
Rqort No. STAN-C’S82-926

Principles of Rule-Based Expert Systems

Department of Computer Science

Stauford University
Stanford, CA 94305

Heuristic Programming Project ’
Report No. HPP-82-14

.
August 1982

also:
Fairchild
Technical Report No.626

Principles of Rule-Based Expert Systems

BRUCE G. BUCHANAN
HEURISTIC PROGRAMMING PROJECT

DEPARTMENT OF COMPUTER SCIENCE

STANFORD UNIVERSITY

RICHARD 0. DUDA
LABORATORY FOR ARTIFICIAL INTELLIGENCE RESEARCH

FAIRCHILD CAMERA AND INS rRUMENT CORPORATION

PALO ALTO, CALIFORNIA

.The Stanford University component of this research is funded in
part by ARPA contract # MDA903-80-C-0107, NIH contract # NIH RR 0078509,

ONR contract # NO001 4-79-C-0302, and Schlumberger-Doll Research Laboratory.

To appear in M. Yovits ted.) Advances in Computers, Vol.22,
New York: Academic Press

3

Table of Contents

i

1 INTRODUCTION: WHAT IS AN EXPERT SYSTEM?
1.1 Example: The MYCIN Program
1.2 Key Components

2 REPRESENTATION OF KNOWLEDGE
2.1 Rule-Based Representation Frameworks

2.1.1 Production Systems
2.1.2 EMYCIN Viewed as a Production System

2.2 Alternatives to Rule-Based Representation of Knowledge
2.2.1 Frame-Based Representation Languages
2.2.2 Logic-Based Representation Languages
2.2.3 Generalized Languages

2.3 Knowledge Representation Issues
3 INFERENCE METHODS IN EXPERT SYSTEMS

3.1 Logical and PlauSible Inference
3.2 Control

3.2.1 Data-Driven Control
3.2.2 Goal-Driven Control
3.2.3 Mixed Strategies

3.3 Explicit Representation of Control Knowledge
4 REASONING WITH UNCERTAINTY

4.1 Plausible Inference
4.2 Bayesian Probability Theory

4.2.1 Combining Rules .
4.2.2 Uncertain Evidence

4.3 Certainty Theory
4.3.1 Combining Evidence
4.3.2 Uncertain Evidence

4.4 Possibi1it.y Theory
4.5 The Dempster/Shafer Theory of Evidence

5 KEY CONCEPTS
5.1 Classes of Problems for Expert Systems
5.2 The Data
5.3 The Expertise

6 CONCLUSIONS
7 ACKNOWLEDGEMENTS

1
3
8
9

11
11

. 13
15
16
16
17
17
19
19
20
20
21
23
23
24
24
24
26
27
28
28
29
30
31
32
35
36
37
38
40

3

1

Principles Of Rule-Based Expert Systems .

Bruce G. Buchanan
Richard 0. Duda

1 INTRODUCTION: WHAT IS AN EXPERT SYSTEM?

An expert system is a computer program that provides expert-level solutions to ‘important problems and is:

l heuristic -- i.e., it reasons with judgmental knowledge as well as with formal knowledge of
established theories;

0 transparent -- i.e., it provides explanations of its line of reasoning and answers to queries about its.
knowledge;

l flexible -- i.e., it integrates new knowledge incrementally into its existing store of knowledge.‘.

The key ideas have been developed within Artificial Intelligence (AI) over the last fifteen years, but in the last

few years more and more applications of these ideas have been made. The purpose of this article is to

familiarize readers with the architecture and construction of one important class of expert systems, called rule-

based systems. In this overview, many programs and issues are necessarily omitted, but we attempt to provide a

framework for understanding this advancing frontier of computer science..

Because computers are general symbol manipulating devices, the non-numeric and heuristic aspects of problem

solving can be encoded in computer programs as well as the mathematical and algorithmic aspects [Newe1176].

Artificial Intelligence research has focused on just this point. Work on expert systems is, in one sense, the

applied side of AI, in which current techniques arc applied to problems to provide expert-level help on those

problems. However, there is more to building an expert system than straightforward application of AI

techniques. In this early stage of dcvelopmcnt, each new application challenges the current stock of ideas, and

many applications force extensions and modifications.

We focus on rule-based systems in this survey because they clearly demonstrate the state of the-art in building

expert systems and illustrate the main issues. In a rule-based system, much of the knowledge is represented as

rules, that is, as conditional sentences relating statements of facts with one another. Modus ponens is the

. primary rule of infercncc by which a system.adds new facts to a growing data base:

P

1We use the term ‘expert system’ more restrictively than many authors. In doing so, WC distinguish expert systems from, among others,
programs that perform well but cannot bc examined and programs that arc exarninablc but do not perform well and programs that solve
problems for which no special cxpcrtisc is required. For other recent rcvicws of the state of the art of expert systems, see [l3onnet81,
Buchanan81, DavisKIa, Duda81, Fcigcnbaum79, I-Iayes-Roth78, Iafotcch81, Michie79, Michic80, Pinson81, Stefik82, Waterman781

.

2

IF B IS TRUE B
AND B IMPLIES C, OR B --> c
THEN C IS TRUE. --------

C

Conceptually, the basic framework of a rule-based. system is simple; the variations needed to deal with the

complexities of real-world problems make the framework interestingly more complex. For example, the rule

B-X is often interpreted to mean “B suggests C”, and strict deductive reasoning with rules gives way to

plausible reasoning. Other methodologies are also mentioned and briefly discussed.

In an expert system the fundamental assumption is “Knowledge is Power”. Specific knowledge of the task is

coupled with general problem solving knowledge to provide expert-level analyses of difficult situations. For

example, MYCIN (described below) analyzes medical data about a patient with a severe infection,

PROSPECTOR [Duda79] analyzes geological data to aid in mineral exploration, and PUFF [Kunz78] analyzes

the medical condition of a person with respiratory problems. In order to provide such analyses, these systems

need very specific rules containing the necessary textbook and judgmental knowledge about their domains.

The key idea is to separate knowledge of the task area as much as possible from the procedures that manipulate

it. This promotes flexibility and transparency because the store of knowledge -- called the knowledge base --

can then be manipulated and examined as any other data structures. Separation does not guarantee flexibility

or transparency, nor does it guarantee high performance. But if a packaged framework of inferences and

control procedures can be used, the design of a new system properly focuses on the expertise needed for high

performance.

For many years, AI research has focused on heuristic reasoning. Heuristics, or rules of thumb, arc an essential

key to intelligent problem solving because computationally feasible, mathematically precise methods arc

known for only a relatively few classes of problems. A large part of what an expert system needs to know is the

body of heuristics that specialists use in solving hard problems. Specialists in science, mathematics, medicine

or any discipline do not confine their everyday reasoning to the axiomatic, formal style of stereotyped textbook

accounts. An expert system can also benefit from reasoning with informal knowledge. There is no explicit

attempt .to simulate a specialist’s problem solving behavior in an expert system. However, the system derives

power from integrating the same heuristic knowlcdgc as experts USC with the same informal style of reasoning.

The first expert systems, DENDRAL [Lindsay801 and MACSYMA [Moses71], emphasized performance, the

former in organic chemistry and the latter in symbolic integration. These systems were built in the mid-1960’s,

and were nearly unique in AI because of their focus on real-world problems and on specialized knowledge. In

the 1970’s, work on expert systems began to flower, especially in medical problem areas (see, for example

[P0ple77, Shortliffc76, Szolovits78, Weiss79bl). The issues of making the system undcrstandablc through

3

explanations [Scott77, Swartout811 and of making the system flexible enough to acquire new knowledge

[Davis79, Mitchell791 were emphasized in these and later systems.

In the early work, the process of constructing each new system was tedious because each was custom-crafted.

The major difficulty was acquiring the requisite knowledge from experts and reworking it in a form fit for

machine consumption, a process’ that has come to be known as knowledge engineering. One of the most

important developments of the late 1970’s and early 1980’s is the construction of several knowledge engineering

frameworks designed to aid in building, debugging, interpreting, and explaining expert systems. ’ Engineering

an expert’s knowledge into .a usable form for a program is a formidable task. Thus computer-based aids for

system builders are important. Current tools -- including EMYCIN [vanMelle80] ROSIE [Fain81], KAS

[RebohH], EXPERT peiss79a], and OPS [Forgy77] -- provide considerable help. For example, working

prototypes of new expert systems with one or two dozen rules have been constructed in a few days using

EMYCIN [BennetGla]. Considerable effort is then required to refine the knowledge base, but the effort is

focused on the knowledge and not on the code. Much research remains, however, before broad, powerful

systems can be constructed quickly.

1 .I Example: The MYCIN Program

MYCIN is a rule-based system developed in the mid-late 1970’s at Stanford University. Its representation and

architecture are described in detail in [Davis77b] and [Shortliffc, 19761. Although it is now several years old, it

is representative of the state of the art of expert systems in its external behavior, which is shown in the

following excerpt from a dialogue between the MYCIN program and a physician. It illustrates the interactive

nature of most rule-based systems and provides a single example for the rest of the discussion.

The task of MYCIN is to help diagnose the likely causes of a patient’s infection and to help recommend the

best therapy for that individual patient. The consultation is driven by a knowledge base of about 450 rules and

a thousand facts about medicine, mostly about meningitis infections. In the example, we see the system asking

questions to obtain a description of a new case, and we see the system providing an explanation of its line of

reasoning.

The main point of this example is that a simple rcprcscntation of knowlcdgc as rules, and a rclativcly simple

control structure, are adequate for constructing a consultation system in a domain as complex (but narrow!) as

meningitis diagnosis and therapy. Appendix A shows answers to user’s questions about this consultation and

about the knowledge base.

4

Edited Transcript of a MYCIN Consultation Session
[User’s responses are in upper case and follow double asterisks]

[Editorial comments are in italics]

1) Patient's name:
** PT538
2) Age:
** 34 YEARS
3) Sex :
** MAEL

=MALE
4) Race:
** CAUCASIAN

M YC IN respells the user 3 answer

Several questions are skipped.

14) Has Pt.538 recently had symptoms of per?istent headache or other
abnormal neurologic symptoms (dizziness, lethargy, etc.)?

** YES
15) Has Pt538 recently had objective evidence of abnormal neurologic

signs (nuchal rigidity, coma, seizures, etc.) documented by physician
observation or examination?

** YES

Note that A4 YCIN has concluded and
informed tht! user that there is
a likely meningitis infection and
pursues this line of inquiry.

The CSF cultures will be considered to be associated with MENINGITIS.

16) Please give the date on which clinical evidence (symptoms, signs, or
laboratory tests) of the meningitis first appeared.

** 29-Jan-77 22:15

23) For how many days has Pt538 had abnormal neurologic signs? .
** 7.2 HOURS

Note that MYCIN accepts the
different units of time

28) Do you know the results of a recent CBC of Pt5381
** YES

Please enter CBC results in the following table

WBC Percent
in 1000's PMN

29p 1 . 9 UNKNOWN

5

Percent1
BANDS
UNKNOWN

Note that MYCIN accepts “UNKNOWN”
as a legitimate value. It does not
need complete, or even correct, data
for all answers.

30) Has Pt538 had any injury or insult to, or defect in the central- .
nervous-system (excluding neurosurgery)?

** NO

35) Is meningitis a hospital-acquired infection?
** WHY

The user asks “WHY” to see an
explanation of the line of reasoning
M YC IN is folio wing. The program first
rephrases the question and then shows the
rule whose premise it is trying to
establish.

[i.e. WHY is it important to determine whether the infection was acquired
while the patient was hospitalized?]

[2.0] This will aid in determining the organisms (other than those seen on
cultures or smears) which might be causing the infection.
It has already been established that

[2.1] the infection which requires' therapy is meningitis, and
[2.2] organisms were not seen on the stain of this pending csf

culture, and
[2.3] the type of the infection is bacterial, and
[2.4] neurosurgery is not one of the relevant items from the history

of pt538, and
[2.5] the age of pt538 is greater than 10 days

Therefore, if
12.61 the infection was acquired while the patient was hospitalized

then
there is evidence that the organisms (other than those seen on

cultures or smears) which might be causing the infection is
e.coli (.75) staphylococcus-coag-pos (.3) pseudomonas-aeruginosa
(.3) klebsiella-pneumoniae (.5)

Author: Yu
[RULE5451

The numbers in paren theses following each
conclusion indicate the measure of
importance of the conclusion. This
single number combines frequency and
utility considerations, as discussed
in section 4.

[back to question 35...] .
** HOW 2.3

At this point the user is asking
fir additionaf clarijication of how
clause 2.3 of the above rule has
already been determined. MYCIN shows
the numbers of the rules used to make
conclusion and will print any of them
upon request.

[i.e. HOW was it established that the type of the infection is bacterial?]

The following rulesconcluded about:
the likelihood that the type of the infection is bacterial

I .
Rule Yes No

[2.7] RULE148 LW
L-24 RULE500 (-51)
w91 RULE501 (l 95)
c3.01 RULE502 (l 97)
c3.11 RULE526 (l w
C3.21 RULE504 (-97)
c3.31 RULE524 (-98)

Thus, it has been established that the type of the infection is bacterial.

MYCIN now prints intermediate
conclusions to show the user what it
it is considering the likely causes of
the problem to be.
Further questions are motivated by
these conclusions.

I have found evidence (RULE545 RULE557) that treatment should cover for
E.coli causing meningitis.

I. have found evidence (RULE545 RULE557 RULE578) that treatment should cover
for Pseudomonas-aeruginosa causing meningitis.

I have found evidence (RULE545 RULE557) that treatment should cover for
Klebsiella-pneumoniae causing meningitis.

I have found evidence (RULE507) that treatment should cover for Diplococcus-
pneumoniae causing meningitis.

40) Does Pt538 have focal neurological signs?
** UNKNOWN

MYCIN now prints the intermediate
conclusions about the possible causes
of the problem that are most important
to consider in constructing a rational
therapy plan,

.

My therapy recommendations will be designed to treat for organisms
that either are very likely or, although less likely, would have a
significant effect on therapy selection if they were present. It is
important to cover for the following probable infection(s) and
assoc iated organism(s) :

INFECTION-l is MENINGITIS

+ <ITEM-l> E.COLI [from clinical evidence only]
+ <ITEM-Z> PSEUDOMONAS-AERUGINOSA [from clinical evidence only]
+ <ITEM-3> KLEBSIELLA-PNEUMONIAE [from clinical evidence only]
+ <ITEM-4> DIPLOCOCCUS-PNEUMONIAE [from clinical evidence only]

41) Does Pt538 have a clinically significant allergic reaction to any
antimicrobial agent?

** NO
[Considering AMPICILLIN-AND-GENTAMICIN for use against INFECTION-l...]

42) Do you have reason to suspect that Pt538 may have impaired renal
function?

** NO

43) Pt538's weight in kilograms (or <number> POUNDS):
** 7 0 0

Thejinal conclusion is about the
best therapy to cover for the likely
causes of the infection, as determined
from the incomplete evidence available.

[REC-l] My preferred therapy recommendation is as follows:
In order to cover for Items <l 2 3 4>:

Give the following in combination:
1) AMPICILLIN
Dose: 3.59 (28.0 ml) q4h IV [calculated on basis of 50 mg/kg] . .

2) GENTAMICIN
Dose: 119 mg (3.0 ml, 80mg/Zml ampule) q8h IV [calculated on basis

of 1.7 mg/kg] plus consider giving 5 mg q24h Intrathqzal
Comments: Monitor serum concentrations

Since high concentrations of penicillins can inactivate
aminoglycosides, do not mix these two antibiotics in the same IV
bottle.

Do you wish to see the next choice therapy?
** NO

The user may have redsons to prefer
another combination of drugs. At
this point, MYCIN is prepared to show
other therapies, compare its preferred
therapy to one the user specifies or to

8

answer questions about any part of
the consultation or about the items
in its knowledge base. Appendix A shows
some of these explanations.

The level of expertise MYCIN exhibited on meningitis test cases in a double-blind evaluation study equalled

the level of expertise of faculty members in Infectious Diseases [yu79]. However, the program was never put

into routine use in hospitals. Factors other than the program’s competence, such as human engineering and

exportability, were the main barriers to routine use. There are two ways of overcoming these kinds of

problems. First, some follow-on research to MYCIN addresses the human engineering problems directly, for

example, by integrating high quality graphics with user-oriented forms and charts for input and output

[Shortliffe81]. Second, some MYCIN-like programs finesse many human engineering problems by collecting

data from on-line instruments rather than from users [Kunz78]. Exportability can be gained by rewriting

[Carhart79, Kunz78] or by designing for export initially [Weiss79a].

1.2 Key Components

The example showed some of the characteristic features of an expert system-- the heuristic nature of MYCIN’S

rules, an explanation of its line of reasoning, and the modular form of rules in its knowledge base. We

postponed a discussion of the general structure of a system until after the example, and defer entirely specific

questions about implementation. For discussing the general structure, we describe a generalization of MYCIN,

called EMYCIN [vanMelle80] for “essential MYCIN”. It is a framework for constructing and running rule-

based systems, like MYCIN.

Generally speaking, an expert system requires a knowledge base and an in$zrence procedure. The knowledge

base for MYCIN is a set of rules and facts covering specialized knowledge of meningitis as well as some general

knowledge about medicine. The inference procedure in MYCIN (and all systems constructed in EMYCIN) is

a large set of INTERLISP tinctions that control the interaction and update the current state of knowledge

about the case at hand. The sections below on Representation and Inference discuss these two main parts. A

system also requires a global database of facts known or inferred about a specific case, the working dataset, in

other words. And it rcquircs an interface program that makes the output understandable to users and translates

users’ input into internal forms. MYCIN uses a technical subset of English in which there is little ambiguity in

the language of communication with users.

In addition to these four parts, the EMYCIN system contains an explanation subsystem to answer questions

about a consultation or about the static knowledge base. It also contains a knowledge base editor to aid in the

construction of new knowlcdgc bases (and thus new systems) and to aid in debugging an emerging knowledge

base. All of these components are shown schematically in the figure below.

----------------------- ----------------

EXPERT'S IKnowledge Base Editor1 1 Customized I
RULES --->>I and Debugging Aids I --->> I Knowledge I

I I I Base I----------------------- ----------------

I Interaction
USER'S -->>I Handler
DESCRIPTIONI
OF NEW CASE1 .

I .
I
I
I
I and
I
I
I
I
I

USER'S -->>IQuestion-Answering
QUESTIONS I Routines

I-------------------

T
1------------------

I Problem Solver I
->> 1 I-->> ADVICE FOR

------------------ THIS CASE
T
1

I Database of I
I Facts About I
I This Case I

T
1------------------

I I
I Explanation I

->> 1 Subsystem I-->> EXPLANATIONS
I I------------------

FIGURE 1. Parts of the EMYCIN system showing the separation of the
knowledge base from problem solving procedures and other parts of the system.

We turn now to two basic issues that have become the central foci of work on expert systems: (a) how

knowledge of a task area is represented in the computer program, and (b) how knowledge is used to provide

expert-level solutions to problems.

2 REPRESENTATION OF KNOWLEDGE

.A representation is a set of conventions for describing the world. In the parlance of AI, the representation of

knowledge is the commitment to a vocabulary, data structures, and programs that allow knowledge of a domain

to be acquired and used. This has long .been a central research topic in AI (see [Amarelgl, Barr81,

Brachman80, Cohen821 for reviews of relevant work).

The results of 25 years of AI research on representation have been used to establish convenient ways of

describing parts of the world. No one bclicvcs. the current. representation methods are the final word.

10

However, they are well enough developed that they can be used for problem solving in intercstihb domains. As

pointed out above, a central concern is separation of the choice of vocabulary and data structures from the

choice of program logic and language. By separating a program’s knowledge base from the inference

procedures that work with the knowledge, we have attained some success in building systems that are

understandable and extendable.

Three basic requirements on a representation scheme in an expert system ‘are extendability, simplicity and

explicitness.

Extendability -- the data structures and access programs must be flexible enough to allow extensions to the

knowledge base without forcing substantial revisions. The knowledge base will contain heuristics that are built

out of experts’ experience. Not only do the experts fail to remember all relevant heuristics they use, but their

experience gives them new heuristics and forces modifications to the old ones. New cases require new

distinctions. Moreover, the most effective way we have found for building a knowledge base is by incremental

improvement. Experts cannot define a complete knowledge base all at once for interesting problem areas, but

they can define a subset and then refine it over many weeks or months of examining its consequences. All this

argues for treating the knowledge base of an expert system asean open-ended set of facts and relations, and

keeping the items of knowledge as modular as possible.

Simplicity -- We have all seen data structures that were so baroque as to be incomprehensible, and thus

unchangeable. The flexibility WC argued for above requires conceptual simplicity and uniformity so that access

routines can be written (and themselves modified occasionally as needed). Once the syntax of the knowledge

base is fixed, the access routines can be fixed to a large extent. Knowledge acquisition, for example, can take

place with the expert insulated from the data structures by access routines that make the knowledge base appear

simple, whether it is or not. However, new reasons will appear for accessing the knowledge base as in

explanation of the contents of the knowledge base, analysis of the links among items, display, or tutoring. With

each of these reasons, simple data structures pay large benefits. From the designer’s point of vi& there are two

ways of maintaining conceptual simplicity: keeping the form of knowledge as homogeneous as possible or

writing special access functions for non-uniform representations.

There is another sense of simplicity that needs mentioning as well. That is the simplicity that comes ,from using

roughly the same terminology as the experts use. Programmers often find ingenious alternative ways of

representing and coding what a specialist has requested, a fact that sometimes makes processing more

“efficient” but makes modifying the knowlcdgc base a nightmare.

Explicitness -- The point of representing much of an expert’s knowledge is to give the system a rich enough

11

knowledge base for high-performance problem solving. But because a knowledge base must be built

incrementally, it is necessary to provide means for inspecting and debugging it easily. With items of knowledge

represented explicitly, in relatively simple terms, the experts who are building knowledge bases can determine

what items are present and (by inference) which are absent,

To achieve these goals, three types of representation framework have been used in expert systems. Although.

we concentrate on r&-based systems in the sections below, we also mention frame-based and logic-based

systems by way of contrast. Such frameworks are often called representation Zatiguages because, as with other

programming languages, their conventions impose a rigid set of restrictions on how one can express and reason

about facts in the world. In all of these languages, one can express conditional expressions and. causal

dependencies. In rule-based systems, however, one sacrifices the ability to express many other general kinds of

relations in favor of the homogeneity and simplicity of conditional rules. These frameworks, also, often include

inference and control routines making them even more like languages.

2.1 Rule-Based Representation Frameworks

2.1 .l Production Systems .

Rule-based expert systems evolved from a more general class of computational models known as production

systems [Newe1173]. Instead of viewing computation as a prespecified sequence of operations, production

systems view computation as the process of applying transformation rules in a sequence determined by the

data. Where some rule-based systems [McDermott801 employ the production-system formalism very strictly,

others such as MYCIN have taken great liberties with it.2 However, the. production system framework

provides concepts that are of great use in understanding all rule-based systems.

A classical production system has three major components: (1) a globa database that contains facts or assertions

about the particular problem being solved, (2) a rulebase that contains the general knowledge about the1
problem domain, and (3) a ruZe interpreter that carries out the problem solving process.

The facts in the global database can be represented in any convenient formalism, such as arrays, strings of

symbols, or list structures. The rules have the form

IF <condition> THEN <action> .

3-h e production system viewpoint has hccn cmpioycd in artificial intelligence work in two different ways -- as a model of human
cognitive processes [Newel1721 and as a framework for pattern-directed inference systems [Waterman78]. For a clear comparison of the
different styles of use of production systems, see [Davis76].

.

I2

In general, the left-hand-side (LHS) or condition part of a rule can be any pattern that can be matched against

the database. It is usually allowed to contain variables that might be bound in different ways, depending upon

how the match is made. Once a match is made, the right-hand-side (RHS) or action part of the rule can be

executed. In general, the action can be any arbitrary procedure employing the bound variables. In particular,

it can result in addition of new facts to the database, or modification of old facts in the database.

The rule interpreter has the task of deciding which rules to apply. It decides how the condition of a selected

rule should be matched to the database, and monitors the problem-solving process. When it is used in an

interactive program, it can turn to the user and ask for information (facts) that might permit the application of a

rule.

The strategy used by the rule interpreter is called the control strategy. The rule interpreter for a classical

production system executes rules in a “recognize-act” cycle. Here the rule interpreter cycles through the

condition parts of the rules, looking for one that matches the current data base, and executing the associated

actions for (some or all) rules that do match. As WC point out in Section 3, there are many other ways to control

the application of rules, but in all cases the result of executing actions is to change the data base, enabling the

application of some rules and disabling others.

At this level of generality, production systems are capable of arbitrarily complex behavior. The many ways in

which conditions might be matched and variables might be bound, the many factors that might be important

for rule selection, and the complicated effects of executing the rule actions can quickly lead to very difficult

control problems. As one specific example, in many problem solving systems the application of one rule can

invalidate conditions needed for the application of a previously applied rule; to cope with such possibilities, the

rule interpreter may have to employ backtracking strategies, or may have to maintain and starch detailed

records of the interdependencies between facts in the database.

Many of the expert systems constructed to date are have controlled this complexity by sacrificing the ability to

perform general problem-solving tasks. They have achieved their competence by specializing -- by exploiting

the fallible but effective heuristic methods that human experts bring to a particular class of problems. Many of

the high-performance systems (including MYCIN) can be characterized as simple deduction systems, programs

in which a fact once entered in the global database (whether by the user or by the application of a rule) is never

subsequently deleted. .Their actions are typically limited to the addition of new facts to the database. In the

remainder of this section, we use EMYCIN as a concrete, specific example of a rule-based approach to expert

systems. While other rule-based systems have made other design tradeoffs, EMYCIN illustrates well the issues

that arc involved.

3

13

2.1.2 EMYCIN Viewed as a Production System .

To see how EMYCIN uses the production system formalism to represent knowledge, we must see how it

represents facts about the current problem in its database, and how it represents general knowledge in its rules.

In all EMYCIN systems, facts are associative triples, that is, attribute-object-value triples, with an associated

degree of certainty (called a certainty factor, or CF). More generally, the EMYCIN syntax for statements of

fact (both within the database and within rules) is:

The <attribute> of <object> is <value> with certainty <CD .

In the MYCIN dialog shown above, fact triples are shown in the explanations as individual clauses of rules.

For example, after Question #35, one fact that has been established is “the type of the infection is bacterial. *’ It

can, also be seen that each question is asking for a value to be associated with an attribute of an object.3 In

Question # 35, for example, MYCIN is asking whether or not the infection of the patient is hospital-acquired.

A rule is a conditional sentence relating several fact statements in a logical relation. The nature of the relation

varies from rule to rule. Often rules record mere empirical associations -- rules of thumb based on past

experience with little theoretical justification. Other rules are statements of theoretical associations, definitions,

or causal laws.

The condition part of an EMYCIN rule is called its premise. In general, an EMYCIN premise is the

conjunction of a number of clauses. Each clause is a simple statement concerning the facts, such as “the age of

the patient is greater than 10 days, ‘* or “the identity of the infection is unknown. ” To enable EMYCIN to query

the database to determine to what degree a clause might be true, each clause includes a matching predicate that

specifies how the statement is to be compared against the database of facts. In particular, a matching predicate

is. not required to return a binary answer, but may return a number between 0 and 1 indicating how much

evidence there is that the predicate is satisfied. About two dozen matching predicates are a standard part of

EMYCIN, including is the same as, is not the same as, has already been established, is not known, is greater than

(for comparing numerical values), and so forth.

.

The basic EMYCIN syntax for a rule is:

PREMISE: @AND (<clauseD . . . <clause-n>))
ACTION: (CONCLUDE <new-fact> <CF>)

3These facts carry an associated degree of certainty also. The certainty is assumed to be 1.0 if the user answers a question without
qualifying it. When a fact is concluded by a rule, its certainty is a function of (a) the certainty of the facts in the premise of the rule and (b)
the strength of infercncc associated with the rule itself. This is described in more detail in the section on plausible inference. The
important point here is not how the numbers are used, but that they arc needed.

14

where the “$I’ prefix indicates that the prcmisc is not a logical conjunction, but a plausible conjunction that

must take account of the certainty factors associated with each of the clauses. The action taken by this rule is

merely the addition of a new fact to the database (or, if the fact were already present, a modification of its

certainty). EMYCIN also provide some mechanisms to allow the execution of more complicated actions. For

example, in MYCIN we find the following rule (stated in English):

RULE160
- - - - - - -

I f : 1) The time frame of the patient's headache is acute,
2) The onset of the patient's headache is abrupt, and
3) The headache severity (using a scale of 0 to 4; maximum is 4) *

is greater than 3
Then: 1) There is suggestive evidence (.6) that the patient's

meningitis is bacterial,
2) There is weakly suggestive evidence (.4) that the patient's

meningitis is viral, and
3) There is suggestive evidence (.6) that the patient has blood

within the subarachnoid space

Thus, this rule has three conclusions. It is rcprcscnted internally in LISP as follows:4

PREMISE : ($AND (SAME CNTXT HEADACHE-CHRONICITY ACUTE)
(SAME CNTXT HEADACHE-ONSET ABRUPT)
(GREATERP" (VALl CNTXT HEADACHE-SEVERITY 3)))

ACTION .. (DO-ALL (CONCLUDE CNTXT MENINGITIS BACTERIAL-MENINGITIS
TALLY 600)

(CONCLUDE CNTXT MENINGITIS VIRAL-MENINGITIS
TALLY 400)

(CONCLUDE CNTXT SUBARACHNOID-HEMORRHAGE YES
TALLY 600)) .----------

These examples illustrate the basic techniques for representing facts and knowledge within the EMYCtN

framework. Similar cxamplcs could bc given for each of the several framework systems that have been

developed to facilitate the construction of rule-based expert systems, including:

4
Since EMYCIN rules have a very regular syntax, a simple procedure can bc used to translate rules from their internal format into

English. It may be of intcrcst to note that the list structures form the premise and the action are stored as values of the two properties,
PREMISE and CONCLUSION, on the property list of the atom RUI .El60. The variable CNTXT is bound to the current object, in this
cast the pariml. SAME and GREh’l‘llRP* arc matching predicates used to compare the values of the named attributes of the current
object against the named value. The variable TALLY refers to the certainty values, which arc given on a -1000 to 1000 ~c,?lc for
convenience.

15

OPS Carnegie-Mellon University [Forgy77]
EMYCIN Stanford University [vanMclleSO]
AL/X University of Edinburgh
EXPERT Rutgers University [Weiss79a]
KAS SRI International [Rebohsl]
RAINBOW IBM Scientific Center (Palo Alto) [Hollander79]

These framework systems provide important tools (such as editors) and facilities (such as explanation systems)

that are beyond the scope of this paper to discuss. They also vary considerably in the syntax and the rule

interpreters they employ. For example, in some of them all attributes must be binary. In some, uncertainty is

expressed more formally as probabilities, or less formally as “major” or “minor” indicators, or cannot be

expressed at all. And in some, additional structure is imposed on the rules to guide the rule interpreter.

Despite these variations, these systems share a commitment to rules as the primary method of knowledge

representation. This is at once their greatest strength and their greatest weakness, providing uniformity and

modularity at the cost of imposing some very confining constraints.

2.2 Alternatives to Rule-Based Representation of Knowledge

There are alternatives to representing task-specific knowledge in rules. Naturally, it is sometimes advantageous

to build a new system in PASCAL, FORTRAN, APL, BASIC, LISP, or other language, using a variety of data

structures and inference procedures, as needed for the problem. Coding a new system from scratch, however,

does not allow concentrating primarily on the knowledge required for high performance. Rather, one tends to

spend more time on debugging the procedures that access and manipulate the knowledge.

The nature of the task sometimes requires more flexibility or more rigor than the rule-based frameworks

provide. In those cases the frameworks mentioned below may provide satisfactory starting points. It should be

noted that all of these frameworks easily allow specification of conditional rules; a sign of the times, however, is

that the most restrictive frameworks (rule-based) arc currently the easiest to use.

There has been some experimentation with mixed rcprcsentation as well [Aikins80, Rcinstein811. The basic

idea is to increase the breadth of what one can represent easily while maintaining the advantages of having

stylized representations (albeit more than one).

16

2.2.1 Frame-Based Representation Languages .

One approach to representing knowledge that allows rich linkages between facts is a generalization of semantic

nets [Brachman77] known as frames [Minsky75], A frame is an encoding of knowledge about an object,

including not only properties (often called. “slots”) and values, but pointers to other frames and attached

procedures for computing values. The pointers indicate semantic links to other concepts, e.g., brother-oA and

also indicate more general concepts from which properties may be inherited and more specialized concepts to

which its properties will be manifested. Programming with this mode of representation is sometimes called

object-centeredprogramming because knowledge is tied to objects and classes of objects.

Some well-known frame-based representation languages are

KRL
OWL
UNITS
FRL
AIMDS
KL-ONE

Xerox PARC [Bobrow77]
M.I.T. [Szolovits77]
Stanford University [Stefik79]
M.I.T. [Roberts771
Rutgers University [Sridharan80]
Bolt, Beranek & Newman [Brachman78]

2.2.2 Logic-Based Representation Languages

A logic-based representation scheme is one in which knowledge about the world is represented as assertions in

logic, usually first-order predicate logic or a variant of it. This mode of representation is normally coupled with

an inference procedure based on theorem proving. Logic-based languages allow quantified statements and all

other well-formed formulas as assertions, The rigor of logic is an advantage in specifying precisely what is

known and knowing how the knowledge will be used. A disadvantage has been dealing with the imprccisidn

and uncertainty of plausible reasoning.

To date there have been few examples of logic-based expert systems, in part because of the newness of the

languages. Some logic-based representation languages are:

PLANNER
PROLOG
ALICE
FOL

M.I.T.[Hewitt72]
Edinburgh University [Warren771
University of Paris [Laurierc78]
Stanford University [Wcyhrauch80]

17

2.2.3 Generalized Languages .
.

There is research in progress on general tools for helping a designer construct expert systems of various sorts.

Designers specify the kind of representation and control and then add the task-specific knowledge within those

constraints. The main advantage of such an approach is freedom -- designers specify their own constraints.

The main disadvantage is complexity -- designers must be very knowledgeable about the range of choices and

must be very patient and systematic about specifying choices. These tools Jook even more like high-level

programming languages, which they are. The best known are:

ROSIE Rand Corp [Fain811
AGE Stanford University [Nii79]
RLL Stanford University [Greiner80]
HEARSAY-III USC/IS1 [Erman81]
MRS Stanford University [Geneserethsla]

2.3 Knowledge Representation Issues

Regardless of the particular choice of representation language, a number of issues are important in the

construction of knowledge bases for expert systems. We mentioned extendability, simplicity and explicitness as

three global criteria. In addition the issues of consistency, completeness, robustness and transparency are major

design considerations for all systems. For specific problems, it may be essential to represent and reason with

temporal relations, spatial models, compound objects, possible worlds, beliefs, and expectations. These are

discussed below.

Consisfency in the knowledge base is obviously desirable. Because much of the knowledge coming from an

expert is previously uncodified, and much of it comes with uncertainty, however, it is unrealistic to assume that

the knowledge base can bc sufficiently cleansed to withstand a logician’s scrutiny. In rule-based systetis, there

are syntactic checks made at the time new ,rules are entered to see if there is potential conflict between a new

rule and existing rules. For example, two rules with the same premises but with different conclusions may be

incompatible if the conclusions arc mutually exclusive. On the other hand, there arc many such pairs of rules

that are perfectly acceptable because both conclusions are warranted. In MYCIN, for example, we find the

same evidence “pointing to” different causes of an infection, with other rules invoking additional evidence to

discriminate among likely causes.

S’ynkzctic Completeness of the representation language is a logical requirement that many rule-based languages

fail to satisfy. There are assertions, e.g., quantified statements, that are difficult or impossible to express. In

DENDRAL, for example, it was difficult to express the proposition that if there exists a pair of data points

bearing a complex relationship to one another then they constitute evidence for one class of interpretations of

the data [Lindsay80].

18

Semantic Completerzess of the knowledge base for a problem area is also desirable. Because of the nature of the

knowledge base and the way it is built, however, it will almost certainly fail to cover some interesting

(sometimes important) possibilities. In a very narrow problem area, for example, there may be 100 attributes of

interest, with an average of 4 important values for each attribute. (Only in extreme cases will all attributes be

binary.) Thus there would be 79,800 possible rules relating two facts (400 items taken two at a time), over 10

million possible rules relating three facts, and so on. While most are semantically implausible, e.g., because of

mutually exclusive values, the cost of checking all combinations for completeness is prohibitive. Checking the

inferences made by a system in the context of careflllly chosen test cases is currently the best way to check the

completeness of coverage of the rules.

Precision in specialized domains is achievable for many of the facts and rules, but not all. There is a temptation

to make overly-precise assertions for the knowledge base, even though there is no justification for fine

precision. For example, although there are hospital-specific statistics about the incidence of a disease, one has

to extrapolate to other (or all) hospitals very carefully. Representing degrees of imprecision is an important

part of every representation methodology.

DefauZt knowledge is important protection against incompleteness. If you know that devices manufactured by

XYZ Corp are generally very reliable, then you might assume that the XYZ disk drive in your system is not the

source of problems if you have no evidence to the contrary. Frame-based methods are designed to use their

inheritance mechanisms to propagate default knowledge through parent-daughter links. In a rule-based

system, default knowledge can certainly be represented but gcncrally requires explicitly stating defaults for

each class of actions.

Causal models provide a detailed specification of how a complex device works, whcthcr it bc biological or

mechanical. For man-made devices, the models can be made more precise. Representing something like a

circuit diagram, and reasoning with it, is difficult although there have been successful research projects in

which causal knowledge is central.

Temporal relations, as causal ones, are still difficult to represent and USC in generally satisfactory ways. Again,

there has been good research, but expert systems generally do not reason well with continuous flows of data, or

about continuous processes.

Sfrategies for problem solving are an important part of expertise. However, they are difficult to represent and

use efficiently. Strategies are discussed in more detail in the section on control below.

The current state of the art of rcprcscnting knowledge about technical domains is adcquatc for many simple

J

19

problems but rcquircs considerably more research on these major issues, and more. (For comparisons among

systems see [Brooks81, Ennis821.) Although rule-based frameworks have been used successfully for building

several expert systems, the limitations are significant enough that researchers everywhere are looking for

extensions or alternatives.

3 INFERENCE METHODS IN EXPERT SYSTEMS

3.1 Logical and Plausible Inference

Although the performance of most expert systems is determined more by the amount and organization of the

knowledge possessed than by the inference strategies employed, every expert system needs inference methods

to apply its knowledge. The resulting deductions can be strictly logical or merely plausible. Rules can be used

to support either kind of deduction. Thus, a rule such as

Has(x, feathers) OR (Able(x, fly) & Able(x, lay-eggs)) -->
Class(x, bird)

amounts to a definition, and can be used, together with relevant facts, to deduce logically whether or not an

object is a bird. On the other hand, a rule such as

State.(engine, won't turn over) & State(headlights, dim) -->
State(battery, discharged)

is a “rule-of-thumb” whose conclusion, though plausible, is not always correct.

Clearly, uncertainty is introduced whenever such a judgmental rule is employed. In addition, the conclusions

of a logical rule can also be uncertain if the facts it employs arc uncertain. Both kinds of uncertainty are

frequently encountered in expert systems applications. However, in either case we arc using the rule to, draw

conclusions from premises, and there are many common or analogous issues. In this section we temporarily

ignore the complications introduced by uncertainty, and consider methods for using rules when everything is

certain.

In terms of the production-systems model of r&-based expert systems, this section is concerned with the rule

interpreter. As we mentioned in Section 2, the rule interpreter for a production system for unrestricted

problem solving may have to employ complicated procedures to handle such things as pattern matching,

variable binding, rule selection, and backtracking. To simplify our problem further, we shall restrict our

attention to simple deduction systems, programs whose actions arc essentially limited to adding new facts to the

global database. Our intent is to describe the general characteristics of the commonly used rule interpreters

without becoming entangled ‘in . the detailed mcch&isms they employ; control stratcgics for more general

problem solving systems are dcscr-ibcd in [Nilsson80].

I
__

20

3.2 Control .

In this section we describe three commonly used control strategies: (1) data-driven, (2) goal-driven, and (3)

mixed. Since control concerns are procedural, we shall describe these strategies semi-formally as if they were

programs written in a dialect of PASCAL, a “Pidgin PASCAL.” It is important to note at the outset, however,

that these procedures are formal, employing no special knowledge about the problem domain; none of them

possesses an intrinsic power to prevent combinatorial explosions. This has led to the notion of incorporating

explicitly represented control knowledge in the rule interpreter, and idea that we discuss briefly at the end of

this section.

3.2.1 Data-Driven Control

With data-driven control, rules are applied whenever their left-hand-side conditions are satisfied. To use this

strategy, one must begin by entering information about the current problem as facts in the database. The

following simplified procedure, which we shall call “Respond,” can then be used to execute a basic data-driven

strategy.

Procedure Respond;

Scan the database for the set,S of applicable rules;

While S is non-empty and the problem is unsolved do

bea-in

Call Select-Rule(S) to select a rule R from S;

Apply R and update the database;

Scan the database for the set S of applicable rules

end.

Here we assume that a rule is applicable whenever there are facts in the database that satisfy the conditions in

its left-hand side. If there are no applicable rules, there is nothing to be done, except perhaps to return to the

user and ask him or her to supply some additional information. (And, of course, if the problem is solved, there

is nothing more to do.)

If there is only one applicable rule, the obvious thing to do is to apply it. Its application will enter new facts in

the database. While that may either enable or disable previously inapplicable rules, by our assumption it will

never disable a previously applicable rule.

If there is more than one applicable rule, we have the problem of deciding which one to apply. Procedure

21

Select-Rule has the responsibility for making this decision. Diffcrcnt data-driven strattigies differ greatly in the

amount of problem-solving effort they devote to rule selection. A simple and inexpensive strategy is to select

the first rule that is encountered in the scan for S -- “doing the first thing that comes to mind.” Unfortunately,

unless the rules are favorably ordered, this can result in many useless steps. Elaborations intended to overcome

such shortcomings can make data-driven control arbitrarily complex.

Data-driven control is very popular, as is evidenced by the fact that it is known by so many different names

(bottom-up, forward chaining, pattern-directed, or antecedent reasoning). Rl is an excellent example of an

expert system that employs this strategy [McDermott80]. The popularity of data-driven control derives largely

from the fact that such a program can respond quickly to input from the user, rather than forcing the user to

wait until the program gets around to what the user wants to talk about.

We have already mentioned the potential ineficiency of this strategy. Other problems that are often

overlooked can arise for programs intended to be used by naive users. For example, as a data-directed program

fires off one rule after another, its behavior can appear to be aimless, undermining a user’s confidence in its

soundness. Also, since the user must begin by entering a set of facts, some kind of a language is needed to

convert facts as expressed in the user’s terms into the appropriate internal representation; menu systems may

provide an acceptable solution, but a need for greater flexibility is frequently encountered. Both of these

problems can be circumvented by using goal-driven control.

3.2.2 Goal-Driven Control

A goal-driven control strategy focuses its efforts by only considering rules that are applicable to some particular

goal. Since we are limiting ourselves to rules that can add simple facts to the database, achieving a goal G is

synonymous with showing that the fact statement corresponding to G is true. In nontrivial problems, achieving

a goal requires setting up and achieving subgoals. This can also lead to fruitless wandering if most of the

subgoals are unachievable, but at least there is always a path from any subgoal to the original goal.

Suppose that the user specifies a goal statement G whose truth is to be determined -- typically a fact that the

user would like to have present in the database. Then the following simplified procedure, which we shall call

“Achieve,” carries out a basic goal-driven strategy.

Procedure Achieve(G);

Scan the knowledge base for the set S of rules that determine G;

If S is empty then ask the user about G else

While G is unknown and rules remain in S do

22

beain

Call Choose-Rule(S) to choose a rule R from S;

G' <-- condition(R):

I G' is unknown then call Achieve(G');

If G' is true then apply R

end.

Thus, the first step is to gather together all of the rules whose right-hand-sides can establish G. If there is more

than one relevant rule, procedure Choose-Rule receives the problem of making the choice. Once a rule R is

selected, its left-hand-side G’ is examined to see if R is applicable. If there is no information in the database

about G’, the determination of its truth or falsity becomes a new subgoal, and the same procedure Achieve is

applied to G’ recursively.

The starch continues in this fashion, working systematically backward from the original goal, until a subgoal is

encountered for which there are no rules. At this point the system turns to the user and asks for the relevant

facts. If the user cannot supply the needed information, then the rule the system was working on at the time

cannot be used, but other lines of reasoning can still be explored. If the information supplied shows that G’ is

true, then R is applied. The process continues in this manner until either G is established to be true or false, or

no applicable rules remain.

Since the left-hand-side of the selected rule becomes the next subgoal, the choice of a rule is equivalent to

subgoal selection. Different goal-driven strategies differ greatly in the amount of effort they devote this

problem. A simple and inexpensive strategy is to select the first rule that is encountered in the scan for S.’

Unfortunately, unless the rules are favorably ordered, this can lead to exploring unpromising subgoals. As in

the case of data-driven control, elaborations intended to overcome such shortcomings can make goal-driven

control arbitrarily complex.

Goal-driven control has also been used in many systems, and is variously known as top-down, backward-

chaining, or consequent reasoning. A primary virtue of this strategy is that it dots not seek information and

does not apply rules that are unrelated to its overall goal. Furthermore, as we have seen in the excerpt from a

MYCIN session, a rule-based system using this strategy can provide illuminating explanations of its behavior

merely by telling the user what goal it is working on and what rule it isusing.

5
MYCIN employs a slightly diffcrcnt strategy: instead of making a sclcction, MYCIN employs a cautious strategy of applying all of the

rules in S. This is because individual MYCIN rules uwally do not establish the truth of falsity of G, but merely increase or decrease its
certainty; a linal certainty assessment cannot be made until all of the rules are used.

23

Probably the chief disadvantage of a goal-driven strategy is that it does not allow ‘the user to steer it by

volunteering relevant information about the problem. This can make goal-driven control unacceptable when

rapid, real-time response is required.

3.2.3 Mixed Strategies

Data-driven and goal-driven strategies represent two extreme approaches to control. Various mixtures of these.

approaches have been investigated in an attempt to secure their various advantages while minimizing their

disadvantages. The following simple procedure combines the two by alternating between the two modes.

Procedure Alternate;

Reoeat

Let user enter facts into global database:

Call Respond to deduce consequences;

Call Select-Goal to select a goal G;

Call' Achieve(G) to try to establish G

until the problem is solved..

Here Respond and Achieve are the data-driven and goal-driven procedures described previously. Select-Goal,

which we do not attempt to specify, uses the partial conclusions obtained from the data-driven phase to

determine a goal for the goal-driven phase. Thus, the basic idea is to alternate between these two phases, using

information volunteered by the user to determine a goal, and then querying the user for more information

while working on that goal. _

A variant of this procedure is used in the PROSPECTOR program [Duda79]. In this case, Select-Goal uses a

heuristic scoring procedure to rank the goals in a prespecified set of “top-level” goals, but the user is allowed to

see the results and to make the final selection. Furthermore, a modified version of Achieve is used which

ceases working on a goal whenever (a) its score drops and (b) it is not the highest-scoring top-level goal. Thus,

PROSPECTOR works in a goal-driven mode when it seems to be making progress, but returns to the user for

help in goal selection when serious trouble is encountered.

3.3 Explicit Representation of Control Knowledge

The advantages of making the task-specific knowledge modular and explicit extend to control knowledge as

well. The strategy by which an expert system reasons about a task depends on the nature of the task and the

nature of the knowledge the system can USC. Ncithcr data-driven, goal-driven, nor any particular mixed

.

24

strategy is good for every problem. Diffcrcnt approaches are ncedcd for different problems. Indeed, one kind

of knowledge possessed by experts is knowledge of procedures that are effective for their problems.

In most expert systems, the control strategy is encoded in procedures much like the ones we exhibited in

pseudo-PASCAL. Thus, control knowledge is not explicitly represented, but is buried in the code. This means

that the system cannot easily explain its problem solving strategy, nor can the system builder easily modify it.

Several interesting attempts have been made to extract this knowledge and represent it explicitly. In his work

on TEIRESIAS, Davis included the USC of meta-rules, rules that determined the control strategy [Davis77a].

TEIRESIAS essentially implements the procedure Select-Rule as a rule-based system. That is, strategic

knowledge is used to reason about the most appropriate rules to invoke during problem solving or the most

appropriate order in which to invoke them. Because the strategy rules can be context-specific, the result is a

system that adapts its rule selection strategy to the nature of the problem. Other important work on explicit

control of reasoning in expert systems can be found in [Aikins80, Barnett82, Clancey81, deKleer77,

Genescrcth8la, Georgeff821.

4 REASONING WITH UNCERTAINTY

The direct application of these methods of deduction to real-world problems is complicated by the fact that

both the data and the expertise are often uncertain. This fact has led the designers of expert systems to

abandon the pursuit of logical completeness in favor of developing effective heuristic ways to exploit the

fallible and but valuable judgmental knowledge that human experts bring to particular classes of problems.

Thus, WC now turn to comparing methods that have been used to accommodate uncertainty in the reasoning.

4.1 Plausible Inference

Let A be an assertion about the world, such as an attribute-object-value triple. How can one treat the

uncertainty that might bc associated with this assertion? The classical formalism for quantifying uncertainty is

probability theory, but other alternatives have been proposed and used. Among these are certainty theory,

possibility theory, and the Dempster/Shafer theory of evidence. We shall consider all four of these approaches

in turn;with emphasis on the first two.

4.2 Bayesian Probability Theory

With probability theory, one assigns a probability value P(A) to every assertion A. In expert systems

applications, it is usually assumed that P measures the dcgrce to which P is believed to be true, where P = 1 if

25

A is known to be true, and P = 0 if A is known to be false! In general, the degree of be’lief in A will change as

new information is obtained. Let P(A) denote our initial or prior belief in A, and let the conditional probability

P(AIB) denote our revised belief in A upon learning that B is true. If this change in probability is due to the

application of the rule B --> A in a rule-based system, then some procedure must be invoked to change the

probability of A from P(A) to P(AIB) whenever this rule is applied.

In a typical diagnosis situation, we think of A as a “cause” and B as an “effect,” and view the computation of .

P(AIB) as an inference that the cause is present upon observation of the effect. The expert often finds it easier

to estimate P(BIA) -- the prdbability of observing the effect B when the cause A is active. In medical situations,

this is further justified by the argument that the probability of a disease given a symptom may vary with time

and place, while the probability of a symptom given a disease remains invariant [Lusted68]. Thus, &zyes’RuZe

is commonly employed to compute P(AIB) from P(BIA).

It turns out that the important information that is needed to employ Bayes’ Rule is the prior probability P(A)

and the likelihood ratio L defined by

WI A)
L = -------

P(BI-A) ’

where P(BI-A) is the probability of observing effect B when cause A is absent.

If we think of the link between B and A as being expressed by a rule of the form B -4 A, then we can think of

the logarithm of the likelihood ratio L as representing the strength or weight of the rule; rules with positive

weights increase the probability of A, and rules with negative weights decrease it.

Two generalizations are needed to employ this result in practice. First, we need a way to combine the effects of

several rules, particularly when they are in conflict. Second, WC need a way to employ uncertaih evidence.

While a thorough treatment of these topics is beyond the scope of this paper, it is usefU1 to explore this topic

sufficiently to reveal the problems that are encountered and the general nature of their solutions.

“rraditionally, the probability P(A) is interpreted to measure the frequency of occuirence of the event A in a series of random trials.
With this frequency-ratio interpretation, P is called an objective probability, and the estimation of a numerical value for P is a statistical
problem. When P(A) is used to measure degree of belief, it is called a subjecfive probability, and the estimation of numerical values is done
by interviewing experts [Savage71]. However, in either case the same calculus is used for combining probabilities, and a frequency-ratio
interpretation is often used in practice to cstimatc subjcctivc probabilities and vice versa. ‘Ihc distinctions between objective and subjective
probability theory are treated in depth in [Finc73].

26

4.2.1 Corn bining Rules

Suppose that we have n plausible rules of the form

B,--> A, B,--> A, B,-9 A,

each with its own weight. Formally, the generalization of Bayes’ Rule is simple. We merely consider B to be

the conjunction B = B, & B, & . . . & BI1, and use the likelihood ratio

P(B, & B, & . . . & B, I A)
L = -------------------------- .

P(B, & B, & . . . & B, I -A)

The problem with this solution is that it implies that we not only have weights for the individual rules

connecting the B, to A, but that we also have weights for the pairs Bi & Bj, triples Bi & Bj and B,, and so on, not

to mention combinations involving negations when the evidence is known to be absent. This not only leads to

extensive, nonintuitive computations, not directly related to the rules, but also requires forcing the expert to

estimate a very large number of weight values.

A major simplification can be achieved if it is possible to assume that the Bi are statisticalb independent, both

when A is present (true) and when A is not present (false). In,that case, the conditional probabilities shown

above factor, and L simplifies to the product of the separate likelihood ratios. In other words, under that

assumption, we need only have one weight associated with each rule, and we can combine the effects of several

pieces of evidence by adding the separate weights.

In general, of course, this assumption is not justified. In fact, it can be shown that the assumption cannot be

made repeatedly when there are multiple assertions.7 In its extreme form, this approach suggests designing an

expert system by gathering all the evidence that bears in any way on a final conclusion A and going in, olie step

from the observations to the conclusion. Such an approach typically founders on the complexity of the

interactions among observations that are not even approximately independent.

The pragmatic solution to this problem places the responsibility on the knowledge engineer to see that the rules

are properly structured. Many problems caused by interactions can be solved by employing a hierarchical

structure, with several levels of assertions between the direct observations and the final conclusions. The goal is

to localize and limit tic interactions, and to have a rclativcly small number of clauses in a condition and a

relatively small number of rules sharing a common conclusion. Note that this limitation on the number of rules

does not reduce the amount of evidence considered in reaching a conclusion, but rather controls the ways in

7To bc more specific, if A , h2,
independent under A. and -x

Am arc m mkually exclusive and exhaustive assertions, then the 2m assumptions that the Bi are
. are inconsistent with the laws of probability theory if m > 2 (XC [PcdnauMl]). Computations based on

such assumptions will’fail to shdw that A1 must be true if A2 through Am have been ruled out.

.

21

which the observations are allowed to interact. A hierarchical structure is typically employed by the experts

themselves to reduce the complexity of a problem. Wherever the remaining interactions still prevent the

assumption of local independence, the rules have to be reformulated to achieve the desired behavior. For

example, in the strongly interacting situation where B, suggests A and B, suggests A, but the simultaneous

presence of both B, and I33 rules out A one may have to augment the rule set

c u$ --> A with weight Ll)

tB2 --> A with weight L2) }

with the rule (Bt & B2 --> A with weight-m). Thus, rather than viewing probability theory as a paradigm that

prescribes how information should be processed, the knowledge engineer employs it as a tool to obtain the

desired behavior.

4.2.2 Uncertain Evidence

There are two reasons why an assertion B might be uncertain: (1) the user might have said that B is uncertain,

or (2) the program might have deduced B using a plausible rule. If we want to use B in a rule to compute

P(A]B), the question then arises as to how to discount the conclusion because of the uncertainty associated with

B.

Let E symbolize whatever evidence was used to determine B, and let P(B]E) denote the current probability of

B. Then our problem is to compute P(A]E), the current probability of A given this same evidence. It is shown

in [Duda76] that under certain reasonable assumptions we should be able to compute P(A]E) by the formula

WI El = P(AIB)*P(BIE) + P(AI-B)*[l - P(BIE)I .

This formula certainly works in the extreme cases of complete certainty. That is, if we know that B is true we

obtain P(A]B), and if we know that B is false we obtain P(A]-B). Unfortunately, a serious problem arises in

intermediate cases. In particular, suppose that E actually supplies no information about B, so that P(B]E) is the

same as the prior probability P(B). While the formula above promises to yield the prior probability P(A), when

the computation is based on numerical values obtained from the expert, the resulting value for P(A]E) will

usually not agree with the expert’s estimate for the prior probability P(A). That is, the four quantities P(A),

P(B), P(A]B) and P(A]-B) arc not independent, and the expert’s subjective cstimatcs for them arc almost surely

numerically inconsistent.

In this particular case, the problem can be solved in various ways (such as by not asking the expert for P(A), but

by computing it from P(A) = P(A]B)P(B) + P(A]-B)P(-B)). However, that only makes the parameters for

one rule consistent, and the s.olution is not at all obvious when thcrc is a network of rules that have inconsistent

values for probability parameters. The solution adopted in the PROSPECTOR system was to replace the

-
28

above expression for P(AIE) by a piecewise linear function of P(BlE) that yields the expert’s estimate for P(A)

I. when P(BIE) is numerically equal to the expert’s estimate for P(B) (see [Duda76]). Interestingly, the resulting

formulas turn out to be closely related to the certainty measure used in MYCIN, which we consider next.

4.3 Certainty Theory

We have seen several problems that arise in using traditional probability theory to quantify uncertainty in

expert systems. Not the least of these is the need to specify numerical values for prior probabilities. While an

expert may be willing to say how certain he or she feels about a conclusion A when evidence B is present, he or

she may be most reluctant to specify a probability for A in the absence of any evidence, particularly when rare

but important events are involved. Indeed, some of the problems that are encountered in obtaining consistent

estimates of subjective probabilities may well be due to the fact that the expert is not able to separate

probability from utility or significance, and is really expressing some unspecified measure of importance.

To accommodate this reality, the designers of the MYCIN system developed a theory of certainty that provides

a simple and effective alternative approach [Shortliffe75]. The central notion is that we can associate a certainty

measure C(A) with every assertion A, where C = 1 if A is known to be true, C = -1 if A is known to be false,

and C = 0 if nothing is known about A.8 A similar certainty factor CF is associated with every rule. The theory

consists of procedures for updating certainties as rules are applied, and an analysis of the properties of these

procedures.

The procedures for updating certainties are easily stated. Initially, the certainty associated with any assertion is

0. If a rule says that B --> A with a certainty factor CF, then the certainty of A is changed to CF when B is

observed to be true. Only two things remain to be specified: (1) the procedure for combining evidence when

more than one rule concludes A, and (2) the treatment of uncertain evidence. We consider each of these in

turn.

4.3.1 Corn bining Evidence

Suppose that (1) the present certainty of an event A is CA (which may be non zero because of the previous

application of rules that conclude A), (2) there is an unused rule of the form B --> A with a certainty factor CF,

and (3) B is observed to be true. Then the E:MYCIN formula for updating C(A) to C(AlB) is

81f we also assume that we can associate probabilities with assertions, then it would appear that C = 1 corresponds to P = 1, C = -1
corresponds to P = 0, and C = 0 corresponds to P being at its prior value. The original MYCIN definitions of certainty were in terms of
piecewise-linear functions of probability. IIowever, the I34YCIN view, which we prcscnt in this section, is that the calculus of certainty
factors is a heuristic approach that allows rule-based systems to cope with uncertainty in a simple and straightforward way, judging it more
by its usefulness than by its lheorctical properties [vanMclle80]. It is a one-number calculus that combines subjective estimates of
probability and risk in a measure of imnporrunce, which bears no simple relationship to probability alone.

29

CA +
.; .

CF - CA * CF

I
C(AlB) = < CA + CF + CA * CF

I
I CA + CF
I --------------------

.\ 1 - m i n {ICAl, .ICFI)

if CA an'cl CF > 0

if CA and CF < 0

otherwise .

This is the EMYCIN analog of the procedure of multiplying likelihood ratios to combine “independent”

evidence. By applying it repeatedly, one can combine the conclusions of any number of rules B, --> B, --> A,

. . . . Bn --> A. Aside from being easy to compute, it has several other desirable properties. First, the resulting

certainty C(AlB) always lies between -1 and 1, being +l if CA or CF is +l, and -1 if CA or CF is -1.. When

contradictory conclusions are combined (so that CA = -CF), the resulting certainty is 0. Except at the singular

points (1, -1) and (-1, l), C(AIB) is a continuous fimction of CA and CF, increasing monotonically in each

variable. The formula is symmetric in CA and CF, and the results it yields when more than two pieces of

evidence are combined are independent of the order in which they are considered.

Of course, none of these properties prove that this is the “correct” way to combine the conclusions of rules.

Indeed, the results will be wrong in strongly interacting cascq such as our previous example in which B,

suggests A and B, suggests A, but the simultaneous presence of 13, and B, rules out A. As with the use of

Bayesian methods, the knowledge engineer should view certainty theory as a tool to be employed to produce

the desired behavior.

4.3.2 Uncertain Evidence

When the evidence B for a rule B --> A is itself uncertain, it is clear that the strength of the conclusion must be

reduced. The EMYCIN procedure is to multiply the certainty factor CF for the rule by the certainty of B,

provided that the certainty of B is positive. If the certainty of B is negative, the rule is considered to be

inapplicable, and is not used.’ EMYCIN assumes that a rule cannot be employed unless the certainty of its

antecedent is greater than a threshold value of 0.2. This heuristic -- which implies that thi certainty of a

conclusion is not a strictly continuous function of the certainty of the evidence -- saves time by inhibiting the

application of many marginally effective rules, and saves confLlsion by making explanations provided by the

system more understandable.

One more effect of uncertain evidence remains to be mentioned. In general, the antecedent B of a rule is a

logical function of predicates or relations on associative triples. Since these functions or relations can return

certainty values rather than truth values, there is a question as to how the certainty of their logical combination

is determined. The answer is that it is computed through the rccursivc application of the following formulas:

9 If the absence of B has a significant effect on A, we could add a nlle of the form -B --> -A with some certainty factor CF.

30

w, OR B2) = max {C(B& C(Bp)}

v, & Bz) = min {C(B& C(B2)}

C(-B) = - C(B). .

These formulas are esseniially the same as the corresponding formulas of possibility theory, which is discussed

briefly in the next section.

4.4 Possibility Theory

Probability theory captures only some of the important aspects of uncertainty, and a variety of alternative.

approaches, such as certainty theory, have been devclopcd to overcome its limitations. Otle of the most

interesting of the recent alternatives is Zadeh’s theory of possibility [Zadch78]. It is based on his earlier

development of the theory of fuzzy sets [Zadch65], much as probability theory is based on measure theory.

Zadeh asserts that although the random model of probability theory may be appropriate for problems

involving the measure of information, it is inappropriate for problems concerning the meaning of information.

In particular, much of the uncertainty surrounding the USC of English terms and expressions concerns

vagueness rather than randomness. Possibility theory provides a formalism for treating vagueness that is

analogous to probability theory as a formalism for treating randomness.

The theory of fuzzy sets expresses this kind of imprecision quantitatively by introducing characteristic or

membership functions that can assume values between 0 and 1. Thus, if S is a set and ifs is an element of S, a

fuzzy subset F of S is defined by a membership function pF(s) that measures the dcgrce to which s belongs to

F. To use a standard example, if S is the set of positive integers and F is the fuzzy subset of small integers, then

we might have pF(1) = 1, pF(2) = 1, pF(3) = .8, . . . , pF(20) = .Ol, and so on. Let X be a variable that can

take values in S. The statement “X is F” (for example, the statement “X is a small integer”), induces a

possibility distribution on X, and the possibility that X = s is taken to be pF(s).

Now probability theory is not concerned with how the numerical values of probabilities are detcrmincd, but

rather with the rules for computing the probability of expressions involving random variables. Similarly,

possibility theory is not concerned with how the numerical values of the possibility distributions are obtained,

but rather with the rules for computing the possibilities of expressions involving fuzzy variables. In particular,

if Poss{X = s) is the possibility that the tizzy variable X is equal to s, then the formulas for disjunction,

conjunction and negation are

pass{ X=s OR Y=t } = rnax[Poss{X=s}, PoSS{Y=t)]

31

.

Pass{ x = s & Y = t } = min[Poss{X=s}, POSS{Y=t}]

and

Pass{ x # s } = 1 - Poss{x=s}.

For most of the concepts of probability theory there is a corresponding concept in possibility theory. For

example, it is possible to define multivariate possibility distributions, marginal possibility distributions, and

conditional possibility distributions (see [Zadeh78]). Thus, in principle one can use fuzzy possibility theory

much like probability theoiy to quantify the uncertainty introduced by vagueness, whether the vagueness

comes from the data or from the rules.

Although possibility theory is a subject of great interest, it has yet to be exploited in work on expert systems.

This is partly due to the fact that most of the problems that limit probability theory also arise in possibility

theory -- such as the problem of prior possibilities and the problem of dependence in multivariate possibility

distributions. Furthermore, as with certainty theory, possibility theory suffers from the problem that the

semantics of its measure are not objectively defined. However, the distinction between uncert’ainty due to

randomness and uncertainty due to vagueness is both valid and important, and should play a role in work in

expert systems.

4.5 The Dempster/Shafer Theory of Evidence

WC conclude this overview of formalisms for treating uncertainty with a brief consideration of a generalization

of probability theory created by Dempster and developed by Shafer that has come to be known as the

Dempster/Shafer theory of cvidcnce [Shafer76, narnett8lj.

Dempster and Shafer insist that one must make a fimdamental distinction between uncertainty and ignorance.

In probability theory, one is forced to express the extent of one’s knowledge about or belief in an assertion A

through a single number, P(A). Dcmpster and Shafer point out that the classical Bayesian agony conceruing

prior probabilities is often due to the fact that one often simply does not know the values of prior probabilities,

.and this ignorance may make any particular choice arbitrary and unjustifiable.

The Dcmpster/Shafer theory of evidence recognizes the distinction between uncertainty and ignorance by

introducing belief finctions that satisfy axioms that are weaker than those of probability functions. Thus,

probability functions are a subclass of belief functions, and the theory of evidcncc reduces to probability theory

when the probability values arc known. Roughly speaking, the bclicf functions allow us to use our knowledge

to put constraints or bounds on the assignment of m-nbnbilitics to events without having to specify the

32

probabilities thcmsclvcs. In addition, the theory of evidence provides appropriate methods for computing

belief functions for combinations of evidence.

As one might expect, a theory that includes probability theory as 3 special case suffers from many of the same

problems that plague probability theory. The greater complexity results in an increase in computational

problems as well, and the conclusions that can be reached are necessarily weaker. However, when available.

knowledge does not justify stronger conclusions, this latter fact has to be accepted. Whether or not the theory

of cvidcnce will provide the basis for computationally effective procedures for treating uncertainty, it deserves

attention for exposing the effects of lack of knowledge on probabilistic reasoning.

5 KEY CONCEPTS

In the prcvidus three sections we focused on three central issues in the design of expert systems, with special

attention to rule-based systems. The representation, inference methods and methods for reasoning under

uncertainty are the elements of the design of rule-based systems that give them power. We turn now to a

broader look at several less technical aspects of building an expert system. Thcsc arc observations derived fx*om

our own experience and constitute suggestions for designing an, expert system. They also reflect the current

state of the art.

In this section we first list several of these considerations, with very little explanation. Then we look at the

nature of the problem (the first of the considerations) in more detail from three different perspectives: the

types of problems for which expert systems have been developed (Sec.S.l), the nature of the data encountered

.in these problems (Sec.5.2), and the nature of the expertise (Sec. 5.3).

We spoke earlier of the importance of separating task-specific knowledge from a system’s inference methods,

and WC discussed the representation and inference methods by which we can realize the truth in the assumption

that “knowledge is power.” We list hcrc some of those and other key ideas in putting together an expert

system.

NATURIC OF THE PROBLEM: .

Narrow scope -- The task for the system must be carefully chosen to be narrow enough that the relevant

expcrtisc can be encoded, and yet complex enough that expertise is required. This limitation is more because

of the time it takes to engineer the knowlcdgc into a system including rcfmemcnt and debugging, than because

space required for the knowledge base.”

10This contrasts with early work in AI in which space was at least as much an issue.

33

Existence of an expert -- Thcie are problems so new or so complex that no one rBnks as an expert in the

problem area. Generally speaking, it is unwise to expect to be able to construct an expert system in areas where

there are no experts.

Agreement among experts -- If current problem solving expertise in a task area leaves room for frequent and

substantial disagreements among experts, then the task is not appropriate for an expert system.

Data available -- Not only must the expertise be available, but test data must be available (preferably online).

Since an expert system is built incrementally, with knowledge added in response to observed difficulties, it is

necessary to have several test cases to help explore the boundaries of what the system knows.

A4ilestones deJnable -- A task that can be broken into subtasks, with measurable milestones, is better than one

that cannot be demonstrated until a11 the parts arc working.

REPRESENTATION:

Separation of task-specific knowledge from the rest of the program -- This separation is essential to maintain the

flexibility and understandability required in expert systems.

AltetzGon lo delail -- Inclusion of very specific items of knowledge about the domain, as well as general facts, is

the only way to capture the expertise that experience adds to textbook knowledge.

Unlfot-tn dara struclures -- A homogeneous representation of knowledge makes it much easier for the system

builder to develop acquisition and explanation packages.

INFERENCE:

Symbolic reasoning - It is commonplace in AI, but not elsewhere, to regard symbolic, non-numeric reasoning as

a powerful method for problem solving by computers. In applications areas where mathematical methods are

absent or computationally intractable, symbolic reasoning offers an attractive alternative.

Combinarion of deductive logic atld plausible reasoning -- Although deductive reasoning is the standard by

which we measure correctness, not all reasoning -- even in .scicncc and mathematics -- is accomplished by

deductive logic. Much of the world’s expertise is in heuristics, and programs that attempt to capture expert-

level knowledge need to combine methods for deductive and plausible reasoning.

Explicit problem solving strategy -- Just as it is uscfill to scparatc the domain-specific knowlcdgc from the

I -
34

infcrencc method, it is also useful to separate the problem solving strategy from both. In debugging the system

it helps to remember that the same knowledge base and inference method can produce radically different

behaviors with different strategies. For example, consider the difference between “find the best” and “find the

first over threshold”.

Inleraclive user inlerfaces -- Drawing the user into the problem solving process is important for tasks in which

the user is responsible for the actions recommended by the expert system, as in medicine. For such tasks, the

inference method must support an interactive style in which the user contributes specific facts of the case and

the program combines them in a coherent analysis.

EXYLANATION:

Sralic queries of Ihe knowltidge b a s e - - The process of constructing a large knowledge base requires

understanding what is (and is not) in it at any moment. Similarly, using a system effectively depends on

assessing what it does and does not know.

Dynatnic queries about the line of reasoning -- As an expert system gathers data and makes intermediate

conclusions, users (as well as system builders) need to be able to ask enough questions to follow the line of

reasoning. Otherwise the system’s advice appears as an oracle from a black box and is less likely to be

acceptable.

KNOWLEDGE ACQUISITION:

Bandwidlh -- An expert’s ability to communicate his/her expertise within the framework of an expert system is

limited by the restrictions of the framework, the degree to which the knowledge is already well-codilied, and

the speed with which the expert can create and modify data structures in the knowledge base.

Knowledge engineer -- One way of providing help to experts during construction of the knowledge base is to let

the expert communicate with someone who understands the syntax of the framework, the rule interpreter, the

process of knowledge base construction, and the practical psychology of interacting with world-class experts.

This person is called a “knowledge engitleer”.

VALIDATION:

Level of performance -- Empirical measures of adequacy are still the best indicators of performance, even

though they arc not sufflcicnt for complete validation by any means. As with testing new drugs by the

pharmaceutical industry, testing expert systems may. best bc accomplished by randomized studies and double-

blind experiments.

35

SIalic evaluation -- Because the knowledge base may contain judgmental rules as well as axiomatic truths,

logical analysis of its completeness and consistency will be inadequate. However, static checks can reveal

potential problems, such as one rule subsuming another and one rule possibly contradicting another. Areas of

weakness in a knowledge base can sometimes be found by analysis as well.

5.1 Classes of Problems for Expert Systems

The first of the key concepts listed above was the nature of the problem. We examine this issue in somewhat

more detail in this and the next two sections. While thcrc are many activities an expert performs, the activities

for which expert systems have been built fall into three categories: analysis, synthesis, and interface problems.

Analysis Problems have been the most successfully solved with the knowledge engineering approach to date.

Many applications programs that have the characteristics of expert systems have been developed for analysis

problems in a diversity of areas including: chemistry [Buchanan78, Carhart791; genetics [Stefik78]; protein

crystallography [Engelmore79]; physics [Bundy79, Larkin80, Novak80,]; interpretation of oil well logs

[Barstow79b, Davis81]; electronics troubleshooting [Addis80, Bennett8lb, Brown82, Davis82b, Geneserethslb,

Kandt81, Stallman771; materials engineering [Basden82, Ishizuka81]; mathematics [Brown78, Mosesirl];

medical diagnosis [Chandrasekaran80, Fagan80, Goriy78, Heisdr78, Horn81, Kaihara78, Lindberg81, Pati181,

Pople77, Reggia78, Shortliffe76, Shortliffe81, Swartout77, Szolovits78, Tsotsos81, Weiss79bl; mineral

exploration [Duda79]; aircraft identification and mission planning [Engelman79]; military situation assessment

[McCo1179, Nii82]; and process control wamdani821. Within these and other disciplines, analysis problems are

described using many different terms, including:

l Data Interpretation
l Explanation of Empirical Data
l Understanding a Complex of Data (c.g., signal understanding)
0 Classification
l Situation Assessment
l Diagnosis (of diseases, equipment failures, etc.)
l Troubleshooting
l Fault Isolation
e Debugging
l Crisis Management (diagnosis half) .

An expert system working on one of these problems analyzes a description of a situation, and provides

plausible interpretations of what the data seem to indicate. The data may come from a variety of sources

ranging from subjective opinion to precise readings of instruments.

Synthesis Problems have the character of constructing a solution to satisfy a goal within stated constraints. In

many cases, solutions to small, local problems need to bc synthesized into a cohcrcnt solution that satisfies

.

36

global constraints. Synthesis problems arise in many fields including: planning cxpcrimcnts in molecular

genetics [Fricdland79, Stefik801, configuring the components of a computer system [McDcrmott80,

McDcrrnott811; scheduling [Fox82, Goldstein79, Lauriere781; automatic programming [Barstow79a,

McCune771; electronics design [dcKlccr80, Dincbas80, Sussman781, and chemical synthesis tGelernter77,

Wipke771. These problems have been called:

0 Planning (or Constructing a Plan of Action)
l Fault Repair
0 Process Specification
l Design (of complex devices or of experiments)
0 Configuration
l Therapy (or therapy planning)
0 Automatic Programming
e Computer-Aided Chemical Synthesis Planning

In addition to analysis and synthesis problems, expert systems have been built to provide advice on how to USC

a complex system [Anderson76, Bennett79, Gencscreth78, Hewitt75, Krueger81, Rivlin80, Waterman791 or to

tutor a novice in the use or understanding of a body of knowledge [Brown82, Clancey79, O’Shea791. These

problems arc partly analytic, since the advice or tutorial must be guided by an analysis of the context, and

partly synthetic since the advice must bc tailored to the user and the problem at hand.

5.2 The Data

One of the central concerns in choosing a task for an expert system is the nature of the data. In problems of

analysis, the data require interpretation by means of some model or theory. Yet in many interesting problems,

the data are not as complete or “clean” as the theory seems to require. In applying a theory to individual cases,

the data are not always available to “plug into” formulas and principles. In the absence of perfect data,

however, experts can still provide good suggestions, when a novice can not. We have identified several

important concerns, briefly discussed below: incompleteness, noise and non-independence.

Incompleteness of the data is a common difficulty. In medical diagnosis, for example, a physician usually must

act before all possibly rclcvant tests have been made. Uncertainty of the data compounds the difficulty.

Decision makers know that their sources of information arc fallible, whether the sources are instruments or

other persons. Some tests arc notoriously unreliable, some items of information arc so incongruous with other

data that something must be wrong. Yet, in the face of these. uncertainties in the data, expert decision makers

can still integrate the results of many tests better than novices.

Noise in the data can bc confusing. Spurious data points, or “red herrings”, can throw the best problem solvers

off the track. Howcvcr, cxpcrts have had more cxpcricncc in sorting out good and bad data and arc less likely

- .
37

to remain confused than novices. The data given to a decision maker can bc noisy for a variety of reasons

including electronic noise, misreading dials and indicators, and transcription errors. By the time the decision

maker sees the data, it is often too late to check the validity of any single data point.

Non-independence in the data is often a difficulty, particularly for statistical methods that rely on assumptions

of indepcndcnce to combine pieces of evidence. In most interesting problems, though, there are processes

linking many parts of complex systems, so that evidence about one part of the system is richly linked with other

pieces of evidence. If the data were known to be error-free, then avoiding redundancy would simplify the

decision making process. I-Iowcver, in the face of possibly unreliable data, redundancy is beneficial in helping

reduce the effects of spurious data.

The data are often of uneven grain size, combining gross descriptive reports with minute, precise statements of

fact. Qualitative and quantitative information is mixed. Subjective reports are mixed with objective

statements. There is no uniform theoretical framework in which information at all these levels can be

combined. Yet, decision makers faced with less than perfect data often welcome more information, regardless

of how heterogeneous it is. The volume of data, however, can get to be confusing. The combinatorics of

considering meaningful clusters of data quickly swamps a person’s ability to consider combinations of data

points systematically.

One of the primary advantages of an expert system in coping with all of this ambiguity is its ability to exploit

redundancy. Multiple pieces of data can indicate more or less the same intcrprctation, some more strongly

than others, while others indicate mutually exclusive interpretations. An expert system will work with the data

available using the overlapping contributions to help make up for missing data and incomplete interpretation

rules.

5.3 The Expertise

The proficiency of an expert system is dependent on the amount of domain-specific expertise it contains. But

expertise about interesting problems is not always neatly codified and waiting for transliteration into a

program’s internal representation. Expcrtisc exists in many forms and in many places, and the task’ of

knowledge erlgineeritzg includes bringing together what is known about a problem as well as transforming (not

merely transcribing) it into the system.

We have already said that much of the expertise is symbolic, heuristic!, and not well formalized. That implies

that an expert’s knowledge is not always certain, that it is provisional, without guarantees of correctness.

Bccausc it is not well formal&d (c.g., in neat thcorctical formulations in textbooks), a specialists’s knowlcdgc is

38

not always easily acccssiblc. In addition, WC have to assume that it is incomplete, since the facts and heuristics

change with incrcascd experience.

Because of the multitude of sources of expertise, an expert articulates what he or she knows in a mixture of

frameworks, using terminology ranging from broad notions of common scnsc to precisely defined thcorctical

terms. As with the data, there is a mixture in concepts that the knowledge engineer must help the expert map

into the system.

Moreover, these frameworks are richly intertwined and not neatly separated into distinct subspccialty areas.

Woven into the facts and relations are many examples, cxccptions, links to other specialty areas. They-appear

to be well indexed, for experts seem to have no difficulty in citing examples for cvcry principle and two

exceptions for every example. Finally, an expert’s store of knowledge is large. Regardless of how one measures

the size of an expert’s knowledge base, it is almost a truism to say that the more a problem solver knows, the

better its advice will be.

As with the data available for solving interesting problems, the expertise that is available may be redundant,

with rich inter-dependcncics in the reasoning network. In the case of the expertise, as well, the redundancy can

be exploited as protection against being led into blind alleys by spurious data or inappropriate heuristics.

6 CONCLUSIONS

Expert systems reprcscnt an important set of applications of Artificial Intelligence to problems of commercial

as well as scientific importance. There appear to be three main motivations forbuilding an expert system, apart

from research purposes: .

l Replication of expertise -- providing many (electronic) copies of an expert’s knowledge so it can be
consulted even when the expert is not personally available. Geographic distance and retirement are
two important reasons for unavailability. .

l Union of Expertise -- providing in one place the union of what several different experts know about
different spccialtics. This has been realized to some extent in PROSPECTOR [Reboh81] and
CASNET [Weiss7b>] which show the potential benefits of achieving such a superset of knowledge
bases.

o Documentation -- providing a clear record of the best knowlcdgc available for handling a specific
problem. An important use of this record is for training, although this possibility is just beginning
to be exploited. [Brown82, Clancey791.

Rule-based systems arc currently the most advanced in their system-building environments and explanation

capabilities, and have been used to build many demonstration programs. Most of the programs work on

39

analysis tasks such as mcdical’diagnosis, electronic troubleshooting, or data interpreiation. The capability of

current systems is difficult to define. It is clear, however, that they are specialists in very narrow areas and have

very limited (but not totally missing) abilities to acquire new knowledge or explain their reasoning.

One of the important concepts of this style of programming is the throwaway program. The existence of a

framework system in whi’ch to construct a new program allows the expert and knowledge engineer to focus on

the knowledge needed for problem solving. Without a framework, they spend more time on syntactic

considerations than on semantic ones. Because the framework is already in place, however, they can readily

scrap bad conceptualizations of the problem solving knowledge. For programs that are built incrementally, as

expert systems are, throwing away false starts is important.

Technological innovations will be incorporated into expert systems as the conceptual difficulties of

representation and inference in complex domains yield to standardized techniques. These will be most

noticeable in the size of the computer and in the input/output of the system. A portable device for

troubleshooting, with voice I/O, for example, is not out of the question in the near future.

Systems will use much larger knowledge bases than the few hundred to few thousand rules now used. They

will be linked electronically to large dab bases to facilitate inference and avoid asking questions whose answers

are matters of record. “Smart” interpretation systems will be directly linked to data collection devices, as

PUFF is linked to a spirometer, to avoid asking about the data for the case at hand.

For the time being, the major difficult) in constructing’ an expert system will remain engineering the

knowledge that experts use into a form that is usable by the system. Every problem area and every expert is

unique. Nevertheless, many common features have been identified and built into knowledge acquisition

packages of the major frameworks. Future systems will integrate several modes of knowledge acquisition:

some rules can bc extracted from an expert, some from large data bases, and some from experience.

Finally, more powerful system-building frameworks will be developed to reduce the time it takes to iterate on

the build-test-refine cycle and to increase the range of applications. There is considerable research in AI of

interest to dcsigncrs of expert systems [Buchanan81], much of it relating to the two central issues of

representation and inference, some of it relating to improving the interface bctwcen system builders and the

emerging system. As this work is integrated into more powerful frameworks, the breadth and depth of

applications will increase. ,

40

7 A C K N O W L E D G E M E N T S . l

.

This work was supported in part, by research grants to Stanford from ARPA (Contract# MDA903-80-C-0107),

NIH (Grant# NIH RR 0078509), ONR (Contract# N00014-79-C-0302), and by the Fairchild Laboratory for

Artificial Intelligence Research.

We received valuable suggestions on earlier drafts from James Bennett, Robert Engelmore, and Michael

Genesereth.

41

REFERENCES

GENERAL READING:

[Infotcch81]
--, Machine Intelligence, Info&h State of the Art Report Series 9, No. 3. Maidenhead,
England: Pergamon Infotech Ltd., 1981.

pavis76]
Davis, R. and King, J. “An Overview of Production Systems”. In E.W. Elcock and
D.Michie (eds.), Machine ZnteZZigence 8. New York: Wiley, 1976, pp. 300-332.

[Fcigenbaum79]
Feigenbaum, E.A. “Themes and Case Studies of Knowledge Engineering”, in [Michie79].

REFERENCES CITED:

[Addis80]

[Aikins80]

[Amarel81]

[Anderson761

[Barnett81]

[Barnctt82]

[Barr811

Addis, T.R. “Towards an ‘Expert’ Diagnostic System”, ICL Technical Juf, May, 1980,
pp.79-105.

Aikins, J.S. “Prototypes and Production Rules: A Knowledge Representation for Computer
Consultation”. Ph.D. Dissertation, Stanford Univ. Computer Science Department. STAN-
CS-80-814, (1980).

Amarel, S. “Problems of Reprcscntation in Heuristic Problem Solving: Related Issues in the
Development of Expert Systems”, Tech. Report # CBM-TR-118, Laboratory for Computer
Science Research, Rutgers Univ., (1981).

Anderson, R.H. and Gillogly, J.J. “The Rand Intelligent Terminal (RITA) as a Network
Access Aid”. AFIP Proc. 45, pp. 501-509 (1976).

Barnett, J. A., “Computational Methods for a Mathematical Theory of Evidence,” Proc.
IJCAI-79, pp. 868-875 (Univ. of British Columbia, Vancouver, B.C., August 1981).

Barnett, J.A., and Erman, L., “Making Control Decisions in an Expert System is a Problem-
Solving Task”, USC/IS1 Tech. Report (April 1982).

Barr, A. and Feigenbaum, E.A. (eds.) The Handbook of Art$cial Intelligence, vol. I. LOS

Altos, CA: Wm.Kaufmann, 1981.

-
42

[Barstow79a]

[Barstow79b]

[Basden82]

[Bennett79

[Bennett8 li]

[Bennett8lb]

[Bobrow77]

[Bonnet811

[Brachman77]

[Brachman78]

[Brachman80]

[Brooks811

.

Barstow, D. “An Experiment in Knowledge-Based Automatic Programming”. ArtiJicial
Intelligence 12, pp. 73-119, (1979).

Barstow, D. “Knowledge Engineering in Nuclear Physics”. Proc. IJCAI-79 pp. 34-36,
(1979).

Basden, A., Kelly, B.A., “An Application of Expert Systems Techniques in Materials
Engineering”, Proc. of Colloquium on ‘Application of Knowledge Based (or Expert) Systems’,
London, (January 1982).

Bennett, J. & Engelmore, R. “SACON: A Knowledge-Based Consultant for Structural
Analysis”. Proc. IJCAI-79, pp. 47-49 (1979).

Bennett, J.S. “On the Structure of the Acquisition Process for Rule Based Systems”, in
[Infotech81].

Bennett, J.S. and Hollander, Clifford R. “DART: An Expert System for Computer Fault
Diagnosis”, Proc. IJCAI-82, pp. 843-845, (1981).

Bobrow, D., and Winograd, T. “An Overview of KRL, a Knowledge Representation
Language”, Cognitive Scietlce I: 1 pp. 3-46 (1977).

Bonnet, A. “Applications de I’Intclligcncc Artificiellc: Les Systemes Experts”. CAIRO
InformatiyutY Computer Science 15 (4), 325-341, (1981).

Brachman, R.J. “What’s In a Concept: Structural Foundations for Semantic Networks”.
Int. Jnl Man-Machine Studies 9, pp. 121-152 (1971).

Brachman, R.J., “A STructural Paradigm for Representing Knowledge”, Tech. Report NO.
3605, Bolt Bcranek and Newman, Cambridge, MA, (May 1978).

Brachman, R.J. and Smith, B. “Special Issue on Knowledge Representation”, SIGnRT 50,
(1980).

Brooks, R., “A Comparison Among Four Packages for Knowlcdgc-Based Systems”, hoc. of
Int. Conj on Cybernetics and Society, pp. 279-283 (1981).

43

[Brown781

[Brown821

[Buchanan781

[Buchanan811

[Bundy79]

[Carhart79]

Brown, J.S. and Burtoh, R., ‘*Diagnostic Models fo Procedural Bugs in Basic Mathematical
Skills”, Cognitive Science 2:2, pp. 155-192 (1978).

Brown, J.S., Burton, R.R. & deKlecr, J. “Knowledge Engineering and Pedagogical
Techniques in SOPHIE I, 11 and 1I.I”. In D. Slceman and J.S. Brown (eds.) Intelligent
Tutoring Systems. London: Academic Press, 1982.

Buchanan, B.G., and Feigenbaum, E.A. “DENDRAL and Meta-DENDRAL: Their
Applications Dimension*‘. Artlscial Intelligence II, pp. 5-24 (1978).

Buchanan, B.G. “Research on Expert Systems”. In D.Michic (cd.) Machine Intelligence
IO, forthcoming. Also Stanford Univ. Computer Science Dept. Tech Report HPP-81-1
(1981).

Bundy, A., Byrd, L., Luger, G., Mcllish, C. & Palmer, M. “Solving Mechanics Problems
Using Meta-Level Inference”, in [Michie79].

Carhart, R.E. “CONGEN: An Expert System Aiding the Structural Chemist”, in
[Michie79].

[Chandrasekaran80]
Chandrasekaran, B., Mittal, S., and Smith, J.W., “RADEX--towards a computer-based
radiology consultant”. In Gelscma and Kanal (eds.), Pattern Recognition in Practice, pp.463-
474, North Holland, 1980.

[Clancey79]
Clancey, W.J. “Tutoring Rules for Guiding a Case Method Dialogue”. Intl. J/II. Man-
Machine Studies II, pp. 25-49 (1979).

[ClanceyS I]
.

Clancey, W.J. and Lctsinger, Reed “NEOMYCIN: Reconfiguring a Rule-Based Expert
System for Application to Teaching”, Proc. IJCAI-51, pp. 829-836, (1981).

[Cohcn82]
Cohen, P. and Fcigcnbaum, EA. (cds.). The Handbook of Artljicial Intelligence, ~01s. II-III.
Los Altos, CA: Wm.Kaufmann, 1982.

[Davis761
Davis, R. and King, J. “An Ovcrvicw of Production Systems”. In E.W. Elcock and
D.Michie (cds.), Machirle Intelligence 8. New York: Wiley, 1976, pp. 300-332.

.

44

[Davis77a]

[Davis77b]

[Davis791

[Davis811

[Davis82a]

[Davis 82b]

[deKleer77]

[deKleer80]

[Dincbas80]

[Duda76]

[Duda78]

[Duda79]

Davis, R. and Buchanan, B.G. “Meta-level Knowledge: Overview and Applications, Proc.
IJCA I- 77, pp. 920-928, (1977).

Davis, R. and Buchanan, B.G., and Shortliffc, E.H., “Production Rules as a Representation
of a Knowledge-Based Consultation Program”, Artljkial Intelligence 8, pp. 15-45, (1977).

Davis, R., “Interactive Transfer of Expertise: Acquisition of New Inference Rules”,
Art$cial Intelligence 12, pp. 121-157, (1979).

Davis, R., Austin, H., Carlbom, I., Frawley, B., Pruchnik, P., Snciderman, R., Gilbreth, JA.,
“The DIPMETER ADVISOR: Interpretation of Geologic Signals”, Proc. IJCAI-82, pp.
846-849, (198 1).

Davis, R., “Expert Systems: Where Are We? and Where Do We Go From Here?. The AI
Magazine, 3(2): 3-22, (1982).

Davis, R., et al, “Diagnosis Based on Description of Structure and Function”, Proc. Second
Natl. Conj: on AI”, Pittsburgh, (1982).

deKleer, J. Doyle, J., Steele, G. and Sussman, G., “AMORD: Explicit Control of
Reasoning”, Proc. Symposium on Artljkial Intelligence and Programming Languages,
SIGPLAN Notices, Vol. 12, and SIGART Ncwslctter No. 64, pp. 116-125 (August 1977).

deKlecr, J. and Sussman, G.L. “Propagation of Constraints Applied to Circuit Synthesis”.
Circuit Theory and Applications 8 (1980).

Dincbas, M., “A Knowledge-Based Expert System for Automatic Analysis and Synthesis in
CAD”, Proc. of IFIP Congress pp. 705-710, (1980).

Duda, R.O., Hart, P.E., and Nilsson, N.J., “Subjective Baycsian Methods for Rule-Based
Infcrcnce Systems,” Proc. 1976 Natl. Conlputer Cor$, pp. 1075-1082 (AFIPS Vol. 45, 1976).

Duda, R.O., et al. “Semantic Network Representations in Rule-Based Inference Systems”,
in [Watcrm+78].

R. Duda, J. Gaschnig and P. Hart, “Model Design in the Prospector Consultant System for
Mineral Exploration,” in [Michie79].

45

[Dud,?811
.

Duda, R.O., Gaschnig, J.G., “Knowledge-Based Expert Systems Come of Age”, Byte 6: 9,
pp. 238-81, (September, 1981).

[Engelman79]
Engelman,C., Berg, CH, Bischoff, M., “KNOBS: An Experimental Knowledge Based
Tactical Air Mission Planning System” and “A Rule Based Aircraft Identification
Simulation Facility”, Proc. IJCAI-79 pp. 247-249, (1979).

[Englcmore79]
Engelmore, R.S. & Terry, A. “Structure and Function of the CRYSALIS System”. Proc.
IJCAI-79, pp. 250-256, (1979).

[Ennis82]
Ennis, S.P. “Expert Systems: A User’s Perspective of Some Current Tools”, Proc. Second
Annual Natl. Cor$ on ArtiJicial Intelligence. Pittsburgh (1982).

[Erman81]
Erman, L.D., London, P.E. & Fickas, S.F. “The Design and an Example Use of
HEARSAY-III”. Proc. IJCAI-81. pp. 409-415, (1981).

[Fagan80]
Fagan, L. “VM: Representing Time-Dcpcndcnt Relations in a Clinical Setting”. PhD
Dissertation, Starford Univ. Computer Science Department, (1980).

[Fain811
Fain, J., Hayes-Roth, F., Sowizral, H., and Waterman, D., “Programming Examples in
ROSIE”, Rand Corporation, Technical Report N-1646-ARPA (1981).

[Feigenbaum77]
Fcigcnbaum, E.A. “The Art of Artificial Intelligence: Themes and Case Studies in
Knowledge Engineering”. Proc. IJCAI-77, pp. 1014- 1029, (1977).

[Feigcnbaum79]
Feigenbaum, E.A. “Themes and Case Studies of Knowledge Engineering”, in [Michic79].

[Fine731
Fine, T., Theories OfProbability. New York: Academic Press, 1973.

[Forgy77]
Forgy, C. & McDermott, J. “OPS, A Domain-Independent Production System Language”.
Proc. IJCAI-77, pp. 933-939, (1977).

[Fox821
Fox, M.S., Allen, B., & Strohm, G. “Job-Shop Scheduling: An Investigation in Constraint-
Dircctcd Reasoning”. Proc. Second Annual Nutl. Conj on Artljkial Intelligence. Pittsburgh
(1982).

46

.
Friedland, P. “Knowledge-Based Experiment Design in Molecular Genetics”. PhD
Dissertation, Stanford Univ., Computer Science Department. STAN-CS-79-771, (1979).

Gelernter, H.L., Sanders, A.F., Larsen, D.L., Agarival, K.K., Boivie, R.H., Spritzer, G.A.,
and Searlcman, J.E. “Empirical Exp,lorations of SYNCHEM”. Science 297, pp. 1041-1049,
(1977).

Genesercth, M.R. “Automated Consultation for Complex Computer Systems”. Ph.D.
Dissertation, Harvard Univ., (September,l978).

Genesereth, M.R. “The Architecture of a Multiple Representation System”, Memo HPP-
81-6, Computer Science Dept., Stanford Univ., (May, 1981).

Genesereth, M., “The Use of Hierarchical Models in the Automated Diagnosis of Computer
Systems”, Stanford Memo HPP-81-20 (1981).

Georgeff, M.P., “Procedural Control in Prodllction Systems”, Artljkiul Intelligence IS, pp.
175-201, (March 1982).

Goldstein, I.P. & Roberts B. “Using Frames in Scheduling”. In P. Winston and D. Brown
(eds.) Artijkial Intelligence: An MIT Perspective, ~01.1. Cambridge: MIT Press, 1979.

Gorry, G.A., Silverman, H. and Pauker S.G. “Capturing Clinical Expertise: A Computer
Program that Considers Clinical I~csponscs to Digitalis”. Am Jnl Medicine 64, pp.452-460,
(1978).

Greiner, R., and Lenat, D., “A Representation Language’s Language”. Proc. First Natl.
Conf: on ArtiJicial Intelligence, Stanford, CA, (August 1980).

Hayes-Roth, F., Watcrnian, D.A. & Lcnat, D.B. “Principles of Pattern- Dircctcd Infcrcnce
Systems”. In [Waterman78].

Heiser, J.F., Brooks, R.E. and Ballard, J.P. “Progress Report: A Computerized
Psychopharmacology Advisor”. Proc. I1 th Collegium Internationale Neuro-
Psychopharmacologicum, Vienna (1978).

[Friedland79)

[Gelcrnter77]

[Genesereth78]

[Gencsereth8la]

[Gcnesereth8lb]

[Georgcff82]

[Goldstein791

fGorry78]

[Greiner80]

[Hayes-Roth781

[Heiser78]

[Hcwitt72]

.

47

[Hewitt751

[Hollander79]

[Horn811

[Infotech81]

[Ishizuka81]

[Kaihara78]

[Kandt81]

[Krueger811

Hewitt, C.,’ “Description and Thcorctical Analysis [using Schcm&] of PLANNER:. A
Language for Proving Theorems and Manipulating Models in a Robot”, Phi) Thesis,
Department of Mathematics, M. I.T. (1972).

Hewitt, C., Smith, B., “Towards a Programming Apprentice”, IEL’I? Trans Sofrware Eng I:l,
pp. 26145 (March 1975).

Hollander, Clifford R. & Reinstein, Harry C. “A Knowledge-Based Application Definition
System”. Proc. IJCAI-79, pp. 397-399, (1979).

Horn, W., Buchstallcr, W., and Trapp, R. “Knowledge Structure Definition for an Expert
System in Primary Medical Care”, Proc. IJCAI-1981, pp. 850-852, (1981).

--, Machine Infelligence, Infotech State of the Art Report Series 9, No. 3. Maidenhead,
England: Pergamon Infotech Ltd., 1981.

Ishizuka, M., Fu, K-S., and Yao, J.T.P., “Inexact Inference for Rule-Based Damage
Assessment of Existing Structures”, Proc. IJCAI-81 pp. 837-842, (1981).

Kaihara, S., Koyama, T., Minamikawa, T., Yasaka, T., “A Rule-Based Physicians’
Consultation System for Cardiovascular Diseases”, Proc. of Int. Conf: on Cybernetics and
Society”, pp. 85-88, (1978.

Kandt, R.K., Newlon, R., “Self-improving Diagnostics for Automatic Testing Equipment”,
Proc, of L’ighrh Semi-amlual Semitlar/Exhibit, Pasadena, CA (1981).

Krueger, M.W., Culling ford, R.E., Bellavance, D.A., “Control Issues in a Multiprocess
Computer-Aided Design System Containing Expert Knowledge”, Proc. Ini. Con$ on
Cybernetics and Society, pp. 139-143, (October 1981).

[Kunz78]
Kunz, J.C., Fallat, R.J., McClung, D.H., Osborn, J.J., Votteri, B.A, Nii, H.P., Aikins, J.S.,
Fagan, L.M. & Fcigenbaum, E.A. “A Physiological Rule-Based System for Intcrprcting
Pulmonary hnction Test Results.” Tech Report HPP- 78-19, Computer Science Dept.,
Stanford Univ. (1978).

[Larkin80]
Larkin, J., McDermott, J., Simon, D.P., and Simon, H.A. “Expert and Novice Performance
in Solving Physics Problems”. Scicrxe 205:20 (1980).

48

[I ,auricre78] .

Lauriere, J.L. “A Language and a Program for Stating and Solving Combinatorial
Problems”. ArtiJicial Intelligence 10, pp. 29-127, (1978). .

$1 .indberg81]
Lindbcrg, D.A.B., Gaston, L.W., Kingsland, L.C., Vanker, A.D., “AI/COAG, A
Knowledge-Based System for Consultation About Human Hemostasis Disorders:Progress
Report”, Proc. of the Fifth Annual Symposium on Computer Applications in Medical Care,
pp. 253-257, (1981).

[I .indsay80]
Lindsay, R., Buchanan, B.G., Feigenbaum, E.A., and Lederbcrg, J. Applications of Artificial
Intelligence for Organic Chemistry: The DENDRAL Project. New York: McGraw Hill,
1980.

[I <usted

[Mamdani82]

Lusted, L.B., “Introduction to Medical Decision Making”, Charles C. Thomas Co.,
Springfield, Illinois, (1968).

Mamdani, E.H., “Rule-Based Methods for Designing Industrial Process Controllers”, Proc.
of Colloquium on ilpplication of Knowledge Based (or Expert) Systems’, London, (January
1982).

McCall, D.C., Morris, P.H., Kibler, D.F., and Bechtel, R.J. “STAMMER2 Production
System for Tactical Situation Assessment”, Tech. Report TD 298, Naval Ocean Systems
Center, San Diego, CA (Oct., 1979).

[i&Cune77]

i McDermott8Oj

[McDermott811

McCune, B.P., “The PSI Program Model Builder Synthesis of Very High-Lcvcl Programs”,
Sigplan Nor. Vol. 12, No. 8, pp. 130-139 (1977).

McDermott, J., “Rl: An Expert in the Computer Systems Domain”, Proc. First Annual
Natl. Cor$ on Artljkial Intelligence, pp. 269-271, Stanford Univ., Stanford, CA, (1980).

McDermott, J., “XSEL: a computer salesperson’s assistant”, In J. Hayes and D. Michie
(eds.) Machine Intelligence 10, forthcoming.

/Michic79]
Michic, Donald. Experf Systems in the Micro-Electronic Age. Edinburgh: Edinburgh Univ.
Press, (1979).

i Michic801

[Minsky751
Michie, Donald. “Expert Systems”. The Computer Journal 23(4): 369-316, (1980).

Minsky, M. “A Framework for .Rcprcscnting Knowledge”. In P. Winston (ed.) The
l?sycl~olog~~ of Computer Vision. New York: McGraw-Hill, 1975.

[Mitchcll79]

49

.

Mitchell, T.M. “Version Spaces: An Approach to Concept Learning”. PhD Dissertation,
Tech&al Report HPP- 79-2, Computer Science Department, Stanford Univ. (1979).

[Moses711
Moses, J. “Symbolic Integration: The Stormy Decade”. Communications ACM 8, pp. 548-
560, (1971).

[Newel1721

[Newc1173]

Newell, A. & Simon, H.A. Human Problem Solving. New York: Prentice-Hall, 1972.

Newell, A. “Production Systems: Models of Control Structures”, in W.Chase (ed.) . Visual
Information Processing. New York: Academic Press, 1973.

Newel1761
Newell, A. & Simon, H.A. “Computer Science as Empirical Inquiry: Symbols and Search”.
The 1976 ACM Turing Lecture. Communications ACAd 19, pp. 113-126 (1976).

[Nii79]
Nii,‘H.P. and Aiello, N. “AGE (Attempt to Generalize): A Knowledge-Based Program for
Building Knowledge-Based Programs”. Proc. ,JJCAI-79, pp. 645-655, (1979).

pii
Nii, H.P., Feigenbaum, E.A. , Anton, J.J. & Rockmore, A.J. “Signal-to-Symbol
Transformation: HASP/SIAP Case Study”. The A I Magazine 3:2 pp.23-35, (1982).

[Nilsson

[Novak801

Nilsson, N.J., Principles of ArtiJicial Intelligence, Palo Alto, CA: Tioga Press, 1980.

Novak, G., Araya, A.A., “Research on Expert Problem Solving in Physics”, Proc. first Natl.
Conj: on Artljkial Intelligence, Stanford, CA, (August 1980), pp. 178-180.

[O’Shea791
O’Shea, T., “Rule-Based Computer Tutors”, Proc. of I979 AISB Summer S>hool, pp. 226-
232, (1979).

[Patil81]

pednault811

Patil, Ramesh S., Szolovits, P., Schwartz, Wm. B., “Causal Understanding of Patient Illness
in Medical Diagnosis”, Proc. IJCAI-82, pp. 893-899, (1981).

Pednault, E.P.D., Zucker, S.W., and Muresan, L.V. “On the Independence Assumption
Underlying Subjective Bayesian Updating”, Artijkial Intelligence 16, pp. 213-222, (May
1981).

[Pinson
Pinson, S. “Reprcscntation dcs Connaissanccs dans lcs Systcmes Experts.” RAIRA
Informatique/ Computer Science 15:4, pp. 343-367, (1981).

50

pople77]

[Rebohsl]

[Reggia78]

[Reinstein

[Rivlin80]

[Roberts771

[Savage711

[Scott771

[Shafer761

[Shortliffe75]

[Shortliffe76]

[Short1 iffe81]

Pople, H.E. “The Formation of Composite Hypotheses in Diagnostic Problem Solving--an
Exercise in Synthetic Reasoning”. Proc. IJCAI-77, pp. 1030-1037, (1977).

Reboh, R., “Knowledge Engineering Techniques and Tools in the Prospector
Enviranment”, Tech. Note 243, Artificial Intelligence Center, SRI International, Menlo
Park, CA (June, 1981).

Reggia, J.A. “A Production Rule System for Neurological Localization”. Proc. 2nd Annual
Symposium on Computers Applied to Medical Care, pp. 254-260, (1978).

Reinstein, H.C., Aikins, J.S., “Application Design: Issues in Expert System Architecture”,
Proc. IJCAI-81, pp. 888-892, (1981).

Rivlin,J.M. Hsu, M.D., Marcal, P.V., “Knowledge Based Consultation for Finite Element
Structural Analysis”, Tech. Report, MARC Analysis Research Corp. Palo Alto, CA (1980).

Roberts, R.B. & Goldstein, I.P. The FRL Primer. MIT AI Lab Memo #408, (1977).

Savage, L.J., “Elicitation of Personal Probabilities and Expectations” Jnl of Am Statistical
Assn, pp. 783-801, (December 1971).

Scott, AC., Clancey, W., Davis, R., and Shortliffc, E.H. “Explanation Capabilities of
Knowledge-Based Production Systems”. American Jnl of Computational Linguistics.
Microfiche 62, (1977).

Shafer, G., A Mathematical Theory of Evidence, Princeton, NJ: Princeton Univ. Press, 1976.

Shortliffe, E.H., and Buchanan, B.G., “A Model of Inexact Reasoning in Medicine”,
Mathematical Biosciences 23, pp. 35 I-379 (1975).

Shortliffe, E.H. Computer Based Medical Consultations: MYCIN. New York: American
Elsevier, 1976.

Shortliffc, E.H., Scott, A.C., Bischoff, M.B., Campbell, A.B., van Melle, Wm., Jacobs, C.D.,
“ONCOCIN: An Expert System for Oncology Protocol Management”, Proc. IJCAI-82, pp.
876-881, (1981).

51

[Sridharan80]
.

Sridharan, N.S. “Representational Facilities of AIMDS: A Sampling”. Tech. Report #‘
CBM-TM-86, Dept. of Computer Science, Rutgers Univ., 1980.

[Stallman
Stallman, R.M., Sussman, G.J., “Forward Reasoning and Dependency-Directed
Backtracking in a System for Computer-Aided Circuit Analysis”, Artificial Intelligence 9,
pp.135- 196 (1977).

[Stefik78]

[Stefik79]

[S tefik80]

Stefik, M. “Inferring DNA Structures from Segmentation Data”. Artzjkial Intelligence II,
pp. 85-114, (1978).

Stefik, M. “An Examination of a Frame-Structured Representation System”. Proc. IJCAI-
79, pp. 845-852, (1979).

Stefik, M. Planning with Constraints. Ph.D. Dissertation, Stanford Univ. Computer Science
Department. STAN-CS-80-784, (1980).

[S tefik82]
Stefik, M. et al. “The Organization of Expert Systems, A Tutorial”, Artzjkial Intelligence I8
pp. 135-173 (1982).

[Sussman78]
Sussman, G.A. “SLICES: At the Boundary Between Analysis and Synthesis”. In J.C.
Latombe (ed.) Artificial Intelligence and Pattern Recognition in Computer -Aided Design.
New York: North-Holland, 1978.

[Swartout77]
Swartout, W. “A Digitalis Therapy Advisor with Explanations”, Proc. IJCAI-77, pp. 819-
823, (August 1977).

[Swartout81]
Swartout, W. “Explaining and Justifying Expert Consulting Programs”. Proc. IJCAI-81, pp.
815-822, (1981).

[Szolovits77]
Szolovits, P., Hawkinson, L.B., and Martin, W.A. “An Overview of OWL, a Language for
Knowledge Representation”. MIT LCS TM 86, (1977).

[Szolovits78] .
Szolovits, P., Paukcr, S.G., “Categorical and Probabilistic Reasoning in Medical Diagnosis”,
ArtiJicial 11ltelligence I I, pp. 115-l 44, (1978).

rsotsos811
Tsotsos, J.K., “On Classifying Time-Varying Events”, I17kYIY Conipuler Society ConJ: on
Pattern Recogrlition and Image Processirlg, pp. 193-199 Toronto (198 1)

52

[vanMell&O]
van Mcllc, W. “A Doniain Independent System that Aids in Constructing Knowledge Based
Consultation Programs”. PhD Dissertation, Stanford Univ. Computer Science Department.
STAN-CS-80-820, (1980).

[Warren771
Warren,, D., et al. “PROLOG: The Language and Its Implementation Compared with
LISP”. Proc. SIGA R T/SIGPLAN Symposium on Programming Languages, Rochester, NY,
1977.

[Waterman781

[Waterman791

[Weiss79a]

[Weiss79b]

[Weyrauch80]

Waterman, D.A. and Hayes-Roth, F. (eds.). Pattern Directed Inference Systems. New York:
Academic Press, 1978. .

Waterman, D.A. “User-Oriented Systems for Capturing Expertise: A Rule-Based
Approach”, in [Michie79].

Weiss, S. and Kulikowski, C. “EXPERT: A System for Developing Consultation Models”.
Pro;c. IJCAI-79, pp. 942-947, (1979).

Weiss, S., Kulikowski, C., Amarel, S., and Safir, A. “A Model-Based Method for Computer-
Aided Medical Decision Making”. Artl$cial Intelligence II, pp. 145172, (1979).

Weyhrauch, R.W. “Prolcgomena to a Theory of Mechanized Formal Reasoning”, Artzjicial
Intelligence 13: l-2 (April, 1980).

[Wipke77]
Wipke, WT., Braun, H., Smith, G.,Choplin, F., and Sicber, W. “SECS--Simulation and
Evaluation of Chemical Synthesis: Strategy and Planning”. In W.T. Wipke and W. J.
House (eds.), Computer Assisted Organic Synthesis. Washington, D.C.: AmPrjrtln
Chemical Society, pp. 97-127, (1977). .

Yu, V.L., Fagan, L., Wraith, S.M., Clancey, W.J., Scott, A.C., Hannigan, J., Blum, R.,
Buchanan, B.G., Cohen, S.N., Davis, R., Aikins, J.S., vanMcllc, W., Shortliffe, E.H., and
Axlinc, S. “Antimicrobial Sclcction for Meningitis by a Computcrizcd Consultant: A
Blinded Evaluation by lnfcctious Discasc Experts”. J/d Am Medical Assrl 241112, pp. 1279-
1282 (1979).

[Zadch65]

[Zadeh78]

Zadch, L.A., “Fuzzy Sets,” Irlformatitin and Control, pp. 338-353 (1965).

Zadch, I,.A., “Fuzzy Sets as a Basis for a T!lcory of Possibility”, Fuzzy Sets nrd Systcrlls,
Amsterdam: North-Holland 1978.

.

APPENDIX A.
.

Answers to User’s Questions about this Consultation and
About the Knowledge Base

Please ask any simple-English questions regarding the above
consultation session or the overall knowledge of the consultation
system. When discussing the consultation above, please refer to
organisms, cultures, etc. by their numeric names (eg. ORGANISM-l).
Questions which were asked during the consultation may be specified .
by the numbers that preceded them above, (e.g., 'WHY DID YOU ASK
QUESTION l?‘). Control-O will abort type-out, or 'cancel' the current
question. Type HELP for a list of the options available. Enter the
word STOP when you have no further questions.

Type HELP for the list of question options.

** WHY DID YOU TREAT E.COLI?

ITEM-l is E.coli associated with meningitis. I decided to treat ITEM-l on
the basis of clinical evidence only.

The following rules concluded about:
the likelihood that e.coli is one of the organisms (other than those

seen on cultures or smears) which might be causing the infection

. RULE545 was used to conclude that e.coli is one of the organisms (other thzin
those seen on cultures or smears) which might be causing the infection
(.74). The last question asked before the conclusion was made was 35.

RULE557 was used to conclude that e.coli is one of the organisms (other than
those seen on cultures or smears) which might be causing the infection
(.93). The last question asked before the conclusion was made was 37.

The parameters most frequently used in these rules were:
the infection which requires therapy
whether a smear of the culture was examined
whether organisms were seen on the stain of the culture
the type of the infection

Would you like a summary of ALL the parameters used by these rules? ** YES

Parameter (rules with this parameter)

the white count from the patient's peripheral CBC (in thousands) (557)
whether the resujts of a recent CBC of the patient are available (557)
whether the infection was acquired while the patient was hospitalized (545)
the age of the patient (545)
the relevant items from the history of the patient (545)
the type of the infection (545, 557)
whether organisms w'ere seen on the stain of the culture (545, 557)
whether a smear of the culture was examined (545, 557)
the infection which requires therapy (545, 557)

. .

54

:t:* WHY DIDN’T YOU GIVE TETRACYCLINE FOR E.COLI IN REC-l?
Shall I describe the therapy algorithm for you?** YES .

DESCRIPTION OF THERAPY SELECTION
[Type ~0 to abort printout]

MYCIN is designe,d to provide optimal therapy recommendations. The
program uses the following three steps:

The first step ranks the drugs for each organism that requires
t h e r a p y . Rules for doing this take into account invitro (lab) sensitivities
;:r,d the patient's response to prior and current therapies. In the absence
of other information, default lab sensitivities are used. Preference is
given to current therapies if certain criteria are satisfied.

Next, 1 or 2 drugs are selected to cover for the organisms which are
1110s~ likely to be causing the infection. As many of the "less likely"
or-gaIIisms as possible are treated, but they are disregard altogether if
3 or more drugs are necessary. Throughout, preference is given to
drugs that appear higher in the treatment lists. (These lists can be
examined via the RX option.)

Finally, the set of drugs is tested for patient factors that
preclude their administration, such as allergies, age, and renal function.
TETRACYCLINE was not prescribed for ITEM-l
TETRACYCLINE was not prescribed for ITEM-l in RECOMMENDATION-l because:

TETRACYCLINE was discounted for ITEM-l because there is evidence that
-t!l's e.coli is not sensitive to it.

Would you like to see some details?** NO

** HOW DO YOU TREAT PNEUMOCOCCAL PNEUMONIA
The MYCIN system currently can treat the following infections: BACTEREMIA
MENINGITIS CYSTITIS. Because the knowledge base is incomplete, all other

infections will be treated like bacteremia.

For treatment of DIPLOCOCCUS-PNEUMONIAE in BACTEREMIA
The drugs of choice (ranked by relative efficacy, assuming sensitivity)

are:
1st choice:

PENICILLIN
AMPICILLIN

2nd choice:
NAFCILLIN
CEPHALOTHIN
ERYTHROMYCIN
CLINDAMYCIN

3rd choice:
TETRACYCLINE
CHLORAMPHENICOL
VANCOMYCIN .

Duration of therapy: 28 days

55

** WHAT DOSE OF ERYTHROMYCIN .DO YOU RECOMMEND?
When ERYTHROMYCIN is given for BACTEREMIA, the recommended dosage is:
if age is > 12 years then 12 mg/kg q6h IV

else if age is > .08 years then 5 mg/kg q6h IV
else if age is > .02 years then 5 mg/kg q12h IV

[Different dosages are recommended for different infections.]

** HOW DO YOU TREAT CYSTITIS
In general, treatment for an infection depends on the causative organism.
Please include in your question the organism of interest.

** STOP

