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Abstract. It was conjectured by J. Ullman that uniform hashing is optimal in its expected retrieval
cost among all open-address hashing schemes (JACh4 19 (1972), 569-575). In this paper WC show
that, for any open-address hashing scheme, the expected cost of retrieving a record from a large
table which is a-fraction full is at least & log & + o(l). This proves Ullman’s conjecture to be
true in the asymptotic sense.
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1. Introduction.

Hashing is a frequently used technique for storing and retrieving records maintained in the
form of a table. In open-address hashing, the “key” of each record is mapped by a hashing function
to a sequence of table locations, and records are inserted and retrieved by following this sequence.
In particular, uniform hashing employs a hashing tinction  that maps keys into random permutations.
For uniform hashing, it is known [2] that the expected cost of inserting a new key into a table
cr-fraction  full is essentially equal to &- for a large table, while the expected cost of retrieving a
record in the table ist essentially i log A.

In 1972, Ullman [4] raised the optimality question of hashing function, and defined a
mathematical  model for discussing it. He showed that, in terms of the expcctcd insertion cost
of a new key, no hashing function can have a lower cost than the uniform hashing function all the
time; he also exhibited a hashing fi.mction  that performs better than uniform hashing some of the
time. Ullman conjectured that, in terms of the expected retrieval cost, uniform hashing is optimal all
the time. The main theorem of the present paper establishes Ullman’s conjecture in the asymptotic
sense, namely, the retrieval time using any hashing fimction is at least i log ,& + o(1).

Knuth [3] raised a weaker conjecture that, among single-hashing functions, which form a
restricted family of hashing fLlnctions,  none can perform substantially better than the performance
bounds of a random single-hashing function. That conjecture  was proved by Ajtai, Koml&, and
Szemerc/di [l]. The proof of our main theorem is based on an adaptation of the approach developed
in [l]. interested readers may refer to [1] for more discussions on the intuition behind this approach.

2. Terminology.

A model for studying the optimality of hashing functions was first formulated by Ullman [4].
We summarized the essential definitions below, with some slight changes in terminology.

Consider a table of A4 locations, where M is any positive integer. Let &n/i  be the set of all
permutations of (0, 1,2,. . . , M - 1). A hashiizg furzction h assigns each key K a permutation
h(K) = ili2.. l iM E f&. In inserting a key K into the table, we try locations il, iZ, . . . in
turn until an empty slot is found, where K is then inserted; the insertion cost is measured by the
number of locations tried until an empty slot is found. Now, suppose a sequence of N keys have
been inserted, where 1 5 N 2 M; let T be the resulting hash table. To retrieve a key K in T,
the rule is again to try in sequence the locations il, is,. . . as given by h(K), until I( is found;
the retrieval cost is the number of locations tried.

An (N, M)-scenario p is a sequence (~02,. . . ,ON) where each CT, E &M. Let TP be the
table obtained  when a sequence of N keys Kl, KS, . . . , KN have been inserted, with h(K,) =

tin this paper all the logarithms arc in the natural base e.



(T,. Denote by A(K,,  TP) the retrieval cost if K, is to be retrieved from TP, and let Ah(Tp) =

+I --c l<z<N4K~~ TA-

To analyze the pcrformancc  of a hashing fimction, WC simply identify each hashing function
h with a probability distribution ph over QM. Consider a random (N, M)-scenario p =

(%02,.. . , ON), where each 0% E Q M is indcpcndcntly distributed  according to ph. L-et Ch(N -
1, M) bc the expected value of A( KN, Z”), and C’,(N, M) the expected valuct of A&&).

Uniform hashing corresponds  to the distribution p&r) = l/M! for all r E QM. For
this hashing function, it was known (see, e.g. Knuth [2]) that Ch(N, M) = ,f&\, and
C’,(N, M) = w(HM+l -HM-~+1), where Hs is the Harmonic number l-j- 4 +- - l + &;

for fixed 0 < a = N/M < 1 and N -+ 00, this gives Ch(N, M) = --!- + o(l) and
1 -Q!

C’,(N, M) = A log $- + o(l).
CY -a

In the remainder  of this paper, we will USC cy to denote the Zoadirlg factor N/M, and GM
to denote the set of all hashing functions for tables of size M (i.e., the set of all probability
distributions over QM). Our main result is the following theorem.

Main Theorem. For any E > 0, there exists a constant a, such that the following is true: For all
integers N, M > 1 satisfying E < cx < 1 - E, and for any hashing fi-mction  h E GM,

1 1
C’,(N, M) > ; log 1 -

a, log M
-cY M l

(1)

.

Also, there exists an absolute constant b such that for all integer M > 1 and any hashing function
hG3u,

C’,(M,M) > logM-loglogM--b. (2)

.4 shgle-hashirrg furzctiorl h, in our notation, is a hashing fimction  with Ph(“) = l/M for x in
a certain set {7ro, 7r1,. . . , TM-~},  where lrrl f QM starts with j, and p&r) = 0 otherwise. Ajtai
et. al. [l] proved that (1) and (2) arc true when h is a single-hashing function.

3. Proof of the Main Theorem.

+ 3.1. Hcductkins..

.
Let us call a hashing function h E GM regular if p&r) # 0 for every 7r E QM. To prove

the Main Theorem, we need only to demonstrate  that inequalities (1) and (2) hold for all regular
hashing functions h, for some constants a, and b, bccausc the quantity C’,(N, M) is a continuous
function (in fact a polynomial) in the M! variables {P&r) 1 7r E QM}.

Suppose that M, N (1 < N < M) arc given, and that d is any intcgcr with 1 < d < N.-
Let h E GM bc any regular hashing function. For any intcgcr L, a random (I+ M)-scenario p =
tin Knuth [2], the notation C’ is used to dcnotc the itmv-(ion cost instead of the retrieval cost. We
follow hcrc the usage in Ullman [4].



(%Q2, l l l 9 aN) will be called an h-random (L, M)-scerzario,  if gi are independently distributed
according to ph. Consider the insertion of N keys according to an h-random (N, M)-scenario.
For each k E (0, 1,2, . . . , M - l}, let vk bc the probability that table location k is occupied after
N- d keys have been inserted, and let bk be the expected number of times location k has been
probed during the insertion process of the N keys. Clearly,

C’,(N,M) = ; c bk,
O<k<M

and

Let f (4 = X - e-’ c(i - d);, where X = -log(l - x). Our main effort will be in proving
i>d

.
the following proposition. Roughly speaking, it states that if location k is probed at least once, then
it is likely to have been probed a fair number of times.

Proposition 1. 6k 2 f(?&) for each k.

The validity of inequalities (1) and (2) (for some constants a, and b) is an analytic consequence
of (3), (4) and Proposition 1, as demonstrated in [l]. We rcvicw it below. Without loss of generality,
we can assume that N > [lo log Ml > 1. First, observe that f(x) is a convex function (which
can be verified by showing that f” > 0); this implies that c, Q f(x%) 2 j(x, rrxi) for rt > 0
and c, r, = 1. Then, from (3), (4) and Proposition 1, we obtain

“,(N, M, > ; c f(Vk)
Olk<M

Ry choosing d = [lo log Ml, one can show that f (9) is well approximated by - log(l- 9);
that is, f(x) = X in this case. The error bounds involved in this approximation are dependent on
N, M and d, but are clearly independent of h. A close examination of the error bounds leads to
inequalities (1) and (2).

It remains only to prove Proposition 1. For the rest of the proof, let k E (0, 1, . . . , M - 1)
be fixed. We shall divide the proof into three parts. In part 1 we give a procedure for gcncrating an
h-random (N, M)-scenario p. This procedure  first gcneratcs randomly a special type of scenarios
w, called skelelons, and then generates a random p with a distribution dctcrmincd by ~3. In part
2, we derive a lower bound to Sk for a random p gcncratcd by the above procedure when the
skeleton is ~3. The procedure  in part 1 is designed in such a way that the derivation of a nontrivial
lower bound is possible  for a given skeleton. In part 3, the lower bound obtained in the previous
part is averaged over u to obtain a lower bound to 6k to give Proposition 1. These three parts are
prcscntcd in order in the ensuing three subsections.



3.2. Generating a Random Scenario.

We first define some notations. Let 0 5 L < M bc any integer. For any (L, M)-scenario
w, partition Q M into two disjoint parts Q[w] and Q’[w] as defined below. Consider  the table Tw
obtained  by inserting keys according to U, and let &,, C (0, 1, . . . , M - 1) be the set of occupied
positions in Tw. We put 7r E QM into Q[u] if a new key K with h(K) = 7r will occupy position
k when inserted into T,; otherwise, let 7r E Q’[u]. In other words, if i E Bw, then Q[w] = 8;
otherwise, Q[w] contains all those x of the form il, i2, . . . , ie-1, k, i~+l, ’. . ..ZM with it E Bw
for 1 < t < 1. For example, when o is the empty string, Q[w] is the set of permutations n that
start with k.

.

For any (L, M)-scenario c3 = (q,7r2,  . . . , ~TL),  WC will use &) to denote its prefix, the
(i M)-scenario w = (~1,7r2,. . . ,7r;). An (N - d, M)-scenario w = (q,7r2,.  . . , TN-d) will be
called a skelefon scenario, or simply, a skeleton, if k is not occupied in the table Tw. Note that we
can alternatively define a skeleton as an (N - d, M)-scenario for which 7rJ E Q’[w”-“1 for all
l<j<N-d.-

For any noncmpty subset V C Q- M, let pv denote the probability distribution obtained when
ph is restricted to V. Let ph(V) denote  xrEV p&r), then p&r) = p&)/ph(V) for r E V.
Note that ph(V) # 0 for all noncmpty V, since h is a regular hashing hnction.

We now describe a procedure that generates a random (N, M)-scenario p = (cq,o2, . . . , a~).
It will be seen that p is an h-random (N, M)-scenario, that is, 0% are independently distributed
according to ph. It proceeds in three steps.

Procedure RANDSCEN;

Step 1: Generate a random skeleton w = (rl, 7r2,. . . , TN-d)  by successively generating ~1,712, . . . ,
each new 7rr3 is randomly chosen from Q’[& - “1 according to the probability distribution
pv,, where VJ = Q’[o(i-l)].

Step 2: For each 1 < j < N - d, generate first an integer r3 > 0 distributed geometrically with
probability u,,] = ph(Q[u(J-‘I]),  that is, Pr{rJ = ;} = (1 - u~,~)(u,,~)*; generate
a random (r3, M)-scenario wJ = (ql, 79, . . . , rllr,), where each 7rJ,t is randomly and
indepcndcntly  chosen from W, = Q[o (i-l)] distributed  according to pw,.

Step 3: Let r = C 1<3<N-d  rj and x = (wl, rl, W2, r2,. . . j m--d, %G-d). If r > d,- -
then let p be the (N, M)-scenario X(N); otherwise, generate d - T additional random
%---(d---,)$-l)  %----(d-+)+2,  * . * 9 UN, each chosen independently from QM according to
distribution ph, and let p bc (X, ON-(d-r)+l,  ~N-(&++2,.  . . , ON).

End RANDSCEN.

Note that as h is regular, p&r) # 0 for cvcry 7r E QM, which implies  u,,~ = ph(Q[&-‘I]) <
1 in step 2 of the above procedure. ‘rhus,  the distribution for r3, Pr{rj = i} = (1 - ZL,,&L~,~)~
is well defined.



Lemma 1. The p generated by RANDSCEN is an h-random (N, M)-scenario.

Proof. Let q = (71, r/2, . . . ,qN) be any (N, M)-scenario . We will prove that for a random p
generated by RANDSCEN, Pr{p = 7) is equal to n 1 .,, < N p&i). This immcdiatcly implies the- -
lemma.

Write q as (wi, 7r\, w:, ~a, . . . , o:, 7r:, w:+~), such that $ E Q’[r\& . . $-,] for 1 < j 2
t andt wi E &[7?&. . .7& ] * for 1 < j < t + 1. It is easy to see that this representation_ _
is unique. Let us write U: = ($,, $,, . . . , 7&J ) for 1 < j < t + 1, where each 7& E
Q[T\$. .T(-~]; ri may be 0. Define zJ = p&?j) fotl 7 j < t + 1, where Zj =
Q[+r;. . . n;_,].

Case 1) 0 < t < N - d.

Let X1 be the event that in step 1, ‘ITS = ?r$ for 1 < j < t, X2 be the event that in step 2, -
wj = (d+dw> for 1 < j < t, and X3 be the event that in step 2 rt+l > &+I and Wt+l = ~i+~.
It is easy to see that RANDSCEN will generate p = q if and only if events X1, X2, X3 all occur.
Due to the the independence of X2 and X3, we have

Pr {p  =  7) =  P r {Xl} l  P r {X2,X3  1 XI}

= Pr{Xl} . Pr(X2 1 Xl} . Pr(X3 1 Xl}.
An elementary probabilistic calculation shows that

Pr(X2 I  Xl} =

and

P&:+l,i)= (1 - Zt+d c kt+1Y I-JQ:+, l<i<ri+, a+1

The above formulas lead to

Pr{p = 7) =
IT(

Phb;) n ?h;,)
>

n ph(a:+,,i)
l<j<t 1<i<r;. l<i<r{+,

= fl Ph(‘d*
l<i_<N

tFor any set D, the notation D” will stand for the set of all finite sequences of ckmcnts  in D
(including the empty scqucnce).



Case 2) t 2 N - d.

Let XI bc the event that in step 1, TQ = r$ for 1 _< j _< N - d, X2 be the event that
in step 2, wj = ws for 1 _< j 2 N - d, and X3 be the event that in step 3 oN-(d--r’)+1  =
r)N-(d-+)+l,gN-(d--r’)+2 =  VN-(d-4)+2,. .  .  ,  ON =  VN, w h e r e  7-l =  Cllj<N-d ?-;.
As in case 1, RANDSCEN will generate p = 7 if and only if events X1, X2, X3 all occur. A
calculation similar to that in case 1 gives Pr{p = 7) = n 1 I%5 N p&z). This completes the proof
of Lemma 1.1

3.3. I,ower Hound on bk for Sk&ton w.

Suppose p is an (N, M)-scenario generated by RANDSCEN, with r being the parameter
generated in step 2 during the process.

Lemma 2. Let s(p) be the number of times that table position k is probed during the insertion
of’N keys according to p. Then s(p) > min{r, d}.

Proof. Write p = (WI, ~1, w2,7r2, . . . ) with wj = 7rJ 17r,2* . . rjrl in the notation of procedure
RANDSCEN. It is easy to set that each insertion that corresponds to a xITje in p will probe location
k in the insertion process, since even if we omit all the insertions njlel  that precede it in p, this
insertion will still probe location k. As the total number of rje in p is equal to min{r, d}, the
lemma follows.1

Imagine that we follow the steps in RANDSCEN to generate an h-random (N, M)-scenario
p. WC wish to analyze this process of generating p to estimate the expected value of min{r, d};
then Lemma 2 will provide a needed lower bound since bk is the expected value of s(p).

Consider the execution of RANDSCEN as a stochastic process. Let R denote the random
variable corresponding to w in Step 1, RJ denote the random variable for r3 in step 2, and R =
c 1 .,3 <N-d R,. Let S denote the random variable corresponding  to s(p) defined in Lemma 2.
Clear1 yy

bk = E(s). (5)

We also introduce some scalars. Let & = Pr{Q = w} for skeleton w; let ,Q@,~ denote
P&?[w”-l)1) as defined in Step 2 of procedure RANDSCEN.

Our approach is to analyze the expected value of min{r, d} for fixed w, and .then average over
w. From Lemma 2, we obtain

.E(S 1 s2 = w) 2 E(min{d, R} I R = w)
=  c Pr{R 2: il R- w }

l<i<d

=  c Pr{R(“) 2 i ’ ) ,
l<i<d

(6)

where R(“) = c RcwJ with R(“)3 3 being the random variable RJ restricted to the probability
l<j<N-d

space spccificd  by 0 = w. As RI”), 1 < j _< N - d, arc indcpcndcnt variables with distribution
Pr{R(“) = i} = (1 - puw J)(pw $., , the following analytic result from Ajtai ct.al. [1] applies.



Lemma 3. [l] Suppose Y = ~l<i<aY~, where Y1, Ys,. . . ,Ya are independent ran-- -

dom variables with Pr{Y, = i} F (1 - y3)(y$ Then Pr{Y 2 i} 2 ?’ 1Fi g where
.-

x =  - l o g
( rI(1 -Yj) *

lI3La >

Proof. See [l]. fl

From Lemma 3 and (6) we have

E(S 1 R = w) > c e-X” g y
l<isd

.
-

(A 1
A?

= X, - e-‘w x(f! - d)--C
L>d if! (7)

where X, = - log n t1 - Pw,j) .
l<j<N--d >

3.4. Completing the Proof.

Consider again a random p generated  by RANDSCEN. Let A be the random variable that is
equal to 1 if location k is occupied in T&V--~) and 0 otherewise; let A,,, denote A restricted to the
situation R = ~3.

For any skeleton w, it is easy to check from the definitions that

1 - Pr{A, = 1) = Pr{ &“= 0)

= a (l - Pw,j)*

It follows from (7) (8) that

E(S 1 R = 0) 2 f(Pr{A, = 1)). (9)

(8)

Using (S), (9) and the convexity of f, we obtain

I

6k = c &&!qS 1 n = w)
2 2 f(X LJ l WLJ = 1))

= fyPr{AW= 1))

= f(u).

This proves Proposition 1 and hence the Main Theorem.

4. Concluding Remarks.

In this paper WC have shown that uniform hashing is asymptotically optimal in retrieval cost.
Can one prove that uniform hashing is also asymptotically optimal in the insertion cost all the time?



8

More precisely, can one prove that for any fixed 0 < ar < 1, C&V, Ad) s $-----
--a

+ o(l) for all
h?
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