding the set of pointers from the promoted objects

back to the others. If the cluster has already survived generational collection, it is

unlikely that its structure will be changing radically, and these bookkeeping costs

would have to be carried for the life of the cluster.

For most clusters, being split randomly in half wouldn't be likely to produce

good indicators. Many objects in the unpromoted half will have pointers to them

from other unpromoted objects. The objects pointed to will not become unreachable

unless the structure of the cluster changes or the objects containing the pointers

become unreachable. When the accessibility of one key object depends directly on

another's, one key alone will usually su�ce.

The only way that random selection would work well is if the system were fortunate

enough to not promote the roots of structures and promoted most of the rest. If the

head of a list is promoted, the unpromoted fraction will be worthless as an indicator

for the list since nothing in the unpromoted fraction can be collected before the head

is. Keeping a large random fraction of the old objects unpromoted would put a burden

on the collection system, but a small random fraction seems unlikely to be a good

indicator for collections.

4.5.2 Key Discovery

The collector could gather information in the generational phases that would help

to uncover some of the keys without any human intervention. When the time-based

collector copies a group of objects from one generation to the next, it could keep track

of which objects seem to be the root objects, like the heads of lists and the roots of

trees.

Each generational collection starts from a set of pointers contained in the global

CHAPTER 4. KEY OBJECTS 50

state of the system and the set of cross-generation pointers from the old objects to

the new objects. Any young object, A, which is not pointed to by one of these initial

pointers is only being kept alive by some other live, young object, B. If this situation

persists across several generational collections, it would seem that objects like B |

the roots in the young generation | would make better keys than objects like A;

since A will only become collectible when object B is collected or changed.

The only candidates remaining are those objects directly pointed to by one of the

initial pointers into the young area. The generational traces can also gauge the volume

of storage that a cluster reachable from some such object contains, eliminating objects

as potential keys if they are not responsible for large volumes. For some collection

styles including Cheney copying[9], it would not be di�cult to also examine the

potential clusters for modularity.

Pure Chaney copying traverses objects in a breadth-�rst order. The collector can

make the traversal in an order that attempts to keep clusters of objects together,

and the cost is small | only a few extra scan pointers and �ll pointers need be

kept[30, 36, 44, 46, 13]. When constructing a cluster, the collector can easily discover

all of the pointers from the cluster to objects outside it. If two clusters would have a

large number of pointers between them, they could be combined into a single cluster.

It is also tempting to look for keys by �nding pointers from old objects and global

objects to much younger objects. The intuition is that these pointers will indicate

important features of the mutator's data structures, pointing out old objects that

have their contents altered again and again, and the current tenant residing there

may be evicted in the future.

Of course, some ancient objects, for example hash tables, might be quite libertine

and point at a large number of objects 3. Ideally, a key object would be indicated

by a pointer from an ancient object to a new object, where the ancient object had a

history of changes in the set of objects it pins. This would give some credence to the

presumption that a future change to the old objects might free the suspect key.

3Due to other considerations, it is a good idea to identify hash tables to the collection system
[44, 46].

CHAPTER 4. KEY OBJECTS 51

4.5.3 Stack-Based Key Objects

A key object will only be collectible when all the objects pointing to it either become

collectible or are altered to remove the pointer to the key. A pointer from an object

that does not change would tend to indicate that the object pointed to is not a key

object, but an object pinned only by volatile pointers would be an excellent candidate.

In a stack-based language implementation, the pointers from the stacks can be treated

as volatile.

The collection system can use information about the stacks to help it �nd oppor-

tunities to collect mature objects. Consider an object that is pointed to only from

a stack frame. When the routine associated with that stack frame returns, the ob-

ject will be collectible unless the routine makes a special e�ort to save that pointer.

Saving the pointer involves either returning it as a result and having it stored into

another stack frame or explicitly storing it in a global or the heap. Most pointers are

not saved upon return, and most objects become unreachable quickly.

This suggests a heuristic to monitor the stack activity and schedule collections

of mature objects. Previous suggestions included altering some of the active stack

frames to generate hints for collection upon return[43, 44] and changing the call/return

protocol to count the number of pops from the stack[28].

A collector can �nd stack-based keys as a side e�ect of tracing objects during a

full collection. First, it would want to mark all of the objects reachable from the

globals, and only then trace from the more volatile registers and stack. The objects

reachable from the globals can be divided into areas and keyed by whatever heuristics

are found to be appropriate.

The remaining untraced objects are reachable only via volatile pointers. The

�rst level of objects reachable from the registers and stack would be likely to make

excellent keys for clusters of objects reachable from only the stack and perhaps even

other objects reachable from the globals.

A good way to divide the remaining objects into keyed areas would be to begin

with the coldest, oldest stack frame. Objects reachable from this frame will not

become unreachable until the frame is popped or the pointers are overwritten. An

object reachable from this frame and another warmer frame will not be free when the

CHAPTER 4. KEY OBJECTS 52

warmer frame returns, but must wait for both frames to be popped.

The collector can trace all previously untraced objects reachable from objects

in the deepest frame, and project that they will all become free when the frame is

popped. To know when the frame is popped, the collector can use the objects that are

immediately reachable from the frame as keys. The collector can continue in this way

along the stack from the coldest frame to the warmest, partitioning the remainder of

the heap into temperatures based on the stack, with key objects for each partition.

Figure 4.4 shows the result of such a partitioning.

The stack has a hot end | where the pushes and pops occur, and a cold end. The

pointers from the stack to the heap are used to infer a similar temperature gradient

on the heap, and objects will be collected in roughly a hottest-�rst order if the keys

behave as expected. At the hot end of the stack, there may be pointers to objects

still in the young generation. It seems prudent to allow generational collection to

have its way with these objects before subjecting them to stack-based keying. At the

cold end, the use of the stack frames may have more in common with global storage

than stack-based storage, depending on the language, implementation and style of

programming. The collection system will have to trade o� among heuristics to �nd

the best applicable range for stack-based keys.

After the partitions have been established and the mutators have been resumed

the situation may resemble Figure 4.5. Some of the warm frames have been popped,

some values have been stored into cold frames on the stack, some new frames have

been pushed. The collector can get a useful summary of this activity by threatening

the stack-based keys.

A collection on just these keys will result in the situation seen in Figure 4.6.

Most of the keys associated with popped frames will be collected, and few of the

keys associated with unpopped frames will have been. The collector can use this

information to make a temperature cut in the stack-based partitions, and threaten

all objects in partitions warmer than the cut-o�.

The accuracy of stack-based keys is related to the degree that the mutators are

following a functional paradigm. In a strictly functional language, the only violations

of the stack allowed are in function returns. The success of generational collectors

CHAPTER 4. KEY OBJECTS 53

Cold

HotCold

Keys

Hot

Generational

Cold

HotCold

Keys

Hot

Generational

Figure 4.4: Keys Found by Stack Traversal

Hot

Cold

HotCold

Keys

Hot

Cold

HotCold

Keys

Figure 4.5: Unreachable Stack Keys

CHAPTER 4. KEY OBJECTS 54

Hot

Cold

Threaten

Keys

Hot

Cold

Threaten

Keys

Figure 4.6: After Key Collection

implies that even languages that do not enforce functionality, such as Cedar and

Smalltalk, are used in a functional way, and bene�t from collection mechanisms de-

rived from a functional viewpoint.

4.5.4 Serendipity

Key objects need not even point to objects in the clusters they monitor. The design

of the system may include an object or small cluster to hold supplementary data

about a large cluster. The keys are not actually pinning objects in the cluster, but

have a lifetime similar to it. The semantics of the application that creates a cluster

can imply that an object is a good candidate.

If the semantics of the application are not available to the collector, then the

collector is limited in its ability to �nd these keys, but pro�ling of the collection system

might be used to �nd them. An examination and pro�le of the objects promoted by

the generational collector and deallocated by a collection over the older generations

can show blind spots in the generational collector. If a particular application is

CHAPTER 4. KEY OBJECTS 55

allocating a large volume of storage that is promoted and then later becomes free,

but there is no obvious root or serendipitous key, the application can be changed to

allocate a single object whose sole purpose is to serve as a key. A coincidence can be

planned.

4.5.5 User Supplied Hints

Other key objects can be indicated by cycles of human use. There is nothing in the

semantics of the editor, compiler, and debugger to suggest that people often use these

tools cyclically, but the cycle arises out of human work patterns. This means that

when a program developer begins to debug, there may be key objects in the debugger

that trigger a collection of the compiler structures | use of the debugger is a good

indicator that the compiler has �nished. The two applications are connected not in

their formal semantics, but only in their use by people. The pro�ling used to �nd

keys for one application might uncover them in a di�erent application.

It is hard to imagine that a connection through human use could be found easily

and automatically. This suggests that a collector would bene�t by being able to take

hints about collections, including suggestions from applications about which objects

would be good key objects for which clusters. Without this ability, the collection

system is limited to discovering hints on its own.

Chapter 5

Simulation of Key Objects

In order to test key objects in a real system, I modi�ed the ParcPlace Object-

worksnSmalltalk memory management system[31]1

Objectworks uses two garbage collectors, a two-space copying generational collec-

tor and a non-copying full collector2. The generational collector used by the system

has been extensively tuned and studied, and has a promotion strategy designed to

keep promotion at a minimum[41]. Rather than promoting objects that have reached

a given age, the strategy is to allow object to remain in the young generation until

they are too voluminous to collect without noticeable pauses. At this point, enough

storage is promoted to bring the young generation back under the size imposed by

the real-time limit.

In a previous incarnation, when the generational collector needed to promote

objects it would promote the oldest objects currently under its control, choosing an

age cut-o� that would guarantee that enough objects would either be reachable and

promoted, or be unreachable and collected. The present collector promotes those

objects nearest the bottom of the semi-space.

Objects are created in a separate \birthing area", and if they thrive are copied to a

semi-space. Objects are only promoted from the semi-spaces so promoted objects have

1Special thanks are due to Frank Jackson who arranged a source license for this project.
2It also contains an incremental collector and permanent area, but for these experiments they

were disabled. In a production system, I would expect some kind of parallel or incremental full
collections to be present.

56

CHAPTER 5. SIMULATION OF KEY OBJECTS 57

survived at least two generational collections and may have survived many more3.

Since promotions out of new-space are based on the relative addresses of objects,

the generational collector also controls which objects will be promoted more aggres-

sively and which will be kept in the new-space as long as possible. The �rst objects

copied into the to-space will be the �rst promoted at the next generational collection,

and the generational collector can control promotion order by using the copy order.

The tweaks in the copy order to support key object collections will be discussed in

Section 5.2.

5.1 Inter-generational Pointers

Previous studies have shown that most pointers connect objects of similar age[10, 15].

It is a rare event when a pointer to a new object is stored into an old object, and it

marks both objects as being somewhat special4. The old object, where the pointer

is stored, has shown itself to be the target of a store after it was promoted, and thus

fairly long after its creation. Assuming that such an object once stored into is more

likely to be stored into in the future, the object in new-space that the old-space object

points to is a good candidate for being a key object; a future store that overwrites

the pointer would free the key object in new-space unless it is explicitly retained.

Objectworks was modi�ed to set a bit in any new-space object that had its ad-

dress stored in any tenured object. The generational collector already maintains a

\remembered set" of old objects that may contain pointers to new objects | it is

used to �nd the roots for the generational collections. Since the generational collector

must already trap these pointer stores to maintain the remembered set, setting the

object's bit does not degrade performance to any large degree.

3When the survival rate of new objects is so high that the survivors in the birthing area will not
�t in the to-space, they are tenured immediately. This is an unusual circumstance, and the methods
used here to make key objects will not work in those conditions. For some of the tests presented
here the birthing area was reduced in size to ensure that objects would take the expected path.

4Most system designs contain a few objects containing pointers to a large number of objects, and
a few objects that are pointed to by a large number of objects. Examples of these are, respectively, an
object table and the NIL object. These objects can be exceptions to the rule that objects connected
by a pointer are of similar age, and might need special attention in a memory management system
assuming this rule.

CHAPTER 5. SIMULATION OF KEY OBJECTS 58

5.2 Marshaling Objects For Promotion

Since the collection system will be using these designated objects as key objects,

it also needs to cluster together those objects that it believes will become free if

any particular key object becomes free. The generational collector is used to gather

together the keys and their clusters. Since the order of tracing of objects by the

generational collector is also the order of promotion, it can control which clusters

will be promoted aggressively, and which will be retained for future generational

collections.

The �rst objects copied are those pointed to from old-space, but that have never

been the target of an inter-generational store. The object in old-space must have been

pointing to the object in new-space when it was tenured, and the pointer has not

changed. These are the \nepotism" pointers | a structure was built in new-space,

but only part of it has been promoted so far and part of it remains in new-space.

These new-space objects will be the �rst promoted when the generational collector

needs to lighten its load5.

Next the collector tries to place large structures, even if made up of many small

objects. As part of every scavenge, it notes when a single object and all the new

objects reachable from that object have a volume of more than 250 bytes. The objects

heading these clusters are marked, and, at the following scavenge, these clusters are

the next in line to be promoted.

Finally, any remaining objects that are reachable from old-space are copied. It

is only after all the objects reachable from old-space are copied that the objects

reachable only from the stack are copied. These form the large majority of the

un-keyed objects, and it is assumed that other methods would be used to �nd key

objects among these and the objects they point to. They will only become free when

the stacks that pin them are popped or altered6.

5When the scavenger �nds that the cut-o� point to bring the volume of retained objects is in
the middle of a cluster, it advances the cut-o� to the next new key object. This helps eliminate
nepotism pointers.

6The collector as shipped by ParcPlace has quite a di�erent order. If the incremental collector is
running when a scavenge occurs, the collector �rst copies all new objects reachable from the marked
objects in the remembered set and then transitively copies those objects. This ensures that new

CHAPTER 5. SIMULATION OF KEY OBJECTS 59

The Objectworks system has a level of indirection between pointers to object

headers and the data they contain7. When a key object is tenured, the header is

placed in a reserved portion of memory, and the key's data is placed with the data

from the cluster. Key objects in new-space are marked with a bit, but in old-space

their headers are segregated. The headers for the key objects contain pointers into

the object data, and thus partition the object data into clusters. All collections of

the old space maintain the order after collection by compacting the data. If a key

object heading one cluster is collected, but some of the objects in the cluster survive,

these objects will be merged into the preceding cluster.

5.3 Simulation of Key Object Collection

A collector using key objects would �rst determine which key objects indicate clusters

that should be collected, and then use that information to collect those clusters and

avoid the other clusters. Being able to selectively attack clusters is di�cult since it

requires �nding all of the pointers in old-space that point from one cluster to another.

The same e�ect can be achieved by scanning the old-space re-building at each key

object collection the caches that would be kept in a real system. E�ciently keeping

these caches and partitioning of heaps into nearly-independent clusters is a target of

current research[5, 36, 46, 13].

objects promoted by the scavenger will be marked if they should be. If the incremental collector is
not running, this step is omited. Next it searches the stacks for pointers to new objects and copies
just those objects directly reachable from the stacks. Finally, it traces the rest of the remembered
set for pointers to objects in new space, and copies the objects directly pointed to. These roots
from the remembered set together with the roots from the stack are then copied transitively using
the usual breadth-�rst two-space copying algorithm. Since the incremental collector is not usually
running, the e�ect of this tracing order is to promote aggressively the objects pinned by the stacks.
As a simple experiment, the order was changed to �rst copy all objects transitively reachable from

old space, and then copy those objects reachable only from the stack. The expected e�ect was that
the generational collector would retain those objects more suited to generational collection | those
pinned only by stack pointers | and promote other objects. Using the \session playback" data
set, 30% fewer objects were promoted. The changed order relieves the burden on the next collector
that would be responsible for these objects. This is only a single data point, but it suggests that
generational collectors could bene�t from considering exactly what objects to promote.

7This split allows for the Smalltalk \become" operation where two objects exchange identities.
The pointers from the headers to data are exchanged in the two objects, and any pointer to the
header of either of the objects will now �nd the data previously associated with the other.

CHAPTER 5. SIMULATION OF KEY OBJECTS 60

The key objects in the old space are divided into \assumed live" and \assumed

dead" by doing a mark and sweep on the clusters. The un-keyed and new objects

are the root clusters, and pointers to key objects from there cause the collector to

assume that those keys are live. For each key that is assumed live, its cluster is

scanned for pointers to other key objects, and those are likewise assumed live. This

continues until all clusters associated with keys assumed live have been scanned. Any

key scanned is assumed live, and its cluster will be immune from collection. This

scheme will not collect unreachable cycles of clusters where some clusters are old and

some new. Only when all the clusters in a cycle have been promoted will they all be

collected.

To simulate the collection that would occur by using the key objects, a full trace

of the objects is �rst performed. This identi�es all dead and live objects. Then

each immune cluster is scanned and each un-marked object, representing an object

that is free but would be undetected by a key-object collection, is marked. Objects

reachable from these newly marked objects are transitively marked, and the old space

is swept and compacted. Doing the marking in the reverse order | �rst marking all

immune objects and then doing a full collection | would result in exactly the same

objects being retained, but would prohibit evaluating the projections made by using

key objects.

The Smalltalk system as shipped by ParcPlace triggers scavenges when the birthing

area | \eden" | �lls to 184 kb. The semi-spaces are each 40 kb, and promotions to

old-space are triggered whenever a semi-space contains more than 25 kb. Simulated

key object collections are run every fourth scavenge. The marshaling of objects is

done when objects are copied between semi-spaces, and when the fraction of objects

surviving becomes large, object may be promoted without being marshaled. For the

\replay" example there are enough short-lived objects to guarantee marshaling, but

for the other benchmarks the triggering threshold in eden is reduced to 18.4 kb |

scavenges in these benchmarks occur ten times more frequently than in the default

system. After every 128 scavenges, that is, every 32 key object collections, a full

collection is run immediately after the key object collection.

CHAPTER 5. SIMULATION OF KEY OBJECTS 61

5.4 Allocation Examples

Unfortunately, there is not a suite of well-accepted benchmarks for memory man-

agement systems. Some common tests are system- and language-speci�c, others are

designed to test the e�ectiveness of generational collectors, without being e�ective

for measuring the quality of the system once objects are promoted.

To gauge the e�ectiveness of key object collection, I selected four sample programs.

The �rst allocates 10000 linked lists of length 100 and places them in random locations

in an array of size 200. This is an example of the pattern that key objects would be

expected to be e�ective on. As soon as the array is promoted, the head of each new

list should be identi�ed as a key object, and the remainder of the list is the cluster it

controls. When an element of the array is replaced, the key object will be noted to

be unreachable, and the cluster collected.

Two other examples are drawn from the Stanford benchmark suite. The suite

consists of a series of small programs designed to measure the speed of language

systems on various architectures. Only two of these programs cause objects to be

promoted in Objectworks: the single-precision,
oating-point, forty-by-forty matrix

multiply and the �ve thousand element tree sort. To increase the volume of objects

promoted, the tree sort is run �fty times for each session and the matrix multiply is

run twenty times.

In both of the Stanford benchmark programs the objects promoted have a short

and predictable lifetime since they do not survive the next run of the program. If

the generation sizes were carefully chosen to contain the volume promoted by the

benchmark, the generational collector could reduce the promotion volume to zero.

Again, these benchmarks were not designed as garbage collection benchmarks but

system performance benchmarks.

The original matrix multiply benchmark did not perform as well as the other

tests. After examining the running benchmark, I made a few \minor" changes that

produced signi�cant changes in the benchmark results. These changes, the motives

for them, and the e�ects on the key object scheme will be discussed later. Code for

all of the examples is in Appendix B.

CHAPTER 5. SIMULATION OF KEY OBJECTS 62

The last program is a replay of an interactive session using the Objectworks sys-

tem. For two days each keystroke, mouse motion, and key click was recorded while

I used Objectworks to build a sliding-15 puzzle8. The Objectworks system was al-

tered so that playback would be possible, and so the style of use was oddly stilted,

since various scrolling and time-dependent portions of the user interface were disabled.

This example makes extensive use of the X windowing system, and time-dependencies

present there cause the timings of allocations and collections to di�er from run to run,

and thus cause a larger spread in the statistics for this example than is present in the

other examples.

At start-up, many objects are promoted directly out of eden without being mar-

shaled, and many objects that were only reachable from the stacks become unreach-

able. For each test session, the Smalltalk system was started and an initial full

collection performed. Some objects were created directly in the mature space, with-

out passing through the earlier generations. The key objects explored here are not

designed to cover objects pinned from the stack or objects created in the mature

space.

5.5 Session Data

Table 5.1 gives an idea of how key object collection fares in the environment de-

scribed. I ran twenty sessions of each of the four test cases and the modi�ed version

of the matrix multiply benchmark. The table records the size of the mature heap in

megabytes for each benchmark sampled at each scavenge, giving the median, 10th

and 90th percentile. The percentiles are taken from the combination of all twenty

sessions.

Following the heap size are the volumes allocated at the youngest level9. Next is

the volume tenured to and collected from the mature space. Some objects at start-

up are created in the mature area, rather than gaining their place through tenure,

8Or more exactly attempted to build such a puzzle. I'm at best a novice Smalltalk user and never
managed to get the mouse-clicks to move the puzzle pieces.

9Objects all have an eight-byte header. These headers are included in the total allocation, but
no other statistic will include the header data.

CHAPTER 5. SIMULATION OF KEY OBJECTS 63

Test %ile heap sz alloc tenured total coll available keys coll key coll

10 1.28 26.6 3.87 3.93 3.79 3.48 91.6%
Array 50 1.29 26.6 3.89 3.95 3.80 3.49 91.7%

90 1.30 26.6 3.91 3.96 3.81 3.50 91.9%

10 1.25 10.5 1.74 1.77 1.61 1.29 80.4%
Tree 50 1.37 10.5 1.74 1.77 1.61 1.29 80.5%

90 1.47 10.5 1.74 1.77 1.61 1.29 80.5%

10 1.24 59.8 1.06 1.11 .649 .264 40.7%
Matrix 50 1.25 59.8 1.06 1.11 .649 .264 40.7%

90 1.27 59.8 1.06 1.11 .649 .264 40.7%

Hacked 10 1.23 58.6 1.04 1.10 .943 .745 79.0%
Matrix 50 1.24 58.7 1.04 1.10 .944 .745 79.0%

90 1.25 58.7 1.04 1.10 .946 .745 79.0%

10 1.19 182. .609 .635 .348 .191 52.5%
Replay 50 1.21 182. .631 .653 .360 .214 58.8%

90 1.24 182. .644 .671 .378 .244 65.8%

Table 5.1: Key Object Sessions

and so the volume collected is sometimes larger than the volume tenured. In these

and following columns, each session generates a single value for the statistic, and the

numbers given are the second, tenth, and eighteenth ranked of the twenty sessions.

Recall that some mature objects are not in memory that is under the control of

key objects. The \available" column records the volume in megabytes of the memory

that was collected from the keyed areas alone, excluding the volume unkeyed. The

next columns are the volume of objects actually collected by the key object collector,

as a megabyte volume and as a percentage of the \available" bytes10.

Table 5.2 shows some of the costs associated with key objects. The number and

volume of keys in bytes is shown in the �rst two columns. The next two columns

show the number and volume of objects that point to key objects. Various implemen-

tations of keys would have costs based on these values. For example, the keys might

be segregated, bringing about a cost for each byte of key-data. As in the model im-

plementation, just headers of the keys might be segregated, so there is a cost related

10Note that the available, keys collected, and percentages are the second, tenth, and eighteenth
of their type, and are not necessarily all from the same session.

CHAPTER 5. SIMULATION OF KEY OBJECTS 64

Test %ile Keys Key Sources Remembered
count volume count volume count volume

10 227 2824 41 2392 9 900
Array 50 337 3700 133 3084 14 1148

90 526 5196 322 4248 22 1344

10 0 0 0 0 22 1796
Tree 50 1537 55504 1259 16516 496 8212

90 4561 97264 3684 46480 912 12040

10 430 2668 40 3304 10 380
Matrix 50 1763 7796 75 8860 24 2800

90 2789 12104 101 13140 44 6104

Hacked 10 636 1688 17 1764 26 1284
Matrix 50 957 4116 32 4340 35 2900

90 1173 5168 40 5188 42 3908

10 44 1732 51 5712 62 3728
Replay 50 114 5428 116 13956 91 8240

90 212 7971 200 16428 156 11000

Table 5.2: Key Object Costs

to the number of key objects.

Depending on the implementation, determining which key objects are reachable

might involve costs related to not just the number or size of the keys, but the number

and volume of objects that actually contain pointers to key objects. Finding dead

key objects can be expected to be much like �nding dead objects in a generation

scavenger.

For example, the Objectworks system uses a table of \remembered objects" that

include all objects that point to new objects. A similar implementation of key objects

might keep a table of objects that point to key objects. The third and fourth column

show the number and aggregate size of objects containing pointers to key objects.

The �fth and sixth columns give the size of the Objectworks remembered table for

comparison.

The values for all columns in Table 5.2 are sampled at every scavenge, and the

values given are the median and percentiles across all sessions of that test.

The �nal table, 5.3, quanti�es the quality of the key object collections. The �rst

CHAPTER 5. SIMULATION OF KEY OBJECTS 65

Test %ile Obj Size Cluster Size Obj/threat Quality

10 4.35 231.1 76.0 %98.6
Array 50 4.36 349.2 80.6 %98.8

90 4.36 352.3 81.0 %99.0

10 16.5 44.7 2.71 %94.6
Tree 50 16.5 44.7 2.71 %94.9

90 16.5 44.8 2.71 %94.9

10 9.55 23.0 2.40 %34.1
Matrix 50 9.57 23.3 2.43 %35.3

90 9.57 23.5 2.46 %36.0

Hacked 10 9.57 29.5 3.08 %98.4
Matrix 50 9.57 30.2 3.15 %98.4

90 9.60 30.3 3.16 %99.97

10 16.6 309.1 18.5 %61.3
Replay 50 16.7 398.6 23.9 %68.0

90 16.8 522.8 31.2 %75.6

Table 5.3: Key Object Quality

column shows the average promoted object size, in bytes. The next two columns

shows the average volume and number of objects in a cluster for each threatened key.

This is a measure of the leverage of the key objects | only the key object is a subject

of the collection, but it has indicated that a cluster of objects is now unreachable.

The cost paid collecting the key bene�ts all these objects.

If each key object were a perfect indicator for its cluster, 100% of the objects

threatened by the key object collector would be found to be unreachable. But the

key object analysis may indicate that some objects should be collected when they are

not free. A good measure of the quality of the key objects analysis is the fraction of

bytes indicated as free by the key object collector that is actually collectible. This is

the last column in Table 5.3.

CHAPTER 5. SIMULATION OF KEY OBJECTS 66

5.6 Analysis

The \array" test is a simple test, meant to demonstrate the allocation patterns that

key objects are particularly good at tracking. About sixty lists of four-byte cells11 of

length 100 can be held in the 25 kb available in the semi-space. The remaining 140 lists

in the array are promoted to the old space, and few other objects are promoted. The

generational collector still pays the cost of copying and recopying the lists retained in

new-space. The key-space collector monitors the heads of the promoted lists, and can

collect the unreachable clusters easily, since there are no intercluster pointers other

than to the head. The system might bene�t, in this case, if it promoted clusters more

aggressively, since the cost of repeatedly recopying the list is much greater than the

cost of monitoring the single key object that heads the list.

The \tree" test and the \matrix" should be similar from the view of the memory

management system: both build a large structure and process it to build another

large structure. For the tree, it builds an array of random values and processes it by

inserting the values into a sorted tree. The matrix multiply builds three arrays-of-

arrays, initializes two with random values and calculates the product of these matrices

in a straight-forward way to �ll in values in the third.

Both tests create a large number of objects that are identi�ed as keys, but would

be better ignored. The only important key objects in the tree sort are the array of

random values and the root of the tree. In the matrix multiply, just the three arrays

themselves need to be keys to �nd all the garbage. Cross-generational stores happen

for a large number of the tree nodes in the sort and almost every
oating-point object

in the product of the matrix multiply, but the locations in old-space where these

objects are anchored, the key sources, are only written once by the tests. Monitoring

the tree nodes and
oating-point numbers, waiting for them to be freed by another

write to the key sources, is a waste of e�ort.

The matrix test tweaks several shortcomings in the key object scheme used for

these tests, and I prepared a modi�ed version of the matrix test to work around

these inadequacies. First, I was surprised to �nd an earlier decision coming back to

11The \Link" class is a CDR-cell with no CAR cell. Objects of this type are not usually created,
but sub-classes of Link will have additional �elds.

CHAPTER 5. SIMULATION OF KEY OBJECTS 67

haunt me: when an object is pinned only from the stack it is promoted to a special

segment, out of the address space that key objects and their clusters occupy. The

method that builds the random-valued arrays, initmatrix, holds the intermediate

values in stack-based local variables. Only when the entire array has been built is it

returned and stored in a heap-based variable.

Since the arrays are each slightly larger than the tenuring threshold of the semi-

spaces, it is almost certain that some small part of the array will be tenured before

it is stored in an old objects and seen as a key12. Unfortunately, the part promoted

will almost always include the root object, m, and it will be tenured to the region for

objects pinned from the stack. The rest of the matrix, when tenured, will be pinned

from that root or its children, and so will be tenured to the key-using segment.

Unfortunately, this means that the two random-valued arrays have no useful keys,

and must wait for a full collection to be reclaimed.

The portions of the arrays in the keyed segment will be part of some cluster,

depending on what key object happens to be in memory before them. Some small

key object in the heap will inherit, by proximity, the cluster that contains the arrays.

When this key object is free, the collector will attempt to reclaim the array. The

key object that it needs to insulate itself from the collection attempt is languishing,

unrecognized, in the stack-only segment. This is the reason for the low \Quality"

number in Table 5.3 for the matrix multiply.

To get the matrix test back on track, several small changes were made to the

matrix source code with full knowledge of the collection style. First, the random-

valued matrices can be built in two parts, each smaller than the tenuring threshold,

and put in old objects before they are tenured. This lets the system see them as key

objects. That done, the order of the matrices' creation is changed so that the data

values for each matrix immediately follow the skeleton of the matrix. In the original

12Each Smalltalk object includes, in addition to any data, an eight-byte header that includes a
four-byte pointer to the data. In eden and the semi-spaces this header usually is placed immediately
before the object. When the object is promoted, the header and data are split o�. The matrix
comprises 41 arrays of size 40 and 1600
oating-point numbers. Each array contains a \size" �eld
as well as slots for its data, and is of size 40� 4 + 4+ 8 = 172 bytes. Each
oating-point number is
4 + 8 = 12 bytes. The total for the matrix is 26252 bytes. The tenuring threshold is a frustrating
25600 bytes.

CHAPTER 5. SIMULATION OF KEY OBJECTS 68

routine, the bones of the result were created �rst, then the two multiplicands, then the

result was
eshed out. The last change clobbers all three values at the same time to

ensure that if the objects get out of order in promotion, it won't matter | everything

will be free at that time. As expected, the changes raise both the fraction of bytes

collected by key objects [Table 5.1, last column] and the fraction of the time that the

key objects are correct when they indicate a collection opportunity [Table 5.3, last

column].

The \session replay" sees a more varying environment. There are large swings in

the key count as many related clusters are all found unreachable at the same time.

Even this example, showing two days of slow systems use, does not promote a large

volume of objects. Generational collection has promoted only 0.35% of the allocated

objects, and tests on longer and more diverse user sessions are lacking.

As another measure of the e�ectiveness of key objects, I re-ran the \session replay"

test, varying the size of the semi-spaces, and looking for the size that would promote

roughly the same volume of objects that the combination of the current 25 kb semi-

spaces and key object collector recovers. This would �nd a generation size at which

the burden on the full collections is the same as the 25 kb generational collector plus

key object collection. This size turns out to be about 100 kb | at that size the

generational collector picks up about another quarter-megabyte, the volume collected

by the key objects.

This could be achieved by adding a second generation of 75 kb rather than ex-

panding the �rst generation, to attempt to keep the real-time response guarantee of

the smaller two-space collections. A more complete test would be needed to gauge

the trade-o�s between a larger generation size and the addition of key objects.

The size of the remembered set compared to the number of objects that point to

key objects provides a rough yardstick to one of the major costs of implementing key

objects | �nding dead keys. Just as the remembered set can be used to �nd roots

for collections in the new objects, the set of objects that point to keys | the key-pins

| must be examined to see what keys are reachable. Both of these sets may need to

be updated when an old object is changed, and if new keys are excluded, no other

stores need change the key-pin list. The number of stores into old objects tends to

CHAPTER 5. SIMULATION OF KEY OBJECTS 69

be low, and using a key-pins list to �nd dead keys seems attractive[23].

Chapter 6

Conclusions

The synthetic tests used in Chapter 5 are quite simplistic, and the two-day session

replay promotes few objects. Projections from those tests to system-wide collection

improvements would have to be �ltered through a detailed analysis of a realistic

implementation of key objects and clusters, which can only be designed through the

usual systems-building loops of trial and error, which would itself produce better in

vivo tests.

The decisions made in the mock-up key object collector presented in Chapter 5

prove surprisingly e�ective at locating clusters, but have some short-comings. The

heuristics for choosing key objects are too simple, and may be too closely aligned

with the speci�c programs in the suite or the style used in those programs.

Not every inter-generational store should be read as indicating a key object. Some

of the objects are clearly not likely to provide any leverage into a larger cluster |

the
oating-point numbers will not be the roots of any more objects. Many inter-

generational stores are still initializing stores. If these can be detected | perhaps

simply by checking to see if the value overwritten was a valid pointer | the �rst

key placed in any cell would not be detected, but subsequent ones would be, and the

initializing stores would not spoof the collector.

Treating objects that don't contain pointers as key objects is roughly the same as

making them reference-counted | they will be collected when all the pointers to them

are gone. If we allow these objects to be keys, then we must ensure that ill-chosen

70

CHAPTER 6. CONCLUSIONS 71

key objects gracefully degrade into reference counting.

In reference counting, the costs of recovering memory are not related to volume

of objects, as with tracing collection, but to the number of writes to memory. If the

older objects are more stable, as is usually assumed, a variant of reference counting

| as is used for generational collection | could easily be more e�cient than any

kind of tracing collection. As heaps grow to contain more and more live objects this

gap will become more apparent | collectors in the future may never be able to a�ord

to trace the entire heap to recover a small fraction of the memory.

The decision to make a key's cluster be the promoted objects between this key

and the next key has many
aws. It requires the collector to compact memory when

it wants to reuse internal fragments. Without compaction, new objects might be

introduced into clusters that were not related to them. Another problem shows up

when a key and only part of its cluster are collected: the remainder of the cluster is

given to whatever key object happened to come before it in memory.

The in
exibility of the keys and clusters once they are promoted can also cause

problems when the key was poorly chosen, most notably when the key is involved in

reference cycles from its own cluster. When the last external reference is deleted, the

key will be triggered and the cluster threatened with collection. If the cycle survives

the collection, as will happen if there is an external reference to any member of it,

the key will continue to trigger collection of the cluster at every key object collection.

The mock-up scheme does not have the ability to let the object that is the target of

the external reference take over the role of key object for the cluster, as it probably

should.

No direct measurement was attempted of inter-area pointers that would rescue

objects from a cluster that appeared collectible. These pointers need to be accounted

for in calculating the cost of partitioning the heap into clusters | they are required

to allow the collector to attack partitions individually. Some of the false hits in the

clusters, where the key indicates garbage but the garbage isn't present, may be due

to these pointers. The low volumes of falsely-indicated garbage is encouraging |

not many cross-cluster keys are interfering with the collector. Some of the further

developments in good partitioning criteria will go hand in glove with criteria for

CHAPTER 6. CONCLUSIONS 72

�nding good key objects.

If a collector is too aggressive in looking for unused memory, it will threaten

memory that is not garbage | this would show up as a low \Quality" number in

Table 5.3. If a collector is not aggressive enough, it will fail to threaten memory that

is garbage | this would show up as a low \Key Collection" percentage in Table 5.1.

Ideally, both of these �gures would be 100%. This would indicate that the collector

is threating only collectible objects, and is threatening all unreachable objects.

Despite the short-comings of the mock-up, it is surprisingly e�ective. In the

\matrix," \array," and \tree" examples it rarely says an object is garbage when it is

not, and approaches perfection in some cases. The modi�ed matrix example has a

similar false-positive rate. The \replay" example is the most honest test in the lot,

and it manages to �nd targets for garbage collection clusters that are, in total, about

2/3 garbage, �nding two hundred kilobytes of garbage in a 1.2 megabyte heap.

Likewise, the mock-up manages to collect a large fraction of the objects, even with

its simple and general method of �nding keys and clusters. For the \replay" example,

up to 2/3 of the total garbage was collected using key objects. This would allow the

system to eliminate 2/3 of the global collections and still keep about the same heap

size.

6.1 Future Work

The major implementation barrier to key objects is reconstructing the memory system

to allow a small degree of control over object promptness. The key objects must be,

in some way, \denied tenure" and collected more often than the entire heap if they

are to guide scheduling of collections of the larger heap. In the mock-up, this was

done by promoting them and later pretending that they were being collected more

frequently.

I believe that the best way to collect key objects is some kind of reference counting

| either a version of deferred reference counting or a modi�cation of the schemes used

to �nd roots of collections in young generations. This will allow the collector designer

to have some control over promptness in the keys, and from there the clusters. The

CHAPTER 6. CONCLUSIONS 73

scheme will be made more complex by the requirement that references to a key from

its own cluster be ignored, and loops involving several clusters and keys will be a

particular challenge.

Collecting the key objects will probably require a technique similar to those used

to �nd the roots for a scavenge of the young generation. But the size of the young

generation is often limited while the number of keys will grow with larger heaps. As

heaps grow, the techniques may require modi�cations that are more suited to larger

sets of roots, and these may, in turn, bene�t the remembered set. The links between

the key objects will probably be more long-lived than those in the remembered set

| the remembered set turns over at least as quickly as the new space. An e�cient

collector might cache key object reachability results and recalculate those parts of

the cache that were invalidated rather than recalculating the entire reachability result

from scratch.

This result can be turned around to bene�t the remembered set: when the re-

membered set has not changed from the previous scavenge, the collector could avoid

accessing the old objects | the roots of the scavenge are the same as the previous

roots. When the mutator is in a phase where the old objects are not being altered,

they need not be fetched into memory for the scavenge if the caching information can

yield the roots, and the scavenges can be more e�cient and better memory citizens1.

The full value of key objects can not be realized until the heap is split into clusters.

These clusters need to have few pointers between them, to keep the bookkeeping

costs down and value of key objects up. There is currently work in the memory

management community to try to isolate these clusters, mostly to improve paging

and cache performance, and this work will also bene�t key objects.

I suspect that some key objects will always be idiosyncratic, and that there should

always be room for users to tell the system what key objects would do well for their

1Monitoring of inter-generational stores seems to be a rich source of information for �nding keys,
but there are many other tantalizing sources still unexplored. Some Smalltalk experiments suggest
that type information may yield good results. Clustering was ignored in these experiments, and the
keys were used to control the timing of full collections. Good correlations were found in Smalltalk
between those collections that freed objects of certain system types and those collections that freed
larger than average volumes of the heap. The best types are process and window related. The best
of the best are UnixDiskFileAccessor, ScheduledWindow, and UnixProcess.

CHAPTER 6. CONCLUSIONS 74

particular application. To discover key objects in particular applications, users will

need easy-to-use pro�ling tools and an interface to the memory management system

that will allow an application to communicate the key information to the system.

A key object interface to garbage collection would be built more easily on top

of a more
exible �nalization scheme, where the user could ask to be noti�ed when

the key object indicated collection for its cluster, and then to request a collection of

the cluster. With these interfaces, more policy decisions could be removed from the

garbage collector leaving only mechanism at the core.

Bibliography

[1] S. Abraham and J. Patel. Parallel garbage collection on a virtual memory system.

In Proceedings of the 1987 International Conference on Parallel Processing, pages

243{246, 1987.

[2] Andrew W. Appel, John R. Ellis, and Li Kai. Real-time concurrent collection

on stock multiprocessors. Proceedings of the SIGPLAN '88 Conference on Pro-

gramming Language Design and Implementation, SIGPLAN Notices, 23(7):11{

20, July 1988.

[3] Henry G. Baker, Jr. List-processing in real time on a serial computer. Commu-

nications of the ACM, 21(4):280{294, April 1978.

[4] Henry G. Baker, Jr. The treadmill: real-time garbage collection without motion

sickness. SIGPLAN Notices, 27(3):66{70, March 1992.

[5] Peter B. Bishop. Computer systems with a very large address space and garbage

collection. Technical Report TR-178, Laboratory for Computer Science, MIT,

May 1977.

[6] Daniel G. Bobrow. Managing reentrant structures using reference counts. ACM

TOPLAS, 2(3):269{273, 1980.

[7] Hans-J. Boehm, Alan Demers, and Scott Shenker. Mostly parallel garbage collec-

tion. In Proceedings of the SIGPLAN '91 Conference on Programming Language

Design and Implementation, SIGPLAN Notices, pages 157{164, June 1991.

75

BIBLIOGRAPHY 76

[8] Hans-J. Boehm and M. Weiser. Garbage collection in an uncooperative environ-

ment. Software Practice and Experience, 18(9):807{820, September 1988.

[9] C. J. Cheney. A nonrecursive list compacting algorithm. Communications of the

ACM, 13(11):677{678, November 1970.

[10] Douglas W. Clark and C. Cordell Green. On-the-
y carbage collection: an

exercise in cooperation. Communications of the ACM, 20(2):78{86, February

1977.

[11] Jacques Cohen. Garbage collection of linked data structures. ACM Computing

Surveys, 13(3):341{367, 1981.

[12] George E. Collins. A method for overlapping and erasure of lists. Communica-

tions of the ACM, 2(12):655{657, December 1960.

[13] Vincent Delacour. Allocation regions and implementations. In International

Workshop on Memory Management, 1992, September 1992.

[14] Alan Demers, Mark Weiser, Barry Hayes, Hans Boehm, Daniel Bobrow, and

Scott Shenker. Combining generational and conservative garbage collection:

Framework and implementations. In ACM Symposium on Principles of Pro-

gramming Langauges, pages 261{269, January 1990.

[15] John DeTreville. Heap usage in the Topaz environment. Technical Report 63,

Digital Systems research Center, August 1990.

[16] L. Peter Deutsch and Daniel G. Bobrow. An e�cient, incremental, automatic

garbage collector. Communications of the ACM, 19(9):522{526, September 1976.

[17] Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M.

Ste�ens. On-the-
y carbage collection: an exercise in cooperation. Communica-

tions of the ACM, 21(11):966{975, November 1978.

[18] John R. Ellis, Kai Li, and Andrew W. Appel. Real-time concurrent collection on

stock multiprocessors. Technical Report 25, Digital Systems Reseaerch Center,

February 1988.

BIBLIOGRAPHY 77

[19] Robert R. Fenichel and Jerome C. Yochelson. A lisp garbage-collector for

virtual-memory computer systems. Communications of the ACM, 12(11):611{

612, November 1969.

[20] H. W. Glaser and P. Thompson. Lazy garbage collection. Software Practice and

Experience, 17(1):1{4, January 1987.

[21] Barry Hayes. Using key object opportunism to collect old objects. In Object-

Oriented programming: systems languages and applications, October 1991.

[22] Barry Hayes. Finalization in the collector interface. In International Workshop on

Memory Management, 1992, volume 637 of Lecture Notes in Computer Science.

Springer-Verlag, 1992.

[23] Antony L. Hosking and Darko Moss, J. Eliot B. Stefanovi�c. A comparative

performance evaluation of write barrier implementations. In Object-Oriented

programming: systems languages and applications, pages 92{109, October 1992.

[24] Richard L. Hudson and J. Eliot B. Moss. Incremental collection of mature ob-

jects. In International Workshop on Memory Management, 1992, volume 637 of

Lecture Notes in Computer Science. Springer-Verlag, 1992.

[25] IBM Corporation. OS PL/I Checkout and Optimizing Compilers: Language

Reference Manual. Program Product, October 1976. Order Number GC33-0009-

4.

[26] Donald E. Knuth. Fundamental algorithms, volume 1 of The art of computer

programming. Addison-Wesley, Reading, Massachusetts, second edition, 1973.

[27] Charles Philip Lecht. The Programmer's PL/I. McGraw Hill, New York, 1968.

[28] Henry Lieberman and Carl Hewitt. A real-time garbage collector based on the

lifetimes of objects. Communications of the ACM, 26(6):419{429, June 1983.

[29] John McCarthy. Recursive functions of symbolic expressions and their compu-

tations by machine, Part I. Communications of the ACM, 3(4):184{195, April

1960.

BIBLIOGRAPHY 78

[30] David A. Moon. Garbage collection in a large lisp system. In ACM Symposium

on Lisp and Functional Languages, pages 235{246, August 1984.

[31] ParcPlace Systems. ObjectWorks n Smalltalk User's Guide, Release 4.1. Parc-

Place Systems, Inc, Mountain View, CA, 1992.

[32] Ken Pier. A retrospective on the Dorado, a high-performance personal worksta-

tion. In Proceedings of the 10th Annual International Symposium on Computer

Architecture, Stockholm, Sweden, June 1983.

[33] Paul Rovner. On adding garbage collection and runtime types to a strongly-

typed, staticly-checked, concurrent language. Technical Report CSL-84-7, Xerox

Corporation, July 1985.

[34] Robert A. Shaw. Improving garbage collector performance in virtual memory.

Technical Report CSL-TR-87-323, Computer Science Laboratory, Stanford Uni-

versity, March 1987.

[35] James W. Stamos. Programmer-invoked, local garbage collections: A design.

Technical Report | Draft |, MIT Laboratory for Computer Science, 1986.

[36] James William Stamos. Static grouping of small objects to enhance performance

of a paged virtual memory. ACM Transactions on Programming Languages and

Systems, 2(2):155{180, May 1984.

[37] Guy L. Steele Jr. Multiprocessing compactifying garbage collecting. Communi-

cations of the ACM, 18(9):495{508, September 1975.

[38] Sun Microsystems. NeWS 2.1 Programmer's Guide. Sun Microsystems, Inc,

Mountain View, CA, 1990.

[39] Daniel C. Swinehart, Polle T. Zellweger, Richard J. Beach, and Robert B. Hag-

mann. A structural view of the Cedar programming environment. Technical

Report CSL-86-1, Xerox Corporation, 1986.

BIBLIOGRAPHY 79

[40] David Ungar. Generation scavenging: A non-disruptive high performance storage

reclamation algorithm. In ACM SIGSOFT/SIGPLAN Practical Programming

Conference, pages 157{167, April 1984.

[41] David Ungar and Frank Jackson. An adaptive tenuring policy for generation scav-

engers. ACM Transactions on Programming Languages and Systems, 14(1):1{27,

January 1992.

[42] Jon L. White. Address/memory management for a gigantic lisp environment

or, GC considered harmful. In Conference Record of the 1980 LISP Conference,

pages 119{127, Redwood Estates, CA, June 1980.

[43] Paul R. Wilson. Design of the opportunistic grabge collector. In Object-Oriented

programming: systems languages and applications, pages 23{35, October 1989.

[44] Paul R. Wilson. Some issues and strategies in heap management and memory

hierarchies. SIGPLAN Notices, 26(3):45{52, March 1991.

[45] Paul R. Wilson. Uniprocessor garbage collection techniques. In International

Workshop on Memory Management, 1992, volume 637 of Lecture Notes in Com-

puter Science. Springer-Verlag, 1992.

[46] Paul R. Wilson, Michael S. Lam, and Thomas G. Moher. E�ective static-graph

reorganization to improve locality in garbage-collected systems. In Proceedings

of the ACM SIGPLAN '91 Conference on Programming Language Design and

Implementation, pages 177{191, June 1991. Toronto, Canada.

[47] Benjamin Zorn. Comparing mark-and-sweep and stop-and-copy garbage col-

lection. In Proceedings of the 1990 ACM Conference on Lisp and Functional

Programming, pages 87{98, June 1990.

[48] Benjamin Zorn and Dirk Grunwald. Empirical measurements of six allocation-

intensive C programs. Technical Report CU-CS-604-92, University of Colorado

at Boulder, July 1992.

BIBLIOGRAPHY 80

[49] Benjamin G. Zorn. Comparative Performance Evaluation of Garbage Collection

Algorithms. PhD thesis, University of California at Berkeley, March 1989.

Appendix A

Cedar Data

All of the samples for Cedar were drawn from June to October, 1990, from ten

Dorados at Xerox's Palo Alto Research Center. The changes to the garbage collector

and allocator recorded every allocation and deallocation. Some circular storage may

have been created by the mutators, and would not have been recorded as unreachable

by the reference counting collector. All lifetimes are calculated as the di�erence in

bytes allocated between the creation of the object and the point when the garbage

collector discovers that the object is unreachable. The collector runs about every

16 kb allocated, and for the purposes of this data, all lifetimes are rounded down to

the nearest 16 kb.

Table A.1 lists the machines by name, and gives a rough idea of the work being

done on each machine at the time of the samples. All the machines are mixed use

| almost all users read mail, develop tools, write papers, and use other tools on the

same machines. Bennington was a public machine and the two samples taken from it

are shown individually.

Table A.2 shows the two largest sessions for each machine. Shown is the total

number of bytes in the sample, the size of the cohort chosen from before the last

5 Mb, and the fraction of the cohort that survives longer than 5 Mb. Three of the

samples are smaller than 5 Mb, and so yield no cohort. The table also shows the total

real-time length of the session recorded. The allocation rates vary a great deal | one

session lasting three days allocated under four megabytes, another lasting four hours

81

APPENDIX A. CEDAR DATA 82

Baobab Systems programming | continuing work on a hypertext system.

Bennington Public Machine [session 1] | two di�erent programming development
e�orts, and remote debugging of another machine.

Bennington Public Machine [session 2] | producing two drawings from the circuit
simulation package. Not enough data for 5 Mb lifetimes.

Bluebell Systems programming | development of X-windows tools, and continuing
debugging and maintenance of a Cedar-to-C translator.

Fairmont Graphic Arts | production of several complex drawings using Gargoyle.

Leyte Systems programming | work in support of color documents.

Queen�sh Systems programming | continuing work on multi-media documents,
mostly concerning audio.

Saratoga Support | support work for the user of Shangrila.

Sea-wolf Systems programming / Administration| mixed use machine used by lab
manager. No sessions long enough for 5 Mb lifetimes.

Shangrila Systems programming / Administration | mixed use machine used by
lab manager.

Skipjack Systems programming |

Table A.1: Dorados Monitored

allocated more than 47 megabytes. The former is a trace of a mostly-idle machine,

and the later is a user of a memory-intensive graphics editor.

For the seventeen sessions that contribute to the sample set, Figures A.1 through

A.34 show the cumulative population curve and the instantaneous generation volume

needed to cause collections to retain only 10% of the storage promoted to that volume.

These volume charts will have gaps where no objects of that lifetime exist.

APPENDIX A. CEDAR DATA 83

Machine Total Size Cohort Size 5 Mb Span
(bytes) (bytes) Surv

Baobab 8875822 3145726 .198 25 hrs
Baobab 23065392 16773306 .0860 44 hrs
Bennington 13741523 8388591 .0832 29 hrs
Bennington 6373003 1048568 .0578 8.5 hrs
Bluebell 8819380 3145712 .268 3.5 days
Bluebell 20276620 14680062 .138 26 hrs
Fairmont 63119236 57667794 .0459 9 hrs
Fairmont 47280936 41939886 .0547 4 hrs
Leyte 3856601 0 3 days
Leyte 11776523 6291454 .0845 11 hrs
Queen�sh 63496066 57671554 .0301 28 hrs
Queen�sh 22928352 16774116 .0844 57 hrs
Saratoga 23491975 17825708 .0685 4.5 days
Saratoga 19196479 13631485 .0718 4 days
Sea-wolf 1681036 0 1 hr
Sea-wolf 4252980 0 8 hrs
Shangrila 17590613 11534332 .0540 35 hrs
Shangrila 20319530 14676961 .0350 3 days
Skipjack 11511730 5242880 .144 2 hrs
Skipjack 9419842 3134651 .168 6 hrs

total: 401073639 293572786 .0984 30 days

Table A.2: Session Sizes for each Dorado

APPENDIX A. CEDAR DATA 84

0 1e+06 2e+06 3e+06 4e+06 5e+06
Age (in bytes allocated)

0

1

0.2

0.4

0.6

0.8

Fr
ac

tio
n

Su
rv

iv
in

g

0.198

100% = 3145726 bytes

Figure A.1: Baobab 1, Decay of volume with time

0 1e+06 2e+06 3e+06 4e+06 5e+06
Tenuring Threshold

100000

1e+11

G
en

er
at

io
n

Si
ze

 f
or

 1
0%

 P
ro

m
ot

io
n

1e+06

1e+07

1e+08

1e+09

1e+10

Figure A.2: Baobab 1, Generation size needed for 90% collection rate

APPENDIX A. CEDAR DATA 85

0 1e+06 2e+06 3e+06 4e+06 5e+06
Age (in bytes allocated)

0

1

0.2

0.4

0.6

0.8

Fr
ac

tio
n

Su
rv

iv
in

g

0.086

100% = 16773306 bytes

Figure A.3: Baobab 2, Decay of volume with time

0 1e+06 2e+06 3e+06 4e+06 5e+06
Tenuring Threshold

100000

1e+10

G
en

er
at

io
n

Si
ze

 f
or

 1
0%

 P
ro

m
ot

io
n

1e+06

1e+07

1e+08

1e+09

Figure A.4: Baobab 2, Generation size needed for 90% collection rate

APPENDIX A. CEDAR DATA 86

0 1e+06 2e+06 3e+06 4e+06 5e+06
Age (in bytes allocated)

0

1

0.2

0.4

0.6

0.8

Fr
ac

tio
n

Su
rv

iv
in

g

0.0832

100% = 8388591 bytes

Figure A.5: Bennington 1, Decay of volume with time

0 1e+06 2e+06 3e+06 4e+06 5e+06
Tenuring Threshold

100000

1e+10

G
en

er
at

io
n

Si
ze

 f
or

 1
0%

 P
ro

m
ot

io
n

1e+06

1e+07

1e+08

1e+09

Figure A.6: Bennington 1, Generation size needed for 90% collection rate

APPENDIX A. CEDAR DATA 87

0 1e+06 2e+06 3e+06 4e+06 5e+06
Age (in bytes allocated)

0

1

0.2

0.4

0.6

0.8

Fr
ac

tio
n

Su
rv

iv
in

g

0.0578

100% = 1048568 bytes

Figure A.7: Bennington 2, Decay of volume with time

0 1e+06 2e+06 3e+06 4e+06 5e+06
Tenuring Threshold

100000

1e+09

G
en

er
at

io
n

Si
ze

 f
or

 1
0%

 P
ro

m
ot

io
n

1e+06

1e+07

1e+08

Figure A.8: Bennington 2, Generation size needed for 90% collection rate

APPENDIX A. CEDAR DATA 88

0 1e+06 2e+06 3e+06 4e+06 5e+06
Age (in bytes allocated)

0

1

0.2

0.4

0.6

0.8

Fr
ac

tio
n

Su
rv

iv
in

g

0.268

100% = 3145712 bytes

Figure A.9: Bluebell 1, Decay of volume with time

0 1e+06 2e+06 3e+06 4e+06 5e+06
Tenuring Threshold

100000

1e+11

G
en

er
at

io
n

Si
ze

 f
or

 1
0%

 P
ro

m
ot

io
n

1e+06

1e+07

1e+08

1e+09

1e+10

Figure A.10: Bluebell 1, Generation size needed for 90% collection rate

APPENDIX A. CEDAR DATA 89

0 1e+06 2e+06 3e+06 4e+06 5e+06
Age (in bytes allocated)

0

1

0.2

0.4

0.6

0.8

Fr
ac

tio
n

Su
rv

iv
in

g

0.138

100% = 14680062 bytes

Figure A.11: Bluebell 2, Decay of volume with time

0 1e+06 2e+06 3e+06 4e+06 5e+06
Tenuring Threshold

100000

1e+11

G
en

er
at

io
n

Si
ze

 f
or

 1
0%

 P
ro

m
ot

io
n

1e+06

1e+07

1e+08

1e+09

1e+10

Figure A.12: Bluebell 2, Generation size needed for 90% collection rate

APPENDIX A. CEDAR DATA 90

0 1e+06 2e+06 3e+06 4e+06 5e+06
Age (in bytes allocated)

0

1

0.2

0.4

0.6

0.8

Fr
ac

tio
n

Su
rv

iv
in

g

0.0459

100% = 57667794 bytes

Figure A.13: Fairmont 1, Decay of volume with time

0 1e+06 2e+06 3e+06 4e+06 5e+06
Tenuring Threshold

100000

1e+10

G
en

er
at

io
n

Si
ze

 f
or

 1
0%

 P
ro

m
ot

io
n

1e+06

1e+07

1e+08

1e+09

Figure A.14: Fairmont 1, Generation size needed for 90% collection rate

APPENDIX A. CEDAR DATA 91

0 1e+06 2e+06 3e+06 4e+06 5e+06
Age (in bytes allocated)

0

1

0.2

0.4

0.6

0.8

Fr
ac

tio
n

Su
rv

iv
in

g

0.0547

100% = 41939886 bytes

Figure A.15: Fairmont 2, Decay of volume with time

0 1e+06 2e+06 3e+06 4e+06 5e+06
Tenuring Threshold

100000

1e+10

G
en

er
at

io
n

Si
ze

 f
or

 1
0%

 P
ro

m
ot

io
n

1e+06

1e+07

1e+08

1e+09

Figure A.16: Fairmont 2, Generation size needed for 90% collection rate

APPENDIX A. CEDAR DATA 92

0 1e+06 2e+06 3e+06 4e+06 5e+06
Age (in bytes allocated)

0

1

0.2

0.4

0.6

0.8

Fr
ac

tio
n

Su
rv

iv
in

g

0.0845

100% = 6291454 bytes

Figure A.17: Leyte 1, Decay of volume with time

0 1e+06 2e+06 3e+06 4e+06 5e+06
Tenuring Threshold

100000

1e+10

G
en

er
at

io
n

Si
ze

 f
or

 1
0%

 P
ro

m
ot

io
n

1e+06

1e+07

1e+08

1e+09

Figure A.18: Leyte 1, Generation size needed for 90% collection rate

APPENDIX A. CEDAR DATA 93

0 1e+06 2e+06 3e+06 4e+06 5e+06
Age (in bytes allocated)

0

1

0.2

0.4

0.6

0.8

Fr
ac

tio
n

Su
rv

iv
in

g

0.0301

100% = 57671554 bytes

Figure A.19: Queen�sh 1, Decay of volume with time

0 1e+06 2e+06 3e+06 4e+06 5e+06
Tenuring Threshold

100000

1e+10

G
en

er
at

io
n

Si
ze

 f
or

 1
0%

 P
ro

m
ot

io
n

1e+06

1e+07

1e+08

1e+09

Figure A.20: Queen�sh 1, Generation size needed for 90% collection rate

APPENDIX A. CEDAR DATA 94

0 1e+06 2e+06 3e+06 4e+06 5e+06
Age (in bytes allocated)

0

1

0.2

0.4

0.6

0.8

Fr
ac

tio
n

Su
rv

iv
in

g

0.0844

100% = 16774116 bytes

Figure A.21: Queen�sh 2, Decay of volume with time

0 1e+06 2e+06 3e+06 4e+06 5e+06
Tenuring Threshold

100000

1e+10

G
en

er
at

io
n

Si
ze

 f
or

 1
0%

 P
ro

m
ot

io
n

1e+06

1e+07

1e+08

1e+09

Figure A.22: Queen�sh 2, Generation size needed for 90% collection rate

APPENDIX A. CEDAR DATA 95

0 1e+06 2e+06 3e+06 4e+06 5e+06
Age (in bytes allocated)

0

1

0.2

0.4

0.6

0.8

Fr
ac

tio
n

Su
rv

iv
in

g

0.0685

100% = 17825708 bytes

Figure A.23: Saratoga 1, Decay of volume with time

0 1e+06 2e+06 3e+06 4e+06 5e+06
Tenuring Threshold

100000

1e+10

G
en

er
at

io
n

Si
ze

 f
or

 1
0%

 P
ro

m
ot

io
n

1e+06

1e+07

1e+08

1e+09

Figure A.24: Saratoga 1, Generation size needed for 90% collection rate

APPENDIX A. CEDAR DATA 96

0 1e+06 2e+06 3e+06 4e+06 5e+06
Age (in bytes allocated)

0

1

0.2

0.4

0.6

0.8

Fr
ac

tio
n

Su
rv

iv
in

g

0.0718

100% = 13631485 bytes

Figure A.25: Saratoga 2, Decay of volume with time

0 1e+06 2e+06 3e+06 4e+06 5e+06
Tenuring Threshold

100000

1e+10

G
en

er
at

io
n

Si
ze

 f
or

 1
0%

 P
ro

m
ot

io
n

1e+06

1e+07

1e+08

1e+09

Figure A.26: Saratoga 2, Generation size needed for 90% collection rate

APPENDIX A. CEDAR DATA 97

0 1e+06 2e+06 3e+06 4e+06 5e+06
Age (in bytes allocated)

0

1

0.2

0.4

0.6

0.8

Fr
ac

tio
n

Su
rv

iv
in

g

0.054

100% = 11534332 bytes

Figure A.27: Shangrila 1, Decay of volume with time

0 1e+06 2e+06 3e+06 4e+06 5e+06
Tenuring Threshold

100000

1e+10

G
en

er
at

io
n

Si
ze

 f
or

 1
0%

 P
ro

m
ot

io
n

1e+06

1e+07

1e+08

1e+09

Figure A.28: Shangrila 1, Generation size needed for 90% collection rate

APPENDIX A. CEDAR DATA 98

0 1e+06 2e+06 3e+06 4e+06 5e+06
Age (in bytes allocated)

0

1

0.2

0.4

0.6

0.8

Fr
ac

tio
n

Su
rv

iv
in

g

0.035

100% = 14676961 bytes

Figure A.29: Shangrila 2, Decay of volume with time

0 1e+06 2e+06 3e+06 4e+06 5e+06
Tenuring Threshold

100000

1e+10

G
en

er
at

io
n

Si
ze

 f
or

 1
0%

 P
ro

m
ot

io
n

1e+06

1e+07

1e+08

1e+09

Figure A.30: Shangrila 2, Generation size needed for 90% collection rate

APPENDIX A. CEDAR DATA 99

0 1e+06 2e+06 3e+06 4e+06 5e+06
Age (in bytes allocated)

0

1

0.2

0.4

0.6

0.8

Fr
ac

tio
n

Su
rv

iv
in

g

0.144

100% = 5242880 bytes

Figure A.31: Skipjack 1, Decay of volume with time

0 1e+06 2e+06 3e+06 4e+06 5e+06
Tenuring Threshold

100000

1e+11

G
en

er
at

io
n

Si
ze

 f
or

 1
0%

 P
ro

m
ot

io
n

1e+06

1e+07

1e+08

1e+09

1e+10

Figure A.32: Skipjack 1, Generation size needed for 90% collection rate

APPENDIX A. CEDAR DATA 100

0 1e+06 2e+06 3e+06 4e+06 5e+06
Age (in bytes allocated)

0

1

0.2

0.4

0.6

0.8

Fr
ac

tio
n

Su
rv

iv
in

g

0.168

100% = 3134651 bytes

Figure A.33: Skipjack 2, Decay of volume with time

0 1e+06 2e+06 3e+06 4e+06 5e+06
Tenuring Threshold

100000

1e+11

G
en

er
at

io
n

Si
ze

 f
or

 1
0%

 P
ro

m
ot

io
n

1e+06

1e+07

1e+08

1e+09

1e+10

Figure A.34: Skipjack 2, Generation size needed for 90% collection rate

Appendix B

Smalltalk Benchmark Sources

The Stanford benchmarks were designed by John Hennessy as CPU and compiler

tests, not garbage collector tests, and so may not represent a good benchmark suite.

In the Objectworks system, only the tree sort benchmark and the
oating point

matrix multiply created garbage that was not collected by the generation scavenger.

The
oating point matrix multiply is a sub-class of the integer matrix multiply | the

relevant portions of both classes are presented here. These Smalltalk versions were

written by David Ungar, and are used with permission.

101

APPENDIX B. SMALLTALK BENCHMARK SOURCES 102

KeyTestArray class methodsFor: 'testing'

testKeys: depth by: width cycles: cycles

"Make an array of size width, and cycles times replace

elements with linked lists of length depth."

"KeyTestArray testKeys: 100 by: 200 cycles: 10000"

| base random |

base := Array new: width.

random := Random new.

(1 to: cycles)

do:

[:i |

| slot list |

slot := (random next * width) floor + 1.

list := LinkedList new.

(1 to: depth)

do: [:j | list add: Link new].

base at: slot put: list]

Figure B.1: The \Array" Test

APPENDIX B. SMALLTALK BENCHMARK SOURCES 103

run

self initarr.

tree := TreeSortNodeBenchmark new val: (sortlist at: 1).

2 to: QSortelements do: [:i | self insert: (sortlist at: i)

Into: tree].

(self checkTree: tree)

ifFalse: [self error: ' Error in Tree.']

initarr

| temp |

self initrand.

biggest := -1000000.

littlest := 1000000.

sortlist := Array new: QSortelements.

1 to: QSortelements do:

[:i |

temp := self rand.

sortlist at: i put: temp

- (temp // 100000 * 100000) - 50000.

(sortlist at: i) > biggest ifTrue:

[biggest := sortlist at: i].

(sortlist at: i) < littlest ifTrue:

[littlest := sortlist at: i]]

initrand

seed := 74755

initialize

QSortelements := 5000

rand

seed := seed * 1309 + 13849 bitAnd: 65535.

^seed

Figure B.2: The \TreeSort" Benchmark

APPENDIX B. SMALLTALK BENCHMARK SOURCES 104

insert: n Into: t

n > t val

ifTrue: [t left isNil

ifTrue: [t left: (self createNode: n)]

ifFalse: [self insert: n Into: t left]]

ifFalse: [n < t val ifTrue:

[t right isNil

ifTrue: [t right: (self createNode: n)]

ifFalse: [self insert: n Into: t right]]]

createNode: n

^TreeSortNodeBenchmark new val: n

checkTree: p

| result |

result := true.

p left notNil ifTrue: [p left val <= p val

ifTrue: [result := false]

ifFalse: [result := (self checkTree: p left)

and: [result]]].

p right notNil ifTrue: [p right val >= p val

ifTrue: [result := false]

ifFalse: [result := (self checkTree: p right)

and: [result]]].

^result

Figure B.3: The \TreeSort" benchmark [cont.]

APPENDIX B. SMALLTALK BENCHMARK SOURCES 105

left

^left

left: l

left := l

right

^right

right:r

right := r

val

^val

val: v

val := v

Figure B.4: The \TreeSort" benchmark [TreeSortNodeBenchmark]

APPENDIX B. SMALLTALK BENCHMARK SOURCES 106

run

self initialize.

mr := self mmMatrix.

ma := self initmatrix.

mb := self initmatrix.

self initrand.

1 to: IRowsize do: [:i | 1 to: IRowsize do: [:j | (mr at: i)

at: j put: (self

innerproductOf: ma

and: mb

row: i

column: j)]]

initialize

seed := 0

mmMatrix

^self makeMatrix: IRowsize + 1 by: IRowsize + 1

makeMatrix: n by: m

| r |

r := Array new: n.

1 to: r size do: [:i | r at: i put: (Array new: m)].

^r

Figure B.5: The \IntMM" Benchmark

APPENDIX B. SMALLTALK BENCHMARK SOURCES 107

initmatrix

| m temp |

m := self mmMatrix.

1 to: IRowsize do: [:i | 1 to: IRowsize do:

[:j |

temp := self newValue.

(m at: i) at: j put:

temp - (temp // 120 * 120) - 60]].

^m

innerproductOf: a and: b row: row column: column

| result |

result := 0.

1 to: IRowsize do:

[:i | result := result +

((a at: row) at: i) * ((b at: i) at: column)].

^result

newValue

^self rand

initialize

"IntMMBenchmark initialize"

IRowsize := 40

Figure B.6: The \IntMM" Benchmark [cont.]

APPENDIX B. SMALLTALK BENCHMARK SOURCES 108

initmatrix

| m temp |

m := self mmMatrix.

1 to: Rowsize do: [:i | 1 to: Rowsize do:

[:j |

temp := self newValue.

(m at: i) at: j put:

temp - (temp / 120 * 120) - 60]].

^m

newValue

^super newValue asFloat

initialize

"MMBenchmark initialize"

Rowsize := 40

Figure B.7: The \MM" benchmark

APPENDIX B. SMALLTALK BENCHMARK SOURCES 109

run

self initialize.

ma := mb := mr := 0.

ma := self mmMatrix.

self initMatrixValues: ma.

mb := self mmMatrix.

self initMatrixValues: mb.

mr := self mmMatrix.

self initrand.

1 to: IRowsize do: [:i | 1 to: IRowsize do: [:j | (mr at: i)

at: j put: (self

innerproductOf: ma

and: mb

row: i

column: j)]]

MMBenchmark methodsFor: 'private'

initMatrixValues: m

| temp |

1 to: Rowsize do: [:i | 1 to: Rowsize do:

[:j |

temp := self newValue.

(m at: i) at: j put:

temp - (temp / 120 * 120) - 60]].

^m

Figure B.8: The Key-Friendly \MM" Benchmark

