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Abstract: We present a system of interpolating splines with first and approximate sec-
ond order geometric continuity. The curves are easily computed in linear time by solving
a system of linear equations without the need to resort to any kind of successive approxi-
mation scheme. Emphasis is placed on the need to find aesthetically pleasing curves in a
wide range of circumstances; favorable results are obtained even when the knots are very
unequally spaced or widely separated. The curves are invariant under scaling, rotation,
and reflection, and the effects of a local change fall off exponentially as one moves away
from the disturbed knot. ’

Approximate second order continuity is achieved by using a linear “mock curvature”
function in place of the actual endpoint curvature for each spline segment and choosing
tangent directions at knots so as to equalize these. This avoids extraneous solutions and
other forms of undesirable behavior without seriously compromising the quality of the
results.

The actual spline segments can come from any family of curves whose endpoint curva-
tures can be suitably approximated, but we propose a specific family of parametric cubits.
There is freedom to allow tangent directions and “tension” parameters to be specified at
knots, and special “curl” parameters may be given for additional control near the endpoints
of open curves.

This rcsc<arch was supported in part by the National Scicncc F’oundation  under gr,ults
IST-820-1926  and MCS-83-00984  and by the Systems  Dcvclopmcnt I?oundation.
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1. Introduction

The problem of fitting a smooth curve through a set of points on the plane has many
important applications in computer graphics, computer aided design, and typesetting.
Often there is no pre-existing curve to approximate except possibly a freehand drawing,
and the only requirement is to find an aesthetically pleasing curve that the computer
can easily manipulate. For some interactive applications the curves can be controlled by
manipulating points that do not lie on the curve, but many applications require the control
points to lie on the curve. For example, the control points may be obtained by digitizing
key points on a drawing, or there may be a priori knowledge that the curve must pass
through certain points.

Suppose the curve must pass through points zo, x1, . . . , x,; either zo and x, ,are to
be the endpoints of the curve, or xo = x, and the curve is to be a closed loop. Optionally,
there may be direction vectors wi specifying the curve slope at some x;. For example,
some of the zi may have been selected as vertical extrema so that the curve must pass
through them horizontally. It is. desirable for the curve to be invariant under scaling,
rotation, and reflection in the sense that if T is such a transformation then applying T to
the computed curve should yield the same result as computing a new curve through Tzi
for 0 5 i 5 rt with direction vectors Twi.

The curve should have at least approximate continuity of slope and curvature where
no directions are given, and it would also be desirable to have some notion of extensibility
and locality. A system of splines is extensible if the curve generated from knots zo, ~1,
l * l 9

z, is identical to that generated from knots z& xi, . . . , zk+r where zi = zi for i < Ic,
2: = zi- 1 for i > k, and z; is on the curve segment joining zk-1 and zk. In other words,
adding a new knot already on the curve must not change it. In practice it is extremely
difhcult  to achieve exact extensibility. The only well-known extensible spline family is the
“curve of least energy” that minimizes the integral of squared curvature with respect to
arc length [3,6], but this curve is difficult to work with. It is interesting to note that
when the knots (arc nearly collinczar,  the curve of least energy approaches  the simple non-
parametric cubic splint passing through the given knots with continuous second derivative.
The splines that we deal with here  will share this property.

1. The effect of changing wg while preserving exact locality

1 The concept  of locality is that if one ‘of the knots or direction  vectors is pcrturbcd, the
chnngcs shor~ltl  bc conlincd to a few s~lrrorltltling.splinc  scg~ncnts.  Ilcrc wc will settle for a
kind of exponential dcclinc in influence rather  than a strict limitation to a few surrounding
knots. As the example of Figure 1 shows, it is diflicult  to have both exact locality and
continuity of curvature even for nearly  straight curves. If w()  is in the direction of zr - x0
then the desired curve is obviously a straight line, yet there is no way cubic curve can join
a straight line with continuous curvature.

B-splints have locality and continuous curvature, but of course they do not interpolate.
The interpolating splines analogous to cubic B-splines, somctimcs  called “natural cubic
splines,” do not have locality but can easily be computed by solving linear equations. If
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no directions are given, there is a unique piecewise parametric cubic, closed curve that is
C2 continuous with respect to the parameter and passes through n given points in order.
Such a curve can be uniquely represented as a cubic B-spline,  and its control points are
linear combinations of 20, 21, . . . z,.

As shown in [2], natural cubic splines do not perform well for unequally  spaced knots
because ehc spacing of parameter v&tes at knots does not reflect the spacing of the knots.
Better results can be obtained by setting the parameter at each knot zi to a value t; where
tj - tj-1 = IlZj - zj-111  for 1 _< j 5 n, and requiring second order continuity with respect
to the parnnletcr as shown in Figure 2b. This chordal paramcterization improves on the
uniform parameterization of Figure 2a, but. the splines that we shall develop still have
more gentle curvature in this case as shown in Figure 2c.

2a.  Natural cubits 2b. Cubits  with chordal
paramctcrization

2c. Cubits  with mock
curvature constraints

* Figure 2 points out the dif?‘erence  between geometric  and parametric continuity. Re-
quiring f1rs1 md sccor~d or(lcr collliutlily  with rcspcct  to the  paramct,cr  uses up four dcgrecs
of freedom  per knot, cnor~gh  CO completely dctcrminc a parametric cubic splint.  One of
these dcgrccs of freedom can be reclaimed  and put to better  use by altering the parameter
spacing as shown in Figure 2b, but another dcgreo of freedom can be made available by
requiring only continuity .of slope and curvature.

In [ I],  Barsky and Bcatty show how two extra degrees of freedom can be obtained
for B-splints by requiring only geometric continuity. We need to obtain similar degrees
of frecdoln for interpolating  splints, but ra!,hcr than trying to adapt the bias and tension
parameters of [ 11, we shall first concentrate  on finding good defaults to work from. The
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new parameters will be of little value if it is difficult to set them so as to obtain reasonable
results. Any system of cubic interpolating splines must implicitly provide some mechanism
for fixing the two parameters and it’is not at all clear that this best done by requiring cany
form of parametric C2 continuity.

In [5], J. R. Manning takes an interesting approach to this problem. He defines  a
specific family of curves so that so that there is a unique one for each pair of initial and
final points cand directions. He then selects spline directions at each knot so as to achieve
geometric continuity. Although Manning does not does not deal with the possibility of some
directions being specified in advance, his approach provides a certain degree  of locality in
that effects of local perturbations do not propagate past knots where a direction is given.

With Manning’s approach, both degrees of freedom are available to control the shape
of the curve, and defaults can be selected so as to obtain the most pleasing curves. Section 2
explains how to select the defaults by choosing two functions and using them to determine
the mngnitudes  of the velocities at each knot in such a way as to guarantee that the curves
generated  will be independent of scaling, rotation, and reflection. We can then provide
two “tension” parameters for each knot by simply dividing them into these functions.
Essentially the same approach would work for other kinds of curves, although there may be
more parameters to choose. We select parametric cubits  here because they are essentially
the simplest curves that can pass through two arbitrary points in two arbitrary directions.
Conic sections do not suffice because of their inability to handle points of inflection.

3. Three splines of t,hc type proposed in [5].

One apparent  disadvantage to this approach is the difficulty in solving for the direc-
tions that provide continuity of curvature. Manning proposes an iterative approximation
sclicmc that SCCIIIS to work well in practice,  but he admits that thcrc is not always a unique
solrtt,ion iuld Clicrc  is 110 ~IliLrilIltCC thilt Chc itcrat,ion ;klWibyS convcrgcs  to tllc dcsircti  Sob-

tion. Cubic splints often have very low curvature at their endpoints  when Ihcy have very
sharp bends internally, and this can introduce  cxtrancous  solutions as shown in Figure 3.
The three curves shown are all curvature continuous open curves that have given directions
at x0 cand 22, but regardless of the initial conditions, Manning’s iteration always converges
to one of the asymmetrical ones with sharp bends.  If ~(1  is raised and 22 lowered until the
angle x()zlz2  is about 122’, the ~asymnlctricnl  solutions mcrgc with the symmetrical ones
;and the rate of convcrgcncc for Manning’s iteration approaches zero,

While these kinds of problcnls  do not seem to occur when the angles involved arc not
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so large, much additional testing would be necessary in order to verify this. In section 3,
we show how all such problems can be avoided by setting up a system of linear equations
that are easy to solve Cand guarantee approximate continuity of curvature. We derive the
specific equations appropriate for the fantily of curves discussed ir; Section 2, but similar
equations could be derived for many different classes of curves.

2. The Magnitudes of the Velocity Vectors

The subproblem to be solved in this section can be stated as follows: Given two points
x; and zi+l, and two unit vectors wi and w;+l, find Can  aesthetically pleasing parametric
cubic z(t) so that z(0) = zi, z(1) =  zi+l, z’(O) =  cyw;, an’d z’(1) =  pw;+l,  w h e r e  a!
and ,B are positive real numbers and z’(t) is the componentwise derivative (z’(t), y’(t)) of
z(t) = (X(t),Y(Q). we 1 so wish to introduce two “tension” parameters T; and ?;+I suchJ
that plcasing curves will be obtained when r; = ?fi+l = 1, and as the tensions approach 00,
the curves will approach the line segment joining x; to zi+l.

In order to guarantee that the results are independent of translation, rotation, and
scaling, we shall begin by finding a function 2(t) such that

2(o) = (o,o), i(l) = (l,O),

i�( o ) = $ I(&  4 ) l (cos 8, sine),
7; a n d  Z’(l) = k o (e,4 ) +0~4 ,---~in4 ) (I)

i

where p and CT Care  positive real functions to be determined later, 0 = arg w; -arg(zi+l -zi),
and 4 = arg(z;+l  -zi) -+arg w;+l.  (Here arg(s,  y) is the angle w such that (2, y) is a positive
multiple of (cos w, sin w).) We then set

4) = 2; +.( Zl -20 Yo -Y1
Yl - Yo Xl--X0 >

a(t). (21

It is not hard to set that the parametric cubic satisfying (1) has BCzicr  control points
(O,O), (p/3~;). (cos&sin0),-(1  - (a/3?;+1)cos4,(0/3;i;+l)sin4), and (l,O), so that

E(t) = %(I - t)2(C0d,sid) + t2(1 - t) 3 - &, *
Ti ( %+1 >

+ t3( 1,o).
%+1 (3)

It only remains to choose positive functions p(0, 4) and a(O,4)  so that ~(0, 4) = a(+, 0) =
Pp, -4).

In [5] M<anning  chooses

P(4 4) =
2

a n d  0-(0,+) =
2

1+(1-c)coso+ccos~ I+~~~~~+(I-~)c~~~ (4

Cand then cxupirically  selects  c = 2/3 to obtain the most pleasing family of curves. Here
we shall attempt  to do a systematic  analysis of the vast range of possible functions to
dctcrminc whether slightly more co.lnplicatcd. functions will yield better  results. These
functions will have to bc cvaluatcd  only o&c for each scgmcnt  of the splint curve, and
they have a strong influence on the final shape.
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2.1. Mathematical measures af smoothness .

One common way of evaluating the smoothness of curves is to integrate the square of
curvature with respect to arc length. For Z = (?,fi)

(5)

This can be simplified somewhat but it still proves to be intractable analytically. This is
not surprising considering the complex behavior of numerical solutions.

Equation (5) is exactly the energy function that the curve of le<zst energy minimizes,
but if we restrict 2 to be the cubic spline (3), we can investigate the functions p and
0 that minimize (5). Actually we should consider the smallest local minimum since (5)
approaches 0 as p and CT approach 00 for fixed 8 and 4.

Unfortunately, numerical integration of Ic2 ds proves to be slow and imprecise, and it
would have to be repeated a large number of times in order to get a good idea what the
functions p(0,+) cand a(&+)  should be. Instead we shall introduce two other measures of
smoothness that behave similarly: .

(g!*yl IW I--
and

Using (6) to measure smoothness corresponds to taking the oo-norm of curvature instead
of the 2-norm; using (7) gives roughly similar results but applies a greater penalty to short

* periods of relatively high curvature. The functions p(8,+)  <and a(& 4) that minimize (7)
turn out to be somewhat better behaved than those that minimize (6), but the overall
character is the same for both measures of smoothness.

For fixed 0 and 4, the smoothness measures can have multiple local minima and the
relative smoothness at the local minima can change as 8 and 4 change. Therefore it should
not be surprising that the “optimum” p and CT functions have large discontinuitics where
they catCastrophically  change from one local minimum to another. When this happens there
tend to be (p, a) values between the two minima that also generate  relatively “smooth”
curves, so it is not really necessary to use discontinuous functions for p and Q.

s Figure 4 illustrates the most basic catastrophe. Ncsr 0 = 4 = 45', the “optimum”
p increases and the ~7 decreases <as 0 decreases. ‘J%is action  tends to rcducc the curvature
whcrc it is maximum near t = 1 without introducing other  points of high curvature.
When 0 sz 0 < 4, the situation is cntircly different.  The high curvature near t = 1 is
best controlled by making (I large, and incre(zsing  p beyond what is needed to control the
curvature at t = 0 just makes the problem worse.

When p Cand c arc chosen to minimize (6) as shown in Figure 4a, there arc actually two
catastrophes, Cand the short scgmcnt  between them is particularly interesting. Ordinarily,
extremely small 0 values lead to high curvature  near t = 1, but at 0 = 34.1 O, ~~ = 55.9”,
the curvature  is actually minimized by choosing Q = .261.  The choice of p = 2.423 here

~ 6



2.5

0” 10” 20” 30” 40” 50”
4a. The functions ~(0, 4) and a(O, 4)
versus 8 for 4 = 90” - 0, minimizing the
magnitude of curvature.

2.5

.O
0" ‘10” 20” 30” 40” 50”

4b. The functions p(0,@ and a(O, 4)
versus 8 for 4 = 90” - 8, minimizing the
magnitude of curvature change.

is extremely critical. As shown in Figure 5, this has the effect of making the last three
Bezier control points almost collinear, so that the endpoint curvature is not too large in
spite of the low velocity.

.

. 5. The Bdzicr control polygon for (3) with 0 = 34.1”, 4 = 55.9”, where p
and 0 are chosen to minimize  curvature.

The bizarre situation shown in Figure 5 does not occur when minimizing the derivative
of curvature, but thcrc is still a cntastrophc  near 25”. Wheu 0 + 4 = 90” and 0 < 25” the
“optimum” cubic has a point of inflection, but when 0 > 25” it has none.

Figure 6 shows how the “optimal” velocity parameters grow as 8 and 4 incre,ase.
Minimizing (7) pro duces a catastrophe at 68” where p and 0 increase to about 1.58 and
the cubic acquires a single  point of nmximum curvature at t = .5. For p = 0 z 1.34,
the maximum curvature occurs at t G .08 ‘and t sz .92. Intermediate values for p and CT
produce rclntivcly higlt change in curvature near t = 0 and t = 1.

Minilllizing  (G) illst,eilti  of (7) i~voitls t,hc  catastrophe  at 0 ‘-- (f, -=I G8”, bt11 then p a~ld
0 do not approach unique limits as (0, (b) --+ (0,O). Along 0 = -4 the limit is d/2, while
p and 0 approach 1 as 0 --+ 0 when 0 = 4. TJndcr the approximation k F=: $, when tither
(5) or (7) is used as the measure of smoothness, it can be shown that the optimum curves
care cubits  where pcos 0 = o cos 4 = 1. Thus, it seems  reasonable to let (p, a) ---+  (1,l)  as
(6 4) + (o,o)* .

2.2. Practical equations for the velocity parameters
Practical equations for p and 0 must bc continuous and fairly easy to evaluate.  The
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6a. “Optimum” p and 0 versus 0 when 6b. “Optimum” p and cr versus 0 when
0 = 4 for both smoothness measures. e= -4 for both smoothness measures.

“opt imum” functions illustrated in Figures 4 and 6 fail on both counts, but they still pro-
vide useful guidelines. The actual choice of functions is necessarily somewhat arbitrary, and
there is a trade-off between “smoothness” and simplicity. Other properties such as approx-
imate extensibility and predictable response to changes are also important, but empirical
studies indicate that these goals also tend to be served by maximizing “smoothness”.

We have already decided that p(O,O) = a(O,O) = 1. Thus for small angles we can
approximate the behavior of the curve of least energy and achieve very good approximate
extensibility. For 0 = 4, we should approximate the behavior of the functions shown in Fig-
ure Ga, but these functions increase  too rapidly for large angles: they’seem to approach 00

’ well before 0 and 4 reach 180”. It is convenient  to let
2

p CT== I + case for e = 4 (8)
so as to obtain good approximations to circles.

Because of the symmetry requirements p(0,4) = a(& 8) = p( -0, -qS), it suffices to
choose p and 0 for 0 2 101  5 4 5 180”. Figure 7a shows the p(O,4)  and a(O, 4) that
minimize (7) for 4 = 80”. Figure 7b shows practical functions p and (T that1 smooth out
the catastrophes and <are consistent with (8). S imilar plots for smaller 4 would have .p
and 0 closer to each other and closer to’ 1. (The slope  discontinuitics at 64.7” and 69.6’
arc due to changes in the rclativc sizes of extremn in $f at different parts of the cubic
curve.)

If complexity is of no concern, WC might want’ to choose p(0,4) and a(8,4) as follows
for 0 < 101  5 4 < 7r with angles measured in radians:

. P = f (6 4) + r(4) l s+Ap(o/4)),
Q = f (6 4) - $4) . Sin(*&V4)),

f (6 4) =
acY2+a+2c *
a!-t-c cosp+c'
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7a. “Optimum” p(0,+) and a(O,+)
versus 0 for 4 = 80°.
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7b. Practical functions p(0,4) and o(B,+)
versus 8 for C# = 80’.

r(4) = +qb - .15 sin(24),

*&4 = n l (x + (x2 - 1)((.32 - 4/%)x + 95 - 4/2n)). (9)

A least squares fit of f to (p + a)/2 with p and CJ chosen to minimize (7) yielded a =
0.2678306, c = 0.2638750, d = 1.402539, and e = 0.7539063. A possible refinement is to
require p 5 1.5&#sin(0 + 4) when 4 > n, 0 < 0, and 0 # -4 SO as to avoid any
possibility of generating  a curve with a cusp in it. (This only effects the above functions
when 4 >. 145”.)

It is desirable to have a sitnplcr approximation that does not use transcendental  func-
tions other than sines ‘and cosines of 0 and 4. One such approximation is the following
functions which were developed for the new METRFONT system [4]:

1

2+(3
p= i-t(i-c)cose+ccO~~'

2--a!
O= l+(l-c)cos~+ccose~

where

a = u(sin 0 - 6 sin +)(sin 4 -- 6 sin U)(cosU - cos 4).

The constants a, 6, and c were  chosen to minimize an error function based on the value
of (10) for 116 different (0, 4) pairs. This suggested a = 1.597, 6 = .0700, and c = .370,
but since empirical  evidcncc  indicated  that large values for ]p - CT] were causing problems,
METAFONT uses the slightly pcrturbcd  values a = a, 6 = -$, and c = (3 - &)/2.

Figure 8 shows some of the curves gcncratcd by (9) and (10). They arc similar for
moderate angles, but the simpler equations  set /I too small and CY too large when,  4 = -90’.
Equation (10) does not perform well in such extreme  casts because  it does not allow p - CT
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8a. Curves from (9) with 0 = 45’. 8b. Curves from (10) with 0 = 45O.

to be large enough when 0 < 0/+ < 1 without making (T - p too large when -1 < e/4 < 0
or moving the cross-over point where p = CT too close to e/4 = 0.

.
3. Mqck Curvature Constraints

Here we need to.extend  the notation of Section 2 SO that 0j = arg wj - arg(zi+r - zj)
for 0 < j < 7Z, #j = arg(Zj - zj-1) - iL;Tg wj for 0 < j < n, and dj is the Euclidean length of
the vector xj+r -zj for 0 2 j < n. If the problem is to find a closed curve with no directions
given, it will be convenient to sometimes use alternative names z,+r, 8,, +n+r, T,, and ?n+r
for xl, 80, +r,r(),  and 71 respectively. We can then define $j’= arg(zj+l-zj)-~~g(zj-zj-~)
for 1 < j 5 n’, where n’ = n for closed curve problems with no directions given and
n' = n - 1 otherwise. Unless stated otherwise, all $j care at most 180” in absolute value.

Where 20; has been given in advance, it simply determines 4; and 8;; other wi need
to be determined by solving for & and 4i. Since the problem of finding direction angles
can be broken into independent  subproblems separatatcd by knots where directions are
given, we can cassume  that no directions other than 200 and w, are given. For closed curve

. problems  we can assume that no directions at all are given, otherwise the problem could
be reduced to one or more open curve problems.

The requirement that the curvature be continuous at some knot zi, 0 < i < n, is

kl(~i-~,zi,wi-l,wi,~i-l)~i)  z k()(zi,zi+l,wi,wi+l,ri,~i+l)
where k. and ICI are functions that give the curvature at t = 0 and t = 1 in terms of the
endpoints, terminal  directions, ,and tension parameters for the family of curves being used.
Because of the requirement  for invariance under translation, rotation, and scaling, there
exists a function k such that ,

I kO(zj, zj+l, j)w wj+l, rj, rj+l-* )  = k(Oj,4j+l,Tj, Tj+l)/dj a n d
kl (zj, zj+l, j -*W* 9Wj+l,rj, r34 1 ) z k(Sj.,.l) Oj, Tj+l; rj)/clje (11)

Any particular family of curves determines  a specific function k that satisfies  (11).
The corresponding lnock curv~ture  function i consists of the linear terms in the Taylor
series for k(O,q5,  ,r ?), expanded about (O,+) = (0,O). For the curves detcrmincd by (2)
and (3) with p and CT determined by (9) or (lo),

and

jI 10
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(12)

where the angles are measured in radians. Since the tension parameters are always known
in advance, they are treated like constants in this expansion.

Continuity of mock curvature requires

i(4i’k-1, C’G-1)/4-l  - i(t);, 4i+l, Ti, ?i+l)/d; = 0 for 1 < i < n’.

Combining this with the first order continuity equations

ei + 4; = -$i for 1 5 i < n’-

(13)

gives enough equations to determine all Bi and 4i for closed curve problems. For open curve
problems when directions wo <and  w, are given in advance, these provide the necessary
additional equations by fixing 00 and 4,, but otherwise additional constraints are needed.

9a. x0 = x2 = 0. gb. xo = x2 = I.

The additional constraints care controlled by special “curl” parameters x0 and x,,.
There should be one such constraint for each endpoint where no direction is specified.
They have the form

@o, 4h.70, ?1> = xoq41,Qo’ %7-o)

The curl parameters give the ratio of the mock curvature at the endpoints to that at the
adjacent knots. They should probably have default values of 1 so that the first and last
spline segments will usually be good approximations to circular arcs as in Figure 9b.

We now have a system of equations consisting of (In), (l/i>, and possibly (15~)
and/or (156). If B. or 4n have been given in advance then they may bc regarded ras
constants. The first step is to rewrite (15~) ;ud ,(156) as

so that 00 and 4n can be eliminated. Then (14) may be used to eliminate all 4i so that
the remaining  vsriablcs are Or, 02, . . . , O,,, and the remaining equations  are those given
by (13) with appropriate  substitutions. This system has some important properties  that
may bc summarized cas  follows..
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Theorem I. If n 2 2, if all tension parameters satisfy the bound ri, 7i 1 r,,in > $, and
if any curl parameters satisfy ~0, xn 1 0, then cafter the aforementioned substitutions, a21
coefEcients  0f el, ear . . . , enI in (13) are nonnegative, and for each i, the coefficient of ej
is at Ieast  37,,,iIl - 1 times the sum of all the other coefficients in that equation.

Proof. The bounds on the tension parameters guarantee that the coefficient of 8 in (12)
will be negative, the coefficient of 4 will be positive, and the magnitude of the former
will be at least 37en - 1 times the latter. When 1 < i < n’ in (13), the only relevant
substitutions are 4j = -$j - 4j for 1~’ - iI 5 1, so the coefficients of 8;-1,  Bi and 0i+r
clearly have the required properties. For closed curve problems, the same holds for i = 1
and i = n’, otherwise additional substitutions eliminate 00 and 4n so that k(41,00,  ?I, TO)
depends only on 41 and &,_r,+,,r+r&) depends only on 8,-r. We need only show
that both of these variables have non-positive coefhcients. This is clearly true for given
directions, and it also holds for curl constraints since the coefficients in (16) are at most
370  - 1 <and 37, - 1 respectively. 1

Theorem 1 shows that subject to certain reasonable limitations on the tension and
curl parameters, the system of equations is diagonally dominant, and hence it has a unique
solution. Actually, the solution is unique only up to the choice of the angles $i. Ordinarily
all $i should be chosen so that they are at most 180” in absolute value, but it is possible
to add multiples of 360” to them.  The effect of such a change is usually to add a loop to
the curve <as in Figure 10.

1Oa. A spline computed with $2 = -90” lob. A spline computed with $2 = 270’

Theorem 1 also shows that the splines have approximate locality in the sense that
changes in direction angles fall off exponentially Gas one moves  away from a disturbance.
Specifically,  suppose a given direction 00 is displaced by an angle 6 and let A bc the matrix
0f cocfficicnts  of Or, e2, . . . 8,, from (13) aft er the substitutions. The change in Or, 02,

O,, due to this
ii?;‘=

displacement is given by the solution vector 0 to A@ = 6el where
(l,O,O ,...) O)?

2 WC know that A is tridiagonal  with nonnegative  entries,  and within each row the diag-
orrd olcnlent donlinates  the Slllll of the other two cler~lcnts  by at least a factor of 37,,*i,, - 1.
It is not hard to see that for any two adjacent  components  of 0, either 01, = 0 or
@k-l/Ok  < 1 - 37nd*)*- This is trivial for k = n’, and it may be extcndcd inductively
to smaller k using the fact that Akk 2 (3r,,,i,l  - l)(Ak,+l  + Ak,k+r). Thus j knots away
from whcrc a given direction is changed,  the effect of the change is reduced by at least a
factor Of (37,,,i*I  - 1)j. In practice the reduction is often by a somewhat greater amount as
in Figure 11 where  rnli,, = 1 and &/Or = - $+.

When a knot x; is displaced, three mock curvature  constraints arc directly affected
due to changcsin dill, di, tii-1, $~i, and $j+r. The adjustment  will cause some change
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in +;-I and 0;+i, and the effect on 0i+j and 8;-j for j > 1 is equivalent to what would
happen if directions w;+i cand wi-1 were given in advance. The change in B;+j will be at
most 1/(3.rkn - l)j-l as great as the change in 8;+r, and the change in 0,-j will be at most
l/(37&,,  - l)j-1 as great as the change in (bi-1. If the original problem was to find a closed
curve with no directions given, then these two effects will add together so that the change
in 8;+j will be at most 1/(3~h, - l)j-1 of the change in @;+I plus 1/(3~e,  - l)n-l-j of
the change in 4+-r.

4. Conclusion

We have developed a tridiagonal system of linear equations that can be solved in linear
time to determine the splint direction at each knot so as to match mock curvatures. It is
necessary to use arctangents to set up the system of equations, and to use sines and cosines
to recover the resulting splint directions; but this work can be reduced to one arctangent,
one sine, and one cosine per knot on the spline.

We have shown that the splines have approximate locality in the sense that changes
in direction  culgles  fall off exponentially. The rate of decline depends on how small the
tension parameters are allowed to be, but at least a factor of 2 per knot is guaranteed for
the default tensions. It should be noted that an exponential decline in cvlgular  change does
not guarantee that curve displacements decline similarly because it is technically feasible
for dj to be exponential in j.

The curve families discussed in Section 2 ‘and defined  by (9) and (10) are somewhat
arbitrary, cand the concept of mock curvature could bc applied to other families .of curves. It
would be desirable to find p and 0 functions simpler than (9) that perform better than (lo),
although even the simplified functions of (10) produce very good results for problems such
as that shown in Figure 2c.
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