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Abstract. We develop a method for non-trivially restricting fanout in a circuit. We study the
complexity of the Circuit Value problem and a new problem, Network Stability, when fanout is
limited. This leads to new classes of problems within P. We conjecture that the new classes
are different from P and incomparable to A'C. One of these classes, CC, contains several natural
complete problems, including Circuit Value for comparator circuits, Lex-first Maximal Matching,
and problems related to St able Marriage and St able Roommates.

When fanout is appropriately limited, we get positive results: a parallel algorithm for Circuit
Value that runs in time about the square root of the number of gates, a linear-time sequential algo-
rithm for Network Stability, and logspace reductions between Circuit Value and Network Stability.

Abbreviated title. Circuit Value and Network Stability

1 Introduction

1.1 Restricting fanout in circuits

In the circuit model of computation, it is traditional to assume that once a value is computed,
copies of this value may be made. If two copies can be made, any number of copies can be made, at
little extra cost; so there does not seem to be a meaningful way to restrict fanout without reducing
the circuit to a forest. We develop a method for non-trivially restricting fanout by altering the
definition of Tircuit” In our model, each input to the circuit and each output of a gate can either
enter one gate or become an output of the circuit, but not both. However, we allow multiple-output
gates so that the computing power of our circuits is not unduly restricted. Control of fanout is
then obtained by placing certain conditions on the different outputs produced by a gate.

We identify two properties of (multiple-output) gates as being relevant to our enterprise. We
define what it means for a gate to preserve adjacency, and for a gate to have scatter. We offer two
definitions of what it might mean for a gate to support fanout: a gate supports fanout in the strong
sense if it can simulate copying; a gate supports fanout in the weak sense if it can simulate a gate
with more non-trivial outputs than inputs. We can tell whether a gate supports fanout in either
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sense: a gate supports fanout in the strong sense if and only if it does not preserve adjacency; a
gate supports fanout in the weak sense if and only if it has scatter.

1.2 The problems we study

The first problem we study is Circuit Value. Here the task is, given a description of a boolean circuit
and its inputs, to compute the value of its output(s). We also define and study the Network Stability
problem. For our purposes, a network is a boolean circuit with feedback. In the Network Stability
problem, the task is to tell, given a network and its inputs, whether there is a consistent way to
assign values to the edges of the network. The focus of our research is on how the complexity of
Circuit Value and Network Stability depends on the properties of the gates constituting the circuit
or network. The interesting results arise when the gates cannot support fanout, in one or both of
the two ways presented earlier.

1.3 Connections with complexity theory

“Is logarithmic space as powerful as polynomial time?”” is a long-standing open problem in com-
plexity theory. The answer is widely believed to be ‘““no,” but no one has been able to supply a
proof. Instead, complexity theorists have developed a hierarchy of classes of problems between
logarithmic space and polynomial time: £ C NL C NC C P. (See [6]) Here £ and NL are
space complexity classes, and capture what can be achieved in logarithmic space on deterministic
and non-deterministic Turing machines; P captures the power of polynomial time on a determin-
istic Turing machine. The class NC is a parallel complexity class; it contains all the problems
that are highly parallelizable using a feasible amount of computational resources. The question
“Is NC = P?” is a fundamental question in parallel computation: it asks whether all problems
that can be feasibly solved on a sequential machine can be solved very fast in parallel with feasible
amounts of hardware. Again, the answer is believed to be “no,” but no one has a proof.

In this paper, we identify new classes of problems between £ and P. We conjecture that these
classes are properly contained in P, and are incomparable to NC. One of these classes, CC, contains
several natural complete problems.

1.4 Summary of results

The complexity of Circuit Value and Network Stability is easily determined if the gates support
fanout in the strong sense; usually we get problems that are complete for a standard complexity
class. If the gates do not support fanout even in the weak sense, we get efficient algorithms and
parallel reductions. The case where the gates support fanout in the weak sense but not in the
strong sense has recently been resolved by the work of Feder [9].

We give a parallel algorithm for Circuit Value that runs in time about the square root of the
number of gates if the gates are scatter-free. In contrast, the fastest known parallel algorithm for
general Circuit Value takes close to linear time. We also give a linear-time sequential algorithm for
Network Stability if the gates are scatter-free. In addition, we give logspace reductions between the
Network Stability problem over a scatter-free basis and the Circuit Value problem over the same
basis.



We identify a class of natural problems that are efficiently interreducible with the problem
of determining the output of a comparator circuit. These problems include Lex-first Maximal
Matching and several problems related to Stable Matching.

1.5 Outline of the paper

This paper discusses the key results that appeared in the preliminary version [21] in greater depth.
The reader interested in a more complete exposition is referred to [32].

Section 2 contains basics. Section 2.2 discusses two definitions of what it might mean for a set
of gates to support fanout. Section 3 proves a basic result about simulations. Section 4 studies the
complexity of Circuit Value. The parallel algorithm for Circuit Value that runs relatively quickly
if the gates are scatter-free is described in Section 4.2.1. Section 5 studies Network Stability. In
Section 5.3.1, we present the linear-time algorithm for Network Stability over scatter-free bases,
and show how to reduce such a Network Stability problem to a Circuit Value problem over the
same basis. Section 6 discusses the class CC. We discuss exciting related research in Section 7, and
conclude in Section 8.

2 Preliminaries

2.1 Gates, circuits, and networks

A X-input, p-output gate is a function g : {0, 1}’\ — {0, 1}* from X-bit input words to p-bit output
words. In this paper, all gates have a fixed number of inputs and outputs. A basis is a set of gates.

Gate Inputs outputs Preserves | Scatter-
adjacency? free?
COPY il o1 = i1,02 = il No No
NOT 11 01 =171 Yes Yes
AND 11,109 01 = 17 19 Yes Yes
OR ’il,ig 01 = il + ig Yes Yes
NAND 11,102 01 =0T +72 Yes Yes
XOR 11,19 01 =11 lg+ T Yes Yes
c 11,12 01 = 11 12,02 = 11 + 12 Yes Yes
X 11,89 01 = 1173,09 = 71 13 Yes Yes
b3 i1,42,93 | 01 = 111913,02 = Tl i3,03 = 11 T313,04 = 411273 Yes No

Table 1. Some of the gates that appear in this paper

The influence graph of a gate tells which outputs depend on which inputs. The jth input, z;,
of a gate g influences the kth output, oy, if there are two input words s; and sy differing only in
the jth bit, such that g(s;) and g(s3) differ in the kth bit. The influence graph of a gate has one
vertex for each input and each output of the gate, and an edge between the vertices corresponding
to input ¢; and output o4 if and only if ¢; influences og. A gate with a disconnected influence
graph is essentially the same as a set of gates; we assume henceforth that each gate has a connected
influence graph. In particular, our gates do not have trivial inputs or outputs, i.e., every input
contributes in some way to the function g, and every output depends in some way on the inputs.



A network is a finite labelled directed graph. Source (in-degree zero) nodes of the directed
graph have out-degree one and are called input nodes; sink (out-degree zero) nodes have in-degree
one and are called output nodes. Each internal node is labelled with a gate and an ordering of
its predecessors and successors. If an internal node has in-degree A and out-degree p, its gate has
A inputs and g outputs. If the underlying directed graph of a network is acyclic, the network is
called a circuit. A circuit computes a function in the usual manner. A network (circuit) is said to
be over a basis § if every gate in it is from . The size of a network is the number of edges in it.

Our definition of <tircuit” differs from the standard definition in two respects: all copying of
computed values is explicit and must occur within a gate, and multiple-output gates are allowed.
These provisions help us capture the intuitive notion of fanout without restricting the computing
capability of circuits. Our definition of *etwork” is non-standard. A network is essentially a
combinational circuit with feedback, and is not intended to Ttompute” anything.

Some of the gates that appear in this paper are listed in Table 1. The reader is invited to refer
to this table while reading the following definitions.

A gate g; is a restriction of gate g if it can be obtained as follows: Fix a subset (possibly empty)
of the inputs of g, to constant values. This operation fixes a (possibly empty) set of outputs of g,
to constant values. Now discard all the inputs and outputs of g, that are fixed, and perhaps some
outputs that are not fixed. For example, the X-gate is a restriction of the é3-gate, obtained by
fixing any one input of the &-gate to 1. The closure of a basis (2 is the basis {* consisting of all
restrictions of gates in €.

Gate g can be simulated by basis 2 if there is a circuit over * that computes the function g. We
say, for convenience, that gate g; can be simulated by gate g when we mean ¢g; can be simulated
by the basis {g3}; similarly, we say a basis can be simulated (by another basis) if every gate in it
can be simulated. Two bases are equivalent if each can simulate the other. For example, {X} is
equivalent to {C, NOT}.

Two binary words of the same length are adjacent if they differ in at most one bit. A gate
preserves adjacency (is adjacency-preserving) if it maps adjacent input words to adjacent output
words. The Hamming distance between two binary words of the same length is the number of bit
positions where the two words differ. It is clear that a gate preserves adjacency if and only if it
does not increase Hamming distances: If g preserves adjacency, and sy and sg are two input words
to g, the Hamming distance between g(s;1) and g(s2) is at most the Hamming distance between s,
and s2. A basis preserves adjacency if every gate in it preserves adjacency.

A gate has scatter if it has a restriction that has more outputs than inputs; otherwise, it is
scatter-free. A basis is said to be scatter-free if every gate in it is scatter-free. Notice that a gate
preserves adjacency if and only if every one-input restriction has at most one output; hence every
scatter-free gate preserves adjacency. However, adjacency-preserving gates may have scatter; in
fact, the number of outputs of an adjacency-preserving gate may be exponential in the number of
inputs. An example is the §, gate, with A inputs and 22-1 outputs. We say that an input word to
a gate is even if it contains an even number of 1s. The §, gate has 22=1 even input words, and is
defined as follows: the jth output bit is 1 if and only if the input word to the gate is the jth even
input word. It may be verified that this gate preserves adjacency.

All the adjacency-preserving gates that have arisen in applications so far, e.g., the C-gate (the
comparator) and the X-gate, are scatter-free.



2.2 When does a basis support fanout?

We consider two definitions. In both cases, the property of not supporting fanout is invariant under
the operations of restriction, simulation, taking subsets, and taking finite unions. In other words,
if Q has the property, so will any basis composed of restrictions of gates in €, or any basis that
can be simulated by 2, or any subset of ; if 3 and Q, have the property, so will Q; U ;. Both
characterizations are effective: there is an algorithm to tell if a finite basis supports fanout.

Definition: A basis supports fanout in the strong sense if it can simulate {COPY}. A basis
supports fanout in the weak sense if it can simulate a gate with more outputs than inputs.
Algorithmic characterizations follow from Lemma 1 and Corollary 3 below.

Lemma 1 A basis supports fanout in the strong sense if and only if it does not preserve adjacency.

Proof: Suppose basis {) does not preserve adjacency. Then it contains a gate g, that does not
preserve adjacency. This gate has a restriction g2 with one input i7; and two outputs; each output
equals either 7; or 7. If both outputs equal #;, then g9 is the COPY gate. Otherwise, gy can
simulate {NOT}, and we can get the COPY gate from g, by attaching NOT gates to a subset of
the outputs. In either case, Q can simulate {COPY}; hence it supports fanout in the strong sense.

Suppose basis Q preserves adjacency. A gate preserves adjacency if and only if it has the
following property: when one input bit is changed, at most one output bit changes. Circuits over
an adjacency-preserving basis also inherit this property; hence no such circuit can simulate the
COPY gate. It follows that 2 does not support fanout in the strong sense. Il

Lemma 2 Basis §) is scatter-free if and only if every network over 2* has at most us many outputs
us inputs.

Proof: Let N be a network over Q*; let Gates be the set of gates of N. Then

#(inputs of N) — #(outputs of N) = Z (#(inputs of g) — #(outputs of g))
g€Gates
If Q is scatter-free, so is Q*. Thus each summand on the right hand side is non-negative; hence
the sum is non-negative, and the number of outputs of N does not exceed the number of inputs
of N. On the other hand, if £ has scatter, there is a gate in 2* with more outputs than inputs. []

Corollary 3 A basis supports fanout in the weak sense if and only if it has scatter.

2.3 Basic Complexity Theory

For an introduction to complexity theory, see [30, 13]; for an introduction to parallel computation,
see [6, 16].

In this paper, the problems are decision problems, and the reductions are many-one logspace-
uniform ANC!-reductions. Two problems are equivalent if they are reducible to each other. A
problem is complete for a class if it is in the class and every problem in the class reduces to it.



3 A simulation result

Lemma 1 tells us that bases that do not preserve adjacency can simulate {COPY}. We use this to

show that these bases form exactly seven classes of equivalent bases. Table 2 gives a classification
algorithm.

Assume that {2 is a basis that does not preserve adjacency.
Q is monotone =
Q is AND-type and OR-type = Q = {AND, OR, COPY).
Q is AND-type but not OR-type = Q = (AND, COPY}.
0 is OR-type but not AND-type = ) = {OR, COPY}.
Q is neither AND-type nor OR-type = ) = {COPY}.
Q is non-monotone =
Q is AND-type = Q = {NAND, COPY}.
Qis OR-type = Q = {NAND, COPY}.
Q is neither AND-type nor OR-type =
() contains at least one gate that has two or more inputs = Q@ = {XOR, COPY}.
Every gate in §2 has a single input => Q@ = {NOT, COPY}.

Table 2: Classifying bases that do not preserve adjacency

We begin with some definitions and observations. A X-input, p-output gate may be regarded
as a function from 2* to 2#; the domain and range of this function are boolean lattices under the
natural ordering <. Gate g is said to be monotone if s; < sy = g¢(s1) < g(sz2); otherwise it is
non-monotone. A basis is said to be monotone if every gate in it is monotone. It is easily checked
that a basis is monotone if and only if it cannot simulate {NOT}.

Let g be a gate with a single output. Define frac(g), the I-fraction of g, to be the fraction
of input words of g on which the output of g is 1. Basis {2 is said to be an AND-type basis
if * contains a single-output gate g with 0 < frac(g) < 0.5. Every AND-type basis can simulate
{AND}. To see this, observe that any gate g; with 0 < frac(g,) < 0.5 has a two-input restriction g,
with frac(gz) = 0.25.

In addition, if © is monotone, we claim that the following three statements are equivalent: € is
AND-type; Q can simulate {AND}; Q cannot be simulated by {OR, COPY}. We give the proof
in the case where ) consists of a single gate g with a single output; the proof in the general case
is a straightforward generalization. Define a minterm of a boolean function to be a minimal set of
assignments to the input variables that forces the boolean function to take the value 1. If every
minterm of g involves exactly one input variable, then g is just the OR of a subset of the inputs;
hence all three statements are false. If g has a minterm involving two or more input variables,
then g has a restriction that is the AND of two inputs; hence all three statements are true. This
proves the claim.

Basis €2 is said to be an OR-type basis if * contains a single-output gate g with 0.5 < f rac(g) <
1. The following assertions are obtained by duality. Every OR-type basis can simulate {OR}. If )
is monotone, the following are equivalent: 2 is OR-type; § can simulate {OR}; {2 cannot be
simulated by {AND, COPY}.

A gate is said to be linear, if every output function of the gate can be expressed as a GF(2)-
linear function of the inputs and the constant 1. A basis is said to be linear if every gate in it is



linear. It may be checked that the following statements are equivalent: basis  is linear; basis )
can be simulated by {XOR, COPY}; basis §) is neither AND-type nor OR-type.

Theorem 4 Let ) be a basis that does not preserve adjacency. Then it is equivalent to exactly one
of the following buses: (NAND, COPY), (AND, OR, COPY), (AND, COPY), (OR, COPY),
(XOR, COPY}, {NOT, COPY}, {COPY}.

Proof: A classification algorithm is given in Table 2. The correctness of the algorithm follows
from previous observations and basic boolean algebra. cl

4 Circuit Value Problems

An instance | of Circuit Value consists of a circuit C, say with A inputs, an input assignment
sin € {0, 1}’\ to the circuit, and an output edge é of C. The Circuit Value problem (CV) is “Given
an instance | of Circuit Value, is edge € assigned the value 1 when circuit C is evaluated on input
assignment s;,, ?” The complementary problem, co-CV, asks if edge & is assigned the value 0. These
problems are P-complete [19]. Given a basis 2, we define Q-CV and co-Q-CV to be the special cases
of CV and co-CV, respectively, in which the circuits are required to be over ). Under reasonable
assumptions about the form of the input, the Circuit Value problem over any basis {2 can be solved
in linear time. In this section, we study how the parallel complexity of 2-CV depends on ).

4.1 Bases that do not preserve adjacency

Basis 2 Complexity of R-CV
{NAND,COPY} Same as Circuit Value, so P-complete [19]
{AND,OR,COPY} Same as Monotone Circuit Value, so P-complete [11]
{OR,COPY} NL-complete; in N'C? because N'L C NC? [3]
{AND,COPY} co-NG-complete; also A L-complete because N'L= co-NL [14]
{XOR,COPY} in N'C?
{NOT,COPY} in £ (in fact, NC=complete (see [6, 7]) for L)
(COPY) in £ (in fact, NC!-complete for L)

Table 3: The complexity of Circuit Value if the basis does not preserve adjacency

Equivalent bases define equivalent Circuit Value problems, so the complexity of Q-CV when  does
not preserve adjacency may be determined by case analysis. The results in Table 3 are obtained
by standard techniques. It is interesting to note that six of the seven circuit value problems are
complete for natural complexity classes. Many of the results in this table have previously been
obtained in [12]. An inspection of the seven cases yields:

Theorem 5 If € does not preserve adjacency, R-CV is equivalent to co-Q-CV.

Remark: Immerman% theorem [14] is the special case of Theorem 5 with @ = {OR,COPY}; for
this reason, we require his proof to prove Theorem 5. Clearly, 2-CV and co-Q-CV are equivalent
if Q is non-monotone; we do not know whether 2-CV and co-2-CV are equivalent for all bases.



4.2 Bases that preserve adjacency

Our understanding of the complexity of CV over adjacency-preserving bases is highly incomplete.
In Section 4.2.1, we give a parallel algorithm for CV when the gates lack scatter.

4.2.1 A parallel algorithm for Circuit Value if the basis lacks scatter

Each gate of a circuit prescribes certain relationships between the values of its inputs and the values
of its outputs. These relationships may be written as implications, in the form /\(i]- — vj) = (0 —
vk ), Where the 1; are input edges, the o are output edges, and the v; and vy are values from {0, 1).
In some of these implications, the partial assignment that appears on the left hand side consists
of an assignment to a single edge. We call these the short implications; all other implications are
long. For example, we can write the following implications for an OR gate with inputs #;, i, and
output 0: 44 «— 1 = 0 « 1; i3 « 1 = 0 « 1; and A(¢1 < 0, i3 « 0) = 0 « 0. Here the first two
implications are short. The circuit value problem over any basis may be solved by starting with the
input assignments and enforcing the implications until every edge of the circuit is assigned a value.
The reason we single out the short implications is because these implications are easily enforced
in parallel. In other words, every assignment implied by a given partial assignment and a set of
short implications may be determined in NC, by directed graph transitive closure. This suggests
the following parallel algorithm (Algorithm 1) to solve Circuit Value. The algorithm is similar in
spirit to the DTEP algorithm of [20] and the Contraction algorithms of Miller [22, 23 24]: Step 1
is a tompress” step; Step 2 is a Take” step.

Algorithm 1 Initialize S, the set of assignments known to be true so far, to the input assignments.
Initialize Short to be the set of all correct short implications for all the gates of the circuit. Then
alternate the following two steps until each edge has been assigned a value:

1. Augment S using Short. (Use a transitive closure algorithm.)

2. Consider each long implication. If each assignment on the left hand side is in S, use the
assignment on the right hand side to augment S. If all but one assignment on the left hand
side are in S, we get a short implication, which we use to augment Short.

The algorithm is correct because circuits are acyclic. Lemma 6 below shows that the algorithm
runs relatively quickly if the basis is scatter-free.

Lemma 6 Given a circuit over a scatter-free basis and an input assignment to it, Algorithm !
deduces the value of all edges in O(y/m) iterations, where m is the size of the circuit.

Proof: Algorithm 1 may be regarded as a simplification algorithm. In other words, each iteration
takes in a circuit and an input assignment to it, deduces the values of some edges in Step 1, and
uses the resulting partial assignment to simplify the circuit in Step 2; the result of an iteration is
a simplified circuit and an input assignment to it. After sufficiently many iterations, the circuit is
fully simplified, i.e., each edge has been assigned a value.

We consider a conservative variant of the simplification algorithm. The new algorithm has the
overall structure of the old algorithm; however, it does not always make all possible assignments
or simplifications, but only a subset of them. As a result, the assignments inferred by the new



(conservative) algorithm after % iterations will be a subset of those inferred by the old algorithm
after k iterations. We then complete the proof of Lemma 6 by showing that the conservative
algorithm terminates in 2 [{/m] iterations.

Iteration k of the conservative algorithm begins with a circuit C}, and an input assignment to C}.
The partially simplified gates” that appear in Cj might not have connected influence graphs; so we
call these entities ®lements” Each element of () will have an equal number of inputs and outputs.
(This invariant may be achieved at the beginning of the first iteration by adding extra outputs as
needed to the elements of Cr.) Hence C} has an equal number of inputs and outputs; define the
width of iteration k to be equal to this common number. Since each element is derived from a single
scatter-free gate of the original circuit, fixing any A inputs of an element will always permit us to
assign values to A outputs of the element.

The first step of an iteration of the conservative algorithm identifies a set of short implications
and runs a transitive closure algorithm on these implications to derive new assignments. The set
of implications is chosen so that fixing any one input of any element causes exactly one output
of the element to be fixed via these short implications. In other words, for each edge i that is an
input edge to some element, we choose two short implications of the form ¢ « 0 = eg « vy and
i « 1 = e; « v1. Our choice of short implications guarantees that the first step can never assign
values to more outputs of an element than to its inputs. The second step of the iteration restores
the invariant that each element has an equal number of inputs and outputs, by fixing the correct
number of additional outputs of each element and discarding fixed inputs and outputs. The edges
that are assigned values in the second step become input edges of the simplified circuit.

We now show that the conservative algorithm takes at most 2 [\/ﬁ] iterations. Each input edge
of Cy is removed during the second step of iteration k. Hence, within the first [{/m] iterations,
there will be an iteration with width at most [\/m]. We show that there can be at most [/m ]
more iterations. Notice that if Cj is not the empty circuit, at least one output edge of C}, is assigned
a value during the first step of iteration k. This means that Cg4q has fewer outputs than Ci; hence
the width of iteration (k + 1) is strictly less than the width of iteration k. It follows that the width
of the circuit becomes zero within 2[y/m] iterations. d

Remark: We prove that the bound in Lemma 6 is tight, by exhibiting an infinite family of
comparator circuits on which Algorithm 1 takes O(\/ﬁ) litera tions. Let Ci be the circuit with k2
comparators arranged in a k x k grid, as follows: the inputs of each comparator come from the
left and below; the ‘min” output of each comparator goes upward; and the ‘max” output of each
comparator goes to the right. Let the input assignment s; be as follows: each horizontal input edge
is assigned the value 0; each vertical input edge is assigned the value 1. Suppose the simplification
algorithm is presented with circuit C}, and input assignment sg. It can be checked that the output
produced after one iteration is the simplified circuit C;_; and the input assignment s;_;. Hence
Algorithm 1 takes k iterations to dednce the value of all edges of (.

Theorem 7 Let ) be a scatter-free basis. Then there is a PRAM (Parallel Random Access Ma-

chine) algorithm for Q-CV that runs in O*(y/m) time! using a polynomial number of processors,
where m is the size of the circuit.

!The 07 notation means that polylogarithmic multiplicative factors are suppressed.



Proof: Lemma 6 tells us that Algorithm 1 takes O(\/m)litera tions; each iteration can be imple-
mented in polylogarithmic time on a PRAM with a polynomial number of processors. 0

5 Network Stability Problems

The Network Stability problem (NS) is a question about the existence of configurations of a network
consistent with a given input assignment. In this section, we study the sequential and parallel
complexity of Network Stability as a function of the kinds of gates allowed in the network.

An instance | of Network Stability consists of a network N with A > 0 inputs, and an input
assignment s;, € {0,1}’\ to N. A configuration of N is an assignment of boolean values (0s and 1s)
to the edges of N. It is a stable configuration of [N,s;,] if it satisfies the gate equations at each
internal node, and is consistent with the input assignment s;,. The Network Stability problem is
“Given an instance | of Network Stability, does [N,s;,] have a stable configuration?”” Often we
leave the input assignment implicit, and say “N has a stable configuration” when we mean “[N, $;,]
has a stable configuration.” Given a basis {2, we define R-NS to be the special case of NS in which
the network is required to be over . For instance, {AND,OR,COPY}-NS is the stability problem
for monotone networks. In general, network stability problems are not known to be equivalent to
their complementary problems.

The following lemma shows that Network Stability is usually at least as hard as Circuit Value:

Lemma 8 Let 2 be any basis that can simulate (NAND). Then R-CV reduces to R-NS.

Proof: The proof uses the idea of a forcer. A v-forcer is a one-input, zero-output network which
has a stable configuration if and only if the input takes the value v. A O-forcer may be built by tying
the output of a NAND gate to one of its inputs, and a I-forcer may be obtained by adding a NOT
gate at the input of a O-forcer. To determine the output of a circuit over {2, feed its output into a
I-forcer. The resulting network has a stable configuration if and only if the circuit has output 1. []

5.1 Networks over monotone bases

Theorem 9 Every network over a monotone basis ) has a stable configuration; in fact, there is
a (unique) most-O~ stable configuration QO with the property that if an edge e is 0 in any stable
configuration ¢) of the network, it is 0 in QY. This stable configuration can be found in linear time.
Furthermore, the problem “Is edge € assigned the value 1 in Q%%” is equivalent to Q-CYV.

Proof: We give the reduction to Q-CV. Pretend that each edge e of the monotone network N has
unit delay. Consider the following network process. Initialize N to the all-0 stable configuration.
At time t = 0, assign each input edge of N its correct value. Now let the network Yun” The
values on edges of the network will change during this process; since the network is monotone,
every change will be from a 0 value to a 1 value. Thus the value on any given edge will change at
most once; eventually the network will reach a stable configuration. This is QO, because the value
of an edge becomes 1 only if it must be 1 in order to satisfy the equations of the network.

The network process terminates in at most m time units, where m is the size of N. We may
unravel the network computation into a circuit computation, by replacing each gate g of N by m
gates (g, t), one for each time-step. The resulting circuit is over Q. Its size is O(m?2). ol
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5.2 Networks over non-monotone bases that do not preserve adjacency

Equivalent bases define equivalent network stability problems. Theorem 4 tells us that there are
only three inequivalent bases to consider. We consider these in turn.

We show that {NAND,COPY}-NS is AP-complete. The problem “Does the given circuit Cy
have an input assignment that makes its output 1?” is A'P-complete. We may assume that C,
is over {NAND,COPY}. Let flout be the O-input, l-output network obtained by connecting one
output of a COPY gate to its input. Attach a float network to each input of (g, and feed the
output of Cy into a I-forcer. The resulting input-free network has a stable configuration if and only
if Cp has an input assignment that makes its output 1. This completes the proof.

Constructing a stable configuration of a network over {XOR,COPY} is the same as solving a
system of linear equations over GF(2); such systems can be solved in A/C? [26, 4).

Networks over {NOT,COPY} have an especially simple structure: each connected component
may be rendered into a tree by deleting at most one edge. This can be exploited to find stable
configurations in linear time, and in logarithmic space. It can also be shown by standard methods
that co-{NOT,COPY}-NS is NC*-complete for L.

5.3 Networks over non-monotone bases that preserve adjacency

The interesting question is: How hard is Network Stability if the basis preserves adjacency and can
simulate {NAND}? We give a linear-time algorithm to construct a stable configuration if the basis
is scatter-free. In addition, for such bases, we show that Q-NS is equivalent to Q-CV. Let SFC be
the class of problems that are reducible to Circuit Value over scatter-free bases. Then the Network
Stability problem over scatter-free bases is complete for SFC.

5.3.1 Scatter-free networks

We use the characterization of Lemma 2 to give a linear-time algorithm that constructs a stable
configuration of a scatter-free network, whenever one exists.

We are looking for stable configurations in a network N over a scatter-free basis 2. We may
assume that € is closed under restriction, since restrictions of scatter-free gates are scatter-free.
The first step is to ®liminate the inputs’ i.e., simplify the problem so that N becomes input-free.
The idea behind input elimination is that knowing the value of an input to a gate enables us to
do two things: deduce the value of some (maybe none) of its outputs, and replace the gate by one
of its restrictions. This process of network simplification may be iterated; it produces, in linear
time, a partial assignment P of values to edges, and an input-free network N~ on the remaining
edges, with the property that the stable configurations of N are obtained by augmenting the stable
configurations of N” with P. In particular, N has a stable configuration if and only if N~ does.
Since 2 is scatter-free, Lemma 2 applies to N3 since N” has no inputs, it will have no outputs.
Henceforth we will simply assume that N has no inputs or outputs.

Consider what happens if we break an edge e of N, thus creating an input e;, and an output e,,;,
and then place the value v € {0,1} on e;,. We get a network with one input and one output; we
may apply input elimination to this network. We call this the process of propagating the pair [e, v].
Applying Lemma 2 to the network that remains after the propagation, we see that edge ey, must be
assigned a value v,,; during the propagation. If v,y = Vv, We say that the propagation is successful,
and that [e, v] is viable in N. The result of a successful propagation is a partial assignment P and
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an input-free network N” on the remaining edges, with the property that the stable configurations
of N that assign edge e the value v are obtained by augmenting the stable configurations of N’
with P. If, on the other hand, v,,: # v, no stable configuration of N may assign edge e the value v;
in this case, we say the propagation is unsuccessful.

The type of an edge in an input-free scatter-free network is the set of viable values for it, i.e.,
typen(e) = {v|[e,v] is viable in N}. If typen(e) = 0, we say that e is a contradicting edge. It turns
out that the type of an edge is preserved by successful propagations:

Lemma 10 Let N be an input-free network over a scatter-free basis 2. Suppose that [ej,v1] is
viable in N. Let N’ be the network left after propagating [e;, v1] in N; let e; be an edge of N~

Then typen(e2) = typen(ez).

Proof: The key idea is that propagations only make forced moves. Hence every assignment made
in the propagation of [eg, v2] in N will be made during the propagation of [ez, v2] in N7 unless the
same assignment has already been made during the propagation of [ey, v1] in N. 0

Lemma 10 justifies the following polynomial-time algorithm for constructing stable configurations
in scatter-free networks:

Algorithm 2 Eliminate all inputs. Pick any edge e. If it is contradicting, there are no stable
configurations; otherwise, suppose [e, V] is viable. Propagate [e, v], thus obtaining a partial assign-
ment P and a simplified network N~ Find a stable configuration of N” and augment it with P to
yield the desired stable configuration. If N” has no stable configuration, neither does N.

Theorem 11 Let N be a network over a scatter-free basis 2. Then there is a linear-time algorithm
that will construct a stable configuration if there is one, or conclude that none exists.

Proof: Algorithm 2 can be made to run in linear time. The idea is to keep the work done by the
algorithm proportional to the amount of simplification achieved, i.e., the number of edges of the
network that are assigned values. To do this, propagate [e, 0] and [e, I] in parallel’ and use the
propagation that succeeds first. 0

Theorem 12 Let N be an input-free network over a scatter-free basis 2. Then N has a stable
configuration if and only if it has no contradicting edge.

Proof: If N has a contradicting edge, there is clearly no stable configuration. If there is no
contradicting edge, Algorithm 2 will find a stable configuration. 0

Theorem 13 Let  be any scatter-free basis that can simulate (NAND). Then 2-NS is equivalent
to Q-CV.

Proof: We use Theorem 12 to give a reduction from Q-NS to Q-CV; the reduction in the
other direction follows from Lemma 8. Consider the following network process Prl(e, v) on the
network N. Break edge e, thus creating a new input e;;, and a new output e,,:. Assign all input
edges of N their correct values, and assign edge e;, the value v. Perform input elimination. Since
the gates are scatter-free, each output will be assigned a value. Let v,yt(€, v) be the value assigned
to edge e,y. We say that process Pri(e,v) succeeds if voui(e, v) = v, otherwise it fails. The crucial
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observation is that both Prl(e, 0) and Prl(e, 1) fail if and only if e is a contradictory edge. The
proof of this observation follows from the fact that the result of input elimination is insensitive to
the order in which the inputs are eliminated.

Consider the following network process Pr2(e, v): Pretend that each edge has unit delay. Break
edge e of N, thus creating input e;, and output e,,;. Initialize the network to an arbitrary configu-
ration. Assign all input edges of N their correct values, and assign edge e;, the value v. Now let the
network run. Every edge that was assigned a value during process Pr1(e, v) will stabilize within m
time units at the same value in Pr2(e, v). (Here m is the size of N.) In particular, edge e,,; will
stabilize at vout(e, v). Unravelling the network process Pr2(e, v) into a circuit computation yields
a circuit over § that computes vout(e,v).

Given all the values v,ut(€, V), we may use NAND gates to combine the results and determine
whether N has a stable configuration. The resulting circuit has size O ( m3). O

6 The Comparator Circuit Value Problem, and the class CC

The Comparator Circuit Value problem, C-CV, is the circuit value problem over the monotone
scatter-free basis {C}. Define CC to be the class of problems reducible to C-CV. In this section,
we discuss some properties of C-CV and exhibit some natural CC-complete problems.

The outputs of the comparator are threshold functions. For A > 2, define the 7, gate to be
the monotone scatter-free gate with A inputs 4; . . . 4y and A outputs oy . . . 0y, where o; is the jth
threshold function T]( i, ..., %)), i.e, output o; is 1 if and only if at least j inputs are 1. The
comparator is just the 7, gate. The 7, gate essentially sorts its inputs. Since sorting circuits can
be built with comparators, each 7y gate can be simulated by the comparator. It follows that {r)}
is equivalent to {C}, for each A > 2.

The double rail” method of Goldschlager {11] may be used to reduce {7y, NOT}-CV to {r)}-CV.
The idea is to keep each variable around in both the complemented and uncomplemented forms.
The key step is to produce both forms of the outputs of a gate, given both forms of the inputs. For
a NOT gate, this is trivial. For a 7 gate, we can do this with two T gates: the first T, gate takes in
the uncomplemented inputs and produces the uncomplemented outputs; the second Ty, gate takes
in the complemented inputs and produces the complemented outputs in reverse order. Thus {7y,
NOT}-CV is CC-complete. Since 2-CV = co-2-CV when Q is non-monotone, it follows that the
class CC is closed under complementation.

Applying Theorem 13, we see that {7y, NOT}-NS is CC-complete; in particular, {C, NOT}-NS
is CC-complete. Theorem 14 below, due to Feder [8], uses this to show that AL C CC. Since {X}

is equivalent to {C, NOT}, it follows that X-CV and X-NS are CC-completeZ. We use these facts
in Sections 6.1 and 6.2.

Theorem 14 NL CCC.

Proof: The problem GAP: “Given a directed graph G and two vertices s and %, is there a directed
path from s to t?”” is complete for N'L [15]. The problem remains complete even if the following
conditions are imposed: s must be a source vertex; ¢ must be a sink vertex; and G must be acyclic.
There is no directed s-t path if and only if the vertices of G may be two-colored with the colors 0

2These problems are properly called { X}-CV and { X}-NS; we drop the braces for convenience.
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and 1 so that color(s) = 1; color(t) = 0; and colors never decrease along directed edges, i.e., if
there is a directed edge from vertex v; to vertex vz, then color(vy) < color(vz). We build a network
over {C, NOT} to enforce these hon-decreasing” conditions.

A comparator circuit may be drawn as a collection of wires with comparator gates between
them; see, e.g., Section 5.3.4 of [17]. Consider the following comparator circuit: introduce a wire
for each vertex of G, and a comparator gate for each edge of G; the gate is oriented so that if
the edge is directed from vertex v; to vertex vy, then the associated comparator places its ‘min”
output on the wire associated with vertex v; and its ‘max” output on the wire associated with
vertex vy. (The relative order of the comparators on the wires is immaterial.) The resulting circuit
has one input edge and one output edge corresponding to each vertex of G. In addition, since G
is acyclic, the circuit has the following property: on any input assignment, the output word of the
circuit equals the input assignment if and only if none of the comparators are ‘used” on that input
assignment. We use this property to complete the reduction.

Convert the circuit into a network N over {C, NOT} as follows: feed the output edge corre-
sponding to s into a I-forcer; feed the output edge corresponding to ¢ into a O-forcer; for every other
vertex v of G, connect the output edge corresponding to v to the input edge corresponding to v.
Let s;, be the input assignment to N that assigns the value 1 to the input edge of N corresponding
to vertex s, and assigns the value 0 to the input edge corresponding to vertex t. Given a stable
configuration § of [N, s;z], we show how to find an appropriate two-coloring of G. Since @ is
stable, no comparator gets used. Hence () assigns identical values to all the edges on any given
wire of N; let this common value be the color of the associated vertex. It is easy to check that
this coloring meets all the required conditions. Conversely, if G has an appropriate two-coloring,
we can construct a stable configuration of [N, s;»]. Hence [N, s;,] has a stable configuration if and
only if there is no directed s-t path in G. Thus we have reduced GAP to co-{C, NOT}-NS, which
is CC-complete. ol

6.1 Lex-first Maximal Matching is CC-complete

Lex-first problems are often P-complete [6, 2, 25], but LFMM, the Lex-first Maximal Matching
problem, appears not to be so. Attempts to reduce Circuit Value to LFMM fail because of an
inability to ‘fanout information.” [2]. The Teason” for this phenomenon is that LFMM is CC-
complete.

An instance | of LFMM consists of an undirected graph G = (V, E), a total order < on E,
and a distinguished edge €. If e; < ez, we say that e; precedes e;. A matching M is a subset
of E with the property that at most one edge in M is incident to any vertex of G. A matching
is maximal if it is not properly contained in any other matching. The total order < on the edges
allows us to regard a matching M as a sequence Spr = (e1 , €2, . . .) of edges in ascending order,
i.e, j < k = ej < eg. Given two (maximal) matchings M and N, we say that M << N if Sy
lexicographically precedes Sy. The relation < defines a total order over all maximal matchings.
The minimum element, Miexfirst, Of this order is called the lex-first maximal matching of (G, <).
The Lex-first Maximal Matching problem is “Given an instance I of LFMM, is € in Mjexfirst !

The following greedy algorithm finds Mjexgrst: Start with the empty matching, inspect the edges
in ascending order, and augment the current matching whenever possible. Cook [5] showed that
LFMM is equivalent to X-CV; hence LFMM is CC-complete. Before giving the reductions, we
introduce some terminology.
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An X-circuit is a circuit over {X}. The X-gate has inputs 1, ¢ and outputs o; = i1 73,02 = 7 2.
We associate input 7; and output o;. This association allows us to describe an X-circuit in terms
of snakes. A snake is a sequence of edges; in our application, the sequence is always acyclic. If an
input edge of an X-gate is in snake g, the associated output edge is the next element of g; if an
output edge of an X-gate is in ¢, the associated input edge is the previous element of gq. The first
element of a snake is an input edge of the circuit; the last element of a snake is an output edge.
Two snakes meet if there are two edges, one in each snake, that are input edges to the same gate.
The snakes of an X-circuit constitute a partition of its edges.

An X-circuit may be described by naming its snakes and telling, for each snake, which other
snakes it meets and in what order; in such a description, there is a gate wherever two snakes meet.
There are efficient transformations between such a description and a standard description of an
X-circuit.

Reducing LFMM to X-CV: Introduce a snake g, for each vertex v of G. Two snakes meet
if the corresponding vertices in G are neighbours, i.e., if they share an edge. Thus the gates of
the X-circuit correspond to the edges of G. Let g, denote the gate corresponding to edge e. The
order in which the snake corresponding to a vertex meets the snakes corresponding to its neighbour
vertices is induced by the total order < on the edges of G, as follows: if vertex v is adjacent to
vertices w and x in G, and (v, w) < (v, X), then snake g, meets snake g,, before it meets snake g,.
This completes the description of the X-circuit C. The relevant input assignment is 1, i.e., the
input assignment that assigns each input edge the value 1.

We show that edge e is matched in Mg if and only if both inputs to gate g, are 1 when
circuit C is evaluated on input assignment 1. (Given this fact, it is easy to produce the instance of
X-CV corresponding to instance | of LFMM from circuit C.) Observe that we may list the gates
of C in topological order as follows: list the edges of G in ascending order of <; then read off the
corresponding gates. Evaluating circuit C in this topological order simulates the greedy algorithm
to find a lex-first maximal matching of G. Let e be any edge of G; let v be an endpoint of edge e.
Then the following claim is easily proven by induction: the edge on snake g, that enters gate g is
assigned the value 1 when C is evaluated on input assignment 1 if and only if vertex v is unmatched
at the time the greedy algorithm considers edge e. The proof is completed by observing that the
greedy algorithm matches edge e if and only if both endpoints of e are unmatched at the time the
algorithm considers this edge.

Remark: The reduction from LFMM to X-CV takes a graph with |E| edges into a circuit
with |E| + 1 gates. It follows from Theorem 7 that there is a parallel algorithm for LFMM that

runs in O*(\/|E]) time.

Reducing X-CV to LFMM: Suppose we are given an X-circuit and an input assignment to it;
suppose we wish to tell if output edge e,,; gets value 1. Feed this edge into a new X-gate g whose
other input is 1. Let C be the resulting X-circuit. Then the answer to the X-CV instance is Yes”
if and only if gate g has both inputs 1 when circuit C is evaluated on its input assignment. We
may assume that a topological order of the gates of C is available (see [28]) because there is a fast
parallel transformation that takes as input any circuit C and an input assignment s;, to C, and
returns a (larger) circuit C” over the same basis, a topological order of the gates of C’ and an input
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assignment ., so that [C? s.,] has output 1 if and only if [C, s;,] has output 1. We may assume
that each pair of snakes of C meet at most once, because removing every intersection except the
first does not change the values assigned to the edges of C. Notice that if the input edge of a
snake is assigned the value 0 by the input assignment to C, all edges on this snake get the value 0;
furthermore, we may delete this snake without affecting the values assigned to the other edges of C.
Thus we may assume that the input assignment to C is 1. Now construct a graph G = (V, E) as
follows: introduce a vertex for each (remaining) snake; introduce an edge between two vertices if
the corresponding snakes meet. The total order < on E is read off from the topological order on the
gates of C. The distinguished edge € of the LFMM instance is the edge corresponding to gate g. It
is easy to verify that edge € is matched in the lex-first maximal matching if and only if the original
X-CV instance has a %es” answer. This completes the reduction. The size of the LFMM instance
is quadratic in the size of the X-CV instance; however, this increase in size may be avoided if a
topological ordering of the X-circuit is available.

6.2 Stable Matching is CC-complete

The Stable Matching problem (see [10, 18,271 for an introduction) is essentially the same as Network
Stability for networks over {X}. The Stable Marriage problem is a special case of Stable Matching;
it is the same as Network Stability for comparator networks. Since X-NS and C-CV are equivalent,
several Stable Matching problems are CC-complete. We state these results here; for proofs and
extensions, we refer the reader to [31].

Theorem 15 The following problems are CC-complete:

a) Stable roommates: Does the given instance of Stable Roommates have a stable roommate
assignment?

b) Fixed pair: Is the given pair of persons a fixed pair of the given instance of Stable Matching,
i.e., is it true that these two persons are matched to each other in every stable matching?

c) Stable pair: Is the given pair of persons a stable pair of the given instance of Stable Matching,
i.e., is it true that there is a stable matching that matches these two persons to each other?

d) Minimum-regret: Given an instance | of Stable Matching and an integer k, is it true that
there is a stable mat ching of | in which every person has regret at most k?

e) Man-optimal Stable Marriage: Given an instance of Stable Marriage, is man m matched to
woman w in the man-optimal stable marriage?

7 Related research

Recently, Feder [9] has reported considerable progress in solving Network Stability for arbitrary
adjacency-preserving bases. He shows how to find a stable configuration for a network over an
arbitrary adjacency-preserving basis in cubic time. He also generalizes Theorem 13 to all adjacency-
preserving bases that can simulate {NAND}. It follows that if APC denotes the class of problems
that are reducible to Circuit Value over adjacency-preserving bases, then the Network Stability
problem over adjacency-preserving bases is complete for APC. Finally, for any adjacency-preserving
basis {2 that can simulate {NAND}, heshows that constructing a stable configuration is equivalent
to Q-CV.
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8 Conclusions

The complexity of Circuit Value and Network Stability has been studied as a function of the kinds
of gates permitted in the network. The availability of fanout plays a crucial role in determining
the complexity. The interesting new problems studied are Circuit Value and Network Stability
over scatter-free and adjacency-preserving bases. The overall picture that emerges from our work
and [9] is

NLCCCCSFCCAPCCP

where SFC and APC are the classes of problems that are reducible to Circuit Value over scatter-free
and adjacency-preserving bases respectively. We conjecture that the three new classes are different
from P and incomparable to NC.

We conclude with some directions for further research:

1. Is there a machine characterization of the new classes discussed in this paper?

2. Our definitions of fanout are 4ll-or-nothing” definitions; for instance, a circuit over an adjacency-
preserving basis cannot simulate even one COPY gate. Can anything interesting be said about
the complexity of Circuit Value and Network Stability when a limited amount of copying is
allowed?

3. What can be said about the relative difficulty of Circuit Value over different adjacency-
preserving bases? Is there a linear-time algorithm for Network Stability over arbitrary
adjacency-preserving bases?

4. Find other natural problems that are equivalent to Circuit Value or Network Stability over
adjacency-preserving bases.

5. The reduction of Section 6.1 from X-CV to LFMM can be modified so that the graph G in
the LFMM instance is bipartite. It follows that the Assignment problem (Bipartite Weighted
Matching) is CC-hard. (A full proof appears in [31].) Of course, it is well known that the
Assignment problem is in P. What is the relationship between the Assignment problem and
the classes SFC and APC?

6. Find better parallel algorithms for C-CV, or for special cases of any CC-complete problem.
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