On the Semantics of Temporal Logic Programming
(Preliminary Report)

by

Marianne Baudinet

Department of Computer Science
Stanford University
Stanford, California 94305
On the Semantics of Temporal Logic Programming
(Preliminary Report)

Marianne Baudinet
Computer Science Department
Stanford University

May 1988

Abstract

Recently, several researchers have suggested directly exploiting in a programming language temporal logic's ability to describe changing worlds. The resulting languages are quite diverse. They are based on different subsets of temporal logic and use a variety of execution mechanisms. So far, little attention has been paid to the formal semantics of these languages. In this paper, we study the semantics of an instance of temporal logic programming, namely, the TEMPLOG language defined by Abadi and Manna. We first give declarative semantics for TEMPLOG, in model-theoretic and in fixpoint terms. Then, we study its operational semantics and prove soundness and completeness theorems for the temporal-resolution proof method underlying its execution mechanism.
1 Introduction

Temporal logic is more and more widely acknowledged as a useful formalism for program specification and verification. It has been used quite extensively for concurrent programs and digital hardware, but it is also applicable whenever it is necessary to specify or describe a sequence of states or events, such as in robot planning or historical databases. Recently, the idea has emerged that one could more easily use the expressive power of temporal logic if it could be made directly executable, for instance as is done with first order logic in PROLOG. This has lead to the definition of a number of programming languages based on temporal logic ([FKTM86], [Mos86], [AM87], [Gab87], [Wad88], [OWSSa]).

The earliest of these languages, the TEMURA language of [Mos84, Mos86] is based on a subset of interval temporal logic whose formulas can be interpreted as traditional imperative programs. In logical terms, executing a TEMURA formula (program) amounts to building a model for that formula. The TOKIO language of [FKTM86] is an extension of logic programming, but resembles TEMURA in the way it treats its temporal constructs. The other temporal programming languages ([Aba87], [AM87], [Gab86, Gab87], [Wad85, Wad88], [OWSSa]) are based on the logic programming paradigm and view an execution of a program as a type of refutation proof.

For this last class of languages, important questions are left unanswered. Among these is the relation between their operational and their logical semantics. Indeed, in classical logic programming, the operational and the logical semantics coincide because of the completeness of SLD-resolution ([Hil74], [Cla79], [AvE82]). Unfortunately, first-order temporal logic is inherently incomplete ([Aba87]). So, one could very well expect that the operational and the logical semantics of temporal programming languages do not and even cannot coincide.

In this paper, we examine this question for the TEMPLOG language of [AM87]. We capture both the operational and the declarative semantics of this language and prove that they coincide, hence proving that the fragment of temporal logic defined by TEMPLOG admits a complete proof system.

TEMPLOG extends classical Horn logic programming to allow specific use of the temporal operators 0 (next), •I (always), and 0 (eventually). Programs are sets of temporal clauses, and computations are proofs by refutation. The proof method used is a resolution method for temporal logic to which we refer as TSLD-resolution. We study the declarative (logical) semantics of TEMPLOG and define it both in model-theoretic terms and in fixpoint terms. For this, we define the notion of temporal Herbrand interpretation and of temporally ground formulas. We prove that the declarative semantics of a program is characterized by the minimal Herbrand model of the program. We then show how to associate with a TEMPLOG program a mapping whose least
fixpoint is the minimal Herbrand model. This provides a fixpoint characterization of the declarative semantics. Next, we examine the TSLD-resolution method that is the basis of the operational semantics of TEMPLOG. We establish a correspondence between membership in the fixpoint of the mapping associated with programs and existence of a temporally ground resolution proof, thereby obtaining a type of ground completeness theorem. From this result, we establish the completeness of TSLD-resolution using a temporal lifting lemma. Our proof techniques extend those that have been used for giving semantics to classical logic programming ([vEK76],[Cla79],[AvE82],[Llo84],[Apt87]).

2 The Temporal Logic

Temporal logic is a modal logic for reasoning about various time instants or states. There are several versions of temporal logic. We are interested in a version of the logic in which formulas are interpreted over linear sequences of discrete states (linear-time temporal logic). In the following we refer to this logic simply as temporal logic.

The language of first-order temporal logic is an extension of the language of first-order classical logic that allows the application of temporal operators to terms and formulas. In the general case, an interpretation for temporal logic formulas is a sequence of classical interpretations. So, temporal terms may have a different interpretation at each time instant and temporal formulas have a truth value that may also vary with time. In the temporal logic of interest here, the constant and function symbols are assumed to have an interpretation that does not depend on time. They are said to be rigid. Only predicate symbols may be flexible, that is, may have time-varying interpretations. The temporal operators allowed in the language are 0 (next), •I (always) and 0 (eventually). Let F be a formula; intuitively, 0 F means that F is true in the next state; □ F means that F is true in all the following states; and 0 F means that F is true in some following state. The O-operator is the dual of □, that is, 0 F ≡ ¬ • I ¬F.

Let us begin with the syntax of the logic. We consider a language L of temporal logic to be characterized by a set of constant, function, and predicate symbols, as well as a countable number of variables. The function and predicate symbols have an associated arity. The terms of the language L are defined as follows.

- Variables are terms.
- Constant symbols are terms.
• If f is a k-ary function symbol and t_1, \ldots, t_k are terms, then $f(t_1, \ldots, t_k)$ is a term.

The class of formulas of the language L is defined by the following.

• If p is an e-ary predicate symbol and t_1, \ldots, t_e are terms, then $p(t_1, \ldots, t_e)$ is a formula, also called an atom.

• Let F and G be formulas, and X a variable. Then $\neg F$, $F \land G$, $F \rightarrow G$, $\Box F$, $\Diamond F$, $(VX)F$ are formulas.

An atom preceded by any number of O's is referred to as a next-atom. If A is an atom, we denote by O^iA the next-atom obtained by applying i times the O-operator to A. If X_1, \ldots, X_n are the free variables of a formula F, then we denote by $(\forall X)F$ the universal closure of F, that is, the closed sentence $(\forall X_1)\cdots(\forall X_n)F$.

A temporal interpretation I for a language L of temporal logic is a quadruple (D, Σ, α, J) such that:

• D is a non-empty set, referred to as the domain;

• Σ is a sequence of states $\sigma_0, \sigma_1, \sigma_2, \ldots$ that is isomorphic to w (σ_0 is the initial state);

• α is an assignment to variables, that is, a function mapping each variable of L to an element of D;

• J is an interpretation, that is, a function that maps
 - every constant symbol of L into an element of D,
 - every k-ary function symbol of L into a function from D^k to D,
 - every e-ary predicate symbol of L into a relation on D^e for every state $\sigma_i (i \in w)$.

We informally say that I is a temporal interpretation of a formula F if I is a temporal interpretation of the language of F. Let d be an element of D. We denote by $I \cdot (X \leftarrow d)$ the temporal interpretation obtained from I by modifying the assignment so that the variable X is mapped to d. If i is a natural number, $I^{(i)}$ is the temporal interpretation obtained from I by taking the initial state to be σ_i. In other words, $I^{(i)}$ is the interpretation I whose sequence of states has been truncated of its i first states; the sequence of states for $I^{(i)}$ is indeed $\sigma_i, \sigma_{i+1}, \sigma_{i+2}, \ldots$

The meaning of L with respect to a temporal interpretation $I = (D, \Sigma, \alpha, J)$ is given by a function T_I that provides the meaning of the terms, and the satisfaction relation \models_I for the formulas of L. They are defined inductively as follows. Let X be a variable of L, a a constant symbol, f a k-ary function symbol, and p an e-ary predicate symbol.
\[T_x[X] = \alpha[X], \]
\[T_x[a] = J[a], \]
\[T_x[f(t_1, \ldots, t_k)] = J[f](T_x[t_1], \ldots, T_x[t_k]), \]
where \(t_1, \ldots, t_k \) are terms.

The satisfaction relation \(\models_I \) is defined by:

- \(\models_I \) true,
- \(\not\models_I \) false,
- \(\models_I p(t_1, \ldots, t_\ell) \iff J[p][\sigma_0](T_x[t_1], \ldots, T_x[t_\ell]), \)
 where \(t_1, \ldots, t_\ell \) are terms,
- \(\models_I \neg F \iff \not\models_I F, \)
- \(\models_I F \land G \iff \models_I F \land \models_I G, \)
- \(\models_I F \rightarrow G \iff \models_I G \) whenever \(\models_I F, \)
- \(\models_I (\forall x)F \iff \text{for every element } d \text{ of } D: \models_I (x \leftarrow d) F. \)
- \(\models_I \diamond F \iff \models_I F, \)
- \(\models_I \lozenge F \iff \text{for every } i \text{ in } w: \models_I F, \)
- \(\models_I \lozenge F \iff \text{for some } i \text{ in } w: \models_I F. \)

Notice that for any formula \(F \) and any \(i \) in \(w \), we have: \(\models_I F \iff \models_I \lozenge^i F, \) This equivalence follows directly from the definition of \(\mathcal{I}(i) \) and of the satisfaction relation \(\models_I \) for formulas of the form \(0 G \). We can use it to rephrase as follows the satisfaction condition for formulas of the form \(\Box F \) and \(\diamond F \).

- \(\models_I \Box F \iff \text{for every } i \text{ in } w: \models_I \lozenge^i F, \)
- \(\models_I \lozenge F \iff \text{for some } i \text{ in } w: \models_I \lozenge^i F. \)

A temporal interpretation that satisfies a formula is said to be a \textit{model} of the formula. A formula is \textit{satisfiable} if it has a model. It is \textit{valid} if it is satisfied by all temporal interpretations. A formula \(G \) is a \textit{logical consequence} of a formula \(F \), denoted \(F \models G \), if \(G \) is satisfied by every model of \(F \).

The following are valid equivalence schemata:

- \(\Box (F \land G) \equiv (\Box F \land \Box G), \)
We now define the logic programming language TEMPLOG that is based on the temporal logic introduced in the previous section. We begin with its syntax. Then we describe the proof method underlying its execution.

3 The TEMPLOG Language

Let L be a language, that is, a collection of variables and of constant, function, and predicate symbols. The TEMPLOG terms and formulas of L are the terms and formulas of L as defined for the temporal logic described in Section 2. Terms are assumed to be rigid. Only predicate symbols are flexible. We use strings of letters with the first letter capitalized to denote variables (usually X, Y, Z, \ldots), and strings of lower case letters to denote constant, function, and predicate symbols. The syntax of TEMPLOG clauses can be given as follows (“$:$” and “|” are symbols of the metalanguage). Let A denote an atom and N a next-atom.

- Body: $B : := \varepsilon \mid A \mid B_1, B_2 \mid 0 \ B \mid OB$ where ε denotes the empty body.
- Initial clause: $IC : := N \leftarrow B \mid UN \leftarrow B$
- Permanent clause: $PC : := \square (N \leftarrow B)$
- Program clause: $C : := IC \mid PC$
- Goal clause: $G : := \leftarrow B$

Program and goal clauses are implicitly universally quantified. A TEMPLOG program consists of a set of program clauses, that is, a conjunction of program clauses. In a body, the comma stands for the conjunction operator (we will use “,” and “\land” interchangeably in the semantic development). A program clause that has an empty body is also called a fact. An empty body corresponds to “true”. A goal clause can also be seen as an initial clause with an empty head, where the empty head corresponds to “false”. Hence, a goal of the form $\leftarrow B$ with free variables X_1, \ldots, X_n
corresponds to the formula $(\forall X_1)\cdots(\forall X_n)\neg B$, that is, $(\exists X_1)\cdots(\exists X_n)B$ (we use "← B" and "¬B" interchangeably in the semantic development).

Throughout this paper, we use the symbol A to denote an atom, N for a next-atom, B for a body (empty or not), C for a clause, P for a program, and G for a goal.

Example: The following simple program defines a predicate p such that $p(X)$ is true at time i for $X = s^{2i}(a)$.

$$
P(a) \leftarrow
\square \left(\Diamond p(s(s(X))) \leftarrow p(X) \right)
$$

Example: The following two clauses describe a relation reach that is true at time i of the nodes in a graph that can be reached by going through i arcs. We assume that a number of facts describe the configuration of the graph (arc) and the initial location in the graph (at).

$$
reach(X) \leftarrow at(X)
\square \left(\Diamond 0 reach(X) \leftarrow reach(Y), \text{arc}(Y,X) \right)
$$

One can also define the predicate reachable that is true at time j of all the locations that can be reached at a time later than j.

$$
\square \left(\text{reachable}(X) \leftarrow 0 reach(X) \right)
$$

The class of non-empty TEMPLOG bodies has been defined as the smallest set containing all the atoms and closed under conjunction and application of 0 and 0. However, the valid equivalence schemata listed at the end of Section 2 show that syntactically distinct formulas may represent logically equivalent bodies. We thus introduce a canonical form for the bodies.

Definition (Canonical body) A canonical body is a body whose occurrences of 0 are pushed all the way inwards and in which every next-atom is in the scope of the least possible number of \Diamond's.

Each body has a unique equivalent canonical form (up to commutativity and associativity of the conjunction). It can be obtained by performing the following replacements iteratively until no further replacement is possible:

- replace $\Diamond(F A \circ)$ with $(\Diamond F A \circ G)$,
- replace $0 0 F$ with $0 \circ F$,
• replace \(0 F \) with \(0 F \),
• replace \(\Diamond (F \land 0G) \) with \((0 F \land 0G) \).

Example: The goal \(\langle \Diamond \langle p(X, Y), \Diamond \Diamond q(Y), \Diamond r(X, Z), \Diamond \diamond s(Y, Z) \rangle \rangle \) has as canonical form the goal \(\langle \Diamond \langle p(X, Y), \Diamond q(Y), \Diamond r(X, Z), \Diamond s(Y, Z), t(Z) \rangle \rangle \).

Throughout this paper, when referring to a body, we mean to refer to its canonical form. Notice that in the canonical form of a body, each occurrence of \(0 \) always has in its scope at least one next-atom that is in the scope of no other \(0 \). If this was not the case, one could use \(\Diamond (F \land 0G) \equiv 0 F \land 0G \) to further reduce it, and so it would not be canonical. This observation is used in the proof procedure for TEMPLOG.

We assume that all the predicate symbols are flexible. This is not restrictive as the time-independence of a predicate can easily and efficiently be expressed in TEMPLOG. The following clause is sufficient to state that the \(\ell \)-ary predicate \(p \) is rigid:

\[
\Box p(X_1, \ldots, X_\ell) \leftarrow \Diamond p(X_1, \ldots, X_\ell).
\]

3.2 Proof Method

As described previously, a TEMPLOG program is a set of statements in temporal logic. Given such a program, a computation will consist in trying to derive some information that logically follows from the program. These inferences rely on proofs by contradiction using temporal resolution rules. Let us consider the program \(P \) and the body \(B \) with free variables \(X_1, \ldots, X_n \). A computation attempts to prove that \(B \) follows from \(P \) for a certain instantiation of \(X_1, \ldots, X_n \), by considering \(P \) together with the goal \(\langle B \rangle \) (that is, the negation of \(B \)) and trying to derive a contradiction. When a refutation is obtained, it is usually for a certain instantiation of the variables \(X_1, \ldots, X_n \) of \(B \), referred to as an *answer substitution*. An answer substitution is said to be **correct** if the universal closure of \(B \theta \) is a logical consequence of \(P \).

Note: We assume some familiarity with the notions of substitution and unification (see e.g. [Rob65], [MW81], [Ede85], [LMM86]). We informally represent a substitution \(\theta \) by a set of replacement pairs, denoted \(\{X_1 \leftarrow t_1, \ldots, X_n \leftarrow t_n\} \), where each \(X_i \) is a variable and each \(t_i \) is a term, \(X_i \neq t_i \), and \(X_i \neq X_j \) when \(i \neq j \). The composition of the substitution \(\theta_1 \) with the substitution \(\theta_2 \), denoted \(\theta_1 \circ \theta_2 \), is such that when applied to a term or a formula, \(\theta_1 \) is applied before \(\theta_2 \), that is, \(t(\theta_1 \circ \theta_2) = (t\theta_1)\theta_2 \).
A substitution θ is more general than a substitution ϕ, denoted $\theta \triangleright \phi$, if there is a substitution λ such that $\theta \circ \lambda = \phi$.

We refer to the refutation procedure underlying TEMPLOG as TSLD-resolution (for Temporal Linear resolution for Definite clauses' with a Selection function) by analogy with the SLD-resolution procedure for classical logic programming ([AvE82]). Every step of a TSLD-derivation consists in resolving a candidate next-atom from the current goal with the head of a program clause, to produce a new goal. A next-atom occurring in a goal is said to be a candidate next-atom if it is in the scope of at most one 0 in the canonical form of the goal. There is at least one candidate next-atom in any non-empty goal. The candidate next-atom that is selected for resolution at every step of a derivation is determined by a given selection function or computation rule. We refer to it as the selected next-atom.

Example: The canonical goal $\left\langle \Diamond \left(p(X,Y), \Diamond \Diamond q(Y), \Diamond \Diamond r(X,Z), \Diamond \left(s(Y,Z), t(Z) \right) \right) \right\rangle$ has $p(X,Y)$ as only candidate next-atom.

The resolution rules used in TSLD-derivations are given in Table 1. For each of these rules, the candidate next-atom selected from the goal is $\theta^R A$, and $\theta = \text{mgu}(A, A')$ is the most-general unifier of A and A'. The resolvent is also referred to as the derived goal.

Let P be a TEMPLOG program, G a goal, and R a computation rule. A TSLD-derivation for $P \cup \{G\}$ via R consists of

- a sequence of goals G_0, G_1, \ldots where $G_0 = \top$;
- a sequence of candidate next-atoms N_0, N_1, \ldots such that N_i is the next-atom selected from G_i by R;
- a sequence of program clauses C_1, C_2, \ldots such that each C_i is a clause in P that has been renamed so that none of the variables in C_i also occurs in G or in C_1, \ldots, C_{i-1};
- a sequence of substitutions $\theta_1, \theta_2, \ldots$;

and G_{i+1} is the goal obtained by applying one of the TSLD-resolution rules to C_{i+1} and G_i with selected next-atom N_i and most general unifier θ_{i+1}. A TSLD-refutation for $P \cup \{G\}$ via R is a finite TSLD-derivation whose last goal is empty. The length of a TSLD-refutation is the number of resolution steps necessary to derive the empty goal. The R-computed answer substitution associated

1 A definite clause is a Horn clause with exactly one atom in the head.
<table>
<thead>
<tr>
<th>Cond.</th>
<th>Goal</th>
<th>Clause</th>
<th>Resolvent (derived goal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 i 1</td>
<td>B₁, Oᵢ A, B₂</td>
<td>0ᵢ A’ ← B’</td>
<td>(B₁, B’, B₂) θ</td>
</tr>
<tr>
<td>2 i ≥ j</td>
<td>B₁, Oᵢ A, B₂</td>
<td>0 JA’ ← B’</td>
<td>(B₁, B’, B₂) θ</td>
</tr>
<tr>
<td>3 i ≥ j</td>
<td>B₁, Oᵢ A, B₂</td>
<td>O (Oᵢ A’ ← B’)</td>
<td>(B₁, Oᵢ-j B’, B₂) θ</td>
</tr>
<tr>
<td>4 j ≥ i</td>
<td>B₁, O(B₂, Oᵢ A, B₃), B₄</td>
<td>Oᵢ A’ ← B’</td>
<td>(B₁, Oᵢ-i B₂, B’, Oᵢ-i B₃, B₄) θ</td>
</tr>
<tr>
<td>5 j ≥ i</td>
<td>B₁, O(B₂, Oᵢ A, B₃), B₄</td>
<td>O (Oᵢ A’ ← B’)</td>
<td>(B₁, B’, O(B₂, Oᵢ-i B₂, Oᵢ-i B₃), B₄) θ</td>
</tr>
<tr>
<td>6 i ≥ j</td>
<td>B₁, O(B₂, Oᵢ A, B₃), B₄</td>
<td>0 JA’ ← B’</td>
<td>(B₁, B’, O(B₂, B₃), B₄) θ</td>
</tr>
<tr>
<td>7 j ≥ i</td>
<td>B₁, O(B₂, Oᵢ A, B₃), B₄</td>
<td>O (Oᵢ A’ ← B’)</td>
<td>(B₁, O(B₂, Oᵢ-i B₂, B’, Oᵢ-i B₃), B₄) θ</td>
</tr>
<tr>
<td>8 i ≥ j</td>
<td>B₁, O(B₂, Oᵢ A, B₃), B₄</td>
<td>O (Oᵢ A’ ← B’)</td>
<td>(B₁, O(B₂, Oᵢ-i B’, B₃), B₄) θ</td>
</tr>
</tbody>
</table>

Table 1: TSLD-Resolution Rule for TEMPLOG

with an n-step refutation of \(P \cup \{G\} \) via \(R \) is the substitution obtained by restricting the substitution \((\theta_1 \circ \cdots \circ \theta_n)\) to the variables of \(G \).

Remark: We have augmented the original definition of TEMPLOG given in [AM87] to allow function symbols in terms. Also, the proof method underlying the execution of programs was given in [AM87] for a fixed computation rule that consists in always selecting the leftmost candidate next-atom first as in PROLOG ([CM84]). We allow an arbitrary computation rule. Moreover, in the original definition of the language, a clause with an empty head is referred to as a call, and when a program is queried with a call of the form \(← B \), the sequence of goals \(← B, ← 0 B, ← O² B, \ldots \) is evaluated. We do not follow this convention. Instead, we refer to a clause with an empty head as a goal and when a program is queried with a goal, only that goal is evaluated.
4 Declarative Semantics for TEMPLOG

The declarative meaning of a logic program is the set of bodies that are logical consequences of the program, that is, the set of bodies that are true in every model of the program. We begin by giving a model-theoretic characterization of this denotation of programs. Then we develop an equivalent fixpoint characterization.

4.1 Model-Theoretic Semantics

In this section, we first introduce the notions of temporal Herbrand model and of temporal groundedness. We then formulate a satisfaction criterion for TEMPLOG clauses based on the notion of temporal groundedness. We prove that if a program has a temporal model then it has a temporal Herbrand model and that the intersection of a collection of temporal Herbrand models of a program is a temporal model of the program. Using these two results we show that the minimal Herbrand model, that is, the intersection of all the temporal Herbrand models of a program, satisfies exactly the bodies that are logical consequences of the program, and hence provides a characterization of the denotation of a program.

The Herbrand universe UL of a language L is the set of variable-free terms constructed from the constant and the function symbols in L. (If there are no constant symbols in L, an arbitrary one is introduced.) This notion coincides with the notion of Herbrand universe in classical logic ([Man74]), which is quite natural since the constant and function symbols in TEMPLOG are rigid. Variable-free terms and formulas are said to be ground. Given a term or a formula E and a substitution θ, if the instance $E\theta$ of E is ground then $E\theta$ said to be a ground instance of E.

Definition (Temporal Herbrand Base) The temporal Herbrand base BL_L of a language L is the set of ground next-atoms constructed from the predicate symbols of L and the ground terms of the Herbrand universe UL.

Definition (Temporal Herbrand Interpretation) A temporal Herbrand interpretation for a language L is a temporal interpretation that satisfies the following conditions:

- it has the Herbrand universe UL as domain;
- its interpretation maps every constant symbol a in L to the term "a" in UL;
- its interpretation maps every k-ary function symbol f in L to the k-ary function over UL that maps the terms "t_1", \ldots, "t_k" of UL into the term "$f(t_1, \ldots, t_k)$" of UL.

11
In fact, a temporal *Herbrand* interpretation for closed formulas of a language L corresponds exactly to a subset of the temporal *Herbrand* base B_L, namely the set of ground next-atoms that are true under the interpretation at the initial time. In the following, we will treat a temporal *Herbrand* interpretation as such a subset of the *Herbrand* base. So a ground next-atom N is satisfied by a temporal *Herbrand* interpretation I, denoted $\models_I N$, iff N is in I.

Remark: It would be equivalent to consider the *Herbrand* base B_L to be, as in classical logic, the set of ground atoms of I. Then, a temporal *Herbrand* interpretation I could be defined as an w-sequence of subsets of B_L, or equivalently, a function $I : \omega \to 2^{B_L}$ that associates with every natural number i the set of ground atoms that are true at time i.

Example: Let L be a language consisting of the constant symbol a and the unary predicate symbol p. We consider again the following simple program (whose language is L) consisting of the following clauses.

\[
p(a) \leftarrow \\
\square \left(\diamond p(s(s(X))) \leftarrow p(X) \right)
\]

The *Herbrand* universe U_L and the *Herbrand* base B_L of the language of P are as follows.

\[
U_L = \{a, s(a), s^2(a), \ldots\} \\
B_L = \{p(a), \diamond p(a), \diamond^2 p(a), \ldots, p(s(a)), \diamond p(s(a)), \diamond^2 p(s(a)), \ldots\}
\]

The set $M = \{p(a), \diamond p(s^2(a)), \diamond^2 p(s^4(a)), \diamond^3 p(s^6(a)), \ldots\}$ is a model of P as it satisfies every ground instance of every clause in P.

The satisfaction relation of ground TEMPLOG clauses has a simple reformulation when one introduces the notions of temporally ground formula and of temporally ground instance.

Definition (Temporally Ground) A formula is said to be *temporally ground* (TG) if 0 is the only temporal operator that appears in it.

So atoms, next-atoms, program clauses of the form $0^n A \leftarrow O^i A_1, \ldots, O^m A_m$, and goal clauses of the form $\leftarrow O^i A_1, \ldots, O^m A$, are temporally ground.

Definition (Temporally Ground Instance of a Body) Let B be a TEMPLOG body. A *temporally ground instance* (TGI) of B is a TG body obtained from B by replacing every occurrence of 0 by a finite number of \diamond's.
The canonical form of a body's TGI can be obtained by pushing the occurrences of 0 all the way inwards using the equivalence schema \(O(F \land G) \equiv F \land O(G) \) from left to right. It is a conjunction of next-atoms of the form \(O^i A_1 \land \ldots \land O^m A_m \), where \(A_1, \ldots, A_m \) are the atoms that appear in the body. For example, the canonical form of a TGI of the goal \(\leftarrow \diamond \left(O^2 p(X,Y), \diamond q(Y) \right) \) is of the form \(+ O^{i+2} p(X,Y), O^{i+j} q(Y) \) where \(i, j \in \mathbb{w} \).

Proposition 4.1 Let \(\mathcal{I} \) be a temporal interpretation of a ground \textsc{templog} body \(B \). \(\mathcal{I} \) satisfies \(B \) iff it satisfies some temporally ground instance of \(B \).

Proof: The proof proceeds by induction on the structure of bodies using the definition of the satisfaction relation \(\models_T \) (Section 2). The only interesting case is when \(B \) is of the form \(0 B' \). It involves the property: \(\models_T F \iff \models_T O^i F \).

Definition (Temporally Ground Instance of a Program Clause) Let \(C \) be a \textsc{templog} program clause.

1. If \(C \) is a clause of the form \(O^i A \leftarrow B \) and \(B^* \) is a TGI of \(B \), then \(O^i A + B^* \) is a temporally ground instance (TGI) of \(C \).

2. If \(C \) is a clause of the form \(\square O^i A + B \) and \(B^* \) is a TGI of \(B \), then for every \(k \in \mathbb{w} \), \(O^{i+k} A + B^* \) is a TGI of \(C \).

3. If \(C \) is a clause of the form \(\square (0' A \leftarrow B) \) and \(B^* \) is a TGI of \(B \), then for every \(k \in \mathbb{w} \), \(O^{i+k} A \leftarrow O^k B^* \) is a TGI of \(C \).

Definition (Strictly Ground) A clause is strictly ground (SG) if it is both ground (variable-free) and temporally ground.

Definition (Strictly Ground Instance) A strictly ground instance (SGI) of a clause \(C \) is a ground instance of a temporally ground instance of \(C \), or equivalently, a temporally ground instance of a ground instance of \(C \).

Proposition 4.2 Let \(\mathcal{I} \) be a temporal interpretation of a ground \textsc{templog} clause \(C \). \(\mathcal{I} \) satisfies \(C \) iff it satisfies every TGI of \(C \).

Proof: The result is proved separately for each type of clause (initial, permanent, and goal clause) using the definition of the satisfaction relation \(\models_T \) and Proposition 4.1. For permanent clauses, one also needs the property: \(\models_T \square F \iff \models_T O^i F \).

From Proposition 4.2, it follows that a temporal Herbrand interpretation for a program \(P \) satisfies \(P \) if and only if it satisfies every strictly ground instance of every clause in \(P \).
Proposition 4.3 Let S be a set of TEMPLOG clauses. If S has a temporal model, then S has a temporal Herbrand model.

Proof: Let L be the language of the clauses in S, and let I be a temporal model of S. We associate with I a temporal Herbrand interpretation $I = \{ N \in B_L : \models_I N \}$, and we try to prove that I is a model of S. Assuming, contrary to the desired conclusion, that there is a ground instance C of a clause in S that I does not satisfy, one then shows that Z does not satisfy C either, a contradiction.

\[
\not\models_I C \Rightarrow \text{there is a TGI } N \leftarrow N_1, \ldots, N_m \text{ of } C \text{ s.t. } \not\models_I N + N_1, \ldots, N_m \quad \text{(by Prop. 4.2)}
\]

\[
\Rightarrow \text{there is a TGI } N \leftarrow N_1, \ldots, N_m \text{ of } C \text{ s.t. } \{N_1, \ldots, N_m\} \subseteq I \text{ and } N \notin I
\]

\[
\Rightarrow \text{there is a TGI } N \leftarrow N_1, \ldots, N_m \text{ of } C \text{ s.t. } \models_I N_1 \wedge \ldots \wedge N_m \text{ and } \not\models_I N \text{ (by def. of } I)\]

\[
\Rightarrow \not\models_I C \quad \text{(by Prop. 4.2)}
\]

Hence I is a model of S. \(\blacksquare\)

Therefore, if a set of clauses has no temporal Herbrand model, it is unsatisfiable. This is simply the contrapositive of Proposition 4.3.

Theorem 4.4 (Model Intersection Property) Let P be a TEMPLOG program. The intersection of a collection of temporal Herbrand models of P is a temporal Herbrand model of P.

Proof: Let M_k, with k ranging over some index set W, be a collection of temporal Herbrand models of P, and let $M = \bigcap_{k \in W} M_k$. If there was a ground instance C of a clause in P that M did not satisfy, then by Propositions 4.2 and 4.1, there would have to be some $M_\ell (\ell \in W)$ that did not satisfy C either, a contradiction. So M is a model of P. \(\blacksquare\)

Knowing that the intersection of the temporal Herbrand models of a program P is also a model for P, we can now establish that this least Herbrand model, denoted M_P, provides a characterization of the declarative semantics of P.

Theorem 4.5 Let P be a TEMPLOG program and B a ground body: $P \models B$ if and only if $M_P \models B$.

Proof:

\[
[\Rightarrow] P \models B \Rightarrow M_P \models B \text{ by definition of logical consequence and since } M_P \text{ is a model of } P.
\]

\[
[\Leftarrow] M_P \models B \Rightarrow \text{there is a TGI } B^* \equiv N_1 A \ldots A N_m \text{ of } B \text{ s.t. } M_P \models B^* \text{ (by Proposition 4.1)}
\]

\[
\Rightarrow \text{there is a TGI } B^* \equiv N_1 A \ldots A N_m \text{ of } B \text{ s.t. } \{N_1, \ldots, N_m\} \subseteq M_P
\]

\[
\Rightarrow \text{there is a TGI } B^* \equiv N_1 A \ldots A N_m \text{ of } B \text{ s.t. for every temporal Herbrand model } M \text{ of } P: \{N_1, \ldots, N_m\} \subseteq M \text{ (def. of } M_P)\]
⇒ for every temporal Herbrand model M of P,

 there is a TGI $B^* \equiv N_1 A \ldots A N_m$ of B s.t. $\{N_1, \ldots, N_m\} \subseteq M$

⇒ for every temporal Herbrand model M of P, there is a TGI B^* of B s.t. $\models_M B^*$

⇒ for every temporal Herbrand model M of P: $\models_M B$ (by Proposition 4.1)

⇒ $P \cup \{\neg B\}$ has no temporal Herbrand model

⇒ $P \cup \{\neg B\}$ is unsatisfiable (by Proposition 4.3)

⇒ $P \models B$. ■

The first of the following two corollaries specifies the contents of M_P as a subset of the Herbrand base. The second corollary expresses a relationship between correctness of answer substitutions and satisfaction by temporal Herbrand models.

Corollary 4.6 $M_P = \{O^i A \in B_P : P \models O^i A\}$.

This is simply a restriction of Theorem 4.5 to the case of bodies that are single ground next-atoms.

Corollary 4.7 Let P be a TEMPLOG program and G a goal of the form $\leftarrow B$. Let θ be an answer substitution for $P \cup \{G\}$ such that $B\theta$ is ground. Then the following three statements are equivalent:

1. θ is correct, that is, $P \models B\theta$.

2. For every temporal Herbrand model M of P, $\models_M B\theta$.

3. $\models_{M_P} B\theta$.

Proof: The equivalence of (1) and (3) is simply Theorem 4.5; (1) implies (2) by definition of logical consequence; and (2) implies (3) because M_p is a temporal Herbrand model of P. ■

4.2 Fixpoint Semantics

Next, we show how to associate with a TEMPLOG program P a function T_P on the domain of the temporal Herbrand interpretations for P. Intuitively, this mapping corresponds to one step of strictly ground inference from P. We prove that this mapping is continuous and that its least fixpoint is exactly the least Herbrand model of the program, thereby providing a fixpoint characterization of the declarative meaning of TEMPLOG programs.

Let P be a TEMPLOG program with language L. The partially ordered set $(2^{BL}, \subseteq)$ is a complete lattice. The bottom element is the empty set \emptyset and the top element is the temporal Herbrand base B_L. The least upper bound (lub) operation corresponds to set union and the greatest lower bound
(glb) operation to set intersection (e.g. [Sch86], [Llo84]). If \(X \) is a subset of \(\mathcal{B}^L \), we denote by \(\text{lb}(X) \), the lub of the elements of \(X \). The mapping \(T_P \) associated with a program \(P \) is defined as follows.

Definition (Mapping \(T_P \)) Let \(I \) be a temporal Herbrand interpretation of \(P \). We have:

1. Let \(\emptyset \not\rightarrow A \uparrow B \) be a ground instance of an initial clause in \(P \). If there is a TGI \(N_1 \wedge \ldots \wedge N_m \) of \(B \) such that \(\{N_1, \ldots, N_m\} \subseteq I \), then \(\text{O}^i A \in T_P(I) \).

2. Let \(\square \text{O}^j A \uparrow B \) be a ground instance of an initial clause in \(P \). If there is a TGI \(N_1 \wedge \ldots \wedge N_m \) of \(B \) such that \(\{N_1, \ldots, N_m\} \subseteq I \), then for every \(k \in w \), \(\text{O}^{j+k} A \in T_P(I) \).

3. Let \(\square (\text{O}^j A \leftarrow B) \) be a ground instance of a permanent clause in \(P \). For every \(k \in w \), we have: if there is a TGI \(N_1 \wedge \ldots \wedge N_m \) of \(B \) such that \(\{\text{O}^k N_1, \ldots, \text{O}^k N_m\} \subseteq I \), then \(\text{O}^{j+k} A \in T_P(I) \).

Using the notion of temporally ground instance of a clause, this definition simply states that if \(N \leftarrow N_1, \ldots, N_m \) is a temporally ground instance of a ground instance of a clause in \(P \) and if each of \(N_1, \ldots \) \(N_m \) is in \(I \), then \(N \) is in \(T_P(I) \). A temporally ground instance of a ground instance of a clause is a strictly ground instance of a clause. So, we can give the following more concise formulation of the definition of \(T_P \).

Definition (Mapping \(T_P \)) Let \(I \) be a temporal Herbrand interpretation of \(P \). We have:

\[
T_P(I) = \{ N \in \mathcal{B}^L : N \leftarrow N_1, \ldots, N_m \text{ is a SGI of a clause in } P \text{ and } \{N_1, \ldots, N_m\} \subseteq I \}
\]

Notice that this definition of \(T_P \) is similar to the definition of the mapping associated with classical logic programs, except that in classical logic one deals with atoms and with ground instances of clauses where in temporal logic we deal with next-atoms and with strictly ground instances of clauses, respectively. As a result of this resemblance, the next three properties of \(T_P \) (Propositions 4.8, 4.9, and Theorem 4.10) admit proofs that are very similar to the proofs of the analogous results for classical logic programming ([vEK76], [AvE82], [Llo84],[Apt87]).

We denote by \(\text{lfp}(T_P) \) the least fixpoint of \(T_P \), by \(T_P \uparrow n \) the \(n \)-th iteration of \(T_P \) applied to the empty set, that is, \(T_P^0(\emptyset) \), and by \(T_P \uparrow w \) the least upper bound of \(\{\emptyset, T_P(\emptyset), T_P(T_P(\emptyset)), \ldots\} \).

Proposition 4.8 \(T_P \) is continuous on \((\mathcal{B}^L, \subseteq) \), and hence, \(\text{lfp}(T_P) = T_P \uparrow w \).
PROOF: Let X be a directed subset of 2^{B_L}. We have to show that $T_P(\text{lub}(X)) = \text{lub}(T_P(X))$. We will use the following property: Y is a finite subset of $\text{lub}(X)$ iff $Y \subseteq S$ for some $S \in X$ ([Sto77]).

Let us establish that for any $N \in B_L$, we have $N \in T_P(\text{lub}(X))$ iff $N \in \text{lub}(T_P(X))$.

$N \in T_P(\text{lub}(X))$ iff there is a SGI $N \leftarrow N_1, \ldots, N_m$ of a clause in P s.t. $\{N_1, \ldots, N_m\} \subseteq \text{lub}(X)$ (by definition of T_P)

iff there is a SGI $N \leftarrow N_1, \ldots, N_m$ of a clause in P, $\exists S \in X$ s.t.

$\{N_1, \ldots, N_m\} \subseteq S$ (by the property mentioned above)

iff there is a SGI $N + N_1, \ldots, N_m$ of a clause in P, $\exists S \in X$ s.t. $N \in T_P(S)$ (by definition of T_P)

iff $N \in \text{lub}(T_P(X))$ (since lub corresponds to set union)

This establishes the continuity of T_P. We can thus infer that $\text{lfp}(T_P) = T_P \uparrow w$ by a version of the fixpoint theorem (see e.g. [dB80],[Llo84]).

The next proposition gives a criterion for a temporal Herbrand interpretation to be a model of a program P as a condition on the mapping T_P. It will be used in establishing the correspondence between the least Herbrand model M_P and the least fixpoint of T_P (Theorem 4.10).

Proposition 4.9 Let I be a temporal Herbrand interpretation for the TEMPLOG program P. Then $\models I P$ iff $T_P(I) \subseteq I$.

PROOF:

$\models I P$ iff for every SGI $N \leftarrow N_1, \ldots, N_m$ of every clause in P: $\models I N \leftarrow N_1, \ldots, N_m$ (by Proposition 4.2)

iff for every SGI $N \leftarrow N_1, \ldots, N_m$ of every clause in P: if $\{N_1, \ldots, N_m\} \subseteq I$ then $N \in I$

iff $T_P(I) \subseteq I$. [QED]

Theorem 4.10 $M_P = T_P \uparrow w$.

PROOF: The least Herbrand model M_P is the intersection of the temporal Herbrand models of P. So in the complete lattice $(2^{B_L}, \subseteq)$:

$$M_P = \text{glb}\{I \in 2^{B_L} : \models I P\}$$

$$= \text{glb}\{I \in 2^{B_L} : T_P(I) \subseteq I\}$$ (by Proposition 4.9)

In other words, M_P is the greatest lower bound of the pre-fixpoints of T_P, which is $\text{lfp}(T_P)$ by a fixpoint theorem (see e.g. [dB80],[Llo84]). And so $M_P = T_P \uparrow w$ by Proposition 4.8. [QED]
5 Soundness and Completeness of TSLD-resolution

In this section, we establish the soundness and the completeness of the TSLD-resolution proof method underlying TEM PLOG’S execution.

5.1 Soundness

We begin with a lemma stating the soundness of each resolution rule. Then, we extend the result to the TSLD-resolution method.

Lemma 5.1 (Soundness of the Resolution Rules) Let B' be the resolvent of the goal B and the TEM PLOG program clause C with most general unifier θ. Then, $C \models (Be \leftrightarrow B')$.

Proof: The proof has to be carried out separately for each of the eight TSLD-resolution rules of Table 1. We give the details for one of them, namely rule (5). The other cases admit a similar kind of proof.

Let us consider the case where B is a goal of the form $B_1 \ominus (B_2 \ominus O_j A, B_3, B_4)$, the clause C is of the form $\ominus I O_j \ominus A'' \ominus B''$ with $i \leq j$, and $\theta = mgu(A, A'')$. Then, the resolvent is the goal $B_1, B'', \ominus (O_j I A'' \ominus B_2, O_j I B_3, B_4) \theta$. The statement to be proved is:

$$(\ominus I O_j \ominus A'' \ominus B'') \models (B_1 A \ominus (B_2 \ominus 0^j A \ominus B_3) A B_4) \theta \models (B_1 A B'' A \ominus (O_j I B_2 A O_j I B_3) A B_4) \theta.$$

Let I be a temporal interpretation such that $\models I \ominus I O_j \ominus A'' \ominus B''$, and let $j = i + k (k \geq 0)$. Then,

$$\models I (B'' A \ominus (O_j I B_2 A O_j I B_3))) \theta \models I (\ominus I O_j \ominus A'' A \ominus (O_j I B_2 A O_j I B_3))) \theta$$

(since $\models I \ominus I O_j \ominus A'' \ominus B''$)

$$\models I (\ominus I O_k O_j A \ominus (O_k I B_2 A B_3))) \theta$$

(since $j = i + k$ and $A\theta = A'\theta$)

$$\models I (\ominus (O_k B_2 A O_j A'' A B_3))) \theta.$$

The last step is justified using the definition of the satisfaction relation for a temporal interpretation. Indeed, it is straightforward to show that $\ominus I O_k F A 0 0'' G \Rightarrow \ominus O_k (F A G)$ and $0 O_k (F A G) \Rightarrow O(F A G)$ are valid schemata. The desired result follows.

Theorem 5.2 (Correctness of Computed Answer Substitution) Let P be a TEM PLOG program and G the goal B. If $P \cup \{G\}$ has a refutation with computed answer substitution θ, then θ is correct, that is, $P \models (\forall \star)B\theta$.

18
The proof is by induction on the length of the refutation of $P \cup \{G\}$ using Lemma 5.1. It involves no particular difficulty. \[\square \]

The following corollary is an immediate consequence of this theorem.

Corollary 5.3 (Soundness of TSLD-Resolution) Let P be a \textsc{templog} program and G a goal. If $P \cup \{G\}$ has a TSLD-refutation then $P \cup \{G\}$ is unsatisfiable.

5.2 Completeness

In classical logic, the proof of the completeness of resolution is based on two main lemmas: a lemma stating the completeness of ground resolution and a lifting lemma to "lift" the ground completeness result to the first-order completeness result ([Rob65], [AvE82], [Llo84], [Apt87]). In the case of temporal logic, our strategy is somewhat similar. We first establish the correspondence between membership in the fixpoint of the mapping Tp and existence of a refutation, thereby obtaining a completeness result for strictly ground formulas (Lemma 5.5). Then we introduce a temporal lifting lemma (Lemma 5.6) that allows us to "lift" this completeness result for both ground and temporally ground formulas to a completeness result for ground formulas (Lemma 5.7). Finally, combining this ground completeness lemma with a lifting lemma (Lemma 5.8) as in classical logic, we obtain the desired completeness theorem (Theorem 5.9). It is via the temporal lifting lemma that the notion of temporal groundedness plays its crucial role. In fact, we could have withheld the introduction of temporal groundedness up to this point. Indeed, the proofs of the propositions and theorems in Sections 4 and 5.1 can be carried out without this notion, although they become more tedious. At the end of this section, we prove a more general version of the completeness theorem that takes the computed answer substitutions into account.

Let us begin by defining the notion of temporally ground refutation.

Definition (Temporally Ground Refutation) A temporally ground refutation (TG-refutation) for a program P and a TG goal G is a TSLD-refutation for G that only uses TGI of the clauses in P. (and hence only uses the first TSLD-resolution rule of Table 1). There is no occurrence of 0 in the goals of a TG-refutation and no occurrence of \square or 0 in the clauses used in a TG-refutation.

A refutation is said to be unrestricted if when unifying a subgoal with the head of a program clause, it uses a unifier that is not necessarily most general. Lemma 5.4 establishes the correspondence between existence of an unrestricted refutation and of a TSLD-refutation. It will be used in the proof of the completeness for strictly ground formulas. We omit its proof. It is similar to the proof of the analogous lemma for classical logic that can be found in [Llo84].
Lemma 5.4 Let P be a TEMPLOG program and G a goal. If $P \cup \{G\}$ has an unrestricted refutation with unifiers $\theta_1, \ldots, \theta_n$, then $P \cup \{G\}$ has a TSLD-refutation of the same length with mgu's $\theta'_1, \ldots, \theta'_n$. Moreover, $(\theta'_1 \circ \ldots \circ \theta'_n) \succeq (\theta_1 \circ \ldots \circ \theta_n)$.

Lemma 5.5 (Strictly Ground Completeness) Let P be a TEMPLOG program and N a ground next-atom. If $N \in M_T$ then $P \cup \{\leftarrow N\}$ has a TG-refutation.

Proof: Let $N \in M_T$. Since $M_T = T_T \uparrow w$ (Theorem 4.10), there must exist an $n \in w$ such that $N \in T_T \uparrow n$. Let us prove by induction on n that N has an unrestricted TG-refutation.

$n = 1$: $N \in T_T \uparrow 1$ means that $N \leftarrow$ is a SGI of a clause in P. So, $P \cup \{\leftarrow N\}$ has an unrestricted TG-refutation.

$n > 1$: Let us assume the induction hypothesis: $V N' \in T_T \uparrow (n-1): P \cup \{\leftarrow N'\}$ has an unrestricted TG-refutation.

Let $N \in T_T \uparrow n = T_T(T_T \uparrow (n-1))$. By definition of T_T, there is a SGI $(N', \alpha, \ldots, N_n)$ of a clause in P such that $N' \alpha = N$ and $\{N_1, \alpha, \ldots, N_n\} \subseteq T_T \uparrow (n-1)$. Therefore, by the induction hypothesis, each of $P \cup \{t N_1\}, \ldots, P \cup \{\leftarrow N_n\}$ has an unrestricted TG-refutation. Since the next-atoms N_1, \ldots, N_n are strictly ground, their unrestricted TG-refutations can be combined into an unrestricted TG-refutation of $P \cup \{t N_1, \ldots, N_n\}$. So $P \cup \{t N\}$ has an unrestricted TG-refutation.

We have shown that $P \cup \{\leftarrow N\}$ has an unrestricted TG-refutation. Therefore, by Lemma 5.4, $P \cup \{\leftarrow N\}$ has a TG-refutation.

The next lemma is intended to permit the lifting of this completeness result for strictly ground formulas to a completeness result for ground formulas.

Lemma 5.6 (Temporal Lifting Lemma) Let P be a TEMPLOG program, G a goal. Let $n > 0$. $P \cup \{G\}$ has a TSLD-refutation of length n iff there is a temporally ground instance G^* of G that has a TG-refutation of length n.

Proof: Each direction of the equivalence is proved by induction on the length n of the refutation. We give the proof in detail for one direction. Namely, we show that if G has a TGI G^* such that $P \cup \{G^*\}$ has a TG-refutation of length n, then $P \cup \{G\}$ has a refutation of length n. The other direction is proved in an analogous way. Both the base case ($n = 1$) and the inductive step ($n > 1$) split in two cases: the case where the next-atom selected for the first resolution step of the TG-refutation for $P \cup \{G^*\}$ is not in the scope of any 0 in G and the case where it is in the scope of
one 0 in G; then for each of these cases, we have to study the subcases where the program clause used in the first resolution step of the TG-refutation for \(P \cup \{G^*\} \) is already temporally ground in the program or is the TGI of a non-TG program clause. In studying all these cases, we exhaust the eight resolution rules (Table 1) that can be used in the first step of the refutation for \(P \cup \{G\} \).

Let us assume that \(G^* \) is a TGI of G such that \(P \cup \{G^*\} \) has a TG-refutation of length \(n \). We try to show that \(P \cup \{G\} \) has a refutation of length \(n \). We denote by

- \(C_1^* \) the TGI of a program clause that is used in the first resolution step of the TG-refutation for \(P \cup \{G^*\} \),
- \(G_1^* \) the (temporally ground) goal obtained by resolving \(G^* \) and \(C_1^* \),
- \(C_1 \) the program clause of which \(C_1^* \) is a TGI (\(C_1 \) is used in the first resolution step of the refutation for \(P \cup \{G\} \)),
- \(G_1 \) the goal obtained by resolving \(G \) and \(C_r \).

\(n = 1 \): \(G^* \) must be of the form \(\leftarrow O'A \).

The clause \(C_1^* \) is a fact of the form \(O^j A'^k \), and \(\theta = \text{mgu}(A, A') \).

1. \(G \) is temporally ground, so \(G = G^* \).
 - \(C_1^* \) is a clause of \(P \), so \(C_1 = C_1^* \); the desired result holds trivially.
 - \(C_1^* \) is a TGI of a non-TG clause \(C_1 \) of \(P \): \(C_1 \) is of the form \(I O^j A^k \) with \(i \geq j \).

 So \(G \) and \(C_1 \) can be resolved according to one of the rules (2) and (3), and hence \(P \cup \{G\} \) has a one-step refutation.

2. \(G \) is not temporally ground: it is of the form \(\leftarrow O^k A \) with \(i \geq k \).
 - \(C_1^* \) is a clause of \(P \), so \(C_1 = C_1^* \); \(G \) and \(C_1 \) can be resolved according to rule (4), and so \(P \cup \{G\} \) has a one-step refutation.
 - \(C_1^* \) is a TGI of a non-TG clause \(C_1 \) of \(P \): \(C_1 \) is of the form \(I O^j A^k \) with \(i \geq j \).

 Then \(G \) and \(C_1 \) can be resolved according to one of the rules (5), (6), (7) and (8).

\(n > 1 \): We show that whatever the form of \(G \) and of its TGI \(G^* \), and whatever TGI \(C_1^* \) of a program clause \(C_1 \) is used in the first resolution step of the TG-refutation for \(P \cup \{G^*\} \) (to produce \(G_1^* \)), there is a corresponding resolution step for \(G \) and \(C_1 \) that produces the new goal \(G_1 \) such that \(G_1^* \) is a TGI of \(G_1 \) (see details below). We know that \(P \cup \{G^*\} \) has a refutation of length \(n \), therefore \(P \cup \{G_1^*\} \) has a refutation of length \(n - 1 \). So by the induction hypothesis, \(P \cup \{G_1\} \) has a refutation of length \(n - 1 \); and since \(G_1 \) is the resolvent of \(G \) and \(C_1 \), we can
infer that \(P \cup \{ G \} \) has a refutation of length \(n \). Let us now get into the details of the case analysis.

1. **The next-atom selected in \(G^* \) for the first resolution step of its TG-refutation corresponds to a next-atom in \(G \) that is not in the scope of any 0.**

So \(G^* \) is of the form \(\leftarrow B_1^*, O^i A, B_2^* \) where \(O^i A \) is the next-atom selected for the first resolution step; \(G \) is \(\leftarrow B_1, O^i A, B_2 \); and \(B_1^* \) and \(B_2^* \) are TGI's of \(B_1 \) and \(B_2 \), respectively.

The clause \(C_1^* \) is of the form \(0' A' \leftarrow B' \) where \(B' \) is temporally ground, and \(\theta = mgu(A, A') \). Therefore, \(G_1^* \) is of the form \(\leftarrow (B_1^*, B', B_2^*) \theta \).

(a) **\(C_1^* \) is a clause of \(P \), so \(C_1 = C_1^* \); \(G \) and \(C_1 \) can be resolved according to rule (1) to yield \(G_1: \leftarrow (B_1, B', B_2) \theta \), and \(G_1^* \) is a TGI of \(G_1 \).

(b) **\(C_1^* \) is a TGI of a non-TG clause \(C_1 \) of \(P \):**

- \(C_1 \) is of the form \(\square O^j A' \leftarrow B \) with \(i \geq j \) and \(B' \) is a TGI of \(B \). Then \(G \) and \(C_1 \) can be resolved according to rule (2) to yield \(G_1: \leftarrow (B_1, B', B_2) \theta \), and \(G_1^* \) is a TGI of \(G_1 \).

2. **The next-atom selected in \(G^* \) for the first resolution step of its TG-refutation corresponds to a next-atom in \(G \) that is in the scope of one 0.**

So \(G^* \) is of the form \(\leftarrow B_1^*, O^i B_2^*, O^j A, \ O^\ell B_3^*, B_4^* \) where \(O^i A \) is the next-atom selected for the first resolution step; \(G \) is of the form \(\leftarrow B_1, O(B_2, O^i A, B_3), B_4 \); and \(B_1^*, B_2^*, B_3^*, B_4^* \) are the TGI's of \(B_1, B_2, B_3, \) and \(B_4 \), respectively.

The clause \(C_1^* \) is of the form \(O^j A' \leftarrow B' \) where \(B' \) is temporally ground, \(j = \ell + i \), and \(\theta = mgu(A, A') \). Therefore, \(G_1^* \) is \(\leftarrow (B_1^*, O^i B_2^*, B', O^\ell B_3^*, B_4^*) \theta \).

(a) **\(C_1^* \) is a clause of \(P \), so \(C_1 = C_1^* \); \(G \) and \(C_1 \) can be resolved according to rule (4) to yield \(G_1: \leftarrow (B_1, O^i B_2, B', O^\ell B_3, B_4) \theta \), and \(G_1^* \) is a TGI of \(G_1 \).

(b) **\(C_1^* \) is a TGI of a non-TG clause \(C_1 \) of \(P \):**

- \(C_1 \) is of the form \(\square O^k A' \leftarrow B \) with \(j \geq k \) and \(B' \) is a TGI of \(B \):

 - \(i \leq k \): \(G \) and \(C_1 \) can be resolved according to rule (5) to yield the new goal \(G_1: \leftarrow \left(B_1, B, O(k-i) B_2, B_3 \right) \theta \). Since \(j \geq k \), we have \(j - i \geq k \); that is, \(\ell \geq k - i \); so \(G_1^* \) is a TGI of \(G_1 \).
i ≥ k: G and C_1 can be resolved according to rule (6) to yield the new goal $G_1: \leftarrow (B_1, B, \Diamond (B_2, B_3), B_4) \theta$, and G_1^* is a TGI of G_1.

- i ≤ k: G and C_1 can be resolved according to rule (7) to yield the new goal $G_1: t (B_1, \Diamond (O^{k-i} B_2, B, \Diamond B_3), B_4) \theta$. Since $j = \ell + i = k + p$, we have $k - i = \ell - p$, and so G_1^* is a TGI of G_1.

- i ≥ k: G and C_1 can be resolved according to rule (8) to yield the new goal $G_1: \leftarrow (B_1, \Diamond (B_2, \Diamond^{i-k} B, B_3), B_4) \theta$. Since $j = \ell + i = k + p$, we have $i - k = p - \ell$, and so G_1^* is a TGI of G_1.

Lemma 5.7 (Ground Completeness) Let P be a TEMLOG program. For every ground body B, if $|=_{MP} B$ then $P \cup \{t \ B\}$ has a TSLD-refutation.

Proof:

$|=_{MP} B \Rightarrow$ there is a TGI $N_1 A \ldots A N_m$ of B s.t. $\{N_1, \ldots, N_m\} \subseteq M_p \hspace{1cm}$ (by Proposition 4.1)

\Rightarrow there is a TGI $N_1 A \ldots A N_m$ of B s.t. $V_i = 1, \ldots, m$: $P \cup \{\leftarrow N_i\}$ has a TG-refutation (by Lemma 5.5)

\Rightarrow there is a TGI $N_1 A \ldots A N_m$ of B s.t. $P \cup \{\leftarrow N_1, \ldots, N_m\}$ has a TG-refutation (because the N_i's are ground and their refutations are temporally ground)

$\Rightarrow P \cup \{\leftarrow B\}$ has a TSLD-refutation (by Lemma 5.6).

The following lifting lemma to be used together with the ground completeness lemma in the proof of the completeness theorem is similar to the lifting lemma for classical logic programming. We introduce it here without proof and we refer the reader to the proof given in the context of classical logic programming in [Llo84].

Lemma 5.8 (Lifting Lemma) Let P be a TEMLOG program, G a goal and θ a substitution. If there is a TSLD-refutation of $P \cup \{G \theta\}$ with mgu's $\theta_1, \ldots, \theta_n$, then there is a TSLD-refutation of $P \cup \{G\}$ of the same length with mgu's $\theta'_1, \ldots, \theta'_n$. Moreover, $(\theta'_1 \circ \ldots \circ \theta'_n) \succeq (\theta \circ \theta_1 \circ \ldots \circ \theta_n)$.

The next theorem states the completeness of TSLD-resolution. It is the converse of Corollary 5.3.

Theorem 5.9 (Completeness of TSLD-Resolution) Let P be a program, and G a goal. If $P \cup \{G\}$ is unsatisfiable, then there is a TSLD-refutation of $P \cup \{G\}$.
PROOF: Let G be the goal $\leftarrow B$ such that $P \cup \{G\}$ is unsatisfiable. We have:

$P \cup \{\leftarrow B\}$ is unsat. \Rightarrow for every temporal model I of $P: \not\models_I \neg B$

$\Rightarrow \not\models_{M_P} \neg B$

\Rightarrow there is a ground instance $B\theta$ of B s.t. $\not\models_{M_P} \neg B\theta$

\Rightarrow there is a ground instance $B\theta$ of B s.t. $\models_{M_P} B\theta$

\Rightarrow there is a ground instance $B\theta$ of B s.t. $P \cup \{\leftarrow B\theta\}$ has a TSLD-refutation.

(by Lemma 5.7)

$\Rightarrow P \cup \{\leftarrow B\}$ has a TSLD-refutation

(by Lemma 5.8).

Next, we generalize this result to take the computed answer substitutions into account. We cannot prove the exact converse of Theorem 5.2, that is, we cannot show that any correct answer substitution can be computed by a refutation. Instead, we prove Theorem 5.11 which states that for any correct answer substitution, one can compute by a refutation an answer substitution that is more general than the correct answer substitution. Notice that the proofs of Lemma 5.10 and Theorem 5.11 do not use Theorem 5.9. So, one can also derive Theorem 5.9 as a corollary of Theorem 5.11.

Lemma 5.10 Let P be a program and B a body. If $P \models (\forall \ast)B$, then there is a TSLD-refutation of $P \cup \{\leftarrow B\}$ with the empty substitution as computed answer substitution.

Proof: Let X_1, \ldots, X_n be the variables occurring in B. Suppose that we augment the language of P with the new constants a_1, \ldots, a_n and let $\theta = \{X_1 \leftarrow a_1, \ldots, X_n \leftarrow a_n\}$. Then $P \models B\theta$ and $B\theta$ is ground, so by Lemma 5.7, $P \cup \{\leftarrow B\theta\}$ has a TSLD-refutation (with empty computed answer substitution). Since the a_i's do not appear in P or in B, we can textually replace a_i by X_i for $i = 1, \ldots, n$, in the refutation of $P \cup \{\leftarrow B\theta\}$ thereby producing a refutation of $P \cup \{\leftarrow B\}$ with the empty substitution as answer substitution.

Theorem 5.11 (Computability of Correct Answer Substitution) Let P be a program, G a goal, and θ a correct answer substitution for $P \cup \{G\}$. There is a computation rule R and an R-computed answer substitution σ for $P \cup \{G\}$ such that $\sigma \supseteq \theta$.

Proof: Let G be the goal $\leftarrow B$. Since θ is a correct answer substitution for $P \cup \{\leftarrow B\}$, we have $P \models (\forall \ast)B\theta$. So by Lemma 5.10, $P \cup \{\leftarrow B\theta\}$ has a TSLD-refutation with the empty answer substitution. Let $\theta_1, \ldots, \theta_n$ be the sequence of mgu’s of this refutation. By Lemma 5.8, $P \cup \{\leftarrow B\}$ has a refutation with mgu’s $\theta'_1, \ldots, \theta'_n$, and $(\theta'_1 \circ \cdots \circ \theta'_n) \supseteq (\theta \circ \theta_1 \circ \cdots \circ \theta_n)$. Let σ be the substitution $(\theta'_1 \circ \cdots \circ \theta'_n)$ restricted to the variables in B. The restriction of $(\theta \circ \theta_1 \circ \cdots \circ \theta_n)$ to the variables in B is simply θ. Therefore, $\sigma \supseteq \theta$.

24
As in classical logic programming, the completeness results can further be strengthened to take
the computation rule into account ([AvE82], [Hiil74], [Llo84], [Apt87]). One can show that if the
conjunction of a program and a goal is unsatisfiable, then it has a refutation via any computation
rule. For this, one can introduce the notion of \(n \)-refutability: a program \(P \) and goal \(G \) are \(n \)-
refutable if for any computation rule \(R \), \(P \cup \{ G \} \) has a refutation via \(R \) of length at most \(n \). The
proof involves strengthening the lemmas used in the completeness proof to deal with \(n \)-refutability.
It is also possible to show that for any correct answer substitution \(\theta \), one can compute an answer
substitution more general than \(\theta \) whatever the computation rule.

6 A fragment of TEMPLOG: TL1

In this section, we examine a fragment of TEMPLOG that we call TL1. In TL1, the body of a clause
cannot contain any occurrence of 0 and initial clauses cannot have \(\bullet I \) in their head. There are several
reasons that make TL1 worth considering. First of all, it is one of the smallest extensions of Horn
logic programming with temporal operators; it was introduced in [AM87] as a first step towards
temporal logic programming. Moreover, it is one of the few subsets of TEMPLOG that is closed under
the applicable TS LD-resolution rules; on the contrary, any proper subset of TEMPLOG that allows
the use of 0 in the body of clauses is not closed under the TS LD-resolution rules. Finally, TL1 has the same expressiveness as the “pure” fragment of the THLP\(^2\) language introduced by Wadge
in [Wad88] and also referred to as CHRONOLOG in [OWSSa]. However, the only interpretation
method suggested for THLP consists in reducing the programs to classical Horn programs with
explicit time parameters and interpreting them with classical logic programming methods. One
problem with this approach is that the time parameter is treated as any other parameter by the
logic programming interpreter, which can lead to unexpected behaviors.

The syntax of TL1 can be summarized as follows.

- Body: \(B ::= \varepsilon | A | B_1, B_2 | OB \) where \(\varepsilon \) denotes the empty body.
- Initial clause: \(IC ::= N \leftarrow B \)
- Permanent clause: \(PC ::= \square (N \leftarrow B) \)
- Program clause: \(C ::= IC | PC \)
- Goal clause: \(G ::= \leftarrow B \)

\(^2\)THLP stands for Temporal Horn Logic Programming.
A canonical TL1 body is simply a conjunction of next-atoms. The proof procedure for TL1 is based on the two TSLD-resolution rules (1) and (3) of Table 1.

Although not restrictive for TEMPLOG, the assumption that all the predicate symbols be flexible becomes more restrictive in the case of TL1. Indeed, as noted in [AM87], allowing to distinguish rigid predicate symbols from flexible predicate symbols requires introducing 0 in the language, but the use of 0 is not allowed in TL1. Although not efficient operationally and hardly realistic in practice, one can express in TL1 the time-independence of an ℓ-ary predicate p by adding the following clauses for p:

\[
\Box \left(\Box^0 p(X_1, \ldots, X_\ell) \leftarrow p(X_1, \ldots, X_\ell) \right)
\]

\[
\Box \left(p(X_1, \ldots, X_\ell) \leftarrow \Box^0 p(X_1, \ldots, X_\ell) \right)
\]

It has also been argued ([GB88a]) that the presence of 0 in the body of clauses can be simulated in a language like TL1 that does not have 0. Indeed, in theory, an attempt to refute the goal \(\leftarrow 00' p(\bar{t}) \) could be replaced by an attempt to refute the goal \(\leftarrow q(\bar{t}) \), where q is a new predicate symbol defined by the following program clauses:

\[
\Box \left(q(\bar{t}) \leftarrow \Box^0 p(\bar{t}) \right)
\]

\[
\Box \left(q(\bar{t}) \leftarrow \Box q(\bar{t}) \right)
\]

This obviously affects the readability of the programs. Moreover, one must be aware of the practical inefficiency of such an approach. It increases the number of resolution steps of the refutations and the number of clauses in the program thereby augmenting the number of applicable clauses at every step of the computations. With implementations based on the backtracking mechanism, this can considerably slow down the computation. And of course, these problems get worse when simulating in this way arbitrary nestings of 0.

As for TEMPLOG, the declarative semantics of TL1 can be given in model-theoretic and in fixpoint terms. One can also establish the completeness of the TSLD-resolution procedure for TL1. We omit this development here as it is essentially superseded by the semantic development for TEMPLOG. However, it is interesting to note that it can be completely carried out — even for the completeness theorem — without introducing the notion of temporal groundedness.

7 Conclusion and Related work

We have developed the declarative (logical) semantics of TEMPLOG programs and expressed it in two equivalent ways: as a minimum temporal Herbrand model and as the least fixpoint of a mapping.
We proved a correspondence between the least fixpoint semantics and the existence of refutations, hence proving a completeness theorem for strictly ground formulas. From this theorem and lifting lemmas, we established the completeness of TSLD-resolution.

The work closest to ours is that of [OW88a] and [OW88b] which was developed independently. There, Orgun and Wadge study the declarative semantics of “intensional” (modal) extensions of Horn clause programs. One such extension that they consider is the THLP language we discussed in the previous section. They give declarative semantics similar to ours, but as they do not consider proof systems in conjunction with their language, they have no completeness results. Also, as far as temporal programming, their results are only given for a language equivalent to our TL1. In the conclusion of [OW88a] and [OW88b], it is mentioned that one of their results (the minimal model semantics) also holds for full TEMPLOG. However, in drawing this conclusion, they do not consider the fact that in TEMPLOG, clause bodies can contain arbitrary nestings of conjunctions and O-operators.

Gabbay has proposed an extension of classical logic programming distinct from TEMPLOG ([Gab87]). His TEMPORAL PROLOG is based on a different subset of temporal logic: ◻ can only be applied to entire clauses and the only operators allowed in the body and in the head of clauses are .O and the corresponding operator for the past. A proof method is given for this language, but it is unclear how it could be used as the basis of an execution mechanism and of operational semantics for the language. The only semantics defined for this language is its logical semantics.

For temporal languages like Moszkowski’s TEMPURA ([Mos86]) and TOKIO ([FKTM86]), that view executing a program as constructing a model for the program, the semantic issues are completely different. In fact, in the case of TEMPURA that imperatively executes a temporal logic formula, the states of the computation are exactly the states of the model of the formula, and the operational semantics of a program corresponds to its logical semantics. TOKIO extends PROLOG with temporal constructs that are interpreted as control features. To give its formal semantics one would need to combine a semantics of temporal logic with a semantics of PROLOG that explicitly represents the execution mechanism. Such a semantics could, for instance, be based on that of [JM84], [DM88] or [Bau88].

Acknowledgements

I would like to thank Martin Abadi, Rajeev Alur, Tom Henzinger, Zohar Manna, Amir Pnueli and Pierre Wolper for critical reading of drafts of this paper and/or for related discussions.
References

