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SECTION 1 [INTRODUCTION AND OVERVIEW

The MAINSAIL project has been a part of the SUMEX Computer Project at
Stanford University since the spring of 1974. It began as a project to
develop PDP-11 code generators for the programming language SAIL ([1]),
which is implemented just for the PDP-10. It became apparent that a
reasonable implementation of SAIL on the PDP-11 would require a number
of changes to SAIL. Over a period of time the number of changes reached
the point that the altered language begin to take on its own character,
and was generalized toward the broader goal of portability over a wide
range of machines. The result is the MAINSAIL programming language,
which has significant differences from SAIL.

For a complete description of MAINSAIL, see the MAINSAIL Language Manual
([2]). A comparison of MAINSAIL and PASCAL ([3]) may also be of
interest” although the two languages were developed for different
reasons and MAINSAIL is much broader in scope. For the most part, this
report will assume a familiarity with MAINSAIL as described in the
language manual.

The overall goals of the MAINSAIL project have been to provide an
integrated set of tools for the creation of efficient portable software
on a variety of computer systems, and to promote the development and
distribution of portable software. By 'portable software"™ is meant
programs that are able to be executed® without modification, on a range
of computers. An overview of MAINSAIL and its approach to portability
can be found in "The MAINSAIL Project: Developing Tools for Software
Portability"” ([4]).

This report provides an overview of the implementation of MAINSAIL. It
demonstrates the integration of the system, the aspects that have been
affected by portability issues, and what is involved in implementing
MAINSAIL on a new machine. There are sections pertaining to the compiler
design, runtime data structures, operating-system and machine-dependent
interfaces, memory management by the runtime system, and the file system
model .

In designing the MAINSAIL programming system, a concerted effort has
been made to guarantee the characteristics of a sufficiently rich and
efficient programming environment that the programmer will seldom if
ever feel the need to utilize machine-dependencies other than those
which are inherent to the task being performed.

MAINSAIL’s approach to portability is different from the 'classical”
approach of other languages such as FORTRAN, COBOL, BASIC, and ALGOL.
These languages were designed with the idea that a new compiler would be
written for each different computer system. In writing a given compiler,
the implementor attempts to adhere to a '"language standard.' However, it
is difficult, if not impossible, to specify a language standard in such
a way as to be complete and unambiguous, and to guarantee that all
implementations would be compatible. In addition to differences
encountered due to ambiguities in the language standard, many
implementors yield to the temptation to "enhance' the language, thereby
introducing machine and system dependencies which render programs non-
portable. Others simply implement a subset of the language®” making it
impossible to run programs utilizing the unimplemented operations.
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MAINSAIL, on the other hand, has a single compiler and runtime system
(both of which are written in MAINSAIL) that are employed in all
implementations. This is made possible by MAINSAIL’s ability to compile
itself into code for a variety of machines. Only the compiler®s code
generators, and small machine-dependent and operating-system-dependent
interfaces, need be rewritten for each .new implementation. These parts
of MAINSAIL are at a level which has already been defined by the
machine-independent parts, and do not affect the language from the
user®s viewpoint. Thus the "language standard' has been reduced to a
"semantic standard” which is surrounded by machine-independent software.
The facilities provided by the portable compiler and runfime system are
an inherent part of the language. In this sense MAINSAIL is more of a
portable programming system than simply a programming language which can
be implemented on many machines. A single compiler and runtime system
which are used at all sites appears to be the only realistic means of
obtaining the goal of portability.

MAINSAIL is not oriented toward any particular application. Dynamic
memory utilization makes it suitable for tasks with memory requirements
which are difficult to predict prior to execution. The string
capabilities (automatic handling of variable-length sequences of
characters) facilitate iInteractive programming and word processing
applications such as compilers, text editors and document preparation.
These same facilities require runtime support, so that a MAINSAIL
program is not a stand-alone body of code, and thus may not be
appropriate for some machine-dependent system utilities which must
execute with no runtime support.

The requirement that MAINSAIL provide for the development of portable
software necessitates machine-independent approaches to all aspects of
the language. These include. a notion of data type which is not tied to a
particular machine organization, the ability to handle various character
sets, and the design of a file system model that is implementable at all
sites.

MAINSAIL does not have user-declared types, concurrency, or interrupts.
It has not been designed for program verification. What is distinctive
about MAINSAIL is its design for portability®™ an extremely flexible
implementation of modulles and intermodule communication, dynamic memory
support, strings, garbage collection, the handling of i/0 in a machine-
independent manner, and extensive compiletime facilities.

In addition to the language characteristics, the machine-independent
design of MAINSAIL necessitates a model of runtime interactions that can
be-supported on a broad range of computers. In particular, MAINSAIL must
be able to execute in a limited address space, which means that programs
must be broken into pieces (modules) that need be in memory only when
executing.

The inability to characterize existing linkage editors and overlay
systems in a machine-independent manner has forced the MAINSAIL runtime
system to take over these functions. It thus assumes duties often
considered part of the operating system. MAINSAIL contains its own
notion of inter-module communication. MAINSAIL programs consist of
independently compiled modules which may be executed from any address
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within memory, i.e., the modules are position-independent. The runtime
system swaps-modules in and out of memory as needed during execution,
thus providing a virtual memory facility. This allows large programs to
execute in a small address space, if there is enough space to contain
the data. There is no automatic mechanism for moving the data in and out
of memory, i.e. there is virtual CODE space, but no virtual DATA space.

Not only is a dynamically-linked system considered necessary to support
the machine-independent design® but it is also much more flexible and
easier to use from the programmer®s viewpoint. For example, the
programmer does not have to design an overlay scheme; MAINSAIL
automatically swaps modules in and out of memory dynamically as needed.
With a linked system, every time a module is changed, added, or deleted,
the entire program must be re-linked (and sometimes the overlay system
must be redesigned). MAINSAIL"s approach, on the other hand, allows for
viewing a program as an open-ended collection of modules; i.e., the
programmer need not specify what modules make up a program. It is not
necessary to link together all modules that could potentially be called:
the modules may originate from many files at execution, as contrasted to
the common approach of having a single "save file" or "load module"
which may contain an overlay structure.

The initial research and development of MAINSAIL under the NIH grant

is now complete. MAINSAIL"s use has so far been demonstrated on PDP-10
and PDP-11 computers with various operating systems. These operating
systems include TENEX, TOPS-20, TOPS-lo, RSX-11, RT-11, and UNIX.

Further distribution and support of MAINSAIL, and the development of new
implementations®™ will be carried out by a private company comprised of
the individuals who have worked on the MAINSAIL project.






SECTION 2 COMPILER

The MAINSAIL compiler is written entirely in MAINSAIL itself, and can be
ported among machines simply by recompiling it into the proper target
code. The compiler and runtimes were developed concurrently with the
language, and thus features that were felt necessary for their efficient
implementation were simply put into the language. For example, MAINSAIL
has a comprehensive set of compiletime facilities which are invaluable
in the construction of large programs.

Many compilers are designed to work in a sequential access mode, and
suffer from the resulting limitations. The MAINSAIL compiler is designed
with the understanding that the source files are on random-access
devices, so that it need not progress through a file in a strictly
linear fashion. Any number of nested input files are allowed. The same
file may even be scanned several times during compilation (as contrasted
with a compiler designed for input from punched card decks).

As discussed in Section 1, a MAINSAIL program is composed of
separately-compiled modules. The compiler outputs position-independent
code for each module it compiles, so that the runtime system may move
and/or swap modules during execution when necessary.

This section g“ives an overview of the compiler, in particular specifying
the compilation approach, the design of the symbol table, a register
utility module, and the intermediate code from which target code is
generated.

2.1 OVERVIEW OF THE COMPILATION APPROACH

The compiler is conceptually divided into two passes. The Ffirst pass is
target-independent and translates the source text into an intermediate
code. The second pass generates the desired target code from the
intermediate code. This pass contains a target-independent part which
examines the intermediate code and calls the appropriate code generation
procedures. Code generation procedures are written for each target
machine. Note that the compiler is independent of the host machine (the
machine on which the compilation is being done). Thus it can be
considered a cross compiler, since a given code generator can be used on
any machine.

text | | code | | code
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2.2 FIRST PASS

The first pass of the compiler utilizes a standard recursive-descent
technique to process the source text. It outputs the intermediate code
in an internal format into files which are then processed by the second
pass. The second pass also utilizes other information in memory-
resident data structures, so that the intermediate-code files do not

by themselves contain sufficient information for the second pass.

The compiler utilizes a symbol table containing symbols for all the
identifiers and constants encountered in the source text, as well as

all predeclared or predefined symbols. Each symbol contains information
to uniquely identify the entity it represents. This information includes
the symbol*®s identifier (value if a constant): a unique integer '"tag"
assigned to it: its data type; its "klass" (e.g. macro, constant,
parameter); and a "hash code'"™ computed from the identifier that is used
for symbol entry and search.

A symbol is represented in two forms: as a record while its fields are
being accessed; and as a string while simply residing in the symbol
table. The latter-representation is referred to as a "packed symbol"
since it requires less space than a symbol record.

SYMBOL TABLE

The basic approach to the symbol table is to keep heavily accessed
symbols in memory, while less frequently accessed symbols overflow to
files. This allows the symbol table to be much larger than would be
possible if it were all in memory.

The symbol table consists of four parts, two of which are in memory: .

1) procedure cache -- symbols local to the current procedure. This
cache does not overflow to a file® since the number of symbols
declared within a procedure is in general small.

2) memory cache -- most recently accessed non-local symbols. This
cache overflows to the file SYM.

3) SYM -- Tfile which contains symbols which have overflowed from
the memory cache.

4) base file -- contains symbols declared before the actual
compilation of the current module begins, as created by the
SAVEON compiler directive.

The Procedure Cache
The procedure cache is a pointer array whose elements are the heads of

linked lists of symbols local. to the current procedure. The ith list
contains symbols that hash to i.
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PROCEDURE CACHE

o + +---===- + Fo————— +
0 | [ERErS > T > |
Fomm———— + tomm + Frm————— +
——————— e s e tat
1 T -I" ______ >| I """ > I i
Fo—————- + o + o
e + o ————— + o +
n-1 | eeeee- >| |77 € > |
Frmm———— + o ——— + Fom———— +

The memory cache is a string array whose elements are packed symbols.
The array is conceptually divided into fixed-size "buckets". A symbol
with hash code i1 is put into the ith bucket.

MEMORY CACHE

Hmmmmm e +
| |
bucket 0 | |
| I
e TR +
I I
bucket 1 | |
I I
Fommmmm e +
Hmmmmmm e +
| |
bucket m-1 | |
| |
Aommmmmm e +

The search for a symbol in the memory cache begins with the first
element in the appropriate bucket, and searches linearly to the end of
the bucket. During this search, each element is moved forward by one,
leaving the Ffirst element free. When the target element is found
(possibly in SYM or the base file), it is put into the freed first
element. As a result, each bucket is always sorted from most recently
accessed symbol to least recently accessed symbol. This both speeds up
the linear search, and conveniently results in the oldest symbol being
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at the end of the bucket. If the bucket is full, and the target symbol

is found in SYM or the base file, this last (and "oldest™) symbol "falls
off the end" of the memory cache and is put into the appropriate SYM
bucket if it is not already there (as indicated by a bit in the packed
symbol).

The SYM File

The SYM file is conceptually divided into fixed-size buckets which
contain the symbols which overflow from the memory cache. When a symbol
is "bumped off the end" of the memory cache for the first time, its
hash code is used to compute the SYM bucket to which it belongs.

If a SYM bucket becomes full, a new one (beyond those initially
allocated) is used, and the full bucket is linked to the overflow
bucket. An overflow bucket can also be linked to another overflow
bucket. Thus, there is in effect a linked list of buckets containing
symbols that hash to each given initial bucket. In the simplest scheme
each (initial) SYM bucket would correspond to a memory cache bucket.
However, the implementation allows for a different number of memory
cache and SYM buckets, in particular so that the number of SYM buckets
is independent of memory constraints on the number of memory buckets.
The number of memory and SYM buckets and their sizes are parameters
which can be independently adjusted to the memory constraints.

SYM
i +
| |
bucket 0 | |
| |
Fmm e +
R it R +
bucket n-1
$m=======c========+4
0 | -- First bucket available to be
v an overflow bucket
e
r R it +
f B .
1 u .
o c
w k e ke +
e | |
t | |
s | |
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SYM buckets are used for two other purposes:

1) To contain a linked list of buckets containing all the string
constants. The string-constant symbols are also put in regular
buckets, but having all the string constants grouped together
facilitates their output to the descriptor section during the
second pass (see 3.2).

2) To contain a linked list of buckets with information about
classes and modules not needed frequently enough to be
allocated in memory.

The Base File
The base file is in exactly the same format as the SYM file: initial
buckets followed by overflow buckets.

There is an initial symbol table file for MAINSAIL consisting of all
predeclared and predefined identifiers. At the beginning of each
compilation, this file is opened as the base file for the symbol table.

MAINSAIL”s SAVEON and RESTOREFROM compiler directives allow the symbol
table to be preserved and then restored in later compilations to avoid
recompiling declarations and definitions that a number of different
modules need. A SAVEON to save the "current state" of the symbol table
will first dump the memory cache to the SYM file and then combine the
base and SYM files into a single file which becomes the base file for
all compilations that restore it.

Symbol Table Lookup

To look up a symbol, the compiler first searches the appropriate list
in the procedure cache, as determined by a hash code. If it does not
find the symbol there, it then looks in the appropriate bucket in the
memory cache, using a different hash code (since there are a different
number of buckets). IT it is not there, but the memory cache bucket is
full (signifying that it might have overflowed to SYM), then the
appropriate SYM bucket is examined, once again using a different hash
code. Finally, the base file is searched if the symbol still has not
been found. When found, the newly-looked-up symbol is copied to the
beginning of the appropriate memory-cache bucket to increase the
probability of finding it in memory rather than on a file, and the
oldest symbol in that bucket is copied to the SYM file if necessary.
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2.3 INTERMEDIATE CODE

The intermediate code recasts the source program into a form which
facilitates code generation. It employs no special knowledge about the
target machine.

The intermediate code consists of a linear sequence of operators
followed by zero or more operands, where "operand" is used as a general
term to refer to "regular™ operands, labels, and other items that need
to be passed to the second pass (such as the initialization values
specified for an array by an INIT statement). An operator is specified
in the intermediate code as an integer code. A regular operand is
represented as the packed symbol for the operand. A label is an integer.
An "operand cache'™ 1is utilized to decrease the number of packed symbols
actually put into the intermediate file.

The following table summarizes the intermediate code. Note that the
operators are generic in the sense that the operands determine the
exact data type. For example, "plus"™ applies to integer, long integer,
real and long real.

OPERATOR OPERANDS COMMENTS

e 1bl,o0prl,opr2 IF oprl = opr2 THEN branch to 1bl
blt " IF oprl < opr2 THEN branch to 1b1
bgt " IF oprl > opr2 THEN branch to 1b1l
tst " IF oprl TST opr2 THEN branch to 1bl
tsta " IF oprl TSTA opr2 THEN branch to 1bl
branch b1 branch to 1bl

ntsta Tbl,opril,opr2 IF oprl NTSTA opr2 THEN branch to 1bl
ntst " IF oprl NTST opr2 THEN branch to 1bl
ble " IF oprl LEQ opr2 THEN branch to 1b1l
bge " IF oprl GEQ opr2 THEN branch to 1b1
bne " IF oprl NEQ opr2 THEN branch to 1b1
assign oprl ,opr2 opr2 := oprl

min oprl,opr2,opr3 opr3 := oprl MIN opr2

max " opr3 := oprl MAX opr2

plus " opr3 := oprl + opr2

minus " opr3 == oprl - opr2

ior " opr3 := oprl IOR opr2

xor " opr3 := oprl XOR opr2

clr " opr3 := oprl CLR opr2

msk " opr3 := oprl MSK opr2

times " opr3 = oprl * opr2

div " opr3 := oprl DIV opr2

mod " opr3 := oprl MOD opr2

shl " opr3 := oprl SHL opr2

shr " opr3 oprl SHR opr2
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neg

call

return
returnResult

putResult
getResult

makeValue

case

casel.abel

casekrr

init

consttyWrite

consfWrite

enter

exit
label

adr
temp

keep

oprl,opr2
oprl,opr2
opr3,...,oprN
none

oprl

oprl
oprl

1bl,0pri

1b1 ,0prl,opr2,
op r3

1b1

oprl

1bl,o0pril,opr2,
initialization
values

oprl
opri,opr2

oprl,c,1bl
opr2,...,oprn

none
1b1

oprl,opr2,opr3
oprl ,opr2

oprl

2.3

opr2 := - opri
call procedure oprl, with arguments
opr3,...,oprN. If typed, put the result
in opr2.
RETURN
RETURN(opr1)
save oprl as a 'temporary" result
oprl := last value saved by putResultOp
generate code with the effect:
oprl := TRUE; branch 1;
Ibl: oprl := FALSE;

1:

1b1 = label for the default case,

oprl = symbol for the index variable,
opr2 = min selector value (constant),
opr3 = max selector value (constant),

generate case-statement branch table
entry to label 1bl

generate code for case index out of
bounds, with case index value oprl

array initialization. 1b1 is used to
refer to start of value encodings in
descriptor section; oprl is symbol for
the array initialization procedure; opr2
is symbol for the array.

ttyWrite(oprl) where oprl is a string
constant

write(oprl,opr2) where oprl is a file
pointer and opr2 is a string constant

entry to procedure oprl. ¢ = 1 <=> the
proc is CODED. 1bl is minimum label
used in the proc. opr2,...,oprn are the
parameter symbols.

end of current procedure

place label 1b1

create address temp (see below)
create value temp (see below)

oprl is a value temp. Copy it to memory
if necessary.
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unkKeep oprl Undoes some internal bookkeeping caused
by keep operator.

rise oprl oprl no longer needed: bookkeeping only.
dscr pLocs,slLocs, tells number of pointer, string, and
olLocs other local variables of procedure being
entered.
code S Put the string constant s into the

output TFile.

encodeCon type of con, encodeConOP and encodeVarOP are for
con id, the outputting symbolic definitions of
defined con selected variables and defined constants

so they may be referenced by the text
of a Code statement.

encodeVar id to be see encodeCon
encoded
check none Henceforth emit code to check certain

conditions at runtime that cannot be
determined at compiletime (e.g.,

that array subscripts are in bound, and
that pointers used are not null).

noCheck none Henceforth don"t emit checking code.
modEnd none end of module
error none error condition: second pass should

never encounter this.

Address Temps

In order to represent a variable of the form p.f (pointer.field, used to
reference a field of a record), a.f (address.field, used to reference
memory), m.F (module.field, used to reference interface procedures and
variables), or a[i], a[i,j] or a[i,j,k] (array elements) as a single
operand in the intermediate code, an "address temp" is created and used
as the operand.

An-address temp is simply a symbol that links together the appropriate
symbols for the components of a structured variable. It is not itself
allocated a memory location. For example, for a variable of the form
p.f, the address temp points to the symbol for p, which in turn points
to the symbol for f:
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adrTemp P f

For a variable of the form m.f, the address temp points to the symbol
for f, which points to the symbol for m:

adrTemp f m

For a subscripted variable (ary[i] or ary[i ,j] or ary[i,j,k]), the
address temp points to the symbol for ary which points to a linked list
of the subscript symbols. For example, for ary[i,j]:

adrTemp ary i h|

e + R + to———— + s +
| [===== === [ ===== |
b b 4 S . L .

An example of the use of an address temp is as follows. The assign
operator has two operands, one for the source and one for the
destination. For example, the MAINSAIL statement

i= j
would be translated by the first pass into the intermediate code
assign j 1

(letting 1 stand for the symbol for i, and j for the symbol for j). Now
consider the MAINSAIL statement

p.-f =]
The second operand for assign needs to stand for the combination of two
symbols, one for p and one for f. This is accomplished by first forming
an address temp for the field variable p.f, and then using the address
temp as the operand to assign:

adr x p F
assign j X

(where x refers to the address temp formed).
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Value Temps

Whenever an expression occurs for which there is no explicit destination
(e.g. as an argument to a procedure) a "value temp" temporarily stores
the value of the expression. Thus a value temp is simply a symbol used
for temporary storage of a value. It has the status of a variable
declared local to a procedure, and is allocated a memory location in the
stack frame. Consider for example the MAINSAIL statement

i=a*b+c
First, the code to compute the value of the expression a * b is output.
The intermediate code will have the mul operator, which has three
operands: two sources and a destination. A value temp t will be used as
the temporary destination:

mul a b t

and then to represent the value of a * b as a source in the subsequent
operation

plus t c i
which has an explicit destination, i. It should be emphasized that even

though the intermediate code treats value temps as if they were normal
local variables, code generators will be aware that an operand is a

. value temp, and will in general attempt to keep the value temp in a

register rather than utilize the memory location allocated for it. For
example, a typical code sequence for the above intermediate code might
be:

LOAD r,a ;mul a b t
MUL r,b
ADD r.,c ;plus t c i
STORE r,i

2.4 SECOND PASS

The second pass generates target code from the intermediate code. It
consists of a target-independent part which reads the intermediate
code and calls the various code generation procedures, which must be
rewritten for each target machine.

The compiler thus employs target-dependent modules to generate the

code rather than some kind of table which would attempt to encode the
information needed to generate code. This provides the code generators
all the facilities of MAINSAIL and avoids preconceived notions of how
the target machine is structured. There has been no attempt to capture
some form of description of the target machine which could then be used
as the basis of an "automatic™ code generator. It is felt that the
effort involved in writing such a machine description is at least as



SECOND PASS 2.4

difficult as writing the code generator itself, and certainly not as
flexible.

Though not mandated by the target-independent part of the compiler, most
code generators produce assembly language (rather than immediately
executable code) for several reasons. For one thing, the generated code
can be easily examined®™ which is useful for debugging the code
generators. Also, 1in certain rare cases it is useful to be able to edit
the generated assembly code before assembling it, which would not be
possible if binary code were generated. Another reason is that it avoids
having to make packing decisions that would be difficult to do in a
machine-independent way. For example, when compiling on a 16-bit machine
to output code for a 36-bit machine, it is not obvious how the 36-bit
word sequences should be output. Also, floating point constants can be
output as text rather than in an internal form which would be difficult
to compute on a host machine different from the target machine. Finally,
the Code Statement would be difficult to implement if binary code were
being generated, whereas with the current approach, the string constant
is simply put into the output file.

Register Utility Module

There is an additional target-independent module® reguty, available
during the second pass for managing registers. It implements a target-
independent notion of register. Any code generator may use reguty if
the target machine has registers which conform to the concepts
implemented by this module. 1f a machine has no registers, or has
registers with characteristics which are not captured by reguty, then
the services provided by reguty are simply not used.

Reguty employs a '"register model'" whose underlying implementation is
irrelevant to the code generators. Under this model, operands can be .
associated with registers, and any register can belong to one or more of
up to 16 code-generator-defined classes, so that the code generators

can ask for a free register belonging to a specific class.

There is also the notion of "double register'™, which is a pair of
adjacent registers that can be used either individually or as a unit.

To use reguty, the code generators first call a reguty procedure to
initialize each register they will need in the register model. A call to
this procedure specifies the name to be used for the register and the

. classes it belongs to.

Once the registers have been initialized, the code generators can call
other reguty procedures to: 1) ask for a free register of a particular
class; 2) associate an operand with a register; 3) '"clear" a register
(break the association between it and an operand); 4) reserve a
register; 5) ask if a specific operand is in a register; 6) "dump" the
contents of registers to memory.
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Reguty uses a conservative strategy to keep track of register contents:

1) Dump all registers at branches -- when any of the branching
operators are encountered®” any register whose contents are
not also in memory is stored into memory.

2) Clear all registers at labels -- rather than keep track of
register contents at all branches to a label, and then take the
"intersection”™ of the contents, reguty simply assumes the worst:
all registers are cleared.

3) Dump all registers at procedure calls -- registers are not
preserved over procedure calls. At procedure calls, any register
whose contents are not also In memory is stored into memory.

Upon return, nothing is assumed about the register contents
(except a result value may be associated with a particular
register) -- all the registers are cleared.

The result is that linear sequences of code remember the contents of
registers, but the contents are forgotten at points of control transfer.
Each implementation uses selected registers for dedicated purposes such
as stack pointers-. Such registers are not under the control of reguty,
and hence are not affected by branches.

2.5 COMPILER DEVELOPMENT

The MAINSAIL compiler was initially bootstrapped via SAIL: by means of
macros and conditional compilation, the compiler was originally able to
be compiled by the SAIL compiler. The compiler, running as a SAIL
program, was then used to compile the compiler and the runtime system
into MAINSAIL code. That code was then assembled, resulting in a
MAINSAIL compiler and runtime system that were free of SAIL. MAINSAIL is
now completely independent of SAIL, i.e. SAIL no longer plays a role as
a bootstrap mechanism.

The compiler has undergone a number of changes and improvements over

the past few years. It is a large program whose development demonstrates
the fact that care must be taken in designing large portable programs if
they are to be able to be run in small (32K word) address spaces. The
compiler in fact was unable to run iIn such address spaces until a number
of data reductions and efficiency improvements were made. The MAINSAIL
runtime system swaps modules out of memory when necessary, but it does
not swap the data used by a program, and the compiler®s data consumed
most of the available memory.

Analysis of the compiler data structures showed that some were larger
than necessary, others were not being disposed (freed) when they could
have been, and others could be totally eliminated or reduced in size
through design improvements.

Where possible, data is now maintained on a file rather than in memory.
For example, to save space required by the text of string constants,
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the compiler error messages have been placed on a file. Calls to
error message procedures specify the location on the file of the
appropriate error message.

As a result of the data reductions and efficiency improvements, the
compiler is now able to run on machines with 32K-word address spaces. A
reduction in compilation time was also accomplished as described by

the following.

On a machine with a large address space the compiler is most efficient
if it consists of a few modules, since that reduces the number of
intermodule calls. But on a machine with a small address space, there
is not enough room for large modules; module swapping IS necessary,
and compilation time is roughly proportional to the number of swaps.
Various compiler configurations (ways in which the compiler procedures
could be combined into modules) were examined to determine *optimal™
configurations (ones with the least amount of swapping) for various
address spaces.

This was done by writing a MAINSAIL program to simulate compilation on
machines with-various memory sizes. The simulation was driven by exact
data, obtained from traces of all procedure calls made during a sample
compilation. A format was devised for easily specifying potential
compiler configurations, and the simulator tested their efficiency.

The simulation results led to the current use of two compiler
configurations: a "big" configuration to be run on machines with

large address spaces, and a "small”™ configuration to be run on those
with small address spaces. MAINSAIL"s modular structure and the use

of standard MAINSAIL compiler directives and language features permits
automatic reconfiguration. As predicted by the simulation, use of the
"optimal” small configuration significantly increased the compilation
speed on a computer with a small address space, the PDP-11. Use of the
"big" configuration, with just a few large modules, also improved the
compiler speed on computers with large address spaces.

Despite the increase in compilation speed thus obtained, compilation on
machines with 32K address spaces is still considered too slow for such
machines to be heavily used as development machines. The address space
is simply too small, especially considering the fact that up to
one-fourth of it is often occupied by the machine"s operating system.

It should be noted that the unsuitability of limited-address-space
machines for development does not preclude the efficient execution on
such machines of MAINSAIL programs smaller than the compiler. If a
larger machine is available for cross-compilation, programs may be
developed for use on small machines. This approach is used extensively
at SUMEX, where program development takes place on a large time-shared
computer facility, and then the debugged programs are sent via hardwire
lines to smaller machines for production use.






SECTION 3 RUNTIME DATA STRUCTURES

The runtime representations of modules, arrays, classes and strings
are described in this section, as are the details of procedure call,
entry” exit and return. Details of memory management by the runtime
system are given in the next section, Section 4.

3.1 CHUNKS

"Chunk™ 1is a general name for the data structure used for the underlying
representation of records, arrays, data sections (repositories for the
data of modules, described below), and "descriptors™. A descriptor
exists for every class, module, and array. The use of each type of
descriptor is specified below in sections 3.2, 3.3, and 3.4.

Every chunk is composed of a header and a body. The header is used by
the runtime system for a number of purposes, including garbage
collection (described in Section 4.9). The body contains the information
portion of the chunk® such as the elements of an array or the fields of
a record. The following diagram gives the format of every chunk:

CHUNK

e e e e +

| garbLink | ADDRESS
|"TTTTT TR |

| dscrLink \ POINTER
| TSR R E R EEEs |

| |

| chunk body

| |

| \

R it iatats +

The garblLink and the dscrLink compose the chunk header. The garblLink is
used only by the garbage collector, while the dscrLink discriminates
between the two underlying classes of chunks: those that are self-
descriptive (descriptors and free chunks - 4.6)" and those that are not
(ones which have separate descriptors: classes, modules and arrays).
Chunks are described further in Section 4.6. They are introduced here
simply to familiarize the reader with the structure that will appear in
drawings in this section illustrating theimplementation of various data
structures.
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3.2 MODULE [IMPLEMENTATION

MAINSAIL programs consist of independently compiled modules that may be
executed from any address within memory, i.e. the modules are position-
independent. A module is represented at runtime as a ''control section”
(the result of a compilation), one or more '"data sections" which are
created dynamically during execution, and a "module descriptor.”

Control Section

A control section consists of an "entry vector', the code for the
module®s procedures, and a '"descriptor section'" containing information
used to support the module"s execution:

CONTROL SECTION

descriptor |
| section |

The start of the control section contains the displacement to the
descriptor section, so that given the address of the control section,
the start of the descriptor section can be determined.

The ENTRY VECTOR provides the interface-procedure-calling mechanism.

The compiler maps each interface procedure of the module (i.e., each

procedure that is to be accessible from other modules) into an index
into the entry vector. The entry vector is simply a "jump" table with
each entry referencing the associated procedure.

The DESCRIPTOR SECTION contains information which supports the module
during execution:
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DESCRIPTOR SECTION

R et ettt +

| module bits . ....... | BITS

}_f[l(}qlf!?_ﬁflf_n? ___________________ || LONG BITS

} _version number ... || BITS

| nmumber of_pointers and strings| BITS

{ data section size J INTEGER
offeet to.podule_ nane table | wresen
offset _to_string constants | INTEGER

| offset_to_module_pointers | INTEGER
offset to class pointers INTEGER

each an INTEGER

class information
one for each class

each a LONG BITS

each:
n,charl,...charn

array initialization
constants

depends on type of
array

The module bits provide information about the module to the runtime
system. For example, a bit is reserved to indicate whether or not the
module has a FINAL procedure.

Each module is identified by its name, which must be unique and less
than or equal to six characters long. The name is encoded in the
descriptor section as a long bits.

The version number tells the runtime system version under which the
control section is expected to run. When the runtime system allocates a
module, it compares the current runtime version number with that in

the descriptor section, and complains if they are different, thereby
notifying the user that the module must be recompiled for a more
up-to-date version. Version numbers are updated only when major

changes that affect the execution of modules are made to the MAINSAIL
system.
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The number of pointers and strings tells the number of non-interface
pointers (including array variables®™ module pointers, and class
pointers) and strings that will be in a data section for the module.
This is needed for garbage collection.

The data section size gives the size of data sections for the module.

The offset to the module name table gives the offset from the base of
the descriptor section to the module name table.

The offset to string constants gives the offset from the base of the
descriptor section to the string constant information.

The offset to the module pointers gives the offset from the base of a
data section for the module to its module pointers (as described further
in the next section). There is a pointer in the data section of a module
m for each module referenced by m. The ordering of these module pointers
and the entries in the module name table is identical so that a
reference to a module can be represented by a single integer. The
compiler generates this integer as a displacement from the base of the
data section to the module pointer for the module. The runtime system
uses this integer-directly to reference the module pointer, and when
necessary it suitably modifies it to reference the appropriate entry in
the module name table.

The offset to the class pointers gives the offset from the base of a
data section for the module to its class pointers (see next section).
There is a class pointer in the module"s data section for each class c
for which a "new(c)" appears in the module. new(c) is the generic form
of a call to the system procedure newRecord( which creates a new
record for class c¢ and returns a pointer to it.

The class table is an integer table with an entry corresponding to each
class pointer. The value of each entry is the offset from the base of
the descriptor section to the class information for the class. The
ordering of the class pointers in the data section and the entries in
the class table is identical. The compiler generates the offset to a
class pointer as the argument to newRecord calls. This offset is used to
locate the desired class pointer, and if Zero it is then used to locate
the information necessary to build a new class descriptor.

The class information for each class is used to create the class
descriptor for that class (see 3.4).

The module name table has an entry for each module referenced by the
module, as described above. The value of the entry is the long bits
encoding of the module name.

All of the string constants used in a module are put into the 'string
constant" part of the descriptor section. It contains the text of each
string constant,. preceded by an encoding of its length. The code
generators use the displacement from the base of the control section to
the string constant to refer to a string constant. The string constant
copier (3.5) can then reference the text of the constant.
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Finally, all array initialization values specified in the module are
encoded in the last part of the descriptor-section. Whenever the
compiler encounters an INIT statement (which specifies array
initialization values)™ it generates a call to a procedure that will
dynamically initialize the array. This procedure is passed the offset
from the base of the control section to the desired initialization
values.

Data Section

A module®s DATA SECTION contains the interface and own data associated
with the module. 1t consists of an INTERFACE RECORD followed by an

OWN AREA:

DATA SECTION

| garbLink \ ADDRESS

| dscrLink \ POINTER(modDscr)

The dscrlLink points to the module®s descriptor. A module descriptor
describes the module®s data section and control section. Module
descriptors are discussed in the next section.

The interface record contains the data fields which can be accessed by
other modules, as well as throughout the module with which the data
section is associated. Thus the interface record is the basis of
intermodule data sharing.

The own area contains data which can be accessed by procedures within
the module, but cannot be explicitly accessed by other modules.

In addition to own variables explicitly declared within the module, the
own area also contains a contiguous block of MODULE POINTERS which
reference other data sections (see "Intermodule Communication'™, below),
and a contiguous block of CLASS POINTERS which reference class
descriptors (3.4).
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OWN AREA OF A DATA SECTION

e ittt + -+
| module pointers . | |

|""""': """"""""""" | | contiguous block of
| class pointers | | pointers

| other own pointers | |

|~""TTTTTTTTTTTTTmT AT | —--+

| own string variables | | contiguous block of
| Tttt T T T T T | --+ string descriptors

It is sometimes useful to have "multiple instances”™ of a module, which
is implemented as a single control section and a single module
descriptor, but multiple data sections. All data sections associated
with the same module are identical in format, as described by the
descriptor section. Whenever a request for a multiple instance is
executed, the MAINSAIL runtime system creates a new data section for the
module and returns a pointer to the newly created data section. The
program must subsequently explicitly use that pointer to access the data
fields.

Each module may have a default data section, called the "bound data
section”. In most cases this is the only data section that exists

for the module. A default data section is a convenience; a program may
refer to fields in it simply by name (if their names are unique),

or as moduleName.fieldName, rather than via a pointer variable and the
field name.

There are two ways in which a data section can become the bound data
section for a module: 1) The first time an interface procedure of an
unallocated module is called, the module is automatically allocated (see
below) by the runtime system, and the data section then created becomes
the bound data section; 2) When the system procedure "bind” explicitly
allocates a module, the new data section becomes the bound data section.

One of the module-descriptor fields points to the bound data section for
the module. This provides the mechanism for accessing the bound data
section fields when they are referenced without a pointer variable.

A-pointer to a data section provides a "handle”™ on a module since it
identifies the data section and, indirectly, the control section. The
identification of the control section occurs via the data section®s
dscrLink, which points to the module descriptor, which in turn specifies
information such as the location (in memory or on a file) of the control
section.
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Module Descriptor

A module descriptor is allocated for each allocated module. It
associates a module name with a control section and (bound) data
section, gives information about the memory and file location of the
control section, and specifies enough information about the data
sections to perform garbage collection without having the control
section resident in memory. 1t also contains a pointer to the bound data
section and a link for the "modDscrList", which links together all
module descriptors.

MODULE DESCRIPTOR

o - +
| garblink, | ADDRESS
DONLERTER || POINTER

ewmere | POINTER
enwmesies | BITS

| etelsec |! ADDRESS

= oldCtrilSec --————====f ADDRESS
e |

}_hggg!g _______________ ; mdFileHandle
}_§E§f§f?99 ______________________ ll INTEGER

‘_'_‘9‘_“'_’99?_3 _______________________ |' INTEGER

|| age T |’ INTEGER
}_nggjgf______________ *!EEE====f POINTER(modDscr)
I_j}f?]_af»_s[)_s_c_r __________________ |' POINTER( cl assDscr)
} modgits lI BITS

{ modName ; LONG BITS
Cnmptesstes T | BITS

o e == +

chunkPtr points to the"bound data section.

chunkBits indicates that the chunk is a module descriptor and gives the
total size of a data section for the module.

ctrl1Sec is the address of the control section, if it is in memory;
otherwise it is NULLPOINTER. Whenever a control section is swapped out
of memory, ol1dCtrl1Sec is First set to ctrlSec. Later, when it is swapped
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back in, a search is made through the return address stack to update all
pending return addresses to the module. o01dCtrlSec serves two purposes
during this search: it, along with the size of the control section as
contained in the module descriptor, allows the identification of which
return addresses refer to the old location of the control section; and
the displacement(oldCtriSec,ctrlSec) is the amount by which each return
address needs to be displaced.

handle is the machine-dependent '"handle™ (5.5) identifying the file
that contains the control section. If handle is Zero, then the module
has been brought into memory from an individual file®" and has not yet
been copied out to the swap file. Once it is copied to the swap file,
the handle will be set to that of the swap file. The handle of modules
obtained from a library (4.5) references the library file.

startPage gives the starting page number of the control section in the
file which contains it (4.5). For example, a control section may
start on the 10th page of a library file.

numPages gives the size of the control section in pages.

age is used by the memory management procedures to perform its "throw
away oldest" swapping glgorithm (4.4) and gets incremented once for
each call or return to the control section.

modLink is used to link together on the modDscrList all module
descriptors.

itfClassDscr points to a class descriptor which describes the interface
record. This class descriptor is built from information in the '"class
information”™ part of the module"s descriptor section. It is Zero if the
module has no interface record.

modBits are used to indicate certain special conditions about the
control section such as that it has a FINAL procedure, or that the
control section must be permanently resident.

modName is the long bits encoding of the module name.

numPtrsStrs encodes the number of non-interface pointers and strings in
a data section for the module (nheeded by the garbage collector).

Many of the fields of a module descriptor are copied from the module®s
descriptor section when the module is first allocated.

Module allocation

A module is allocated as the result of one of the following:

1) Automatically the first time one of its interface procedures is
called.

2) ‘When the system procedure "bind" is called to explicitly
allocate the module®s bound data section.
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3) When the system procedure "new" is called to create a new
instance of the module (i.e. a new data section).

The allocation of a module involves the following:

1) Bring the control section into memory, if necessary.

2) Allocate and initialize the module descriptor, if necessary.
3) Allocate and clear the data section.

4) Call the initial procedure, if there is one.

A module may be disposed, in which case the space occupied by its
control section (if in memory), data sections, and module descriptor

is reclaimed. Individual data sections of a module may also be disposed
without disposing the entire module.

A module may also be unbound, which executes the final procedure (if
any), disposes of the bound data section, and breaks the linkage

of all modules which have established linkage to m. This involves
visiting all data sections and clearing each "module pointer™ which
references the bound data section.

Intermodule Communication

MAINSAIL contains its own notion of inter-module communication: there is
no reliance on a machine-dependent linkage system. Modules communicate
via INTERFACE FIELDS, which are the variables and procedures of each
module that the programmer declares to be accessible from other modules.

In the data section for each module m there is reserved one "module
pointer”™ for each module that m refers to. When a data section for m 1is
created, each of these module pointers is Zero until linkage is
established between m and the corresponding module. When linkage 1is
established, the module pointer is pointed at the module"s data section.

Module m may at any time call an interface PROCEDURE in another module
n. However, m can access an interface VARIABLE in n only if linkage has
already been established from m to n (i.e., only if the module pointer
in m"s data section reserved for n points to n"s data section). The
MAINSAIL language design actually allows for automatic linkage to all
interface variables, just as it does for iInterface procedures. But the
implementation overhead for interface data access, in both execution
efficiency and amount of generated code, could significantly degrade

. program execution, and hence the current implementations do not provide

automatic linkage for data access.
Linkage can be established between m and n in one of three ways:

1) LINK-BY-PROGRAM-STRUCTURE
Whenever a module m is allocated, MAINSAIL automatically

establishes linkage between it and all other modules that it
references which are currently allocated.
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It goes through the module name table in m"s descriptor section,
getting the names of each module that is referenced by m. It
compares each name with the module names in the modDscrlList
module descriptors. If a match is found, then the module with
that name (say n) has already been allocated, and the
appropriate module pointer in m"s data section is set to point
to n"s bound data section.

2) LINK-BY-CALL

Whenever m makes an intermodule call to n, MAINSAIL
automatically establishes linkage from m to n if it hasn"t
already been established. That is, a call from m to one of n"s
interface procedures automatically initializes m"s pointer to n
(if 1t is not already initialized). This is explained below
under “Interface Procedure Access™.

3) LINK-BY-BIND

IT m explicitly "binds™ n by calling the system procedure bind
with n as an argument, then linkage is established from m to n.
That 1is, link-by-bind provides a means of explicitly
establishing linkage in case neither of the previous "automatic™
methods is sufficient.

The list of module descriptors is searched to see if n has
already been allocated. If not, then MAINSAIL allocates it. In
any case, the pointer in m"s data section reserved for n is then
set to point to n"s bound data section.

Interface Procedure Access

When an intermodule call is made from module m to a procedure in module

n, a machine-dependent routine referred to as the "intermodule caller”

is given control. It is passed the offset in m"s data section to the

module pointer reserved for n (this offset is assigned by the compiler)

and the offset In the entry vector of n°"s code section for the procedure
- to be called.

IT the module pointer is non-Zero, then linkage has already been
established.

If" the module pointer is Zero, then the intermodule caller automatically
allocates n (if it has not already been allocated), and sets the pointer
in m"s data section reserved for n to point to n"s data section.

The procedure to be called can then be accessed indirectly via the
pointer to n"s data section. The data section contains a pointer to n's
module descriptor, and the module descriptor specifies the location of
the control section (which may need to be brought into memory). The
given offset in the entry vector of the control section is then used to
give control to the appropriate procedure.
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Interface Variable Access

When m accesses an interface variable in module n, the generated code
examines the module pointer to n"s data section from m"s data section.
If it is Zero, then linkage has not yet been established from m to n,
and MAINSAIL will report a runtime error (the design allows automatic
linkage to be provided at this point, as for procedures, but it has not
been implemented for code-generation efficiency reasons). Otherwise,
the value of the interface variable is obtained by offsetting the
appropriate amount from the base of n"s data section. Thus access to an
interface field, m.f, 1is essentially identical to access to a record
field, p.f, where p is an own pointer.

3.3 ARRAY IMPLEMENTATION

Arrays are represented by a two-chunk structure: a descriptor chunk
and an element chunk. The descriptor chunk has the following form:

ARRAY DESCRIPTOR

e i T P PP +
| garblink | ADDRESS
| NOLLPONTER, s |
chunkPtr ” POINTER
emeits e
_trueOrigin .. || POINTER
}_f_lf[‘_ay!‘_a["f* _____________________ \l STRING
_arraySize ... |‘ INTEGER
.arraylype .. || INTEGER
l dimension H INTEGER
| Tt |
bounds descriptors i

chunkPtr tells the virtual origin of the array (the address of the
possibly non-existent element with all subscripts equal to 0). This
value is used in the calculation of the address of subscripted
variables.
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chunkBits identifies the chunk as an array descriptor and specifies
the size of the descriptor.

The trueOrigin points to the element chunk: arrayName gives the name of
the array: arraySize gives the size of the element chunk; arrayType
tells the data type of the array"s elements; and dimension gives the
number of dimensions.

Bounds descriptors give the information necessary for performing bounds
checking and for element access. Each bounds descriptor gives the lower
bound, the upper bound, and the multiplier used in the calculation of
array element locations.

Row major storage is utilized. The address of the element with indices
xl,..., Xxn (where n is the dimension of the array) is

displace(virtualOrigin,ml*x1 + . _ _ + mn*xn)

where displace(a,b) displaces address a by b address units, and mi is
the multiplier for the ith dimension. mi is equal to

w*s[i+1]* . . . *s[n] (
(

w

where w is the number of address units per array element, and s{i] is
the number of elements in the ith dimension.

The element chunk contains the array elements. Its size is determined by
the total number and type of the array®s elements. The form of an
element chunk is as follows:

ARRAY ELEMENT CHUNK

i e T +
| garbLink | ADDRESS
|mTTT T |
| dscrLink | POINTER
I LR e e e il it i i ||
| elements |
| |
B T T P Uy +

The dscrlLink points to the array®"s descriptor chunk.

An array variable is simply a pointer to the array descriptor. Arrays
may be assigned, passed as parameters, and compared. In each case, only
the pointer to the array descriptor takes part in the operation (rather
than the elements of the array). Thus a single array descriptor may be
pointed to by many array variables.

In contrast with some languages, array allocation is not tied to
syntactic structure. Arrays are allocated dynamically by explicit calls
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to the MAINSAIL array-allocation procedure.

When an array is allocated, 1its descriptor and element chunks are
created and the array variable specified to the allocation procedure 1is
pointed at the array descriptor.

Arrays may also be explicitly deallocated when they are no longer
needed. When an array is deallocated, its descriptor and element chunks
are put on free chunk lists (see 4.6) specifiying that their

storage is available for reuse.

3.4 CLASS AND RECORD IMPLEMENTATION

Classes provide a description of a records™ fields. At compiletime they
provide the syntactic mechanism for defining and referring to the fields
of records. At runtime, the class descriptor provides information
necessary fTor record allocation and garbage collection. All collectible
objects (string descriptors and pointers) within records of the class
must be accessable to the collection process and the class descriptor
provides the necessary information.

CLASS DESCRIPTOR

et Tt +

| garbLink | ADDRESS
|weonrer

|_;;L_l;|-(.|;;.; ______________________ | POINTER (classDscr) .
ohankies T | BITS

The MAINSAIL runtime system maintains a list of all class descriptors.
The chunkPtr field of descriptors is used to link them together.

chunkBits indicates that the chunk is a class descriptor and also gives
the size of chunks for records of this class. The field descriptors tell
the data types of all the fields of records of the class, in order.

Each record is an instance of a particular class. A record chunk
contains the values of the fields of the record:



STRING IMPLEMENTATION 3.5

RECORD
e L L PP +
| garbLink | ADDRESS
|"TTTTT T |
| dscrLink | I POINTER
| ST ||
| Fields |
| |
B et ettt +

The dscrLink points to the record®s class descriptor. It is used by the
garbage collector to access the class descriptor to determine the
characteristics of the record.

Records are dynamically allocated by explicit calls to newRecord, the
record-allocation procedure. A class descriptor is created whenever a
newRecord is performed on a class that does not yet have a class
descriptor. Class descriptor and record allocation are implemented as
follows. b

As introduced in 3.2" there is a pointer allocated in the data
section of a module for each class ¢ for which new(c) occurs in the
module. These '"class pointers” are reserved for pointing to the

. appropriate class descriptors. They are each initially NULLPOINTER.

The compiler generates the offset to the appropriate class pointer
as the argument to newRecord. Whenever a newRecord is done, the record
allocation procedure examines the class pointer at the given offset. If
it is NULLPOINTER, then the allocator searches the list of class
descriptors to see whether or not one already exists for the class. If
not, it creates one by using the same offset to access the class table
in the module®s descriptor section to obtain the information necessary
to create the descriptor. This new descriptor is then added to the list
of class descriptors. Once the class descriptor has either been found or
created, the record allocator then initializes the class pointer to

- point to the descriptor.

In any case, a new record of the given class is then allocated using
the information in the class descriptor.

3.5 STRING IMPLEMENTATION

Certain memory pages, collectively referred to as 'string space', are
used to store the characters of strings. String space is described in
4.0.

A string variable is implemented as a 'string descriptor”™ that gives the
currentlength (number of characters) of the string and the location in
string space of its starting character. The assignment of one string to
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another only involves assigning the string descriptor®™ not copying the
characters. Thus the same sequence of characters may be referenced by
many string descriptors.

The text of all the string constants used in a module is allocated in
the descriptor section. ITf the MAINSAIL system were static, then the
characters in the descriptor section could be directly referenced by
string variables. But since control sections may be dynamically swapped
and moved in memory, the descriptor section is a moving target, and
hence is not appropriate for string-variable reference.

In general, whenever a string constant is used, its characters are
copied from the descriptor section into string space, and a string
descriptor is created for the copied text.

MAINSAIL avoids copying string constants iIn two specific situations, for
efficiency: when a string constant is written to a file or to a

terminal, the text is copied directly from the descriptor section to the
file or terminal. Additional optimizations could be added, for example a
comparison involving a string constant need not copy the text into
string space.

3.6 PROCEDURE CALL, ENTRY, EXIT, RETURN

Due to the nested behavior of procedure calls, stacks are natural data
structures to be used for the allocation and deallocation of procedure
parameters® return addresses, and local variables.

Conceptually®™ a MAINSAIL implementation maintains two stacks: one for
local variables (including procedure parameters), and one for return
addresses. In reality, there may be from one to three stacks for local
variables, depending on the particular code generation strategy adopted.
The reason for more than one local-variable stack is to facilitate the
processing of pointer and string variables by the garbage collector.
That 1is”™ there could be three stacks (one for pointers® one for strings”
and one for all other data types), two stacks (one for *collectible”
items -- pointers and strings -- and the other for all other items), or
a single stack containing all data types. In each case, a machine-
dependent strategy is used to identify accessible pointers and strings
during garbage collection.

For each stack, there is a pointer to the "top'™ of the stack (the
location of the last element pushed onto the stack). All elements on

the local-variable stack(s) are referenced as displacements from the
current top of the stack. The displacements are assigned by the
compiler. Since procedures cannot be statically nested, and since all
parameters are passed by value®™ only the local variables for the current
procedure can be accessed on the stack. i.e., there is no "up-level”
addressing.

The RETURN STACK contains a sequence of return addresses, pushed upon
nested procedure invocations. In addition, every time an intermodule
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call is made, a pointer to the base of the caller®s data section may
be pushed onto this stack (this is a machine-dependent decision).

Control sections may sometimes be moved in memory. Whenever they are,
the return addresses must be correspondingly adjusted. The information
required to properly adjust the addresses can be determined via the
data sections; each data section points to the corresponding module
descriptor, which specifies the former and current locations of the
module®s control section. From this information, the correct new return
addresses can be calculated.

The method by which the runtime system distinguishes between return
addresses and pointers to data sections saved on the return stack is
machine-dependent.

The LOCAL VARIABLE STACK (or stacks) is a sequence of 'procedure
frames'", each consisting of the parameters and locals for a specific
procedure. When a procedure is invoked, 1its parameters are pushed,

and then space is allocated for its local variables. All parameters

of the same type (USES, PRODUCES, or MODIFIES) are allocated together.
The exact order in which they are allocated (e.g. uses-modifies-produces
or modifies-uses-produces) depends on the implementation.

’AMPLE LOCAL VARIABLE STACK

I
will be |
local variables | | callee's procedure

"""""""""""" | |-- frame being built .

current ----- >[I produces parameters | during procedure call
top of  |TTTTTTTTTTTTTTTTTTTTTTT |
stack uses parameters |

modifies parameters |

|
I
I
I
_______________________ |
"""""""""""" | ==+
I
I
I
I

I
local variables |
_______________________ I
I
produces parameters | I-- caller”s
----------------------- | | procedure frame
uses parameters | |
——————————————————————— ]
modifies parameters |
===============:=======I ———

older procedure
frames



PROCEDURE CALL, ENTRY, EXIT, RETURN 3.6

Local Procedure Invocation

Local procedure invocation is described below. For the sake of
discussion, an implementation with a modifies-uses-produces order of
parameter pushing is described. Note that this description is target-
independent, and hence the details of its implementation will vary among
implementations. Generally speaking, MAINSAIL is quite efficient with
regard to procedure entry and exit, with often just one or two
instructions upon entry and exit to allocate and deallocate the
procedure frame.

A local procedure call involves the following steps:

1) Push any modifies parameters onto the proper stack(s).

2) Push any uses parameters onto the proper stack(s).

3) Push the return address onto the return stack (often part of
the next step).

4) Transfer to the target procedure.

Procedure entry involves the following steps:

1) Allocate space on the stack(s) for any produces parameters.
2) Allocate space on the stack(s) for any local variables.

Procedure return involves the following steps:

1) Adjust the stack(s) to "deallocate" the locals.

2) IT there are any uses parameters, but no produces parameters,
then adjust the stack(s) to "deallocate”™ the uses
parameters.

3) Pop the return address off the return stack, and return to the
calling procedure.

Upon return:

1) Pop any produces parameters.

2) Adjust the stack(s) to deallocate the uses parameters (if not
already done).

3) Pop any modifies parameters.

Produces parameters are assigned locations adjacent to the incoming
parameters, as shown in the above diagram. If the procedure is typed,
then the result is treated as if it were an additional produces
parameter of the proper type.

On most conventional machines utilizing registers, the "rightmost™

(as written in the argument list) produces or modifies parameter (if
any exist) is put in a designated register prior to the return from the
procedure. 1f the procedure is typed, then the result is taken as the
"rightmost™ produces parameter. Thus if a procedure is returning any
values to the point of call, one of them will be in a register. The net
effect is that step 2 of the return sequence almost never occurs, since
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the called procedure is able to adjust the stack(s) to remove all uses
parameters.

Inte rmodule Procedure Invocation

An intermodule procedure call involves a context switch from the module
containing the call to the module being called. Again, for the sake of
discussion, an implementation with a modifies-uses-produces order of
parameter pushing is described.

An intermodule procedure call from module m to module n involves the
following steps:

1) Push any modifies parameters.

2) Push any uses parameters.

3) Push the return address onto the return stack and transfer to
the intermodule caller, with the target procedure index
(in the entry vector) and the target module pointer p (if
the call has the form p.f) or offset to the module pointer
m (if the call has the form m.f) as parameters. The
intermodule caller carries out the remaining steps.

4) Push db (the base of m"s data section) onto the return stack.

5) Let p represent the module pointer allocated in m"s data section
for referring to n°"s data section. If p is NULLPOINTER,
then allocate n (if it has not already been allocated) and
initialize p to point to n"s data section.

6) Bring n"s control section into memory if necessary.

7) Update n"s age counter.

8) Set db to p.

9) Set cb (base of m"s control section) to base of n's
control section.

10) Transfer to the target procedure via the entry vector.

Procedure entry is the same as for a local procedure call.
Procedure return involves the following steps:

1) Pop the return address off the return stack.
2) Bring m"s control section into memory if necessary.
3) Update m"s age counter.
4) Pop the saved data base off the return stack and into db.
5) Set cb to the base of m"s control section.
6) The remaining steps are the same as for a local procedure call.



SECTION 4 MEMORY MANAGEMENT

The MAINSAIL runtime system handles all aspects of memory
initialization, organization, and maintenance during the execution of a
MAINSAIL program. These runtime functions are described in this section.
These functions are at a "lower level" than those described in the
previous section.

4.1 VIEW OF MEMORY

MAINSAIL assumes that it can use a single contiguous portion of memory
which it organizes into pages of fixed size corresponding to operating-
system dependent pages:

pageNumber
o +
0 | |
e e +
1 | |
o e e +
2 | |
e +
3 | |
e e +
| |
| |
o e +
n | |
b e e T +

Each page is one of five types:

Free pages pages which are not currently being used.
Control pages control sections.
Static pages storage which cannot be moved once allocated. A

typical use is for file buffers (56.3).
String pages string characters,

Chunk pages chunks: records, arrays, data sections,
descriptors, and free chunks

MAINSAIL maintains a '"page map' containing one element for every page of
memory. Each page map element contains an integer code telling the type
of the corresponding page. For every group of adjacent memory pages that
comprise a unit (e.g. for a control section), the page map element for
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the first page contains its integer code, and the continuation pages are
specified by having their corresponding map elements contain the
negative of this code.

Chunk, static, and string pages are collectively referred to as 'data
pages'”. Control pages are allocated at one end of memory. Data pages are
allocated at the opposite end of memory. Thus control and data pages
grow towards each other, with free pages in between (free pages will in
general also be located among the data and control pages):

free pages

| control pages |

No control page may be allocated below the highest data page, and
correspondingly, no data page may be allocated above the lowest control
page. What happens when there isn"t enough room at the appropriate

end of memory for pages that need to be allocated is described in
section 4.4.

4.2 KERNEL

The "kernel™ 1is a basic runtime module which is always resident. It is
the only module which is ™"linked" by the host system linkage editor.
This is necessary since it is the module which initially gains control
from the operating system, and thus cannot itself be brought into memory
by MAINSAIL.

Since the kernel is permanently resident, an attempt has been made to
keep it as small as possible. The kernel contains only those functions
which cannot exist in a swapped control section. For example, page
maintenance is the most primitive form of memory management® and the
necessary algorithms are contained in the kernel. The intermodule
calling mechanism and data section initialization also reside in the
kernel .*
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EXECUTION INITIALIZATION 4.3

Both the memory management procedures and the data section
initialization require i/0 support. The kernel must contain the
procedures to open, close, read and write host system files containing
control sections. It must also be capable of opening the "swap file”

(4.5).

4.3 EXECUTION INITIALIZATION

The mechanism which obtains control from the host system and initiates
the execution of MAINSAIL is termed the "runtime initializer™.

The kernel and the runtime initializer are first brought into memory in
an implementation-dependent manner. This process also specifies

desired values for 'configuration parameters™ that must be initialized
for each implementation. These parameters include:

1) initMaxPageAdr -- the address of the memory page that is to
initially be the highest page utilized.

2) pageLimitAdr -- the address of the last word of the absolute
highest memory page that could be utilized, should the initial
memory allocation be insufficient.

3) initStrPages -- the number of string space pages to allocate
initially.
4) strPageInc -- the (minimum) number of string space pages to add

whenever the current allocation is insufficient.

5) swapFileName -- the name of the file to be created for storing
swapped-out control sections (4.5). It is created the first
time a module is swapped out, which rarely occurs on machines
with sufficient address space.

6) chunkPageInc -- the number of new chunk page allocation requests
that can be made before a garbage collection is to be triggered
(4.6).

7) sizes for machine-dependent stacks (3.6).

Once the kernel and the initializer are brought into memory, the
initializer is executed. It must perform the following functions:

1) Get the initial memory allocation from the operating systenm,
asking for enough pages to have the initial maximum page address
be initMaxPageAdr.

2) Allocate any stacks.

3) Allocate the kernel®s module descriptor and data section.

4) Allocate the pageMap and the chunkTbl (containing lists of free
chunks, described In 4.6) on static pages.
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5) Bind the garbage collector module, so that its data section is
already allocated should a garbage collection occur.

6) Open cmdFile and logFile to the terminal.

7) Invoke the top-level kernel procedure, which identifies MAINSAIL
to the user, and initiates the execution of the module
subsequently specified by the user. Note: a means is provided
whereby the runtime initializer can contain the name of the
first user module to be given control.

Since the initializer code is only executed once, it is desirable to
reclaim the memory it uses for other purposes. This effect can be
obtained by having it initially brought into memory at a location
which will be specified In the page map as being free, and thus which
will subsequently be used for other purposes.

String space is automatically allocated upon demand.

4.4 PAGE ALLOCATION

As mentioned in 4.1, a page map is maintained to keep track of

the current use or availability of each page. When new pages of a given
type need to be allocated, this map is used to select free pages, and
then the corresponding elements of the map are set to the code of the
appropriate page type.

This section describes the allocation of memory pages. Allocation and
deallocation of components of chunk and static pages are described in
sections 4.6 and 4.7. String space is described in 4.8.

The allocation of control and data pages are handled separately.
1) Control Page Allocation

Whenever a control section of size n needs to be brought into memory, n
" contiguous free pages above the current highest data page must be found
for it. There are three possibilities:

a) If there exist n contiguous free pages, then they are used for
the control section.

b) Otherwise if there exists at least n total free pages (again,
above the highest data page), then control pages are moved in
memory to make n contiguous pages. The compaction algorithm
determines and®utilizes the compaction which minimizes the
number of pages which must be moved.

¢) If there are not n total free pages above the highest data
page, then an attempt is made to swap out control sections
until there are n total free pages.
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The swap out algorithm searches the modDscrList (see 3.2) to find

the oldest (according to the module descriptor age field) swappable
module with a memory-resident control section. If one exists, then its
control section is swapped out of memory (4.5), and the pages it had
occupied are marked as free. The module swapper continues swapping out
the oldest control sections until either n total free pages are thereby
obtained, or there are no more modules that can be swapped. In this
latter case, the operating-system-dependent procedure mdMorePages

(6.2) is called to try to obtain enough more memory pages from the
operating system to have a total of n free pages. If mdMorePages fails,
then an "Insufficient memory" message iIs given, and execution
terminates.

If at least n pages become free as a result of swapping, then control
pages are compacted if necessary to obtain n contiguous pages.

MAINSAIL will continue to execute as long as there is room for the data,
the kernel, and the largest control section being utilized, though it
will spend most of its time swapping modules into memory if memory space
is too scarce.

2) Data Page Allocation

Whenever n data pages need to be allocated, a search of the pageMap is
made for n contiguous free pages below the current lowest control page.
There are two possibilities:

a) |If there exist n contiguous free pages, then they are used.

b) Otherwise the lower bound of control space must be moved up
enough to leave n contiguous free data pages. Note: there
is currently no data space compaction, though the design allows
for it.

If there are at least n total free pages above the current highest data
page, then as many control pages as are necessary are moved up in memory
(compacted) until there are n free pages between the current highest
data page and the new lowest control page.

If there are not n total free pages above the current highest data page,
then an attempt is made to swap out control sections to obtain enough
free pages. If the swap out algorithm, as described above, fails to
obtain enough pages, then mdMorePages is called. If it fails, then
execution terminates. Otherwise, control space is compacted as described
above.
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4.5 MODULE SWAPPING

Control sections may reside singly in files, or may be grouped together
into a "library" file. Control sections residing alone in a file are
handled differently from those residing in library files.

Whenever the space for a memory-resident control section needs to be
reclaimed as a result of the situations described in 4.4, a control
section residing in a library file is not physically swapped out.

Rather, the memory pages it occupies are marked as free, and the module
descriptor fields are adjusted to specify that the module is no longer
in memory. Subsequent requests for the control section will again obtain
it from the library file, which stays open throughout execution until it
is explicitly closed by the program.

The runtime system opens a Ffile containing a single control section only
once during a MAINSAIL execution. The first time that such a control
section (one residing in a non-library file) needs to be swapped out, a
file called the "swap file" is created. The name for this file is
specified as a configuration parameter (4.3). The control section is
written to the swap file, the module descriptor fields are adjusted to
indicate the control section resides in the swap file, and subsequent
requests for the control section will obtain it from this file. All
control sections that need to be swapped and that reside in non-library
Ffiles are similarly written to the swap file. Thus, later references to
such a control section can simply read it out of the swap file instead
of reopening the control section®s original file. In a sense, the swap
file is like a dynamically created library file. The swap file may be
created on a special high speed device, if available (e.g. bulk memory),
so that swap time will be minimized.

IT a library file is closed, any of its allocated modules whose control
sections are not in memory are automatically brought into memory, and
disassociated with the library. The next time such a module is swapped
out, it will be copied to the swap file, as described above. If all
active modules have been obtained from still-open libraries, then no
module is ever physically copied from memory. This is the case with
all the MAINSAIL system modules (which are contained in a single
library) and all the compiler modules (which are contained in one
library of the target-independent modules and one for each code
generator). Thus the user is encouraged to put the modules of a
multi-module program into a library, to avoid use of the swap file.

4.6 CHUNK ALLOCATION AND DISPOSAL

As described in Section 3.1, records, arrays, data sections, and
descriptors are represented by chunks. Whenever any of those data
structures is disposed (freed) by a program (or by the garbage
collector), its chunk can be reused by later chunk requests.
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In order to indicate that the chunk is no longer being used, it is
formatted into a "free chunk'™, and then placed on a list of free chunks.
The following diagram gives the general format of a free chunk:

FREE CHUNK
e L +
| _garbLink | ADDRESS
[ NULLPOINTER o ieiinse- “ POINTER
‘_9[‘99'}?}_“ ______________ \| POINTER
} chunkBits = 0 |‘ BITS
‘ free chunk size e INTEGER

|
I
free space |
|
|

As for all chunks, the first two fields are the chunk header. The first
is used by the garbage collector. The second is NULLPOINTER to indicate
that the chunk is self-descriptive. The chunkPtr field links the chunk

onto the free-chunk list, and chunkBits = 0 specifies that the chunk is
a free chunk.

The next field tells the size of the free chunk body (i.-e./excluding.
the chunk header). 1t is in a field by itself (rather than combined with
the chunkBits code®” as for other self-descriptive chunks) since free
chunks might be large (e.g." from a large disposed array) and hence the
size might not fit in the information field of chunkBits, which is
guaranteed to be only 12 bits.

The rest of the chunk is cleared before the chunk is added to the free
list.

The "free list" is actually a group of linked lists. For each size
chunk (up to a maximum called maxSmall1Chunk), there is a list of free
chunks of that size. One additional list is maintained (the "big free
chunk list"), for chunks larger than the maximum. The addresses of the
first chunks of all the free lists are maintained by the runtime
system in what is referred to as the "chunkTbl".

The list of all free chunks of size 5, for example, could be pictured
as follows (where the box on the left represents the chunkTbl element
referencing the first chunk on the list of chunks of size 5):
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This free list structure allows for the rapid recycling of disposed
chunks. Whenever a new chunk needs to be allocated, there may already be
one of the appropriate size in one of the free lists. If there is an
available free chunk of the exact size, then that chunk is taken off its
free list and used. Otherwise,if there is a large enough free chunk on
the "big free chunk list"™ (Ffirst fit algorithm), then it is split into
two chunks: whatever is not required for the new chunk is put back on
the free list -- on the appropriate "small free list” if it"s small
enough and the list is not empty, and on the "big free chunk list"
otherwise. (Note: it is insisted that the small list not be empty to
avoid putting chunks onto small free lists that do not correspond to
record sizes being used by the program).

IT no free chunk is found by the above method, then the minimum number
of needed contiguous pages are allocated as chunk pages (note: a garbage
collection may first occur at this point, as described below). A chunk
of the required size is allocated from these pages, and the remainder of
the (last) page is placed on the appropriate free list.

A configuration parameter called chunkPagelInc (4.3) is used to trigger
a garbage collection every chunkPageInc'd time that new chunk pages are
allocated. The collection will compact string space and free all chunks
that are no longer referenced® as described in 4.9. In this case, the
chunk allocation algorithm is re-entered to see if a chunk of the
appropriate size has been freed by the collection.
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4.7 STATIC ALLOCATION AND DEALLOCATION

Static pages are used for storage which cannot be moved once allocated.
A program can request an entire static page, or a specified portion of a
static page® referred to as 'scratch space", though such requests are
relatively rare, especially from user modules.,

The MAINSAIL runtime system maintains a list of currently unused
portions of static pages. Each unused portion of a static page is
referred to as a "'scratch block™. The first storage unit of a scratch
block specifies the address of the next scratch block on the list, and
the second storage unit specifies the size (number of storage units) of
the scratch block.

When scratch space of size n is requested by a program, the list of
scratch blocks is first searched for one of size n or greater. If there
is such a scratch block, then it is taken off the list. n storage units
of the scratch block are then allocated for the scratch space, and
whatever portion remains (if any) is put on the list of scratch blocks
by the appropriate setting of its first two storage units.

If no scratch block is large enough to satisfy the scratch space

request, then a new static page is allocated. n storage units of the new
page are allocated for the scratch space™ and whatever portion of the
page is left over (if any) is put on the list of scratch blocks.

When a program no longer needs some scratch space, it can explicitly
dispose it. When scratch space is disposed, it is put on the list of
scratch blocks. If this results in a page containing nothing but scratch
blocks, then this page is disposed (marked in the page map as free).

4.8 STRING SPACE

"String space” 1is a collective term referring to the pages of memory
used for storage of the characters of strings.

String space consists of one or more "string blocks™. The first time
string space is needed, an initial string block consisting of
initStrPages (4.3) pages is allocated. Additional blocks, of size at
least strPagelnc, are dynamically allocated as needed.

To facilitate garbage collection, as described in 4.9, each block

is conceptually divided into fixed-size sections called "parcels™, and
each parcel 1is divided into "pieces”™, each of which consists of a
specific number of characters. Typically®™ a parcel consists of n pieces
where n is the number of bits per word. For example, an implementation
on a machine with 32-bit words would likely choose a parcel to be 32
words®™ and a piece to be one word, consisting of 4 characters.
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STRING BLOCK

| --- parcel

Associated with each block is a record specifying information about the
block, including the charadr of its First character, the size of the
block, the number of free character positions remaining in the block,
and the first free character position in the block. A list of the
records for all currently-existing string blocks is maintained.

One of the blocks is always considered to be the "current” one. When a
string of n characters is to be added to string space, the characters
are added starting at the first free position in the current block, if
there is enough room for them in that block. If there is not enough room
in the current block, then the list of string blocks (or, more

precisely, the list of records associated with the blocks) is examined
in an attempt to find a string block with at least n free characters. If
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such a block is found, the block becomes the current block, and the
characters are put into it.

If there are no string blocks with enough free character positions,
then a garbage collection is done, as described in 4.9. Collection
disposes of characters that are no longer referenced by any string
descriptors, and compacts string space so that all the characters that
are still being referenced are pushed down to one end of string space.

If the garbage collection does not free a significant number of
characters (in particular, if it does not free at least n characters),
new data pages are allocated to be used as a new string block. The
number of pages allocated is the maximum of strPagelnc and the number of
pages required to contain n characters.

4.9 GARBAGE COLLECTION

A number of languages do not provide garbage collection. MAINSAIL does
primari ly because of the generality of the string data type. Explicit
string disposal would not only be inconvenient from the programmer®s
viewpoi nt, but also would raise implementation questions as to how freed
characters could be marked as available and used for subsequent strings.

Inaddition to string collection, MAINSAIL"s garbage collector collects
pointers, or more precisely, data structures (chunks) referenced by
pointers. Itis not necessary that they be collected, since explicit
disposal is provided, and thus could be required in order to reclaim
their space. There are basically two reasons that MAINSAIL does chunk
collection. One is that, by guaranteeing collection when necessary,
MAINSAIL frees the programmer from being required to know precisely
when each record, array and data section is no longer referenced, and
thus may be freed. Inreality, most programs should be able to determine
this information (for example, the MAINSAIL compiler and runtime system
explicitly dispose of all the data structures they use).

The second reason for having chunk collection is that string collection
requires examination of all used chunks anyway (see below), so there is
not much overhead in also marking the used chunks and freeing unmarked
ones.
Garbage collection involves the following steps:
1) Mark all accessible characters in string space, and all
accessible chunks. A chunk is accessible if any accessible

pointer references it, and string character is accessible if
any accessible string descriptor references it.

2) Compact string space.
3) Adjust all string descriptors.

4) Find all unaccessible chunks and rebuild the free chunk lists.
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The additional conceivable steps of compacting chunk space and adjusting
all pointers are not currently implemented.

1) The marking of chunks and of characters in string space

The reason that string collection requires examination of all chunks
currently being used is outlined by the following. In order to do string
collection, all string descriptors must be found. To find all string
descriptors, all data structures (chunks) that could contain string
descriptors must first be found.

A recursive process following all pointers on the return and appropriate
local variable stack (3.6) is all that is required to examine all used
chunks. That is, for each pointer on each stack, the chunk pointed at by
the pointer is marked as being used, and the characters referenced by
all the string descriptors in the chunk are also marked as described in
(2) below. The pointers in each such chunk are followed to mark the
chunks they reference and the string descriptors within those chunks,
and so on.

The "marking” of a chunk is done via the garblLink field, which is the
initial field of all chunks, as introduced in 3.1. For unmarked
chunks, this field is Zero. To mark a chunk, the garblLink field is
set to the address of the previous chunk that was marked (or to an
initial non-Zero "dummy"™ value for the first chunk marked).

This method of marking thus performs two functions: marking all used
chunks, and linking them all together to facilitate step 3, below.

The marking process also processes each string descriptor on the
appropriate local variable stack.

2) The marking and compaction of string space

When the collector finds a string descriptor, as described above, the
characters it refers to must be marked as being used. After all string

" descriptors have been found, string space is 'compacted". That is, all
the used characters are pushed down through string space as much as they
can be (replacing unused characters), so that up to a certain point of
string space, only used characters exist. Then all the remaining space
in string space is free to be reused. Finally, all string descriptors
are updated to refer to the adjusted character positions.

The marking of used characters is described by the following, and the
updating of string descriptors is described in (3) below.

Corresponding to each character in string space there could be a single
bit. To mark the characters referred to by a string descriptor, the
corresponding bits could be turned on. But this would require a
considerable amount of extra space (one bit for every character). String
garbage collection does not have to be exact. That is, the purpose of
collection is to free some memory, but it is acceptable to leave some
unused characters in string space. Thus, the implementation maintains
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one bit for every piece (4.8). which in general consists of several
characters. Suppose each piece consists of m characters. If any of those
m characters is used, the corresponding bit gets turned on. When string
space is compacted, groups of m characters whose bit is turned on get
moved as a unit, since it is impossible to discriminate which of the m
characters are actually used.

After the compaction of string space (described further in (3) below),
all string blocks that have become empty are freed (their pages are
marked in the page map as free). The '"current" string block is set to
be the one with the most free characters.

3) Adjusting all string descriptors

String descriptors cannot simply be updated as characters are moved. In
order to do that, for each character moved, either all string
descriptors which refer to it would have to be searched for, or a large
data structure would have to be built up during the marking of string
descriptors, to specify all the descriptors that refer to each
character.

Thus, it is desirable to first compact string space, and then search
memory to find and update all string descriptors in one pass. What is
required is a specification of where each character has been moved.

Corresponding to each piece (i.e. to each of the bits described in (2)
above), there could be an address specifying the new location of the
first character in the piece. Then a string"s new starting charadr could
be calculated as the character address of the corresponding piece plus
the number of characters in the piece that precede the first character
of the string.

This data structure (consisting of one address for every piece) would
consume an undesirable amount of space. So a reduced data structure

has been implemented. It has an address corresponding to every

parcel, 1instead of every piece. Thus the charadr of the first character
of a string can be calculated as the new address of the corresponding
parcel PLUS $pieceSize (6.1) times the number of active pieces (ones
that have been marked) which precede the string within the parcel PLUS
the number of characters in the piece that precede the first character
of the string. This requires the ability to quickly determine the number
of I-bits iIn a masked bits variable, where the I-bits correspond to the
piece marks. The code to determine this count has been left machine-
dependent since some machines have single instructions to count I-bits.

To update all string descriptors, the list of all used chunks that was
built as described in (1) above is examined. All string descriptors in
each chunk on the list are updated as just described. After each chunk®s
string descriptors have been updated, the chunk"s garbLink is set to
Zero so i1t is properly initialized for the next garbage collection.
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4) Rebuilding the free lists

The lists of free chunks (4.6) are rebuilt as follows. All the
individual chunks contained in all chunk pages are examined by making a
linear scan of chunk space. Each chunk that has been marked is simply
skipped over. Unmarked (free) chunks are added to the appropriate free
list. However, adjacent free chunks are first combined if the resulting
chunk size would be greater than maxSmallChunk. Any complete pages
obtained in this manner are freed (they are marked in the page map as
being free), and the remaining free chunks are placed on the appropriate
list.



SECTION 5 FILE SYSTEM

MAINSAIL employs a simple yet powerful view of a file system whose
operations are guaranteed to be implemented for every MAINSAIL
implementation. This section describes the file model employed, and then
outlines how that model is implemented.

5.1 FILE MODEL

A file may be viewed as a sequence of cells numbered O, 1, 2, . . . . If
the File is a text file, then the cells are characters. Otherwise, the
file is a data file, and the cells are storage units. A storage unit is
the basic measure for the amount of memory required by the various data
types -- e.g. it may represent a "byte" or a "word", though these
concepts are not used by MAINSAIL.

For each file, there is a file pointer that is always positioned at one
of the cells, referred to as the "current cell™.

file position pointer

When a file is created, the cell contents are initially undefined. When
a File is opened, the current cell is number 0, i.e., the file pointer
is positioned at cell O.

The following primitive operations are defined on a file f:

v = read(f) set v to the value in the current cell,
position the file pointer one cell to the right.
write(f,v) write v into the current cell, then position the

file pointer one cell to the right.
n := getPos(f) set n to the number of the current cell.

setPos(f,n) position the file pointer to cell number n. n
must be greater than or equal to O.

relPos(f,n) position the file pointer n cells to the right
(if n > 0) or left (if n < 0).

Each file has an end-of-file position (the last position in the file
to which a value has been written). eof (end-of-file) is the condition:
getpos(f) greater than or equal to end-of-file position.

then
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5.2 IMPLEMENTATION MODEL

A simple approach to implementing the file model is to write a machine-
dependent procedure for each of the primitive operations defined above.
In fact, this was done in early implementations of MAINSAIL. But many
operating systems do not have instructions corresponding to those
primitives, so that algorithms had to be devised for maintaining file
buffers. In writing the machine-dependent procedures for various
implementations, it became clear that the algorithms needed to implement
the procedures on different machines were conceptually quite similar;
the i1deas could be abstracted out from the machine-dependent code.

For these reasons, i1t was decided to add more structure to the file
model, thereby increasing the amount of file-handling code that could be
made machine-independent, and reducing the machine-dependent amount.

This expanded model adds the concept of a "window" into the file.
Conceptually® a portion of the file is always visible through a
"window". In order to reference a cell in the file, the window must
first be associated with a portion (machine-dependent file "block'™) of
the file that includes that cell.

WINDOW

The window (or "buffer'™) is a machine-independent concept, and the
procedures corresponding to the primitive operations can be written in
MAINSAIL to actually deal with the window rather than the file directly.
The only machine-dependent code now required is that to open and close a
file (which would be necessary under any model), and that to handle the
"movement'" of the window, or its association with various parts of the
file. This code resides in a '"device module” (5.4).
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5.3 RUNTIME REPRESENTATION OF FILES

For each file that is open at any given time, MAINSAIL maintains a
“file buffer” which implements the window concept®™ and a "file record”
providing information needed to access the file via the buffer. The
buffer®s location and size are known to the machine-dependent "‘window
association" procedure, $devNewBuf, as are the fields of the file
record.

References to a file are actually done via the file buffer rather than
directly to the file itself. At all times, the buffer is associated with
a portion of the file.

The steps that $devNewBuf must use to associate the buffer with a new
portion of the file are:

1) If the buffer is "dirty"” (if anything has been written into it
since its last association), then first write the buffer to the
corresponding file locations. For some operating systems, the
window concept is literally the case, so that the buffer can in
fact be visualized as part of the actual file, and no explicit
write operation is needed.

2) IT the new portion of the file has anything written in it, then
read ('map” on some operating systems) from that portion of the
file to the buffer.

3) Update the file record fields bufPos, filledSize, and remSize
(see 5.5).

Device modules, which contain the machine-dependent file-handling
procedures (including $devNewBuf), are discussed below. Next, the file
record and the relation between its fields and the file and file buffer
are described. Then the implementation of the primitive operations via
the file buffer is explained. Finally, different file system
characteristics and their effect on MAINSAIL"s file implementation are
discussed.

5.4 DEVICE MODULES

Each file is considered to exist on some "device.”™ The device is
specified In a machine-dependent manner as part of the file name (a
string), when the file is opened.

MAINSAIL's notion of device is very general: in fact, a device is just a
abstract concept which is implemented by a "device module™, which is a
module which performs the following functions:
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1) Open a file, establishing a link between it and the file record
and file buffer allocated for it.

2) Close a file, breaking the link.
3) Associate a portion of a file with the buffer.

These are the only functions required of a device module. However, it
may contain any number of additional procedures that might prove useful
(for example, advanced graphics handling procedures). The predefined
class which describes the three required procedure fields serves as a
prefix class to a device module declaration which adds additional
interface fields.

At least two device modules must be written for each operating system
that is to support a MAINSAIL implementation. These are referred to as
the "'disk™ and "terminal™ device modules.

The disk device module provides random, file structured i/0. The
physical device involved is usually a disk, hence the module name. The
disk device module is generally the default device module if a program
does not explicitly specify one when opening a file.

The generality of the implementation model allows a terminal to be
treated as a sequential text input or output file. The terminal device
module provides communication with the user®s terminal.

Since modules are dynamically brought into memory from a variety of
files, device modules can be added as desired, i.e. there is no need to
modify the runtime system just to add a new device module. Thus the user
can write special-purpose device modules, each of which are
automatically used whenever a file is opened and specified as being

on the given device. It is only necessary to choose a unique name for
the device which will be used in file names. For example, some file
systems use the syntax DEV:NAME.EXT for file names, where DEV is the
device name, NAME is the primary name of the file, and EXT is an
extension to identify a particular form of the file. In this case, the
machine-dependent open procedure uses DEV as the name of the device
module.

The concept of device is so flexible that a machine-independent device
module, MEM, has been written which simply maintains a file in memory
(on static pages), thereby providing "memory-resident” files. Open
simply allocates static pages for the entire file (buffer), close
disposes these static pages, and the newBuf procedure has essentially
nothing to do. To utilize such a file, the user need only specify a name
such as MEM:XXX.YYY (assuming the syntax above), with the remainder of
the program not even aware that the file is in memory. The compiler uses
such memory-resident files for the symbol table file SYM (2.2) on
machines for which there is sufficient memory.
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5.5 FILE RECORD

The file record is an instance of one of two classes, depending on
whether the file is a text or data file.

The initial fields of both the textFile and dataFile classes are the
same (and in fact are fields of a prefix class called "file™):

INITIAL FILE RECORD FIELDS

Uhandte T sndeitenandle
_device f POINTER(deviceCls)

{_ngq __________________ f STRING

_StatusBits . .. || BITS

_!EQK __________________ f POINTER(File)

{_?gf§i{? f INTEGER
f1edsize | INTEGER

{_;;;gg;; _______________ f INTEGER

—;;;;;;_ J LONG INTEGER

R G

A host-dependent data type termed a fileHandle identifies a particular
file to the operating system, thus allowing it to be accessed. The data
type declaration of the fileHandle appears in the operating-system-
dependent interface (6.2) as a macro definition of "$mdFileHandle"

to the appropriate data type. Whenever a module declares something to be
of type $mdFileHandle, the compiler substitutes the appropriate data
type name. The operating-system-dependent file opening procedure sets
the "handle™ field of a file record to the particular fileHandle value
to be used to refer to the given file.

The "device" field of a file"s record points to the data section of the
device module which manages access to the file. The name of the file is
stored as a string.

The statusBits give current status information for the file, such as
whether it"s a text or data file, and the type of access (sequential or
random® input or output or both) for which it has been opened.

The link field links together all file records.
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bufSize tells the amount of storage allocated for the file buffer.
filledSize is the effective size of the buffer, i.e. the amount of the
buffer which currently contains data.

remSize tells the amount of the "filled" part of the buffer beyond the
current cell.

bufPos tells the position in the file that corresponds to the first
cell in the buffer, and eofPos specifies the end-of-file position.

In addition to the above-mentioned fields they have in common, each of
the two file classes has two more fields. For a data file, they tell the
address of the first cell in the buffer (firstData), and the address of
the cell in the buffer that immediately follows the most recently
referenced cell (nextData). For a text file, the fields tell the charadr
(character address) of the first character in the buffer (firstText),
and the charadr of the character in the buffer that immediately follows
the most recently referenced character (nextText).

The relation between some of the fields of a file record and the buffer
for the file described by the record may be pictured by the following
diagram. The diagram pictures a text file record, but would be similar
for a data file record.

TEXT FILE RECORD FILE BUFFER

Fommm e +

| handle | Fomm e + -+- - -+
Froommmo s + +----- >| | e | |

| device | | | | | |
#omomomoomooo- + | | | |

| name | | | | | |
$ommmmoe oo + | | | I

| statusBits | | | | If |

Hoo oo + | | | i

| (file) link | | | | P I»v
#omooo e + | | | |1 Tu
| bufSize | | > | --* | e If
el + [ || | d |
| filledSize | Il | | | | S | i
Hommmmmmmmm oo Il | | |- remSize | i | z
| . remSize | Il | | | | z | e
#ommmm oo + [ | e |

| bufPos | [ . I I I
4omomom oo + I | -+ - - - -
| eofPos | Il I | |
#oomoo oo + [ | |

| firstText - + | 1 | |
e + | it + - - - - - - - - - +

| nextText |=--=m - +
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INITIALIZATION

Before a file can be referenced by a program,

it must be opened. The

file opening procedure is passed the name of the file and some bits
specifying the type of file and what kind of access is to be allowed to
it. Some of the possible bits and their interpretation in view of the

file model

When a file is opened,
record are allocated for it.

file

are:

text
data
input
output
random

records, and the fields of the new record are

handle
device

name
statusBits

link

bufSize
filledSize
remSize
bufPos
eofPos

firstText(data)
nextText(data)

the cells are characters

the cells are storage units
reading a cell
writing a cell
setPos and relPos are allowed

is allowed
is allowed

a buffer of memory for the window, and a new Ffile

is added to the list of
initialized:

The file record

the handle returned by the operating system

points to the data section of the appropriate
device module

name of the file

set according to the bits passed to the open
procedure, telling what kind of file it is
(text or data; opened for sequential or
random access; input and/or output allowed)

links the file record onto the list of all file

records
size of the buffer allocated
0
0
0

position of last "cell” in the file (returned
by open procedure); 0 if creating file

charadr(address) of start of file buffer

charadr(address) of start of file buffer
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5.7 IMPLEMENTATION OF FILE OPERATIONS

The implementation of the primitive file operations defined above in
5.1 can now be described.

1) v := read(f)

To read a cell, the value of remSize is first checked. I1f remSize is O,
then $devNewBuf (5.3) is called.

The cell is read out of the buffer position referenced by nextData (or
nextText). Then a relPos by 1 is done.

2) write(f,v)

To write a cell, the value of remSize is first checked. ITf it is 0, then
$devNewBuf is called.

The cell is written into the buffer position referenced by nextData
{(nextText), and the *dirty"™ bit is turned on in statusBits. Then a
relPos by 1 is done.

ITf remSize is then 0, $devNewBuf is called. An example of the need for
this is for terminal output. It is desirable to write characters to the
. terminal as soon as they are written into the buffer by a program. This

is done by having the bufSize and filledSize be 1, thereby causing
remSize to be O after a character is written to the buffer.

3) n = getPos(T)
The *current position”™ in a file is the one corresponding to the file
buffer position referenced by nextData (or nextText). This file
position can be exactly calculated as

bufPos + (filledSize - remSize)

4) setPos(f,n)

IT n is not in the portion of the file currently associated with the
file buffer, then $devNewBuf is called to make such an association.

NextData (nextText) is then set to refer to the buffer position
corresponding to n, and remSize is set to the number of cells between
nextData (nextText) and filledSize.

5) relPos(f,n)

relPos(f,n) is equivalent to setPos(f,getPos(f) + n).
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5.8 FILE SYSTEM DIFFERENCES

Some Ffile systems require that the size of a file (number of cells, or
more usually number of "blocks™) be specified when the file is created,
and the file cannot grow beyond this size. This conflicts with the file
model notion of a file as an infinite sequence of cells. To account for
the file size, an optional parameter is added to the file opening
procedure that allows the programmer to specify the initial size of a
file. If i1t is unspecified® but a size specification is required by the
file system, then an implementation-dependent default value is used.

Many file systems organize files as fixed-size blocks, and remember only
the number of blocks in a file, so that the exact end-of-file position .
(that is, the last position in the file that had a value written to it)
cannot be determined. The MAINSAIL system procedure "eof(f)" returns
TRUE if file f"s position corresponding to nextData (nextText) is AT OR
BEYOND the file model®s concept of end-of-file.

Some file systems have separate file organizations for sequential and
random Ffiles. MAINSAIL will use the random organization on those devices
which can support random access (even if random access was not specified
when the file was created), and thus may not be able to take advantage
of the most efficient sequential access method. However, this means that
a file that is created as a sequential file may later be opened as a
random file (and vice versa, since sequential is a special case of
random). If the file organizations are identical, MAINSAIL may choose to
optimize sequential access (if possible, e.g., by double buffering) for
the duration of a particular open if the open indicates that the file is
being opened only for sequential access.






SECTION 6 MACHINE AND OPERATING-SYSTEM INTERFACES

Inorder to bring up a new MAINSAIL implementation, the following must
be written:

1) code generators .
2) a machine-dependent interface
3) an operating-system-dependent interface

Code generation was described above in Section 2.4.

This section describes machine-dependent and operating-system-dependent
interfaces. The machine-dependent and operating-system-dependent
interfaces each consist of a small number of well-defined procedures and
constant definitions. These procedures and constants are known to the
machine-independent parts of MAINSAIL; it is simply their implementation
that is machine or operating-system dependent.

6.1 MACHINE-DEPENDENT INTERFACE

The macros known to the machine-independent parts of MAINSAIL that must
be defined by the machine-dependent interface are:

(Note: a "cell”™ occupies one address unit.)

$charsPerCell number of characters per cell

$bitsPerBits number of bits in data type BITS

$bOnes bits constant of all I-bits

$1b0nes long bits constant of all I-bits

$maxChar maximum character code

$charsPerBits maximum number of characters needed to
print a BITS

$charsPerLongBits maximum number of characters needed to
print a LONG BITS

$charsPerinteger maximum number of characters needed to
print an INTEGER

$charsPerLonglinteger maximum number of characters needed to
print a LONG INTEGER

$charsPerReal maximum number of characters needed to
print a REAL

$charsPerLongReal maximum number of characters needed to

print a LONG REAL

$mdPieceType Piece data type. INTEGER or LONG INTEGER
See 4.8

$pieceSize number of storage units (basic memory
units) required by a piece

$charsPerPiece number of characters that can be stored
in a piece

$piecesPerParcel number of pieces in a parcel (4.8)

$parcelSize $piecesPerParcel * $pieceSize
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$charsPerPage number of characters per page
$valPageMap (i) a macro which returns the value of the
ith element of the pageMap
(see 4.1)
$setPageMap(i,val) a macro which sets the value of the ith

element of the pageMap to val

$valChunkTbl (chunkSize) a macro which returns the address of
the first chunk on the chunkTbl list
(see 4.6) for chunks of size
chunkSize

$setChunkTbl (chunkSize,val) a macro which sets val as the address of
the first chunk on the chunkTbhl list
for chunks of size chunkSize

The procedures that must be written for the machine-dependent interface
are described below:

1) PROCEDURE idRead (POINTER(dataFile) fF;
PRODUCES REPEATABLE INTEGER V)
PROCEDURE bdRead (POINTER(dataFile) f; PRODUCES REPEATABLE BITS v)
PROCEDURE 1idRead (POINTER(dataFile) f;
PRODUCES REPEATABLE LONG INTEGER V)
PROCEDURE 1bdRead (POINTER(dataFile) f;
PRODUCES REPEATABLE LONG BITS v)
PROCEDURE rdRead (POINTER(dataFile) f; PRODUCES REPEATABLE REAL V)
PROCEDURE 1rdRead (POINTER(dataFile) f;
PRODUCES REPEATABLE LONG REAL V)

These procedures each read a value of v"s data type into v from the
file buffer associated with the file referenced by f (5.3).

They and the corresponding data writing procedures, described below,

- are included in the machine-dependent interface because MAINSAIL makes
no assumptions about how data is packed or aligned in file buffers. In
general these procedures are very simple, and many of them are identical
to one another since the only distinction is the size of the data item.

2) PROCEDURE idWrite (POINTER(dataFile) F; REPEATABLE INTEGER v)
PROCEDURE bdWrite (POINTER(dataFile) f; REPEATABLE BITS v)
PROCEDURE 1idWrite (POINTER(dataFile) f; REPEATABLE LONG INTEGER v)
PROCEDURE 1bdWrite (POINTER(dataFile) f; REPEATABLE LONG BITS v)
PROCEDURE rdWrite (POINTER(dataFile) f; REPEATABLE REAL v)
PROCEDURE 1rdWrite (POINTER(dataFile) T; REPEATABLE LONG REAL V)

These procedures each write the value v to the file buffer associated
with the data file referenced by f. See 1)above.
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3) LONG BITS PROCEDURE $packld (STRING s)

$packld encodes the string s into a long bits. s must be an identifier
not exceeding six characters.

$packld is usually used to encode module names in LONG BITS, e.g- in
the module name table of descriptor sections, and in the modName field
of module descriptors (3.2).

$packld could be made machine-independent, since it is straightforward

to devise an algorithm which packs up to six alphabetic characters into

thirty two bits (the number guaranteed for long bits). The reason it is

machine-dependent is that many machines have natural methods of packing

six-character symbols which are supported by system software such as

debuggers.

4) STRING PROCEDURE $unpackld (LONG BITS modName)

$unpackld decodes the module name encoded (by $packld) in modName.

The machine-dependence of $packld necessitates the machine-dependence

of $unpackld as well.

5) INTEGER PROCEDURE $pageNumber (ADDRESS adr)

$pageNumber returns the number of the page containing the address adr.

Conceptually, $pageNumber could be computed in MAINSAIL as
displacement(pageBaseAdr,adr) DIV $pageSize

(where $pageSize is defined by the operating-system interface). However,

the MAINSAIL displacement procedure returns the integer displacement

between its arguments, whereas the displacement between the base address

of the first page and adr might be larger than can be represented by an

integer. For this reason, $pageNumber is currently a machine-dependent

procedure.

6) ADDRESS PROCEDURE $pageAddress (INTEGER n)

- $pageAddress returns the starting address of the nth page.

Conceptually, $pageAddress could be computed in MAINSAIL as
displace(pageBaseAdr,n * $pageSize)

However, the second argument to the displace procedure must be an

integer, and the calculation n * $pageSize might result in a value

too large to be represented by an integer. For this reason, $pageAddress
is currently a machine-dependent procedure.
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7) PROCEDURE $mdFixRtnAdrs (POINTER($modDscr) targetMod;
ADDRESS loAdr,hiAdr;
INTEGER dspl)

$mdF ixRtnAdrs adjusts the addresses on the return stack after control
sections have been moved, as described” in 3.6.

$mdFixRtnAdrs is machine-dependent because the machine-independent parts
of MAINSAIL make no assumptions about the format or location of the
return stack or return addresses.

8) PROCEDURE $mdinterfaceCall (POINTER dataSec; INTEGER procNumber)

$mdInterfaceCall is used to call initial and final procedures of
modules. dataSec is a pointer to the module"s data section, and
procNumber specifies which procedure in the module is to be called.

$mdInterfaceCall is machine-dependent because there is no machine-
independent way (i.e. no MAINSAIL language construct) to reference an
offset in an entry vector (such as procNumber) and call the associated
procedure.

9) PROCEDURE mdAdjustString (MODIFIES STRING s; ADDRESS newPieceAdr)
mdAdjustString adjusts the string descriptor for s to specify the new
location of s following a garbage collection. The relative character of
s within the new piece is the same as within the old piece, and can be
determined from s.

mdAdjustString is machine-dependent because the format of a string
descriptor is machine-dependent.

10) PROCEDURE mdCollect

mdCollect is called by a machine-independent garbage collection

° procedure to locate any pointers or strings which would not otherwise be

found by the garbage collector (e.g. those on the stacks, whose
organization is machine dependent).

11) INTEGER PROCEDURE oneBits (BITS b)

oneBits returns the number of bits in b that are turned on.

oneBits could be written in MAINSAIL, but some machines have efficient
bit counting instructions. Since oneBits plays a crucial role in string

garbage collection, efficiency was deemed more important than machine-
independence.
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12) BOOLEAN PROCEDURE nextCall (MODIFIES ADDRESS dataSec;
PRODUCES INTEGER offset)

nextCall is used by the machine-independent errMsg procedure to step
through the return stack, listingthe previous procedure call or the
sequence of calls (most recent first) that led up to the call to errMsg.

Like $mdFixRtnAdrs, nextCall is machine-dependent because the machine-
independent parts of MAINSAIL make no assumptions about the format or
location of the return stack.

A dataSec argument of NULLADDRESS signifies to nextCall that it should
initialize a top-of-stack pointer and start processing from there.

Otherwise, dataSec is the address of the previous data section found by
nextCal 1.

nextCall examines the stack from where it last left off. If it
encounters a data section address, it sets dataSec to this new address.
NextCall returns the offset in the control section (for the module whose
data section address is dataSec) to the last procedure call made.

6.2 OPERATING-SYSTEM-DEPENDENT INTERFACE

The macros known to the machine-independent parts of MAINSAIL which must
be defined by the operating-system-dependent interface are:

$pageSize the size of pages

$mdFileHandle the data type of file handles (56.5).
$nulIMdFileHandle the Zero file handle

$ttyInputChars maximum # of characters per terminal input line
eol lor 2 character end-of-line sequence

eop 1 character end-of-page

The procedures that must be written for the operating-system-dependent
interface are described below. Note: $devOpen, $devClose, and $devNewBuf
procedures described below must be written for each device module.
Device modules, file buffers, and file records are described in Sections
5.3-5.5.

1) PROCEDURE sttyWrite (REPEATABLE STRING s)

sttyWrite writes the string s to the user®s terminal, without using a
MAINSAIL device module.

2) PROCEDURE ttycWrite (REPEATABLE INTEGER char)

ttycWrite writes the character char to the user®s terminal, without
using a MAINSAIL device module.
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3) PROCEDURE $ttyUnpackld (LONG BITS modName)

The effect of $ttyUnpackld(b) is the same as ttyWrite($unPackld(b)). The
difference is that the latter uses string space (which could ultimately
lead to a garbage collection), whereas $ttyUnpackld is not allowed to
affect memory, so that it can be used®™ in 'sensitive" situations. For
example, $ttyUnpackld is used by the runtime system to report the names
of modules that are swapped (when that user option is in effect).

4) INTEGER PROCEDURE $mdttyRead

(CHARADR c;
INTEGER maxChars;
PRODUCES OPTIONAL INTEGER brkChr)

$mdttyRead reads a string from the user®s terminal to the area of

memory starting at c. It should provide editing of the string. The
accepted string termination characters are ones that are appropriate for
the operating system: e.g., they usually consist of at least eol
(end-of-line) and an end-of-file character.

brkChr is the character code of the terminating character. The CHARADR
references an area of memory maxChars long. The string read in must not
exceed this number of characters. |If maxChars are read in before a
string-termination character is encountered, then $mdttyRead sets
brkChr to -1.

The value returned by $mdttyRead is the total number of characters in
the string, excluding any terminating characters.

5) PROCEDURE fastExit (OPTIONAL STRING msg)

fastExit writes msg to the user®s terminal, and then immediately exits
from MAINSAIL. It is used as a panic exit, and thus provides a less
orderly exit than the machine-independent "exit" procedure.

6) BOOLEAN PROCEDURE $devOpen (MODIFIES POINTER(File) F)

This procedure attempts to open a Ffile using the information contained
in the file record referred to by f. If the open is successful, then
$devOpen allocates the file buffer, initializes further file record
fields, and then returns TRUE (5.6). Otherwise, $devOpen returns FALSE.
This procedure is an interface field of each device module.
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7) PROCEDURE $devClose (POINTER(File) T; OPTIONAL BITS ctriBits)
$devClose is responsible for closing the file referenced by fT.

If the relevant file buffer is dirty (5.3), then $devClose Tirst

clears the unused portion of the buffer and then writes the buffer out.
In any case, $devClose returns the file handle to the operating system.
If the delete bit is set in ctriBits, the file is deleted from the file
system. This procedure is an interface field of each device module.

8) BOOLEAN PROCEDURE $devNewBuf (POINTER(File) f;
OPTIONAL BITS ctriBits;
OPTIONAL LONG INTEGER newPos)

$devNewBuF is responsible for associating a file buffer with a new
portion of the corresponding file, as described in Section 5.3.
This procedure is an interface field of each device module.

9) BOOLEAN PROCEDURE $mdNewBuf (POINTER(File) f;
OPTIONAL LONG INTEGER newPos)

Much of the processing that must be done to associate a file buffer with
a new portion of the corresponding file can be handled by a machine-
independent procedure called $newBuf. Some device modules® $devNewBuf
procedures, for example, simply need to call $newBuf. For such device
modules, an $mdNewBuf procedure must also be written for $newBuf to call
to handle the operating-system-dependent i/0.

10) BOOLEAN PROCEDURE mdOpen (MODIFIES POINTER(File) ¥)

The device on which a file resides is specified in an operating-system-
dependent manner as part of the file name. mdOpen is responsible for
determining the device on which a file resides, based on the file name.
It binds the appropriate device module and calls the $devOpen procedure
in that module.

11) PROCEDURE $ctrlOpen (PRODUCES $mdFileHandle handle:
STRING fileName;
BITS ctriBits;

PRODUCES OPTIONAL LONG INTEGER ctri1Size)

$ctrilOpen is a special-purpose, stand-alone procedure used to open files
containing control sections. ctrlBits indicates whether the open is for
input, output, or both, and whether the file should be created. Ifthe
file is not being created then ctrlSize indicates its current size.

Files containing control sections are handled by the procedures
$ctrilOpen, $ctriClose and $ctrlln rather than by the file-handling
procedures of a device module. The difference is that each such file is
completely copied into memory (entire pages are read in) rather than
using a File buffer as a window into the file. Also, in order to use a
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device module procedure to open a control section file, the file
containing the device module control section would Ffirst need to be
opened, but it can®t open itself.

12) PROCEDURE $ctriClose ($mdFileHandle h)

$ctriClose closes the file associated with the handle h.

13) PROCEDURE S$ctrlIn ($mdFileHandle handle;

INTEGER filePage;
ADDRESS memAdr ;
INTEGER numPages;

OPTIONAL BITS ctriBits)

$ctrlin reads control sections from Tfiles opened with S$ctriOpen.
filePage gives the number of the first page in the file, memAdr is the
address of the first memory location to be read into, and numPages tells
the number of pages to be read.

14) PROCEDURE $ctrlOut ($mdFileHandle handle;

INTEGER filePage;
ADDRESS memAdr ;
INTEGER numPages)

$ctriOut writes a control section from memory into a file opened with
$ctriOpen. filePage gives the number of the first page in the file to
which the control section will be written, memAdr is the address of the
first memory location to be written from, and numPages tells the number
of pages to be written.

15) BOOLEAN PROCEDURE mdMorePages (INTEGER numPages)

mdMorePages obtains more memory from the operating system when the
currently-used memory becomes insufficient (4.4). mdMorePages must not
ask for more memory if the request would exceed a configuration
parameter pagelLimitAdr (4.3) specifying the maximum page that may

be used.

16) INITIAL PROCEDURE osdRunMainsail

osdRunMainsail is the runtime initialization procedure (4.3). It

must initialize any machine-dependent runtime data structures, and then
invoke the top-level machine-independent procedure, runMainsail.ltis
common that osdRunMainsail has nothing to do other than invoke
runMainsail. osdRunMainsail resides in the kernel.



SECTION 7 SUMMARY

This paper has given an overview of the design and implementation of
MAINSAIL in view of the portability goals of the MAINSAIL project. Both
the machine-independent and the requisite machine-dependent aspects have
been described.

The initial design and development is now complete. MAINSAIL's use has
been demonstrated on PDP-10 and PDP-11 computers under various operating
systems. MAINSAIL has been implemented at sites on the Arpanet, and
ported via magnetic tape to other locations.

A number of sites are evaluating MAINSAIL, and it presently supports an
active and growing body of users. Examples of programs written in
MAINSAIL are a machine-independent tape transfer program, a three
dimensional graphics package, a comprehensive system of image processing
programs, and a machine-independent interprocessor communications
facility.

A large computer-assisted instructional program teaching elementary
programming in the BASIC language has been redesigned and translated
from SAIL to MAINSAIL so that it could be run on computers other than
the PDP-10. A formatting program was written concurrently with the
writing of the MAINSAIL language manual: it inputs the manual as written
(with encoded section names and cross-references) and outputs a
ready-to-print manual complete with table of contents, index, and
section headings at the top of each page. That program was also used to
format this paper.

Research is currently underway to develop an efficient MAINSAIL language
representation (instruction set) and a high-level language machine
architecture ('MAINSAIL machine™) which will directly execute MAINSAIL
programs. The clean design of MAINSAIL, both internally and externally,
its machine-independence, and the ability of the code generators to be
retargeted, provide an ideal environment for this research.

Future MAINSAIL development, to be carried out by a private company,
will include implementations for new machines, a comprehensive symbolic
debugger, and a collection of portable MAINSAIL applications programs.
There are plans for a display-oriented text editor and a simple
operating system so that MAINSAIL can run stand-alone.

Possible new implementations to be begun in the near future include the
Digital Equipment Corporation VAX-11/780, Motorola MC68000, and Data
_General ECLIPSE computers. The new implementations will demonstrate,
test, and lend further credibility to MAINSAIL"s design for portability.
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