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Abstract.- -

Let v,(n) be the minimum average number of pairwise comparisons

needed to find the k-th largest of n numbers (k > 2) , assuming-

that all n! orderings are equally likely. D. W. Matula proved that,

for sme absolute constant c , Vk(n)-n 5 c k log log n as n 3 = .

In the -present-paper, we show that there exists an absolute constant

c' > 0 such that v,(n)-n 2 c' k log log n as n 3 w , proving a

conjecture of Matula.
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1. Introduction.

The problem of selecting the k-th largest in a set of n n-mbers

by pairwise comparisons has been a subject of considerable interest

(e.g. Knuth [6][8]). Two particularly interesting situations are the

fixed-k case (n 3 a) and the median-finding problem (k = rn/21) .

Let Vk(n) denote the complexity of selection in the worst case, and

v,(n) the average-case complexity assuming that all n! permutations

are equally likely. -/*Table 1 summarizes the known results.

fixed k (n -+ a) median -I+

‘&-d

v,(“)

vkb)$ =
(k-l) lg n + f(k) 3n 2 V

d2
(n) 2 L75n ii/

[21 [41 [51 [lOI [lOI D.u

ckln In n > v,(n)-n > ? 1.5n > V- (n) > L375nn/2 -

[PI Dl
/

Table 1. A summary of known results on selection problems.

e As seen from the table, no good lower bound is known for the fixed-k

behavior of v,(n) . It is not even known whether v,(n)-n -+ a as

n + 33 [aPI. Sobel conjectured [8] v,(n)-n to be of the order log n ,

as is true in the worst-case complexity, But in 1973, Matula [p] devised

an elegant algorithm which finds the k-th largest using n+ck(ln ln n)

*
-/ In this paper, we use

f
lg to stand for logarithm with base 2.

+
These results have generalizations for the case k = an with any
fixed 0 < a < 1 .

u An improved lower bound of (U/6), was claimed in [IZ].
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comparisons on the average; and he conjectured that the k(ln In n)

term cannot be further reduced. In this paper, we prove that

v,(n)-n 2 c'k(ln In n) , thus confirming the conjecture. As a result,

vk(n)-n is determined to within a constant factor asymptotically.

Main Theorem. For every integer k 2 2 , there exists a nuTnber Nk

1such that vk(n)-n 2 2 k(lnlnn-lnk- 9) for all nzNk.

In Section 2 some basic concepts are introduced, In Section 3 we

illustrate certain aspects of the proof by showing a weaker form of the

theorem in the case k = 2 , under a severe "regularity" constraint on

the class of allowed algorithms. In Section 4 we examine the difficulties

encountered in extending the discussion to include non-regular algorithms,

We then introduce some new concepts and prove a crucial result (the

Limited-Anomaly Theorem) to prepare for the proof of the Main Theorem,

which is completed in Section 5.
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2. The Accounting Schemes.

An algorithm for selecting the k-th largest of n (distinct)

elements X = ix,3x2,...,x,]
is a binary decision tree T KU.

Associated with each internal node v is a comparison between two

elements xi , x. .
3

We will say " v compares xi , xj ", and use the

notation camp(v) = (xi :xj) . The branching at v is determined by

whether xi < x. or
J

xi >x. .
J

By analogy with a tennis tournament

that selects the k-th best of n players, we will freely use in this

paper descriptions such as *' xi defeats x. M (if xi > x.
3 J)

,

'I xi is undefeated (so far) ", etc.

Any particular ordering CT satisfied by the input, i.e.,

X"w
> xq2> > l l l --> ⌧qn> f determines a path from the root to a

leaf in T . Let S(O) denote the sequence of internal nodes on this

path; and let s(c) = IS(c)\ , the number of comparisons made. The

average cost of T is

COST(T) = 1 z s(a) .5-0 (24

The average-case complexity V,(n) of selecting the k-th best of n.

is the minimum cost COST(T) among all decision trees. Without loss

-of generality, we consider only algorithms that make no redundant

comparisons (i.e., comparisons whose results can be deduced from

com@risons made previously).

Let T be any algorithm. We consider two types of non-crucial

comparisons: for each input ordering u , let Sl(0) be the set of

comparisons made by T in which the loser has been defeated previously,

and S2(a) the set of comparisons involving at least one plwer ranking
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in the top k-l . We shall write ~~(0) = ISi(c)\ (i = 1,2) . Note

that a comparison can be in both Sl(o) and S2(0) . As each player

except the top k must encounter a first defeat, we have

s(u) 2 n-k+sl(c) . .. (2.2)

Also, because each player not in the top k must lose to some player

ranking below the top (k-l) , we have

s(a) 1 n-k+s2(o) . (2.3)

Fm-nulas (2.1), (2.2), (2.3) lead to

COST(T) _> n - k + 7IL c s, (4

and

II. u A

COST(T) 1 n - k + g -$ c. u

We will transform (2.5) into another form. For each internal

node v , let q.(v) (i = 1,2) be the probability that camp(v) is

s&9 l
Precisely, if we let r(v) = {o \ s(c) contains v] andin

'i

-

I

o)] (i = 1,2) , then

SiCv) =
IriCv) \
☺r(v)  1 l

- We define further

q(v) = cl+) + cl&4

and

aQJ> = i? q(v)
VE s(a)

(2.4)

(2*5)



Then

c (SlW + qw =
u

C (Ir,W I+ lr2b
VET

= C Jr(v$dv)
V ET

=c c d-4
CJ- VE s(0)

= 7 a(a) l

u

We obtain from (2.5) and (2.6),

COST(T) 2 n - k + 2 7IL IL G a(a) .
-_ . u

we collect (2.4) and (2.7) in the following lemma.

Lemma 2.1.

) I)

(2.6)

(2.7)

COST(T) 2 n - k + 7IL c SlW Y. u

COST(T) 2 n - k + F n'IL I- x a(u) .
' ti

(2.8)

(2.9)

e We can think of the two formulas in the above lemma as two counting

methods for the comparisons. The first one is direct counting, while the

other is distributive counting as the cost is "distributed" to the

internal nodes of the decision tree. To illustrate the utility of these

alternative counting methods, we can combine the two formulas to obtain

COST(T) 2 n - k + ; $- c (s,(4+W)  l

cf

(2.10)

Our aim will be, roughly speaking, to show that for any permutation 0 ,
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~~(0) + a(u) 2 con&, x k In In n . (2.11)

That is, for any computation sequence S(0) , either itself contains a

large nwnber ~~(0) of non-crucial comparisons, or it will effect a

large number a(a) = Ix cl(v) -.of non-crucial comparisons distributed
VE s(o)

over other paths. However, in the proof we shall not be using (2.10)

and (2.11), but rather Lemma 2.1 itself, in order to obtain better

coefficients of klnlnn in the lower bounds.

Remark. The quantities s(&si(a),U(&..  all depend on T ; we

have suppressed this dependence in our notations for simplicity.



3a Regular Algorithms.

3.1 Introduction.

In this section we shall prove a weaker form of the Main Theorem for

k=2, under certain "regularity" constraints on the algorithms under

consideration.

We begin with a discussion about general algorithms. Let T be

any decision tree algorithm selecting the k-th largest of X =
kl

,x2,,,.,xn] .

One can view the computation process for any input ordering 0 as

building up successively larger partial orders on X , Formally we

associate with each node v in T a partial order P(v) , which is

the relations xi > x. obtained on the
J

V (prior to performing the comparison

the transitive closure of all

path from the root of T to

at v ). We call camp(v) = ( X.1 : Xj) a joining comparison if xi

and x. belong to different connected components in P(v) . At each
J

leaf R , w must contain only a single component, otherwise the

relative order of elements in different components can change the

identity of the k-th largest element. Thus, there are exactly n-l

joining comparisons camp(v) in the sequence VE S(O) for any 0 ;

we denote the subsequence of these nodes v by S'(o) .

Clearly x is a maximal element in the partial order P(v) if and

only if x is yet undefeated. A component C of a partial order is

said to be anomalous if C has more than one maximal element. Amaximal

element x in P(v) is anomalous if x is in an anomalous component,

and normal otherwise. A partial order is anomalous if it contains an

anomalous component. Figure 1 shows an anomalous partial order with Cl

being an anomalous component, x2 a normal element, and x1 ,
3

two

anomalous elements.
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. .

Figure 1. An anomalous partial order

Figure 2. Creation and removal of an anomaly.



We now define the notion of regular algorithms, in which the choice

of a comparison camp(v) is restricted by the current partial order

p(v)  l

Definition 3.1. An algorithm T is re@ar if no joining comparison

can involve an anomalous (maximal) element.

In particular, any algorithm that removes anomalous partial order as

soon as they occur is regular. For instance, suppose the current partial

order P(v) is as shown in Figure 2 and camp(v) = (x1:x$ is performed

with result x1 > ,
3

thereby creating an anomalous partial order. By

choosing the next comparison to be (x
1 :x2) , we can immediately remove

the anomaly independent of the outcome. Matula's  &lgorith.m [p] for

k = 2 is of this type.

The rest of this section is devoted to proving the following result.

Theorem 3.1. Let T be a regular algorithm for selecting the second

largest element of (xl,x2,...,xn] . Then

COST(T)-n 2 $ln In n - 6 ,

3.2 Some Properties of Binary Trees.

We digress to discuss some useful facts about binary trees.

Let M be a binary tree. We use MI to denote the set of internal

nodes. For each node u , we use notations father[u] , brother[u]  ,

.Pson[u] , rson[u] for the father, brother, leftson, rightson of u ,

respectively. Let D(u) be the set of internal-node-descendants of u ,

and DL(u) the set of leaf-descendants (u is also considered to be a
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descendant of u ). The weight w(u) is the number of leaf-descendants

of u ; thus w(u) = ID,(U)\ = \D(u)\+~  , and for any leaf u , w(u) = 1 .

The external path length is defined as E(M) = c wb-4 l

UE
MI

Lemma 3.2. Let M be any binary tree with n leaves, then

E(M) 2 n(lg n - 1) .

Proof. From Knuth [7, Section 2.3.4.5 eqs. (3) and (k)], one has

E(M) 1 nLlg nJ - 2n+2+2(n-1) 2 n(lg n - 1) . 17

Let Hn = c l/i be the Harmonic numbers (see [7]), 1-t is
l<i<n- -

clear that

Hn-Hn t

therefore

I
-+

n'+l
IL + 1

n'+2
. . . + -

n

Hn-Hn, > In -$&
t )

>-

n+l

J
iY+l

$dx

for n>n'>O .- -

Definition 3.2. Let M be a binary tree. A subset of nodes V is

called a cross section of M if root{V and the following condition

- is true: For any two distinct ui,uj EV , father[ui]  # father[uj]

and u.,u.
1 J

have no common descendants.

- Lemma 3.3. If V is a cross section of a binary tree M with n

leaves, then

(34

where W = 2 w(u) l

UEV
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Proof. For each node u of M , use u' to denote brother[u] when

it exists (i.e., when u f root ). Let depth(u) be the distance from

the root to a node u , with depth(root) = 0 , We sort the nodes in V

in decreasing order of the depth as
?L,u',...,u2 t ; i.e., i<j implies

depth(ui) 2 depth(uj) .

Fact A. For any i< j, U; and u
3

have no common descendants.

Proof of Fact A. The case i = j is trivial, as Ui and u.
J

are brothers.

Assume i < j , which implies depth(u;) = depth(u) 2 depth(uj) .

If ui and u.
J

have any common descendants, then u; , and hence u. ,
1

must be a descendant of ui . But this is ruled out since V is a

cross section.

From Fact

J

a

A, we have for 1 < i < t ,- -

w(u;) < n- C
i<j<t

w(uj) = n-W+ r
l<j<i

w(�j) l

Let W(i) = C w(j) , then
l<j<i- -

e

w(“i) w(“i)

1 -

w(u1)

>

. n - W+W(i-1)

>- 7

llj<W(Ui)

-
n-W+ W(i-l)+ j Y l<i<t- -

Therefore
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> 7
l<j<W- -

1
n-W+j

= Hn-Hn w l

Lemma 3.3 then follows frcrm formula (3.1).

3.3 Merge-trees and the Proof of Theorem 3.1.

Let T be a regular algorithm that selects the second best of n

players. We-shall show that, for any 0 ,

c q(v) 2 In In n - 7 .
VE S'(u)

This immediately implies Theorem 3 .l, since by Lemma 2.1,

COST(T) 2 n - 2 + 2l(lnlnn

2 n+
1
2 ln ln n - 6

- 7)

We first state a useful fact.

Fact B. Let ~,a~,...,"~ be positive numbers. Then

z ai lg ai 1 t(alga)
l<i<t

when a = jfai)/t .

Y

(3.2)

Proof. The function x lg x isconvexfor x>O. Q
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The basis for proving (3.2) is the following bound on q(v) .

Lemma 3.4. Let veT and camp(v) = (xi :xj) a joining comparison

between elements in two components of sizes cl, c2 , respectively. Then

q(v) > min-
c2

c +c1 2

c +c
.l 2

n

Proof. Recall that q(v) = ql(v)+ q2(v) . There are four cases. If

X. and x.
1 J

are both undefeated, then q2(v) 2 (cl+c2)/n as the larger

of x. ) x.1 J
will be the largest of all elements with probability

(c1+c,)/n  l
If neither is undefeated, then ql(v) = 1 > cl/(cl+c2) .

If xi is undefeated and x.
J

is not, then ql(v) = (Probability that

xi > Xj) 2 c1/(c1+c2) . If x.
J

is undefeated and x
i is not, then

ql(v) 2 c2/(c1+c2) by the same token. Thus the lemma is true in all

cases. 0

We shall now apply the lower bound on q(v) to prove (3.2). We

construct an auxiliary binary tree that represents the successive joining

operations performed in SW Y and then use results obtained in

Section 3.2.

e
Merge-tree. Let c be an input ordering to algorithm T . We can

construct a binary tree M(c) corresponding to S(c) with the following

properties.

(1) M(a) has n leaves labeled by the n input elements X = [x1,x2,...,xn} .

(2) Each internal node u of M(c) corresponds to a VES(O) ; the xi's

that are descendants of Ison[u] and rson[u] respectively form

the two components that are joined by the comparison at v .

An example of a merge-tree is shown in Figure 3.
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Let C(u) denote the subset of X which label the leaf-descendants

of u in M(c) . Define a function cp on M(o)I , the set of internal

nodes of M(c) , by letting T(U) = q(v) if u corresponds to VE S(a) .

We wish to prove the following equivalent formula of (3.2).

( >U > lnlnn-7 .-

By Lemma 3.4, we have for each ueM(a)
I'

f wl w +w
cp(u) > min -L

i

1 2
w +w 'w+w y n

>
9 (3.4)

1 2  1 2

(3*3)

where w1 = w(ason[u]) and w2 = w(rson[u]) . Therefore, Theorem 3.1

will follow from the following result.

Lemma 3.5. Let M be any binary tree with n leaves. For each

UE
5

9 let du> = min((wl+w2)/n,  wl/(wl+w2)~ w2/(wl+w2)} where

w1 = w(Bson[u]) and w2 = w(rson[u]) . Then

c g(u) > In In n - 7 .-
UE

MI

Proof. The proof makes use of the lemmas in Section 3.2. It is given

'in Appendix A because of its length. 0

3.4 Remarks.

The lower bound given in Theorem 3.1 is only about half as large as

the corresponding bound in the Main Theorem. This is due to the use of

a relatively loose bound for q(v) in Lemma 3.4. A stronger bound for

q(v) will be used in the general proof in Section 5, where the regularity

constraint is also dropped.
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We also wish to point out that (2.8), the first fomuILa in Lemma 2.1,

was not used in the above proof, but will be needed later in the proof for

the general case.
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4. The Limited-Anomaly Theorem.

The arguments in the previous section fail when algorithms are not

required to be regular. The important assertion in Lemma 3.4 is no longer

true. Consider the partial order P(v) exhibited in Figure 4, and suppose
. .

that the next comparison v is between x1 and an anomalous maximal

element x2 l

Although the components Cl and C2 have sizes 5 and

102 respectively, it is intuitively clear that the probability q2(v)

is less than (5 +102)/n , as m=+p2] is unlikely to be the largest

among elements in clu c2 l
It will be seen later (Section 5.3) that,

in estimating %( )V , one should use f(xp) J the number of elements

in P(v) that are less than (or equal to) x2 but not less than any

other maximal elements, in place of the component size Ic,\ . In this

example f(x2) = 4 and thus q2(v) 2 (5 + 4)/n , a much weaker lower

bound than (5 +102)/n . Therefore, two complications arise when

non-regular algorithms are considered, Firstly, it was previously possible

to attach a lower bound to q(v) which depended only on the shape of the

associated merge tree; now more details of the partial order p(v) must

be taken into account. Secondly, when comparisons involving anomalous

elements x.1 occur, we may obtain very weak bounds on q(v) Y if f(xi)

is small. We shall presently prove a result to overcome the second

difficulty, by stating that comparisons involving an anomalous maximal

element xi with a small f(xi) cannot happen too often unless COST

is large anyway.

0 >

Let P be a partial order on X = {xl,x2,...,xn} . For each xi

let H(xi) be the component containing xi , and h(xi) = IH( .

For any maximal element xi , the fiefdom of xi , F(xi) is the set

18



x1

P
cl

\

100

c2

Figure 4. Difficulties caused by anomaly.
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c Ixj -xj <xi (inP), andx.
J

is not less than any other maximal element in P] .

We denote
IFC⌧i)  1 bY f(⌧i) l Note that F(xi) c, H(xi) , and the

containment is proper if and only if xi is anomalous. When xi is

anomalous, we call f(xi) the anomaly degree of x. l

1

Let T be an algorithm that selects the k-th largest of n elements.

For any internal node VET , the comparison at v , x :x.,
5. J

is said to

be anomalous of degree m if either xi or x. has anomalous degree m l

J

Theorem 4.1 (The Limited-Anomaly Theorem). Let T be an algorithm

selecting the k-th largest of X = [x19X2’ l **Y �,I Y and cT an input

ordering. Then the number of anomalous comparisons of degree < m is-

at most (2m+l)s1(o) -1

Proof. We assign a weight m+l-i to an anomalous element of degree i

for 1 < i < m , and a weight 0 to all other elements.- - Let E and E'

be respectively the total weight of all elements before and after a

comparison xi>x..
J

Then the following is true.

Lemma 4.2.

(A) ET < E+2m .

(B) If xi > x.

(c) If xi > xJ

is a first defeat, then E' < E .-

j
is a first defeat and an anomalous comparison of

degree < m , then E' < E .

Proof of Lemma 4.2. It is easy to see that at most two elements will be

assigned new weights after the comparison; namely, the two maximal elements

y and z whose fiefdoms contain xi and x. respectively.
J

Since the

largest increase in weight for an element is from 0 to m , this proves (A).

20



To prove (B) note that xi > x. is a first defeat implies x. = z .
3 3

After the comparison, z is no longer maximal, and F(y) +-- F(y)U F(Z) .

We consider two cases according to whether z was anomalous of

degree < m before the comparison x. > x. .
. . 1 J

zCase (a). was anomalous of degree < m .-

The decrease in z's weight is from m+l- f(z) to 0 while the

maximum increase in y Is weight is from 0 to max{O, m+l- (f(y)+ f(z))]

< m+l- f(z) . This means E' < E .

zCase (b). was not anomalous of degree < m .-

Then z's weight does not change; y's weight has two cases:

w Y was anomalous of degree < m . Then y's weight strictly-

decreases due to the strict increase in its anomaly degree.

(b2) Y was not anomalous of degree < m . Then y's weight remains 0 .

This proves (B). Statement (C) follows from the analysis of Case (a)

and Case (bl) above. This proves Lemma 4.2. c1

We will now complete the proof of Theorem 4.1. Statements (A) and

) of Lemma 4.2 imply that the total increase in weight along path S(G

bounded by 2msl(a) . Since the sum of weights of the elements is

initially 0 and always non-negative by definition, the number of

(B

e

is

comparisons
n3

which fits statement (C) of Lemma 4.2 is at most

2msl(c) . The total number of comparisons along S(0) that are anomalous

of degree < m is clearly at most
5 + slw Y and is hence bounded by

(2m+l)sl(0)  . This proves Theorem 4.1. 0
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5. Proof of the Main Theorem.

5 .l Introduction.

We will prove the following result in this section.

18k
Theorem 5.1. Let k , n be integers with k 12 and n > Nk = (8k) .

Suppose T is an algorithm that selects the k-th largest of n elements,

and 0 any input ordering. Then a(o) > k(ln In n - In k - 6) , if

slw 5 n

0.2
l

As defined in Section 2, the quantities a(o) , sl(c) depend on T .

Also note that, for n 2 Nk , the following inequalities hold, as can be

verified by elementary arguments.-_

We first demonstrate that Theorem 5.1 implies the Main Theorem.

,O.l > k In In n-

,1/ (W > 21gn-

n1/12 > k .

(5 4

(5.2)

(5.3)

If

-0.1 ~ 0.2
there are more than n! xn satisfying ~~(0) > n , then (2.8)

implies

COST(T) 2 n - k + $ n! n
-0.1 ,0.2

.

1 n -k+klnlnn,

-0.1
in view of (5.1). On the other hand if less than n! xn of the CT'S

satisfy y(a) > n
0.2 , then (2.9) and Theorem 5.1 lead to

1 1COST(T) 1 n - k + 2 n' (n: -nf xn "")k(ln In n - In k - 6)
l

> n+i k(lnlnn-lnk- 6- n
-0.1 lnlnn-2) .

22



Again, using (5.1), we obtain

1
COST(T) 2 n + 5 k(ln ln n - ln k - 9) .

Thus, the Main Theorem is true in both cases.

5.2 Some Results on Partial Orders.

Let P be a partial order on a set X = (x1,x2,...,xn}  . Assume

that all orderings on X consistent with P are equally likely. We are

interested in bounds on the probability of some element xi being greater

than another element x
3

(or

if x.1 is the unique maximal

then the probability that xi

aKL elements in some subset). For instance,

element in a component (in P ) of size m ,

is the maximum of all n elements in X

is clearly at least m/n , and it is also not difficult to show that

Pr(xi > xj) is at least m/(m+r-1) , if xj is a non-maximal element

in a different component of size r , A generalization of these facts

is given below in two lemmas.

Lemma 5.2. If xi is a maximal element, then

f(xi)
Pr(xi is the largest element in X) 2 n ,

A

Lemma 5.3. If xi is a

in a different component, then

Pr(xi > xj) 2

maximal element, and x. a non-maximal element
J

f Cxi)
f(Xi) +h(xj) -1

23



Intuitively, the above lemmas must be true, since knowing that some

elements in F(xi) are greater than some elements outside F(xi) should

not lower the rank of x. .
1 However, the proofs are not trivial, and are

given in [3] where related issues are studied.

Lemma 5.4. Suppose xi is the unique element in a component c of

size m, and x.
3

a non-maximal element in a different component C' of

size n-m . Assume that n > 2k . Define the quantity @ to be

(p (r xi > xj) + Pr(max(xi, xj] is in the top k-l of X)) . Then

@ > mintl-e- -1Mll’, l-e-tmlA + (A/(2n))t , 1 < t < k} .

Proof. See Appendix--B. a

5.‘3 Lower Bounds on q&v) .

Let v be an internal node in the algorithm T . Suppose v compares

X
i Y ⌧j l We will give lower bounds on ql(v) in terms of component sizes

such as f(xi) Y h(xj) Y etc. defined relative to P(v) .

Lemma 5.5. If xi is a non-maximal element, then ql(v) > l/h(xi) .
-

Proof. If x i is also non-maximal, then ql(v) = 1 Y else by Lemma 5.3,

(f(xj)+h(xi)  -1) > l/h(x) . Cl-qlw = Pr(xjU> xi) > f(xj)/

Lemma 5.6. If both x. and
1 xj

are maximal, then
C$Cv)  2 (f(Xi)+f(⌧j))/n  l

Proof. The properties of xi
Y ⌧.

J
being the largest element in X are

mutually exclusive. Hence %( ) -v >
f(xi) f(xj)
-+-

n n by Lemma 5.2. Cl
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Lemma 5.7. If xi is a maximal element and x
3

a non-maximal element,

then ql(v) > f(xi)/(f(xi)+h(xj))  .

Proof. It follows directly from Lemma 5.3. Cl

Lemma 5.8. Suppose xi is the unique maximal element in a component c ,

and x. a non-maximal element in a.. different component. If

h(xi) f n1/3 and h(Xi)+h(xj) > n- 1-(1/6k) , j-hen

Proof. Let m = h(xi) , m' = h X.
3 > and A = m+m' . Then by assumption

-_ 1 /z
m<n-I" and a> & (l/W .- - (5.4)

Clearly A > 2k . By Lemma 5.4, we need only show that

l-emhiA > k m - 3k2 '
-m

Y

min [l-e-'/A+[if] 2 ks-3k2-$ .

(5.5)

and

l<t<k
(5 l 6)

As eBx < 1 --

l-e-inn/a

X

>-

m2 1= k$-k-w-
Am' 2

+ 1 x2
2

k m 1
T-F

for x > 0-

km2
( )n

, we have

(5.7)

Now, from (5.4),

t<n-c

2
7

1
-at 1

(5 08)
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This implies m/A < l/2 and hence

m' >
1
FA l

Using (5.8) and (5.9) in (5.7), we obtain

l-emhlA > k m- z-(29+$)($

>ks- 3k2 .-(; - 6)
-

7
> k s - 3k2n-5 .-

This proves (5.5).

For 1 < t < k ;-

l-e-tm/A + (Q L (&)=
1 1

>n
- 6 + 6k,2-(k-1)

-

> ,,,-(b’) ./
2 kwhere we have used (5.4) and the fact n 2 Nk > k 4 . We now use

(5X) and (5.9) to obtain

>k+ .

(5.9)

(5.10)

(5.11)

This implies (5.6) immediately. 0
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5.4 Completing the Proof.

As in Section 3.3, we construct a merge-tree M( 0) corresponding to

the merging process for c , and assign (p(u) = q(v) to each ueM(c)I ,

It will be shown that, under the assumptions in Theorem 5.1,

. .
c q(u) ,> k(Ln In n - In k - 6) , (5.12)

U~Jw~
This would -prove Theorem 5.1, as

> c.- VEs+) q(v)

To prove (,5.12), we first partition the set of nodes in M(a) into

upper and lower parts, U = (u 1 w(u) > n l/3 ] and L= {uIw(u) < n1/3} .

Let VT = (u 1 UE U, Lson[u] E Lt rson[u] E Lj 9 V" = [u 1 UE L, father[u]  E U-V'] ,

and V = V' u V" . (These definitions are similar to those used in

Appendix A, and -properties Pl -p5 there remain true.)

We now partition V into seven disjoint parts Vl,V2, . . .,
v7 l

For each ueV , we assign u to a unique Vi according to the following

procedure, which halts as soon as u is assigned,

. Procedure Decompose;

step 1: If there is some u' ED(U) where the joining comparison is not

between two maximal elements, then assign u to Vl .

[comment: If u is not assigned in step 1, then the joining comparison at

U creates a component C(u) with a unique maximal element;
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recall that C(u) consists of the x. 's that label the leaves
3

in DL(u) .I

step 2: If UEV' , then assign u to V2 .

[comment: If u has not been assigned after step 2, then u must be

in V" and father[u] exists.] .

step 3: If father[u] compares a non-maximal element in C(u) with

any element, then assign u

step 4: If father[u] compares the

another maximal element (in

v4 if the

to v
3 4

maximal element of C(u) with

a different component), then

comparison is anomalous of degree

l/5
assign u to at most p-T'1 ,

-_
V, otherwise.

step 5: If father[u] compares

non-maximal element (in

I V6 if

assign u to

1 V7 if

end Decompose.

the maximal element of C(u) with some

a different component), then

w(father[u]) 5 n

w(father[u]) > n
1-k

- Let wi = 2 w
u E vi

(u) (1 < i < 7) , and- -

c cpb’ > if ie {1,2,4] ,
I u E: v; u' ED(U)

if iE [3,6,7] ,

c cp(u')+cp(father[u]) if ie {5) .
u' E D(u)
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In analogy with discussions in Appendix A, it is not difficult to

see that V7 is a cross section, and that

C Wi= n,
l<i<7

and

c
7J.E M(o)1

E(u) 2 c Ai .
l<i<_7

(5.13)

(5.14)

We will now find lower bounds to the Ai's in terms of the Wi 9.

We treat first Ai for ie (1,3,6} , which are "costly" and thus

efficient algorithms should not have large Wi for these values of i .

Lemma 5.9. &J-+?+% 2 (W1’wp+W6)n
-(l-k)

.

Proof. For each ueVl , some u' ED(U) has a comparison involving a

non-maximal element.

have

A?
>-

Thus, by Lemma 5.5, c cp(U') 2 n -l/3 . We
u' ED(U)

I I -l/SVl*n . (5.15)

Similarly, by Lemma 5.5, we have

4 > I I -l/3
- v3'n l

As each UEV has w(u) < 2nl/3 , we have for- iE Cl,33

I I‘i
1

2 2Win-l/3 .

Formulas (5.15) - (5.17) lead to

Ai 2 $ Wp-z/3

> w n-o
- i* 1 for ie [1,3] .

(5.16)

(5.17)

(5.18)
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For each UEV6 , we apply Lerrxna 5.7 to father[u] and obtain

Thus,

.

Combining (5.18) and (5.19), we obtain the lemma. 0

Lemma 5.10, w4 < 8n11/15 .-

Proof. By the Limited-Anomaly Theorem (Theorem 44,

Iv41 5 cm115 1 +l)sl(a) < 8noa4 ,-

since s1(9 < n
0.2

by assumption. As each ucV4 has w(u) < nl/3 ,

we have

- l/3W4<JV4\n 58nu/15
l CJ

Lemma.5.11.
52

w2
zzlgn-1.

(5 019)

Proof. Let ucV2 . For each u' ED(U) ) cp(u') 2 w(u')/n by Lemma 5.6,

as the corresponding comparison is between normal maximal elements. This

gives, by Lemma 3.2,

30



c w(u’ >
u' E D(u)

> 1 w(u)(lg w(u) -1)- n

AS W(U) 1 n113 , we have .

c cpb’> ,>
u' ED(U) >

Therefore,

w2
-_ 2 Flgn-1 . Ll

Lemma 5.12.
As

w525,lgn-1.

Proof. If Iv51 = 0 then

thus assume that I Iv5 >o.

c cpb’) >
u' E D(u)

w5
= 0 and the lemma is clearly true. We

For each UE V, I

; w(u)(lg w(u) -1) ,

Thus, using Fact B in Section 3*3,-

c c 1

UEV u' ED(U)
du') 2 ; c w(u) lg w(u) - w5

5 ucv5

(5 620)

Now, for each UEV
5 ’

let the comparison at father[u] be between

X . x1 and x. , where
J

i is the maximal element of C(U). By Lemma 5.6,
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v(father[u]) 2
f(xi) + f(xj)

n

w(father[u]) > 1 n1/3
- n

if x.
J

is normal,

if x. is anomalous.
3

Thus,

z q(father[u]) > IV&-~/~-

Formulas (5.20) and (5.21) lead to

UEV
/

5

I n-4/5

By standard minimization technique (e.g.

Appendix A), (5.22) yields

As > 1 W5 lg((ln 2)enl/5) + IL
- n n

see the proof of Fact E in

1
WgIn--  l

1

(5.21)

(5.22

The lemma follows, noting that lgln2+G2>0. Cl

Lemma 5.13. > k In
e A , -

n+l

n-W7+1
- 3 .

Proof. Let UEV
7
, we write u' = brother[u] . By Lemma 5.8 and (5.3),

we have

v(father[u]) 2 k

As V
7

is a cross section, we obtain from Lemma 3.3. that
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c-> ",Fv H-3

7

>- kln
n+l

n-W7+l -3 cl

We are now ready to prove (5.12>, and hence Theorem 5.1. Using

Lemmas 5.9, 5.11t 5.12, 5.13 and formula (5. lb), we have

c cP(U> L r; Ai
i

2 (Wl+w3+w6)n
+lgnW +lgn

3n 2 5n

+kln
n+l

n+l-W -5 .
7

Making use of (5.2) and (5.13)

c cpw F e (w,+w2+w3+b75+w6)  + k h n+l

u E MWI
n-W +l -5

7

w4= (n-W,) e+ kln n-q1+l - 5 - 5nlg n l (5.23)
7

From Lemma 5.10 and (5.2),

w4 8 nu-/15
pgn <-5 n lg n

Cl.

Therefore, (5.23) leads to

c lg n

u E No)1
q(u) 2 x-5-i;-+kIn$6 ,

(5.24)

for some x , O<x<n.- -
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A standard minimization gives

which is (5.12).

> k (In ln.n - ln k - 6) ,-

This completes the proof of the Main Theorem. 0
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Appendix A: Proof of Lemma 3.5.

The lemma is clearly true when n < 8 . We shall thus assume that-

n>8. Note that, in this range,

n1/3 > max
{

1
pn,

-1
+nlnn .

>
(A4

We say a node ueMI to be of' category 1 if g(u) = min{wl,w2)/(wl+  w2) ,

and of category 2 otherwise. For a node u to be of category 1, we must

have

min(y,  w2) w +w
w+w 5

1 2
n t

1 2

implying

w(u) = w1+w2  > &Y . (A.2)

Let us divide the set of nodes of M into an upper part U and a

lower part L according to whether or not w(u) 2 n1/3/2 . As n > 8 ,

the root must be in U and all leaves are in L , Now consider the set

V' of lowest nodes in U , i.e.,

TJ’ = c Iu UdJ, Ison[u] EL , rson [ul E L) 9

and the set VT' defined by

v” = c Iu ueL, father[u] EU-VT} .

An alternative characterization of V" is given by

IJ” = {u \ UE Lj father[u] E U,, brother[u]  E U] .

Let V = V' u V" . The following simple properties are easy to check.
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Pl: V' and V" are disjoint.

P2: Any two distinct nodes in V have no common descendants.

P3: Any two distinct nodes in VT' have distinct fathers; furthermore,

the set {father[u] \ UEV"~ is disjoint from the union of descendants

ofnodesin V.

P4: V" is a cross section of M .

P5: The family of sets CDL(U) \ u E VI forms a partition of the leaves

of M.

We partition V = VT UV" into Vi (1 < i < 4) as follows. The set- -

vl is simply VT . Sets V2 9 V
3

, V4 are given by

v2 = c Iu u E VT’, father[u] is of category 23 ,

v3 = c Iu UEV”, father[u] is of category 1, w(father[u])  < nv3 ) ,

v4 = {u 1 u E V” , father[u] is of category 1, w(father[u])  > n213- ] .

The definitions are illustrated in Figure 5.

Let Wi = C w(u) for l<i<4, Define- -
u E vi

a A1 =
c c du’ >

UEV1 u' ED(U)

%
= z c g(u') + g(father[u])

u E v2 u' E D(u)

Ai = c g( fatherb] >
u E vi

As an immediate consequence of property p5, we have

i =3,4.

Z Wi=n.
l<i<4- -

36
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Figure 5. A schematic illustration of sets U , L , V* = Vl ,

V" = V2 LJV3 uV4 ; nodes in V' , V" are labeled as

v' , v" , respectively.
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Now, from properties Pl-P3, we have

c g(u) > c Ai l

U E
5

- l<i<4- -

Our plan is to first derive lower bounds to

then apply (A.4) to prove Lemma 3.5.

Fact C. If w (u) < ~6 , then c g
u' ED(U)

u’> ,> n
1 w(u)(lg w(u)-1) .

(A.4)

Ai
in terms of W. and

1'

Proof. We may assume that ue
MI

, as the assertion is clearly true

when u is a leaf. Now each u' ED(U) must be of category 2

(w(u*) < 6) , and hence g(u') = w(u*)/n . Using Lemma 3.2, we have

c 1
g(u' ) = n c w(u' >

u' ED(U) u' E D(u)

> 1 w(u)(lg w(u)-1) . cl- n

Fact D.
wl

Al > - lg n - 2 .
- 3n

Proof. Each ueVl satisfies w(u) < 2(n1/3/2) < & , and hence from-

Fact C,
-

A1
= c c du’ >

u E v, u' E D(u)

> c
u E v1

i w(u)(lg w(u) -1)

>
1
n c w(u)

u E v1
lg w(u) - 1 l
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8

As W(U) > n1/3/2 (since ueU ), we have-

% 2 ILn c w(u) - 1
u E v, (

$ lg n - 1
1

wl
zzlgn-2 . Q

Fact E. A2 2 GZ.gn-3.

Proof. The statement is obviously true when IV, \ = o . We shall. thus

assume that I Iv2 >o. For each ueV, , g(father[u]) = w(father[u])/n

> l/m-l2/3, , since father[u] is of category 2 and is in U . Making

use of Fact-C, we have

% = c x
u' E D(u)

g(u* > + c g(father[ul)
u E v,L u E v2

> c w(u)
UEV n

2

(lg w(u) - 1

We now use Fact B to obtain

Wr, wo I I
A2 L v2$lg L -l+ 2

Tl-v2 2n

)+ lV21~477 l

2n

(A.5 >

The right hand side expression d(lv21) achieves its absolute minimum

over Iv21 E [O,a) at IV,\ = 2W2/(n1/3 ln 2) , where

w2
d([Vl() = --n- lg y n1/3 ) 1 w2-l+= --n--

w2
2 31;;lgn-3 .
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Thus, formula (A.5) implies

proving Fact E. Cl

The derivation of (A.6) from (A.5) is a standard argument, and similar

derivations wiXL henceforth be referred to as "by standard minimization

technique" with details omitted.

For each ueV3UV4 , w(brother[u])  2 n113 /2 > w(u) t and father[u]

is of category 1. Thus,

g(father[u]) = -& l (A-7 >

Fact F.

Proof.

Fact G.

Proof.

For each ueV w(father[u]) < n213
3 '

. Using (A.7), we have

4 = z g(father[u])
UEV

3

>-
/

-7n2
. a

For each ueV4 , w(u) < 213/2 and w(father[u]) > n213 .

Using (A.7), we have
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g(father[ul>  = w(fa;&])

= -i7.Tz&&-*)

Thus,

~~ = u,", g(fatherEu1)
1,

(A.8)

As V" is a cross section of M by property P4, so is v4 l

Fact G

then follows from (A.8) and Lemma 3.3. 0

We will now finish the proof of Lemma 3.5. Using Facts D - G, we

obtain from (A.4)

n+l
n-W4+1 -5 l

Using (A.l) and (A.3), we obtain then

F g(u) ,>
w1 + w2 + w

3n 3 145 n + 1 ’
UE

MI (

1 In n+l

e n
1 wl+ w2+ w3 +1 -5

where x= w1+w2+w
3

.
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By standard minimization technique, we obtain from (A.9)

G du> 2
UEM

I

(1-~&)(lnlnn-l)-5

> lnInn-7 ,

where (A.1) was used in the last step, This proves Lemma 3.5. 0
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Appendix B: Proof of Lemma 5.4.

Let p(t) be the quantity @ when the component CT has been

sorted and x, is the t-th largest in it,
J

Then, denoting by p(t)

the probability that x4 is the t-th largest in CT under partial
3

order P , we have with m* = n-m ,

B = c p(t)@(t) l

l<t<m*- -

) = 0 . Therefore, the lemma wouldAs x.
3

is not a maximal element, P(1

follow, if we can show that for all 1 <t<m*,-

B(t) 2 m3.n l-e-km/a  , l,e-t’m/A + ” for l<t?<k .

Let B(t) = al+a2 , where

al = probability that xi > x. ,
J

a2
= probability that max[xi,xj] is in the top k-l.

Clearly,

al = 1 - (probability x. < x.)
1 3

= l- Ll-i)(l-5) l ** (1-h)

- l- (1-i)"

But,

(B 1.
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m
= em h(l-t/A)

Thus,

< ,m(-t/A) .-

al > l-e --tm/ A for l<t<m' . (B.2)-

Formula (B.2) proves (B.l) for the case k < t < m* . We shall now- -

restrict our attention to the case l<t<k' = min{k,m'+l} . In this range,

a2 =
Pr(max{xi,xj] is in the top k-l of X)

> Pr(the t-th largest element in CUC' is in the top k-l of X)-

= c Pr(the t-th largest element in CuC* is the q-th largest
t<&<k-

in X)

Taking only the term R = t and using the assumption A > 2k , we obtain

n A-1 A-t+1- . . . -
a2 1 n n-l n-t+1

t when 1 < t < k* .

From (B.2) and (B.3), we see that for 1 < t < k*

B(t) = a1 + a-2

>l-e-

Thus, (B.l) is also true in this case.

This completes the proof of Lemma 5.4. a

0.3 >
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