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Abstract

This paper presents a communication model for local networks, whcrcby  processes  execute
generalized remote references that cause operations to be performed by remote processes. This
remote rcfcrcnce/rcmote  operation model provides a taxonomy of primitives that (1) are naturally
uscftll  in many applications and (2) can bc efficiently implcmcntcd. The motivation for this work is
our desire to dcvclop systems architccturcs for local network based multiprocessors  that support
distributed applications requiring frequent intcrproccssor communication.

After a section  containing a brief ovcrvicw, Section 2  o f  t h i s  paper discusses  the remote
rcfcrcncc/rcmotc  operation model. In it, WC derive a set of rcmotc rcfcrcncc types that can be
supported by a communication system carefully intcgratcd with the local network  interface. The
third section exemplifies a communication system that provides one remote reference type. These
references (i.e., remote load, store, compare-and-swap, cnqucuc, and dcqucue) take about 150
microseconds,  or 50 average instruction times, to perform on Xerox Alto computers connected by a
2.94 megabit Ethernet. The last section skrlnmarizes  this work and proposes  a  complete
implementation resulting in a highly efficient communication system.

Keywords: communicatiotls, distributed processing,  local networks, multiprocessing, reliability.
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1. Overview

This paper discusses an approach to communications that is capable of supporting distributed
applications requiring jkycerl(  intcrproccssor communication on very high speed  local networks.
We believe  it is important to study ways whcrcby  the traditionally high software overhead of
in tcrproccssoi communication [Peterson] can be rcduccd, particularly given rcccnt hardware
developments that make very high speed  local networks  feasible [Dlauman]  [liawson-Mctcalfc]
[Ikeda et al]. We feel that if this goal can be achicvcd, some distributed applications exhibiting a
fine granularity of parallelism [Jones-Schwarz] can be profitably exccutcd on a local network based
compiltcr system. The ?ppronch  to commu~nication  on local networks described here differs from
recent intcrnctworking rcscarch and rclatcs as much to multiprocessors such as CM* [Swan et al] as
it is does to usual local networking systems. See [Spector19801  and [Andler et al] for a more
complctc  discussion of this approach.

Section 2 dcscribcs  a model that is intended to serve as a basis for an efficient  and flexible
communication system for local networks. In this model, a process can execute a gcncralizcd remote
r-efermce  that causes a rwmte  operntioa  to be performed. The remote operation may return a value
to the caller.

Though remote  reference semantics can be achicvcd with traditional high level communications
protocols, careful study of the remote rcference/remotc  operation model is 1l~~fi11 for the following
reasons:

(1) The execution of remote references that cause remote operations to be performed is
naturally useful. Examples arc remote memory refercnccs, remote subroutine calls
[Nelson], and mcssagc passing operations. Specific examples  include the SIGP operation
on the IBM 370 [ll)M] and “requests” in the Tan&m operating system [Bartlett].

(2) This model suggests a general intcrfacc  that includes t-ypes  of remote references having
differing  levels of function, for example, with rcspcct  to reliability, flow control, or
synchrony.

(3) A local network interface that provides useful primitives (such as remote rcfcrcnces)
can support more efficient communication than an interface  that provides only raw
message passing facilities. A direct implcmcntation in microcode or hardware of the
various rcfcrcncc types will bc more efficient than an implcmcntation that requires
layering software on more primitive facilities.

(4) Many types of remote rcferenccs can be implcmcnted  using simpler  protocols than are
required for more general and common corn *.-unicacions  mechanisms such as byte stream
primitives. Using implementations tailored to the various reference types also contributes
to efficiency.

In Section 3 W C  attempt to add substance to the discussion of the rcmotc rcfcrcncc/remotc
operation  model by describing an cxperimcnt in which a simple type of rcfcrenccs was microcoded
on Xerox Alto computers using the 2.94 megabit experimental Ethernet [Metcalfc-noggs].  We show
that these rcfcrences  execute  quickly: they typically take about 150 microseconds  on this hardware.
This time is about two orders of magnitude faster than could be expected if they WCIT implcmcntcd
in a conventional way.

Section 4 summarizes the points made in Sections  2 and 3. Additionally, it suggests the
possibility of implcmcnting a full communication system for local networks  based  on the remote
operation/remote  rcfcrcncc model.
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2. The Remote Reference/Remote Operation Model

Sections 2.1 and 2.2 contain definitions, assumptions, and a description of the proposed
communications model. Because the concept of sessions (i.e., ccnncctions bctwccn processes)  play
such an important role in our model,  they arc introduced  in Section 2.3, ahead of all other
implementation concepts. Section 2.4 contains a taxonomy of reference types and is the focal point
of this section. The protocol issues arising from this model are then described in Section 2.5. An
example of one rcfcrence type is presented in Section 2.6. Finally, Section 2.7 discusses the benefits
that will be realized if this model is used as the basis of a communication system. ’

2.1 Definitions and Assumptions

The remote reference/remote operation  model provides a basis for communication on a system
comprised of medium size processors connected by a very high speed local network, as shown in
Figure 1. To di5cIlcc  the model fully, we must first specify some aspects of the underlying system
architecture.

Medium Size
Uniprocessor

Communications Process Other Processes

I
Volatile Storage I

High Speed

Local Network

Stable Storage

I
.
.

Underlying Architeckm

Figure 1

Data is exchanged among machines by the transmission of packets over a local network- a high
bandwidth, low latency communication medium having high reliability and low cost. With respect
to reliability, the local network provides four transmission properties: First, if a packet is
transmitted enough times, it will reach its destination. Second, packets corrupted during
transmission are automatically discarded. Third, packets  arc not duplicated by the network.
Finally, packets arrive in the order in which they arc sent. ‘I’hus,  local network  failures result only
in lost packets.

Certain types of the remote references described below arc practical only if transmission
latencies are very small for short packets. In addition, a network with a high capacity is nccdcd to

support a distributed system comprised of many (say, 100) processors.  A 50 to 100 megabit local
network enforcing a small maximum packet length meets  these needs.

In the model, processors  occasionally’ fail and arc then restarted. (In [Spcctorl981],  this work is
cxtcndcd to allow for failure of individual proccsscs  on a processor.)  In addition, processors  contain
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.

processes with names unique to that processor. All regulur processes disappear after a processor
failure. Recoverable processes are automatically reincarnated after a processor crash and are reset to
one of scvcral predetermined states. Clearly, recoverable  processes require the availability of slable
dorage-  storage that survives single failures [Lampson-Sturgis]. Processors are sufficiently reliable
to allow rccoverablc processes to make progress.

W C assume the existence of a distinguished process on each processor, called the
cornnzunications  process. This process is rccoverablc and is specially implcmentcd-off-loaded or at
interrupt level- so that it can be activated very rapidly. Though its implementation must permit the
execution of simple functions quickly, it must also bc able to do more complex  operations requiring
stable storage.  (‘The  need for this is described in Section 2.3.) The communications process does
not have the full capabilities of other processes, but it can perform the following functions
efficiently:

(1) Transmission and reception of packets on the local network. The communications
process directly accesses the network-specific  hardware.

(2) Manipulation of specialized  communication state information. The communications
process can quickly access the state tables dcscribcd in Section 2.3. Some table entries
may be saved in stable storage.

(3) The execution of communications primitives issued by other processes on the same
processor. This process implements the communications interface seen by other processes.

(4) The execution  of simple operations inititated by a remote communications process.
Simple requests can bc directed to a remote communications process for efficient
processing.

2.2 Model Description

In our terminology, a remote reference is executed by a rnasler  process and causes a r-emote
operation to be performed by a slave process. The slave process can return a value. Remote
operations can vary greatly in complexity, from the simplicity of a memory access to the complexity
of an asynchronous subroutine. For example, the mcssagc  passing “send” operation causes a data
block to be placed on the receiver’s message queue and provides an indication of the success  of that
operation. In this case, the sender is the master, and the server (at the remote site) is the slave.

Figure 2 illustrates the rcmotc reference/remote  o p e r a t i o n  m o d e l  i n  the absence  o f
communir3tions or processor failures. A reference is initiated by an action labeled Reference-

. Commit. At a later time, a request is received on the slave processor, and the communications
process initiates the appropriate remote operation by issuing an action called Op-Begin-Commit.
The remote operation is considered complete only when the action labeled Op-End-Commit has
been cxccutcd. If the rcmotc operation products  a value, the communications process on the slave
issues a respome to the master, which causes the action labclcd  Result-Commit to bc cxecutcd. To
allow for some reliability semantics, SOIIIC  of the four actions in Helvetica tvnc must be atomic and
must commit some state  information to stable storage.

.

In this model, short requests and responses  are transmitted as single packets. Requests  and
responses that do not fit in a single packet are transmitted  as tnultipacke&  or scqucnccs of packets.
Individual packets in a multipackct are ncithcr retransmitted nor acknowledged. Only the simplest
underlying protocol is used to permit a rcceivcr to dctcrminc if all packets  in a multipacket arc
properly rcccivcd; e.g., a packet count and multipackct idcntificr. ‘l’hc  propcrtics of the local
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network dcscribcd  in the previous section permit the use of this simple strategy for handling
multipacket requests and responses.

There arc many posciblc protocols for implementing remote references. In the simplest case,
upon executing a remote reference, a master  issues a..request  packet to a slave and possibly awaits a
subsequent response packet from that slave. In other cases, the protocbl  is much more complex.
See Section 2.5 for a more detailed discussion of this.

Master Processor
Master
Process

ComP~.u;~~tions

I I
1 Reference-Commit

I

Slave Processor
ComP~~r$x$ions Slave

Process
Local Network

,

Request Conveyed
.

I
Op-Begin-Commit

timeL
Under some conditions, these
are carried out entirely in
the communications process

I
Operation

Processing

I
Op-End-Commit I

Response Conveyed

1 Resu l t -C

\ I ,
(Only Requests and Responses Shown)

Remote Reference/Remote Operation Model - Normal Operation

Figure 2

2.3 Sessions and Sockets

As considered in this paper, a sessiorz  is a logical connection over which a single master process
can issue requests and a single slave process  can issue responses. Proccsscs  arc assumed  to bc
located on fixed processor nodes for the lift of the session. Sessions do not have multiple masters
or slaves in this work.

When a session is established, one socket entry is created on each of the master and slave
processors.  These entries serve three main functions: First, packets associated with that session  are
addressed using references to thcsc entries. Second, socket cntrics contain information that permits
requests and responses to be mapped to individual proccsscs. Third and most importantly, they
contain state  information that cnablc sessions to provide  specific semantic attributes  for rcfcrcnces
conveyed during that session. For some session types, considerable state  information (for such
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purposes as flow control or duplicate detection) must be maintained. This information is used to
support the various reference types described in Section 2:4. Sockets for. active sessions are
contained in a socket table that is accessed by the communications process and are implemented
using both volatile and stable storage.

There arc two types of sockets: type-l sockets,  which do not survive processor  crashes and
type-2 sockets, which USC stable storage and do survive crashes. Type-2 sockets can be used by
recoverable processes  to ensure that their communications capabilities are not lost after processor
failures. After a failed processor has been restarted,  a recoverable  process associated with type-2
sockets can continue executing refcrcnccs and/or receiving requests. No type-l sockets are defined
after a processor restart.

A session can be considered to bc a distributed abstract data type that is manipulated by two
cooperating communications processes via the two sockets. There are three major operations
allowed during sessions.

Issue-Reference permits a master process to initiate a
causes a Reference-Commit to occur locally.

remote operation on the slave and

Receive-Regponse  permits a master process to receive a response from a slave and
causes a Result-Commit. Somctimcs, Receive-Response is issued in combination with
Issue-Reference.

Return-Response allows a slave to return a result to its master and causes an Op-End-
Commit to be locally executed.

Issue-Reference, Receive-Response, and Return-Response are generic names for primitives
. whose implementations arc application dependent; in fact, their call syntax will usually be tailored

to reduce overhead. For example, a normal memory reference may result in an Issue-Reference if
a segmentation table specifies that the memory reference should be issued over a session.

Two sessions are maintained between each pair of communications processes to permit each
communications process to act as both a master  and slave to each other communications process.
These  sessions,  called sl,sferrzs-sessiotrs  allow other sessions bctwccn non-communications proccsscs
to bc crcatcd and dcstroycd. Communications processes provide the following primitives:

Register-Process-Name is processed locally and registers a server process name with the
local communications process, and it specifies how requests for the server process will be
conveyed to that process; c.g., via interrupt or queuing. It also specifics the type of
session  in which the slave will participate. This permits the communications procLjs to
respond to requests asking for sessions with this slave.

Initiate-Session establishes a session  with a slave process  that has previously been
rcgistcrcd. It rcquircs  as arguments the r c m o t c  slave process  name and address,  t h e
dcsircd type of session (see Section 2.4),  and an indication of the disposition for responses
received from the slave. It returns a session number. Initiate-Session initiates a remote
rcfercncc to the communications process on the slave. This remote reference serves the
purpose of PUP’s rendezvous protocol [Bog@ Ed al]. Additionally, it allows the presetting
of defaults for that session.

Terminate-Session climinatcs  a session. It requires  the session number  as an argument
and initiates a rcmotc rcfcrcnce to the rcmotc communications process. It can be
cxccutcd by cithcr a master or slave.
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Figure 3 illustrates the initiatiation and termination  of a session.

Master Processor
Master Comp~~;$ictions
Process

Slave Processor
CompT~;r&2tions Slave

Process
L o c a l  N e t w o r k

I I
egister-Process-Nam

Initiate-Session

r Remote reference conveyed from communications process on master
to communications process on slave over systems-session.

L-
1

I II 1

I Remote References Issued Remote Operations Performed I

I
I I -_

Terminate-Session

I

r Remote reference conveyed from communications process on master
to communications process on slave over systems-session.

L-
I

I
Note: Though this figure shows the master issuing the Terminate-Session, the slave could do this.

Session Initiation and Termination

Figure 3

In summary, the communications process performs a variety of functions: (1) It maintains
systems-sessions,  (2) It supervises the initiation and closing of sessions, (3) It accepts references from

- a master process, initiates their rcmotc execution and possibly performs certain actions to inform the
master of the result, and (4) It accepts rcmotc requests  from the network, awakens  the s1av.c  process,
if necessary, and possibly sends responses to the master.

The concepts of sessions and sockets are not unique to this work. For example, sockets are
called half-sessions in SNA [Cypscr] and TCB’s  in TCP [JSI],  and sessions are implcmcntcd in Level
5 in the OS1  protocol hierarchy [Folts]. Howcvcr, in this work, there are many types of sessions,
each fulfilling particular needs; the diversity  of session types, in many instances, permits simpler
protocols to bc used. Additionally, the sessions in this model subsume  the function of a few layers
in general network hicrarchics; this reduces the need for inefficient protocol layering.

2.4 Reference Taxonomy

In Sections 2.4.1 through 2.4.5, five different attributes that apply to sessions are prcscnted.
These attributes are associated with a session at the time the session  is cstablishcd  and affect all
rcfcrences convcycd during that session. They are based on the following: (1) varying reliability
rcquiremcnts, (2) whcthcr a value is rcturncd, (3) how the rcmotc operation occurs temporally with
respect to the rcfcrencc, (4) the need for flow control, and (5) for what kind of process the
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refercncc is intcndcd. These attributes were sclccted to span the space of possible implementation
strategies-  and costs- as well as to provide a rich set of primitives with which to communicate.

2.4.1 Reliability

Careful specification  of the performance of i’emote rcferenccs under diffcrcnt failure conditions
is important in distributed systems, because we often desire the system to tolerate  failures. The
attributes discussed in this section provide for various degrees of robustness under conditions of
communications and processor failures. They arc summarized iti Table  1 and described below. See
[Liskov]  for another characterization of reliability in high level communication systems..

Reference Semantics Under Different Failure Conditions
Protocol Class

No Failure
Lost Packets & Lost packets &

Lost Packets Slave Failure Master Failure

Maybe op performed: 1 op performed: 0,l op performed: 0,l op performed: 0,l

result-commit: 1 result-commit: 0,l result-commit: 0,l result-commit: 0--

op performed: > = 1

result-commit: > = 1

op performed: > = 0 op performed: > = 0

result-commit: > = 0 result-commit: 0

Only-Once-

Type- 1

Only-Once-
Type-2

op performed: 1 op performed: 1 op performed: 0,l

result-commit: 1 result-commit: 1 result-commit: 0,l

op performed: 1 op performed: 1 op performed: 1

result-commit: 1 result-commit: 1 result-commit: 1

I %
Table 1 - Reliability Semantics Survey

op performed: 0,l

result-commit: 0

normal master
process

op performed: 1

result-commit: 0
- - - -
recoverable master

process

op performed: 1

result-commit: 1

Listed in increasing order of function complexity and implementation cost, the four reliability
- attributes are: maybe, at-least-once, and only-once-type-l and only-once-type-2. Their names

arise from the semantics that thcsc attributes provide under  conditions of communication failures.

In the abscncc  of communication or processor failures, all rcfcrcnccs initiate one Op-End-
Commit  and, if required, one Resul t -Commit . The performance of rcfcrcnces under
communication failure conditions (i.e., lost packets) is summarized below:

A reference having the maybe attribute will cause an Op-End-Commit to be performed
zero or one times. If the Op-End-Commit is performed, the Result-Commit will occur
zero or one times.

A rcfcrcnce having the at-least-once attribute will cause  an Op-End-Commit to b e
performed one or more times. The Result-Commit will also occur one or more times.
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A rcfcrcnce having the only-once-type-l or only-once-type-2 attribute causes exactly
one Op-End-Commit and one Result-Commit to occur in light of all communication
failures.

A slave processor failure may cause  maybe, at-least-once, and only-once-type-l references to
fail; that is, in addition to their normal semantics under  communication ‘failures, WC must add the
possibility that no Op-End-Commit and Result-Commit will occur. A failed master processor
causes problems  similar to those of a failed slave processor  cxccpt  that the Result-Commit is
guaranfeed  not to occur. Table 1 summarizes these points.

The only-once-type’-2 attribute applies to references issued to recoverable slaves from both
rccoverablc  and non-rccoverablc master processes. Only-once-type-2 rcfcrcnccs cause exactly one
Op-End-Commit to be executed, regardless of failures. The Result-Commit always occurs if the
master process is recoverable.

These attributes have a major effect on the protocol that is necdcd
references. Protocol considerations.are described in Section 2,.5.

t0 implement remote

2.4.2 Value and No-Value References

All rcfcrcnccs, except those with maybe semantics, explicitly return a value to the master
process. Thcsc arc called value references. In Figure 2, Result-Commit labels the time at which a
value is returned. This value is either provided by the remote operation or by the communication
system; in the latter case, it provides an indication that the remote operation has been performed.
For only-once-type-2 rcfcrcnces, which guarantee  that a rcmotc operation will be performed, this
response  allows the master process to know when the remote  operation has occurred.

For efficiency considerations,  WC allow maybe refcrcnces to not return a value. These are
called no-value rcfcrcnccs. Maybe references  do not require a response to achieve their reliability
semantics; hence, it would bc inefficient to require a response for operations that produce no value.

2.4.3 Synchrony

Rcmotc operations that cxccute synchronously with respect  to a calling processor  arc called
processor-synchronous. Operations  that cxccute synchronously with rcspcct to the calling process-
only are called process-synchronous; in this case, the processor may execute another process
while the rcmotc operation is being performed. Operations that cxccutc asynchronously with
rcspcct to only the calling process arc called asynchronous. The order in which remote operations
complete (i.e., execute Op-End-Commit) is indopendcnt  from the order of the asynchronous
references  that initiate them. In summary, a master process can issue processor-synchronous,
pr&ess-synchronous,  or asynchronous references.

Asynchronous and process-synchronous rcfcrcnccs complicate rcsponsc processing  on the
master, bccausc  many rcsponscs  may bc pending. Each pending rcsponsc must bc dcmultiplcxcd
and queued to an individual process, and provision must bc made for rcqucst-rcsponsc correlation.
Additionally, if thcrc is to bc any benefit from the asynchrony of these operations,  process switches
will likely cnsuc. These process switches may lead to I/O operations (due to working set changes)
and cache invalidation, and may cause incrcascd  overhead. Asynchrony results in a more complex
protocol for only-once rcfcrcnccs of both typ,cs,  because slaves  can not automatically discard saved
s ta te  informat ion  when a new rcqucst arrives.
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When errors occur, processor-synchronous references may rcquirc a slight modification of
only-once-type-l, only-once-type-2 and at-least-once semantics. This modification is necessary,
because  it may be impossible to halt all processing on the master if the remote refcrcncc takes too
long to complctc (e.g., because of timeouts and rctransmissions). The vast majority of the time, a
processor-synchronous reference can be cxccutcd synchronously; however,  when errors occur,
the rcferencc  can be rc-executed process-synchronqusly. This technique is used in the Medusa
operating system on CM* [Ousterhout et ad.

No-value rcfcrcnces with maybe semantics can be performed cffciently. Processor-
synchronous references can also bc pcrformcd cfficicntly  if requests and responses are short, and
the spccificd  remote operation can be quickly cxccutcd. They arc useful  when the cost of doing the
remote operation is lower than the additional overhead that would be incurred with process-
synchronous or asynchronous references. Process-synchronous references  are next most
cfficicnt, because they do not require a process to explicitly account for multiple outstanding
rncssagcs. Flow control, if required, adds to the complexity of asynchronous references.

2.4.4 Inter-Rcfcrcncc Flow Control

Flow control has many meanings, but we consider flow control as a resource  reservation system
that guarantees a resource is available on the slave. Usually, this is buffering space for rcqucsts.
Thus, flow control ensures that a master issues rcqucsts to a slave below a predetermined rate.
Flow control is not useful for process-synchronous or processor-synchronous references,
because with thcsc a process can not issue a new reference until the last rcfcrcncc has been acted
upon. However, asynchronous rcfcrences  can bc either flow-controlled or not-flow-controlled.

Flow control requires that additional state be saved by both master and slave. This has been
called the aZZoca/iorz  [McQuillan], the amount of storage space reserved for buffering additional
requests on the slave. Additional packet transmissions may bc required to maintain this allocation.

2.4.5 Operation ‘l‘ypcs:  Primary ;md Secondary

Operations arc primary if they arc performed by a remote communications process and
secondary if they arc performed by a regular process. Primary operations can bc cxccuted rapidly
on the rcmotc processor, bccausc  the communications process can bc activated  without substantial

e ovcrhcad. Furthermore, rcqucsts do not cause scheduling  or require additional queuing, because
thcrc is only one communications process per processor,  and WC assume that it can be run with low
overhead. Finally, the caveat that primary operations must be simple (to avoid overloading the
communications process) is a factor contributing to the high speed at which they run. Examples of
primary references  are causing data to be enqucued  in a process’ mailbox and initiating remote

. memory operations.

In comparison, secondary operations  require request dcmultiplcxing, rcqucst  queuing, and
more costly process switching on the rcmotc side. Kcmotc subroutine calls arc typical examples  of
secondary rcfercnces.

2.5. Implcmcntation Considerations - Protocol

The reference attributes and the size of requests  and rcsponscs affect the communication
protocols that can be used to implement remote rcfcrcnccs. Due to space limitations, this section
only addresses the major factors influencing the underlying protocols: the synchrony and reliability
attributes, and the size of rcqucsts and rcsponscs.
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.

Maybe, novalue rcfcrenccs require only that the master issue a request. Maybe, value
rcfcrcnccs require that requests contain a sequence number to permit responses, which arc sent by
the slave, to be correlated with requests. No retransmission mechanism is required for any maybe
references.

For at-least-once semantics, (1) requests and responses must contain a sequence number to
permit the correlation  of rcqucsts  and responses,  and (2) requests  must be retransmitted until either
a valid response  arrives or it can be determined that a processor failure has occurred. Only-once-
type-l semantics additionally require that information must be saved by the communications
process on the slave to permit the suppression of duplicate requests and allow response
retransmission.

Implcmcntations of only-once-type-2 references are similar to those of only-once-type-l,
except that the session state  must be maintained in type-2 socket table entries on both master and
slave. The slave process  must be rccovcrablc, and the remote operations that it executes must be
atomic: i.e., once a remote operation exccutcs  Op-Begin-Commit, it will either cxccutc Op-End-
Commit or fail and lcavc no trace. In addition, both Reference-Commit and Op-End-Commit
must bc atomic, and both must commit state to stable storage. Result-Commit and Op-Begin-
Commit may be atomic and may commit state to stable storage in some instances.

We should also note that for all only-once-type-2 references, Result-commit can not occur
until a valid response is received from the slave. l’his restriction requires  that a back-up processor
be available for the slave to minimize the duration of failures. Also, only-once-type-2 references
rcquirc heavy use of stable storage. For cffciency  considerations, traditional implementations such
as mirrored disks may not bc suitable.

At-least-once, only-once-type-l, and only-once-type-2, processor-synchronous references
can be implcmcnted using a rcquest/rcsponsc  protocol. With this protocol, the master issues a
request to a slave, and the slave returns a rcsponsc (possibly containing a value) to the master
confirming that the remote operation has been performed.

This protocol is useful for processor-synchronous references for two main reasons: First, the
amount of space  needed to store the last response  issued to each master is not large, because
responses arc necessarily short. Additionally, the total number of socket  entries used to save this

- information is small; it is equal to the number  of remote processors containing at least one active
master process  in session  with the slave.

A rcqucst/response/end-of-request  protocol is useful for asynchronous and some process-
synchronous  rcfcrences. III  this protocol, the slave’s response is acknowlcdgcd, allowing the slave
to; reclaim the space devoted to storing that response. This acknowlcdgcmcnt is rcquircd for
asynchronous references, because a new request does not cnsurc that the last rcsponsc has been
received. In this protocol, attention must bc paid to allow for recovery in the case of lost cnd-of-
rcqucst packets.

Finally, the requcst/rcqucst-received/response/end-of-request  protocol is useful if the remote
operation will take a long time to execute  and the rcqucst is long. ‘l’hc  request-rcccivcd packet
allows the master to reclaim the space used for holding the request while it is awaiting a response.
This protocol is useful for some process-synchronous or asynchronous rcfcrcnccs.

In all protocols using type-l sockets, the slave must bc able to climinatc sockets associated with
crashed masters. Two tcchniqucs arc available:  Upon recovery, the master  communications process
could issue primary rcfcrcnccs to processors  with which it may have communicated, rcqucsting  that
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type-l sockets bc climinatcd. This reference would be issued over the systems-session.
Alternatively, type- 1 sockets could timeout.

2.6 An Example: Only-Onx-Type-2, Asynchronous Rcfcrcnces

This section contains a brief discussion of one rather complex  refercncc type: an only-once-
type-2, asynchronous, flow-controlled, secondary, value rcferencc. Its purpose is not to fully
specify an implcmcntation but to both demonstrate that this model includes rather complex
primitives and exemplify the only-once-type-2 attribute. An example  of such a reference type is
primitive that reliably writes a page onto remote secondary storage, unlocks that page, and returns a
version number.

Master Slave

1 Reference-Commit ]

-=,
Request(N)

1 Op-Beq-Commit 1

1 OD-End-Commit  1

/ Resoonse(N)

1 Result-Commit 1

End-Of-ReauesUM.  MC = Nl \

Basic Protocol for Only-Once-Type-2, Asynchronous References

Figure 4

In one possible implcmcntation, after Reference-Commit, a request containing a sequence
number N is sent by the master to the slave. (Sequence numbers arc ordered, and new remote
rcfercnccs initiate transmission of requests  with higher scqucncc numbers.) After the rcqucsted

operation is performed and Gp-End-Commit is C .ecutcd,  the slave will issue a response, containing
- the result and the scqucnce number N, to the master. Normally, that rcsponsc will be rcccivcd by

the master, and the master will execute  Result-Commit and issue an end-of-request packet. The
end-of-rcqucst packet contains a scqucncc number M, M<N, and indicates that the master has
rcccivcd all rcsponscs  through scquencc numlxr  M. In-this description, wc have consciously
ignored flow-control and addressing considerations.

To achieve only-once-type-2 semantics in this implcmcntation, the request must be committed
to stable storage on the master at Reference-Commit, and it must bc retransmitted until Result-
Commit occurs. On the slave, Op-End-Commit must be an atomic action that (1) ensures  that the
operation  that is about to be committed is. not a duplicate,  and (2) if the operation is not a
duplicate, commits the rcfcrencc result, scqucncc number, and any operation-dcpcndcnt  data to
stable storage. The slave then sends a rcsponsc to the master, containing cithcr the previous  or the
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new result. The Result-Commit must atomically commit to stable storage both the reference’s
result and an indication that the reference has completed. The master can then reclaim stable
storage used to maintain the request and transmit an end-of-request.

The end-of-request does not need to be sent reliably to the slave. This is because  each future
end-of-request will acknowlcdgc  at least as many responses as did the previous end-of-rcqucst.

2.7 Discussion

This communication model suggests a communication system with a well-spccificd and rich
class of communication primitives. Table 2 summarizes the feasible reference types.  Because many
types of rcfcrenccs arc available, and they differ greatly in implementation costs, distributed systems
need only “pay for what they use.” Because  each reference type provides  only highly specific
fimctions, implementations can be easily streamlined allowing highly cfficicnt operation. It should
be noted that even the reference types that arc most cfficicnt to implement can be directly used in
distributed systems.

Choose One from Each Column Subject to Restrictions:

Synchrony
Class

Processor-

Synchronous (See 3)

Process-

Synchronous

Asynchronous

Primary

Secondary

4.) Only-Once-Type-2 references must be directed to recoverable slaves.

Flow -Cant rol Reliability
Class Class

Flow-

Controlled (See 2)

Maybe

At-Least-Once

Not-Flow-

Controlled

O n l y - O n c e -  .
Type-l

1.) Only Maybe references can have No-Value.

2.) Only Asynchronous references may be Flow-Controlled.

3.) Processor-Synchronous references must be Primary.

Value
Returning

Class

Only-Once-
Type-2 (See 4)

Value

No-Value (See 1)

Table 2 - Reference Type Summary

Tho: ;h a communication system need not provide all of these rcfcrcncc types, many have
d&t uses in distributed systems. Simple processor-synchronous operations are useful  for
implcmcnting remote  shared memories, cnqueuing small blocks of data, signalling remote
processors, etc. Primary, process-synchronous and primary, asynchronous operations arc useful
for implcmcnting mcssagc passing primitives. Secondary, process-synchronous operations arc
useful for implcmcnting rcmotc subroutine calls and cross-network paging. Finally, secondary,
asynchronous operations have their place in the parallel execution of rcmotc subroutine calls.
Even the maybe reliability  attribute  is useful; an example is the transmission of packetized  speech.

The operations  provided by full-duplex byte stream mechanisms  are costly to implement in the
context of this model, because  they require two asynchronous, primary, flow-controlled, only-
once-type- 1 sessions. In this instance, bcttcr direct implcmcntations can be constructed. WC

conjccturc that little use would be made of byte  stream protocols if a full range of rcmotc
rcfcrcnces wcrc provided.
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Successful implementations of rcmotc refcrcnces require that simple references  bc done with
great efficiency. This restriction requires a close integration of the network interface and processor.
A memory refercncc or normal instruction must bc able to trigger the communications process  into
generating a request. The communications process should be implcmcnted as a combination of
software and microcode on the processor  and by a specialized network interface, itself possibly
microprocessor  con trolled. Process switches to the communicationS  process must be very
inexpensive and it must bc capable of executing primary operations rapidly. Therefore, it must
have fast access to main processor memory. Low latency, high bandwidth stable storage is necessary
for efficient implementations of only-once-type-2 references.

3. A Case Study: O&y-Once-Type-l,  Primary, Processor-synchronous References

This section describes a cast study that should clarify the above general discussion. Specifically,
it dcscribcs  two implementations of only-once-type-l, value, not-flow-controlled, primary,
processor-synchronous references using a rcquest/rcsponse  protocol. One implcmcntation was
done in software and the other in microcode. Comparisons between the two demonstrate the
advantages of specializing the interface.

Overall, this work shows that some remote operations can be performed so quickly that they
may often be cxccutcd synchronously with respect to the initiating master process. Thus, process
switching is unncccssary, cxccpt in rare cases where errors or transmission delays arc encountered.
This implementation helps to validate the utility of the model, because it shows that some
references can be performed efficiently.

3.1. Background

The implementation was done on Xerox Alto computers, a microcoded 16 bit machine with an
internal cycle time of 1SO nanoseconds and a memory bandwidth of 29 megabits/second [‘[‘hacker et
a/j [Xerox] connected with a 2.94 megabit Ethcrnct [Shoch-Hupp].  The macroinstruction set as well
as pcriphcral device controllers are implemented on the micromachinc through the operation of 16
microcodcd tasks, each executing 32 bit microinstructions. Mechanisms  exist  to switch among tasks
in one microcyclc. Since I/O devices have the full processing capability and temporary storage of
the micromachinc at their disposal, as well as the ability to access main memory very efficiently,
they can provide highly efficient  hardware interfaces.

The macroinstruction set is similar to a Data Gcncral Nova [Data General]. For the purposes
of this work, various new instructions were added using unimplcmcntcd operation  codes, which
transfer control to a 1K word microcode RAM. The emulator cxccutes  macroinstructions at about

3 3 0  KIPS. The Alto contains no protectior  or virtual memory facilities.

The Ethernet task is responsible for initiating packet transmission and reception, and
performing underlying Ethernet protocol manipulation. It was not necessary to modify the Ethcrnct
t a s k  a l t h o u g h  mot-c  gcncrality  and cfficicncy  could result if this wet-c done.

3.2. Implementation- Software Version

WC first implemcntcd a software package that provides five subroutines called RLDA,  RSTA,
RCS, RENQUEUE, and RDEQUI?UE  for remote load, rcmotc store, rcmotc compare and swap
[IBM], remote cnqueuc, and rcmotc dcqucuc. The exact semantics arc summarized in the appendix.

These subroutines  cause a rcqucst packet to bc transmitted to a remote  Alto and return control
when a proper rcsponsc  packet is rcccivcd or when an error condition is dctccted. WC have called
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the message protocol “ESP” for Efficient Synchronous Protocol. See Figure 5 for the packet
format.

The software is written cntircly in IKPL, [Curry et alJ and YSCS  the raw datagram facilities of
PUP I,cvcl 0 [I\oggs  et al] for packet transport. Sessions are maintained bctwccn each pair of
communicating processors. Duplicate elimination is handled by the scqucncc number field of the
ESP packet and socket addressing is implicitly done using the Ethernet Packet l’ypc field.

Standard Ethernet

from Alto clock

Field Interpretation

ESP Packet Type

Hardware Generated

Esp Packet Format

Figure 5

3.3. 1mplement;ltion  -Microcode Version

For the purposes  of this study, it was sufficient to implement two separate sets of microcode:
one allows an Alto to act as a shnrcd memory that cxccutcs and responds to I’SP rcqucst packets;
t h e  other implcmcnts the KLDA, RS’l’A, RCS, IWNQUEUE  a n d  l<l>EQUEUE  i n s t r u c t i o n s ,-
formatting rcqucst packets and awaiting responses. The two sets  of microcode could be combined
to provide  exactly the same function as that provided by the software version, including
compatibility with standard PUP communication. However, this would require time-consuming
modifications to the Ethernet control task and is not necessary to prove the efficiency  that can be
achicvcd for only-once-type-l, primary, processor-synchronous references.

Though the microcode  is quite similar to the software, it dots differ in some respects. First,
incoming rcqucsts arc not qucucd, bccausc  queuing a rcqucst would rcquirc almost as much work
as processing it. Second, the processing  time of a rcqucst is small in comparison to the amount of
time that the Kthcrnct  hardware is busy. Third, instruction decoding is pcrformcd to make the
references more efficient. Finally, substantial performance bcncfits  arc realized by overlapping
memory  accesses  with processing.

The microcode is (surprisingly) simple due to more convenient handling of errors, multi-
tasking, and time-outs in the micromachinc. It comprises about 280 instructions though this
number could bc reduced by clever microcoding. A total of 7 hardware  registers arc used in
processing. ‘1’1~~ microcode cxccuting  rcqucsts on behalf of a remote machine  uses an additional
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728 (256 x 3) words of main memory to store the last sequence number and response values for all
possible  machines conncctcd on the Ethernet. This corresponds to the socket table in Section 2.3.

Usage of the new instructions is illustrated by Figure 6’s description of RCS. Instructions take
arguments in two gcncral rcgistcrs  as well as in. the two words following the operation code. They
s k i p  return on success and return I-es~11ts  in one or two registers.

<store to-be-checked value in ACO>
<store to-be-stored value in ACl>
<store remote address:
<store remote machine number:

1

ERROR-RETURN:

NORMAL-RETURN:

instruction Call Sequence for RCS

Figure 6

On error returns, the sequence number of the request is returned, allowing for additional
software  rctrans&sion  of the request. In our model, this would bc done by re-cxccuting the .
rcfcrence as a process-synchronous operation and instructing the communication system to USC

the previous scqucnce  number. To provide the proper error semantics in light of rcmotc processor
failure, a flag can be maintained on the slave that is set to 0 when a machine has been restarted
after a failure. If a request arrives and finds this flag set to 0, a response can indicate that a
machine failure has occurred prior to this rcqucst. Rcqucsts always set this flag to 1.

Upon receipt of control following a remote instruction, the microcode first collects information
from various places and assembles  it in a 7 word block of memory. This includes the machine
number of both SOUKC  and destination, the system time (which is used as a sequence number),
various data values  from the gcncral registers and the words following the instruction, etc. Before
the packet  is transmitted, one internal register is set with the number of rctransmissions and another
with a counter that is continuously counted down to allow for timeouts. A transmission count of 2
and a timeout interval of 3 milliseconds  is currently used, a time long enough to permit a long
packet to pass. ‘J’hc  small transmission count CIISLIITS  that the processor  does not suspend its
operation  for too long. With these parameters, the maximum time a remote rcfcrcnce can halt
processing is 6 milliseconds.

When a rcsponsc  packet is received, its source and sequence number arc checked to ensure that
it is a rcsoonsc  from the last request. If these numbers match, values are placed in one or two
gcncral registers and the instruction returns. If they do not match, tither the machine waits for
another packet, retransmission is attempted, or the instruction returns and indicates an error.

At the rcmotc site, the microcode continually checks the Ethcrnct to see if a new packet  has
arrived. If an 1ISP  packet arrives, the source  byte is used to index  into the socket table. If the
sequence number of the rcccivcd packet is the same as that in the corresponding table entry, the
request is a duplicate and a response  is gcneratcd using the state information saved after the first
rcqucst. If the sequcncc number differs, the operation spccificd  by the ESP packet type is
pcrformcd using the rcmotc address  and value fields as arguments. Two values resulting from this
operation as well as the new sequcncc number arc placed in the table. Finally, a response  packet is
generated using these values.
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3.4. Performance

In the software version, approximately 210 remote references can be exccutcd per second; this
corresponds  to 4.8 milliscconds/rcfcrcncc  on an unloaded Ethernet. Running at maximum speed,
two machines communicating using this software package can impose a 1.8% load on the Ethernet.
Using WI‘A instructions, this corresponds to a 3.4 Kbit effective transfer rate. This software
implementation is likely to be at least 3 times faster than any implementation using the PUP byte
stream protocol, a protocol that provides  a full duplex, rcliablc byte stream protocol from one
machine to another. This difference is due to the more compltix protocol used by the rcliablc byte
stream protocol and the more general interfaces that it provides.

The microcode version is capable of supporting 6450 references per second corresponding to a
time of 155 microseconds/reference. As another characterization, each remote refcrcnces  takes
about 50 macro-instruction times.  Figure 7 shows a breakdown of the time spent when an RLDA
instruction is executed, assuming no contention on the Ethernet. This time is rcprescntativc of the
times of the other instructions as well. Of the 155 microseconds  required, transmission time
accounts for more than half: 85 microseconds. Local processing leading up to the request  requires
28 microseconds, processin,0 at the remote site rcquircs 31 microseconds, and local processing  after
the rcsponsc  is rcccivcd=rcquircs  11 microseconds. Roughly, remote refcrenccs  are two orders of
magnitude faster than they would be if implemented using the PUP byte stream protocol.

Time Breakdown of Time Spent in RLDA
160 Microcoded Version

150 checking/instruction ret. local proc.
Ethernet Task recv.  proc. 10.8

140 1
130

120

110

100

90

80

0
micra

I transmission time

Ethernet Task send proc.

request proc./resp. creation

Ethernet Task recv.  proc.

-I transmission time

remote
- busy

115.9

Figure 7
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The slave’s  Ethcrnct transceiver  or processor  is busy for 116 microscconds.pcr rcqucst. Thus, a
shared memory could’ maximally support 8600 references per ‘second. A processor could initiate
6450 remote  instructions per second, placing a load on the Ethcrnct of about 55%. In practice,
neither the shared memory nor a processor issuing references would operate  at their maximum
rates.

WC have mcasurcd a single processor issuing RLi>A’s  to a remote memory at the rate of 5000
per second. The difference between 5000 and the theoretical maximum of 6450 can be accounted
for by the time necessary to execute the instruction loop iterating over the RLDA’s. The Ethernet
load gcncratcd by this test was 42% or 1.28 megabits. As one would cxpcct, practically no
rctransmissions or timeouts  occurred during this test. Though one would not use R L D A
instructions to maximize throughput, the effective transmission data rate in this test was 80 kilobits.

In a more complex test, whcrc two machines attempted to generate 5000 requests  per second to
a slave, scvcrc contention problems on the shared memory occurred. The contcn tion caused less
than 3000 rcfcrences/mastcr/sccond  to be complctcd. Many rctransmissions were required to
reliably issue a rcmotc rcqucst. Part of this was due to the high load on the memory. The slave
does not listen to the Ethernet while it is processing a request and, consequently, misses many
requests. ‘l’he  occurance  of this problem demonstrates the necessity of not overloading a slave.

Finally, in a test to check the capacity of the Ethernet, two machines made requests to two
separate shared mcmorics  and collectively  put a load on the network about 64% or 1.92 megabits
with very few collisions or retransmissions. Each machine was generating about 3750 packets per
second. ‘I’able  3 summarizes the most important yardsticks.

Description Software Microcode

RSTA’s  / second (achieved) 210 6450 (5000)

microseconds / RSTA 4800 155

Ethernet load (achieved)
1 master = > 1 slave 1.8% 55% (43%)

Real Data Rate (achieved) 3.4 Kbits 103 (80) Kbits

The parenthesized measurements are from BCPL test programs and include the overhead of a test loop.

Performance Summary

Table 3

4. Conclusions

In this paper WC first presented a communidation model that suggests  a taxonomy of reference
types. Many of thcsc types have natural uses in distributed systems, and each has an
implementation most suited to it. Though rclativcly complete, the taxonomy could be extended to
include more complex type of sessions,  such as those with multiple slaves, and to include other
semantic attributes. For example, intra-rcfcrcncc flow control has been suggcstcd  for rcfcrcnccs
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having very variable size requests and responses.

Next, WC looked at a highly efficient implementation of one specific reference type.  This
cxpcriment dcmonstratcs  the power of “special-casing” the implementation-both protocols and
interface- of a particular rcfcrcnce type Wc met our goal [Spcctorl980]  of allowing a processor  to
issue 1% of its non-instruction memory references  to‘s rcmotc processor and suffer  no mom than a
50% speed degradation.  (An Alto executing a remote reference 1% of the time would slow from
330,000 instructions/second to 208,000 instructions/second-  a 37% degradation.) With better
hardware and a 10 megabit  Ethernet, the remote rcfcrcnce times would be well under 100
microseconds.  Additional work on these rcfcrences  must include consideration of protection, virtual
memory, and contention on the server.

To further demonstrate the utility of the remote reference/remote operation model, a
reasonable subset  of communications primitives must be sclcctcd and a complete communications
system designed. Not all refcrcnces can bc implcmcntcd as efficiently  as only-once-type-l,
primary, processor-synchronous references. Rut without doubt, they could be implemcntcd much
more efficiently than the normal high level communication mechanisms  that are currently used on
local networks.

W C would like to‘ design this communication system with rclativcly few constraints. For .
example, to permit high speed operation of processor-synchronous operations, WC must use
relatively small packet lengths to cnsurc that packets used for processor-synchronous references
do not suffer  long latcncies. If remote refcrcncc times arc to bc small and higher speed processors
are to be supported, a higher capacity network is necdcd. A ring network like that of Cambridge
[Wilkes-Whcclcr] or TRW [Blauman] would probably meet these needs.

The network interface must be suffcicntly  clever to allow reception of back-to-back packets.
The communications process should be implemented so that process switches to and from it can be
made quickly. To provide  only-once-type-2 semantics, some easily accessible stable  storage is
nccdcd. It would be most bcncficial to off-load some portions of the communications process to a
fast microprocessor so as not to burden the main processor  with unncccssary  ovcrhcad.

We have  ignored the issue of the programming language  support for this model.  Rcfore this
model can bc easily applied  to distributed systems, specific instantiations  of various rcfcrcnce types
need to bc defined for use within the context of a distributed programming language.

Finally, WC need to implement a variety of systems using remote refcrcnces. With a clever
enough communications system implementation and a high speed network (greater than 50
megabits) some of the applications done on CM* [Jones-Gchringer] would work on a local network
based multiprocessor. However, many other types of distributed systems should be tested to see if
their communication rcquircmcnts can bc naturally and efficiently met by the remote
rcferencc/rcmotc  operation model presented above.

I am indcbtcd to Jim Gray and Richard Pattis for their many readings  of this document. I
would also like to thank Forest Baskett,  David Cifford, John Henncssy, Bruce Lindsay, Jeff Mogul,
and Patricia Sclinger for valuable  suggestions and comments.
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Appendix - Reference Semantics

DEFINE RLDA(MACHINE-NUMf3ER,  ADDRESS) =
IF NO RESf’QNSE

RETURN [I’Rf~OR-CONDI1‘ION,  IN’I’ERNAL-SEQ-NUMBER]
RETURN MACH INE-NUM  f3ER[ADDRESS]

DEFINE RS’I’A(  MACI-IINE-NUMBER,  ADDRESS, VALUE) =
IF NO RESPONSE

RETURN ]?IRROR-CONDITION,  INTERNAL-SEQ-NUMBER]
MACHINf’-N UM13f~R[ADf~RI~SS]  : = VAIUE

DEFINE RCS(MACHINE-NUMBER, ADDRESS, VALUE-l, VALUE-2) =
IF NO RESI’ONSE

RETURN [fXROR-CON1-XTION,  INTERNAL-SEQ-NUMBER]
IF MACHINENUMf3ER[ADDRESS]  EQ VALUE-l
THEN 13EGIN

MACHINl-:-NUMBER[ADDRESS]  : = VALUE-2
RE’I’URN  IS-EQUAL

END ELSE f3E-G  IN
VALUE-l : = MACHZNE-NUMBER[ADDRESS]
REf’URN IS-NOT-EQUAL

E N D

DEFINE RENQUF’UE(MACHINE-NUMBER,  ADDKESS,  VALUE) =
IF NO RESPONSE

RETURN ]fX ItOR-CONDITION,  INTERNAL-SEQ-NUMBER] .
IF FULL-QUl’UfI(MACFfINE-NUMBER[Al>DRESS])

TI-IEN Rf1’I’URN IS-FULL
ELSE ENQUEUf:(  MACH INE-NUMBER[AI>DRF:SS],  VALUE)

DEf-INt’RDEQUEUE(MACHINE-NUMBER,  ADDRESS) =
IF NO RIESI’ONSE

RE’I’UJIN [f’I~I~OII-CONl>I’TION,  INTERNAL-SEQ-NUMBER]
IF EMPTY-QUEUE(MACfIINE-NUMBER[ADDRl~SS])

TfIEN ftf”I’URN IS-EMPl’Y
ELSE RE’L’URN DEQUEUE(MACHINF,-NUMBER[AI>DRESS])

Notes: All remote references arc done atomically. The expression referred to as MACHINE-NUMIER[ADDRESS]
refers to absolute memory address ADDRESS on the processor referred to by MACIIINE-NUMI3ER.




