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Abstract..
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that a11 n! orderings are equally likely. D. W Matula proved that,
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1. [ ntroduction.

The problem of selecting the k-th largest in a set of n numbers

by pairwise conparisons has been a subject of considerable interest

(e.g. Knuth [6][8]). Two particularly interesting situations are the

fixed-k case (n - ») and the nedian-finding problem (k = n/27) .

Let Vk(n) denote the conplexity of selection in the worst case, and

\'Ik(n) the average-case conplexity assumng that all n! pernutations

are equally likely. Table 1 summarizes the known results. ¥

fixed k (N - «) medi an &/
o v (a)n = (k1) g n + (k) 502 () 2 1.75n2/
V. (n
. [2] (4] [5] [10] [10] [11]
. ckln In n > '\—/'k(n)—n > ? 1.5n > \7’n/ 2(n) > 1.375n
V., (n
. 9] [1]

Table 1. A summary of known results on selection problens.

As seen fromthe table, no good |ower bound is known for the fixed-k

behavior of v (n). It is not even known whet her \-/'e(n)—n - ® as

k

n - o [6][8]. Sobel conjectured [8] \7‘2(n)—n to be of the order log n ,

as is true in the worst-case complexity, But in 1973, Matula [9] devised

an el egant al gorithm which finds the k-th largest using n+ck(ln 1n n)

*

Y In this paper, we use 1g to stand for logarithmwith base 2.

+ . . .

Y/ These results have generalizations for the case k = an with any

fixed 0 <a<1.

2/ An inproved |ower bound of (11/6)n was claimed in [12].




conparisons on the average; and he conjectured that the k(ln 1n n)

term cannot be further reduced. In this paper, we prove that
Vk(n)~n > c'k(ln In n) , thus confirmng the conjecture. As a result,
Vkun-n is determned to within a constant factor asynptotically.

Mai n Theor em For every integer k > 2 , there exists a number N

such that Vk(n)-n > % k(ln Inn-Ink =-9) for all n > N -

In Section 2 some basic concepts are introduced, In Section 3 we
illustrate certain aspects of the proof by showing a weaker form of the
theoremin the case k = 2 , under a severe "regularity" constraint on
the class of allowed algorithms. In Section 4 we exanine the difficulties
encountered in extending the discussion to include non-regular algorithns,
W then introduce some new concepts and prove a crucial result (the
Limted-Anonaly Theoren) to prepare for the proof of the Main Theorem

which is conpleted in Section 5.



2. The Accounting Schenes.

An algorithmfor selecting the k-th largest of n (distinct)
elenents X = {;gl,xz,...,xn} is a binary decision tree T [8].
Associated with each internal node v 1S a conparison between two
el ement s Xp 0 X W will say " v conpares X Xy ", and use the
notation comp(v) = (xi :Xj) . The branching at v is determ ned by

whet her x; < X oor xg >x.J. By analogy with a tennis tournanent

that selects the k-th best of n players, we will freely use in this

paper descriptions such as " X, def eats X (i x> x.J) ,
"Xy I's undefeated (so far) ", etc.
Any particular ordering o satisfied by the input, i.e.,

Xu(l) >xg(2>>__o ) xg(n) , determines a path fromthe rootto a
leaf in T . Let s(o) denote the sequence of internal nodes on this
path; and let s(o) = |S(o)| , the nunmber of conparisons made. The

average cost of T is

AT

QsT(T) = L} s(o) . (2.1)

The average-case conplexity Vk(n) of selecting the k-th best of n

is the mnimum cost COST(T) anong all decision trees. Wthout |oss
‘of generality, we consider only algorithms that make no redundant
conparisons (i.e., comparisons whose results can be deduced from
comparisons made previously).

Let T be any algorithm W consider two types of non-crucial
conparisons: for each input ordering o, let sl(o) be the set of
conparisons made by T in which the |oser has been defeated previously,

and SQ(O) the set of conparisons involving at |east one player ranking



lsi(0)| (i =1,2). Note
As each player

in the top k-I W shall wite si(U)

that a conparison can be in both Sl(cr) and sg(o)

except the top Kk nust encounter a first defeat, we have

s(o) > n-k+sl(o) (2.2)
Al so, because each player not in the top k nust lose to some player
ranking below the top (k-1) , we have
s(0) > n-k+s,(0) (2.3)
Formulas (2.1), (2.2), (2.3) lead to
COST(T) >n-k + % s (9) (2.1)
] O— =
and
1 1
COST(T) >n - k + 5 a7 § (sl(U)+se(o)) (2.5)

transform (2.5) into another form For each internal

1,2) be the probability that comp(v) is
{o| s(o) contains v} and

Ve will
node v, let q.(v) (i
Precisely, if we let

r(v)

in s,(0) .
r;(v) = {o | oeT(v) , comp(v) es; 93 (i =1,2), then
T (v) |
ql(V) = |T(V) l

"\ define further
a(v) = ¢ (v) + ¢, (v)

and
a(e) = 22 a(v)

ve s(a)



Then

1(9) + 5,(0))

I

aM
P
[ 4]

Z (Jry () |+ () ])
veT

2|t alv)

VET

2 2 a(v)
o VE 3(0)

>oa(a) . (2.6)
(0]

Ve obtain from (2.5) and (2.6),

CST(T) > n -k +% & CIONS (2.7)

we collect (2.4) and (2.7) in the follow ng | emma

Lemma 2. 1.

CCST(T) >n -k + i NG (2.8)

COBT(T) > n -k +3 = a(o) . (2.9)

W can think of the two fornulas in the above |emma as two counting

nethods for the conparisons. The first one is direct counting, while the

other is distributive counting as the cost is "distributed" to the

internal nodes of the decision tree. To illustrate the utility of these

alternative counting nethods, we can combine the two fornulas to obtain

cosT(1) 2N -k 4+ o= T (s,(0)+a(0)) . (2.10)
a

n!

Qur aimwill be, roughly speaking, to show that for any pernutation o ,



sl(O) + (o) > const. x K In In n . (2.11)

That is, for any conputation sequence s(¢) , either itself contains a
| ar ge number sl(a) of non-crucial conparisons, or it will effect a

large number a(o) = 2 a(v) -of non-crucial conparisons distributed
ve 5(0)

over other paths. However, in the proof we shall not be using (2.10)
and (2.11), but rather Lemma 2.1 itself, in order to obtain better

coefficients of kInlnn in the |ower bounds.

Renar k. The quantities s(o),si(a),oc(o),... all depend on T ; we

have suppressed this dependence in our notations for sinplicity.



3.  Regular Agorithns.

3.1 Introduction.

In this section we shall prove a weaker form of the Min Theorem for
k =2, under certain "regularity" constraints on the algorithns under
consi deration.

Ve begin with a discussion about general algorithnms. Let T be

any decision tree algorithm selecting the k-th largest of X = {>cl,x2,...,xn} .

One can view the conputation process for any input ordering o as
buil ding up successively larger partial orders on X, Formally we
associate with each node v in T a partial order P(v) , which is
the transitive closure of all the relations X, > x.J obt ai ned on the
path fromthe root of T to v (prior to performng the comparison

at v ). W call comp(v) = (xl ;xj) a joining comparison if X,

and x.J belong to different connected conponents in P(v) . At each
leaf ¢, P(z) nust contain only a single component, otherw se the
relative order of elenents in different conponents can change the
identity of the k-th largest element. Thus, there are exactly n-|
joining conparisons comp(v) in the sequence ve S(o) for any o ;
we denote the subsequence of these nodes v by s'(o) .

Cearly x is a maximal elenent in the partial order P(v) if and
only if x s yet undefeated. A conponent C of a partial order is
said to be anonalous if C has nore than one maximal element. A maximal
element x in P(v) is anomalous if x is in an anomal ous conponent,

and normal otherwise. A partial order is anonalous if it contains an

anomal ous conponent. Figure 1 shows an anomal ous partial order with ¢

being an anomal ous conponent, %, a nor mal el ement, and XX t wo

anonal ous el enents.



Figure 1. An anomal ous partial order

Figure 2. Creation and removal of an anomaly.



VW now define the notion of regular algorithms, in which the choice

of a conparison comp(v)is restricted by the current partial order

P(v) .

Definition 3.1. An algorithm T is regular if no joining conparison

can involve an anonal ous (naxinal) element.

In particular, any algorithm that removes anonalous partial order as

soon as they occur is regular. For instance, suppose the current partial
order P(v) is as shown in Figure 2 and comp(v) = (xl:J%) I's performed
with result X, 3(5 thereby creating an anomal ous partial order. By

choosing the next conparison to be (x1 X we can immediately renove

2)
t he anomaly i ndependent of the outcome. Matula'salgorithm [9] for
k =2 is of this type.

The rest of this section is devoted to proving the followng result.

Theorem 3. 1. Let T be a regular algorithm for selecting the second

| argest el enent of {xl,xg,...,xn}. Then

1l

COST(T)-n >51nln n-=6,

3.2 Sone Properties of Binary Trees.

W digress to discuss some useful facts about binary trees.

Let Mbe a binary tree. W use M, to denote the set of internal
nodes. For each node u , we use notations father[u] , brother[u],
tson[u] , rson[u] for the father, brother, leftson, rightson of u ,
respectively. Let D(u) be the set of internal-node-descendants of u ,

and DL(u) the set of |eaf-descendants (u is also considered to be a

10



descendant of u ). The weight w(u) is the nunber of |eaf-descendants
of u ; thus w(u) = [DL(u)| = |p(uw)|+1, and for any leaf u, wu) =1 .

The external path length is defined as E(M = 2 w(uw) .

ueMI

Lenma 3. 2. Let M be any binary tree with n [ eaves, then

E(M > (g n - 1)

Pr oof . From Knuth [7, Section 2.3.4.5 egs. (3) and (4)], one has

E(M) > n|lg n] -2n+2+2(n-1) > n(lg n - 1) . O

Let H = 2 |/ be the Harnonic nunbers (see [7]). 1t is
1<i<n
clear that
n+l
1 1 1 1
- = —  —— Ltz x
ByoHp nrL ol noZ J, x &
n'+l
therefore
H-H, > In —riﬂ—) for n>n'>0 (3.1)
n n' n!+l e 7 . 5'

Definition 3.2. Let M be a binary tree. A subset of nodes V is

called a cross section of Mif rootf¢v and the follow ng condition

is true: For any two distinct ui,uj eV, father[ui] # father[uj]
and U uJ. have no conmon descendants.
- Lenma 3. 3. If Vis a cross section of a binary tree Mwith n
| eaves, then
w(u) n+l
u?V w(brother[u]) Z ln( n—w+1) ’

where W= 32 w(u)

ueV

11



Proof . For each node u of M, use u' to denote brother[u] When

it exists (i.e., when u # root ). Let depth(u) be the distance from
the root to a node u, Wth depth(root) = 0, W sort the nodes in v

in decreasing order of the depth as W sUps e e Uy | i.e., i< g inplies

depth(ui) > depth(uj) .

Fact A For any i< j, ui and uj have no common descendants.

Proof of Fact A The case i =] is trivial, as u! and u.J are brothers.

Assume i < | , which inplies depth(uj!_) = depth(u) > dep‘th(uj) .

| f ul and u., have any common descendants, then LH and hence Uy

J
nust be a descendant of u,. But this is ruled out since Vis a
J

Cross section. 0

From Fact A, we have for 1 <i <t ,

w(u}) < n- 2 owu) = n-W Y w(u.)
i<j<t J 1<j<i
Let Wi) =2 wj) , then
1<3i<i
w(ui) w(u, )

1
2 - , l<i<t
lfjfw<ui) n- W w(i-1) + | ==

v

Therefore

12



I T
uey "M 1<i<t "\
1
> > -
1<i<w n-W+Jj
= H-H) oy

Lemma 3.3 then follows from formula (3.1).

3.3 Merge-trees and the Proof of Theorem 3,1,

Let T be a regular algorithmthat selects the second best of n

players. We-shall show that, for any o,

2 q(v) >lninn-7 . (3.2)
VE s'(0)

This imediately inplies Theorem 3 .1, since by Lemma 2.1,

COST(T) >n -2+ (lnlnn -7

> n+§1lnlnn-6

We first state a useful fact.

Fact B. Let 858y e ar By be positive nunbers. Then

> e, lg a; > t(a lg a) ,
1<i<t

when a = ( iZ—ai)/t .

Pr oof . The function X 1g X isconvexfor x>0. [

13



The basis for proving (3.2) is the follow ng bound on q(v)

Lenma 3. 4. Let veT and comp(v) = (x.

5 :xJ.) a joining conparison

between elenents in two conponents of sizes SREE respectively. Then

c c c. +C
. 1 2 1 72
alv) > mn{cl+C2 R n }
Proof . Recal | that q(v) = ql(v)+ qe(v) . There are four cases. If

X4 and X'J are both undefeated, then qe(v) > (cl+c2)/n as the larger

of X5 X will be the largest of all elements with probability

J
(cl+02)/n . If neither is undefeated, then ql(v) =1> cl/(cl+c2) :
It =, i's undefeated and Xy is not, then gy(v) = (Probability that

X, > xj) > cl/(cl+c2) I X, is undefeated and X; is not, then
ql(v) > 02/(cl+c2) by the same token. Thus the lemm is true in all

cases. J

W shall now apply the lower bound on q(v) to prove (3.2). W
construct an auxiliary binary tree that represents the successive joining
operations performed in S'(o) , and then use results obtained in

Section 3. 2.

Merge-tree. Let o be an input ordering to algorithmT . W can
construct a binary tree Mc) corresponding to s'(o) with the follow ng
properties.

(1) M(o) has n leaves |labeled by the n input elenents X = {xl,xg,...,xn} .
(2) Each internal node u of Mc) corresponds to a ves'(o); the x; s
that are descendants of fson[u] and rson[u] respectively form

the two conponents that are joined by the conparison at v .

An exanple of a nerge-tree is shown in Figure 3.

14



Figure 3. The merge-tree M(o) corresponding to the sequence
of joining comparisons ((x5 :x5) , (Xh : x2) ,

(Xlzxu) ’ (X61X2) ’ ()% le))

15



Let C(u) denote the subset of X which label the |eaf-descendants

of u in Mc) . Define a function ¢ on M(o). , the set of internal

I
nodes of Mc) , by letting ¢(u) = q(v) if u corresponds to ve s'(o) .

V¢ wish to prove the following equivalent formula of (3.2).

2 @) > Inlnn-7 . (3.3)
ueM(G)I

By Lemma 3.4, we have for each ueM(O)l.

_ LA W +
o(u) > m{v\ﬁ_+v& ? W +2w ? V\{LnV\é ’ (3.4)
1 72
where w; = w(£son[u]) and W, = w(rson[fu]) . Therefore, Theorem 3.1
will follow fromthe follow ng result.
Lenma 3. 5. Let Mbe any binary tree with n | eaves. For each
ueM , let g(u) = min{(wl+w2)/n, wl/(wl+w2) , wg/(wl+w2)} wher e
LA w(4son[u]) and w, = w(rson[u]) .  Then
2 9g(u) >1nlinn -7 .

uezMI h

Pr oof . The proof makes use of the lemmas in Section 3.2. |t is given

"in Appendix A because of its length. O

3.4 Remarks.

The lower bound given in Theorem 3.1 is only about half as large as
the corresponding bound in the Main Theorem This is due to the use of
a relatively loose bound for q(v) in Lemma 3.4. A stronger bound for
q(v) will be used in the general proof in Section 5, where the regularity

constraint is also dropped.

16



W also wi sh to point out that (2.8), the first formula in Lema 2.1,
was not used in the above proof, but will be needed later in the proof for

the general case.

17



4, The Limted-Anonaly Theorem

The argunents in the previous section fail when algorithms are not
required to be regular. The inportant assertion in Lemma 3.4 is no |onger
true. Consider the partial order P(v) exhibited in Figure 4, and suppose

that the next conparison v is between x. and an anonal ous naxi nal

1
el ement x Al t hough the conponents ¢y and C, have sizes 5 and

2 .

102 respectively, it is intuitively clear that the probability qQ(V)
is less than (5 +102)/n , as max{x,,x,} is unlikely to be the largest
among el enents in cuc, . It will be seen later (Section 5.3) that,
in estimating qg(v) , one shoul d use f(xg) , the nunber of elements
in P(v) that are less than (or equal to) %, but not _less than any
other maximal elements, in place of the conponent size \c2| . Inthis
exanpl e f(xg) = L and thus qg(v) > (5 + L4)/n, a much weaker |ower
bound than (5 +102)/n . Therefore, two conplications arise when
non-regul ar algorithns are considered, Firstly, it was previously possible
to attach a lower bound to g(v) which depended only on the shape of the
associated merge tree; now nore details of the partial order P(v) nust
be taken into account. Secondly, when conparisons involving anomal ous
elenents x., occur, we may obtain very weak bounds on a(v) , if f(x;)
is small. W shall presently prove a result to overcome the second
difficulty, by stating that conparisons involving an anomal ous maxi mal
el enent X with a small f(xi) cannot happen too often unless OOST(T)
s large anyway.

Let P be a partial order on X = {xl,xg,...,xn} . For each X
| et H(xi) be the conponent contai ni ng X and h(xi) = lH(xi)l .

For any maxi mal el enent X5 the fiefdom of X, F(Xi) is the set

18
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Figure 4. Difficulties caused by anomaly.
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{xj | X, <% (in P), andx.J is not |ess than any other maximal elenent in p}.
Vi denot e \F(Xi) | oy f(xi) . Note that F(xi) c H(xi) , and the
containment is proper if and only if X i s anomal ous.  \When X, is

anomal ous, we cal | f(xi) the anomaly degree of x.

Let T be an algorithmthat selects the k-th largest of n elenents.

For any internal node veT , the conparison at v , x. PR is said to
1

be anonal ous of degree mif either x, or x.J has anomal ous degree m.

Theorem 4.1 (The Limted-Anomaly Theorenj. Let T be an al gorithm
selecting the k-th largest of x= {Xl’x2’° 3:°Xn} , and o an input
ordering.  Then the nunber of anomal ous conparisons of degree < mis

at most (emtl)s, (o)

Proof . Ve assign a weight mtl-i to an anomal ous el enent of degree i
for 1 <i <m, and a weight 0 to all other elenents. Let E and &
be respectively the total weight of all elenents before and after a

comparison X, > x Then the following is true.

i
Lemma 4. 2.

(A) B' < E+2m .
(B) If x:.L>x.J is a first defeat, then £' < E .

(c) If X, > xj is a first defeat and an anomal ous conparison of

degree < m, then E' < E .

Proof of Lenma 4. 2. It is easy to see that at nost two elements will be

assi gned new weights after the conparison; namely, the two maximal elenents
y and z whose fiefdons contain X, and x. Jrespectively. Since the

| argest increase in weight for an element is fromO to m, this proves (A).

20



To prove (B) note that x; > X;] is a first defeat inplies x.J= z .
After the conparison, z is no longer maximal, and F(y) « F(y)UF®.
W consider two cases according to whether z was anomal ous of

degree < m before the conparison x. > x.J .

Zase (a). was anomal ous of degree < m .
The decrease in z's weight is frommtl- f(z) to O while the
mexi mum increase iny 's weight is from 0 to max{0, mt1- (f(y)+ f(z))]

<mtl-f(z) . This neans E'< E .

Zase (b). was not anomal ous of degree < m.
Then z's weight does not change; y's weight has two cases:
(p1) y was anomalous of degree < m. Then y's weight strictly

decreases due to the strict increase in its anomaly degree.

(b2) Yy was not anonalous of degree < m. Then y's weight remains 0 .

This proves (B). Statement (C) follows from the analysis of Case (a)

and Case (bl) above. This proves Lemma 4.2.

Ve will now conplete the proof of Theorem 4.1. Statenents (A) and
(B) of Lemma 4.2 inply that the total increase in weight along path s(o)
is bounded by 2msl(0) . Since the sum of weights of the elements is
initially 0 and always non-negative by definition, the nunber of
conparisons n, which fits statement (C) of Lemma 4.2 is at nost

3

ems, (0) . The total nunber of conparisons along S(0) that are anomal ous

1.(
of degree < mis clearly at nost Dy + sl(cr) » and is hence bounded by

(2m+l)sl(c7) . This proves Theorem 4.1. O

21



5. Proof of the Main Theorem

5.1 Introduction.

VW will prove the following result in this section.

: . 18k
Theorem 5. 1. Let k , n be integers with k >2 and n > n_ = (8k) ‘

Suppose T is an algorithmthat selects the k-th largest of n elenents,

and o any input ordering. Then (o) > k(lnlnn -1nk - 6) , if

As defined in Section 2, the quantities a(o), sl(c) depend on T .
Also note that, for n >N the follow ng inequalities hold, as can be

verified by elenentary argunents.

(
a0t >k 1n 1n n (5.1)
< o (6%) > 2i1gn (5.2)
o2 ko (5.3)
\
W first dempnstrate that Theorem5. 1 inplies the Main Theorem  [f
- . : 0.2
there are nore than n! xn 0.1 satisfying s, (o) >n , then (2.8)

i nplies

1, -0.1 o.2
cosT(T) > n -k + = nin n

1
.,

> n-%kx+%k1lnloan ,

inviewof (5.1). O the other hand if less than n! Xn-O.l of the o's

satisfy sl(c) > n0'2 , then (2.9) and Theorem 5.1 lead to
1 1 ] “O.l k _6
COST(T)Zn-k+—2-E-,—(n:-n.xn Yk(n In N - 1n )
> n+%k(lnlnn—lnk—6-n-0'11nlnn—2)

22



Again, using (5.1), we obtain
COST(T) >n + 2 k(Inlnn -1nk -9).

Thus, the Main Theoremis true in both cases.

5.2 Sone Results on Partial Orders.

Let P be a partial order on a set X = {xl’xz""’xn} . Assune
that all orderings on X consistent with P are equally likely. W are
interested in bounds on the probability of sone el enent X, bei ng greater
than anot her el ement Xy (or all elenents in sone subset). For instance,
i f X.q is the unique maximal elenment in a component (in P ) of size m,
then the probability that x, is the maxinumof all n elenents in X
is clearly at least mn, and it is also not difficult to show that
Pr(xi > xj) is at least m/(mtr-1) , if X Is a non-naxi mal el enent
in a different conponent of size r, A generalization of these facts

Is given below in two |enmmas.

Lenma 5. 2. If x, is a maximal elenent, then
f(xi)
Pr(x, is the largest element in X) > -
Lenmma 5. 3. I f X, is a maxinmal elenent, and X a non- maxi nal el ement
in a different conponent, then
f (xi)
Pr(xi > Xj> > f(x1> +h(x,j) -

23



Intuitively, the above |enmmas nust be true, since knowi ng that some
el enents in F(Xi) are greater than some el enents outside F(xi) shoul d
not |ower the rank of X.q - However, the proofs are not trivial, and are
given in [3] where related issues are studied.

Lemma 5. 4. Suppose x; is the unique element in a conponent c of
size m and x.J a non-maxi mal elenent in a different conponent c' of
size po-m . Assune that o > 2k . Define the quantity g to be

(Pr(xi > xj) + Pr(ma.x{xi,xj} isinthe top k-1 of X)) . Then

B > min{l-e™/0 1 o™/ BL (on))t ) 1<t < k).

Proof . See Appendi x--B. O

5.3 Lower Bounds on q&v)

Let v be an internal node in the algorithmT . Suppose v conpares
X3 0 X5 . W will give | ower bounds on q!(v) in terns of conponent sizes

such as f(xi) ,h(xj) , etc. defined relative to P(v)
Lemma 5. 5. | f x; is a non-maxi nal el enent, then ql(v) > l/h(xi) .

Proof . | f XJ' is also non-maximal, then ql(v) =1, else by Lemm 5. 3,

9 (v) = Pr(x‘j > x;) > f(xj)/(f(xj)+h(xi) -1) > l/h(xi) . d

Lemma 5. 6. If both x. and x5 are maxi mal, then 6, (v) > (f(xi)+f(xj))/n .
Proof . The properties of X X being the largest elenent in X are

fx,) f£(x.)
mitually exclusive. Hence gq,(v) > nl + nJ by Lemma 5.2. O
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Lenma 5. 7. I ox, is a maxi mal elenent and X, a non- maxi mal el ement,

then g (v) > f(xi>/(f(xi)+h(xj)) :

Proof . It follows directly fromLemma 5. 3. o

Lemma 5. 8. Suppose X, is the unique maximal elenent in a conponent ¢,

and x.‘_J a non-maxinal elenment in e different conponent. |f
nl-(1/6k) |

h(xi) < nl/5 and h(xi)+h(xj) > then
h(x,)
S ki - 3%° L
a(v) > h—(—)-xj 3 N
Proof . Let m= h(xi) , m' = h(xj) and Ao = m+tm' . Then by assunption
m < 272 and 4 > ot (1/6K) (5.4)
Cearly o> 2k . By Lemma 5.4 we need only show that
-k:m./A > 1 _Iﬂ_ . ,2 l
l-e > B - R n—77-6 s (5.5)
and
mi n {1-e'tm/A+(A)t}>kin—-5k2 L. (50 6)
1<t<k an - n(/8
As e <1 -x+%x2 for x >0, we have
Lek/s | komi <_k_m)2
- A 2 A
2 2
m m 1/ km
- km'km'z(f) - (5.7)
Now, from (5.4),
(2-4)
k
2 < \d (5 .8)
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This inplies m/a < 1/2 and hence

Nl =

n' > A

Using (5.8) and (5.9) in (5.7), we obtain

> .
~km/ A m k m
otz (e E))

v
o
HE
]
N
b
no
= ]
~
\N| =
]
N
B+
S

\Y
=~
l
1
N
w
s

This proves (5.5).

For 1 <t <k ,~

t k-1
-tm/ A A A

where we have used (5.4) and the fact n >N
(5X) and (5.9) to obtain

t

-tm/ A A m
l-e + (2.{1) > 2k -E

> kv

This inplies (5.6) inmmediately. QO
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W now use

(5.10)

(5.11)



5.4 Conpl eting the Proof.

As in Section 33, we construct a nerge-tree M o) corresponding to
the merging process for o, and assign o(u) = q(v) to each ueM(G)I ,

It will be shown that, under the assunptions in Theorem 5.1,

2 p(u) > k(In In n - 1In k -86). (5.12)
ueM(U)I

This would -prove Theorem 5.1, as

(o) = 2 q(v)
v e 5(0)

> Zalv)
ves' (o)

= 2 o(u)
ue M(G)I

To prove (5.12), we first partition the set of nodes in Ma) into
upper and lower parts, U= (u|wu) > nl/a} and L = {u|w(u) < nl/j} .
Let V' = (u|wueU fson[uleL, rsonfu] ¢L}, V' ={u]|uelL, fatherfule LV ] ,
and V=v'yv". (These definitions are simlar to those used in
Appendi x A, and -properties PL -P5 there remain true.)
V¢ now partition V into seven disjoint parts UBASER .,V7 )

For each ueV , we assign u to a unique v, according to the follow ng

procedure, which halts as soon as u is assigned,

Procedure Deconpose;

step 1. If there is some u'eD(u) where the joining conparison is not
between two maximal elenents, then assign u to vy
[comment: If u is not assigned in step 1, then the joining conparison at

u Ccreates a conmponent C(u) with a unique maxinal elenent;

27



step 2.

[ conment :

step 3:

step 4:

step 5;

recal | that C(u) consists of the X.'s that |abel the |eaves
in DL(u) . ]

If UEV , then assign u to v, -
If u has not been assigned after step 2, then u nust be
in v" and father[u] exists.]

| f father[u] conpares a non-maximal element in C(u) with
any element, then assign u 1O V3 .

If father[u] conpares the nmaximal elenent of C(u) with

another maxinal element (in a different conponent), then

v, i f the comparison i s anomal ous of degree

V5 ot her wi se.

If father[u] conpares the maxinal element of C(u) with some

. a/5
assign u to 1 at nost [n™7/”7 ,

non-maxi mal element (in a different conponent), then

end Deconpose.

1. 1
(V6 i f w(father[u]) < n &k s
assign u to 1. X
].V7 i f w(father[u]) > n éx
W, = T w(u) (1<i <7, and
ueV,
1
[ 2 2 o(u') if ie {1,2,43 ,
UeV, u'eDd(u)
i
A = 4 2 o@(father[u]) if ie {3,6,7},

ueV,
i

2 ( | ZD() cp(u'>+<p(father[u1>) if ie (5}
Lue N u ¢ u
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In anal ogy with discussions in Appendix A it is not difficult to

see that V., is a cross section, and that

7
2 W, = ,
1<Tert n (5.13)
and
2 E(u) > ‘ . . ,
ue M(0), T1<ikT A (519

W will now find |ower bounds to the A 's in terns of the LARED
W treat first A for ie {1,3,6} , which are "costly" and thus

efficient algorithnms should not have |arge W, for these values of i

)
- 1-

Lemma 5. 9. A1+A5+A6 > (wl+w2+w6)n( 6k :

Proof . For each uev, , some u' eD(u) has a conparison involving a
non-naxi mal elenment.  Thus, by Lenma 5. 5, 2 p(u') > n"l/3 . e

u' € D(u) -
have
-1
A 2 [vq]mn s (5. 15)

Simlarly, by Lemm 5.5, we have

o> |V5'l.n'l/3 . (5.16)

As each uev has W u) <_2nl/5 , Wwe have for ie {1,3}

1 -1
>t o (5.17

|V, 5

i |

Formulas (5.15) - (5.17) lead to

A, > 1 W.-n-g/5
i =2 i
1
- 1-
W.en ( 6-1{_) , for ie (1,3} . (5.18)

- 1
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For each ueV, , we apply Lema 5.7 to father[u] and obtain

w(u)
p(fatherfu]) > w(father{u])
1
-1 1- )
> w(u)n ( EE)
Thus,
1
{1- )
Ac > 7 w(u)n( 33
U.€V6
1
()
61’1 (5'19)
Conbi ning (5.18) and (5.19), we obtain the |emm. O
Lenma 5.10, W, < gt/ L0
Proof . By the Limted-Anomaly Theorem (Theorem 4,1),
vyl < @erat1ens (o) < a0t
since sl(c) < 02 by assunption. As each we V) has w(u) < nl/5
we have
Wos e < et g
"o
Lenma. 5. 11. Agzg-r-l-lgn—l.
Proof . Let uev, . For each u' eD(u) , o(u') > w(u')/n by Lemma 5. 6,

as the corresponding conparison is between normal naximal elenents. This

gives, by Lemma 3.2,
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2 p(u') > %
u' e D(u)
s L
n
As w(u)zn/B, we have
S o) > 3
u' eD(u)
Therefore
1
> =z w(u)
%2 2 n ueV
2
W
)
> %lgn—l
5
Lemma 5. 12. A,5 25—nlgn-

Pr oof . If|V5|= O then W

thus assune that |V51 >0 .

S+

o o) >
u' e D(u)

Thus, using Fact B in Section

2 2 o

Now, for each wuevV le

5 )

%‘-lgn-l)
a
1.
5 = 0 and the lemma is clearly true. W

For each ue V.,

w(u)(lg w(u) -1) ,

5.3,

) > %( 2 w(u) e wu) -wg)

ueV5

™

W 1g —vi{ (5 .20)
5

t the conparison at father[u] be between

Xq and X. wher e X4 is the maxi mal el ement of c(u). By Lemma 5. 6,

J )
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f(xi)+f(x.)

o(father[u]) > o J

w(fatherful) _ L 13 jf yx_ is norml,
n . — n J
2
_i. ral/oq if x. s anomalous.
Thus,
2 o@(father[u]) > lV5ln_u/5 (5.21)
uevy
5
Fornmulas (5.20) and (5.21) lead to
> L 1g T v "% -1 (5.22)
A5 = nw5 ‘V5| >

By standard mininization technique (e.g. See the proof of Fact E in

Appendi x A), (5.22) vyields

1 Ll/0y + 1 1
A > [ W 1g((In 2)en™7) T W g5 - 1
1
The lemma follows, noting that lgln2+3=>>0. d
+1
I-_errma5.13. A,?kmrﬁﬁ_s'
Pr oof . Let uev, , we wite u' = brother[u] . By Lemma 5.8 and (5.3),
we have

p(father[u]) > k o7y - Ok 76
n

As V_ is a cross section, we obtain from Letma 3.3. that
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w(u'
ueV

n+l
k|nn_w—+l-3 O

v

W are now ready to prove (5.12), and hence Theorem 5.1. Using

Lemmas 5.9, 5.11, 5.12, 5.13 and fornula (5. 14), we have

2 p(n) > 2 A.

1

ueM(0); T
(2-5) 2
- "Bk lg n lg n
> (wl+w3+w6)n + T W, + =25 w5
n+l
TR ETo 0
Making use of (5.2) and (5.13)
5 (W) > BRG 4w + W +W W) + k In —t 5
o(u) > 5p 1 o 3 Y5 T Yg n-W_+1
ueM(U)I 7
n, g ol 5 -k
= (n—W,?) 5 + n W— - 5p g n . (523)

From Lemma 5.10 and (5.2),

W 11/15

L 8 n

E—ngn S "5-' n lg n

lg n
< Q—W—
—_ n 15
<1 . (5. 24)
Therefore, (5.23) leads to
2 cp(u)>xlgn+k]_n£1+—l-—6 :
¢ (o) - 5n x+1
I

for some x , O0<x<n.
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A standard mnimzation gives

2 (u) > k 1n 18ny g
ueM(O)Icpu - (5k)

>k (In Inn - In k - 6)

which is (5.12).

This conpletes the proof of the Miin Theorem
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Appendi x A Proof of Lemm 3.5.

The lemma is clearly true when n < 8 . W shall thus assume that

n>8 ., Note that, in this range

/3 >rrax{%lgn,%lnlnn} . (A.1)

Ve say a node ueM; to be of' category 1 if g(u) = minbﬁfweb“wi+w2)
and of category 2 otherwise. For a node u to be of category 1, we nust

have
min{wl,wg} . Wyt
ww = n ?
i mpl yi ng
w(u) = Wity > ’\/; . (A.2)

Let us divide the set of nodes of Minto an upper part U and a

| oner part L according to whether or not w(u) > nl/5/2 . Asn>38,

the root must bhe in U and all leaves are in L, Now consi der the set
V' of lowest nodes in U, i.e.
V' = {UueU, tsonfu] EL , rson[ul ¢ L} ,

and the set v" defined by
V' = {u|uel, father[u] eU-v'} .
An alternative characterization of v" is given by
V' = {u| uelL, father[u] ¢ U, brother[u] ¢ U}

Let V=vryv'. The following sinple properties are easy to check.
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PL: V' and v' are disjoint.

P2:  Any two distinct nodes in V have no common descendants.

P3:  Any two distinct nodes in v' have distinct fathers; furthernore,
the set {father[u] | ueV"} is disjoint fromthe union of descendants
of nodesin v .

P4: v" is a cross section of M.

P5:  The famly of sets {DL(u) | uev) forms a partition of the |eaves

of M

We partition v = v' yv" into Vi (1 <i <4) as follows. The set

vy issimply v''. Sets v, 3,V1+are gi ven by
v, = {UJU e v, father[u] is of category 2},
1" H 2/5
V5 = f{u|uev", father[u] is of category 1, w(father[u]) < n™/-},
v, = {u|uev", father[u] is of category 1, w(father[u]) > ng/B} :

The definitions are illustrated in Figure 5.

Let w, =2 w(w for 1<i<L. Define

UG%
rAl Z z  su)
= uevy U e D(u)
< Ay = ( 2 glu') + g(father[u]))
Uev, u e D(u)
Ay = 2o g( father[u] ) i = 3,4 .
L UGE

As an inmedi ate consequence of property ¥, we have

Z )eri = n o (A'B)
1<i<
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Figure 5.

A schenatic

illustration of

v o= Vé Uvz UV ; nodes in V',

3

v, v", respectively.
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Now, from properties Pl-P3, we have

zZ > oA . (A1)

UE M Tol<i<h

Qur plan is to first derive |ower bounds to Ai in terms of }.LN, and

then apply (A 4) to prove Lemma 3.5.

Fact C, If w(u)<vn, then Z  gu) > %W(u)(lg w(u) - 1)
u' eD(u)
Proof . V¢ may assume that ueM . , as the assertion is clearly true

when u is a leaf. Now each u' eD(u) nust be of category 2

(w(u') < m/ﬁ) , and hence g(u') = w(u')/n . Using Lenma 3.2, we have

T ew) =1 T u)

u' eDd(u) T e D(u)
> 3 vw(e wuw-1) . O
!
Fact D. A1>—'§nlg” - 2.
Proof . Each uevy satisfies wu) < 2(n1/5/2) <_«/E , and hence from
Fact ¢,
' o = T Z elu)
uev, U e D(u)
1
>z = w(u)(lg w(u) -1)
ueV
1
>% 2 w(u) 1g W(u) - 1.

ueV:L
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As w(u) >_nl/5/2 (since ueUu ), we have

A 2% )3 V\(u)(%lgn-l)-l

Uuev,
L
W
> —}Ilgn— 2 O
WC)
Fact E. A, > —Hf'-gn-B
Proof. ~ The statement is obviously true when |v, |=0. W shall. thus

assume that [v,| >0 . For each uev g(father[u]) = w(father[u])/n

2 1
> 1/(2n2/5) , since father[u] is of category 2 and is in u . Making

use of Fact C, we have

n
™
®™
g
+
™
®
%
d-
jnx
D
R
£

A

u<—:V2

W now use Fact B to obtain

A
A, > —n-—lgTV—gT-l”fg—n—g-fg (A.5 )

The right hand side expression d(|v,|) achieves its absolute ninimm

over |V2| e [0,=) at ‘Vgl = EWE/(nl/5 In 2) , where

W W
_ _° ln 2 1/5 - 1 2
vy = 5 lg( 5 ") slroe ¢
)
> 5—-ngn-5
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Thus, formula (A 5) inplies

W
Ay > zolen-3 (4.6)

proving Fact E. O

The derivation of (A 6) from (A5) is a standard argunent, and simlar
derivations will henceforth be referred to as "by standard mnim zation
technique" with details omtted.

For each ueVBUVLL ,  w(brother[u]) > nl/5/2 > w(u) , and father(u]

is of category 1.  Thus,

g(father[ul]) _ w(faz‘,v}(l:e?'[u]) . (A.T7)

W
Fact F. 4, Zr?% .

Proof . For each uev5 , w(father[u]) < r12/5 . Using (A.7), we have

2. g(father[u])
uevV

3

%

= 2 w(fazlglgn)r[u] )

n+l

1
Fact G ALLZ l-m)lﬂmﬁ-

Proof . For each uev, , wu) < nl/5/2 and w(father[u]) > n2/5 ‘

Using (A.7), we have
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g(father[u]) W(fa?bvlr(lgrz‘[u] )

w(u w(u
= w(brother[u]) (l ~ w(father[u]) )

(u) 1
> w(brozher[u]j (l - 2nl73 )
Thus,
A, = 2, g(father[u])
ueVL
1 w(u)
> (l - 2nl75) ueZVLL w(brother[u]) ‘ (4.8)

As v" is a cross section of Mby property Pk so is V), Fact G

then follows from (A 8) and Lenma 3.3. O

W will now finish the proof of Lemma 3.5. Using Facts D- G we
obtain from (A 4)

W, +W W
1 2 1 n+l
> glu) > lg n + —-{%- + (1 - In ——— -5
ueMI - on n25 Enl;5 . wh+l

Using (A 1) and (A.3), we obtain then

Wt W, ot W
1 3 1 n+l
2 g(u) > ———=1gn +(l - )ln -5
we M, on eln Wyt Wyt
1 n+l
> (l —7—2n15)(5 lg n + 1n _x+l) 5 (A.9)
where Xx= W1+W2+W3 ,
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By standard mnimzation technique, we obtain from (4.9)

T ogw) > [1-—= Inlnn-1) -5
u.-sMI stw) - ( ;’7-3—)( ae )

> Inlinn -7 ,

where (A.1) was used in the last step, This proves Lemma 3.5. O
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Appendi x B: Proof of Lenma 5. 4.

Let g(t) be the quantity g when the conponent c' has been
sorted and Xy is the t-th largest init, Then, denoting by p(t)
the probability that x,is the t-th largest in c' under partial

J

order P, we have with m' = pA-m ,

B = Z  p(t)B(t)
lSt <m'

As X, is not a maximal element, p(l)=0. Therefore, the |emma would

follow, if we can show that for al1 1 <t <m' ,

1 t,
B(t) > min {:I.-e'km/A 5 1-e'JC m/ A + (§AH) for L<t' < k} : (B.1)

Let g(t) = a,*ta, , where

a) = probability that X, > x.J,
8, = probability that max{xi,xj} is in the top k-1.
Cearly,
a = 1 - (probability X'1<X'J)
m
= 1 - A)
m
t t . x .t )
= 1- (l-z)(l-m). ( At L
£ m
1 - (1-—&)
But,

43



( t)m Jm In(1-t/4)

1-- =
A
< em(-t/A)
Thus,
ap > I—e'tm/A for 1<t<m'. (B.2)
Fornula (B.2) proves (B.1) for the case k <t <m'. W shall now
restrict our attention to the case 1 <t < k' =min{k,m'+1} . In this range,
a8, _ Pr(ma.x{xi,xj} isinthe top k-1 of X

Pr(the t-th largest element in cyc' is in the top k-1 of X)

IV

= 2 Pr(the t-th largest element in cyc' is the ¢-th |argest

t<i<k
in X

o ) (6)
<2<k (2)

A A_:l L A—'t+l
& Z n onol n-t+1
t
> (;k)
hd n
A t
> (é—ﬁ) s when 1 <t < k'. (B.3)

t

> l—e-tm/A+<A)

2n

Thus, (B.1) is also true in this case.

This conpl etes the proof of Lemma 5.4. O
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