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Abstract

A poorly designed knowledge base can be as cryptic as an arbitrary program and just as
difficult to maintain. Representing inference procedures abstractly, separately from domain
facts and relations, makes the design more transparent and explainable. The combination of
abstract procedures and a relational language for organizing domain knowledge provides a
generic framework for constructing knowledge bases for related problems in other domains and
also provides a useful starting point for studying the nature of strategies. In HERACLES
inference procedures are represented as abstract metarules, expressed in a form of the predicate
calculus, organized and controlled as rule sets. A compiler converts the rules into Lisp code
and allows domain relations to be encoded as arbitrary data structures for efficiency.
Examples are given of the explanation and teaching capabilities afforded by this representation.
Different perspectives for understanding reracies'  inference procedure and how it defines a
relational knowledge base are discussed in some detail.

1. Introduction

A important feature of knowledge-based programs, distinguishing them from traditional
programs, is that they contain well-structured statements of what is true about the world that
are separate from what to do to solve problems. At least in principle, this separation makes it
possible to write programs that interpret knowledge bases from multiple perspectives, providing
the foundation for explanation, learning, and teaching capabilities (Davis, 1976, Szolovits, et a.,
. 1978, de Kleer, 1979, Swartout, 1981, Moore, 1982, Clancey, 1983, Genesereth, 1983). The basic
considerations in realizing this design are:

1. Abstraction: To enable multiple use, inference procedures should be stated
separately, not instantiated and composed with the domain facts they manipulate;

2. Interpretability: Both factual and procedural knowledge should be stated in a
language that multiple programs can interpret (including a natural language
trandlator), incorporating levels of abstraction that facilitate manipulation (an issue
of perspicuity);

3. Rationale: Underlying constraints that justify the design of procedures and models
of the world supporting domain facts may be useful for explanation as well as
- problem solving.

In the aupoon program (Clancey, 1979, Clancey, 1982a) we explored the advantages and
limitations of MYCIN's simple, rule-based architecture as a knowledge representation for a
teaching program. To resolve some of the difficulties, we devised a new architecture for a
program called neowan. In neawan (Clancey, 1981, Clancey, 1984a, Clancey, 1984b), the
medical (domain) knowledge and diagnostic procedure of MYCIN are expanded (to provide more
material for teaching) and represented separately and explicitly. Figure I-I shows this idea in
asmple way. We aso refer to the diagnostic procedure as strategic or control knowledge.
The procedure indexes the domain knowledge, deciding what information to gather about a
problem and what assertions to make. The representation of this procedure in a manner that



facilitates explanation, student modeling, and ease of maintenance is the main subject of this
paper. The complexity of the diagnostic procedure, its abstract nature, and the requirements of
the teaching application for interpretability and explicit rationale distinguish this research from
previous work.

(FOLLOW-UP-QUESTION HEADACHE $FINDING) ?

—

- ~~
" 4 A
/
Domain Knowledge Control Knowledge
Base
(Viewed as a database) k /
" /
~
(CAUSED-BY DIPLOPIA $HYPOTHESIS) ?
Figure I-I:  Separation of domain and control knowledge in neowa N

The development of a good procedural language can be viewed from several perspectives,
reflecting the evolutionary process of finding a good representation, using it, and generalizing:

1. Specify. We studied MYCIN's rules and identified two recurrent, implicit strategies. a
hypothesis refinement strategy (Section 2.1) and a question-asking strategy (Section
2.2). We significantly augmented the procedure to incorporate a more complete
model of human diagnostic reasoning that is useful for teaching (Section 3).

2. Represent. To meet our design criteria, we chose to represent the control knowledge
as sets of rules, organized into subprocedures called tasks. To make explicit how
domain knowledge is used by the control rules, we chose a predicate calculus
language coupled with procedural attachment (Section 4). This combination makes
explicit the relations among concepts, alows variables for generdity, and alows
arbitrary representations of domain knowledge for efficiency.

3. Re-represent. Observing that the interpreter for the control knowledge was till
implicit in Lisp code, we re-implemented it as a simple rule-based system (Section
6). The experiment failed: Expressing knowledge in rules and predicate calculus
does not mean that the notation is readable by people or easily interpreted for
multiple purposes. A notation is not inherently declarative; instead, this is a
relation between a notation and an interpreter that decodes the notation for some
purpose (Rumelhart and Norman, 1983). The nature of the knowledge to be



decoded, and thus the expressibility of a given notation, may change with the
purpose.

4. Make practical. To make the control knowledge interpretation process more
efficient, a compiler was written to compile control rules into Lisp code, replacing
relational expressions by direct access to domain data structures (Section 5).

5. Exploit. Given a “rough draft” notation that brings about appropriate problem
solving performance, we developed explanation and student modeling programs to
demonstrate the adequacy of the notation for meeting our design goals. We
discovered that some additional knowledge, not required for problem solving, is
useful for interpreting the control knowledge for other purposes (Section 7).

6. Generalize. In studying neowan, we determined that the control knowledge is a
general procedure for heuristic classification (Clancey, 1985). In comparing
neowa N to other programs, we determined that it does diagnosis by selecting a
system identification from a taxonomy pre-enumerated in the knowledge base.
Thus, the program’s architecture embodies a general problem solving method for
constructing or interpreting arbitrary systems by selecting from pre-enumerated
solutions.

Extracting the domain knowledge from neowan, as was done in creating EMYCIN
from mcrn, we named the framework reracies, “Heuristic Classif ication Shell,”
consisting of the classification procedure and interpreter, the relational language for
stating domain knowledge and procedural attachments, compiler, and explanation
program. We used the neracLes framework to construct another, non-medical
knowledge system in the domain of cast iron defects diagnosis (Section 8.1). We
demonstrate the generality of the task language by using it to state the explanation
program (Section 8.2).

7. Study. We studied the collected body of control knowledge and discovered patterns
revealing how the meaning of a procedure is tied up in the relational classification
of domain knowledge (Section 9). We found that the predicate calculus notation is
extremely vauable for revealing these patterns. We examined the difficulties of

- achieving the ideal separation between domain and control knowledge to
characterize situations in which it is impractical or impossible.

The body of this paper unfolds the development of neowan, HeracLes, explanation,
modeling, and application programs, as indicated above. The central theme is that an
important design principle for building knowledge-based systems is to represent all control
knowledge abstractly, separate from the domain knowledge it operates upon. In essence, we
are applying the familiar principle of separating programs from data, but in the context of
knowledge-based programming. We argue that the advantages for construction and
maintenance of such programs are so pronounced that benefits will accrue from using this



approach, even if there is no interest in using the knowledge base for explanation or teaching.
The many scientific, engineering, and practical benefits are summarized in Section 11. This
work is extensively compared to other research in Section 10.

2. What is abstract control knowledge?

We begin with a simple introduction to the idea of abstract control knowledge and examples
of aternative representations. “Control knowledge” specifies when and how a program is to
carry out its operations, such as pursuing a goal, focusing, acquiring data, and making
inferences. A basic distinction can be made between the facts and relations of a knowledge
base and the program operations that act upon it. For example, facts and relations in a
medical knowledge base might include (expressed in a predicate calculus formulation):

(SUBTYPE INFECTION MENINGITIS)
"7 "meningitis is a kind of infection"”

(CAUSES INFECTION FEVER)
-- "infection causes fever"

(CAUSES INFECTION SHAKING-CHILLS)
“7 "infection causes shaking chills™

(DISORDERMENINGITIS)
“7 "meningitis is a disorder”

(FINDING FEVER)
-- "fever is a finding"

Such a knowledge base might be used to provide consultative advice to a user, in a way
typical of expert systems (Duda and Shortliffe, 1983). Consider, for example, a consultation
system for diagnosing some faulty device. One typical program operation is to select a finding
that causes a disorder and ask the user to indicate whether the device being diagnosed exhibits
that symptom. Specifically, a medical diagnostic system might ask the user whether the patient
is suffering from shaking chills, in order to determine whether he has an infection. The first
_ description of the program’s operation is abstract, referring only to domain-independent
relations like “finding” and “causes’; the second description is concrete, referring to domain-
dependent terms like “shaking-chills’ and “infection”. (* Domain-independent” doesn’t mean
that it applies to every domain, just that the term is not specific to any one domain)

The operation described here can be characterized abstractly as “attempting to confirm a
diagnostic hypothesis’ or concretely as “attempting to determine whether the patient has an
infection.” Either description indicates the strategy that motivates the question the program is
asking of the user. So in this example we see how a strategy, or control knowledge, can be
stated either abstractly or concretely. The following two examples illustrate how both forms of
control knowledge might be represented in a knowledge base.



2.1. An implicit refinement strategy

In MycIN (Shortliffe, 1976), most knowledge is represented as domain-specific rules. For
example, the rule “If the patient has an infection and his CSF cell count is less than 10, then
it is unlikely that he has meningitis,” might be represented as:

PREMISE:
(JAND (SAME CNTXT INFECTION)

(ILESSP (VAL1 CNTXT CSFCELLCOUNT) 10))
ACTION :

(CONCLUDE CNTXT INFECTION-TYPE MENINGITIS TALLY -700)

The order of clauses is important here, for the program should not consider the “CSF cell
count” if the patient does not have an infection. Such clause ordering in all rules ensures that
the program proceeds by top-down refinement from infection to meningitis to subtypes of
meningitis. The disease hierarchy cannot be stated explicitly in the wern rule language; it is

implicit in the design of the rules. (See (Clancey, 1983) for further analysis of the limitations
of MYCIN's representation.)

centar  (Aikins, 1980), derived from MYCIN, is a system in which disease hierarchies are
explicit. In its representation language, MYCIN's meningitis knowledge might be encoded as
follows (using a Lisp property list notation):

INFECTION
MORE-SPECIFIC ((disease MENINGITIS)
(disease BACTEREMIA)..))
IF-CONFIRMED (DETERMINE disease of INFECTION)

MENINGITIS
MORE-SPECIFIC ((subtype BACTERIAL)
(subtype VIRAL)...)
IF-CONFIRMED (DETERMINE subtype of MENINGITIS)

In centawr, hierarchical relations among disorders are explicit (meningitis is a specific kind
of infection), and the strategies for using the knowledge are domain-specific (after confirming
that the patient has an infection, determine what more specific disease he has). This design
enables centar to articulate its operations better than MyciN, whose hierarchical relations
and strategy are procedurally embedded in rules.

However, observe that each node of centar s hierarchy essentialy repeats a single strategy--
try = to confirm the presence of a child disorder--and the overall strategy of top-down
refinement is not explicit. Aikins has labeled centar s strategies, but has not stated them

abstractly. By representing strategies abstractly, it is possible to have a more explicit and non-
redundant design. This is what is done in neowa N.

In neowcin domain relations and strategy are represented separately and strategy is
represented abstractly. A typical rule that accomplishes, in part, the abstract task of attempting
to confirm a diagnostic hypothesis and its subtypes is shown below.



<Domain Knowledge>

INFECTION
CAUSAL-SUBTYPES (MENINGITIS BACTEREMIA . .)

MENINGITIS
CAUSAL-SUBTYPES (BACTERIAL VIRAL . .)

<Abstract Control Knowledge>

TASK: EXPLORE-AND-REFINE
ARGUMENT: CURRENT-HYPOTHESIS

METARULEOO1
[F the hypothesis being focused upon
has a child
that has not been pursued,
THEN pursue that child.

(IF (AND (CURRENT-ARGUMENT $CURFOCUS)
(CHILDOF $CURFOCUS $CHILD)
(THNOT (PURSUED $CHILD) ) )
(NEXTACTION (PURSUE-HYPOTHESIS $CHILD)))

nNeowa N uses a deliberation/action loop for deducing what it should do next. Metarules,
like the one shown above, recommend what task should be done next, what domain rule
applied, or what domain finding requested from the user (details are given in Section 4.1).
The important thing to notice is that this metarule will be applied for refining any disorder,
obviating the need to “compile’” redundantly into the domain hierarchy of disorders how it
should be searched. When a new domain relation is declared (e.g., a new kind of infection is
added to the hierarchy) the abstract control knowledge will use it appropriately. That is, we
separate out what the domain knowledge is from how it should be used.

Metarules were first introduced for use in expert systems by Davis (Davis, 1976), but he
conceived of them as being domain-specific. In that form, principles are encoded redundantly,
just like centar s control knowledge. For example, the principle of pursuing common causes

* before unusual causes appears as specific metarules for ordering the domain rules of each
disorder (see (Clancey, 1983) for detailed discussion).

The benefits of stating metarules abstractly are illustrated further by a second example.

2.2. An implicit question-asking strategy

Another reason for ordering clauses in a system like MYCIN is to prevent unnecessary requests
for data. A finding might be deduced or ruled out from other facts available to the program.
For example, the rule “If the patient has undergone surgery and neurosurgery, then consider
diplococcus as a cause of the meningitis’ might be represented as follows,

PREMISE: ($AND (SAME CNTXT SURGERY)
(SAME CNTXT NEUROSURGERY))
ACTION: (CONCLUDE CNTXT COVERFOR DIPLOCOCCUS TALLY 400)



We say that the surgery clause “screens’ for the relevance of asking about neurosurgery.
Observe that neither the relation between these two findings (that neurosurgery is a type of
surgery) nor the strategy of considering a general finding in order to rule out one of its
subtypes is explicit. An alternative way used in MYCIN for encoding this knowledge is to have
a separate “screening” rule that at least makes clear that these two findings are related: “If the
patient has not undergone surgery, then he has not undergone neurosurgery.”

PREMISE: ($AND (NOTSAME CNTXT SURGERY))
ACTI ON:  (CONCLUDE CNTXT NEUROSURGERY YES TALLY -1000)

Such a rule obviates the need for a “surgery” clause in every rule that mentions neurosurgery,
so this design is more elegant and less prone to error. However, the question-ordering strategy
and the abstract relation between the findings are still not explicit.  Consequently, the
program’s explanation system cannot help a system maintainer understand the underlying
design.

In nNeowan, the above rule is represented abstractly by a metarule for the task of finding
out new data.

(Domain Knowledge>

(SUBSUMES SURGERY NEUROSURGERY)
(SUBSUMES SURGERY CARDIACSURGERY)

(Abstract Control Knowledge>

TASK: FINDOUT
ARGUMENT: DESIRED-FINDING

METARULEO002
IF the desired finding

is a subtype of a class of findings and

the class of findings is not present in this case,
THEN conclude that the desired finding is not present.

(IF (AND (CURRENT-ARGUMENT $SUBTYPE)
(SUBSUMES $CLASS $SUBTYPE)
(THNOT (SAMEP CNTXT $CLASS)))
(NEXTACTION
(CONCLUDE CNTXT $SUBTYPE “YES TALLY -1000)))

This metarule is really an abstract generalization of all screening rules. Factoring out the
statement of relations among findings from how those relations are to be used produces an
elegant and economical representation. Besides enabling more-detailed explanation, such a
design makes the system easier to construct and more robust.

Consider the multiple ways in which a single relation between findings can be used. If we
are told that the patient has neurosurgery, we can use the subsumption link (or its inverse) to
conclude that the patient has undergone surgery. Or if we know that the patient has not
undergone any kind of surgery we know about, we can use the “closed world assumption” and
conclude that the patient has not undergone surgery. These inferences are controlled by



abstract metarules in NeomycTN.

The knowledge base is easier to construct because the expert needn’t specify every situation in
which a given fact or relation should be used. New facts and relations can be added in a
simple way; the abstract metarules explicitly state how the relations will be used. The same
generality makes the knowledge base more robust. The system is capable of making use of
facts and relations for different purposes, perhaps in combinations that would be difficult to
anticipate or enumerate.

3. Design criteria for NEOWCI N

In designing an architecture for an intelligent system, we generally start with a set of
behaviors that we wish the system to exhibit. For teaching, there are three dominating
behavioral criteria:

1. Solve problems. The system should be able to solve the problems that it will teach
students how to solve. This is the primary advantage of using the knowledge-based
approach?

2. Explain own behavior. The system must be able to state what it is doing: What
domain knowledge it uses to solve the problem, its goals, and the methods it tries.
The system might also need to state the rationale for domain facts and procedures,
that is, to say why they are correct with respect to some set of constraints or
assumptions (Clancey, 1983).

3. Model student behavior. The system must be able to recognize when its procedures
and knowledge are used by another problem solver. Specificaly:

a The program should be able to solve problems in multiple ways. For example,
a diagnostic program should be able to cope with an arbitrary ordering of
student requests for data, and evaluate arbitrary partial solutions at any time
(Brown, et al., 1982a).

b. The program should solve problems in a manner that students can understand
and emulate. This is obviously necessary if the program is to convey a useful
problem solving approach and to recognize it or its absence in other problem
solvers.* Consequently, the problem solving procedure should be at least an
ideal model of what people do, and may need to incorporate alternative and

Lin contragt, traditional CAT programs, except in mathematics and fact recall problems such as geography, are not
designed to solve problems independently. They present material, evaluate, and branch according to possible situations
pre-enumerated by the program “author” (Clancey, 1982h).

20f course, the knowledge-based tutor is not the only way to use computers for teaching, and the cost/benefit of
this approach is not known. See (Papert, 1980, Clancey, 1982b, Brown, 1983) for discussion.
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non-optimal  methods.3

Both explanation and student modeling are made possible by representing the problem
solving procedure in a genera way, separate from the domain knowledge, in a notation that
can be trandlated to natural language. The ability to apply domain knowledge in an arbitrary
order enables the modeling program to follow what the student is doing, as well as to make
prescribe good behaviors in teaching interactions.

With emphasis on problem solving performance and only superficial explanation
requirements, most early knowledge systems do not state control knowledge separately and
explicitly in the manner of neomycin. Figure 3-I summarizes the simple rule and frame-
based approaches to knowledge representation. Rule-based systems have a simple (opaque)
interpreter, and can easily index what facts and rules were used to make Sssertions. While the
literature (e.g., (Davis, et a., 1977)) makes a major issue of the separation of the knowledge
base from the “inference engine” the control knowledge is in fact implicit in the rules.
Frame-based systems represent domain facts in a well-structured way, but typically control
knowledge is represented in arbitrary Lisp code that cannot be explained automatically. In
NneomycN, meeting the behavioral goals of explanation and modeling requires a combination
of approaches:

. Following the design principle of the rule-based approach, all knowledge is stated
in a simple syntax that programs can interpret for multiple purposes. In particular,
the conditional-action form of control knowledge (or any procedure) makes rules a
suitable representation.

. Following the design principle of the frame-based approach, domain knowledge is
stated separately from control knowledge, so that domain concepts and relations are
explicit.  In particular, the concept-relation form of domain knowledge makes
frame-like structures a suitable representation. Moreover, rules are themselves
organized hierarchically with additional knowledge about how they are to be
applied.

- Here we summarize in more detail how this architecture and the design criteria are realized
in NEOMYCIN:

e . Thediagnostic procedure mentions no specifically medical concepts or relations.

« Clauses of domain rules are arbitrarily ordered. Most rules (136/169) have only
one clause; the remaining are definitions or patterns that trigger diagnoses.

. There is no uncontrolled backchaining at the domain level. When new problem
information is required to evaluate a domain rule, the program does not arbitrarily

3 (Johnson, 1983) describes dternative models of reasoning as the basis of designing a knowledge system:
mathematical optimization, smulation, and ad hoc rationalization.
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CONTROL KNOWLEDGE
KNOWLEDGE BASE (To focus on hypotheses CODED
(Viewed as a database) and findings and to INTERPRETER

make assertions)

Rule-based systems

Frame-based systems

Figure3- 1. Alternative representations of control knowledge
apply domain rules, but selects among them. This is also called deliberate
subgoaling (Laird, 1983).

. The diagnostic procedure is decomposed into subprocedures that facilitate
explanation. Our rudimentary theory characterizes diagnosis as a process of shifting
focus to manipulate a set of possible solutions (the “differentia*‘), including means
to generate this set, categorize and refine it, and test it for completeness (Clancey,
1984b).

. Thereis a fixed set of procedura (opaque) primitives:
o ask for problem data,

o assert a domain fact (in metarules that are generalized domain rules),
o attempt to apply a domain heuristic rule, and
o invoke a subprocedure.

. Domain knowledge reflects expert experience, consisting of procedurally-defined
associations, collectively called domain schema knowledge:

o trigger rules describe patterns of findings that immediately suggest a
hypothesis, perhaps causing an intermediate question to be asked

o follow-up questions are process characterizations that are immediately
requested, e.g., upon finding out that the patient has a fever, the
program/expert asks for the patient’s actual temperature.
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o heuristic finding/hypothesis rules make direct connections between findings
and hypotheses, omitting causal details.

o general questions are broad characterizations of the patient’s history that are
intended to cover everything that the patient might have experienced that
coud <cause a disease, e.g., travel, hospitalizations, medications,
immunosuppression.

. The diagnostic procedure of neowcin is based on protocol analysis and previously
formalized studies of medical problem solving (Clancey, 1984a, Clancey, 1984b).
The procedure reflects a variety of cognitive, social, mathematical, and case
experience constraints, none of which are explicit in the program.

. Our methodology assumes that there will be an accumulation of procedural
knowledge over time that will be applicable in other domains.

To summarize, neawcin expands upon waN s knowledge, representing domain and control
knowledge separately: The domain knowledge is experiential (schemas) and the control
knowledge is a general heuristic classif ication inference procedure.

4. Architecture of HERACLES

- To make control knowledge explicit, many changes and additions were made to mvcin.
Because none of these are specific to neowcin, but are characteristics of the genera
framework, called reracies, we will hereafter refer to meraces and use specific examples
from the neowcin knowledge base. The architecture (refer to Figure 4-3) consists of:

. control knowledge:

o metarules,
o tasks,
o task interpreter.

« domain knowledge:

o terms and relations
o procedural attachment (implementation specification)

o implementation data structures.

Briefly, a task is a procedure, namely a controlled sequence of conditional actions. Each
conditional action is called a metarule. Metarule premises are stated in the relational language,
which is indexed to domain knowledge data structures via procedural attachments. Associated
with each task is additional knowledge specifying how its metarules are to be applied. The
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relational language we have chosen is caled ws (Genesereth, 1983, MRSDICT, 1982). Its
relevant features are: a prefix predicate calculus notation, use of pattern variables with
backtracking, use of backchaining in application of rules to determine the truth of
propositions, and procedural attachment to allow arbitrary means for assertion or truth
evaluation, thus enabling multiple representation of knowledge.

4.1. Metarules

Figure 4-1 shows a typical metarule, for the task “test hypothesis.” Such rules were originaly
called metarules to distinguish them from the domain rules, and because most of them directly
or indirectly have the effect of selecting domain rules to be applied. Given the set of
primitive actions, the term “inference procedure rule” is more accurate.

Metarule premises consist of a conjunction of propositions. There are three kinds of
relations: domain, problem solving history, and computational functions. In addition, a
relation may be a composite inferred from rules, which we call a metarule premise relation
(see Figure 4-2). The indicated metarule will collect the set of unapplied domain rules that
mention an unrequested finding that is a necessary cause to the hypothesis under consideration
(e.g., receiving antibiotics is a necessary cause of partially treated meningitis).

Premise: (MAKESET (ENABLING.QUESTIONS CURFOCUS $RULE) RULELST)
Action: (TASK APPLYRULES RULELST)
Task: TEST-HYPOTHESIS

Figure4-1. Typica neawcn metarule.

Premise: (AND (ENABLINGQ $HYP $FOCUSQ)
(NOT (TRACEDP ROOTNODE $FOCUSQ) )
(EVIDENCEFOR? $FOCUSQ $HYP $RULE $CF)
(UNAPPLIED? $RULE))

Action: (ENABLING.QUESTIONS $HYP $RULE)

Figure 4-2:  Typical rule for concluding about a metarule premise relation

4.1.1. Groundwork: Domain knowledge, problem-solving history, and Lisp functions

In creating reracies from ewcrn, the original “rule,” “context,” and “parameter” structures
were given new properties, but remain as the primitives of the knowledge representation. For
example, parameters are now called findings and hypotheses, depending on whether they are
supplied to the program or inferred. They are hierarchically related. Rules are annotated to
indicate which are definitions and the direction of causality if appropriate. Inverse pointers
are automatically added throughout to alow flexible and efficient indexing during problem
solving. (See Appendix I for a complete listing of domain terms and relations. Further
discussion appears in (Clancey, 1984a) and (Clancey, 1984b).)

The problem solving history consists of the bookkeeping of EMYCIN (record of rule
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application and parameter determination), plus additional information about task and metarule
application.

Simple Lisp functions, such as arithmetic functions, are not translated into tasks and
metarules. In addition, complex functions in the modified domain (emvcin) interpreter, such
as the rule-previewing mechanism, are still represented in Lisp. Metarules also invoke a few
complicated interface routines, for example to allow the user to enter a table of data.?

The domain data structures, problem-solving history, and Lisp functions are collectively
called the Heracles groundwork. Procedural attachment is used to interface relations appearing
in metarules with the Heracles groundwork.

4.1.2. Procedural attachment--Motivation and advantages

A key improvement of reracLes over early versions of neomvcin is the use of a relational
language with procedural attachment in the metarules. Formerly, arbitrary Lisp functions were
invoked by metarule premises, inhibiting explanation and student modeling because this code
could not be interpreted easily by programs (excluding, of course, the implementation-level
Lisp interpreter and compiler).

The advantages of using s for representing the premises of metarules are:

. Tasks and metarules themselves make procedural steps and iteration explicit; the
vrs encoding makes metarule premises explicit.

. Prefix Predicate Calculus (PPC) provides a simple syntactic structure of relations,
terms, and logic combinations that facilitates writing programs to interpret it.

. Backtracking with variables allows matching constraints to be stated separately from
the operations of search and database lookup, so complex interactions are restated
as simple conjuncts.

. Using rules to infer metarule premise relations allows intermediate levels of
abstraction to be cogently represented as rules.

« The messy implementation details of the domain and problem solving history data
structures are hidden, yet these underlying structures make efficient use of storage
- and are indexed for efficient access.

. The PPC syntax facilitates stating metaknowledge. Patterns among relations can be
stated explicitly, making it possible to write interpretation procedures that treat
relations abstractly. For example, the metarule compiler need only reason about the

The origina emycin function FTNDOUT was made into a task to enable the explanation and modeling programs to
account for how weracies infers findings when it doesn't ask the user. In addition, portions of the rule interpreter
and all forward reasoning (e.g., application of domain antecedent rules) are re-represented as metarules.
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half-dozen categories of domain data structures, rather than deal with the relations
directly. This idea is central to the possibility and advantage of using abstract
procedures (see Section 9).

At run time an wrs program deduces what method (inference procedure) to use to evauate
the truth of a statement, and then applies the indicated function. The original program we
implemented in wrs, called MRS/NEOMYCIN, was much too slow to be practical (see Section 6).
In the current version of weracles the metarules are compiled, replacing all of the relations
and procedural attachments with direct lookup in the domain knowledge base and problem-
solving history (Section 5). To do this, the compiler needs information about how each
relation is actually represented in the Lisp data structures and functions of the neracLes
groundwork. Table 4-l gives the possible forms of implementation, with examples.

implementation example interpretation
FLAG NEW-DIFFERENTIAL T or NIL Lisp var
VARIABLE STRONGCOMP.WGHT Lisp variable
LIST DIFFERENTIAL Lisp list
PROPMARK ASKFIRST T or NIL property
PROPLIST CHILDREN list-valued property
PROPVAL PROMPT arbitrary property
METARULE-PREMISE-RELATION TAXREFINE? determined by a rule
FUNCTION SAMEP Lisp function

Table 4-1: Implementation of HeracLes groundwork

There is a miscellaneous category of relations for which the compiler produces relation-
specific code. Examples are: a relation for satisfying another relation as many times as
possible (MAKESET); the quadruple relation among a finding, hypothesis, domain rule, and
certainty factor (EVIDENCEFOR); and relations that can be easily optimized by the compiler
(e.g., MEMBER and NULL).

In summary, we use a relational specification for perspicuity, Lisp data structures and
functions for convenience and efficiency, and compile the metarules to avoid the expense of
run-time pattern matching and indirect lookup. The resulting metarules are easier to read,

. maintain, and explain automatically than the original Lisp code.

4.2. Tasks

A reracies task consists of an ordered sequence of metarules and additional knowledge
about how they should be applied, used by the task interpreter. The program begins by
executing the top-level task, to carry on a consultation. The tasks then direct the application

of metarules; when metarules succeed, primitive actions are taken and other tasks invoked. See
Figure 4-3.

Currently there are 75 metarules in weracLes, organized into 40 tasks. The invocation
structure, integrating hypothesis- and data-directed reasoning, is shown in Figures 4-4 and 4-5.
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Figure 4-3: Flow of control in HeracLEs

4.3. The task interpreter
The information used by the task interpreter is:

. The task focus, which is the argument of the task (e.g., the focus of the task TEST-
HYPOTHESIS is the hypothesis to be tested). Only one focus is allowed.

. The main body of ordered metarules, which are to be applied to complete the task.
(Called the do-during metarules.)

. The end condition, which may abort the task or any subtask when it becomes true.
Aborting can occur only while the do-during metarules are being applied. The end
condition is tested after each metarule of a task succeeds. A task may also be
marked to prevent abortion.

. Ordered metarules to be applied before the do-during rules.
. Ordered metarules to be applied after the do-during rules.
. The task type, which specifies how the do-during metarules are to be applied.

There are two dimensions to the task type: simple or iterative, and try-all or not-
try-all. The combinations give four ways of applying the do-during rules:

o Simple, try-all. The rules are applied once each, in order. Each time a
metarule succeeds, the end condition is tested.

o Simple, not-try-all. The rules are applied in sequence until one succeeds or
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the end condition succeeds.

o Iterative, try-all. All the rules are applied in sequence. If there are one or
more successes, the process is started over. The process stops when al the
rules in the sequence fail or the end condition succeeds.

o Iterative, not-try-all. Same as for iterative try-all, except that the process is
restarted after a single metarule succeeds.

The four combinations of control are shown in Figure 4-6 with their common equivalents.

not try-all try-all
R et e L LR +
l
Simple COND PROG i
I
I
e L L e R e E L L L LT +
Pure |
Iterative Production "For loop" |
System \
|
o Y L L LTt +

Figure 4-6: Common equivalents for four ways of controlling metarules

The experiment of representing the task interpreter in metacontrol rules is described in
Section 6.

Only a few tasks have end conditions. Studying them reveals the following interpretations:

1. The end condition is the negation of a pre-requisite for doing the task. For
example, the pre-requisite of examining subcategories of hypotheses (EXPLORE-
AND-REFINE) is that al more general categories have aready been considered.
The end condition of EXPLORE-AND-REFINE is (NOT (WIDER-
DIFFERENTIAL)), indicating that there is no new hypothesis that lies outside of
previously considered categories.

2. The end condition is the goal the task seeks to accomplish. For example, the goal

- of probing for additional information (GENERATE-QUESTIONS) is to suggest
new hypotheses. The end condition of GENERATE-QUESTIONS is
(DIFFERENTIAL $HYP), indicating that the program has at least one hypothesis
under consideration.

Figure 4-7 gives the metarules and control information for the task GENERATE-
QUESTIONS (with auxiliary rules to conclude about metarule premise relations). Figure
4-8 shows a partial history of task invocation for a typical neowan consultation (After
gathering laboratory data (PROCESS-HARD-DATA, PHD), new hypotheses are shown being
explored. PURSUE-HYPOTHESIS (PUH) Is invoked three times, leading to application of
four domain rules and an attempt to find out five findings.)
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GENERATE-QUESTIONS

TASK-TYPE : ITERATIVE

ENDCONDITION:  ADEQUATE-DIFFERENTIAL

LOCALVARS: ($FOCUSPARM RULELST)

ACHIEVED-BY: (RULE003 RULE359 RULE386 RULE425)
ABBREV: GQ

RULE003

Premise: (NOT (TASK-COMPLETED ASK-GENERAL-QUESTIONS))
Action: (TASK ASK-GENERAL-QUESTIONS)
Comment : Ask general questions if not done already.

RULE359

Premise: (PARTPROC.NOTELABORATED? $FOCUSPARM)
Action: (TASK ELABORATE-DATUM $FOCUSPARM)
Comment : Ask for elaborations on partially processed data.

RULE386

Premise: (MAKESET (PARTPROC.SUGGESTRULES? $RULE)
RULELST)

Action: (TASK APPLYRULES RULELST)

Comment : Apply rules using known data as if they were trigger rules.
RULE425

Premise: (NOT MORE-DATA-COLLECTED)

Action: (DO-ALL (COLLECT.MORE.DATA)

(TASK FORWARD-REASON) )
Comment: Simply ask the user for more information.

Auxiliary metarule premise rules

Premise: (AND (PARTPROC.DATA $DATUM)

(YNPARM $DATUM)

(SAMEP ROOTNODE $DATUM $CF)

(NOT (ELABORATED $DATUM))

(OR (PROCESSQ $DATUM $ANY)
(SUBSUMES $DATUM $ANY) ) )

Action: (PARTPROC.NOTELABORATED? $DATUM)

Premise: (AND (PARTPROC.DATA $PARM)

(SUGGESTS $PARM $SUGHYP)

(EVIDENCEFOR? $PARM $SUGHYP $RULE $CF))
Action: (PARTPROC.SUGGESTRULES? $RULE)

Figure 4-7: Metarules and control information for task GENERATE-QUESTIONS

5. The metarule compiler: vrs -> Interlisp

Originally in MRS/NEOMYCIN, the wrs interpreter was used for pattern matching, including
resolution, backtracking, and procedural attachment. In addition, the task interpreter itself was
encoded in wrs rules, controlled by a simple deliberation-action loop (described in Section 6).
Even after we reverted to a Lisp task interpreter for efficiency, with the metarules accessed
directly as Lisp structures, the program was still too slow to use. Finally, after studying the
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rules and hand-written Lisp code equivalents, we found that it was possible to compile the
metarule premises, including metarule-premise relations and their rules and procedural
atachments into ordinary Lisp code.

In the compiled version, each metarule premise generally becomes a Lisp function; each
relation concluded by a metarule premise relation rule (Figure 4-2) becomes a Lisp function.
In generd, it is difficult to write a compiler for MRS-style rules. However, severa features of
- our rules and a few simplifications made it easy to write the compiler:

. Only one rule concludes about each metarule premise relation. Where necessary,
rules were combined into a single rule with a digunction.

. Relations are either predicates or functions, rather than being used in both ways.
For example, (CHILDREN $HYP $CHILD) is only used as a functional generator,
never as a predicate to test whether a given candidate is a child of a given
hypothesis. This was not a deliberate design choice--all of the 166 relations in
HErRacLES  Satisfy this property.

. Functiona relations are all single-valued (except EVIDENCEFOR). Consequently,
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backtracking (to find matches for variables in conjunctions) can be expressed as
nested find or therexists loops, failure of the inner loop and return to the next
outer loop for a new variable match is equivalent to backtracking.

. Rule conjuncts are ordered manually so that a variable is found (by a functional
relation) before it is tested (by a predicate relation). This is a natural way to write
the rules.

. Inverse relations are chosen so that Lisp atom with the property corresponding to
the relation is the first variable in the relation. For example, the functional
relation CHILDREN., as in (CHILDREN $HYP $CHILD), is used when $HYP is
known. Again, this occurred naturally rather than being a deliberate design choice.

. As a trivial simplification, redundant clauses are not factored out of disjuncts, in

the form
(AND <common clauses> (OR d1d2 .. . dn)).

Consequently, a few rules are dlightly awkward.

5.1. An example
To compile the metarule shown in Figure 4-1, the compiler checks to see what kind of

relation ENABLING-QUESTIONS is. Here is what it discovers:

ENABLING.QUESTIONS

IMPLEMENTATION: METARULE-PREMISE-RELATION
MULTIPLEMATCH: T

USED-BY: (RULES566)

UPDATED-BY: (RULE9325)

In writing a function to replace rule9325 (Figure 4-2), the compiler observes that this is a
functional relation (not a PREDICATE), so it must return $SRULE. Moreover, it is
. MULTPLEMATCH, so al matches for SRULE are returned. The code appears in Figure 5-1.
The main difficulty is keeping track of what variables are bound and knowing when to do an
iteration versus simply checking if a match exists. For example, if SRULE were an argument
to this function, the code would have been very different.

(ENABLING.QUESTIONS
[LAMBDA ($HYP)
(PROG ($RULE)
(RETURN (for $FOCUSQ
in (GETP $HYP (QUOTE ENABLINGQ))
join (AND (NOT (TRACEDP ROOTNODE $FOCUSQ))
(for RULECFLST

in (EVIDENCEFOR $FOCUSQ $HYP)
as $RULE is (CAR RULECFLST)
collect $RULE
when (UNAPPLIED? $RULE])

Figure5-1: Compiler-generated code for metarule premise rule shown in Figure
4-2
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In general, the compiler's code is a little easier to understand than the manually-written
original because it doesn’'t use constructs like thereis and never, which require some mental
gymnastics to logically invert and combine.

5.2. More details

The compiler recursively pieces together code for each relation. A second pass ensures that a
value is returned from inner loops and Lisp variables are properly bound.  Important
subprocedures:

. Produce code for the EVIDENCEFOR relation, (EVIDENCEFOR $FINDING
$HYPOTHESIS $RULE $CF)--$SHYPOTHESIS and $RULE or SRULE aone might
be unknown at the time of matching.

. Gather and compile clauses that test a particular variable (the iterative variable for
a compiled loop).

. Modify “find” iterations (on the compiler’s second pass) to return the correct value,
changing suchthat to collect or join, etc.

Besides the IMPLEMENTATION property described in Section 4.1.2, relations may have
PREDICATE and MULTIPLEMATCH properties. PREDICATE only applies to relations that
have an implementation of METARULE-PREMISE-RELATION or FUNCTION (ordinary
. LISP function). MULTIPLEMATCH only applies to a metarule-premise-relation. It means
that the MRS rule should be “ matched as many times as possible.” In essence, the compiler
changes find <¢var> in <list> suchthat... to for <var> in <list> collect <var> when....

Different code is produced depending on whether the result variable, the last variable in the
proposition, is bound when a clause is compiled. For example, the code for the clause
(TRIGGERPARMS $RULE $PARM) might be:

. (find $PARM in (GETP $RULE ‘TRIGGERPARMS) suchthat . ..) if SPARM is not
bound yet,

. (FMEMB $PARM (GETP $RULE ‘TRTGGERPARMY)), if $PARM is bound, or

« (GETPROP $RULE ‘TRIGGERPARMS) if $PARM is not bound and it is not
tested later in the rule.

All relations compile in a similar way--finding a variable, testing it, setting it, or simply
checking to see if a value exists.

Looking for tests to place in the “suchthat” part of an iteration is tricky. The compiler
obviously must include later clauses that mention the iteration variable. But it must aso
include earlier clauses that set a variable mentioned in these later tests, plus later tests of such
variables.

The relation MAKESET is used in many metarules. It expects its inner relation to be of
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type MULTIPLEMATCH, returning a list. Many rules also use a variation of SETQ that only
sets the result variable if it is non-NIL. This is convenient because usually in a metarule
premise this variable is the focus of the task. We don’'t want to lose the old focus until we get
a new one.’

In conclusion, we have found that the PPC notation as a specification language for metarules
is convenient, intuitively natural, and allows efficient compilation. The development of the
explanation program (Section 7) and the subsequent study of patterns in the domain relations
(Section 9) reveal that the notation also has unexpected advantages for helping us to
understand the nature of procedures.

6. MRS/NEOMYCIN: An experiment in explicit metacontrol

In a program called MRS/NEOMYCIN we attempted to use wrs in a direct way to represent the
task interpreter in rules.® Our intention was that the new representation would lead to better
explanation capability, as well as enhance the debugging capability for knowledge acquisition.
This experiment failed because the linear sequence of rules into which we translated the
interpreter disguises the iterative control so that it is difficult to read, maintain, and explain
automatically. In this section we briefly summarize the implementation and reflect on what we
learned about making procedures explicit.

6.1. MRS/NEOMYCIN implementation

To specify procedural rule application in rules, mrs was augmented with a form of backward
chaining (caled “RULEFOR”) that dynamically calculates rules to be used in deduction.
Specifically, metacontrol rules calculate what metarules to use at any time. At the top is a
deliberation-action loop. In principle, deliberation only involves domain knowledge and
problem-solving state lookup; assertions about the problem are only made by metarule and
domain rule actions. Specifically, we forbid hidden side-effects, such as saving computations
in rule premises for use by rule actions. Adhering to this discipline simplifies the explanation
program and other uses of the control knowledge. Modifications were made to mrs to cope
with recomputation inefficiencies that resulted (allowing caching and a history of rule
application).

Some of the elements of MRS/NEOMYCIN have survived in weractes and have aready been
described: the relational specification of domain knowledge and problem solving history;
mktarule premise relations; and procedural attachment (which survived as IMPLEMENTATION
categories, rather than the original procedures for asserting, unasserting, and evaluating the

SIn MRs/NEOMYCIN & Stack was maintained by t he deliberation-action loop, obviating the need for Lisp variables and
allowing the focus to be retrieved and reset in a cleaner way (Section 6).

6The design and implementation of mrs/NEOMYCIN IS primarily the work of Conrad Bock, in partia fulfillment of
the Master’ s degree in Artificial Intelligence at Stanford University.
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truth of statements). The additional constructs in MRS/NEOMYCIN that we used for representing
metacontrol in predicate calculus are:

« Metacontrol rules (MC “ metacontrol” and DR “do-during rulefor” rules),
corresponding to the primitive conditional actions of the task interpreter--apply
metarules for a task, detect the end condition, and do bookkeeping.

. Stack of tasks and focus arguments so that the task interpreter can be invoked
recursively (tasks can invoke other tasks).

. History of metarules and metacontrol rules applied or failed in a task (for bringing
about sequential and iterative computation).

« Metametacontrol rules (the NR “nextaction rulefor” rules) that refer to the
metacontrol rules by name and invoke them in the proper sequence (do-before, do-
during, do-after, then bookkeeping), alowing a normal backchaining interpreter to
be used at the highest level.

o Deliberation-Action loop, a small Lisp program that invokes mrs to deduce what
metarule action to do next.

As can be seen, this is a fairly complex framework for reasoning about control, greatly
. elaborating upon Davis's original idea of using metarules for refining search (Davis, 1980). In
particular, domain-independent metarules invoke base-level rules, MC and DR rules order and
choose metarules, and NR rules control the ordering process. This framework, a re-
representation of the neowa n task interpreter, is especially of interest because it provides a
control language within wrs in terms of a tasking mechanism. We believed that this
architecture and its primitives would significantly increase the usefulness of ws for
representing control knowledge.

_ 6.2. Problems with perspicuity and efficiency
In constructing MRS/NEOMYCIN, we invented a way to shoe-horn a complex procedure, the
task interpreter, into the deductive mechanisms of wrs, using MRS's metalevel control
mechanism (deducing how some thing should be deduced) to control application of metarules
and- access to domain and problem solving history structures. However, our design was
impractical: It was an order of magnitude two slow for available (1982) computers, and most
serious of al, the resulting program is conceptually more difficult to understand. What went

wrong?

The chief deficiency of MRS/NEOMYCIN is the complexity of the rules representing the task
interpreter. It is difficult for people to understand nested iteration that is expressed as levels
of rules controlling other rules. Certainly, a program would be in no better position to
understand the task interpreter from this kind of specification.

The representation used in MRS/NEOMYCIN was developed to allow machine interpretation,
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specifically, to alow the augmented mrs reasoning mechanisms to deduce what metarules
should be applied at what time. Similar to the goas of amoro (de Kleer, 1979), we wanted a
representation that would make control knowledge explicit in the form of assertions about the
control state. While this was achieved, we must not confuse MRS/NEOMYCIN's ability to carry
out the procedure with understanding it. Predicate calculus is often proposed as a means of
making knowledge explicit, but just stating the steps of the procedure in rules doesn't make
the meaning of the process explicit. For example, referring to Figure 6-1, consider the
difficulty of understanding that NR rule 4 and DR rule 3 bring about simple try-all
application of metarules.” The abstract properties of the program’s output are not immediately
obvious from the primitive terms and their combination in rules. AMORD’S rules suffer from
the same problem: levels of abstraction are missing that would make it clear what the rules and
control primitives are doing. This level of specification is analogous to an assembly level
program.

NEXTACTION RULEFOR rule 4 (NR-4)

[IF (AND (CURRENT-TASK $CURTASK)
(TASKTYPE $CURTASK SIMPLE)
(TASK-TRY-ALL $CURTASK)

(THNOT (APPLIED-IN-TASK $CURTASK MC-4)
(RULEFOR (NEXTACTION $ACTION) MC-41

MetaControl rule 4 (MR-4)

(IF (AND (DODURING $ACTION)
(DONT-STOP-TASK $CURTASK))
(NEXTACTION $ACTION))

DODURING RULEFOR rule 3 (DR-3)

(IF (AND (CURRENT-TASK $CURTASK)
(TASKTYPE $CURTASK SIMPLE)
(TASKRULE $CURTASK $MRULE)
(THNOT (APPLIED-IN-TASK $CURTASK $MRULE) ) )
(RULEFOR (DODURING $ACTION) $MRULE))

Figure6-1: Control rules specifying “simple, try-all” metarule application
observe three different levels for understanding a procedure:

Understanding what the procedure is: an ability to execute (or simulate) the
procedure, that is, to compute the result of applying the steps of the procedure over
time;

Understanding what the procedure accomplishes: an ability to describe patterns in
the result abstractly in terms of the procedure’s overall design or goal, and

TTo infer a NEXTACTION, NR 4 causes Metacontrol rule 4 to be applied once for simple, try-al tasks. To infer a
DODURING action, concluded by a metarule, DR 3 then selects metarules that haven’'t been applied. The combined
effect is that each metarule is applied once.
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. Understanding why the procedure is valid: an ability to relate the design of the
procedure to its purpose and constraints that affect its operation, that is,
understanding the rationale for the design.

The same distinctions apply to the metarule level, and are perhaps more easily understood
there. For example, consider the actions of reracle' s metarules for focusing on hypotheses.
First it pursues siblings of the current focus, then it pursues immediate descendents. This is
transparent from the ordering of the metarules and the relations mentioned in the premises.
Thus, the language adequately expresses the execution knowledge of the desired procedure.
Now, if you simulate this two step procedure in your mind, you will see a pattern that we call
“breadth-first search.” MRS/NEOMYCIN can certainly “read” these steps, but it doesn’t assign the
concept “breadth-first search” to this pattern. Knowing the abstract definition of "breadth-
first search,” you are able to verify that the program has this design by identifying and
classifying patterns in what the program does. The definition of “breadth-first search” and its
relation to these two metarules, the design knowledge of the procedure, is not expressible in
MRS/NEOMYCIN. Finaly, mathematical properties of hierarchies and the goal of making a
correct classif ication efficiently, constrain the program, suggesting this design choice. This
rationale knowledge is also not expressible in MRS/NEOMYCIN. Thus, knowing why the program
does what it does requires two kinds of inference: abstraction to characterize patterns and a
proof arguing that this design satisfies certain constraints.

The original LISP code of the task interpreter, with abstract concepts such as “repeat-until,”
“firgt,” and “findly,” is more readable to a programmer than the metacontrol rules. All we
have gained is a simple interpreter that disciplines design of the system, the deliberation-action
loop. Our other goal, writing a program with the flexibility that enables reasoning about
control (allowing for dynamic changes in metacontrol), could hardly be said to have been
accomplished. How could MRS/NEOMYCIN automatically integrate incremental additions to its
control knowledge without an understanding of the procedure’s design and rationale? This
same criticism can be made about the statement of control regimes given by de Kleer in
avoro  and by Genesereth in MRS (Genesereth, 1983). MRS/NEOMYCIN and these other
programs are in no better position to explain what they are doing than programs written in
-Lisp. These programs can make fine-grained statements about what they are doing, but they
have no conception of the abstract design that lies behind their actions nor the motivation for
this design.

A -solution to the problem of readability (for understanding design) is use a higher-level
language and a compiler, as in traditional programming languages. The task language is itself a
step in the right direction, but tasks merely name subprocedures. Reasoning about them and
changing them requires additional knowledge about what the tasks mean and how the metarules
accomplish them. We take up this issue further in Section 9. Moreover, even if we wrote the
task interpreter in the task language itself, and wrote a compiler that converted this language
directly into mrs control rules, we would need yet another compiler to make the wrs
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implementation fast enough to be practical?

In summary, we achieved a “declarative” representation of the task interpreter, with respect to
the wrs interpreter--all control knowledge is represented uniformly as a set of rules, facts in a
propositional database, and procedural attachments. But the representation leaves out levels of
abstraction that people find to be useful for understanding the design of a procedure, namely
listing conditional actions in sequence, when appropriate, and indicating the control for
iteration over sequences (“for loops’). These are the two main characteristics of the HeracLes
task language, or rule sets in general, accounting for the value of this construct.

7. Use of abstract proceduresin explanation and teaching

7.1. Procedural Explanations

Our first explanation program for reraces (Hasling, 1984) demonstrated how the MYCIN
HOW/WHY line of reasoning capability could be adapted to describing the inference
procedure. With translation of metarules premises to PPC, we are now able to generate much
more detailed, selective descriptions of reasoning. Figure 7-I demonstrates this capability.

Has Mary taken medications recently?
** WHY

We are attempting to determine whether Mary has received
antimicrobial medication.

Antimicrobial medication is a necessary factor in causing

partially-treated-bacterial meningitis, a hypothesis we are
attempting to confirm.

Figure 7-1: Excerpt of HeracLes explanation

As opposed to simply reading back tasks and metarules in response to successive WHY
guestions, the new program reasons about which tasks and which metarule clauses to mention.
The explanation heuristics include omitting: tasks with rules as arguments, computational
relations, relations believed to be known to the user, and relations that might be inferred from
known relations. The first time a term in a relation is mentioned (usually a finding or
hypothesis), it is described in terms of the active task for which it is a focus, if any. Using a
second pass, introduction of pronouns and more complex sentence structure is possible. This
explanation should be contrasted with the MYCIN-style response, which involves merely printing
the domain rule the program is currently applying, with no strategic or focusing structure.
Given the abstract inference procedure, it is straightforward to describe reasoning in terms of

8The Jowness of MRS/NEOMYCIN iS chiefly due to the indirection inherent in retrieving procedural attachments and
unnecessary recomputation.  For example, each time that a metarule succeeds in providing an action to the
deliberation-action loop, the list of metarules is re-deduced, leaving out the ones that have been applied already. The

program achieves sequentia application in this painful way because it is missing the metaknowledge that the list of
applicable rules will never change.
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previous explanations, for example, “We are till trying to determine...” or “Following the same
principle as in question 5, we are....” Development of the explanation system to exploit the
new representation in this manner has just begun.

7.2. Strategic modeling

We have developed a prototype student modeling program called 1mace; it interprets
HeracLES  Metarules to explain a sequence of data requests using a mixture of top-down
predictive simulation and bottom-up recognition (London and Clancey, 1982). The capabilities
of the program are not clear because the space of possible models and heuristic modeling
operators have not been precisely defined. Yet, the program does demonstrate the value of
stating the diagnostic procedure in a language that can be interpreted by multiple programs.
Originaly, we believed that making the procedure explicit would be important for teaching it
to students. However, now it is becoming clear that the main value of the architecture is for
modeling missing domain knowledge or detecting misconception. By observing over time, the
program will be able to detect that the student knows a procedure in general, so when the
student’s behavior diverges from the program’s, it can infer how his factual knowledge is
different. Thus, we make a distinction between knowing a procedure and having factual
knowledge that allows applying it to a specific problem situation.

It is also becoming clear that the modeling program needs additional knowledge about the
metarules. For example, it is useful to know what metarules it might make sense to delete or
. reorder. In some cases, leaving something out indicates a different preference for ordering
choices; in other cases it indicates a different procedure entirely. This additional information
would also help a tutoring program know which deviations from reracLes'  behavior are worth
bringing to the student’s attention.

7.3. Guidon2 programs

A family of teaching programs, collectively called GUTDON2, are under development that use
neowa N as teaching material, analogous to the way aupbon was built on MyciN, The first
_of these programs is called eupov warcH; making use of sophisticated graphics for watching
neowa N solve a problem (Richer and Clancey, 1985). For example, the program highlights
nodes in the disease networks to show how the search strategy “looks up” to categories before it
“looks down” to subtypes and causes. Other programs on the drafting board would alow a
student to issue task/focus commands and watch what neowcrtn does, explain neowcinN' s
behavior, and debug a faulty knowledge base. This work has all been directly inspired by
Brown’s proposals for similar tutoring environments for algebra (Brown, 1983).
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8. Generalization: Other applications

8.1. CASTER: A knowledge system built from HERACLES

As a test bed for developing reracles and testing its generality, a small knowledge system
has been built that diagnoses the cause of defects in cast iron (using molds made from sand)? .
With the diagnostic procedure aready in place, we needed only to define the domain
knowledge, using the relational language. We defined a hierarchy of disorders in terms of
stages in the process of metal casting (analogous to neomycTn’s etiological hierarchy of
diseases) and a causal network relating findings to etiologies. It is evident now that we don’t
understand very well the principles for constructing such a causal network in a consistent and
completeway. The weractes framework is helping us to focus on these and other domain
relations that need to be articulated in more detail.

8.2. Using the task language for other procedures
Recognizing that the task/metarule language could be developed into a good high-level
language for procedures in general, whose structure could be exploited for explanation,
modeling, etc., we are writing our new explanation program in terms of tasks and metarules.
The explanation program is constructive, because it pieces together what to say rather than
selecting it whole from built in responses. Consequently, some kind of database is needed for
posting partial explanations, as well as operators to examine and modify the evolving response.
* An example explanation rule, for the task that decides what relations in a Heraces metarule
to mention, is given in Figure 8-1.

Premise: (AND (RELTYPE? $REL ‘COMPUTATIONAL)

(
(NOT (USER-KNOWN $REL) )

(NOT (EXPLAINED-IN-SUBDIALOG $REL))
(PREFERENCE THIS-USER ‘COMPUTATIONAL-DETAILS))
Action: (MENTION $REL TASK-INSTANCE)

Figure 8-1:  An explanation heuristic rule

Our experience indicates that some modifications to the task language may be useful, such as
allowing multiple arguments to a task and designating some tasks to be generators that take a
list and pass elements on to a subtask in order (several tasks in HeracLes, for example,
APPLYRULES, are of this form). Ultimately, we believe that it will be useful for the design
of - the explanation procedure to be explicit enough to allow it to reflect upon itself to produce
aternative explanations when the student does not understand the first response.

This project is primarily the work of Tim Thompson.
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9. Studying abstract procedures and relations

To review, in HeracLes there are approximately 75 metarules that constitute a procedure for
doing diagnosis. The metarules reference:

. Domain knowledge: types of findings and hypotheses, and relations among them;
. Control knowledge about metarules and tasks:

o (static) the argument of a task, whether metarules are to be applied iteratively,
when to return to the head of the list, and the condition under which a task
should be aborted,

o (dynamic) whether a task completed successfully, whether a metarule succeeded
or failed, etc.

. Domain problem-solving history: “active” hypotheses, whether a hypothesis was
pursued, cumulative belief for a hypothesis, hypotheses that “explain” a finding,

rules using a finding that are “in focus’, a strong competitor to a given hypothesis,
etc.

« Computational predicates and functions: comparison, numerical, and primitive
inference routines.

These concepts form the vocabulary for a model of diagnosis, the terms in which expert
behavior is interpreted and strategies are expressed (see Appendix I for a complete listing).
This vocabulary of structural relations and the body of abstract control knowledge can itself
be studied, as well as applied in other problem domains. It is the beginning of a “descriptive

‘base” (cf. (Miller, 1983), page 182) from which generalizations can be made about the nature
of a useful knowledge organization for problem solving.

In the sections that follow we consider a number of issues about the nature of relations and
abstract procedures, emphasizing how relations or classifications define procedures and how
these relations are derived.

9.1. The nature of an abstract inference procedure

The idea of an abstract procedure is directly related to the idea of separating programs from
-data, which itself derives from idea of general mathematical laws and formulae. An abstract
procedure is one in which problem-specific values are replaced by terms characterizing the type
of each value, which become the formal parameters of the procedure. The particular values,
for example a list of patient-specific symptoms, becomes a data base upon which the abstract
procedure operates. Thus, the MYCIN system is an abstract procedure relative to a case library
that it can diagnose. The familiar idea is that a general procedure references relations, not
individuals directly, which is how the data base must be indexed.

The diagnostic procedure of reracLes IS abstract in the sense that metarules mention only
non-medical terms, such as finding and hypothesis, and relations. These terms are variables,
instantiated by domain-specific concepts. The metarules are aso abstract in the sense that
premises are simple logical patterns; backtracking to satisfy variables and indexing the domain
representation is left to the interpreter. Specifically, traditional programming constructs of
iteration, variable assignment, and data structure manipulation have been obviated by the use
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of prefix predicate calculus as a procedural specification language. We have replaced what to
do at the Lisp computational level by what is true at the “knowledge level” of the procedure we
are describing.  Finally, the metarules are abstract characterizations of the procedural
knowledge that is stated in a domain-specific, implicit way in MYCIN's rules. In this case, the
ordering of specific values, such as the order in which to gather data to confirm a hypothesis,
has been abstracted to metarules based on preference relations such as trigger finding and
necessary precursor.

What is the nature of reracies' abstract procedure? What does it do? Studying it, we find
a surprisingly simple pattern. There are only three types of task foci: hypotheses, findings, and
domain rules. The purpose of each task is to select a new focus (for example, moving from a
hypothesis to desirable findings). Metarules do this by relating a current focus to other
findings, hypotheses, and rules in the knowledge base. Thus, domain-specific orderings (“ Does
the patient have an infection? Is the infection meningitis?‘) are replaced by:

. atask, something the program is trying to do with respect to its known findings or
believed hypotheses;

. afocus (one or more findings, hypotheses, or rules);

. relations among findings, hypotheses, and rules that enable them to be selected
preferentially.

An unexpected effect of stating the diagnostic procedure in this way is that there is no more
backward chaining at the domain level. That is, the only reason MYCIN does backward
chaining during its diagnostic (history and physical) phase is to accomplish top-down
refinement and to apply screening rules. This is an important result. By studying the
hundreds of rules in the MYCIN system, factoring out domain relations from control
knowledge, we have greatly deepened our understanding of the knowledge encoded in the rules.
The previously implicit relations between clauses and between a premise and action that made
backchaining necessary are now explicit and used directly for selecting the next primitive
action (question to ask, assertion to be made, domain rule to apply).

9.2. The advantages of PPC notation for studying procedures

Below we will consider what the relations of Heracles revea about the nature of procedures.
But first it is worth pausing to consider the advantages of the prefix predicate calculus
notation. None of patterns we have discovered were as evident in the original Lisp version of
NEOMYCIN's metarules. When the rules were re-expressed in s we stopped thinking so much
about programming and started to think about the knowledge we were encoding, Vviz,

« Most of the “flags’ in the program were replaced by unary relations. For example,
the Lisp free variable PROBLEM-IDENTIFIED became the statement, (TASK-
COMPLETED IDENTIFY-PROBLEM). We discovered that for every flag there
was some implicit concept that was being characterized by an implicit relation.
Here, we recognized that PROBLEM-IDENTIFIED could be restated as the
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proposition, “The task IDENTIFY-PROBLEM has completed.” Implicitly, the task
IDENTIFY-PROBLEM was being characterized by the the relation TASK-
COMPLETED. Thus, a new relation was added to the program. This kind of
analysis provides a better understanding of the domain and procedural knowledge.
It also greetly facilitates program design. For example, context shifting, as required
for student modeling, can be handled in a more general way using the predicate
calculus notation instead of free variables. Put another way, PPC notation helps us
to separate task-specific control knowledge from the implementation of the task
interpreter.

. We found that all domain Lisp properties were relations among findings,
hypotheses, and domain rules. The entire domain knowledge base can be viewed as
a hierarchical, relational database. Rather than “parameters’ and “rules’ we began
to think in terms of findings, hypotheses, and rules and classifications of these.
Similarly, we found that the focus of each task was typed.

. We discovered that all of the predicates in EMYCIN's rule language could be
expressed as relations about propositions. For example, (SAME CNTXT PARM
VALU), “parm of context is value,” could be restated in PPC as (with a partidly
instantiated example):

(AND (BELIEF (<parm> $CNTXT $VALU) $CF)
( >$CF 200)).

(AND (BELIEF (SITE CULTURE-lI BLOOD) $CF)
(>$CF 200)).

This reveals that EMYCIN's “parameters’ are domain-specific relations characterizing
various objects (the contexts), and the rule premise functions (e.g., SAME) are
relations between a domain proposition and a certainty factor. (See (Clancey, 1985)
for further logical analysis of MYCIN's parameters.)

9.3. The relation between classifications and procedures

The PPC notation helps us see patterns: relations among “rule premise functions,” among data
structures (the IMPLEMENTATION relation used by the compiler), among tasks. The relations
in PPC are the patterns that we observe. We observe that different tasks (e.g., explanation,
diagnosis, compilation) require that knowledge be used in different ways, as evidenced by the
different second order relations required by the different procedures we have written:

. The EMYCIN interpreter needs to know only a handful of simple relations. The
most important are:
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(PROMPT $PARM $STRING)
(ASKFIRST $PARM)
(MULTIVALUED $PARM)
(LEGAL-VALUE $PARM $VALU)

(MENTIONS $RULE $PARM $CNTXT)
(CONCLUDES $RULE $PARM $CNTXT)
(ANTECEDENT $RULE)

(ASKED ($PARM $CNTXT $VALU) )
(APPLIED $RULE $CNTXT)
(BELIEF ($PARM $CNTXT $VALU) $CF)

. The EMYCIN explanation program needs to know how parameters and rules interact
during problem solving, e.g., (RULE-FAILED $RULE $CLAUSE).

. HEracLEs'  Classification procedure requires hierarchical and triggering and relations,
e.0., (SUBSUMES $SFINDING1 $FINDING?2).

. The task interpreter needs to know how metarules should be applied, e.g., (TASK-
TYPE $TASK $TYPE).

. The rule compiler needs to know the IMPLEMENTATION, whether a relation is a
predicate or a function, and whether matching should be exhaustive.

. HERACLES explanation program uses knowledge about how relations can be inferred
from one another and belief about what the listener knows (Section 8).

Relations discriminate, they make distinctions that are essential for satisfying procedural
objectives, and making distinctions is what control knowledge is all about. It has been known
for some time that classification is at the core of problem solving (Bruner, et al., 1956). We
are constantly faced with choices, and they are arbitrated by classification distinctions that we
make about data, operators, beliefs, states, etc.

Relations are a means for indexing domain-specific knowledge: They select hypotheses to
focus upon, findings to request, and domain inferences that might be made. As such, relations
constitute the organization, the access paths, by which strategies bring domain-specific
knowledge into play. For example, the metarules given above mention the CHILDOF and
SUBSUMES relations. METARULEOQ01 (in Section 2.1) looks for the children of the current
hypothesis in order to pursue them; METARULEOO2 looks for a more general finding in order
to ask for it first.

These relations constitute the language by which the primitive domain concepts (particular
findings and disorder hypotheses) are related in a network. Adding a new strategy often
requires adding a new kind of relation to the network. For example, suppose we desire to
pursue common causes of a disorder before serious, but unusual causes. We must partition the
causes of any disorder according to this distinction, adding new relations to our language--
COMMON-CAUSES and SERIOUS-CAUSES.
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Similarly, the applicability of a strategy depends on the presence of given relations in the
domain. For example, a strategy might give preference to low-cost findings, but in a particular
problem domain al findings might be equally easy to attain. Or a given set of strategies
might deal with how to search a deep hierarchy of disorders, but in a given domain the
hierarchy might be shallow, making the strategies inapplicable. By stating strategies abstractly,
we are forced to explicate relations. On this basis we can compare domains with respect to the
applicability of strategies, referring to structural properties of the search space.

Lenat has found a similar relationship between heuristics (strategies) and slots (structural
relations) in his program for discovering new heuristics (Lenat, 1982). In particular, the ability
to reason about heuristics in EURISKO depends on breaking down complex conditions and
actions into many smaller slots that the program can inspect and modify selectively. The same
observation holds for domain concepts whose representation is refined by the synthesis of new
dots (e.g., adding a PRIME-FACTORS dlot to every number). The program even reasons about
relations by creating a new dlot that collects relations among entries of an important slot.

More generally, it is interesting to view the domain knowledge base of relations as a map for
accomplishing some task. The map makes certain distinctions that are useful for the task at
hand. For example, if we wanted to understand the conditions for the spread of a blight, we
might use maps that reveal soil and climate conditions. In this sense, neowan s relational
knowledge base is a map, a view of the world, that has practical value for diagnosis.

9.4. The meaning of relations

The need to make new distinctions is tantamount to requiring new kinds of knowledge for
each procedure. In representing a procedure, using new relations, we are making new
statements about what is true in order to specify what to do (what operators to apply to what
focus). That is, we are organizing knowledge so that it is accessible, reviewable, and selectable
by procedures. Thus, an existing knowledge base must be continuously structured in richer
ways for explanation, student modeling, knowledge acquisition.

But what comes first--the distinctions or the procedure? The procedure itself exists in order
‘to “treat instances’ the “right way,” where the instances are the arguments to subprocedures.
Thus, we classify instances and say instances of a certain class are to be treated a certain way.
In so doing, we define classes in terms of their functional significance.

For example, we found in neawa N that certain findings, such as “headache” were triggering
new hypotheses, when there was much stronger evidence for hypotheses that accounted for these
findings aready. In addition, we noticed that the findings in question were so non-specific,
that it wasn't even clear that they needed to be explained. Thus, we made a distinction
between findings: non-specific (perhaps a sign of nothing treatably abnormal) and “red-flag”
(a finding that is so abnormal, it must be explained). With this new relation partitioning the
findings, we wrote a metarule, “If a non-specific finding is not already explained by
hypotheses suggested by redflag findings, then trigger new hypotheses, if any.” Notice that
“explained by” is another relation among findings and hypotheses, defined in terms of evidence
and subsumption.



35

The new relations (red-flag, explained-by) are defined in terms of primitive relations
(finding, suggests), but what they mean is bound up as well in how they are used proceduraly,
that is their association with diagnostic operators such as making an assertion and asking a
guestion. Hence, the relations are not natural distinctions as we might categorize cats and dogs
separately; they are functionally defined. The categories exist because they are procedurally
useful.

Other relations have a similar procedural interpretation, for example, follow-up question,
triggers, general question. The definition of these relations is captured by how they are used:

. this operation, a subtask, is (or is not) applicable to operands (the argument of the
task, its focus) of type X (e.g., follow-up question, non-specific finding);

. give preference to operands of type X for this operation (e.g., triggering finding is
pursued first in confirming a hypothesis).

This suggests that knowledge to derive the metarules includes being able to derive what
operations might be applicable to specific task operands. That is, we must know what
operations we want to do (e.g., apply a domain rule to change our belief in a hypothesis) and a
type characterization of applicable operands. Thus, put the most general way, the situation or
premise parts of metarules are searching for operands to which to apply inference operators.

Is there some conceptual definition that could be used to generate these operand distinctions,
* given other more-primitive, domain relations? Indeed, when we start studying the domain
relations (for explanation purposes) we discover that there are implicit implication relations
among them (Figure 9-1). For example, a follow-up relation implies that the characterizing
finding discriminates the first finding in terms of the process that is occurring. At a more
general level yet, we find that the follow-up finding presupposes the first finding. This
suggests that we could define perhaps statistical correlations related to specificity or ability to
discriminate hypotheses that could generate these “procedural” relations.

It is apparent that these relations, and even the more primitive relations in HeracLes, such
as CAUSES and SUBSUMES, are just a step removed from EMYCIN's domain-specific clause
orderings. They specify fairly closely what to do or in control terms, what to infer. We would
like to move closer to what is true about the world that makes these relations valid. The
knowledge we have stated is in the form of schemas indicating typical associations that are
valuable for problem solving. In a principled way, we would like to state mathematically
(statistically) what characteristics of a case population and what structural (hierarchical)
constraints make one finding a better general question than another or should cause a group of
findings to trigger a disease. To the extent that these are the relations in which experiential
knowledge is stated, we are seeking a model of learning that relates cognitive, social,
mathematical and world constraints to produce the distinctions we have recorded in
nNeowa N s knowledge base (e.g., triggers, follow-up questions, general questions, and red-flag
findings). Given such a model, we might also be able to automatically configure a knowledge
base given primitive relations from which the procedural relations can be derived.

It is also possible to proceed in the other direction, to view MYCIN as a model of “compiled
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Binary Relations

TRIGGERS FOLLOWUPQ
ENABLINGQ ANTECEDENT-IN PROCESSQ
CAUSES SUBSUMES

PARENT SUGGESTS

GENERALQ

REDFLAG

TAXONOMIC STATE-CATEGORY

Unary Relations:

Terms HYPOTHESIS FINDING

Figure9-1: Implication relations among reractes domain relations
[higher relations are defined in terms of lower relations]

knowledge” and neowa N as a specification of the primitive relations that get instantiated and
composed from practice (Anderson et al., 1981, Laird, et al., 1984). While NEOMYCIN's
knowledge is computationally equivalent to MYCIN--in terms of focus choice and conclusions--
it suggests perhaps a misleading model of learning. It is unlikely that people start only with
general principles and instantiate and compose them with experience. The medical knowledge
of neowcin most likely accumulated incrementally, by case experience, not uniformly
compiled from explicitly learned generalizations and structural models of the world. Thus,
problem solving behavior may appear systematic and principled, but the problem solver may be
totally unaware that he is following patterns.

The mechanism of learning may proceed in a way that is analogous to early language
learning. We learn how to speak, without being aware of the grammatical rules we are
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following. Indeed, it is interesting to compare the domain relations to linguistic categories
(noun, direct object, demonstrative pronoun, etc.) and the metarules to rules of grammar.
Metarules, like rules of grammar, have an abstract, hierarchical nature. Just as the rules of
grammar can be used to parse a linguistic utterance, the metarules can be used to parse a
sequence of classif ication actions, as in student modeling, providing a “deep structure®
interpretation of behavior (Clancey, 1984b). Is our awareness of the deep structure of language
any different from our awareness of the deep structure of diagnosis by classification? Are the
learning, representation, and processing mechanisms the same? Answers to these questions are
beyond our reach today.

9.5. The difficulties of making a procedure's rationale explicit

It might be objected that for some domains there are no patterns for using knowledge--no
abstract procedures--all facts and relations are inseparable from how they will be used. For
example, the procedure for confirming any given disorder (more generaly, interpreting signals
or configuring some device) might be completely situation-specific, so there are no genera
principles to apply. This would appear to be an unusual kind of domain. We are more
familiar with problems in which simple principles can be applied over and over again in many
situations.

Teaching and learning are made incredibly difficult if there is no carry-over of procedures

from one problem to another. Domains with a strong perceptual component, such as signal

. interpretation, might be like this. Perceptual skills rely on pattern matching, rather than

selective, controlled analysis of data; they are might be poor candidates for representing
procedures abstractly.

We also know that in many domains, for efficiency at runtime, procedures have been
compiled for solving routine problems. These procedures are written down in the familiar
“procedures manuals’ for organization management, equipment operation, configuration design,
troubleshooting, etc. It is important to recognize that these procedures are based upon domain
facts, constraints imposed by causal, temporal, and spatia interactions, problem-solving goals,

. abstract principles of design, diagnosis, etc. Except where a procedure is arbitrary, there must
be some underlying rationale for the selection and ordering of its steps. Knowing this
rationale is certainly important for reliably modifying the procedure; such procedures are often
just prepared plans that an expert (or a user following a program’s advice) may need to adapt
to unusual circumstances. At one level, the rationale can be made explicit in terms of an
abstract plan with its attendant domain structural relations; a redundant, compiled form can be
used for efficient routine problem solving.

In theory, if the rationale for a procedure or prepared plan can be made explicit, a program
can reconstruct the procedure from first principles. This approach has two basic difficulties.
First, the procedure might have been learned incrementally from case experience. It simply
handles problems well; there is no compiled-out theory that can be articulated. This problem
arises particularly for skills in which behavior has been shaped over time, or for any problem
in which the trace of “lessons’ has been poorly recorded. The second difficulty is that
constructing a procedure from first principles can involve a great dea of search. Stefik’s
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(Stefik, 1980) multi-leveled planning regime for constructing MOLGEN experiments testifies to
the complexity of the task and the limited capabilities of current programs. In contrast,
Friedland’s (Friedland, 1979) approach of constructing experiment plans from skeletal, abstract
plans trades flexibility for efficiency and resemblance to human solutions. While skeletal
plans may sometimes use domain-specific terms, as precompiled abstract procedures they are
analogous to HeracLES' s tasks.

Importantly, as mentioned in Section 6.2, the rationale for the abstract plan itself is not
explicit in any of these programs. For example, reracles' s metarules for a given task might
be ordered by preference (alternative methods to accomplish the same operation) or as steps in
aprocedure. Since the constraints that suggest the given ordering are not explicit, part of the
design of the program is still not explicit. For example, the abstract steps of top-down
refinement are now stated, but the sense in which they constitute this procedure is not
represented. (Why should pursuing siblings of a hypothesis be done before pursuing children?)
As another example, the task of *‘establishing the hypothesis space” by expanding the set of
possibilities beyond common, expected causes and then narrowing down in a refinement phase
has mathematical, set-theoretic underpinnings that are not explicit in the program. Similarly,
Stefik’s abstract planning procedure of “least-commitment” is implicit in numeric priorities
assigned to plan design operators (Clancey, 1983). Automatically constructing procedures at
this high level of abstraction, as opposed to implicitly building them into a program, has been
explored very little.

- We have considered how relations might be defined in terms of more primitive relations, but
is there any hope of formalizing what operators to apply and their applicable operands?
Essentially, we would like to represent what a task means, what goal it seeks to accomplish,
how the subtasks do this, and why the subtasks and metarules are ordered in a particular way.
For example, TEST-HYPOTHESIS is an example of a task in which the metarules capture an
ordered set of operand preferences. The goal of the task is to gather evidence that changes
belief. This can be accomplished by applying a APPLYRULE operator to a domain rule that
makes an assertion about the hypothesis. We could apply any domain rule, but we have some
constraints to satisfy, such as seeking the strongest belief first (to focus on the correct
diagnosis as quickly as possible). We transform our constraints into preferences that classify
possible domain rules. Specifically, we make distinctions about domain rules in terms of
findings they mention, the strength of belief in the conclusion, or the justification of the rule.
Then we write metarules to select domain rules on the basis of these distinctions. Representing
goals and operators as concepts that can be related by the program (for example, so the
program can be said in some sense to understand what it means to “gather evidence that
changes belief”) and relating constraints so they can be reformulated as classifications of
domain concepts, are major research problems. ( (Clancey, 1984b) lists all of HERACLES'
metarules with prosaic descriptions of the constraints they satisfy.)

It is not difficult to find portions of HERACLES' diagnostic procedure whose design is obscure.
In most cases, we are till groping for some idea of what to do, what the procedure is, and
have insufficient experience for deriving a better representation that would express the design
of the procedure more clearly. For example, the end conditions previously described encode
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the procedure implicitly. The rebinding of the list of new findings to bring about depth-first,
focused forward-reasoning is also obscure. Probably most disturbing of all, the premises of
FINDOUT metarules invoke this task recursively and indirectly through the domain interpreter
(should we view them as abstract domain rules, rather than metarules?). At the very least, we
now have a good criterion for identifying an implicit procedure: Any encoding that affects the
choice of operators, operands, or possible inferences that is not accomplished by an explicit
classification relation that makes a distinction among them. For example, the relation among
metarules is not explicit, so this part of the procedure is implicit (known only to the designer).

For the moment, we are driven by practical needs in writing teaching programs and worry
about deficiencies only as they become important to that goal. Indeed, we have found that a
good heuristic for representing procedures abstractly is to work with good teachers, for they are
most likely to have extracted principles at a level of detail worth teaching to students.

10. Related work

The study of problem solving procedures has played a central role in Al and Cognitive
Science. The design of Heracles has been influenced by a great deal of this previous research.

10.1. Cognitive studies

The idea of formalizing a diagnostic procedure as a separate body of knowledge was inspired
by studies of goals and strategies (Greeno, 1976, Schoenfeld, 1981), “deep structure” analyses of
problem solving sequences (Brown et al., 1977), psychological studies of medical problem
solving (Feltovich et al., 1980, Rubin, 1975, Elstein et al., 1978), and problem space
descriptions of behavior (Newell and Simon, 1972). These researchers share the view that
sequences of problem solving steps could be explained in terms of underlying reasoning
principles or strategies. This prompted us to redescribe MYCIN's knowledge in terms of orderly
sequences of problem-solving tasks, applied to a medical knowledge base of possible operators,
as reported in (Clancey, 1983, Clancey, 1984a, Clancey, 1984b).

10.2. Explicit control knowledge

If one views the cognitive studies as establishing a conceptual base for describing problem
solving, research in Al can be characterized as providing a technological base for constructing
programs. In particular, the work of Davis concerning metaknowledge, Specifically metarules,
provided a formalism and way of thinking about program design that strongly affected the
design of neomvctn.  In turn, the explicit control formalism of pLanner (Hewitt, 1972)
influenced Davis's work. In some sense, this work has all been influenced in a genera way by
the structured programming philosophy of abstract data types and hierarchical design (Dahl, et
a., 1972). Later descriptions of hierarchical planning (Sacerdoti, 1974) inspired the
hierarchical task decomposition of the diagnostic procedure of neowa N

The idea of a problem solving architecture with explicit bodies of control and domain
knowledge has several sources. For example, representing control knowledge abstractly moves
us closer to our ideal of specifying to a program what problem to solve versus how to solve the
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problem (Feigenbaum, 1977). Dating back at least to McCarthy’s Advice Taker (McCarthy,
1960), many researchers have taken the ideal form of a program to be one that could accept
new pieces of information incrementally. For a system with this architecture, improving a
program is a well-structured process of stating knowledge relations or, separately, How the
knowledge will be used. This is to be contrasted with doing both simultaneously in an
intermingled, redundant way, asin MYCIN's rules.

An analogy can be made with GuipoN (Clancey, 1979) (Clancey, 1982a), whose body of
abstract teaching rules makes the program usable with multiple domains. Traditional CAI
programs are specific to particular problems (not just problem domains) and have both subject
matter expertise and teaching strategies embedded within them. The separation of these in
aupoy, and now the abstract representation of strategies in neowan, is part of the logical
progression of expert systems research that began with separation of the interpreter from the
knowledge base in MYCIN. The trend throughout has been to state domain-specific knowledge
more declaratively and to generalize the procedures that control its application.

Probably the earliest, large-scale redlization of the idea separation between knowledge and
search control is in Hearsay, with its well-defined sources of knowledge, multi-leveled abstract
description of solutions on a blackboard, and control knowledge for focusing on data and
solution elements (Erman, et al., 1980). Several general problem solving architectures have
been developed to improve upon this structure, notably including Hearsav-iT (Erman, et al.,
1981) and BB1 (Hayes-Roth, 1984). The emphasis in Heractes has not so much to build a
- genera architecture, but to proceed in a bottom-up way to specify the knowledge and
distinctions important for explanation and student modeling. Then, with a developed
vocabulary of knowledge relations and a diagnostic procedure, we have proceeded empirically to
characterize the meaning of this general control knowledge and how it might be generalized.
We find that the complex control requirements of diagnosis require a rich relational vocabulary
for relating domain rules, a conclusion that is paralleled in recent extensions to Hearsay that
achieve finer-grained control by making explicit the relations among knowledge sources
(Corkill, et a., 1982).

10.3. Logic specification of procedures

A considerable amount of research is specifically concerned with using logic formalisms to
represent inference procedures. None of this work was known to us during the development of
NEOMYCIN, but the connections are obvious and worth considering.

Perhaps from the most general point of view, this research could be characterized as an
attempt to extend logic to make deduction more efficient. For example, under one conception,
a data base of facts requires a smart interpreter that has knowledge about different deductive
methods and different kinds of problems to control its search. amro was one of the earliest
attempts to represent different inference procedures in logic DEKLEER79. The idea of partial
programs, continuing in the Advice Taker tradition, is a continuation of this effort to find a
suitable language for incrementally improving a program’s behavior (Genesereth, 1984).

Similar problems with efficient deduction arise in database systems that combine relational
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networks with logic programming (e.g., see (Nicolas, 1977)). To conserve space, it is not
practical to explicitly store every relation among entities in a database. For example, a
database about a population of a country might record just the parents of each person (e.g.,
(MOTHEROF $CHILD $MOTHER) and (FATHEROF $CHILD $FATHER)). A separate body
of general derivation axioms is used to retrieve other relations (the intensional database). For
example, siblings can be computed by the rule:

(IF (AND (PERSON $PERSON)
(MOTHEROF $PERSON $MOTHER)
(PERSON $PERSON2)
(MOTHEROF $PERSON2 $MOTHER))
(SIBLING $PERSON $PERSON2))

Such a rule is quite similar to the abstract metarules that NEOMY CIN uses for deducing the
presence or absence of findings. NEOMYCIN differs from database systems in that its rules
are grouped and controlled to accomplish abstract tasks. Only a few of NEOMYCIN’s
metarules make inferences about database relations, most invoke other tasks, such as “ask a
general question” and “group and differentiate hypotheses” Moreover, the knowledge base
contains judgmental rules of evidence for the disorder hypotheses. These differences aside, the
analogy is stimulating. It suggests that treating a knowledge base as an object to be inspected,
reasoned about, and manipulated by abstract procedures--as a database is checked for integrity,
queried, and extended by general axioms--is a powerful design principle for building

. knowledge systems.

10.4. Hybrid systems
HERACLES IS a prime example of a hybrid system, combining Lisp, predicate calculus,
procedural, and rule representations of knowledge. Simple rule and frame systems, in contrast
with traditional programs, are valued for their syntactic simplicity, facilitating the writing of
interpretation programs for problem solving, explanation, knowledge acquisition, etc. Yet, in
the past decade it has become obvious that different representations are advantageous for
efficiency and perspicuity. Other researchers have found similar pragmatic advantages to the
" kind of hybrid design we find in HeEracLEs. For example, in sopHIE-TI multiple
representations are nicely integrated by a common database that allows dependency-directed
inference (Brown, 1977, de Kleer, 1984). Rich (Rich, 1982) reports a system that combines
predicate calculus with other representations. Furthermore, an initial motivation for vrs was
to' facilitate multiple representation systems, an early meaning for the acronym. It is now
common to find knowledge engineering tools with hybrid architectures, such as the
combination of rule and object-oriented programming in Looes (Bobrow and Stefik, 1983) and

stroee  (Smith, 1984).

Recently, the idea of developing a knowledge-specification language that is integrated with
implementation data structures by a compiler, as in reracles’ metarules, has become popular.
GLISP programs are “compiled relative to a knowledge base of object descriptions, a form of
abstract datatypes’ (Novak, 1982). In the context of automatic programming research, the Aps
language (Cohen and Goldman, 1985) integrates a relational view of Lisp data with predicate
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caculus, in a manner very similar to HERACLES. stroBe USES an object-oriented language in its
control rules, resulting in a syntax somewhere between Lisp and predicate calculus. Preference
for these different languages, based on ease of readability, may depend more on familiarity
than abstract properties of the formalisms.

Comparing the object-oriented and relational approaches, the ability of an object to respond
to a message is analogous to having a relation defined for an instance of a term. Sending a
message to an object is analogous to inferring the truth of a proposition when one or more of
the terms are bound. The object-oriented view is useful for implementation (e.g., note how
our compiler relies on a relation being implemented as a property of the first term), but we
believe that a relational view provides a more elegant and revealing perspective for making
statements about the knowledge in a system. Metaknowledge takes the form of relations about
relations, but statements about messages are neither objects nor messages.

10.5. Rule sets

Rule sets have become popular for hierarchically controlling rules. The control primitives of
HERACLES are very similar to those developed contemporaneously in rooes.  However, this
formalism is used in Heractes for controlling rules that invoke domain rules in a much more
complex way, not for organizing the domain rules themselves, as in tooes. Laoes has an
agenda mechanism for controlling tasks, which might be advantageous for modeling a process
like diagnosis. However, Looes lacks the pattern-matching language that we have found to be
- essential for the indexing and selection operations of an abstract inference procedure.
Georgeff (Georgeff, 1982) proposes a framework for procedural control of production systems
that bears some resemblance to weracLeEs rule sets, but again, he organizes domain rules
directly. The task and rule set idea of Heraces has been applied in strose, but here with
some abstract metarules for controlling search (Young, et al., 1985).

10.6. Explanation

Aside from its obvious origin in the original explanation research of Shortliffe and Davis,
.HeracLEs  Fesearch has developed in paralel with the work of Swartout, with complementary
conclusions and methodology. An interesting distinction is that Swartout has focused on
explaining numerical procedures (how a drug’'s dosage is computed), while we have focused on
the -more general procedures of classification reasoning. Consequently, we have easily stated
our .procedures abstractly, while it is less obvious that a procedure that is more like a recipe
for doing something has a meaningful or useful generalization. The level of abstraction aside,
both xpLAIN and HeracLes achieve explanations through the separate and explicit
representation of domain facts and the procedure for their inclusion and ordering in problem
solving. Furthermore, Swartout demonstrated that an automatic programming approach, as
difficult as it first seemed, was a natural, direct way to ensure that the program had knowledge
of its own design (Swartout, 1981). That is, providing complete explanations means
understanding the design well enough to derive the procedures yourself.

As discussed in Section 9.5, the search process of diagnosis, particularly for focus of
attention, is so complex that we don’'t know exactly what the program should do, let alone
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justify what it currently does in any principled way. However, we believe that the methodology
of constructing the program from a specification would be good approach for studying and
making more explicit the constraints that lie behind the tasks and metarules.

10.7. The meaning of procedures

This research has clarified for us that there is a useful distinction at a “knowledge level”
between facts (what we declare to be true) and procedures (sequential descriptions of what we
do). Pursuing our ideal of making explicit the rationale that lies behind every piece of
knowledge in our programs, we considered in Section 9 the meaning of HeracLes' inference
procedure. This kind of analysis, particularly the search for unspecified constraints, has been
strongly influenced by the work of van Lehn and Brown (VanLehn and Brown, 1979),
specifically in their very detailed analysis of mathematica procedures. In this restricted
domain they have derived alternative procedures from constraints that define operators and the
representations being manipulated. This level of precision remains an ideal that directs
continuing reracles research.  Brown's preliminary study of the semantics of procedures
(Brown, et a., 1982b) reveals a combination of orthogonal constraints very similar to what we
have discovered in anayzing reracles metarules.

11. Summary of advantages
The advantages of representing control knowledge abstractly can be summarized according to
engineering, scientific, and practical benefits:

. Engineering.

o The explicit design is easier to debug and modify. Hierarchical relations
amogg findings and hypotheses and search strategies are no longer
procedurally embedded in rules.

o Knowledge is represented more generaly, so we get more performance from
less system-building effort. We don’'t need to specify every situation in which
a given fact should be used.

o The body of abstract control knowledge can be applied to other problems,
constituting the basis of a generic system, for example, a tool for building
consultation programs that do diagnosis.

. Science. Factoring out control knowledge from domain knowledge provides a basis
for studying the nature of strategies. Patterns become clear, revealing, for example,
the underlying structural bases for backward chaining.  Comparisons between
gomai rll_sedcan be made according to whether a given relation exists or a strategy can

e applied.

¢ Pract ice.

o A considerable savings in storage is achieved if abstract strategies are available
for solving problems.  Domain-specific procedures for dealing with all
possible situations needn’t be compiled in advance.

o Explanations can be more detailed, down to the level of abstract relations and
strategies, so the program can be evaluated more thoroughly and used more

responsibly.
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o Because strategies are stated abstractly, the program can recognize the
application of a particular strategy in different situations. This provides a
basis for explanation by analogy, as well as recognizing plans during
knowledge acquisition or student modelling.

There is certainly an initial cost to stating procedures abstractly, whose benefit is unlikely to
be realized if no explanation facility is desired, only the origina designers maintain or modify
the knowledge base, or there is no desire to build a generic system. But even this argument is
dubitable: a knowledge base with embedded strategies can appear cryptic to even the original
designers after it has been left aside for a few months. The quality of a knowledge base
depends not only on how well it solves problems, but also how on easily its design allows it to
be maintained. Easy maintenance--the capability to reliably modify a knowledge base without
extensive reprogramming--is important for several reasons:

. Knowledge-based programs are built incrementally, based on many trials, so
modification is continually required, including updates based on improved expertise
it was very difficult to add knowledge about new infections to MYCIN because of
the implicit search procedure in existing rules).

. A knowledge base is a repository that other researchers and users may wish to build
upon years later;

. A client receiving a knowledge base constructed for him may wish to correct and
extend it without the assistance of the original designers.

. Also, anyone intending to build more than one system will benefit from expressing
knowledge as generally as possible so that lessons about structure and strategy can
speed up the building of new systems.

A knowledge base is like a traditional program in that maintaining it requires having a good
understanding of the underlying design. Problems encountered in understanding traditional
programs--poorly-structured code, implicit side-effects, and inadequate documentation--carry
over to knowledge base maintenance. The architecture advocated here--statement of inference
procedures abstractly, in a well-structured language--avoids procedural embedding, forcing the
knowledge engineer to state domain knowledge in a well-structured way, so it can be flexibly
indexed by his procedures.

12. Conclusions

This research began with the conjecture that the procedure for diagnosis could be separated
from the medical knowledge base, and that this would offer advantages for explanation, student
modeling, and knowledge engineering. neowain, its generalization to Heractes, and the
associated prototype programs (Sections 7 and 8) demonstrate that the separation and explicit
representation of procedural knowledge has merit and is possible.  The architecture is
convenient, and all indications are that it provides a good basis for further investigation in the
nature of procedural knowledge and its use for different purposes.

It is worth noting that our methodology, driven by failures of our programs to meet
behavioral objectives, has been very valuable. We select a level of explicitness desirable in our
knowledge bases through by using them in diverse programs (e.g., explanation, modeling). Then
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we note the limitations for interpreting this knowledge representation, particularly what
distinctions need to be made explicit so the procedural knowledge (for diagnosis, compiling,
explaining, modeling) can make intelligent choices among aternatives. This continues our
approach begun in mcrn of developing a language, building specific programs for difficult
problems, studying the knowledge we have collected, and then repeating the cycle. Our
conjectures about problem solving architecture gain credence through experimentation: a given
task/metarule is applied in multiple contexts in a given problem, interpreted for different
behaviors (e.g., explanation and modeling), and carried over to other domains in new HeracLEs
systems. In this way, we exploit the idea of abstract control knowledge and gain confidence in
the generality of our results. Rather than just building one “expert system” after another, we
are developing theories about kinds of knowledge and methods for solving problems.

Critiquing HeracLes today, what does it need to be a more general, useful system for
modeling human classif ication problem solving? We would incorporate, at least: k.- o style
definitions of concepts and general subsumption algorithm (Schmolze and Lipkis, 1983);
hierarchies as lattices allowing multiple parents; conceptual graph definitions of relations
SOwWA84; an agenda mechanism for tasks; and dependency reasoning for belief maintenance (de
Kleer, 1984). Each of these components is getting so complex, it is unlikely that the
community of Al researchers can afford much longer to redundantly re-implement them in
every architecture. At some point, we may need to develop interface languages that allow us to
share modules, permitting individual decisions about the level of implementation, domain
structures, and control, with compilation used to piece together hybrid systems like HeracLEs.
If this is to be so, the kind of separation and explicit representation of different kinds of
knowledge, organized around a relational language, as we advocate, may become an essential
principle for building knowledge systems.
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|. Metarule relational language

The relations used in Heracles metarules and rules for metarule premise relations are listed
here. They are categorized as domain, dynamic belief, dynamic search or focus bookkeeping,
and computational. Inverses (e.g., causes and caused-by) are omitted here, but included in the
knowledge base. The important primitive terms are $PARM, $RULE, $CF, and $CNTXT. All
other terms and relations are defined in these terms. Indentation indicates hierarchical
definition of new terms. For example, a nonspecific finding is a kind of finding. These
relations are generally implemented as Lisp structures. the dynamic belief relations are all
implemented as Lisp functions.

Domain Relations Pertaining to Findings and Hypotheses

(FINDING $PARM)
(SOFT-DATA $FINDING)
(HARD-DATA S$FINDING)
(NONSPECIFIC $FINDING)
(REDFLAG $FINDING)
(HYPOTHESIS $PARM)
(STATE-CATEGORY $HYP)
(TAXONOMIC $HYP)
(PARENTOF $TAXPARM $PARENT)
(COMPLEX $TAXPARM)

(CAUSES $HYP1 $HYP2)

(SUBSUMES $FINDING1 SFINDING2)

(PROCESSQ $FINDING1 SFINDING?)

(CLARIFYQ $FINDING1 SFINDING?2)

(SOURCE $FINDING1 $FINDING?2)

(SCREENS $FINDING1 $SFINDING?)
(PROCESS-FEATURES $HYP $SLOT $VAL SFINDING)

(ALWAY S-SPECIFY $FINDING)
(ASKFIRST $FINDING)
(PROMPT $FINDING $VAL)

(BOOLEAN $PARM)
(MULTIVALUED $PARM)
(TABLE $BLOCKPARM $FINDING)

(ENABLINGQ $HY P $SFINDING)
(SUGGESTS $PARM $HYP)
(TRIGGERS $PARM §$HYP)
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Domain Relations Pertaining to Rules

(ANTECEDENT-IN $FINDING $RULE)
(APPLICABLE? $SRULE $CNTXT $FLG)
(EVIDENCEFOR? $PARM $HY P $RULE $CF)
(COMMONCASERULES $HYP $RULE)
(UNUSUALCASERULES $HYP $RULE)

(PREMISE $SRULE $VAL)
(ACTION $RULE $VAL)
(ANTECEDENT $RULE)
(TRIGGER $RULE)
(SCREEN $RULE)

Dynamic Belief Relations

(BELIEF $HY P $CF)
(CUMCF-VALUE $HYP $CF)
(MAX-CONSIDERED-HYP-CUMCF $CF)

" (PREVIEW $CNTXT $RULE)

(DEFINITE $CNTXT $PARM)

(DEFIS $CNTXT $PARM $VALUE)
(DEFNOT $CNTXT $PARM $VALUE)
(NOTKNOWN $CNTXT $PARM)
(SAME $CNTXT $PARM $VALUE $CF)
(SAMEP $CNTXT $PARM)

Dynamic Search or Focus Relations

(CONSIDERED $HYP)
(DESCENDENTS-EXPLORED $TAXPARM)
(EXPLORED $TAXPARM)
(PARENTS-EXPLORED $TAXPARM)
(PURSUED $HYP)

(REFINED $HYP)

(REFINED-COMPLEX $HYP)

(APPLIEDTOP $RULE $CNTXT)
(DONTASKP $CNTXT $PARM)
(TRACEDP $CNTXT $PARM)
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(CLARIFIED $FINDING)

(ELABORATED $FINDING)
(SPECIFICS-REQUESTED $FINDING)
(SUBSUMPTION-CONCLUDED $FINDING)
(USERSUPPLIED $FINDING)

(TASK-COMPLETED $TASK)

Dynamic Relations with Changing Values

(CURFOCUS $HYP)
(DIFFERENTIAL $HYP)
(NEW.DIFFERENTIAL)
(WIDER.DIFFERENTIAL)
(DIFFERENTIAL.COMPACT)

(NEXT-HARD-DATAQ S$FINDING)
(NEW.DATA S$SFINDING)
(PARTPROC.DATA S$FINDING)

* Computational Relations

(ABS $ARG $RESULT)
(CFCOMBINE $CF1 $CF2 $RESULT)
(EQ SARG1 $ARG?2)

(GREATERP $ARG1 $ARG2)
(LESSP $ARG1 $ARG?)

(MINUS $ARG1 $ARG2 $SRESULT)
(MINUSP $ARG)

" (NULL $ARG)

(TIMES $ARG1 $ARG2 $SRESULT)

(FIRST-ONE SLIST $RESULT)
(LENGTH $LIST $SRESULT)

(MAKESET $PROP $COLLECTVAR $RESULTVAR)
(MEMBER $MEM $SET])

(SINGLETON? $LIST)

(PREDICATE $REL)
(IMPLEMENTATION $REL $VAL)
(MULTIPLEMATCH $REL)
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(UNIFY $PATTERN $FACT)

Metarule Premise Relations (Composites)

(ACTIVEHYP? $HYP)

(ALWAY S-SPECIFY ? SFINDING)
(ANTECEDENT.RULES? $PARM $RULE)

(ANY .ANCESTOR? SHYP1 $HYP2)
(BESTCOMPETITOR $CURRENTHYP $BETTERHYP $BHCF)
(BESTHYP $HYP)

(CHILDOF $HY P $CHILD)

(CLARIFY.QUESTIONS SFINDING $PROCPARM)
(DIFF.EXPLAINED $FINDING)
(DIFF.NOTPARENTS-EXPLORED?)
(DIFF.NOTPURSUED?)

(ELIGIBLECHILD)

(ENABLING.QUESTIONS $HY P $SRULE)
(EXPLAINEDBY $FINDING $HY P)
(EXPLORE.CHILD? $HY P $H)

(EXPLORE.HYP? $HYP)

(EXPLORESIBLING? $OLDFOCUS $HYP)

- (NEXTGENERALQ? $FOCUSQ)
(PARTPROC.NOTELABORATED? SFINDING)
(PARTPROC.SUGGESTRULES? $PARM $RULE)
(POP-FINDING)

(POP-HYPOTHESIS)

(POP-REDFLAG-FINDING $FOCUSFINDING)
(PROCESS-QUESTIONS? $PARM $PROCTY PEPARM)
(REFINABLE? $HYP)

(REFINABLENODE? $OLDFOCUS $FOCUSCHILD)
(REMAINING.QUESTIONS $HYP SRULE)
(SINGLE.TOPCAUSE $FOCUS)

(SOURCEOF $PARM $SOURCE)
(STRONG-COMPETITOR? $CURRENTHYP $BESTCOMP)
(SUBSUMPTION.SUBTRACED $CNTXT $PARM)
(SUBSUMPTION.SUPERFO $CNTXT $PARM)
(SUBSUMPTION.SUPERTRACED $CNTXT $PARM)
(SUBSUMPTION.SUPERUNK $CNTXT $PARM)
(SUGGESTRULES? $PARM $RULE)
(SUPERS.NOTRACED $PARM $SUPERPARM)
(TAXANCESTOR $HYP1 $HYP2)

(TAXREFINE? $HYP)

(TOP.UNCONFIRMED? SANCESTOR)
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(TOPUNCON $ANCESTOR $HYP)

(TRIGGERQ $HYP $RULE)

(TRIGGERS? $FINDING $RULE)

(UNAPPLIED? $RULE)

(UNCLARIFIED-FINDING $NEW.DATA $FINDING)
(UNEXPLOREDIFF.COMPACT? $HYP)
(UPDATE.DIFF.RULES? SFINDING $RULE)
(WAITINGEVIDRULES? $HYP SRULE)
(WEAK_.EVIDENCE.ONLY ? $HYP)
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