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Introduction -

Very recently a new method has been developed (see

L31, C 5 1 ,  WI> for finding lower bounds on the maximum

number of codewords possible in a code of minimum distance d

and length n. This method has led in turn to a number of

interesting questions in graph theory and additive number

theory. In this brief survey we summarize some of these

developments.

Background

By a code C of length n over a finite field

F = GF(q) we mean a subset of Fn, i.e., a set of n-tuples

with entries in F. The most common choice for F is GF(2),

and we restrict ourselves to this case for the remainder of

the paper (although the same techniques apply to all finite

fields). In this case C is called a binary code.

The minimum distance of C is defined to be

min d(?,y)
;;zY

where 2 =
-

(x 1 ,...,xn) and y = (y,,..., y,) range over all

pairs of codewords (= elements of C) and d(x,y) is the

Hamming distance between E and 7 given by
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d(x,y) = 1 k⌧k#yk)  1 l

The weight of a codeword x, denoted by w(x), is defined to

be its distance from 0 = (O,O,..., 0) (which may not be in C).

Two basic quantities studied extensively in coding

theory are:

A(n,d) 3 max {ICI: C is a binary code of length n and

minimum distance d}

and

-=.
A(n,d,w) 2 max(lCI: C is a binary code of length n and

minimum distance d with all codewords of

weight w}.

(For a fuller treatment of these topics the reader is

referred to [ll].)

Xany upper bounds and some lower bounds for both

A(n,d) and A(n,d,w) are available in the literature. For

e
a survey of these the reader is referred to [1] and [5]. In

Tables 1 and 2 we give some small values of these functions.

Since A(n-1,26-l) = A(n,28) we only list values of A(n,d)

for d even.

We should point out that the function A(n,d,w) has

been studied under another guise in extremal set theory by

Erdiis, Hanani, Kalbfleisch, Schijnheim, and others (see [4])

in the following context. For given integers t, k, v, let
,

D(t,k,v) denote the maximum number of k-element subsets of



n d\ 4 6 8 lo

6

7

8

9

10

4 2 1 1

8 2 1 1

16 2 2 1

20 4 2 1

40 6 2 2

i i 72-79 12 2 2

12 144-153 24 4 2

Ah-@)
Table 1

nw 2\ 3 4 5 6 7

7
8

9
10

11

12

2 1 1 0 0 0

2 2 1 1 0 0

3 4 3 1 1 0

3 7 7 3 1 1

4 8 14 8 4 1

4 12 18 18 12 4

5 13 30 36 30 13

5 17 35 66 66 35

1I 6 20 51 74-84 132 73-84

A(n,kw)
Table 2

a v-element set S such that every t-element subset of S is

contained in at most one of the k-element subsets. In fact,

it is easy to see that

D(t ,k,v) = A(v,2k-2t+2,k).

We also note for future use that if w (X) = w(y

then d(r,y) must be even. Hence
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A(n,264,w) = A(n,28,w).

Bounds on A(n,d,w)

While our primary %oncern will be with lower

bounds on A(n,d,w) we mention here for purposes of comparison

one of the best upper bounds known (due to S. M. Johnson [g],

[lo]). It is

Ah26,w)  < (- w-:+1)/(,-:+1)*

From this it follows that, for fixed 6 and w,

(1)
w-6+1

A(n,26,w)  2 (Ho(l)) (s-l)!t! as n + 03.

Of particular interest is the special case 6 = 2, when the

upper bound becomes

(2) Ah&w

- The following three theorems were given in [5].

Theorem 1.

(3) A(n,o,w) 2 i (,").

Proof: Let Fz denote the set of ,"( > binary codewords of

length n and weight w and let Zn denote the integers modulo

n. Consider the map T:Fz -+ Zn given by



(4) T(x) = c i (mod n)

X i=l

for x = (xl,...,xn) E Ft. For 0 < i < n-l, let Ci be the- -

code T-'(i). Of course all codewords of Ci have weight W.

Ye claim that the distance between any two distinct codewords

of c i is at least 4. For suppose not, i.e., suppose

x, 7 E Ci, x # y, with d(x,y) < 4. Thus d(&y) = 2. This

implies that x and 7 agree in all but two components, say

the r-th and s-th components where x-_ r = 1, yr = 0 and

,r
?3 = 0, yr = 1. But

T(x) = T(y) = i so that

T(x) = a t r E i (mod n),

T(y) = a t s E i (mod n>

for some a I Zn. This is impossible since r and s are

distinct integers between 1 and n.

Since

Ic Io +... + I&l 1 = (;)

for at least one j we have

Ic I >L n
( >j -n w

and the theorem is proved.

Note that this theorem is not completely construc-
l

tive since we are unable to specify which j it is which has
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ICj 1 large. A computer search of small cases indicates that

any j is probably satisfactory asymptotically, i.e.,

for all i, j as n -f ~0.

The preceding proof is based on a method given by

B. Bose and T. R. N. Rao in [3] in which they prove the

slightly weaker bound

The case of [general 6 is considered in the next

result.

Theorem 2. Let q 2 n be a prime power. Then

A(n,28,w) > --?I- (">.- g-1 w

Proof: The proof has a similar structure to that of

Theorem 1. Let us label the elements of GF(q) by

a
y),wydJJq-l’ Define a map

T: FI -f GF(q)
6-l

bY

T(x) = (Tl(X),T2(?),...,T6 ,(x))

where
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for X = (x1,.,.,x n 1. For each (6-l

v = (V E GF(q)
6-l let

T+) =
c

w * 31
x.=11 .

T*(X) =
c

w.w1 j'
i<j

X. =x.=1
= J

T3(x)  =
c

0.w.w
1Jk

i<j<k
X. =x*=x =l'
13 k

)-tuple

%
= T-'(v).

Thus, for some 7,

lc I7 L
1 n

(  >q6-1 w l

We claim that CT has distance 26. Suppose not, i.e., suppose

there exist x, 7 I C--, x # y, with d&y) = 2y < 26-2. Thus-

there are 26 distinct coordinates rl,...,ry3 Sl'""SY such

that

X =
rl l * * = x

rY
= y

s1
=...=ys =o,

Y

X =
s1 l **

= x
sY

= yr
1

= . . . = y, = 1
Y



and xi = yi for all other i. Since T(x) = T(y), the first

6 elementary symmetric function a., 0 2 j 2 6-1, of
3

brl" l l >
wr 1 and {w ,w 1 agree. Thus the polynomial

Y
"1"" sy

XY - olxy-l + 02xy-2 - . . . + (-l)yGy

has all the wr and w as roots. This is impossible since
i 9

in any field a polynomial of degree m cannot have more than

m roots. This proves the theorem.

Another Construction

Let us call an n-element subset S Czn an-

St-set of size n and modulus m if all the sums

s. +s. +...+s.
=t =2 It

with il < i2 < . . . < it are distinct modulo M. These sets

have been studied in the combinatorial literature (see [7]>

and can also be used to obtain good lower bounds on

A(n,26,w).

- Theorem 3. If there exists an S6 1-set of size n and modulus

m then

InA(n,Ww) 1 m (w)-

The proof is similar to that of Theorem 2 but using

the map



given by

T(x) =
c

si (mod m> l

X i=l

As before, the codes are Ci = T-1 (i), one of which must have

Inas many codewords as the average ;
.( >w l

From known results for St-sets it follows that if

q > n-l is a prime power and 6 > 3 then- --_ -

(5)

Harmonious Graphs

A(n,28,w) > g-1 (C).
- q6-1

Note that if S is an St -set of size n and modulus

m then

(6) m> n( )- t'a

For the remainder of the paper, we restrict ourselves to the

case t = 2. Equation (6) then becomes

Equality can be achieved in (6') for small n by the

foi IOW+I~ examples.

l
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s = m,11 for n = 2, m = 1,

s = {0,1,2} for n = 3, m = 3,

s = {0,1,2,4) for n = 4, m = 6.

However these arethe only values of n for which equality

can occur.

We can translate this situation into the following

equivalent form. S is an S2 -set of size n and modulus n
( >2

i ff it is possible to label the vertices of K
r-P the complete

graph on n vertices, with the elements of S so that if each

edge of Kn is assigned the sum module n
( >2 of the two values

assigned to its endpoints, then all edge values are distinct

(and so represent a complete residue system module
( ); >.

In Figure 1 we show the labelled complete graphs correspond-

ing to the three extremal sets S given above.

2OlcEb1
0 1

K3

0
1

1

4FzT 3
4 2

0

K4

Figure 1

This interpretation prompts the following definition (see

[6] for further information):

Definition. A graph G with e edges is called harmonious

if it is possible to label the vertices.of G with distinct
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values from % e so that every elenent of Ze occurs uniquely

as an edge sum of G.

For example, we show in Figure 2 a harmonious

graph with 7 vertices and 17‘edges. It turns out (see [6])

that this is the maximum number of edges a harmonious graph

on 7 vertices can have.

A Harmonious Graph with 7 Nodes and 17 Edges

Figure 2

In Figure 3 we give the connected graphs on at

most 5 vertices which are not harmonious.

Nonharmonious Graphs,

Figure 3
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A curious geometrical interpretation can be given

to the condition that a graph G be harmonious. Let Pe

denote a fixed regular e-gon embedded in the plane. Then G

is harmonious iff the vertices of G can be embedded into the

vertices of Pe so that no two edges of the embedded copy of

G are parallel. This follows from the observation that if

the vertices of Pe are labelled cyclically by O,l,...,e-1,

then the direction of the chord joining i and j depends only

on i + j (mod e).

A related concept which has appeared frequently

in the graph theory literature is that of a graceful graph

(see C21>. A graph G with e edges is said to be graceful

if it is possible to assign distinct values from {O,l,...,e)

to the vertices of G so that the absolute values of the edge

differences are all distinct (and therefore all values in

(1,2,... ,e} occur uniquely). In Figure 4 we list the

connected graphs on 5 vertices which are not graceful.

Xongraceful Graphs

While it can be observed that Figures 3 and 4

contain two common graphs, in general the concepts of being
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craceful and being harmonious are rather independent.0 For

example, cycles of length n have the following properties:

n (mod 4) harmonious graceful

0 no Yes
1 Yes no
2. no no
3 Yes Yes

Similarly, complete bipartite graphs, which are

known to be graceful, are never harmonious. This result has

a remarkably short proof.

Theorem 4. Kr s is not harmonious.
9

?roof : Suppose a harmonious labelling of Kr s exists. This
>

is equivalent to a direct sum decomposition of Z =A@Brs
where A and B are disjoint subsets of 72 rs with IAI = r,

I IB =s. Since all a + b (modulo rs), a E A, B E B, are

distinct then so are all differences a - b (modulo rs). But

there are IAIIBI = rs differences. Hence 0 = a - b must

occur exactly once and therefore A and B are not disjoint. a

We extract an interesting corollary from the proof.

Corollary. If zn = A Q B then IA231 = 1.

In fact most graphs are neither harmonious nor

. graceful. Nore precisely, it can be shown using the

probability method (see [6]> that the fraction of all graphs

on n vertices which are harmonious (or graceful) tends to

0 exponentially with n.

Let us define H(n) to be the maximum number of

eciges a harmonious graph on n vertices dan have (with G(n)
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defined similarly for graceful graphs). In Table 3 we list

some of the known values.

n H(n) G(n)
2 1‘ 1
3 3 3
4 6 6
5 9 9
6 13 13
7 17 17
8 24 23
9 29

10 ;6” 36

Table 3

Asyrnptotic.ally  it can be shown [6] that

5 n2 1 2
18 L H(n) 2 2 n .

It is especially annoying that we cannot prove that

for some E > 0. The lower bound depends

on recent results of Hzmmerer and Hofmeister  [7] who showed

that it is possible to select n nonnegative integers

"1 ' a2 �  l ** �  an

such that all integers up to 5 n2ix- can-
be represented as ai + a..

3
Some Questions

(1) A well known conjecture of Ringel and KotziC;

asserts that all trees (= acyclic connected graphs) are

graceful. We make the corresponding conjecture that all trees

are harmonious, where we have to modify the definition

slightly so as to allow one vertex label to be repeated.

This is true for all trees with at most'nine vertices.
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(2) Is there a polynomial-time algorithm to

determine if G is harmonious? We conjecture that there is

not.

2(3) Is H(n) s cn ? Is c < l/2? We think that

the answer to both questions is in the affirmative.

(4) How large must m be for an St-set of size n

and modulus m to exist? For t = 2, it is known that the

answer is (l+o(l))n2. We conjecturethat m 2 (l+o(l))r?'.

(5) What is the value of A(n,d,w)? From our

results it follows that (1+0(l))
.w-6+1

(No(l)) (s-1);;
w-&l

w! 2 A(n,2Od 2

. The upper bound is known to be

correct if w = 4 and 6 = 2 or 3. Is it always correct?
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