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A CLASS OF SOLUTIONS TO TEE GOSSIP PROBLEX

There are two kinds of people who
blow through life like a breeze;

And one kind is gossipers, and the
other kind is gossipees,

--Ogden IYash

Gossip is mischit7xus, light and easy
to raise, but grievous to bear and
hard to get rid of. No gossip ever
dies away entirely, if many people
voice it; it too is a kind of divinity.

--Hesiod
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._
1. Introduction

The "gossip problem" has the unusual distinction of being

solved four times within a year, Proposed by Boyd and popular-

ized by Erdos, it considers a group of n people, each posses-

sing a distinct item of information, Telephone calls are ar-

ranged between two people at a time, in which they exchange all

the information they know. (It is also called the "telephone

problem.") We seek the minimum number of calls required to

transmit all the information to everyone. For n&, it is 2n-4.

This was proved by Bumby and Spencer(unpublished),  Baker and

Shostaql],  Tijdemdl2],  and Hajnal, Milner,  and Szeme&di[7],

These proofs were all different and fairly short.

Ways were quickly found to generalize the problem. The

calling scheme can be represented by a graph whose edges are

- linearly ordered to represent the order of calls. We require

an "increasing path" from each vertex to every other. Edges

-may be repeated in the ordering, in which case they are counted

twice, representing repeated calls.

Moving from graphs to hypergraphs, we can ask the same

question when the medium of transmission is "conference calls"

of a fixed size k. The minimum number here was discovered by

Lebensold[lO]. It is on the order of 2(n-l)/(k-l),  with a num-

ber af techznical adjustments. Bermond[2] recently rederived

the result with a shorter proof.
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Thus far we have considered complete graphs, Suppose the

"allowable" calls are restricted to-some subgraph. For example,

we don't wish to assign sworn enemies to talk to each other,

This problem was considered by Harary and Schwenk[8], and also

by Golumbic[b], As long as the graph is connected, we can trans-

mit the information in Zn-3 calls using a spanning tree, with

the calls ordered to and then from some root. If the graph con-

tains a 4-cycle, we can still achieve 2n-4. Here we use the

4-cycle and edges\which grow tree-like to the remaining vertices.

It is easy to find a suitable ordering. It is conjectured that

if the graph does not contain a 4-cycle, then 2n-3 edges are

required.

Instead of ordinary graphs, we could consider directed

graphs 9 representing one-directional transfers of information.

This is the "telegraph problem." Harary and Schwenk[8] and

GolumbicC6)  have shown that if the digraph of allowed edges is
a

strongly connected, then the minimum number of messages for com-

plete transmission is 2n-2. Golumbic also examines how many

messages are required to tranmit whatever can be transmitted

when the digraph is not strongly connected.

Another variation asks for the minimum time of transmission,

where each vertex can participate in at most one call per time

unit. Knodel[g] solved this for complete graphs, and Schmitt[ll]

for complete hypergraphs. Cockayne, Hedetniemi, and Slaterr

consider this in terms of individual vertices. Entringer and

Slater[s] consider time of transmission in complete digraphs.



The behavior of all these minima is logarithmic in the number

of vertices, adjusted by constant terms depending on residue

classes of n.

CotC4)  discusses ways to vary the problem. We consider

here not a generalization of the situation, but a restriction

of the allowable calling schemes. We consider calling schemes

that transmit all information, with the additional requirement

that no one ever hears his own information. That is, no one

speaks to anyone who knows his original tidbit, In the graph-

ical formulation, with an ordering on the edges, this means we

can find no pathwhichleaves a vertex, continually "increases",

and returns to it, We determine when such solutions exist and

how many edges they require, and we characterize and count the

optimal ones.

We show that calling schemes completing all transmissions

and satisfying NOHO ("no one hears his own information") exist
-

only when n is even. We call such such a salution with fewest

edges (on n vertices) a NOHO-graph. NOHO-graphs have 2n-4

- edges, the usual gossip result. Particular examples include

C4 (the &cycle) and any regular graph of degree 3 on 8 ver-

tices having no triangles. The latter set we call Q*, since

it includes the cube. We characterize other NOHO-graphs by two

permutations and two binary sequences. Each of the four describes

the placement of approximately n/2-1 edges in the graph. We

show that any two of the four suffice to determine the other

two and hence the entire graph. We use this to count the num-
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ber of realizable quadruples determining NOHO-graphs on n ver-

tices, (Realizable quadruples, or simply "solutions," are

those s&x of sequences which correspond to NOHO-graphs.) Let-

ting p=(n-4)/2,  this number is 3p-1  for nz6, n even. NOHO-

graphs which are not symmetric are counted twice in this; that

is, they correspond to two realizable quadruples. We later

count the number of symmetric solutions, so the number of NOHO-

graphs is retrievable.

We also define an operation of wconcatenation,w which puts

two solutions together two form a larger solution, This yields

a concept of an "irreducible" solution as one which admits no

concatenation from smaller solutions. We show the number of

solutions on n vertices concatenated from k irreducible parts

is (k-1P4)2P'k* We also determine the number of symmetric solu-

tions concatenated from k irreducible parts. In particular,

the number of irreducible solutions is 2P-l , the number of sym-
-
metric solutions is 3[P/21 and the number of symmetric irre-

ducible solutions is 2LP/i
l Ignoring the special graphs C4

and 8% and eliminating the double-counting, the number of NOHO-

graphs is (3P4+3LPm)/2,

Additional results include constructive proofs that NOHO-

graphs are planar and Hamiltonian and applications to related

gossip questions. In the next section, we outline the steps of

the proofs toward these goals.



2. Summary of )roofs and Results

The original argument used by Baker and Shostak[l]  begins

by showing that the smallest graph which could transmit all

information in fewer than 2n-4 edges would have to satisfy

NOHO, They use NOHO to discuss the "first edges" and "last

edges" of the graph and consider the components of the sub-

graph obtained by deleting those edges, They obtain a contra-

diction by showing that not all transmissions can be completed.

In our preliminary details, we parallel this argument, In a

graph satisfying NOHO, the set of edges which correspond to

first calls made by some vertex and the set of edges which

correspond to last calls made by some vertex each forms a com-

plete matching in the graph, As a corollary, we see that NOHO-

graphs must have an even number of vertices.

We consider, for each vertex x, a tree O(x) of edges used

to pass its information elsewhere and a tree I(x) carrying in-
-

formation to it. Characterizing the edges which appear in the

intersection of the trees, we determine the number c(x) which

-appear in neither. c(x) turns out to be two less than the de-

gree of the vertex. Now we consider the graph M(G) obtained

by deleting the first edges and last edges. Considering where

edges of O(x) and I(x) can appear in it and bounding the "use-

less" edges by c(x), we obtain the major result of section 3,

For a NOHO-graph  G, M(G) consists of exactly four components

which are all trees. Along the way we atiibit such solutions

with 2n-4 edges, The contradiction obtained by Baker and Shos-
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tak does not arise because these graphs have enough edges,

In section 4 we consider the case where G has no vertex of

degree 2. The trees of M(G) must each contain an edgeo and ex-

amination of cases shows they must all consist of single edges,

This requires G to be a 3-regular graph on 8 vertices, and NOHO

prchibits triangles, All such graphs admit an edge-ordering

which transmits all information, so they are NOHO-graphs.

Returning in section 5 to graphs with vertices of degree 2,

we find C4, which works. If r-&, then M(G) consists of two i-

solated vertices and two caterpillars on n/2-1 vertices each, '

(A caterpillar is a tree with a path hitting every edge,) This

enables us ta label the vertices of the graph{x$ where ic{1,2),

jO,l ,,..,n/2-13, according to the order in which information
.

from the isolated vertices xi travels along the caterpillars,

The placement of edges in the caterpillars can be described by
.thbinary sequeces, where the J element describes how xij-k1 is

joined to the earlier vertices.

To completely characterize the graph, we must describe how

the first edges and last edges may be added. To satisfy NOHO a
.

first edge or last edge must always join xi and xi: with ifi'.

So, the placement of these edges can be described by permuta-

tions, where the 0thJ 2element of the permutation is k if xk is

1the first (respectively, last) neighbor of x..
3

In section 6 we derive necessary conditions for

pairs of these integer sequences to be realizable by NOHO-

g r a p h s  l One condition imposes inequalities relating elements
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of the two permutations. Another restricts where 1% occur in

the binary sequences in terms of where reversions occur in the

first-edge permutation, The reversions of that permutation are

explicitly characterized, (A reversion is a maximal con-

tiguous subsequence of a permutation where the first element is

the least.) The characterization is equivalent to forbidding

subsequences of length three (in a permutation) whose last ele-

ment is the largest. All these conditions follow from requir-

ing NOHO, transmission of all information, and the characteri-

zation of the graph in terms of the caterpillars. Other condi-

tions follow from the same basic reasons when the graph is re-

flected, which consists of relabeling the vertices of the graph

so the two caterpillars are switched. The sequences for the

reflected graph are easily obtained from the original sequences.

Having derived enough necessary conditions, we can show(s67)

that any pair of sequences satisfying the appropriate ones u-

niquely determines the remaining pair, Furthermore, the result-

ing quadruple is realizable, so the conditions are sufficient.

Therefore, we need only count realizable pairs (P,S), where P

is the first-edge permutation and S is the sequence determining

the first caterpillar. There are (r-l'-l) such permutations whth

r reversions (where p=(n-4)/2),  and 2r-1 realizable binary se-

quences for each of those, so a simple application of the bi-

nomial theorem gives 3P-l realizable quadruples.

In section 8 we consider symmetric NOHO-graphs. When the

operation of reflection yields the same sequences as before,
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the graph is symmetric, Otherwise, two quadruples determine

the same graph. To count the number-of symmetric NOHO-graphs,

we first countthenumber of symmetric realizable first-edge

permutation& A simple fact about the number of entries in a

permutation enables us to construct such permutations step by

step, where at each step we have two options and determine two

elements with our choice. Then we count the number of symmetric

NOHO-graphs associated with it by counting the number of last-

edge permutations which can be pa&red with it. For the choice

made at each step in constructing the first permutation, making

it one way results in two options at a corresponding stage of

the second construction, while making it the other way leaves

only one. Boiling all this down, we have another simple appli-

cation of the binomial theorem to obtain altogether 3CPi2J sym-

metric NOHO-graphs.

Section 9 treats concatenation, Concat-

enation creates a NOHO-graph from two smaller ones by identify-

ing two vertices and merging the edge-orderings in a natural

way* --Also, one vertex of degree two is deleted from each. So,

the resulting graph has four fewer vertices than the union of

the original two graphs. This is one reason to define p=(n-4)/2;

that quantity adds directly under concatenation, With adjust-

ments for the deleted and identified vertices, the "top" cat-

erpillars, wbottomw caterpillars, first edges, and last edges

of the two small graphs are united to form those respective

sets in the new graph. The orderings are merged to make infor-
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mation flow properly along the caterpillars.

In section 10 we examine . irreducible NOHO-graphs-those

which cannot be formed by concatenation. We show there is a

unique decomposition of any NOHO-graph as a concatenation of

irreducible ones, This follows because the "least refinement"

(in terms of compositions of integers) of two such decomposi-

tions is also a decomposition, and would lead to a decomposi-

tion of one of the original ikreducible pieces, Now, using

concatenation and the number of compositions of p into k parts,

an induction shows there are (k-1P-l)2P-k realizable quadruples

formed from k irreducible parts, This holds for k=l also,

sinceprecisely that many remain when the others are subtracted

from the total. When we require symmetry also, the number with

k parts remains an ugly summation, but the proof is similar.

In the special case of symmetric irreducible solutions, the

summation can be computed, and the number of these is 2LPm l

-

In section11 we show that NOHO-graphs (except Q*) have two

properties that are frequently investigated; they are Hamilton-

ian and planar. Uniting the first edges and last edges of the

graph forms a Hamiltonian circuit. This is proved by dividing

it into two paths which are shown to meet at their endpoints

and be simple, disjoint, and exhaustive. For planarity, we take

those two paths and draw one inside and one outside of the "Ham-

iltonian caterpillar" formed by M(G). This accounts for all the

edges. Showing the no crossings exist completes the proof,

Finally, section I2 presents applications to a few related
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gossip questiona, We note that every NOHO-graph contains a 4-

cycle and that NOHO-graphs other thari‘ C4 and Q* contain dupli-

cated transmissions, A generalization of the gossip problem is

proposed, and some trivial special cases of it are solved.

3. Preliminary Results

To facilitate comprehension; we attempt certain rules of

notation. In general, the following apply. Upper case letters

indicate graphs or graph-valued functions, except that P through

T usually denote integer sequences, Where upper case letters

refer to sets of some sort, lower case letters refer to elements,

except for the elements of a sequence, which are simply sub-

scripted. a through e denote integer-valued functions. f,g,h

are vertex-valued functions, i,j,k,l are indices or utility

integers, n,m,p are fixed integers with a particular relation-

ship. q,r,s,t are utility integers, and finally, u through z-
denote vertices of a graph.

We deal with undirected graphs G which have n vertices and

e(G) e'dges. Let V(G) be the vertex set, E(Q) the edge set.

fS/ denotes the cardinality of a set S. The edges of a graph

are unordered pairs chosen, with possible repetition, from the

Cartesian product V(G)xV(G), (x,y) denotes the edge with x and

y as endpoints. d(x) denotes the degree of vertex x, which is

the number of edges to which it belongs. A tiegular graph of

degree k, or a k-regular graph, is one where each vertex has

degree k,
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A path of length k from v. to vk is an ordered sequence of

vertices (vOVvlP...#vk)#  where'(vi,v i+l) C E(G) ad Vi are dis-

tin& except possibly vo=vk@ If vo=vk the path is a cycle.

A graph is connected if it has a path from each vertex to every

other, A tree is a connected graph for which e(G)=n-1; equiv-

alently, a connected graph with no qcles. A spanning tree of

a graph is a subgraph which is a tree on all n vertices, A

caterpillar is a tree with a path that covers (contains one ver-

tex of) every edge. blternatively, it is a tree not containing

Y as a subgraph, where Y is obtained fromthe complete bipar-

tite Kl 3 by subdividing each edge with a new vertex.] Cater-'
pillars have also been called "hairy paths."

For a graph G whose edges are linearly ordered, we adopt the

following notation. We put (x,y>d (u,v) if (x,y> is less than

(u,v) in that ordering. Similarly for othernotations of order.

F(G) denotes the set of first edges of G. A first edge is the
-

least edge incident to some vertex. Similarly L(G) denotes the

set of last edges of G, any of which is the greatest edge inci-

dent to some vertex. Let M(G) be the graph obtained from G by

deleting the edges of F(G) and L(G), and let C(x) be the con-

nected component of M(G) containing x,

For any vertex x, let f(x) be its first neighbor, namely

the vertex adjacent to it via the least incident edge. Simi-

larly, h(x) denotes its last neighbor, adjacent via the great-

est incident edge. We use x+y to replace the words "an inc-

reasing path from x to y," meaning a path from x to y where
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each succesllrive  edge ig greater than the prsvioua one,

Henceforth, whenever we refer to a graph, we assume its

edges are associated with a linear ordering, If for every x,

there is not x+x, we say "no one hears his own information,"

or the graph satisfies NOHO.

REM-ARK (1). A graph satisfying NOHO has no loops, repeated

edges, or triangles.

Prooft The first two are immediate. If there is a triangle,

the edges obey some order, and the vertex at the intersection

of the least and greatest edges violates NOHO, 0

Expanding on this argument, we obtain

LEMpfiA  (2). In a graph satisfying NOHO the first edges and the

last edges each form a disjoint matching.
-

Proof: Suppose F(G) is not a matching, so there exists y=f(x),

z=f(y), with z#x. Then (y,z)<(x,y). Since y=f(x), (x,y) is

no greater than the least edge in x-&z, If *ay are equal, re-

placing (x,y) by (p,y) at the beginning of the path creates

z+z, If they ape not equal,, adding (z,y) and (y,x) at the

beginning of x+z again produces z+z. So, NOHO requires

x=f(y), and F(G) is a matching. '

Similarly for L(G). If y=h(x), z=h(y), and z#x, we re-

quire (y,z)>(x,y)  and (x,y) no less than the greatest edge in

z-+x. This time the end of z+x can be adjusted to produce z+z. 0
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CQROfiLARY (3). Graphs satiseing NOHO exist only .on even

numbers of vertices, ._

Proof: Complete matchings exist, 0

If x+y exists for all x#y, then we say the graph %olves

the gossip problem," From previous results [1,10,12], we know

such a graph on n vertices has at least 2n-4 edges, If a graph

on n vertices solves the gossip problem, satisfies NOHO, and

has the fewest edges among all such graphs, we call it a NOHO-

graph,

. LEMMA (4). NOHO-graphs  have 2n-4 edges, for n&4, n even.

Proof: A NOHO-graph solves the gossipproblem, so requires at

least 2n-4 edges, We exhibit such a graph with that many edges.
iLet Dn be a graph on vertices EXj~ i=1,2; j=O,l I . . ..n/2-13.

1 2 2 1We write xni2=xo, xn/2=xO' Let ND,) = f(Xf~X&z+l_i):  i=1,2,...,n/2}

- and LCD,) = {(x&x:,~ 1 i>tm - i=O,l,...,n/2-1). The intermediate

edges of Dn are ((xi
.

J'x;+l 8> i=1,2; j=l,...,n/2-4, ordered by

(~S_~,x+(x~,x:,~). Any l'n1 ear ordering compatible with this

partial ordering is acceptable, Easy inspection shows that Dn

solves the gossip problem and satifies NOHO, and it has 2n-4

edges. {

Figure 1 illustrates D14. Whenever we draw a NOHO-graph, first

edges will be dotted and last edges dashed.



COROLLARY (5).

components,

Proof2 Recall

and they share
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Figure 1, D14-, a NOHO-graph

For a NOHO-graph  G, M(G) has at least four

M(G)=@-(F(G)UL(G)). By (21, e(F(G))=e(L(G)h-&,

no edges (1). So, (4) implies e(M(G))=n-4.

With n vertices, this means it must have at least 4 components. 0

A graph solving the gossip problem is connected, so the

following conceptsare meaningful. For any vertex x, let O(x)

be the "spanning tree of useful edges transmitting information

from x," or simply the out-tree from x. It can be defined u-

niquely and recursively as follows, Begin with x. At each
-
step add the least edge incident to but not contained in the

tree that i) does not create a cycle and ii) becomes the great-

est -edge of an increasing path from x along the tree, After

n-l steps the result is O(x). Thr tree must exist, since x+y

exists for all y#x. Similarly, I(x) denotes the in-tree to x,

It is defined recursively and uniquely like O(x) by adding at

each step the greatest non-cyclic edge which is the least edge

of an increasing path to x along the tree. Again, I'(x) exists,

since y+x exists for all y#x. Let c(x) be the number of edges

useless to x. Deleting them leaves increasing paths for x to
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and from every other vertex. We have c(x) = e(G)-e(O(x)UI(x) >.

Now we can characterize the edges lying both in O(x) and in I(x).

LEMMA (6), If G solves the gossip problem and staisfies NOHO,

then (y,z)t(O(x)nI(x))  if and only if (y,z) is incident to x,

Proof: Suppose (y,z)*(O(x)nI(x)). Then (y,z) is the greatest

edge of some increasing path starting from x and the least edge

of some increasing path ending at x, Joining the two paths and

dropping (y,x) if they connect to it at the same endpoint, we

have x4x, unless (‘y,z) was the only edge in both paths, in

which case it is incident to x.

Conversely, suppose (x,y)$OW. Then there exists x+y

in O(x) disjoint from (x,y). To avoid having x+x, (x,y) must

be less than the greatest edge in that path. But then, accord-

ing to the construction for O(x), at the time when that edge

was added (x,y) was also available, and we would have chosen it

Similarly, we cannot have (x,y)#I(x) unless we have- instead,

COROLLARY (7). In a NOHO-graph, c(x)=d(x)-2 for any vertex x,

Proof: c(x) =2n-4-e(O(x)~I(x))=2n-4-(n-l)-(n-l)+e(O(x)fU

= d(x)-2, since by (6) e(O(x)n(I(x))=d(x), 0

Vertices in a NOHO-graph  always have degree at least 2, so

c(x)=d(x)-2 makes sense,

The next lemma investigates how the edges of O(x) and

(x))

I(x)
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are distributed. Recall that C(x) is the component of M(G)

containing x, We claim that edges of M(G) not in C(x) or C(f(x))

are useless for carrying information out of x, and those not in

C(x) or C(h(x)) are useless for bringing it in. In other words,

LEMMA (8). If G solves the gossip problem and satisfies NOHO,

then for any vertex x, (M(G)nO(x))c(C(x)uC(f(x))  and

(M(G)nI(x)) c(C(x)W(h(x)), so

e(M(G))- e(C(x-)UC(f(x))K(h(x)))sc(x).

Proof: First consider O(x), No edge of M(G) not i'fi C(x) or

C.(f(x))  can belong to an increasing path beginning at x, The

path would have to enter that component via a first edge or a

last edge. No first edge othgthan (x,f(x)) exists on any in-

creasing path from& and any path which uses a last edge cannot

continue increasing thereafter. Applying similar reasoning to

I(x), no edge of M(G) not in C(x) or C(h(x))  can belong to an
-
increasing path leading to x. Therefore, the number of edges

of M(G) not in C(x)OC(f(x))UC(h(x)),  all of which are useless

to x, is at most c(x). 0

The "excess edges" counted in (8) can be fewer than c(x)

if one of the components of M(G) is not a tree or if some edge

in F(G) or L(G) is useless to X, As we see next, the former

cannot occur in a NOHO-graph,

LEMAMA  (9). For a NOHO-graph G, M(G) consists of exactly four

components, all of which are trees.
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Prooft By (6), M(G) has at least four components. In showing

it has at most four and they are trees, we consider two cases,

Case I, Every vertex of G has degree at least 3, This

means M(G) has no isolated vertices, and each component has at

least one edge. G must have at least 8 vertices s.f degree ex-

actly 3, else the sum of all degrees will exceed 4n-8, which is

twice the number of edges, By (?), a vertex x of degree 3 has

c(x)=l. By (8), M(G) has at most one edge not in C(x)W(f(x))

“C(h(x)), so there can be at most one other component. If any

component were not a tree it would have at least as many edges

as vertices. Then the remaining three components would have

together at least four morevertices than edges. As before such

a situation requires at least four components,

Case II. G has some vertex x of degree 2. C(x) is an iso-

lated vertex in M(G). By (?), c(x)=O. Since M(G)nO(x)  and

M(G)nI(x) can have no cycles, (8) then implies C(f(x)) and
-

C(h(x)) are trees and all other components are isolated vertices

Two trees have two more vertices than edges. Since M(G) has n-4

. edges, the two components have n-2 vertices, leaving x and one

other isolated vertex for a total of four components, 0

REMARK (10). For any x in a NOHO-graph G, M(G) contains at

least n/2-2 edges of O(x) and of I(x).

Proof: At most one edge of O(x) lies in F(G) and at most n/2

in L(G), while I(x) has at most one edge in L(G) and n/2 in F(G), u
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The remaining lemma in this section becmnau useful when we show

later that for a NOHO-graph every tree in M(G) is of the type

in its hypothesis, This lemma applies to all graphs, because

if G does not solve the gossip problem we can still define O(x)

and I(x) with the same construction, and simply grow the trees

as far as possible. They may not span.

LEMMA (11). A tree lyirgin both O(x) and I(y) for some x and

y is a caterpillar with an increasing path touching every edge.

Proof: Let (vo,vl) be the least edge in the tree, and let

(.vOtv1t-*t vk)'V be the longest increasing path in the tree.

Suppose the assertion is false, and the tree contains an edge

(w,z) with neither w nor z in Vi . Since the tree is connect-

ed, there must be some path that joins V to this edge, say

u~(vj,U~~u~~~~~,Ur~w~z~~ Each edge is in O(x) and must lie

on an increasing path from x. Consider (vjt”l)* If the in-

creasing path containing it does not include (v j-ltvj),  there

would be two increasing paths to vj, impossible in O(X). If

it does, then (v j-ltvj) (v*tu 1.J 1
Applying this argument to each successive edge of U, we

find that (Vo,Vl~...,Vj,ul~...,Ur,W,Z)  is an increasing path.

Similarly, each edge is in I(y), and must lie on an increasing

path to y. V is part of such a path, Since I(y) is a tree, an

argument like that above yields (u v.)
1, J

(v vjt j+l) l Applying

the argument to each successive edge of U, we find that

h,w,ur t*oo&ltVjtorot vk) i8 also an increasing path. This can
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happen only if (w,z> is the only edge in U, So, every edge

of the tree is incident to a single increasing path, If it

is not on the path, it occurs between the neighboring edges

of the path in the edge ordering, 0

4. Q*, the "Generalized Cube"

The remainder of the characterization of NOHO-graphs  var-

ies greatly depending on whether the graph has a vertex of de-

gree 2. In this section we consider the case where it does not.

Let Q* be the set of 8-vertex j-regular graphs with no tri-

angles, Q* contains the cube. We have

THEOREM (12). A NOHO-graph with no vertex of degree two may be

any graph in Q*, but no other.

Proof: By (9), M(G) consists of four non-trivial trees. Thus

n=8. If n=8, then M(G) consits of four single edges@ So G ad--
mits a factorization into disjoint matchings F(G), M(G), and

L(G), and by (1) it must lie in Q*, We claim any graph in Q*

can be suitably edge-ordered.

Suppose GcQ*. We will assign first neigbors, last neigh-

bors, and "middle neighbors" (denoted g(x)) to satisfy all the

required conditions, Consider the passage of information out

from x. It can reach f(x>,g(x),h(x>,g(f(x)),h(f(x)),h~g~x)),

and h(g(f(x))). To reach all vertices, these must all be dis-

tinct, (This implies there is no duplication of transmission

in these solutions. See (40).) So, we find a spanning tree with
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two neighboring vertices of' degree 3, each of whoera other rrel>b;h-

bors have degrees 2 and 1, For a graph in Q*, this is always

possible, since it has no triangles. Place the central edge in

F(G), the end edges in L(G), and the remainder in M(G). Infor-

mation can come to x from h(x), g(x), f(x), g(h(x)), f(h(x)),

f(g(x)), and f(g(h(x))) along a similar tree. Five edges re-

main unassigned in G. This tree will use four of them, adding

three edges to F(G) and one to M(G), Again, for a graph in Q*

it is possible to- find the additional tree, The remaining edge

is assigned to M(G),

In choosing and labeling this second tree we must take

care to preserve the matching property of F, qL, and M and to

avoid completing a circuit with two edges of M and one each of

F and L, Such a circuit would result in duplicated transmission

between two other vertices. Having labeled these trees to sat-

isfy vertex x and these latter conditions, detailed checking

shows that all other information is also transmitted and l!!OHO

is satisfed.

I Suppose n>8 and G is a NOHO-graph. We will produce a con-

tradiction. Let x be an end-vertex of one of the trees in M(G),

dbd=3, so c(x)=1 (7). (8) shows that at least one of the re-

maining components is entirely useless to x and must be a single

edge. Applying the same argument to an endpoint of that edge,

we obtain a second isolated edge in M(G),
1 1 2 2Let (x1,x,) and (x1,x2) be such single edges. BY (lo),

C(f(x:)) contains increasing paths from f(xt) to at least n/2-3
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other vertices, and C(h(xi)) contains increasing paths to h(x:))

from at least n/2-3 other vertices, Since c(x:)=l, f(xi) and

h(x:) must lie in different components, each of which contains

half the remaining vertices. When n>8 these components con-

tain more than two vertices, and all their edges must be use-

ful to xi. In particular, C(f(x;))cO(x;)  and C(h(x;))cI(x;).
itSuppose f(x$ and f(xjl)  lie in the same component of M(G).

That component is a tree of increasing paths out of each of

those vertices, so they must be joined by the least edge in

that component. Therefore, it is not possible for three such

vertices to lie in the same component, Similarly, no three of
. {h(x@ lie in the same component. Each of the "large" compo-

nents contains two each from (f(x$ and {h(x$ so by (11)

they must both be caterpillars,

Let (v,w) be the least edge in one of the caterpillars,

so v=f(x& w=f(x;:). Let y=h(x$), z=h(x::). y and z lie in

- the other caterpillar, For v and w both to be "roots" of the

caterpillar, one of them must be an endpoint, say v, Now

d(v)=3#  c(v)=l. f(v)=xi lies in a single-edge component; the
other such component must be the edge useless to v, Therefore,
the other caterpillar must be a tree of increasing paths into

h(v). -However,, italready does that for y and z, also. y, z,

and h(v) are distinct, since their last neighbors are distinct,

but we saw in the last paragraph that three distinct vertices

could not all play this role, This gives us the final contra-

diction that eliminates the possibility n>8. 0
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Figure 2 gives several examples of NOHO-graphs  in Q*, in-

cluding the cube. The usual conventions are observed for draw-

ing edges in F, M, and L.

Figure 2, Some graphs in Q*

50 NOHO-graphs as Quadruples of Sequences

We now embark on a journey to narrow down and finally

characterize NOHO-graphs  having a vertex of degree 2, Hence-

forth when we re'fer  to NOHO-graphs we generally ignore Q*. We

already know by (9) that the "middle edges" of such a graph

form four componenents, at least two of which are isolated ver-

tices. Proceeding from there, this section describes the edges-

of a NOHO-graph with four integer sequences, The first edges

and last edges are described by permutations, and the middle edges

by two binary sequences.

We begin by taking a closer look at the components of M(G).

LEMMA 03). If a NOHO-graph with a vertex of degree two has

adjacent vertices of degree two, then it is a 4-cycle. If

n&, then it has exactly two non-adjacent vertices of degree

two, and the remaining components of M(G) are caterpillars

on n/2-1 vertices,



25

Proof8 Suppose G has adjacent vertices {x,y) of degree 2.

(x,y) may lie in F(G) or in L(G). Suppose (x,~)EF(G) and con-

sider O(x). O(x) contains (x,h(x)), (x,y), and (y,h(y)), but

after hitting these edges in L(G) there can be no further in-

creasing paths in O(x). h(x)#h(y) by (1) or (2), so G con-

tains exactly 4 vertices and must have an edge in F(G) joining

h(x) and h(y). If (x,y)rL(G), then considering I(x) leads to

the same conclusion.

Now suppose n*b, 'By (9) there are two vertices of degree

two, and the remaining two components may be two trees or a

tree and isolated vertex, Suppose the latter, so we have

Cx1*x2px31 isolated in M(G). By the above they must be non-

adjacent in G. Consider the increasing paths by which infor-

mation is exchanged among them, Let Zi be the last vertex be-

fore Xi3X* and Xi3Xk
J

permanently diverge edgewise, That is,

we have increasing paths (Xi,*..tYi,Zi,U* x.) and
Woor8 3

a (xi8°a'8Yi8zi8u'ik ,rr.,xk), where u. #u.lj ik' 'i is different from

'i8 since all increasing paths from xi to non-adjacent vertices

must pass through f(Xi). SO, the edge (yi,Zi)CO(Xi) is well-

defined. Simmilarly, let vi be the first vertex where xj+xi

and Xk3Xi share an edge. We have increasing paths (x.,.,.,t..
3 Ji,

v. ,w.1 l,...,X'1 ) ad (Xk8".8tki,Vi,wi,*..,Xi>. Again, Vi is dif-

ferent from Xi since all paths from non-adjacent vertices pass

through h(Xi) when d(Xi)=2, SO the edge (vi,wi)rI(xi) is well-

defined,

In fact, the paths from Xi to Xj are all unique, so that
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Z i and vj lie on a single increasing path from xi to vj, sup-

pose there are two increasing paths from vertex r to vertex s,

where d(r)=2. Since O(r) is a tree containing the edges inci-

dent to r (6), some other edge in the paths is useless or lies

in I(r). The former is forbidden by (7) since c(x)=O,  while

the latter creates r-r. The same conclusion follows from

considering I(s) if d(s)=2.

Now, consider the ordering of zi and V. on Xi-+X..
3 3

We

have three cases:‘ Case I,
2

strictly precedes Zi on the

path, iea (vj,Wj)s(Yi,Zi)* Then for the remaining vertex vk

there exists vk+vk via (xk,,,,,t kj8vj ,rr.,Z*,U*1 lk ,...,X 1k'

Case II. Zi strictly precedes v l on the path, i.e. (zi,u..)
J 1J

sCtij8vj)*
If (zi,uij)‘I(xk),  then (Zi,Uij) lies on Xi,Xk

and Zi was not the furthest shared vertex from Xi, or I(xk) is

not a tree. If (zi,uij)CO(Xk),  then (Zi,Uij) lies on Xk3Xj

and v.
J
was not the first shared vertex on the way to x., or

J-
o(xk) is not a tree. But (Zi,U* .)

13
Cannot be useless to xk

since c(x'k)=o.

Case III. Neither of these possibilities can occur for

any pair (i,j), so we must have v =z =v =z =v =z1 1 2 2 3 3e To avoid

Xjl)xi we must have (Vi,Wi)<(yi,Zi)  for all i, but to maintain

the other paths we need (yi,zi)C(vj,wj) for i#j, 'Ut (Vi,Wi)

~(yi,zi)<(vj,wj)~(yj,zj)c(vjtwi) is impossible.

So, there must be exactly two isolated vertices x1 and x2

in M(G), and the two remaining components are non-trivial trees.

f(Xi) and h(Xi) appear in different components, since C(Xi)=O.
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my (10) each of these components contains exactly n/2-2 or half

of the edges in M(G), and C(f(Xi))CO(Xi), C(h(Xi))CI(Xi). In

order to have Xi,X.,
3

f(Xi) and h(xj) must appear in the same

component, Now we can apply (11) and conclude that the two

non-trivial components of M(G) are caterpillars on n/2-1 ver-

tices each. 0

To facilitate the subsequent discussion, we introduce some

additional notation, Henceforth fix m=n/2-1. Label the ver-

tices of G {xi8 i=1,2; j=O,l,...,m). Let xi be the vertices

of degree 2, and xi=f(x& Let Ci be the caterpillars of N(G).

The vertices of Ci get the labels xi, iwhere j=1,2,...,m  and x.
J

is the 0th
J to receive the information originating from xi. We

may refer to x 3 -
0 as x1m+l'

Since Ci is a caterpillar of increasing paths from xi to

Xim, the following properties are obvious.

REMARK (14). Let Ci be defined as above. Then

i> Ci contains x+x: whenever j<k.
.

ii) x; neighbors exactly one xi with j<k.

iii) If xk neighbors any xr with r>k, it neighbors every

iv)

with k<js;r.

within Ci with jck requires (xik,+6E(G).

Suppose we have a caterpillar C with a fixed initial and

final vertex, and an ordering of edges to make it a tree of

increasing paths both out of the former and into the latter.
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We claim C can be uniquely described by a forward sequence R(C)

or a backward sequence R'(C) of zeroes and ones. The length of

these sequences is one less than the number of edges in C, We

will not use the backward sequence, We merely note it exists,

arises from considering the edges in reverse order, and refers

to a different ordering of the vertices,

To cPbtain R(C), proceed as follows, Begin with the least

edge and a null sequence for R(C), Call the initial vertex the
= .

"active" vertex (xl in the caterpillar Ci) and its neighbor the

"current" vertex, When the next smallest edge is added to the

caterpillar, adding also a vertex, the new vertex becomes the

current vertex. The label "active" stays where it is if the

new edge is incident to it. If the new edge is incident to the

former current vertex, then that vertex becomes the active ver-

tex. In the former case, append a 0 to R(C) as generated so

far, In the latter case append a 1.-

As each edge is added to the tree in order, it can only be

incident to the active vertex or the current vertex, This fol-

lows-because the caterpillar must remain a tree of increasing

paths toward the final vertex, At any stage the tree is one of

increasing paths toward both the active and current vertices.

All 2r binary sequences of length r describe caterpillars

in this way and correspond one-to-one with caterpilars  on r+l

edges and r+2 vertices, where the initial vertex and order of

edges is specified, The initial vertex must be specified to

distinguish between sequences that differ only in the first
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place.

If we add the edge (h(x&xi) to Ci, we still have a cat-

erpillar, since this is a last edge. It has paths from xt and

to xi. This is the caterpillar of interest. Note that h(x$

need not be 4. Let S(G) be the associated sequence
1 2 2R(C U(h(xo),xo)), and let T(G) be the associated sequence

R(C2U(h(+,xh)),  but written backwards. When we discuss ir-

reduci^,bility  and concatenation in section 8 it will become

clear why T(G) is written backwards,

From S and T we can reconstruct M(G) and know the first

and last neighbors of xi, To complete the characterization of

G we need to know which pairs of sequences (S,T) can be assoc-

iated with a NOHO-graph and how the edges of F(G) and L(G) can

be placed to complete the graph,

No vertex in Ci can have a first or last neighbor in Ci.

By (l&i),  having such an edge in F(G) or L(G) would violate
- NOHO, So, the edges in F(G) and L(G) can be described by per-

mutations P(G) and Q(G), where Pi=j means f(xi)sxT, and Qi=j

1 2means h(xi)=x.. (Whenever R is a sequence of integers, we de-

note its ith ilement by Ri.)

S and T have m-l elements; P and Q as described have m

elements. P is a permutation of {2,3,...,m+l} which begins

with m+l, since xio=x;+l=f(X;). Q is a permutation of {O,l,...,m}

with some element deleted. The deleted element is j, where

h(x;)=xi. Note that 0 is never deleted. We will see that 0

appears in Q at the same position as 2 in P, so that P and Q
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could be compressed to m-l pieces of information. However,

bookkeeping and proofs will be easier if we leave them as is,

To align the useful information properly, we say that the ele-

ments of S and T as generated above appear in positions 2

through m. Si indicates what happens when C1 1reaches Xi+l,

and Ti indicates what happens when C 2 grows to reach x2m-i+j'

We can summarize the construction of these sequences and

the properties required of them in the last few pages by the

following remark;

REMARK (15). The quadruple (P,Q,S,T) defined above completely

specifies a graph. Such a graph has the properties ascribed

to NOHO-graphs  in (2) through (14).

If (P,Q,S,T)=(P(G),Q(G),S(G),T(G))  for some NOHO-graph G,

we call the quadruple realizable, We have not yet determined

what is required of (P,Q,S,T)  to transmit all information and-

to satisfy NOHO. For example, although any S or T except the

zero sequence can appear in realizable quadruples, it is not

true that every permutation P or Q defined above appears in a

realizable quadruple, nor is it true that every pair (SIT) is

realizable. In the next section we determine necessary

conditions for realizability.
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6, Necessary Conditions for Realizability

We will derive a number of necessary conditions for pairs

from (P,Q,S,T) to be realizable.

LEMMA (16). For a NOHO-graph  G, the pair (P(G),Q(G))  satisfies

i> Pi>Qi for all i=1,2,...,m.

ii) If Pi=Qj, then ipj,

iii) P2 is the element missing from Q, and Qj=O iff Pj=2,

Equivalently, f(xi)=h(xi).

Proof: Consider (i). Pl=m+l, which is greater than any e-e-

ment of Q. For some k from .l to m, Qk"O, which is less than

any element of P. For i#l, ifk, f(xi) and h(xi) lie in C2,

If Pi<QiI (14.i) guarantees xg -+xi in C2. Now we can add

(xi,xg
i

) to the beginning and

i x1-+x1

i(x; lL
i
,xi) to the end to ob-

tain i i*

For (ii), we argue similarly, If Pi=k=Qj with iej, then

we can add (x2 1
k,Xi)

1 1at the beginning of Xi3X.
J
and (x$x:) at

2 2its end to obtain xk'xk'

Finally, consider P2. By (ii>, if it appears in Q it must

be Q,. Then f(xi)=h(x& The caterpillar Ci always contains

the edge (x$x:), so we have a triangle. Similarly, if Pk=2

but a,#& (i) says Q,=l, 2 2Now f(x2)=h(xl),  and again we have

a triangle. 0

If P or.& is not strictly decreasing, certain edges must

appear in the graph,
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LEMMA (17). For a lUXi0-:~;ragh  C,, P(G) and Q(G) satisfy

9 If Pi<Pj with idj, then E(G) contains 11 2 2
~(Xi,Xj),(xp  ,xp )I.

: :
ii) If QiCQi with i<j, then E(G) contains at least oneLof

J

0

xlL lJ
itxj)#Cx

2 2
Qi

13"Qj '

Proof: Consider any increasing pair in P. Suppose Pi=r and

Pj=s, where i<j and r<s, If (xl xl) is not an edo-e* 01 j b I then (14,iv)
1implies information from x. could reach x1
3

i only via the other

caterpillar. So, we use (x1 2.,xs)%F(G), 2 2
3

continue to xt in C
2 2where trs or (xs,xt) is an edge, and finish with (x,, i2 xl)6Lii;),

t>r would imply Qi>Pi, violating (16.i). therefore (x2 2ps)

‘must be an edge, with tares, By (14,iii), (x$x;) is also an
1edge, but this creates a triangle with Xi.

2 2Now suppose (xr, xs) is not an edge, By a similar chain of

reasoning that switches the roles of C1 2and C , completing

x$+x: will contradict (16.~i) or (1).

Finally, suppose Qi(Q' with iej, but (x1 x1) is not an- J - t1 j
edge. it?V/e use (14,iv) again to require xp *x 2 in C2 for
1 1 j Qi

x .4x=. BY (16.i) QiCQjCPj, 2 2
3 1 so (14.~v) rec@res (xpG,xQ ) as:

an -edge to complete that path,
J J.

iVow (14,iii) says

:x2 2QipXQj > must also be an edge, 0

We define a reversion in a permutation to be a maximal

consecutive subsequence of the per-mutation where the first

element is the least. The reversions of a permutation parti-

tion it into segments, In a NOHO-graph, the reversions of P(G)
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have a very special form,

LEMlMA (18). If G is a NOHO-graph, then P(G) has the following

form,

i> Every reversion of P is a single element or has the

form (r,s,s-1 ,,..,r+l) with s-r+1 elements,

ii) Equivalently, P has no subsequence of length 3 whose

last element is largest.

Proof2 First we show equivalence, By definition, the first

elements of reversions form a decreasing subsequence, else the

reversions would not be maximal. If reversions are as in (i),

any increasing subsequence must lie entirely within a single

reversion, The form described in (i) prohibit6 two increasing

pairs with the same second element.

Conversely, assume (ii), Suppose a reversion has more

than one element and we drop the first element r, This must
-

leave a decreasing subsequence beginning with s, since any in-

creasing pair would violate (ii) with r. mppose  there is some

element t, r<tis, that does not appear in this reversion. Its

appearance before r violates (ii) with r and s, and its ap-

pearance in a later reversion violates (ii) with r and the

first element of that reversion.

That (ii) holds for realizable P follows immediately from

(17.i), (lkiii), and (1). They provide a contradiction if

some such subsequence is assumed to exist.
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REMARK (I?). A permutation P satiefiing  (18) le uniquely de-

termined by choosing a subset of Indices from {3,...,m)

at which reversions will begin in P, in addition to the

reversions beginning at Pl and P2. Hence, there are 2m-2

such permutations.

Note the equivalence of (18.i) and (18.ii) is independ-

ent of realizability, We will see that the necessary condi-

tions (16) and (18) together are sufficient. Also, it is easy

to see that for any P satisfying (18) there is at least one Q

satisfying (16).

Next, we derive a condition for the pair (P,S),

LEMMti  (20). If G is a NOHO-graph, then P(G) and S(G) satisfy

the following,

i> Suppose Pi begins a reversion in P(G), Pk begins the

- next reversion, and kLj+2. Then Sj=l, and if k>j+2

then Sj+l=... =sk,2=0,

ii) If Pt=2, beginning the last reversion in P(G), then

St=1 and any succeeding elements of S(G) are 0,

Proof J If Pj begins a reversion of length at least two, every

succeeding element of the reversion forms an increasing pair

with P..
3

By (17.i),  {(x$x:)J i=j+l,.,.,k-l)cE(G). Si indi-

cates what happens when C
1' grows t0 meet Xi+l' Considering

1the edges we have just shown to exist, x.3+1
is joined to the

1
then-current vertex, and succeeding Xi are joined to the active
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vertex, SO S14 and succeeding Si are 0, if ksj+2,
c

Sk 1II
tells what happens when the vertex beginning the next rever-

sion is added to the tree, so it is unrestricted,

Now consider the last reversion in P(G), which begins

with Pt=2. By (16 iii)l Q =0 and (xl x1
t t� m+l ) is an edge, APPlY-

ing (l&iii) to the caterpillar C"~[(x$x~)], we deduce that

i(
1 1xt,xi)' i=t+l,...,m+l)  are all edges, since tsm. As above

we conclude St4 and any succeeding Si are 0. 0

REMARK (21). For each P satisfying (1.8), the number of se-

quences S satisfying (20) is 2r-l, where r is the number

of reversions after Pl,

Proof: An element of S is unrestricted if and only if its po-

sition (Skml in (20)) corresponds to the last element of a re-

version in P other than the last reversion. 0

Define (P'(G),Q'(G),S'(G),T'(G)) as follows. Set P'i=j

if Pj=i., Extend Q so that Qo=k where xk-2-h(xi), then set Q'i=j

if Q.=i,
J

Set Si=T,+2,i,  and set Si=Sm+2 i' We call (P,g,S',T)

the reflection of (P,Q,S,T). A little "reflection" shows

REMARK (22). The reflection of a realizable quadruple is also

realizable, in fact by the same graph.

Proof: Considering (P&&S/F)  instead of (P,Q,S,T) is equiva-

lent to interchanging the roles of C1 and C 2 and looks at the

graph upside down, 0
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If G is a NOHO-graph, we define the reverse graph X(G) as

the graph with the same vertices and edges as C, but with

(x,y) (u,v) in K(G) if and only if (x,y) (u,v) in G, All in-

creasing paths of G are increasing in the opposite direction

in K(G) and vice versa, so X(G) is clearly a NOHO-graph. Note

that the vertices need to be relabeled with C1 and C 2 to o

tain the defining sequences for K(G). The "hairs" of the cat-

erpillar swing around as the wind blows from the other direc-

tion. -_

By reflecting and reversing, we obtain additional neces-

sary conditions.

REMARK (23). If G is a NOHO-graph,  then

i> (P(G),T(G)) 5. s such that (P’(G),SW)) satisfies (20)&a

ii) (Q(G),S(G))  is such that (P(K(G)),S(K(G))  satisfies (20)@.

iii) (Q(G),T(G)) is such that (P'(K(G)),S&(G))  satisfies (20),6%

-

(W, (201, and (23) are necessary conditions for any pair

from {P,Q,S,T) except (S,T) to be realizable. There are appro-

priate conditions for (S,T), but we have no simple expression

for them, We will soon see that when paired with (18) each of

these conditions is sufficient,

7. The Number of Realizable Quadruples

Besides showing the sufficiency of the previous conditions,

we will show that any pair from {P,Q,S,T) satisfying them
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is realized by a unique NOHmph. To prove this, we need a

lemma that will enable us to generate one sequence in {P(G),

Q(c),s(G)) hw en we know the other two, By reflection we can

apply it to {P, g,S')to  obtain similar results for {P,Q,T}.

S(G) is a binary sequence indexed from 2 through m, On

its index set we can define a function b that points to the

previous 1 in the sequence. Let b(i) be the greatest positive

integer such that jci and S.=l, if such exists.
J If there is

no such integer, set b(i)=l. Then we have

LEMMA (24). For a NOHO-graph G, P(G), Q(G), and S(G) are re-

lated by

i> Si=l if and Only if Pi+l'Qb(i).

ii) Si=O if and only if Pi+l=Qi.

Proof8 In one direction the lemma is trivial, Recall the

construction of S from active and current vertices. Si=O if
1and only if (Xb(i),X:+l) is an edge, and Si'l if and only if

(xl ILiPx’1+1 ) is an edge, SO, if Pi+l=Qi, then choosing Si'l cre-

ates a triangle, while if Pi+l=Qb(i) then Sj'O creates a tri-

angle,

We prove the other direction by induction. For the basis

step, b(2)=1, and by (16,ii,iii) we always have P3'Q, or P =Q
3 1'

If S2=0, then choosing P3=Q, creates a triangle, while if

S2=1 then P3=Q2 creates a triangle.

Now we prove the lemma for k, assuming it holds for all

2ri<k. By (16.ii,iii) we know that Pk+l=Qj=r for SOIIU? j with
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3sk a Suppose j=k, Then if SkPO we are finished, while If

Sk=1 we have a triangle, Suppose j-b(k), Now if Sk=1 we are

finished, and if Sk=0 we have a triangle, So, if the lemma

fails we may assume j*k, j#b(k). If Sj'o, then by induction

we have Pi+1 =Qi=r, which contradicts P being a permuation,

So assume S j=l, in which case jsb(k) by the definition of b,

We assumed j#b(k), so let t be the least integer greater than

j such that St=l. j=b(t), and t<k since Sb(k)'l# so we have

j&rb(k)tk. Applying induction, Pt+l=Qb(t)=Qj=r, which again

contradicts P being a permutation, 0

Now we proceed to the main results. Henceforth, fix

p=(n-4)/2=m-1.

THEOREI% (25). Any pair from (P,Q,S,T)  which satisfies the cor-

responding necessary conditions for realizibility in (16),

- W), (20), (23) is realized by a unique NOHO-graph.

Proof; First we show how to uniquely generate the remaining

sequences from any pair satisfying the necessary conditions,

Then we show the resulting quadruple is realizable.

Suppose the two known sequences lie in {P,Q,S). We gen-

erate S from (P,Q) satisfying (16) ,(18) so as to satisfy (24).

Initialize k=l, Then for i=2,3,...,m  in order, if Pi+l'Qk'

set Si=l and reset k=i, If Pi+l=Qi, set Si=O and leave k un-

changed, This is well-defined for (P,Q) satisfying (16). P2

disappearing leaves o~index "free." As,we proceed in P, the
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0nl.y previous elements of Q which have not been encountered in

P are Qk and Qi'

We claim the resulting (P,S) satisfies (20). It is easy

to show the requirement for when Si must be 1 holds. Other-

wise, we have Pi+1 =Qi when Pi starts a reversion and is less

than Pi+l, violating (16.i). For the other requirement, con-

sider the first time Si is set to 1 by Pi+l=Qk with i+l in the

midst of a reversion, k is the previous 1, so it is the start-

ing position-of the reversion, ThUS Pi+l'Pk, and we violate

(16.i)  again,

Next we generate Q from (P,S) satisfying (18),(20) so as

to satisfy (24). Set Qi=O if Pi'2. If k is the least integer

such that Sk=l, Set Q2=Pk+l, (If S has no ones, x;=h(f(x;)).

With (16,iii), this contradicts nab,) For all other i, if

Si=O set Qi'Pi+l, while if Si'l Set Qb(i)=Pi+l' Again, this

is well-defined, The Qi skipped by the first option are those
- with Si =l, so that subsequence is just shifted within itself

from P to Q. P2 disappearing makes room for the shift, and

0 under Pi=2 fills the hole left at the end, since that's where

the last 1 occurs in S.

We claim the resulting (P,Q) satisfies (16). (16,ii,iii)

are obvious by construction, so assume some P.<Q
3 j' The algo-

rithm Se-taQj=Pi  for some i>j, SO by (18) 'j must begin a re-

version containing pi' BY (20) Sj=l,  SO Qj is set the next

time a 1 is encountered in S, i.e. at Si 1 with i-lrj, (20)

then implies Pi must be in a later reversion than PO,
3
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For the remaining cases, we give less detail. To gener-

ate P from (Q,S), set Pl=m+l, and fet P2 be the element in

(1 ,.,.,m) missing from Q. For all other i, if S; -1=0 set

Pi=Qi-1, while if Si,l=l set Pi=Qb(i-1)' This is well-defined

for (Q,s) satisfying (23), since the only gtlements of Q not

placed in P at the ith stage are Qi - and Qb(i-1). The re-1

sulting (P,Q) clearly satisfies (lb,i.i,ii)) and can be shown

to satisfy (16.1) and (18). By the construction, they also

satisfy (24). =

To generate T from (P,Q,S), form (P',Q') and use the first

algorithm above to get S', Then T=(S)'.

To generate the unknown sequences knowing T and one of

fp, Q), reflect them and apply the above algorithms for S and

one of {P,Q). This generates To and the unknown element of

{P',Q'), and reflecting again gives the desired quadruple.

This leaves the case of generating (P,Q) knowing (S,T).

set Pl=m+l, P2=j where Tm+2-j is the first 1 in T, and Pj=2

where St
3

is the last 1 in S. These requirements follow from

(16,iii), since those elements of S and T determine h(x&

The remaining elements of P and Q can be uniquely generated

by refusing to violate (17), (24), or (1). We omit the details

of this algorithm.

By (24), etc., the unknown sequences can only be as gen-

erated above. We have shown uniqueness, now we show suffi-

ciency. No matter what pair we started out with, we have shown

that for the generated quadruple all the necessary conditions
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are satisfied, We must show that increasing paths exist be-

tween all ordered pairs of vertices and NOHO is satisfied.

As noted in (l&i), x:+x: with j*k exists, Next we show
1 2x*-+xk exists,
3

If Pj=s with ssk or Q,=k with rzj, we are done

by (14.i) again. Suppose both of these possibilities fail and

Pt=k. Iftej,  thm (Pt,Pj)  form an increasing subsequence of P,

The condition (20) on (P,S) was determined so that G would

satisfy (17.i). So, (x$x$ is an edge of G, and (s$x$xE)

is the desired path. Suppose instead t>j, and apply (24).

Since rej&, we have tfr+l but Pt=Qr, so we must have r=b(t-1)

and StWl=le SO P (X:,X: l)'E(G). By (l&iii), (x$x;) is

also an edge, making (x:,x$x:) the desired path.
1 1We must also have Xj3Xr, even if rcj,

1 1 2 2
Let s=Pj and k=Qr,

If (xj,X,) or (x,,xk) is an edge or if sbk, then we are done,

1 2In considering Xj~Xk above, we showed that if r*j and s*k we
1 1must have (x., 2 2
3

xr) or (xs,xk) as 2n edge.
2That paths xj-+x~ 2 2and Xj’L’Xr also exist follows from

reflection and the preceding two paragraphs,

As constructed,G  trivially satisfies NOHO, v+v cannot

occur using the edges in a single tree, so it must cross to

f(v) and return from h(v), Suppose f(v)=xt and h(v)=xk. Con+

pleting the path requires (x:,x:)  to be an edge or jsk, The

former never occurs because we've constructed a graph with no

triangles, and the latter never occurs because (P,Q) satisfies

O-6). So, the graph determined by the generated quadruple is

a NOHC-graph. 0
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THEOREM (26). The number of realizable quadruples is 3 P-l ,

where p=(n-4)/2,  n even, n&. .

Proof; By (25), pairs (P,S) determine the rest of the quad-

ruple, so we count those. As noted in (21), a realizable P

has Zrml realizable S associated with it satisfying (20),

where r is the number of reversions atter Pl, By (19), there
m-2

are Crml) such realizable P. Using the binomial theorem, the

* m-2total number of realizable quadruples is *~ (r,l)2
c

r-l = 3p-1 0.

Figure 3 exhibits the quadruples and associated graphs

for n=6 and n=8.

Figure 3.

(432, 110, II, II)

(423,30 I, 10,Ol)

Small NOHO-graphs

G has 180" rotational symmetry when drawn as in Figure 3

if and only if (Pf,Q',So,T')=(P,Q,S,T),  This occurs for all

the graphs in Figure 3. If (P*,Q',S',T*)#(P,Q,S,T), then G is

counted twice when the quadruples are enumerated. In the next

section we enumerate the symmetric solutions, so we will know

the extent to which NOHO-graphs are overcounted here,
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8. Symmetric NOHO-graphs

In this section we count the symmetric NOHO-graphs, V?e

define a symmetric quadruple as a realizable quadruple for

which (PQ,Q',s',T*)=(P,cJ,S,T). A symmetric NOHO-graph is one

where the vertex permutation interchanging xi and xi for all k

leaves the graph unchanged, As noted earlier,

REPARK (27). G is a symmetric NOHO-graph if and only if

(P(G),Q(6-),S(G),T(G)) is a symmetric quadruple,

The following remark applies to all P(G), and is useful

in determining the number of symmetric ones.

REMARK (28). In a realizable P, Pi=j implies i+jLm+3.

Prooft By (18.i), the number of positions after i in P must

be at least as big as one less than the number of elements less
- than Pi, so m-irj-3. 0

LEKPJA (29). The number of symmetric realizable P is 2LbW2J
l

Proof: P symmetric requires P.=i if Pi=j, so P corresponds to
3

a matching of the positions (Z,...,m). Some positions maybe

matched to themselves, if Pi=i. (In fact, this can only happen

twice. ) Note we always have Pl=m+l and Prn+l'l. We construct

P match by match from m down to r(m+3)/21, matching Pj on step

m-j.

At each step there are two choices. By WLi),  p,e{2,3)



44

and at step j Pm~j~{2,3,000  ,m-j+3}. However, j of these have

already been matched with higher positions on previous steps,

This leaves two choiceEl for Pm-j' one of which is m-j+3,  since

it wa8 not available before, Upon reaching P
rh+3>/21~  the

choices are L(m+3)/21 and one lower value. If m is odd, we

choose between matching them to each other or to themselves.

If m is even, set P
r(m+3)/21

equal to one of them and match

the remaining one to itself, Now we have made m-r(m+3)/21+1

= L(m-1)/Z] choices and completed the matching, Z-very P so

coustructed satisfies (18), and these are all the symmetric P

which do so. By (21),(25), they are all realizable. 0

Examining the construction in the proof above, we can de-

fine a binary sequence B(P), indexed from [(m+3)/21 to m,

where B j=O if Pj=m-j+3  and Bj"l if Pj<m-j+3. Now we can count

the graphs associated with each P.

-

LE?CXA (30). Suppose P is realizable by a symmetric KOHO-graph.

Then the number of symmetric NOHO-graphs realizing P is Zq,

where q is the number of ones in B(P).

Prooft We consider how many ways symmetric Q can be construct-

ed so that (P,(J) satisfies (16). We claim that each way deter-

mines a unique symmetric quadruple, By (25) it determines a

unique realizable quadruple. Using the algorithms in (25) we

generate S and T. Reflecting and applying the algorithms again,

we find S'=S and T*=E, since P and Q are symmetric. So by (27),
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the NOHO-graph realizing the quadruple is symmetric,

First suppose B(P)=(O,....,O),  Then P=(m+1,2,m,m-1,.,,,4,3),

There is one reversion after Pl, so (21) and (25) imply there

is one realizable quadruple with this P. The corresponding Q

is (m,O,m-1 ,...,4,3,1), which is symmetric as desired,

WV suppose B(P)#(O,...,O). By the way B(P) is construct-

ed, Bk=l implies. Pk begins a reversion in P, The uppermost

1 occurs when Pk =2, beginning the last reversion. That post-

pones picking m-k+3 until the next lower 1 in B, at which point

it must begin a reversion, and so on.

Recalling (ZO), the elements of S are unrestricted if and

only if they correspond to the last element of a reversion

other than the last one, So, covering the index range r(m+l)/Z]

to m, there are 2' ways to write down this portion of a realiz-

able (P,S). Using the algorithm in (Z5), we can write down

what the corresponding segment of Q must be.

- Determine the rest of Q by setting Qj=k if Qk=j, where

k&(m+l)/Z. That this is well-defined is ensured by (28). Q

is now symmetric and co@etely defined, We need only verify

that (P,Q) satisfies (16).

For (16,iii), we have guaranteed Qk"O placed where Pk'2,

since B(P)#(O ,.,,,O)  and the last reversion begins in the "good"

segment. By symmetry P2 =k and k is the element missing from Q.

(16,i,ii) hold for all elements of Q at (m+l)/Z or later. sup-

pose Qi=Pj=k  with jcic(m+l)/Z.  Then by symmetry and (28),

Pk<Qk with kr(m+l)/Z,  violating (16.i). Finally, suppose P.<Q.
J J
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with je(m+l)/Z. Applying symmetry and (28) again, we violate

(l&ii) in the good semen-t. L.

To summarize, we have shown that there are Zq symmetric Q

that might be paired with P, and that all such pairs are real-

izable and determine symmetric quadruples, 0

THEOREM (31). The number of symmetric NOHO-graphs is 3LPm .

Proof, If B(P) has q ones, they may occur at any of the Lp/ZJ

steps in construEting  P. So (291, (301, and the binomial

theorem yield r(Lpc4Zq = 3Lpi2j as the number of symmetric

solutions, 0

Symmetric quadruples are one-to-one with symmetric NOHO-

graphs. Other realizable quadruples are two-to-one with other

NOHO-graphs. So we have from (26), (27), (31)

COROLLARY (32). The number of NOHO-graphs  on nr6 vertices, n

even (other than Q* when n=8) is (3P-1+31P/2J  j/2,

9, l Concatenation of NOHO-graphs

Before defining the concept of an irreducible NOHO-graph,

we need to define a way of combining NOHO-graphs. Suppose we

have two NOHO-graphs Gl and G2 on n1 and n2 vertices {xi] and

{yi}, with associated quadruples (P',Q',S',T')  and (P2,Q2,~2,T2).

We define the concatenation of Gl and G2, denoted Gl+G2, as a

new graph G
3 constructed as follows.
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To obtain the edge set of G unite those of Cl and G
3' 1

2'
deleting the edges incident to. x: and yo, The vertex set of

G3 is the union of the vertex sets of Gl and G2, with x0" and

yi deleted, Furthermore, identify h(xg) with yi and h(yi)
2with x1. NOW G3 is a graph on n3=nl+n2-4  vertices, with

2nl-4+2n2-4-4 = 2n3-4 edges.

For the ordering of edges, any edge that was a first edge

or last edge in Gl or G2 remains a first edge or last edge,

The order between two edges from the same Gi is preserved, In

addition, every edge from C1 (Gl) is set less than every edge

from C 1 2(G2), and every edge from C (G2) is set less than every

edge from C2(Gl).

Figure 4 gives an example of concatenation,

G, 6 + G,
Figure 4, Concatenation

Note that concatenation is not a commutative operator,

Also, if we label the vertices of the&cycle {x&x:,x&x$  it

becomes an identity element under concatenation. In fact,

NOHO-graphs not in Q* form a non-commutative semi-group under

concatenation, Associativity is clear from the construction.

The next lemma verifies closure,
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LEWA (33). If Gl and G2 are NOHO-graphs,  then the concatena-

tion Gl+G2 is also a NOHO-graph,

Proof: We need only show that Gl+G2 contains paths between

all pairs of vertices and satisfies NOHO, We may consider the

identified vertices as elements of either of the original

graphs. Any path wholly within one of the component graphs is

still present in Gl+G2, unless it used one of the deleted ver-

tices,\ The only paths which used them as non-endpoints are

( x$+(x;) > ar-3 (y;,y;,h(yl,). In the concatenation these

paths can be replaced as follows. Since we have identified

.x1" with h(yi) and h(xg) with y& we can consider the endpoints

as originating from the other summand graph, The transmission

path between these vertices in that graph uses noreof the de-

leted edges,

obtaining an increasing path from a vertex of Gi to a ver-

tex in G.
3
is quite simple, If v lies in Gl and w in G2, v--$,w

- 1 2can be formed by attaching yl+w from G2 to the end of v+h(xo)

from G1. Similarly, 2w+v can be formed by attaching xl-v

from Gl to the end of w+h(yi) from G2. These constructions
1work because every edge incident to yl in Gl+G2 that comes from

G2 is greater than every such edge from Gl, and every edge in-

cident to x21 in Gl+G2 from Gl is greater than every such edge

from G2, The edges that could have violated that were the

edges deleted from the union.

Finally, to prove NOHO we note that no increasing path

which starts at a vertex from Gi can leave *hose vertices and
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later return, This would require traveling along Ci(Gl+G2),

Jcrossing to C (Gl+G2),  and returning, The crossover could. .

only use a first edge or last edge, which would prohibit in-

cluding the earlier or later portion of the path. On the other

hand, no path violating NOXO can lie entirely within the edges

coming from one of the summands, since they are NOHO-graphs. 0

To determine (P,Q,S,T) for Gl+G2=G3, we obtain S(G3) and

T(G3) by concatenating in the usual sense S(G1) and T(Gl) with
-_

Sic,) and T(G2). That is, with m.=n./Z-1,  S(G3) contains S(G1)1 1
in positions 2 through ml, and it contains S(G2) in positions

ml+1 through m S (G3) describes what happens

when C1
3=m1+m2-1m "1

(G 1
3 ) reaches y2, which is the same as what happened

when C1 1(Gl) reached xm +l. The remainder of C1
1

(Gi) is as before,

The same ar,gument applies to T, P and Q can be determined as

in (25), or they can be determined directly by adjusting and

combinhg P(Gi) and Q(Gi) as was done with S and T, This re--

quires dropping an element, adding pl or p2 to the elements in

one portion, and concatenating.

If is natural to call a realizable quadruple or a NOIIO-

graph irreducible if it cannot be expressed as a concatenation

of two smaller ones, In the next section we will count the

number of realizable quadruples in subclasses involving

irreducibility.
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lh Xrreducibility and NOHO-graphs

i3efore  discussing irreducibility, we introduce some stan-

dard terminology about compositions of integers. A composition
d prhl ilr+qytr9

of an integer p is an ordered sequence,whose parts sum to p,

Again, we are using p here because (n-&)/2  adds simply in con-

catenation. The ith partial sum qi of a composition is the

sum of the first i parts, A refinement of a composition of p

is a composition of p with as least as many parts whose par--_

tial sums contain the partial sums of the original composition,

The least refinement of two compositions is the composition

whose partial sums are the union of the partial sums of the

original compositions. For example, the least refinement of

C&3,5) and (1,3,1,4,1) is (1,1,2,1,4,1).

This terminology will be useful for the following lemma,

which states a very convenient fact about concatenation,

Ijamely, NOHO-graphs are "uniquely factorable" into irreducible

pieces, In algebraic terms, this means the irreducible solu-

tions are the generators of the semigroup of NOHO-graphs under

concatenation.

LEMIKA  (34). Any realizable quadruple can be uniquely expressed

as a concatenation of irreducible quadruples,

Prooft Any such decomposition of a quadruple breaks up (S,T)

into segments which each determine NOHO-graphs, For example,

describing graphs as G(S,T), we have G(101010,111101) = G&l)
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+ G(OlO,lll) + G(lO,Ol)  l We can describe the decomposition

by a composition of the integer p=(n-4)/2.

We claim the least refinement of two compositions of p

which correspond to decompositions of G also corresponds to

a decomposition of G, If one composition is a refinement of

the other, we are finished, If not then the least refinement

has two consecutive partial sums qi=r and qi+l=S, where r is

a partial sum for exactly one of the compositions, and s is

a partial sum only for the other. Performing the decomposi-

tion, we have indices j and k such that the segments (Sj,'j)

through (Ss+l,Ts+l)  and (Sr+2,Tr+2)  through (Sk+) determine

NOHO-graphs Gl and G2. (We have assumed r<s.)

Define another graph G3, whose vertices and edges include

the vertices and edges that lie both in Gl and in G2, plus two

vertices y and z of degree two. (By "both in Gl and in G2" we

mean when the vertices are labeled as the fit into G.) The

1- neighbors of y and z are defined by fG
3
(Y)=x~+~,  hG3(y)=

2
h

2

G2 2
(fG $+l))# fCg(Z)=Xm-s# and hG (z)=hGl(fGl~xm-s))'

3
G3 is a NOHO-graph, and the proof of this rests on the

fact that increasing paths which leave G3 can never return to

it, When such a path leaves G3 it simultaneously leaves Gl or

G2' By the same argument used to verify NOHO in (33), it can-

not return, So, the increasing paths in G between vertices of

G3 must lie wholly within G3’
Information is transmitted for

y and z also, since y takes the place of a vertex in G2 Of
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degree 2 and z does the same in Gl. That NOHO is true follows

because any increasing path in G appears in Gl or in G23
(except y+z and zdy), and they satisfy NOI-IO.

Let Gi be obtained from Gl by deleting vertices and edges

belonging to G3. Add a vertex w of degree two with f,;(w)=

hG (y).
3
(y> and hG,h)=fG By the arguments in (33) and above,

1 3
it is easy to see Gi is a KOHO-graph and G'+G =G1 3 1' So Gl was

not irreducible,

Repeating-this argument over all decompositions of G, we

see the only decomposition into irreducible segments is the

least refinement of all the decompositions. 13

Having proved unique decomposition, it becomes easy to

count various classes of solutions by induction.

THEOREX (35). The number of realizable quadr ples formed by

- concatenating k irreducible quadruples is (k-lP'l)2P-"k,

Proof; By induction on p, Examining Figure 3 yields the

basis steps for p=l and p=2, Assume the theorem is true for

smaller values than p.

First consider k>l, To obtain such a quadruple we deter-

mine a composition of p and fill the quadruple with irreducible

(S,T)-segments of those lengths. p is the eventual length of

S and T from positions 2 through m=n/2-1. By induction, each

segment of length r can be filled by Zrol irreducible pairs,

Filling each segment in all possible ways, (33) says these are
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realizable, and (34) says there are no others. So, for each

composition rl+'@.+rk=p with-k parts, there are 2'1'1 b..Zrk-1

,2P-k quadruples of this type, There are (k-lp-l) Compositions

of P with k parts, so the total number of solutions is

(,P-;)2p-k.

This holds also for k=l, since that is precisely how many

remain of the 3p-1 quadruples counted in (26). The binomial

theorem says there are 2P-l irreducible quadruples, If

THEOREK (36). The number of symmetric NOHO-graphs formed by

concatenating k irreducible parts is t
P,k'

where

(p/2-l)2(p-k!/2
k/2-1 ; p even, k even

t
P,k =

: p odd, k even

i k odd, k>l, r=(k-1)/2

; k=l

Yroof; We use a similar induction to the above. Figure 3-
again provides the basis, though now p=l and p=2 are both nec-

essary. Assume the theorem is true for smaller values ofan p,

First consider k>l. If k is even, p must be even to allow

symmetry. We determine a composition of the first p/Z places

into k/2 parts, fill it with irreducible (S,T)-segments, and

then obtain the rest by reflection (27). (33) and (34) again
justify the conclusion that this counts everything, There are
P/2-1
(k/2-1) compositions and 2 (p-k)/2 solutions for each one.

If k is odd and k>l, determine a composition of q with
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r=(k-1)/2  parts, where 2q<p, The middle segment of (S,T)

will have length p-2q, In that segment we place a symmetric

irreducible segment, of which by induction there are 2L(p-2q)/2J.

There are 2qmr ways to fill the remainder, With the usual ar-

guments about reflection, number of compostions, and the cor-

rectness of the count, we have t

2LP/q-r~w(~-1.
P,k

=~~~~q-1)2q-r2c(P-2q)/21
qml r-l

= Fl r-l) c r=bl),k
To compute t

PJ'
we subtract the other tp k from 3cp'21#

9
the total number- of symmetric NOHO-graphs,  derived in (31).

Note that

2.3P/2wlw  2P/2 i p even

3(P-1)/2&+1)/2  I p odd

-When p is even, we must also consider k even. If s=k/2, we

have (P/2-1)2P/2-s = 3P/2-1
s-l as the number of these solutions,

so,-

3LP/21 -
3P/2-l

t
+2.3P12-l-2P/2 ; p even

PJ =
3(P-W2-2(p-lV2 t p odd

= 2LPRl il
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11. Planarity and Hamiltonicity

In this section we note two properties of NOliO-graphs

that are commonly of interest. Constructions are given for

both, First, a quick lemma,

LEKM (37). In a NOHO-graph, consider a path ii that begins

1at x0 and alternates along first edgea and last edges, Then

i) The path alternates between Cl and C 2 , reaching C1 al-
-_

ways on first edges and C 2 on last edges,

ii) 2R eveiltually reaches x0,

iii) From xi to x& R is a simple path.

iv) Among the xi 2and Xj that appear along R until x& the

indices i increase and the indices j decrease,

Proof: (i) is obvious, We verify the remainder in reverse or-

der. For (iv), it suffices to consider pairs of consecutive

- appearances, If x$=f(h(xi)) so that f(x$)=h(x$ then (16.i)

says i'>i. If x;,= 2h(f(Xj)) SO that X.8f=h(xi)  and xi=f(xi),

then (16.i) says j'<j, (i) implies the consecutive appearances

are as described. (iv) immediately implies (iii). Since the

path connot contiue in the same direction forever, (iv) also

implies (ii), 0

THEORE&< (38). In a NGHO-graph (other than Q*), uniting the

first edges and last edges yields a Hamiltonian circuit,

Proof: Consider the alternating paths guaranteed by (37) that
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1emerge from x0 2and proceed to x0. One begins with a first edge,

one with a last edge, Call them Rl and R2, respectively. We

claim Rl and R2 intersect only in {x,, OIL x2).

If not, let v be the first vertex where they meet after xi,

2If it is before x0, it lies in C1 or in C 2 , Sy (37.i), both

paths reach it via the same type of edge, i.e. first or last,

But F(G) and L(G) are matchings by (2), so there is only one

s;lch edge incident to v. This means the paths had to meet at

the previous ve&ex.

So, uniting Rl and R2 yields a simple circuit, It is easy

to see it must be Hamiltonian, If v lies outside it, we can

begin paths there that proceed alternately along first edges

and last edges, By the argument of (37), one such path Rv pro-
2ceeds to x0. The next-to-last vertex on it is in Rl or R2,

since ii1 and R2 reach x02 separately and d(x$=2. It also lies

in C1 or C2 . As in the preceding paragraph, all of Rv includ-

ing v lies in that same Rl or R2, 0

THEOREX (39). Every NOiIO-graph  (excluding Q*) is planar.

Proof: We construct a planar representation. Place the ver-

tices on the boundary of the shadow of a sausage, Put xi at

the left end, xg at the right end, xi along the top edge from

left to right, and xf 2to xm along the bottom edge from right

to left,

Let Rl and R2 be as in the previous proof, Draw in ii1 as

a path of chords, By (37.iii,iv), there are no crossings,
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i3lur the boundary of the sausa,qa so that the top and botI;oli:

boundaries become doubled, still meeting at the endpoints,. .

Let the vertices of Rl remain on the inside boundary, and move

the vertices of R2 to the outside boundary, R2 can be drawn

as a path of non-crossing chords in the outside infinite face,

again by (37).

'Ne still must show that the edges in the caterpillars can

be added without crossings, The interior of the boubled bound-

ary has not yet been entered by any edge, DTo edge of the cat-

erpillars joins two vertices on the same Ri' i.e. on the same

side of the doubled boundary, If so, (l&iii) and (37.h)

require a triangle. So, we can draw the caterpillar edges as

chords across the interior of the boundary,

We claim there are no crossings. Since the vertices have

been placed in order, (x:,x:)  cannot cross (x:,x:) with.

max(j,k}cmin{r,s), If a crossing exists, we may assume jer<k,

- rds, By (&iii),  (x:,x:) is an edge. Similarly, if kcs then
. .

(x$xk) is an edge, while if k>s then (x:,x:)  is an edge.

Either way, we have created a triangle in a tree, using xi,
. .1
Xr, and one of (x:,x:]. 0

Figure 5 shows a representation drawn with this method.

� *.  ,. . . . . l

A planar represeniGl6n
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12, Related Gossip Questions

Golumbic[6]  and Harary and Sdhwenk[8]  have shown that any

connected graph with n vertices, 2n-4 edges, and a h-cycle ad-

mits an edge-ordering which solves the usual gossip problem.

By 2n-4 edges, we mean 2n-4 calls will be made using “allowed"

edges, Of course, most of these violate KOHO, The question

remains open, however, whether every optimal solution of the

gossip problem contains a 4-cycle. An affirmative answer would

characterize these solutions, Examining (12) and (16,iii), we

note

REXARK (40). Every optimal solution of the gossip problem

satisfying NOHO has a 4-cycle.

It may be possible to prove the conjecture by applying this

remark,

- Graph theorists have also considered solutions of the

gossip problem in which no transmission of information is dup-

licated, so there is a unique increasing path from each vertex

to every other, Usually this includes the condition NOllO.

Paradoxically, forbidding wastage requires more work, if in-

deed the problem can be solved at all. In other words, the

information cannot be transmitted in 2n-4 calls unless n=4 or

n=8, which follows from
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REXARK (41). Every KOHO graph other than Cb and those in &*

duplicates some transmission,

Proof: C4 and graphs in Q*, as remarked in (12), duplicate no

transmission. Consider any other NOHO-graph, and suppose

s = ,m" We claim there are two paths from x22 to x;, By (l&iii),

f(x;)=h(x;), IIy (14.iii), (xi, 2h(xo)) is an edge. 2so h,,
2 1h(xo),xm) forms one such -oath, By (l&i) there is an increasing

pathe in C 2 2from x2 to every other vertex of C2,-- including
1h(xm), which completes the path,1 On the other hand, if S,=l,

then xm-'-hb&. Applying (16,iii)  again, there exist increasing

paths (x$x$hb@,x~)  and b&x~).  [J

Finally, :b!e describe a generalization of the problem con-

sidered here, Consider an n by n "transmission matrix" on

vertices {vl,..,, vn} with entries from {1,0,-l). If a. .=l,
1J

we T:'equire an increasing path from v to v..- i
3

If a. l =-1 we
13

forbid such a path, If a. .=O we don't care,
13 We ask whether

a callin,? scheme satifying the matrix exists, what is the least

number of calls in such a scheme, what schemes achieve the min-

imum, and so on. The original 0Suossip problem results when di-

agonal entries are 0 and off-diagoanal entries are 1, Chang-

ing the diagonal entries to -1 yields the subject here, The

problem with ones above the diagonal and zeros on or below it

is clearly optimized by a chain of n-l edges, For a matrix

in block diagonal form, we require the sum of -the calls re-

quired by the smaller problellls. Here's another example:
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KEXAW (42). Consider a transmission matrix with aii'0,

aij=O for irrzj, and all other‘aij=l. The smallest graph

solving this gossip probleyn has 2n-7' edges, This remains

true if aii =-1, n even, r even,

Proof8 Take an ordinary (2r-&edge solution Xl on {vl,...,vr]

and an ordinary (2n-2r-&edge  solution H2 on {vr+~,..,,vn).

9rder  the edges so all those of X2 occur after all those of

ii 1’ Add an edge joining a vertex of the last edge in ill

to the first edge in H2, and let it occur between them. This

uses 2n-7 calls and satisfies the matrix.

To show optimality, take any solution and delay all edges

not wholly within (v~,,,.,v,),  in order, until after every

edge within that set, The resulting scheme still satisfies1

the matrix, 3ut now it must consist of an ordinary scheilie on

r vertices, followed by at least one connec-ting  edge and a

solution on n-r vertices, So, there are at least 2n-7 calls,-
If aii =4, simply use KOtiO-graphs  in the Xl, ii2 con-

struction. This requires n and r even. i]

There are innumerable variations.
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