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R u l e
RULE-Z

if
[OBJECT-lo HQ LIGHT]
[CONCAVITY-8 PHYSICAL-PART-OF OBJECT-lo]
[ B O D Y - 9  P H Y S I C A L - P A R T - O F  O B J E C T - 1 0 - J
[ B O T T O M - 8  P H Y S I C A L - P A R T - O F  O B J E C T - l o ]
[CONCAVITY-8 AK0 CONCAVITY]
[CONCAVITY-8 HQ UPWARD-POINTING]
[BODY -9 AK0 B O D Y ]
[BODY-9 HQ CYLINDRICAL]
[BODY -9  HQ SMALL]
[ B O T T O M - 8  AK0 B O T T O M ]
[ B O T T O M - 8  H Q  F L A T ]

t h e n
[OBJECT-lo AK0 CUP]

u n l e s s
[[OBJECT-lo AK0 OPEN-VESSEL] HQ FALSE]
[[OBJECT-lo HQ LIFTABLE] HQ FALSE]
[[OBJECT-lo HQ STABLE] HQ FALSE]
[[BODY-9 H Q  G R A S P A B L E ]  H Q  F A L S E ]

c a s e
DEFINITION-l DESCRIPTION-2 DESCRIPTION-4 DESCRIPTION-l
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To use DEFINITION-l I need to know if [OBJECT-3 AK0 OPEN-VESSEL]
I  a m  t r y i n g  t o  s h o w  [ O B J E C T - 3  AK0 O P E N - V E S S E L ]
Supply y, n ,  ?, r =  r u l e s ,  p  =  p r e c e d e n t s ,  o r  a  s u g g e s t i o n :

> P
I f ind:

DESCRIPTION-Z < 3. Tinks >
I note [CONCAVITY-3 PHYSICAL-PART-OF OBJECT-31 for use with DESCRIPTION-
2
I note [CONCAVITY-3 AK0 CONCAVITY] for use with DESCRIPTION-2
I note [CONCAVITY-3 HQ UPWARD-POINTING] for use with DESCRIPTION-2
The evidence from DESCRIPTION-2 ind icates  [ O B J E C T - 3  AK0 O P E N - V E S S E L ]
The ev idence  f rom DEFINITION-l ind icates  [ O B J E C T - 3  AK0 C U P ]
Rule RULE-l is derived from DEFINITION-l DESCRIPTION-2 DESCRIPTION-3
DESCRIPTION-l and looks like this:

R u l e
RULE-l

i f
[OBJECT-g HQ LIGHT]
[ C O N C A V I T Y - 7  P H Y S I C A L - P A R T - O F  O B J E C T - 9 1
[HANDLE-4 PHYSICAL-PART-OF OBJECT-91
[BOTTOM-7 PHYSICAL-PART-OF OBJECT-91
[CONCAVITY-7 AK0 CONCAVITY]
[CONCAVITY-7 HQ UPWARD-POINTING]
[ H A N D L E - 4  AK0 H A N D L E ]
[BOTTOM-7 AK0 B O T T O M ]
[ B O T T O M - 7  H Q  F L A T ]

t h e n
[OBJECT-9  AK0 C U P ]

u n l e s s
[[OBJECT-g AK0 OPEN-VESSEL] HQ FALSE]
[[OBJECT-9  H Q  L I F T A B L E ]  H Q  F A L S E ]
[[OBJECT-9  HQ G R A S P A B L E ]  H Q  F A L S E ]
[[OBJECT-9  HQ STABLE] HQ FALSE]

case
DEFINITION-l DESCRIPTION-2 DESCRIPTION-3 DESCRIPTION-1

a S h o u l d  I i n d e x  i t  a s  a  r u l e ?
> Y
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Abstract

It is too hard to tell vision systems what things look like. It is easier to talk about purpose
and what things are for. Consequently, we want vision systems to use functional
descriptions to identify things, when necessary, and we want them to learn physical
descriptions for themselves, when possible.

This paper describes a theory that explains how to make such systems work. The theory is a
synthesis of two sets of ideas: ideas about learning from precedents and exercises
developed at MIT and ideas about physical description developed at Stanford. The strength
of the synthesis is illustrated by way of representative experiments. All of these experiments
have been performed with an implementation system.

This research was done in part at the Artificial Intelligence Laboratory of Stanford
University and in part by the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support for MIT’s artificial-intelligence research is provided in
part by the Advanced Research Projects Agency of the Department of Defense under
Office of Naval Research Contract N00014-80-C-0505.
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Figure 1. A cup with a handle.

Key Ideas _

It is too hard to tell vision systems what things look like. It is easier to talk about
ptn-pose and what things are for. Consequently, we want
functional descriptions to identify things, when necessary,
learn physical descriptions for themselves, when possible.

vision systems to use
and we want them to

For example, there are many kinds of cups: some have handles, some do not;
some  have smooth cylindrical bodies, some are fluted: some are made of porcelain,
others are styrofoam,  and still others are metal. You could turn blue in the face
describing all the physical possibilities. Functionally, however, all cups are things
that are easy to drink from. Consequently, it is much easier to convey what cups
are by saying what they are functionally.

To be more precise about what we are after, imagine that you are told cups are
open vessels, standing stably, that you can lift. You see that the object in figure
1 has a handle, an upward pointing concavity, and a flat bottom. You happen to

- know it is light. Because you already know something about bowls, bricks, and
. suitcases, you conclude that you are looking at a CLIP. You also create a physical

model covering this particular cup type.

Our first purpose, then, is to explain how physical identification can be done
using functional definitions. Our second purpose is to show how to learn physical
models using functional d&Ktions and specific acts of identification.

It is important to note that our theory of model learning involves a physical
example  and some preccdcnts  in addition to the functional definition:

n The physical example is essential, for otherwise there would be no way to know
which precedents are relevant.
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Let E be an exercise. E is an exercise about a light object.
The object’s body is sm;rll.  The object 1~s ;1 htrndle.  The
object’s bottom is flat. Its conca+ is upward-pointing.
Its contents are hot. In E show that the object may be
a cup.
Let E be an exercise. E is an exercise about a light
object. The object’s bottom is flat. Its body is small and
cylindrical. Its concavity.  is upw:lrd-pointing. Its contents
are hot. Its body’s m:lterial is an insulator. In E show
that the object may be a cup.

For the first of these two exercises, the rule requiring ;I handle works immediately.
It is immaterial that the contents of the cup are hot.

For the second, the rule requiring a small. cylindrical body works immediately.
Again it is immaterial that the contents of the cup are hot since nothing is
known about the links among content temperature , graspability, and insulating
materials. Proving some knowledge about these things by way of some censors
makes identific;ltion  more interesting.

Suppose, f6r example. th:lt we teach or tell the machine that an object with hot
contents will not ha1.e a grtispable  body , gii.en  no reason to doubt that the object’s
bode is hot. Further wpposc th:lt we teach or tell the machine  that an object’s body-
is not hot, even if its contents are, if the body is made from an insulator. All this is
captured by the following censor rules, each of which can make a simple physical
deduction:

Let Cl be ;I Censor.  Cl is a censor about an object. The
object’s hod!,  is not graspable because its contents are
hot unless  its body is not hot. Make Cl a censor using
the object’s body  is not graspable.
Let C2 be ;I censor. C2 is a censor about an object. The
object’s contents art‘ hot. Its body is not hot because its
body’s materi is an insulator. Make C2 a censor using
tht: object’s body is not hot.

Repeating the second exercise now evokes the following scenario:

Asking whether the object is a cup activates the rule about cups without handles.
The ifconditions of the rule are satisfied.

The utzlcss conditions of the rule are checked. One of these conditions states
that the object’s body must not be plainly ungraspable.

Asking ;lbout  graspabilit>.  acti\eates  the censor relating grasptibility  to hot
contents.  The censor’s i/-condition  is satisfied. and the censor is about to block the
cup-identifying I-&. The censor’s trr~lcss  condition must be checked  first, however.

The censor’s u~~lcss  condition penains to hot bodies. This condition activates a
second censor,  the one denying th:tt  it body is hot if it is made of an insulator. This
second  censor‘s iJ’condition  is satisfied.  ;md there ;u-e no u~rirss conditions.

15



Precedent Problem

4Does this

Match I
l

Match b

Figure 2. The  matcher  dctcrmincs part corrcspondcncc using the links that populate  the precedent
and the problem.  11~ marcher  pays parucular  attention  to links that arc cnmcshcd in the CAUSE
structure  of the prcccdcnt.

l ACROSYV uses gentxrlized  cylinders to describe how objects fill space.

A gcncrtzlizcd  cyhdcr  is formed when ~1 planar cross section moves along a curve in
space. sweeping out =1 volume. The size of the planx= cross section may change as it
moves. The xnJc bct\veen  the planar cross section and the curve is held constant,
typicall!, at W. Figure 4;r shows some examples.

l ACKONYV  USC’S  ribbons ;md ellipses  to represent ivhat a viewer sees.

Ribbons xc‘ t\s o-dimension4 amllogs to generalized  cylinders. A rihhor~  is formed
when ;I lint  is rnowd  along :r t~~,~,-dinlcnsic,n;ll  curve. perhaps changing size as it
moves. ‘Illc ~ylc txtwecn the line ;rnd the curve is held constant, typically at 9o”.
Figure 3b shows some examples.
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e Figure  4. ikt (I shows some ~x~mplcs  of yxcralizcd  cylinders.  Part b shows ribbons and ellipses
corresponding  to the &jcctS  in pxt  a.

are found, the dctcrnlin;lticm  cm be quite specific. not only about shape and size,
but also ;tbout  position. 1 Iwing found the ribbon corresponding to the body of an
w-plane. ftx- example,  it is possible to predict the location, orientation, and size of
the ribbons corresponding  to the wings.

Brooks’s landmark  thesis concentrxted  on csxtly this sort of prediction [Brooks
19811.

In principle. prediction knowledge cm be used to condition the txrlicst vision
proccdurcs  to the situation at hand.  In current practice. c:u-ly \,ision procedures
opcr;w ;Iutorwnlousl!*  up to the Icwl where ribbons and cltipxs art’ formed. Efforts
U-C utldcnvay  to push predictions further toward the pixels.
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su i tease

ako

I

ako
w handle

open-vessel

stable
Ii ftable
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hq
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I
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Ilp\\,ard-pointing

Figure  8. Cause  links from the suitcase  prcccdcnt arc ovcrlaycd  on the cxcrcisc. hding to
questions  &out  whcthcr the object  i s  l ight  ;Ind \+hcthcr  the o b j e c t  has ;1 handle.  Ovcrlaycd
ctructurc  is d&cd.  Many links of the suitcase  prcccdcnt arc not shown to avoid clutter on the
diagram.
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object open-vessel

stable
liftable

Figure 5. The functional definition of a cup. This semantic net is produced using an English
description.  AK0 = ,I Kind Of. tlQ = Has Quality.

Let X be a definition. W is a definition of an object. The
object is a cup because it is stable, because it is liftable,
and because it is an open-vessel. Remember X.

Of course, other, more elaborate definitions are possible. but this one seems to
us to be good enough for the purpose of illustrating our learning theory.

The English is translated into the semantic net shown in figure 5.

The next step is to show an example of a cup, such as the one in figure 6a.
ACRONY  kl is capable of translating such visual information  into the semantic net
shown in figure bb.  But inasmuch as our connection to ACRONYM is not complete,
we currently bypass ACRONYM bjr using the following English instead.

Let E be an exercise. E is an exercise about a red
object. The object’s body is small.  The object’s bottom
is flat. The object has an up~rd-pointing  concavity.
The object h;ls a handle.

In contrast to the definition, the qualities involved in the description of the
puticulnr cup are ali ph!,sical  qutiliries.  not functional ones. (Assume that all
qu;llitics  involving scales, like small size ;tnd light weight, arc relative to the human
body, by default, unless otherwise  indicated.)

In the next step, we enhance the ph!sicnl  example’s ph!.sical  description.  This
en;lblcs  us to specify physical properties and links that arc not obt;linable from
vision.

The object is light.

NOW it is time to show that the functional requircmcnts are met by the
txh;tnccd physical description. ‘To do this rquirc’s using prccaicnrs rul;lting the

7



cup’s ftrnctional descriptors to observed  and stated physical descriptors. Three
precedents are used. One indicates ;i way an object can be dctcrmined  to be stable:
another relates liftability to weight and having a handle: and still another explains
what being an open-vessel means.  All contain one thing that is irrelevant with
respect to dealing  with cups: these irrelevant things are representative of the detritus
that can accompany the useful material.

Let X be a description. X is a description of a brick.
The brick is stable because the brick’s bottom is flat.

The brick is hard.

Remember X.

Let X be a description. X is a description of a suitcase.
The suitcase is liftable because it is graspable and because
it is light. The suitcase is graspable because it has a
handle.

The suitcase is useful because it is a portable container
for clothes.

Remember X.

Let X be a description. X is a description of a bowl.
The bowl is an open-vessel because it has a concavity
and because the concavity is upward-pointing.

The bowl contains tomato soup.

Remember X.

With the functional definition in hand, together with relevant precedents, the
analogy apparatus is ready to work as soon as it is stimulated by the following
challenge:

In E, show that the object may be a cup.

This initiates a search for precedents relevant to showing something is a cup. The
functional definition is retrieved. Next, a matcher determines the correspondence
between parts of’ the exercise and the parts of the functional definition, a trivial

task in this instance. Now the verifier overlays the cause links of the functionaI
f definition onto the exercise. Tracing through these overlayed cause links raises three

questions: is the observed object stable, is it an open vessel, and is it liftable. All
this is illustrated in figure 7.

Questioning if the object is liftable leads to a second search for a precedent,
this time one that relates  function to form. causing the suitcase description to be
retrieved. The suitcase description, shown in figure 8. is matched to the exercise, its
c;lusal  structure is overlayed  on the exercise,  and other questions are raised: is the
observed object  light and does it have a handle. Since it is light and does have a
handle,  the suitcase description  suf‘liccs  to deal with the liftable issue, Icaving open
the stability and open-vessel questions.

9



cup’s ftrnctional descriptors to observed and stated physical descriptors. Three
preccdcnts ;tre trscd.  One indicates a way an object can be dctcrmined to be stable;
;inother relates liftability to weight and having 3 handle; and still :rnother explains
what  being an open-vessel  means.  All contain one thing that is irrelevant with
respect  to dealing with cups: these irrelevant  things are representative of the detritus
that can accompany the useful material.

Let X be a description. X is a description of a brick.
The brick is stable because  the brick’s bottom is flat.

The brick is hard.

Remember X.

Let X be a description. X is a description of a suitcase.
The suitcase is liftable because it is graspable and because
it is light. The suitcase is graspable because it has a
handle.

The suitcase is useful because it is a portable container
for clothes.

Remember X.

Let X be a description. X is a description of a bowl.
The bowl is an open-vessel because it has a concavity
and because the concavity is upward-pointing.

The bowl contains tomato soup.

Remember X.

With the functional definition in hand, together with relevant precedents, the
analogy apparatus is ready to work as soon as it is stimulated by the following
challenge:

In E, show that the object may be a cup.

This initiates a search for precedents relevant to showing something is a cup. The
functional definition is retrieved. Next, a matcher determines the correspondence
between parts of’ the exercise and the parts of the functional definition, a trivial

task in this instance. Now the verifier overlays the cause links of the functional
- definition onto the exercise. Tracing through these overlayed cause links raises three

questions: is the observed object stable, is it an open vessel, and is it liftable. All
this is illustrated in figure 7.

Questioning if the object is liftable leads to a second search for a precedent,
this time one that relates  function to form, causing the suitcase description to be
retrieved. The suitcase description, shown in figure 8. is matched to the exercise, its
c;lusal  structure is overlayed  on the exercise,  and other questions are raised: is the
observed object light and does it have a handle. Since it is light and does have a
h;lndk, the suitc:lse di:scription sufkcs to deal with the liftable issue, Icaving open
the stability and open-vessel questions.
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object 4 ako ako + open-vessel
hq w stable
lw * liftable

Figure  5. ‘The  functionA  definition of a cup. This  semantic net is produced  using an English
dxription.  AK0 = I1 Kind Of, HQ = Has Quality.

Let X bc a definition. X is a definition of an object. The
object is a cup because it is stable, because it is liftable,
and because it is an open-vessel. Remember X.

Of course, other, more elaborate definitions are possible. but this one seems to
us to be good enough for the purpose of illustrating our learning theory.

The English is translated into the semantic net shown in figure 5.

The next step is to show an example of a cup, such as the one in figure 6a.
ACRONYM is capable of translating such visual information into the semantic net
shown in figul-e 6b. But inasmuch as our connection  to ACRONYPVl  is not complete,
we currently bypass ACRONYM by using the following English instead.

Let E be an exercise. E is an exercise about a red
object. The object’s body is small. The object’s bottom
is flat. The object has an upvvard-pointing  concavity.
The object has a handle.

In contrast to the definition, the qualities invaotved in the description of the
particular cup are all ph!,sical  qualities, not functional ones. (Assume that all
qualities  involving scales, like small size and light weight, arc relative  to the human
body, by default, unless othenvisc  indicated.)

In the next step, we enhance the physical  example’s ph!.sical  description. This
enables  us to specify physical properties and links that are not obt;linabte from
vision.

The object is light.

Now it is time to show that the functic)nal  rcquknicnts  are met by the
cnh;rnccd  physicA description. To do this rquircs using prcccdcnts  relating the
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Figure  8 . Cause  links from ~JIC  suitm~  prcccdcnt arc ovcrlaycd  on the cxcrcisc. lcaciing  to
qucsti()ns  &out  whcthcr  t.k object  i s  l i g h t  md \chcthcr  the object  h a s  ;1 handle.  Ovcrlaycd
ctructurc  is dashed.  Many links of the suitcm prcccdcnt XC not shown to avoid cfuttcr  on the
diagram.
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Figure  4. Prlrt 0 shows some  ~umplcs  of gcncralizcd  cylinders.  Part b shows ribbons and ellipses
cwrcsponding  to the ohjccts  in part a.

are found, the dctcrnlinaticm  can be quite specific. not only about shape and size,
but also ;ibout position. 1 iwing found the ribbon corresponding to the body of an
w-plmc. for csample,  it is possible to predict the location, orientation, and size of
the ribbons corrcspunding  to the wings.

Brooks’s landmark thesis concentrated on exactly  this sort of prediction [Brooks
19811.

In principle, prediction knowledge cm bc used to condition the earliest vision
proccd~rrcs to the situation at hand.  In current practice. early  vision procedures
opct-;~tc  autollonlousl!*  up to the Icvcl  where ribbons and cliipxs art formed. Efforts
NC underway to push predictions  further toward the pixels.
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Precedent Problem

Match
Match 4

Figure  2. The matcher  dctcrmincs  part corrcspondcncc using the links that populate  the precedent
and the problem.  I‘hc rnritchcr  pays particular attention  to links that arc cnmcshcd in the CAUSE
structure  of the prcccdcnt.

l ACROSW uws generalized qlindcrs to describe how objects fill space.

A ,qmr;~lr,‘cd  c~hhd~r  is fM-wd  when ;1 plannr cross section JTWWS  along a curve in
space. sweeping out ;I plume. The size of the planar cross section may change as it
moves. The ;mslt: bctlvcen  the planar cross section and the cur\‘e is held constant,
tyicall!~  at NY’.  Figure 41 shows some examples.
l tU☺tONY☺1  uses ribbons ;md cllipscs  to rc’prcsent what a viewer sees.

Ribbons arc‘ t\~c~-dimension;ll :m:tlogs to gcncralizcd  cylinders. A ril’,hon is formed
when ;I lint is moved  al~g :I t~\,~,-dirn~nsic)nrrl  curve. perhaps changing size as it
moves. Illc ~lglc bctivccn the line ;md the curve is held constant, typically at 90~.
Figure 3b shows some examplus.



Let E be an exercise. E is an exercise about a light object.
The object‘s body is small. The object has a handle. The
object’s bottom is flat. Its concavity is upward-pointing.
Its contents are hot. In E show that the object may be
a cup.
Let E be an exercise. E is an exercise about a light
object. The object’s bottom is flat. Its body is small and
cylindrical. Its concavity is l]pMl~~I-d-pointing. Its contents
are hot. Its body’s material is an insulator. In E show
that the object may be a cup.

For the first of these two exercises, the rule requiring a handle works immediately.
It is immaterial that the contents of the cup are hot.

For the second, the rule requiring a small. cylindrical body works immediately.
Again it is immaterial that the contents of the cup are hot since nothing is
known about the links among content temperature, graspability, and insulating
materials. Proving some knowledge about these things by way of some censors
makes identification more interesting.

Suppose, for example. that we teach or tell the machine that an object with hot
contents will not have a graspable body , gi\*en no reason to doubt that the object’s
body is hot. Further suppose that we teach or tell the machine that an object’s body-
is not hot, even if its contents are, if the body is made from an insulator. All this is
captured by the following censor rules, each of which can make a simple physical
deduction:

Let Cl bc ;1 Censor. Cl is a censor about an object. The
object’s hod!’ is not graspable because its contents are
hot unless its body is not hot. Make Cl a censor using
the object’s body  is not graspable.

Let C2 be a censor. C2 is a censor about an object. The
object’s contents are hot. Its body is not hot because its
body’s material is an insulator. Make C2 a censor using
the object‘s body is not hot.

Repeating the second exercise now evokes the following scenario:

Asking whether the object is a cup activates the rule about cups without handles.
The ifconditions of the rule are satisfied.

The urrlcss conditions of the rule are checked. One of these conditions states
that the object’s body must not be plainly ungraspable.

Asking about graspability activates the censor relating graspability to hot
contents. The censor’s $condition is satisfied. and the censor  is about to block the
cup-identifying rule. The censor’s rrrrlcss  condition must bc checked first, however.

The censor’s ur~less  condition pertains to hot bodies. This condition activates a
second censor,  the one denying that a body is hot if it is made of an insulator. This
second censor’s iJ‘condition  is satisfied, and there are no ut~irss  conditions.
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Figure  1. A cup with a handle.

Key Ideas -

It is too hard to tell vision systems what things look like. It is easier to talk about
purpose and what things are for. Consequently, we want vision systems to use
fhxtional  descriptions to identify things, when necessary, and we want them to
learn physical descriptions for themselves, when possible.

FOJ example, there are many kinds of cups: some have handles, some do not;
some have smooth cylindrical bodies, some are fluted: some are made of porcelain,
others are styrofoam,  and still others are metal. You could turn blue in the face
&scribing all the physical possibilities. Functionally, however, all cups are things
that are easy to drink from. Consequently, it is much easier to convey what cups

what they are functionally.are by saying

To be mo
open vessels,
1 has a hand

re precise about what we are after, imagine that you are told cups are
standing stably, that you can lift. You see that the object in figure

le, an upward pointing concavity, and a flat bottom. You happen to
know it is light. Because you already know something about bowls. bricks, and

suitcast’s,  you conclude that you are looking at a cup. You also create a physical
model covering this particular cup type.

Our first purpose, then, is to explain how physical identification can be done
using functional definitions. Our second purpose is to show how to learn physical
models using functional definitions  and specific acts of identification.

It is important to note that our theory of model learning involves a physical
csamplc:  and some prcccdt!nts  in addition to the functional definition:

a ‘17~ physical example is essential,  for otherwise there would be no way to know
which prccederlts  are relevant.
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Abstract

It is too hard to tell vision systems what things look like. It is easier to talk about purpose

and what things are for. Consequently, we want vision systems to use functional
descriptions to identify things, when necessary, and we want them to learn physical
descriptions for themselves, when possible.

This paper describes a theory that explains how to make such systems work. The theory is a
synthesis of two sets of ideas: ideas about learning from precedents and exercises
developed at MIT and ideas about physical description developed at Stanford. The strength
of the synthesis is illustrated by way of representative experiments. All of these experiments
have been performed with an implementation system.

This research was done in part at the Artificial Intelligence Laboratory of Stanford
University and in part by the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support for MIT’s artificial-intelligence research is provided in
part by the Advanced Research Projects Agency of the Department of Defense under
Office of Naval Research Contract N00014-80-C-0505.



T o  u s e  D E F I N I T I O N - l  I  need to  know i f  [ O B J E C T - J  AK0 O P E N - V E S S E L ]
I a m  t r y i n g  t o  s h o w  [ O B J E C T - 3  AK0 O P E N - V E S S E L ]
Supply y, n, ?, r  =  r u l e s ,  p  =  p r e c e d e n t s ,  o r  a s u g g e s t i o n :

> P
I f i n d :

D E S C R I P T I O N - 2  < 3 .  T i n k s  >
I note  [ C O N C A V I T Y - 3  P H Y S I C A L - P A R T - O F  O B J E C T - 3 1  for use with DESCRIPTION-
2
I  n o t e  [ C O N C A V I T Y - 3  AK0 C O N C A V I T Y ]  f o r  u s e  w i t h  D E S C R I P T I O N - 2
I note  [ C O N C A V I T Y - 3  H Q  U P W A R D - P O I N T I N G ]  f o r  u s e  wi th  D E S C R I P T I O N - 2
The ev idence  f r o m  D E S C R I P T I O N - 2  i n d i c a t e s  [ O B J E C T - 3  AK0 O P E N - V E S S E L )
T h e  e v i d e n c e  f r o m  D E F I N I T I O N - l  i n d i c a t e s  [ O B J E C T - 3  AK0 C U P ]
Rule RULE-l  is derived from D E F I N I T I O N - l  D E S C R I P T I O N - 2  D E S C R I P T I O N - 3
D E S C R I P T I O N - l  and looks l ike  th is :

R u l e
R U L E - l

i f
[ O B J E C T - 9  H Q  L I G H T ]
[CONCAVITY-7 PHYSICAL-PART-OF OBJECT-91
[ H A N D L E - 4  P H Y S I C A L - P A R T - O F  O B J E C T - 9 1
[BOTTOM-7 PHYSICAL-PART-OF OBJECT-91
[CONCAVITYL7  AK0 CONCAVITY]
[CONCAVITY-7 HQ UPWARD-POINTING]
[ H A N D L E - 4  AK0 H A N D L E ]
[BOTTOM-7 AK0 B O T T O M ]
[ B O T T O M - 7  H Q  F L A T ]

t h e n
[OBJECT-g AK0 CUP]

u n l e s s
[ [OBJECT-g  AK0 OPEN-VESSEL] HQ FALSE]
[ [ O B J E C T - 9  H Q  L I F T A B L E ]  H Q  F A L S E ]
[ [ O B J E C T - g  HQ G R A S P A B L E ]  HQ F A L S E ]
[ [ O B J E C T - 9  H Q  S T A B L E ]  HQ F A L S E ]

c a s e
DEFINITION-l DESCRIPTION-2 DESCRIPTION-3 DESCRIPTION-l

d S h o u l d  I i n d e x  i t  a s  a  r u l e ?
>Y
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R u l e
RULE-Z

if
[OBJECT-lo HQ LIGHT]
[CONCAVITY-B PHYSICAL-PART-OF OBJECT-lo]
[BODY-9  PHYSICAL-PART-OF OBJECT-10 J
[BOTTOM-8 PHYSICAL-PART-OF OBJECT-10)
[CONCAVITY-8 AK0 CONCAVITY]
[CONCAVITY-8 HQ UPWARD-POINTING]
[BODY-9 AK0 BODY]
[BODY-9 HQ CYLINDRICAL]
[BODY -9  HQ SMALL]
[ B O T T O M - 8  AK0 B O T T O M ]
[ B O T T O M - 8  H Q  F L A T ]

t h e n
[OBJECT-lo AK0 CUP]

u n l e s s
[[OBJECT-lo AK0 OPEN-VESSEL] HQ FALSE]
[[OBJECT-lo HQ LIFTABLE] HQ FALSE]
[[OBJECT-lo HQ STABLE] HQ FALSE]
[ [ B O D Y - 9  H Q  G R A S P A B L E ]  H Q  F A L S E ]

c a s e
DEFINITION-l DESCRIPTION-2 DESCRIPTION-4 DESCRIPTION-1

S h o u l d  I i n d e x  i t  a s  a  r u l e ?
> Y



January 1983
Also numbered AIM-349

Report No. STAN-CS-82-950

Learning Physical Description from
Functional Definitions, Examples and Precedents

bY

Patrick H. Winston, Thomas 0. Binford,  Boris Katz

and Michael Lowry

Department of Computer Science

Stanford University
Stanford, CA 94305


