
June 1981 Report. No. ~‘1’AN-U-81-836

Verification of Concurrent Programs,
Part I: The Temporal Framework

bY

Zohar MilnIla

Amir Ynucli

Office of Navitl Rcscarch

Department of Computer Science

Stanford University
StilIlfOd, CA 94305

,A
. - .\
\-’ -- -2

. .‘i I-”

June 81

VERIFICATION OF CONCURRENT PROGRAMS:
THE TEMPORAL FRAMEWORK

bY

ZOI-IAR MANNA
Computer Science Department
Stanford University
Stanford, CA
and
Applied Mathematics Department
The Weixmann Institute
Rehovot, Israel

ABSTRACT

AMIR PNUELI
Applied Mathematics Department
The Weizmann Institute
Rehovot, Israel

This is the first in a series of reports describing the application of temporal logic to the
specification and verification of concurrent programs.

We first introduce temporal logic as a tool for reasoning about sequences of states. Models
- of concurrent programs based both on transition graphs and on linear-text representations are

presented and the notions of concurrent and fair executions are defined.

The general temporal language is then specialized to reason about those execution sequences
that are fair computations of a concurrent program. Subsequently, the language is used to describe.
properties of concurrent programs. 4 .

The set of interesting properties is classified into invariance (safety), eventuality (liveness),
and precedence (until) proper ties. Among the properties studied are: partial correctness, global
invariance, clean behavior, mutual exclusion, absence of deadlock, termination, total correctness,
intermittent assertions, accessibility, responsiveness, safe liveness, absence of unsolicited response,
fair responsiveness, and precedence.

In the following reports of this series, we .will use the temporal formalism to develop proof
methodologies for proving the properties discussed here.

* * * * * * *

.
A preliminary version of this paper appears in The Correctness Problem in Computer Science (R.
S. Boyer and J S. Moore, eds.), International Lecture Series in Computer Science, Academic Press,
London, 1981.

This research was supported in part by the National Science Poundation under grants MCS79-
09495 and MCSBO-06930, by the Office of Naval Research under Contract N00014-76-C-0687, and
by the United States Air Force Office of Scientific Research under Grant AFOSR-81-0014.

1

INTRODUCTION

Temporal logic is a special branch of logic that deals with the development of situations in
time. Whereas ordinary logic is adequate for describing a static situation, temporal logic enables
us to discuss how a situation changes due to the passage of time. An execution of a program is
precisely a chain of situations, called execution states, that undergo a series of transformations
determined by the program’s instructions. This suggests that temporal logic is an appropriate tool
for reasoning about the execution of programs. The special advantage of this approach is that it
enables us to formalize the entire execution of a program and not just the function or relation it
computes.

The temporal logic approach offers special advantages for the formalization and analysis of
the behavior of concurrent programs. Concurrent programs have long been a difficult subject to
formalize and have often defied generalization of methods that worked perfectly for sequential
programs.

One inherent difficulty in analyzing a concurrent program is that when combining two processes
to be run in parallel, we cannot infer the input-output relation computed by the combined program
from just the input-output relations computed by each of the individual component processes. The
obvious reason for this is that, running in parallel, the processes may interfere with one another,
altering the behavior each would have when run alone. Consequently, in order for any approach
to stand a chance of success, it must deal with more than the input-output relation computed by
a program. It should be concerned with execution sequences in one form or another, as well as be
able to discuss mid-execution events.

Another inherent difficulty is the discontinuity associated with the simulation of concurrency
by multiprogramming. A very convenient and widely used model of real concurrency is to regard
the participating events as composed of many atomic basic steps. Then instead of requiring that
these basic steps occur concurrently, we consider sequences in which these steps are interleaved in
all possible ways. The problem with modelling concurrency by multiprogramming (interleaving)
is that without further restrictions a certain process can be discriminated against by having its
execution continually delayed. Disallowing this discrimination introduces a discontinuity into ihe
set of interleaved execution sequences.

Consequently, any approach which is based strongly on the concept of continuity, such as
the denotational approach or equivalent relational ones, is bound to face severe difficulties when
extended to deal with concurrency.

Temporal logic avoids both these difficulties by (a) being geared from the start to analyze
-and formalize properties in terms of execution sequences, and (b) not being based on limits and
assurnptions of continuity. In fact, it can very easily and naturally express such concepts as
“eventually” which describes an event arbitrarily ahead in the future, but still a finite duration
away.

In this report we introduce the framework and language of temporal logic and demonstrate
its appropriateness for describing properties of programs.

We start with an exposition of modal logic whose domain of interpretation is a set of states
and (general) accessibility relations connecting these states. We then specialize to temporal logic
which requires that the states form a linear discrete sequence. Linear discrete sequences can be

2

used to describe
temporal logic is

a dynamic process that goes through changes at discrete
suitable for reasoning about such dynamic processes and

instants. Consequ
their behavior in

.ently,
time.

Next, we present a model of concurrent programs. The basic model is based on several
concurrent processes, each of which is given in the form of a transition graph or a linear-text
program. Executions of concurrent programs are defined to be an interleaving of execution steps,
each taken from one of the processes. We discuss the conditions under which an interleaved
execution faithfully represents real concurrency. One of these conditions calls for the interleaving
to be fair in that no process is neglected for too long.

We then show how the language of temporal logic can be further specialized to reason about
execution sequences of programs. In this way, properties of programs which are expressible as
properties of their execution sequences are readily formalizable.

The rest of the report overviews in a systematic manner the different properties of interest.
They are classified into:

l Invariance properties, stating that some condition holds continuously throughout the computa-
tion.

l Eventuality properties, stating that under some initial conditions, a certain event (such as the
program’s termination) must eventually be realized.

l Precedence properties, stating that a certain event always precedes another.

For each class of properties, we present several typical and useful properties together with
sample programs illustrating these properties.

REFERENCES

[BUR] Burstall , R.M., “Program proving as hand simulation with a little induction,” Proc.
IFIP Congress, Amsterdam, The Netherlands (1974), North Holland, pp. 308-312.

[DIJI] Dijkstra, E.W., ‘Cooperating processes,” in Programming Languages and Systems (F.
Genvys, cd.), Academic Press, New ‘York, NY (1968), pp. 43-112.

[DIJ2] Dij kstra, E.W. “A. constructive approach to the problem of program correctness,”
BIT 8 (1968), pp. 179-186.

[GPSS] Gabbay D., A. Pnueli, S. Shelah, and J. Stavi, “The temporal analysis of fairness,”
Proc. 7th POPL, Las Vegas, NV (January 1980), pp. 163-173.

[HC] Hughes, G.E. and M.J. Crcsswell, An Introduction to Modal Logic, Methuen & Co.,
London, 1968.

[KAM] Kamp, H.W., “Tense logic and the theory of linear order,” Ph.D. Thesis, University
of California, Los Angeles, 1968.

[KEL] Keller, R.M., “Formal verification of parallel programs,” CACM, Vol. 19, No. 7 (July
1976), pp. 371-384.

. [LAMi] Lamport, L . , “Proving the correctness of multiprocess programs,” IEEE Transactions
on Software Engineering, Vol. SE-3, No. 7 (March 1977), pp. 125--143.

c [MAN] Manna, Z., “Logics of programs,” Proc. IFIP Congress, Tokyo and Melbourne
(October 1980), North Holland, pp. 41-51. *

[MP] Manna, Z. and A. Pnueli, “The modal logic of programs,” Proc. 6th International
Colloquium on Automata, Languages and Programming, Graz, Austria (July 1979). Lecture
Notes in Computer Science, Vol. 71, Springer Verlag, pp. 385-409.

[MW] Manna, 2. and R. Waldingcr, “Is ‘sometime’ sometimes better than ‘always’?: Intcrmit-
tent assertions in proving program correctness,” CACM, Vol. 21, No. 2 (February 1978),
pp. 159-172.

[OL] Owicki, S. and L. Lamport, “Proving liveness properties of concurrent programs,”
unpublished report (October 1980).

[PNUl] Pnueli, A., “The temporal logic of program,” Proc. 18th FOCS, Providence, RI
(November 1977), pp. 46-57.

[PNU2] Pnueli, A., “The tempora! semantics of concurrent programs,” Proc. Symposium
on Semantics of Concurrent Computations, Evian, France (July 1979), Lecture Notes in
-Computer Science,Vol. 70, Springer Verlag, pp. l-20.

I-
I

[PRI] -Prior, A., Past, Present and Future, Oxford University Press, 1967.

[RU] Rescher and Urquhart, Temporal Logic, Library of Exact Philosophy, Springer Verlag,
1971.

‘.

I 62

