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Abstract

This paper presents a communication model for local nctworks, whereby processes execute
generalized remote references that cause operations to be performed by remote processes. This
remote reference/remote operation model provides a taxonomy of primitives that (1) are naturaly
uscful in many applications and (2) can bc efficiently implecmented. The motivation for this work is
our desire to develop systems architectures for local network based multiprocessors that support
distributed applications requiring frequent intcrproccssor communication.

After a scction containing a brief ovcrvicw, Scction 2 of this paper discusses the remote
reference/remote operation model.  In it, wc derive a set of remote rcfercnee types that can be
supported by a communication system carefully intcgrated with the local network interface. The
third section exemplifies a communication system that provides one remote reference type. These
references (i.e., remote load, store, compare-and-swap, cnqucuc, and dcqucue) take about 150
microscconds, or 50 average instruction times, to perform on Xerox Alto computers connected by a
2.94 megabit Ethernet.  The last section swnmarizes this work and proposes a complete
implementation resulting in a highly efficicnt communication system.

Keywords. communications, distributed processing, local networks, multiprocessing, reliability.
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1. Overview

This paper discusses an approach to communications that is capable of supporting distributed
applications requiring frequent intcrproccssor communication on very high spced loca networks.
We belicve it is important to study ways whercby the traditionally high software overhead of
in tcrproccssoi  communication [Peterson] can be rcduccd, particularly given recent hardware
developments that make very high spced local nctworks feasible [Blauman} [Rawson-Mectcalfc]
[Ikeda et al]. We feel that if this goa can be achicved, some distributed applications exhibiting a
fine granularity of paraldism [Jones-Schwarz] can be profitably exccuted on a local network based
computer system. The approach to communication on local networks described here differs from
recent intcrnctworking rescarch and relates as much to multiprocessors such as CM* [Swan et al] as
it is does to usual loca networking systems. See [Spcctor1980] and [Andler et al] for a more
complete discussion of this approach.

Section 2 describes a model that is intended to serve as a basis for an efficient and flexible
communication system for local networks. In this model, a process can execute a gencralized remote
reference that causes a remote operation to be performed. The remote opcration may return a valuc
to the caller.

Though remote reference semantics can be achicved with traditional high level communications
protocols, careful study of the remote reference/remote operation model is useful for the following
reasons.

(1) The execution of remote references that cause remote operations to be performed is
naturally useful. Examples arc remote memory refercnccs, remote subroutine cals
[Nelson], and message passing operations.  Specific examples include the SIGP operation
on the IBM 370 [IBM] and “requests” in the Tandem operating system [Bartlett].

(2) This model suggests a genera interface that includes types of remote references having
differing levels of function, for example, with respect to reliability, flow control, or
synchrony.

(3) A locd network interface that provides useful primitives (such as remote rcfcrences)
can support more efficient communication than an interface that provides only raw
message passing facilities. A direct implcmentation in microcode or hardware of the
various rcfecrence types will bc more efficient than an implecmentation that requires
laycering software on more primitive facilities.

(4) Many types of remote references can be implemented using simpler protocols than are
required for more general and common corn-.~unications mechanisms such as byte stream
primitives. Using implementations tailored to the various reference types also contributes
to efficiency.

In Scction 3 wc attempt to add substance to the discussion of the remote reference/remote
opcration model by describing an cxperiment in which a simple type of rcfcrenccs was microcoded
on Xcrox Alto computers using the 2.94 megabit experimental Ethernct [Metcalfe-Boggs]. We show
that these references execute quickly: they typically take about 150 microseconds on this hardware.
This time is about two orders of magnitude faster than could be expected if they were implcmented
in a conventional way.

Scction 4 summarizes the points made in Scctions 2 and 3. Additionally, it suggests the
possibility of implementing a full communication system for local nctworks based onthe remote
operation/remote rcfcrence model.
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2. The Remote Reference/Remote Operation Model

Sections 2.1 and 2.2 contain definitions, assumptions, and a description of the proposed
communications model. Because the concept of sessions (i.c., connections bctween processes) play
such an important role in our model, they arc introduced in Section 2.3, ahead of &l other
implementation concepts. Section 2.4 contains a taxonomy of reference types and is the focal point
of this section. The protocol issucs arising from this model are then described in Scection 2.5. An
example of one reference type is presented in Scction 2.6. Finaly, Section 2.7 discusses the benefits
that will be realized if this model is used as the basis of a communication system. -

2.1 Definitions and Assumptions

The remote reference/remote operation model provides a basis for communication on a system
comprised of mecdium Size processors connected by a very high speed local network, as shown in
Figure 1. To discuss the model fully, we must first specify some aspects of the underlying system
architecture.

Communications Process Other Processes

Medium Size /

Uniprocessor \—ﬂ’—\ k Volatile Storage |

Stable Storage

High Speed ﬂ

Local Network

Underlying Architecture

Figure1

Data is exchanged among machines by the transmission of packets over aloca network- a high
bandwidth, low latency communication medium having high reliability and low cost. With respect
to reliability, the local network provides four transmission properties. First, if a packet is
transmitted enough times, it will reach its destination.  Second, packets corrupted during
transmission are automaticaly discarded. Third, packets arc not duplicated by the network.
Finally, packets arrive in the order in which they arc sent. Thus, local network failures result only
in lost packets.

Certain types of the remote references described below arc practical only if transmission

latencies are very small for short packets. In addition, a network with a high capacity is nccded to

support a distributed system comprised of many (say, 100) processors. A 50 to 100 megabit local
network enforcing a small maximum packet length meets these needs.

In the model, processors occasionally’ fail and arc then restarted. (In [Spector1981], this work is
extended to alow for failure of individual processes on aprocessor.) In addition, processors contain
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processes With names unique to that processor. All regular processes disappear after a processor
failurc. Recoverable processes are automatically reincarnated after a processor crash and are reset to
one of several predetermined states. Clearly, recoverable processes require the availability of stable
storage— storage that survives single failures [Lampson-Sturgis]. Processors are sufficiently reliable
to alow rccoverablc processes to make progress.

W c assume the existence of a distinguished process on each processor, called the
communications process. This process is rccoverablc and is specialy implcmentcd-off-loaded or at
interrupt level- so that it can be activated very rapidly. Though its implementation must permit the
execution of simple functions quickly, it must also bc able to do more complex operations requiring
stable storage. (The nced for this is described in Section 2.3.) The communications process does
not have the full capabilities of other processes, but it can perform the following functions
efficiently:

(1) Transmission and reception of packets on the local network. The communications
process directly accesses the nctwork-specific hardware.

(2) Manipulation of specialized communication state information. The communications
process can quickly access the state tables described in Section 2.3. Some table entries
may be saved in stable storage.

(3) The execution of communications primitives issued by other processes on the same
processor.  This process implements the communications interface scen by other processes.

(4) The cxecution of simple operations inititated by a remote communications process.
Simple requests can be directed to a remote communications process for efficient
processing.

2.2 Model Description

In our terminology, a remote reference is executed by a master process and causes a r-emote
operation to be performed by aslave process. The slave process can return a valuc. Remote
operations can vary greatly in complexity, from the simplicity of a memory access to the complexity
of an asynchronous subroutine. For example, the message passing "send" operation causes a data
block to be placed on the receiver’s message quecue and provides an indication of the success of that
operation. In this case, the sender is the master, and the server (at the remote site) is the dave.

Figure 2 illustrates the rcmotc reference/remote operation model in the absence of
communirations or processor failures. A reference is initiated by an action labeled Reference-
. Commit. At a later time, a request is received on the dave processor, and thc communications
process initiates the appropriate rcmote operation by issuing an action caled Op-Begin-Commit.
The remote operation is considered complete only whenthe action labeled Op-End-Commit has
been cxceuted. If the remotc operation produces avalue, the communications process onthe dave
issues a response to the master, which causcs the action labcled Result-Commit to be cxecutcd. To
alow for some rdiability semantics, some of the four actions in Helvetica tvnc must be atomic and
must commit some statc information to stable storage.

In this model, short requests and responses are transmitted as single packets. Requests and
responses that do not fit in a single packet are transmitted as multipackets, or scquences of packets.
Individual packets in a multipackct are ncither retransmitted nor acknowledged. Only the simplest
underlying protocol is used to permit arcceiver to dctermine if al packets in a multipacket arc
properly rcccived, eg., a packet count and multipackct identifier.  The properties of the local
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network described in the previous section permit the use of this simple strategy for handling
multipacket requests and responses.

There arc many posciblc protocols for implementing remote references. In the simplest case,
upon executing a remote reference, a master issucs a.request packet to aslave and possibly awaits a
subsequent response packet from that slave. In other cases, the protocol is much more complex.
See Section 2.5 for a more detailed discussion of this.

Master Processor Slave Processor
Master Communications Communications Slave
Process Process Process Process

I Local Network

]
| Reference-Commit |

Request Conveyed %

Op-Begin-Commit |

Under some conditions, these:/ : -
time are carried out entirely in | Operation
L the communications process ™\ Processing

|
\\| Op-End-Commit

é—‘ Response Conveyed

l =TT C Ommit] |\§These may not be performed for

references with the maybe attribute

I
\/ (Only Requests and Responses Shown)

Remote Reference/Remote Operation Model - Normal Operation

Figure 2

2.3 Sessions and Sockets

As considered in this paper, asession is a logical connection over which a single master process
can issuc requests and a single slave process can issue responses. Processes arc assumed to be
located on fixed processor nodes for the lifc of the session. Sessions do not have multiple masters
or slaves in this work.

When a session is established, one socket entry is created on each of the master and dave
processors. These entries serve three main functions: First, packets associated with that session are
addressed using references to these entries.  Second, socket entries contain information that permits
requests and responses to be mapped to individual proccsscs. Third and most importantly, they
contain state information that cnable sessions to provide specific semantic attributes for rcfcrences
conveyed during that session. For some scssion types, considerable state information (for such
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purposes as flow control or duplicate detection) must be maintained. This information is used to
support the various reference types described in Section 2.4.  Sockets for. active sessions are
contained in a socket table that is accessed by the communications process and are implemented
using both volatile and stable storage.

There arc two types of sockets: type-l sockets, which do not survive processor crashes and
type-2 sockets, which usc stable storage and do survive crashes. Type-2 sockets can be used by
recoverable processes to ensure that their communications capabilities are not lost after processor
failures. After a failed processor has been restarted, arecoverable process associated with type-2
sockets can continue executing refcrences and/or receiving requests. No type-l sockets are defined
after a processor restart.

A session can be considered to bc a distributed abstract data type that is manipulated by two
cooperating communications processes via the two sockets. 'There are three major operations
allowed during sessions.

Issue-Reference permits a master process to initiate a remote operation on the save and
causes a Reference-Commit to occur localy.

Receive-Response permits a master process to receive a response from a dave and
causes a Result-Commit. Somctimcs, Receive-Response is issued in combination with
Issue-Reference.

Return-Response alows a slave to return a result to its master and causes an Op-End-
Commit to be locally executed.

Issue-Reference, Receive-Response, and Return-Response are generic names for primitives
whosc implementations arc application dependent; in fact, their call syntax will usualy be tailored
to reduce overhead. For example, a normal memory reference may result in an Issue-Reference if
a segmentation table specifies that the memory reference should be issued over a session.

Two sessions are maintained between each pair of communications processes to permit each
communications process to act as both a master and dave to each other communications process.
These sessions, called systems-sessions, adlow other sessions bctwcen non-communications processes
to bc crcated and dcstroycd.  Communications processes provide the following primitives:

Register-Process-Name is processed localy and registers a server process name with the
local communications process, and it specifies how requests for the server process will be
conveyed to that process; c.g., via interrupt or qucuing. It also specifics the type of
session in which the dave will participate. This permits the communications process to
respond to requests asking for sessions with this slave.

Initiate-Session establishes a scssion with a slave process that has previously been
rcgistered. It requires as arguments the remotc slave process name and address, the
desired type of session (see Scction 2.4), and an indication of the disposition for responses
reccived from the dave. It rcturns a session number. Initiate-Session initiates a remote
rcfercnce to the communications process on the dave. This remote reference serves the
purpose of PUP's rendezvous protocol [Boggs et al]. Additionaly, it allows the presetting
of defaults for that session.

Terminate-Session climinates ascssion. It requires the session number as an argument
and initiates a rcmotc rcfcrence to the rcmotc communications process. It can be
cxcecuted by cither a master or slave.
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Figure 3 illustrates the initiatiation and termination of a session.

Master Processor Slave Processor
Master Communications Communications Slave
Process Process Process Process

Local Network | |

Reugister-Process-Nam ¢

Initiate-Session

r Remote reference conveyed from communications process on master
to communications procéss on slave over systems-session.

L —

]

1
|
I Remote References Issued Remote Operations Performed
|

Terminate-Session

I- Remote reference conveyed from communications process on master
to communications process on slave over systems-session.

L —
i i l
Note:  Though this figure shows the master issuing the Terminate-Session, the slave could do this.
Session Initiation and Termination

Figure 3

In summary, the communications process performs a variety of functions. (1) It maintains
systems-scssions, (2) It supervises the initiation and closing of sessions, (3) It accepts references from
amaster process, initiates their remotc execution and possibly performs certain actions to inform the
master of the result, and (4) It accepts remotc requests from the network, awakens the slave process,
if necessary, and possibly sends responses to the master.

~The concepts of sessions and sockets are not unique to this work. For example, sockets are
called half-sessions in SNA [Cypscr] and TCB’s in TCP [ISI], and sessions are implcmented in Leve
5 in the OSI protocol hierarchy [Folts]. However, in this work, there are many types of sessions,
each fulfilling particular nceds; the diversity of session types, in many instances, permits simpler
protocols to bc used. Additionally, the sessions in this model subsumc the function of a few layers
in general network hicrarchics; this reduces the need for inefficient protocol laycring.

2.4 Reference Taxonomy

In Sections 2.4.1 through 2.4.5, five different attributes that apply to sessions are prcscnted.
These attributes are associated with a session at the time the session is cstablished and affect all
references conveyed during that session. ‘They are based on the following: (1) varying reliability
rcquirements, (2) whether avalue is rcturncd, (3) how the rcmotc operation occurs temporally with
respect to the rcfcrence, (4) the need for flow control, and (5) for what kind of process the
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reference is intcnded. These attributes were sclected to span the space of possible implementation
strategies— and costs- as well as to provide a rich set of primitives with which to communicate.

2.4.1 Reliability

Careful specification of the performance of remote references under different faiture conditions
is important in distributed systems, because we often desire the system to tolcrate failures. The
atributes discussed in this section provide for various degrees of robustness under conditions of
communications and processor failures. They arc summarized in Table 1 and described below. See
[Liskov] for another characterization of reliability in high level communication systems.

Reference Semantics Under Different Failure Conditions

result-commit: 1

result-commit: 0,1

result-commit: 0,1

Protocol Class _ Lost Packets &| Lost packets &
No Failure | Lost Packets|Slave Failure |Master Failure
I\/Iaybe op performed: 1 op performed: 0,1 op performed: 0,1 op performed: 0,1

result-commit: 0

At-Least-Once

op performed: 1

result-commit: 1

op performed:

result-commit:

op performed: >=0

result-commit: >=0

op performed: >=0

result-commit: 0

On|y_once_ op performed: 1 qp performed: 1 op performed: 0,1 op performed: 0,1

Type- 1 result-commit: 1 result-commit: 1 result-commit: 0,1 result-commit: 0
normal master

process

op performed: 1

Only-Once- op performed: 1 op performed: 1 op performed: 1 result-commit: 0

- result-commit: 1 result-commit: 1 result-commit: 1 " ) ) -

Type 2 recoverable master

process
op performed: 1

result-commit: 1

Table 1 - Reliability Semantics Survey

Listed in increasing order of function complexity and implementation cost, the four reliability
- atributes are: maybe, at-least-once, and only-once-type-l and only-once-type-2. Their names
arise from the semantics that these attributes provide under conditions of communication failures.

In the absence of communication or processor failures, all rcferenees initiate one Op-End-
Commit and, if required, one Result-Commit. The performance of rcfcrences under
communication failure conditions (i.e., lost packets) is summarized below:

A reference having the maybe attribute will cause an Op-End-Commit to be performed
zero or one times. |If the Op-End-Commit is performed, the Result-Commit will occur
zero or onc times.

A rcfcrence having the at-least-once attribute will cause an Op-End-Commit to be
performed one or more times. The Result-Commit will aso occur one or more times.
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A rcfcrence having the only-once-type-l or only-once-type-2 attribute causes exactly
one Op-End-Commit and one Result-Commit to occur in light of al communication
failures.

A dave processor failure may causec maybe, at-least-once, and only-once-type-l references to
fail; that is, in addition to their normal scmantics under communication ‘failures, wc must add the
possibility that no Op-End-Commit and Result-Commit will occur. A failed master processor
causes problems similar to those of a failed dave processor except that the Result-Commit is
guaranteed not to occur. Table 1 summarizes these points.

The only-once-type’-2 attribute applies to references issued to recoverable slaves from both
recoverable and non-rccoverablc master processes.  Only-once-type-2 rcferences cause cxactly one
Op-End-Commit to be executed, regardless of failures. The Result-Commit aways occurs if the
master process is recoverable.

These attributes have a major effect on the protocol that is needed to implement remote
references. Protocol considerations.are described in Section 2.5.

2.4.2 Value and No-Value References

All rcferences, except those with maybe semantics, explicitly return a value to the master
process. These arc called value references. In Figure 2, Result-Commit |abels the time at which a
value is returned. This value is either provided by the remote operation or by the communication
system; in the latter case, it provides an indication that the remote operation has been performed.
For only-once-type-2 rcfcrences, which guarantec that a rcmotc operation will be performed, this
response allows the master process to know when the remote operation has occurred.

For cfficicncy considerations, wec allow maybe references to not return a value. These are
caled no-value rcfcrences. Maybe references do not require aresponsce to achieve their reliability
semantics; hence, it would bc inefficient to requirc a response for operations that produce no vaue.

2.4.3 Synchrony

Remote operations that cxccute synchronously with respect to a calling processor arc caled
processor-synchronous. Opcrations that cxccute synchronously with respect to the calling process
only are called process-synchronous; in this case, the processor may execute another process
while the rcmotc operation is being performed. Operations that cxccutc asynchronously with
rcspect to only the caling process arc called asynchronous. The order in which remote operations
complete (i.e, execute Op-End-Commit) isindependent from the order of the asynchronous
references that initiate them. In summary, a master process can issuc processor-synchronous,
process-synchronous, or asynchronous references.

Asynchronous and process-synchronous rcfcrences complicate recsponsc processing on the
master, because many responses may be pending. Each pending rcsponsc must be  demultiplexcd
and queued to an individual process, and provision must bc made for rcqucst-rcsponsc correlation.
Additionally, if there isto be any benefit from the asynchrony of these opcrations, process switches
will likely cnsuc. These process switches may lead to 170 operations (due to working sct changes)
and cache invalidation, and may causcincreased overhead. Asynchrony results in a more complex
protocol for only-once rcferences of both types, because slaves can not automatically discard saved
state information when a new request arrives.
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When errors occur, processor-synchronous references may require a dight modification of
only-once-type-l, only-once-type-2 and at-least-once semantics. This modification is necessary,
becausc it may be impossible to hat al processing on the master if the remote refcrence takes too
long to complete (e.g., because of timeouts and rctransmissions). The vast mgjority of the time, a
processor-synchronous reference can be cxccutcd synchronously; however, when errors occur,
the reference can be rc-executed process-synchronously. This technique is used in the Medusa
operating system on CM* [Ousterhout et al].

No-value rcfcrecnces with maybe semantics can be performed cfficiently.  Processor-
synchronous references can also bc performed cfficiently if requests and responses are short, and
the spccificd remote operation can be quickly cxccuted. They arc uscful when the cost of doing the
remote operation is lower than the additional overhead that would be incurred with process-
synchronous or asynchronous references. Process-synchronous references are next most
cfficicnt, because they do not rcquire a process to explicitly account for multiple outstanding
messages.  Flow control, if required, adds to the complexity of asynchronous references.

2.4.4 |nter-Rcference Flow Control

Flow control has many meanings, but we consider flow control as a resource reservation system
that guarantees a resource is available on the dave. Usualy, this is buffering space for rcqucsts.
Thus, flow control ensures that a master issues rcqucsts to a dave below a predetermined rate.
Flow control is not useful for process-synchronous or processor-synchronous references,
because with these a process can not issue a new reference until the last rcference has been acted
upon. However, asynchronous refcrences can bc either flow-controlled or not-flow-controlled.

Flow contral requires that additional state be saved by both master and slave. This has been
called the allocation [McQuillan], the amount of storage space reserved for buffering additional
requests on the slave. Additional packet transmissions may bc required to maintain this allocation.

2.4.5 Operation Types: Primary and Secondary

Operations arc primary if they arc performed by a remote communications process and
secondary if they arc performed by a regular process. Primary operations can bc executed rapidly
on the rcmotc processor, because the communications process can be activated without substantial
ovcrhcad. Furthermore, rcquests do not cause scheduling or require additional queuing, because
there is only one communications process per processor, and wc assume that it can be run with low
overhead. Findly, the caveat that primary operations must be simple (to avoid overloading the
communications process) is a factor contributing to the high speed at which they run. Examples of
primary references are causing data to be enqueucd in a process mailbox and initiating remote
. memory operations.

In comparison, secondary opcrations require request dcmultiplexing, request queuing, and
more costly process switching on the remotc side.  Kemotc subroutine cals arc typical examples of
secondary rcfercnces.

2.5. Implcmentation Considerations — Protocol

The reference attributes and the size of requests and rcsponscs affect the communication
protocols that can be used to implement remote rcfcrences. Duc to space limitations, this scction
only addresses the major factors influencing the underlying protocols. the synchrony and reliability
attributes, and thesize of rcqucsts and rcsponscs.
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Maybe, novalue rcfcrenccs require only that the master issue a request. Maybe, value
rcferences require that requests contain a sequence number to permit responses, which arc sent by
the slave, to be correlated with requests. No retransmission mechanism is required for any maybe
references.

For at-least-once semantics, (1) requests and responses must contain a sequence number to
permit the correlation of requests and responses, and (2) requests must be retransmitted until either
a vaid response arrives or it can be determined that a processor failure has occurred. Only-once-
type-l scmantics additionally require that information must be saved by the communications
process on the slave to permit the suppression of duplicate requests and allow response
retransmission.

Implcmentations of only-once-type-2 references are similar to those of only-once-type-l,
except that the session statc must be maintained in type-2 socket table entries on both master and
dave. The dave process must be rccovcrablc, and the remote operations that it executes must be
atomic: i.c., once a remote operation exccutes Op-Begin-Commit, it will either cxccutc Op-End-
Commit or fail and lcave no trace. In addition, both Reference-Commit and Op-End-Commit
must bc atomic, and both must commit state to stable storage. Result-Commit and Op-Begin-
Commit may be atomic and may commit state to stable storage in some instances.

We should aso note that for all only-once-type-2 references, Result-commit can not occur
until a valid response is received from the dave. This restriction requires that a back-up processor
be available for the dave to minimize the duration of failures. Also, only-once-type-2 references
requirec heavy use of stablestorage. For cfficiency considerations, traditional implementations such
as mirrored disks may not bc suitable.

At-least-once, only-once-type-l, and only-once-type-2, processor-synchronous references
can be implemented using a request/response protocol.  With this protocol, the master issues a
request to a dave, and the dave returns a rcsponsc (possibly containing a value) to the master
confirming that the remote operation has been performed.

This protocol is uscful for processor-synchronous references for two main reasons: First, the
amount of space needed to store the last response issued to each master is not large, because
responses arc nccessarily short.  Additionally, the total number of socket entries used to save this
information is small; it is equa to the number of remote processors containing at lecast onc active
master process in session with the slave.

A request/response/cend-of-request protocol is uscful for asynchronous and somc process-
synchronous rcfcrences. In this protocol, the dave's response is acknowlcdged, allowing the dave
to’ reclam the space devoted to storing that response. This acknowlcdgement is required for
asynchronous references, because a new request does not cnsure that the last rcsponsc has been
received. 1n this protocol, attention must bc paid to alow for recovery in the case of lost end-of-
rcqucst packets.

Finally, the request/request-received/response/cend-of-request protocol is useful if theremote
operation will take a long time to execute and the rcquest is long. The request-rcccived packet
allows the master to reclaim the space used for holding the request while it is awaiting a response.
This protocol is useful for some process-synchronous or asynchronous rcfcrenccs.

In al protocols using type-l sockets, the slave must bc able to climinate sockets associated with
crashed masters. Two technigues arc available: Upon recovery, the master communications process
could issuc primary rcferenees to processors with which it may have communicated, requesting that
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type-l sockets bc climinatcd. This reference would be issued over the systems-session.
Alternatively, type- 1 sockets could timeout.

2.6 An Example: Only-Onx-Type-2, Asynchronous Rcfcrences

This scction contains a brief discussion of one rather complex reference type: an only-once-
type-2, asynchronous, flow-controlled, secondary, value rcferencc. Its purpose is not to fully
specify an implcmentation but to both demonstrate that this model includes rather complex
primitives and exemplify the only-once-type-2 attribute. An example of such a reference type is
primitive that reliably writes apage onto remote secondary storage, unlocks that page, and rcturns a
version number.

Master Slave

| Reference-Commit |

Request(N)
- —
| Op-Beg-Commit |
| Op-End-Commit |
- Resnonse(N)

| Result-Commit |

End-Of-Reauest(M. M< = N) ~

Basic Protocol for Only-Once-Type-2, Asynchronous References

Figure 4

In one possible implcmentation, after Reference-Commit, arcquest containing a seguence
number N is sent by the master to the slave. (Sequence numbers arc ordered, and new remote
rcfercnces initiate transmission of requests with higher scquence numbers.) After the requested

operatlon is performed and Gp-End-Commit isS «.ccuted, theslave will issuc a response, containing
the result and the sequence number N, to the master. Normally that rcsponsc will be rcccived by
the master, and the master will cxecute Result-Commit and issuc an end-of-request packet. The
end-of-request packet contains a scqucncc number M, M<N, and indicates that the master has
rcccived all responses through sequence number M. In-this description, wc have consciously
ignored flow-control and addressing considerations.

To achieve only-once-type-2 semantics in this implcmentation, the request must be committed
to stable storage on the master at Reference-Commit, and it must bc retransmitted until Result-
Commit occurs. On the slave, Op-End-Commit must be an atomic action that (1) cnsures that the
opcration that is about to be committed is- not a duplicate, and (2) if the operation is not a
duplicate, commits the rcference result, scquencc number, and any opceration-dependent data to
stable storage. Theslave then sends a rcsponsc to the master, containing cither the previous or the
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new result.  The Result-Commit must atomically commit to stable storage both the refercnce’s
result and an indication that the reference has completed. The master can then reclaim stable
storage used to maintain the request and transmit an end-of-request.

The end-of-request does not nced to be sent reliably to the dave. This is because each future
end-of-request will acknowledge at least as many responses as did the previous  end-of-rcqucst.

2.7 Discussion

This communication model suggests a communication system with a well-specificd and rich
class of communication primitives. Table 2 summarizes the feasible reference types. Because many
types of rcferences arc available, and they differ greatly in implementation costs, distributed systems
nced only “pay for what they use.” Because cach reference type provides only highly specific
functions, implementations can be casily streamlined alowing highly cfficicnt operation. It should
be noted that cven the reference types that arc most cfficicnt to implement can be directly used in
distributed systems.

Choose One from Each Column Subject to Restrictions:

1) Only Maybe references can have No-Value.
2.) Only Asynchronous references may be Flow-Controlled.

3.) Processor-Synchronous references must be Primary.

Value
Synchrony | Op-Type |Flow-Control, Reliability Returning
Class Class Class Class Class
Processor- Primary Flow- Maybe Value
Synchronous (See 3) Controlled (See 2) At-Least-Once
Secondary No-Value (See 1)
Process- Not-Flow Only-Once- .
0 - -
Synchronous Typel
Controlled
Asynchronous Only-Once-
Type-2 (See 4)

4.) Only-Once-Type-2 references must be directed to recoverable slaves.

Table 2 - Reference Type Summary

- Tho: sh a communication system nced not provide all of these rcference types, many have
dircct uses in distributed systems. Simple processor-synchronous operations are uscful for
implcmenting remote shared memorics, cngqueuing small blocks of data, signalling remote
processors, ctc.  Primary, process-synchronous and primary, asynchronous operations arc useful
for implcmenting message passing primitives.  Secondary, process-synchronous operations arc
uscful for implecmenting rcmotc subroutine calls and cross-network paging. Finaly, secondary,
asynchronous operations have their place in the paralld execution of rcmotc subroutine calls.
Even the maybe reliability attribute is useful; an example is the transmission of packetized specch.

The opcrations provided by full-duplex bytc stream mechanisms are costly to implement in the
context of this model, becausc they rcquire two asynchronous, primary, flow-controlled, only-
once-type- 1 sessions. In this instance, better direct implementations can be constructed. Wc
conjecture that little use would be made of byte strcam protocols if a full range of rcmotc
rcferences were provided.
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Successful implementations of rcmotc references require that simple references bc done with
great efficiency. This restriction requires a close integration of the network interface and processor.
A memory reference or normal instruction must be able to trigger the communications process into
generating a request. The communications process should be implemented as a combination of
software and microcode on the processor and by a specialized network interface, itself possibly
microprocessor con trolled.  Process switches to the communications process must be very
inexpensive and it must bc capable of executing primary operations rapidly. Therefore, it must
have fast access to main processor memory. Low latency, high bandwidth stable storage is necessary
for efficient implementations of only-once-type-2 refcrences.

3. A Case Study: Only-Once-Type-1, Primary, Processor-synchronous References

This section describes a case study that should clarify the above genera discussion. Specificaly,
it describes two implementations of only-once-type-l, value, not-flow-controlled, primary,
processor-synchronous references using a request/response protocol. Onc implementation was
done in software and the other in microcode. Comparisons between the two demonstrate the
advantages of specidizing the interface.

Overal, this work shows that somc remote operations can be performed so quickly that they
may often be cxccutcd synchronoudly with respect to the initiating master process. Thus, process
switching is unncccssary, except in rare cases where crrors or transmission delays arc encountered.
This implementation helps to validate the utility of the model, because it shows that some
references can be performed efficiently.

3.1. Background

The implementation was done on Xerox Alto computers, a microcoded 16 bit machine with an
internal cycle time of 180 nanoseconds and a memory bandwidth of 29 megabits/second [*['hacker et
al] [Xerox] connected with a 2.94 megabit Fthernet [Shoch-Hupp]. The macroinstruction set as well
as peripheral device controllers are implemented on the micromachinc through the operation of 16
microcoded tasks, each executing 32 bit microinstructions.  Mechanisms exist to switch among tasks
inone microcyclc. Since 1/O devices have the full processing capability and temporary storage of
the micromachinc at their disposal, as well as the ability to access main memory very efficiently,
they can provide highly cfficient hardware interfaces.

The macroinstruction sct is similar to a Data General Nova [Data General].  For the purposes
of this work, various new instructions were added using unimplcmented operation codes, which
transfer control to a 1K word microcode RAM. The cmulator cxccutes macroinstructions at  about

3 3 0 KIPS. The Alto contains no protectior or virtual memory facilities.

The Ethernet task is responsible for initiating packet transmission and reception, and
performing underlying Ethernet protocol manipulation. 1t was not necessary to modify the Ethernct
task although more generality and cfficiency could result if this were done.

3.2. Implementation— Software Version

Wocfirst implemented a software package that provides five subroutines called RILDA, RSTA,
RCS, RENQUEUE, and RDEQUEUE for remote load, rcmotc store, rcmotc compare and swap
[IBM], remote cngqueuc, and rcmotc dequcuc. The exact semantics arc summarized in the appendix.

These subroutines cause arcquest packet to bc transmitted to arcmote Alto and return control
when a proper response packet is rcecived or when an crror condition is dctccted. Wc have called
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the message protocol “ESP” for Efficient Synchronous Protocol. See Figure 5 for the packet
format.

The software is written cntirely in BCPL [Curry et al} and uses the raw datagram facilities of
PUP L.evel O [Boggs et al] for packet transport. Sessons are maintained bctwcen each pair of
communicating processors. Duplicate eimination is handled by the scqucncc number field of the
ESP packet and socket addressing is implicitly done using the Ethernet Packet Type ficld.

Destination Source Standard  Ethernet
Header
Fthernet Packet type
small integer
Esp Packet Type word 2 g
ISequence number from Alto clock
word 3
Remote Address word 4
Field Interpretation
Value 1 45 ) Depends Upon
wor ESP Packet Type
Value 2
word 6
Checksum Hardware Generated
word 7

Esp Packet Format

Figure 5
3.3. Implementation -Microcode Version

For the purposes of this study, it was sufficient to implement two separate sets of microcode:
onc alows an Alto to act as a shnrcd memory that cxccutcs and responds to ESP rcqucst packets;
the other implements the RLDA, RSTA, RCS, RENQUEUE and RDEQUEUE instructions,
formatting rcqucst packets and awaiting responses.  The two sets of microcode could be combined
to provide exactly the samc function as that provided by the software version, including
compatibility with standard PUP communication. However, this would require time-consuming
modifications to the Ethernet control task and is not necessary to prove the efficiency that can be
achieved for only-once-type-l, primary, processor-synchronous references.

Though the microcode is quite similar to the software, it does differ in some respects. First,
incoming requests arc not qucued, because queuing a request would require almost as much work
as processing it.  Sccond, the processing time of a rcquest is small in comparison to the amount of
time that the Iithernet hardware is busy. Third, instruction decoding is performed to make the
references more cfficient.  Finally, substantial performance bencfits arc realized by overlapping
memory accesses With processing.

The microcode is (surprisingly) simple due to more convenient handling of errors, multi-
tasking, and time-outs in the micromachinc. It comprises about 280 instructions though this
number could bc reduced by clever microcoding. A total of 7 hardware registers arc used in
processing. ‘I'he microcode cxccuting rcquests on behalf of aremote machincuses an additional
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728 (256 x 3) words of main memory to store the last sequence number and response values for all
possible machines connccted on the Ethernet. This corresponds to the socket table in Section 2.3.

Usage of the new instructions is illustrated by Figure 6's description of RCS. Instructions take
arguments in two gencra registers as well as in. the two words following the operation code. They
skip rcturn on success and return results in one or two registers.

<store to-be-checked value in ACO>
<store to-be-stored value in AC1>
<store remote address:
<store remote machine number:
RCS (opcode 63003)
1 word
1 word

ERROR-RETURN: <2 instructions to handle error case>

NORMAL-RETURN:

instruction Call Sequence for RCS

Figure 6

On crror returns, the sequence number of the request is returned, allowing for additional
softwarc retransmission of the request. In our model, this would be done by re-cxccuting the .
reference as a process-synchronous operation and instructing the communication system to usc
the previous scquence number. To provide the proper error semantics in light of remotc processor
failure, a flag can be maintained on the slave that is sct to 0 when a machine has been restarted
after a failure. If arequest arrives and finds this flag set to O, a response can indicate that a
machine failure has occurred prior to this rcqucst. Rcqucsts always sct this flag to 1.

Upon receipt of control following a remote instruction, the microcode first collects information
from various places and asscmbles it in a 7 word block of memory. This includes the machine
number of both source and destination, the systemtime (which is used as a sequence number),
various data valucs from the gencral registers and the words following the instruction, etc. Before
the packet is transmitted, oncinternal register isset with the number of rctransmissions and another
with a counter that is continuoudy counted down to alow for timeouts. A transmission count of 2
and a timeout interval of 3 milliscconds is currently used, a time long enough to permit a long
packet to pass. The small transmission count cnsurcs that the processor does not suspend its
operation for too long. With these parameters, the maximum time a remote rcfcrence can halt
processing is 6 milliseconds.

When aresponse packet is reccived, its source and scquence number arc checked to ensure that
it is a response from the last request.  If these numbers match, values are placed in one or two
genera registers and the instruction returns.  If they do not match, cither the machine waits for
another packet, retransmission is attempted, or the instruction returns and indicates an error.

At the rcmotc site, the microcode continually checks the Ethcrnct to see if a new packet has
arrived. I an ISP packet arrives, the source byte is used to index into the socket table. If the
sequence number of the reccived packet is the same as that in the corresponding table entry, the
request is a duplicate and a response is generated using the state information saved after the first
rcqucst.  If the sequcncc number differs, the operation specified by the ESP packet type is
performed using the remotc address and value fields as arguments.  Two values resulting from this
operation as well as the new sequcncc number arc placed in the table.  Finaly, a response packet is
generated using these values.
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3.4. Performance

In the software version, approximately 210 remote references can be exccuted per second; this
corresponds to 4.8 milliscconds/reference on an unloaded Ethernet. Running at maximum speed,
two machines communicating using this software package can impose a 1.8% load on the Ethernet.
Using RSTA ingtructions, this corresponds to a 3.4 Kbit effective transfer rate. This software
implementation is likely to be at least 3 times faster than any implementation using the PUP byte
strcam protocol, a protocol that provides afull duplex, rcliablc byte strcam protocol from one
machine to another. This difference is duc to the more complex protocol used by the rcliablc byte
strcam protocol and the more general interfaces that it provides.

The microcode version is capable of supporting 6450 references per second corresponding to a
time of 155 microsecondsreference.  As another characterization, each remote references takes
about 50 macro-instruction times. Figure 7 shows a breakdown of the time spent when an RLDA
instruction is executed, assuming no contention on the Ethernet. This time is rcprescntative of the
times of the other instructions as well. Of the 155 microscconds required, transmission time
accounts for more than half: 85 microseconds. Loca processing lecading up to the request requires
28 microseconds, processiry at the remote site requires 31 microseconds, and local processing after
the responsc isreceived-requires 11 microseconds. Roughly, remote references are two orders of
magnitude faster than they would be if implemented using the PUP byte stream protocol.

Breakdown of Time Spent in RLDA

Time . :
160 — Microcoded Version
150 = response checking/instruction ret. - local proc.

‘ Ethernet Task recv. proc. —{ 108
140 1
130 - o

transmission time i transmission time
120 425
110
100 = 7

Ethernet Task send proc. ¢
90 - | remote proc. remote

309 busy
—] request proc./resp. creation
80 q p p 115.9
70 — Ethernet Task recv. proc. —
60 —
transmission time
50 =] transmission time [ 425
40 -
30 = =
20 - Ethernet Task send proc.
- local proc.
10 1 request packet creation 284
0 instruction decoding )

micrasecs

Figure 7
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The slave’s Ethernet transceiver or processor is busy for 116 microscconds.pcr request. Thus, a
shared memory could” maximally support 8600 references per ‘second. A processor could initiate
6450 remote instructions per second, placing a load on the Ethernct of about 55%. In practice,
neither the shared memory nor a processor issuing references would operate at their maximum
rates.

Wc have mcasured a single processor issuing RI.DA’s to a remote memory at the rate of 5000
per second. The difference between 5000 and the theoretical maximum of 6450 can be accounted
for by the time necessary to execute the instruction loop iterating over the RLIDA’s, The Ethernet
load gcncrated by this test was 42% or 1.28 megabits. As onc would cxpcct, practically no
rctransmissions or timcouts occurred during this test.  Though one would not use RLDA
instructions to maximize throughput, the effective transmission data rate in this test was 80 kilobits.

In a more complex test, where two machines attempted to generate 5000 requests per second to
a dave, scverc contention problems on the shared memory occurred.  The conten tion caused less
than 3000 references/master/second to be complctcd. Many rctransmissions were required to
reliably issue arcmote request.  Part of this was duc to the high load on the memory. The slave
does not listen to the Ethernet while it is processing a request and, consequently, misses many
requests. ‘The occurance of this problem demonstrates the necessity of not overloading a dave.

Finally, in a test to check the capacity of the Ethernet, two machines made requests to two
separate shared memorics and collectively put a load on the network about 64% or 1.92 megabits
with very few collisions or retransmissions. Each machine was gencrating about 3750 packets per

second.  Table 3 summarizes the most important yardsticks.
Description Software Microcode
RSTA’s / second (achieved) 210 6450 (5000)
microseconds / RSTA 4800 155
Ethernet load (achieved)
1 master = > 1 slave 1.8% 55% (43%)
Real Data Rate (achieved) 3.4 Kbits 103 (80) Kbits

The parenthesized measurements are from BCPL test programs and include the overhead of a test loop.

Performance Summary

Table 3
4. Conclusions

In this paper wc first presented a communication model that suggests a taxonomy of reference
types. Many of these types have natural uses in distributed systems, and cach has an
implementation most suited to it. Though rclatively complete, the taxonomy could be extended to
includc more complex type of sessions, such as those with multiple slaves, and to include other
semantic attributes.  For example, intrarcfcrence flow control has been suggested for rcferences
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having very variable size requests and responses.

Next, wc looked at a highly efficient implementation of one spccific reference type. This
experiment demonstrates the power of “special-casing” the implementation-both protocols and
interface- of a particular rcference type. We met our goal [Spector1980] of alowing a processor to
issue 1% of its non-instruction memory references to arcmote processor and suffer no more than a
50% speed degradation. (An Alto executing a remote reference 1% of the time would dow from
330,000 instructions/second to 208,000 instructions/sccond— a 37% degradation.) With better
hardware and a 10 mcgabit Ethernet, the remote rcfcrcnce times would be well under 100
microscconds. Additional work on these references must include consideration of protection, virtual
memory, and contention on the server.

To further demonstrate the utility of the remote reference/remote operation model, a
reasonable subsct of communications primitives must be sclcctcd and a complete communications
system designed.  Not all refcrcnces can bc implemented as efficiently as only-once-type-l,
primary, processor-synchronous references. But without doubt, they could be implemented much
more efficiently than the norma high level communication mechanisms that are currently used on
local networks.

W c would like to' design this communication system with relatively few constraints. For .
example, to permit high speed opcration of processor-synchronous operations, wc must use
relatively small packet lengths to cnsure that packets used for processor-synchronous references
do not suffer long latencies.  If remote reference times arc to be small and higher speed  processors
are to be supported, a higher capacity network is necdcd. A ring network like that of Cambridge
[Wilkes-Whcclcr] or TRW [Blauman] would probably mect these needs.

The network interface must be sufficiently clever to allow reception of back-to-back packets.
‘The communications process should be implemented so that process switches to and from it can be
made quickly. To provide only-once-type-2 semantics, some easily accessible stable storage is
nceded. 1t would be most beneficial to off-load some portions of the communications process to a
fast microprocessor so as not to burden the main processor with unnccessary overhead.

We have ignored theissuc of the programming language support for this model. Before this
model can bc casily applied to distributed systems, specific instantiations of various rcfcrence types
nced to bc defined for use within the context of a distributed programming language.

Findly, wc need to implement a variety of systems using remote refcrcnces. With a clever
enough communications system implementation and a high speed network (greater than 50
megabits) some of the applications done on CM* [Jones-Gchringer] would work on a local nctwork
based multiprocessor. However, many other types of distributed systems should be tested to see if
their communication rcquircmecnts can bc naturally and efficiently met by the remote
reference/remote operation model presented above.
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Appendix — Reference Semantics

DEFINE RLDAMACHINE-NUMBER, ADDRESS) =
IF NO RESPONSE
RETURN [FRROR-CONDITION, INTERNAL-SEQ-NUMBER]
RETURN MACH INE-NUM BER[ADDRESS]

DEFINE RSTA(MACHINE-NUMBER, ADDRESS, VALUE) =
IF NO RESPONSE
RETURN [ERROR-CONDITION, INTERNAL-SEQ-NUMBER]
MACHINE-NUMBER[ADDRESS] : = VALLUE

DEFINE RCS(MACHINE-NUMBER, ADDRESS, VALUE-l, VALUE-2) =
IF NO RESPONSE
RETURN [ERROR-CONDITION, INTERNAL-SEQ-NUMBER]
IF MACHINE-NUMBER[ADDRESS] EQ VALUE-I
THEN BEGIN
MACHINE-NUMBER[ADDRESS] : = VALUE-2
RETURN IS-EQUAL
END ELSE BEG IN
VALUE-| : = MACHINE-NUMBER[ADDRESS]
RETURN IS-NOT-EQUAL
E N D

DEFINE RENQUEUF(MACHINE-NUMBER, ADDRESS, VALUE) =
IF NO RESPONSE
RETURN [ER ROR-CONDITION, INTERNAL-SEQ-NUMBER]
IF FULL-QUEUF(MACHINE-NUMBER[ADDRESS])
THEN RETURN IS-FULL
ELSE ENQUEUL( MACH INE-NUMBER[ADDRESS], VALUE)

DEFINE RDEQUEUE(MACHINE-NUMBER, ADDRESS) =
IF NO RESPONSE
RETURN [ERROR-CONDITION, INTERNAL-SEQ-NUMBER]
IF EMPTY-QUEUR(MACHINE-NUMBER[ADDRESS])
THEN RETURN IS-EMPTY
ELSE RETURN DEQUEUE(MACHINE-NUMBER[ADDRESS])

Notes:  All remote references arc donc atomically. The expression referred to as MACHINE-NUMBER[ADDRESS]
refers to absolute memory address ADDRESS on the processor referred to by MACHINE-NUMBER.






