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| nt roducti on

Very recently a new nethod has been devel oped (see
(3], c51,[6])ror finding |ower bounds on the naximm
number of codewords possible in a code of mninum distance d
and length n. This nmethod has led in turn to a number of
interesting questions in graph theory and additive nunber
t heory. In this brief survey we sumarize sone of these
devel oprent s.
Backgr ound

By a code C of length n over a finite field
F= GF(q) we nmean a subset of F*, i.e., a set of n-tuples
with entries in F. The nost conmon choice for F is GF(2),
and we restrict ourselves to this case for the remainder of
the paper (although the same techniques apply to all finite
fields). In this case Cis called a binary code.

The mninmum di stance of Cis defined to be

mn da(x,y)
XAy

where x = (xl,...,xn) and_'y=(yl,...,yn) range over al

pairs of codewords (= elements of C and d(kx,y) is the

Hanmi ng di stance between x and y given by



d(x,y) = |{k:xk#yk}1 X

The weight of a codeword X, denoted by w(x), is defined to
be its distance fromo0 = (0,0,...,0) (which may not be in Q).

Two basic quantities studied extensively in coding

theory are
A(n,d) = max{|c|]: Cis a binary code of length n and
m ni mum di stance g}
and
A(n,d,w; = max{|C|]: Cis a binary code of length n and

m ni mum di stance d wth all codewords of

wei ght w}.

(For a fuller treatment of these topics the reader is
referred to [II1].)

Many upper bounds and sone | ower bounds for both
A(n,d) and A(n,d,w) are available in the literature. For
a survey of these the reader is referred to [1] and [5]. In
Tables 1 and 2 we give sone small values of these functions.
Since A(n-1,28-1) = A(n,28) we only list values of A(n,d)
for d even.

We shoul d point out that the function A(n,d,w) has
been studi ed under another guise in extremal set theory by
Erdds, Hanani, Kalbfleisch, Schénheim, and others (see [4])
inthe following context. For given integers t, k, v, let

D(t,k,v) denote the maxi mum nunber of k-el enment subsets of



r\d 4 6 8 10

6 4 2 1 1

7 8 2 1 1

8 16 2 2 1

9 20 4 2 1

10 40 6 2 2

i 72-79 12 2 2

12 144-153 24 4 2

A(n,d)
Table 1
nw 2 3 4 5 6 7
i 2 1 1 0 0 0
5 2 2 1 1 0 0
6 3 4 3 1 1 0
7 3 7 7 3 1 1
8 4 8 14 8 4 1
ol 4 12 18 18 12 4
10 5 13 30 36 30 13
11 | 5 17 35 66 66 35
12 6 20 51 7u4-84 132  73-84

Aln,4,w)
Table 2

a v-element set S such that every t-elenent subset of Sis

contained in at nost one of the k-elenent subsets. In fact,

it is easy to see that

D(t,k,v) = A(v,2k-2t+2,k).

e al so note for future use that

then d(x,y) nust be even. Hence

if w(x) = w(y



A(n,26-1,w) = A(n,28,w).

Bounds on A(n,d,w)

Wil e our primary concern W Il be with | ower
bounds on A(n,d,w) we nention here for purposes of conparison
one of the best upper bounds known (due to S. M. Johnson [5],

[(10]). It is

A(n,ES,W) < (W_lg+]_)/(w—‘g+l)'

Fromthis it follows that, for fixed s and w,

w-38+1
n

(1) A(n,26,w) < (1+o(1)) (6—1)!w'

as N » o,

O particular interest is the special case § = 2, when the

upper bound becones

(2) A(n,4,w) < . (n).

n-w+l \w

The follow ng three theorens were given in [5].

Theorem 1.
1l /n
(3) Aln,bw) > = ()

Proof: Let F_ denote the set of (i,) binary codewords of

length n and weight wand let z_ denote the integers modul o

n. Consider the map T:F$ - Z_ given by



(1) (%) = » i (md n)

for x = (x
1

1ot esX) € Fo. For 0 <i <n-l, let ¢, be the

code T " (i). O course all codewords of ¢, have weight w

Ye claimthat the distance between any two distinct codewords
of C, is at least 4. For suppose not, i.e., suppose

X,V € Cys X £y, Wth d(x,y) < 4. Thus d(x,y) = 2. This
inmplies that x and y agree in all but tw conponents, say

the r-th and s-th conponents where x, =1, y_ = 0 and

x =0,y = 1 But

S r
T(x) = T(y) = i so that
T™(x) =at r=1i (nmod n),
T(y) =at s =i (nmd n)

for sone a ¢ Z,- This is inpossible since r and s are
distinct integers between 1 and n.

Since
n
el + oo tle, = (5)
for at least one | we have

o1 24 ()

and the theoremis proved.
Note that this theoremis not conpletely construc-

tive since we are unable to specify which jit is which has



lcj] large. A conputer search of small cases indicates that

any j is probably satisfactory asynptotically, i.e.
|ci|/10j| > 1

for all i, j as n » «,
The preceding proof is based on a method given by
B. Bose and T. R N. Rao in [3] in which they prove the

slightly weaker bound

Almybow) > 55 (3)-

The case of general 6§ i s considered in the next
result.

Theorem 2.  Let g > n be a prine power. Then

A(n,28,w) > 1 (n)

Proof: The proof has a similar structure to that of
Theorem 1. Let us |abel the elenents of GF(q) by

WsWy s e e sWy - Define a map

T:FY - GF ()T

by

T(x) = (T (X),T,(X),..., T (X))

2

wher e



TG = Y e,
X1=
~T2(z) = Z wiwy,
1<j
X1=ﬁ’=
Tg(x) = 25 wlewk
i<j<k
X1=Xj=xk=l

for x = (xq5...,x,). For each (s-1)-tuple
V= (v, ) c 6R(@) T et
c— = 17N,
Thus, for sone v,
1 (n
e > =3 (N :
q

We cl ai mthat C; has di stance 26.

Suppose not, i

. €.

there exist x,y eC-, x #y, Wth d(x,y) = 2y < 26-2.

there are 26 distinct coordinates r
t hat

12"

5T S

10

.5 S

suppose
Thus

such



and x; =y, for all other i. Since T(x) = T(y), the first

§ elementary symmetric function Gss 0 <j <6-1,0f

{w. ,...,w_ 1} and {w_ ,...,w_} agree. Thus the polynom a
l”l I’Y Sl SY

Y -1 4 Y-2 _ + (-1) 70
x' = 0,X 0,X .o (-1) v

has all the w, and w, as roots. This is inpossible since
i .

in any field a polynom al of degree m cannot have nore than

mroots. This proves the theorem

Anot her Construction

Let us call an n-elenent subset Scz an

St—set of size n and nmodulus mif all the suns

t

wWth i <ij<. . . <i are di stinct nodulo m. These sets
have been studied in the conbinatorial literature (see [7])
and can also be used to obtain good |ower bounds on
A(n,28,w).

Theorem 3. If there exists an s, ,-Se€t of size n and nodul us
m t hen

A(n,20,m) > = (7).

The proof is simlar to that of Theorem 2 but using

the map



T:F' ~Z
m

gi ven by
T(x) = z H (mod m).

As before, the codes are c, = T'l(i), one of which nust have
as many codewords as the average % (“)

From known results for s ,-sets it follows that if

t
q>n-1 is a prinme power and ¢ >3 then
A(n,28 9-1 (n
(5) (ng :W) Z_?_‘l (W).

Har noni ous Graphs

Note that if Sis an S, -set of size n and nodul us

m t hen

(6) mi(g).

For the remainder of the paper, we restrict ourselves to the

case t = 2. Equation (6) then becones

(61) mi(g).

Equality can be achieved in (¢6') for snall n by the

fol Towing exanpl es.

10



s= {0,1} for n =2, m=1,
s = {0,1,2} for n = 3, m =3,
Ss= {0,1,2,4y for n =4, m= 6.

However these are the only values of n for which equality
can occur.

We can translate this situation into the follow ng
equivalent form Sis an S,-set of size n and modul us (g)
il it is possible to |abel the vertices of K, , the conplete
graph on n vertices, with the elenents of S so that if each
edge of K, Is assigned the sum nodulo (g) of the two val ues
assigned to its endpoints, then all edge values are distinct
(and so represent a conplete residue system modulo (2)).
In Figure 1 we show the 1abelled conpl ete graphs correspond-

ing to the three extremal sets S given above.
O
L

OS¢

K

3

4

Figure 1

This interpretation pronpts the following definition (see

(6] for further information):

Definition. A graph Gwth e edges is called harnonious

if it is possible to label the vertices.of G with distinct

11



val ues fromze so that every el enent of Z, occurs uni quel y
as an edge sumof G

For exanple, we show in Figure 2 a harnonious
graph with 7 vertices and 17 edges. |t turns out (see [6])
that this is the nmaxi mum nunber of edges a harnoni ous graph

on 7 vertices can have.

7
A Harmoni ous Graph with 7 Nodes and 17 Edges
Figure 2

In Figure 3 we give the connected graphs on at

nost 5 vertices which are not harnonious.

B ROT I

Nonhar noni ous G aphs,

Figure 3

12



A curious geonetrical interpretation can be given
to the condition that a graph G be harnmonious. Let P,
denote a fixed regular e-gon enbedded in the plane. Then G
i's harmonious iff the vertices of G can be enbedded into the
vertices of P, SO that no two edges of the enbedded copy of
G are parallel. This follows from the observation that if
the vertices of P_ are lavelled cyclically by Ol,... e-1,
then the direction of the chord joining i and j depends only
oni +j (node).

A related concept which has appeared frequently
in the graph theory literature is that of a graceful graph
(see [2]). A graph Gwith e edges is said to be gracefu
if it is possible to assign distinct values from{0,1,...,e}
to the vertices of G so that the absolute val ues of the edge

differences are all distinct (and therefore all values in

{1,2,...,e} occur uniquely). In Figure 4 we list the

connected graphs on 5 vertices which are not graceful

o

Nongraceful & aphs

Figure U

While it can be observed that Figures 3 and &4

contain two conmon graphs, in general the concepts of being

13



graceful and bei ng harnoni ous are rather independent. For

exanple, cycles of length n have the follow ng properties:

n (nod 4) harmoni ous  gracef ul

0 no yes
1 yes no
2. no no
3 yes yes

Simlarly, conplete bipartite graphs, which are
known to be graceful, are never harnonious. This result has
a remarkably short proof.

Theor em 4. X, o Is not harnonious.

5

Proof ! Suppose a harnmonious | abelling of K. o exists.  This

5

is equivalent to a direct sum deconposition of er = A @B
where A and B are disjoint subsets of z__with [a] = r,
|IBl = s. Since all a + b (nmodulo rs), a e A Be B, are
distinct then so are all differences a - b (modulo rs). Byt
there are [A||B] = rs differences. Hence 0 = a - b nust
occur exactly once and therefore A and B are not disjoint. []
We extract an interesting corollary from the proof.
Corol lary. |If Z, =A®Bthen |[as] =1
In fact nost graphs are neither harnoni ous nor
graceful . Ilore precisely, it can be shown using the
probability nethod (see [6]) that the fraction of all graphs
on n vertices which are harnonious (or graceful) tends to
0 exponentially with n.

Let us define H(n) to be the maxi num nunber of

edges a harnonious graph on n vertices dan have (with Qn)

1k



defined simlarly for graceful graphs). |n Table 3 we |i st

sone of the known val ues.

n H(n) G(n)
2 1 1
3 3 3
4 6 6
5 9 9
6 13 13
7 17 17
8 24 23
9 30 29
10 36 36
Tabl e 3

Asymptotically it can be shown [6] that

It is especially annoying that we cannot prove that

1

Hn) < |35 - e)n® for some ¢> 0. The lower bound depends

on recent results of HEmmerer and Hofmeister[7] who showed

that it is possible to select n nonnegative integers

a, < a,<  <a  such that all integers up to T% n° can

be represented as a; + ad.

Sone Questions

(1) A well known conjecture of Ringel and Kotzig
asserts that all trees (= acyclic connected graphs) are
graceful. We make the corresponding conjecture that all trees
are harnoni ous, where we have to nodify the definition
slightly so as to allow one vertex |abel to be repeated

This is true for all trees with at nost' nine vertices.

15



(2) Is there a polynomal-time algorithmto
determine if Gis harnonious? W conjecture that there is
not .

(3) I's H(n) ~ cn2? Is ¢ <1/2?2 W think that
the answer to both questions is in the affirnative.

(4) How | arge must mbe for an S _-set of size n
and modulus mto exist? For t = 2, it is known that the
answer is (1+o(1))n°. W conjecturethat m > (1+0(1))n".

(5) What is the value of A(n,d,w)? From our

) w-3+1
results it follows that (1+o(1)) Z——< A(n,26,uw) <
(6—1)!nw_6+1 : _
(1+0(1)) — . The upper bound is known to be
correct if w=4and 6§ =2 or 3. |s it always correct?
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