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Abstract

We characCterize and count optimal solutions to the zossip
lem I N which no one hears his own inforration. That 1S, we
consi der zranhs With n vertices where the edges haWe @ linear
ordering such that an increasinz vath exiSts from each vertsx
to every other, tut there i s no increasing path from any ve
tex to itself. Such srachs exi st only when n is even, in w
case the fewest number Oof edszs is 2n-4, asS 1IN the orizinal zcs-
Si p problem, e characterize optimal solutions Of this sors
(NCHO-graphs) USing a corresvondence W th a set of pernutations
and binary sequences, This correspondence enables us te count
-these solutions and several subclasses of' solutions. The rum-
‘bers Oof solutions in each class are sinple powers of 2 ard 3,
with exponents determined by n. We also show constructively
that NOHO-graphs are planar and Haniltonian, and we mention
applications to related problens.
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A CLASS OF SOLUTIONS TO THE GOSSI P PROBLEM

There are two Kkinds of people who
bl ow through life like a breeze,

And one kind I's gossipers, and the

other kind is gossipees,
--(Ogden Nash

Gossip IS mischisvous, |ight and easy
to raise, but grievous to bear and
hard to get rid of. No gossip ever
dies away entirely, if many people

voice it; it too1s a kind of divinity.
--Hesiod






1. Introduction

The "gossip problent has the unusual distinction of being
solved four times within a year, Proposed by Boyd and popul ar-
i zed by Erdés, it considers a group of n people, each posses-
sing a distinct itemof information, Telephone calls are ar-
ranged between two people at a time, in which they exchange al
the information they know. (It is also called the "tel ephone
problem™") W seek the mnimm nunber of calls required to
transmt all the information to everyone. For n24%, it is 2n-4,
This was proved by Bumby and Spencer(unpublished), Baker and
Shostak{1], Tijdeman[12], and Haj nal, Milner, and Szemerédi[7].
These proofs were all different and fairly short.

Ways were quickly found to generalize the problem  The
calling scheme can be represented by a graph whose edges are
linearly ordered to represent the order of calls. W require
an "increasing path" from each vertex to every other. Edges
-may be repeated in the ordering, in which case they are counted
twice, representing repeated calls.

Moving from graphs to hypergraphs, we can ask the sane
question when the nedium of transmssion is "conference calls"”
of a fixed size k. The ninimm nunber here was discovered by
Lebensold[10]. It is on the order of 2(n-1)/(k-1), With a num
ber af techcnical adj ustnents. Bermond[2] recently rederived

the result with a shorter proof.



Thus far we have considered conplete graphs, Suppose the
"al lowabl e" calls are restricted to some subgraph. For exanple
we don't wish to assign sworn enemes to talk to each other
This problem was considered by Harary and Schwenk[8], and al so
by Golumbic[6]. As long as the graph is connected, we can trans-
mt the information in 2n-3 calls using a spanning tree, wth
the calls ordered to and then from sone root. |f the graph con-
tains a 4-cycle, we can still achieve 2n-4, Here we use the
4-cycle and edges which grow tree-like to the remaining vertices.
It is easy to find a suitable ordering. It is conjectured that
i f the graph does not contain a 4-cycle, then 2n-3 edges are
required.

Instead of ordinary graphs, we could consider directed
graphs , representing one-directional transfers of information
This is the "telegraph problem" Harary and Schwenk[8] and
Golumbic[6] have shown that if the digraph of allowed edges is
sirongly connected, then the mninum nunber of messages for com
plete transmssion is 2n-2, Golunbic also exam nes how nmany
messages are required to tranmt whatever can be transmtted
when the digraph is not strongly connected.

Anot her variation asks for the mninumtime of transm ssion
where each vertex can participate in at nost one call per time
unit. Xnodel[9] solved this for conplete graphs, and Sehmitt[11]
for conplete hypergraphs. Cockayne, Hedetniem , and Slater[3]
consider this in terms of individual vertices. Entringer and

Slater{5] consider tine of transnission in conplete digraphs.



The behavior of all these mnima is logarithmc in the nunmber
of vertices, adjusted by constant ternms depending on residue
cl asses of n.

Cot[4] discusses ways to vary the problem W consider
here not a generalization of the situation, but a restriction
of the allowable calling schemes. W consider calling schenes
that transmt all information, with the additional requirement
that no one ever hears his own information. That is, no one
speaks to anyone who knows his original tidbit, In the graph-
ical fornulation, with an ordering on the edges, this neans we
can find no pathwhichl eaves a vertex, continually "increases",
and returns to it, W determne when such solutions exist and
how many edges they require, and we characterize and count the
optimal ones.

W show that calling schemes conpleting all transm ssions
and satisfying NoHO ("no one hears his own infornmation") exist
only when n is even. W call such such a salution with fewest
edges (on n vertices) a NOHO-graph, NOHO-graphs have 2n-4
. edges, the usual gossip result. Particular exanples include
C, (the k-cycle) and any regul ar graph of degree 3 on 8 ver-
tices having no triangles. The latter set we call Q*, since
it includes the cube. We characterize other NOHO-graphs by two
permutations and two binary sequences. Each of the four describes
the placement of approximately n/2-1 edges in the graph. W
show that any two of the four suffice to determne the other

two and hence the entire graph. W use this to count the num-



ber of realizable quadruples determning NOHO graphs on n ver-
tices, (Realizable quadruples, or sinply "solutions," are

t hose sets of sequences which correspond to NOHO-graphs.) Let-
ting p=(n-4)/2, this nunber is 3p'1forne6, n even. NOHO-
graphs which are not symetric are counted twice in this; that
is, they correspond to two realizable quadruples. W later
count the nunber of symmetric solutions, so the nunber of NOHO-
graphs is retrievable.

We al so define an operation of "concatenation,* whi ch puts
two solutions together two forma larger solution, This yields
a concept of an "irreducible" solution as one which adnits no
concatenation from smaller solutions. W show the nunber of

solutions on n vertices concatenated from k irreducible parts

is (ﬁ:i)zp'k. W also determine the number of symmetric sol u-
tions concatenated from k irreducible parts. In particular,
the nunber of irreducible solutions is 2Pl the nunber of syn-

metric solutions is BLP/?J, and the nunber of symmetric irre-

ducible solutions is ZLP/ZJ. Ignoring the special graphs ¢,

and @* and elimnating the doubl e-counting, the nunber of NOHO-
graphs is (3P~143kP/2]) /5,

Additional results include constructive proofs that NOHO-
graphs are planar and Ham ltonian and applications to related
gossip questions. In the next section, we outline the steps of

the proofs toward these goals.



2., Summary of Proofs and Results

The original argument used by Baker and Shostak[1] begins
by showing that the smallest graph which could transmt all
information in fewer than 2n-4 edges would have to satisfy
NOHO, They use NOHO to discuss the "first edges" and "l ast
edges" of the graph and consider the components of the sub-
graph obtained by deleting those edges, They obtain a contra-
diction by showing that not all transm ssions can be conpleted.
In our prelimnary details, we parallel this argument, In a
graph satisfying NOHO, the set of edges which correspond to
first calls made by sone vertex and the set of edges which
correspond to last calls nade by sonme vertex each forns a com
plete matching in the graph, As a corollary, we see that NOHC-
graphs nust have an even nunber of vertices.

VW consider, for each vertex x, a tree Q(x) of edges used
to pass its information el sewhere and a tree I(x) carrying in-
formation to it. Characterizing the edges which appear in the
intersection of the trees, we determne the nunber c(x) which
-appear in neither. c(x) turns out to be two less than the de-
gree of the vertex. Now we consider the graph MG obtained
by deleting the first edges and | ast edges. Considering where
edges of Q(x) and I(x) can appear in it and bounding the "use-
| ess" edges by c(x), we obtain the mgjor result of section 3,
For a NOHO-graph G MG consists of exactly four conponents
which are all trees. Along the way we exhibit such sol utions

with 2n-4 edges, The contradiction obtained by Baker and Shos-



tak does not arise because these graphs have enough edges,

In section 4 we consider the case where G has no vertex of
degree 2. The trees of MG nust each contain an edgey and ex-
amnation of cases shows they nust all consist of single edges,
This requires G to be a 3-regular graph on 8 vertices, and NOHO
prchibits triangles, Al such graphs admt an edge-ordering
which transmts all information, so they are NOHO-graphs,

Returning in section 5 to graphs with vertices of degree 2,
we find c,, which works. If »»4, then MG consists of two i-
sol ated vertices and two caterpillars on n/2-1 vertices each,
(A caterpillar is a tree with a path hitting every edge,) This
enabl es us te | abel the vertices of the graphﬁ%l where ief1,2},
jef{o,1,...,n/2-1}, according to the order in which infornation
fromthe isolated vertices xé travels along the caterpillars,

The placement of edges in the caterpillars can be described by

bi nary sequeces, Wwhere the ;" el ement descri bes hom1x3+l is

joined to the earlier vertices.

To conpletely characterize the graph, we nust describe how
the first edges and last edges may be added. To satisfy NOHO a
first edge or last edge nust always join k; and x§:thh ifiT,
So, the placement of these edges can be described by permuta-

tions, where the j* element of the pernutation is k if xi IS
the first (respectively, last) neighbor of x%.
I'n section 6 we derive necessary conditions for

pairs of these integer sequences to be realizable by NOHO-

wa=a-. » One condition inposes inequalities relating elements



of the two pernmutations. Another restricts where 1% occur in
the binary sequences in terns of where reversions occur in the
first-edge pernutation, The reversions of that pernutation are
explicitly characterized, (A reversion is a maximal con-
tiguous subsequence of a pernutation where the first elenent is
the least.) The characterization is equivalent to forbidding
subsequences of length three (in a pernutation) whose |ast ele-
ment is the largest. Al these conditions follow from requir-
I ng NOHO, transmssion of all information, and the characteri-
zation of the graph in terms of the caterpillars. OQher condi-
tions follow fromthe same basic reasons when the graph is re-
flected, which consists of relabeling the vertices of the graph
so the two caterpillars are switched. The sequences for the
reflected graph are easily obtained from the original sequences.
Having derived enough necessary conditions, we can show (sectin 7)
that any pair of sequences satisfying the appropriate ones u-
niquely determnes the remaining pair, Furthermore, the result-
ing quadruple is realizable, so the conditions are sufficient.
Therefore, we need only count realizable pairs (P,S), where P
Is the first-edge permutation and S is the sequence determning
the first caterpillar. There are (®-1

Te1
r reversions (where p=(n-4)/2), and 21 realizabl e bi nary se-

) such permutations whth

quences for each of those, so a sinple application of the bi-
nom al theorem gives 3P-1 realizable quadr upl es.
In section 8we consider symmetric NOHO-graphs., \Wen the

operation of reflection yields the sane sequences as before,
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the graph is symetric, Oherw se, two quadruples determne
the same graph. To count the nunber-of symmetric NOHO-graphs,
we first countthenumber of symetric realizable first-edge
permutation& A sinple fact about the nunber of entries in a
pernutation enables us to construct such permutations step by
step, wWhere at each step we have two options and determne two
el ements with our choice. Then we count the nunber of symetric
NOHO-graphs associated with it by counting the nunber of last-
edge pernutations which can be pa&ed with it. For the choice
made at each step in constructing the first pernutation, making
it oneway results in two options at a corresponding stage of
the second construction, while nmaking it the other way |eaves
only one. Boiling all this down, we have another sinple appli-
cation of the binomal theoremto obtain altogether 3[10/2J sym-
metric NOHO graphs.

Section 9 treats concatenation, Concat -
enation creates a NOHO graph from two snaller ones by identify-
ing two vertices and nerging the edge-orderings in a natural
way. -Also, one vertex of degree two is deleted from each. So,
the resulting graph has four fewer vertices than the union of
the original two graphs. This is one reason to define p=(n-k4)/2;
that quantity adds directly under concatenation, Wth adjust-
ments for the deleted and identified vertices, the "top" cat-
erpillars, "vottom" caterpillars, first edges, and |ast edges
of the two small graphs are united to form those respective

sets in the new graph. The orderings are nerged to nake infor-
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mation flow properly along the caterpillars.
In section 10 we exami ne . irreduci bl e NOHO-graphs—those
whi ch cannot be forned by concatenation. W show there is a
uni que deconposition of any NOHO-graph as a concatenation of
irreducible ones, This follows because the "least refinement”
(in terms of conpositions of integers) of two such deconposi -
tions is also a deconposition, and would lead to a deconposi -
tion of one of the original irreducible pieces, Now, using
concatenation and the nunber of conpositions of p into k parts,
an induction shows there are (ﬁ:i)zp'k real i zabl e quadruples
formed fromk irreducible parts, This holds for k=1 al so,
since precisely that many renmain when the others are subtracted
fromthe total. Wen we require symetry also, the nunber wth
k parts remains an ugly summation, but the proof is simlar.
In the special case of symmetric irreducible solutions, the
sunmation can be conputed, and the nunmber of these is ZLP/ZJ.
In sectionll we show that NOHO-graphs (except @*) have two
properties that are frequently investigated; they are Hamilton-
~ian and planar. Uniting the first edges and |ast edges of the
graph forms a Hamltonian circuit. This is proved by dividing
it into two paths which are shown to meet at their endpoints
and be sinple, disjoint, and exhaustive. For planarity, we take
those two paths and draw one inside and one outside of the "Ham-
iltonian caterpillar" formed by MG. This accounts for all the
edges. Showing the no crossings exist conpletes the proof,

Finally, section 12 presents applications to a few related
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gossi p questions, W& note that every NOHO-graph contains a k-
cycle and that NOHO-graphs ot her than ¢, and Q* contain dupli-
cated transm ssions, A generalization of the gossip problemis

proposed, and some trivial special cases of it are solved.

3, Prelimnary Results

To facilitate conprehension;, we attenpt certain rules of
notation. In general, the followng apply. Upper case letters
i ndi cate graphs or graph-valued functions, except that P through
T usually denote integer sequences, \Were upper case letters
refer to sets of some sort, lower case letters refer to elenments,
except for the elenments of a sequence, which are sinply sub-
scripted. a through e denote integer-valued functions. f,g,h
are vertex-valued functions, 1i,j,k,1 are indices or utility
integers, n,mp are fixed integers with a particular relation-
ship. q,r,s,t are utility integers, and finally, u through z
denote vertices of a graph.

VW deal with undirected graphs G which have n vertices and
e(G edges, Let V(G be the vertex set, E(Q the edge set.
is] denotes the cardinality of a set S. The edges of a graph
are unordered pairs chosen, with possible repetition, from the
Cartesian product v(G)xv(G), (x,y) denotes the edge with x and
y as endpoints. d(x) denotes the degree of vertex x, which is
the number of edges to which it belongs. A regular graph of

degree k, or a k-regular graph, is one where each vertex has

degree K,
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A path of length k fromv, to vk is an ordered sequence of
vertices (vo,vl,...,vk), where ‘(vi,viﬂ) € E(G) and v, are dis-
tinet, except possibly vy=v,. If vy=v, the path is a cycle.

A graph is connected if it has a path from each vertex to every
other, A tree is a connected graph for which e(G)=n-1; equiv-
alently, a connected graph with no ecycles. A spanning tree of

a graph is a subgraph which is a tree on all n vertices, A

caterpillar is a tree with a path that covers (contains one ver-

tex of) every edge. [Alternatively, it is a tree not containing
Y as a subgraph, where Y is obtained from the conplete bipar-

tite X, ., by subdividing each edge with a new vertex.] Cater-

1
pillars 3have al so been called "hairy paths.”

For a graph G whose edges are linearly ordered, we adopt the
followng notation. We put (x,y)< (u,v)if (x,y)is less than
(u,v) in that ordering. Simlarly for othernotations of order.

F(G denotes the set of first edges of G A first edge is the

| east edge incident to sone vertex. Sinilarly L(G denotes the
set of |ast edges of G any of which is the greatest edge inci-
dent to some vertex. Let MG be the graph obtained from G by
deleting the edges of F(GQ and L(G, and let C(x) be the con-
nected conponent of MG containing x,

For any vertex x, let f(x) be its first neighbor, nanely
the vertex adjacent to it via the least incident edge. Sjni-

larly, h(x) denotes its |last neighbor, adjacent via the great-

est incident edge. W use x-»y to replace the words "an inc-

reasing path fromx to y," neaning a path fromx to y where
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each successive edge is greater than the prsvioua one,
Henceforth, whenever we refer to a graph, we assune its

edges are associated with a linear ordering, |If for every x,

there is not x-»x, we say "no one hears his own informtion,"

or the graph _satisfies NOHO,

REMARK (1). A graph satisfying NOHO has no |oops, repeated

edges, or triangles.

Proof: The first two are inmediate. |If there is a triangle,
the edges obey sone order, and the vertex at the intersection

of the least and greatest edges viol ates NOHO, [
Expanding on this argunent, we obtain

IEMMA (2)., In a graph satisfying noHO the first edges and the

| ast edges each forma disjoint matching.

Proof: Suppose F(G is not a matching, so there exists y=f(x),
z=f(y), Wi th z#x, Then (y,z)<(x,y). Since y=f(x), (x,y) is
no greater than the least edge in x-»z. |f whey are equal, re-
pl aci ng (x,y) by (z,y) at the beginning of the path creates
z=»z, |f they are not equal,, adding (z,y) and (y,x) at the
begi nning of x-»z again produces z-»z, S0, NOHO requires
x=f(y), and F(GQ is a matching.

Simlarly for L(G. If y=h(x), z=h(y), and z#x, we re-
quire (y,z)»(x,y) and (x,y) no less than the greatest edge in

z-»x. This tine the end of z-x can be adjusted to produce z-z. [
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COrROLLARY (3). Graphs satisfying NOHO exist only .on even

nunbers of vertices,

Proof:  Conplete matchings exist, [

|f x-»y exists for all x#, then we say the graph “solves
the gossip problem" From previous results [1,10,12], we know
such a graph on n vertices has at |east 2n-4 edges, |f g graph
on n vertices solves the gossip problem satisfies NoHo, and

has the fewest edges anong all such graphs, we call it a NoOHO-

graph,

LEMVA (4), NOHO-graphs have 2n-4 edges, for nak, n even.

Proof: A NOHO-graph solves the gossipproblem so requires at

| east 2n-4 edges, W exhibit such a graph with that many edges.

Let D be a graph on vertices {x}z i=1,2; j=0,1, . . .,n/2-1}.

W wite )%1/2=x20, x§/2=x]6. Let F(Dn) {(xl'xn/2+1-i)' i=1,2,...,n/2}
-and L(D ) = {(x},xz/2 1- i)+ i=0,1,...,n/2-1}, The internediate

edges of p_are {(x} e +1)’ i=1,2; j=1,...,n/2-2}, ordered by
(;cﬁ_l.xj)<(xj,xj+l). Any 1linear ordering conpatible with this
partial ordering is acceptable, Easy inspection shows that p_
solves the gossip problem and satifies NOHO, and it has 2n-4

edges. {

Figure 1 illustrates D;y. Wenever we draw a NOHO-graph, first
edges will be dotted and |ast edges dashed.
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Figure 1, Dy,, a NOHO graph

COROLLARY (5)., For a NoHO-graph G MG has at |east four

conponent s,

Proof: Recall M(G)=G-(F(G)VL(G)). By(2), e(F(G))=e(L(G))=n/2,
and they share no edges (1). So, (4) inplies e(M(G))=n-4,
Wth n vertices, this neans it nust have at |east 4 conponents. |

A graph solving the gossip problemis connected, so the
fol l ow ng conceptsare meaningful. For any vertex x, et Qx)
be the "spanning tree of useful edges transmtting information
fromx,” or sinply the out-tree fromx. It can be defined u-
niquely and recursively as follows, Begin with x. At each
s:tep add the |east edge incident to but not contained in the
tree that i) does not create a cycle and ii) becomes the great-
est -edge of an increasing path fromx along the tree, After
n-1 steps the result is Qx). Thr tree nust exist, since x-»y
exists for all y#. Simlarly, [(x) denotes the in-tree to x.
It is defined recursively and uniquely like Q(x) by adding at
each step the greatest non-cyclic edge which is the |east edge
of an increasing path to x along the tree. Again, I(x) exists,
since y-»x exists for all y#x., Let c(x) be the number of edges

useless to x. Deleting them |eaves increasing paths for x to
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and from every other vertex. We have c(x)= e(G)-e(0(x)uI(x) ),

Now we can characterize the edges Iying both in Q(x) and in I(x).

LEMVA (6). If G solves the gossip problem and staisfies NOHO,

then (y,z)e(0(x)aI(x)) if and only if (y,z) is incident to x,

Proof: Suppose (y,z)e(0(x)nI(x)). Then (y,z) is the greatest
edge of some increasing path starting fromx and the |east edge
of sone increasing path ending at x, Joining the two paths and
dropping (y,z) if they connect to it at the sane endpoint, we
have x-»x, unless (y,z) was the only edge in both paths, in
which case it is incident to x.

Conversely, suppose (x,y)¢0(x). Then there exists x-y
in Q(x) disjoint from(x,y). To avoid having x-x, (x,y) must
be less than the greatest edge in that path. But then, accord-
ing to the construction for Q(x), at the time when that edge
was added (x,y) was also available, and we would have chosen it
Instead, Simlarly, we cannot have (x,y)¢I(x) unless we have

X-=pX, ﬂ

CORCLLARY (7). In a NOHO-graph, c(x)=d(x)-2 for any vertex X,

Proof: c(x) =2n-4-e(0(x)vI(x)) =2n~-4=-(n-1)-(n-1)+e(0(x)nI(x))
= d(x)-2, since by (6) e(0(x)n(I(x))=d(x). [

Vertices in a NOHO-graph al ways have degree at |east 2, so
c(x)=d(x)-2 makes sense,

The next |enma investigates how the edges of o0(x) and I(x)
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are distributed. Recall that C(x) is the conponent of MQ
containing x, W claimthat edges of MG not in C(x) or C(f(x))
are useless for carrying information out of x, and those not in

C(x) or C(h(x)) are useless for bringing it in. In other words,

LEMA (8). If G solves the gossip problem and satisfies NOHO,
then for any vertex x, (M(G)n0(x)) < (C(x)vC(f(x)) and
(M(G)nI(x)) e (C(x)uC(h(x)), so
e(M(G)) - e(C(x)vC(f(x))uC(h(x))) S c(x).

Proof: First consider Q(x), No edge of MG not im C(x) or
C(f(x)) can belong to an increasing path beginning at x. The
path woul d have to enter that conponent via a first edge or a
last edge. No first edge othe than (x,f(x)) exists on any in-
creasing path fromx, and any path which uses a last edge cannot
continue increasing thereafter. Applying simlar reasoning to
I (x), no edge of MG not in C(x) or C(nh(x)) can belong to an
i ncreasi ng path leading to x. Therefore, the nunmber of edges
of MG not in c(x)vc(f(x))vc(n(x)), all of which are useless

to x, is at nost c(x). [

The "excess edges" counted in (8) can be fewer than c(x)
if one of the conponents of MG is not a tree or if sone edge
in (G or L(G is useless to x. As we see next, the forner

cannot occur in a NOHO-graph.

LEMMA (9). For a NOHO-graph G MG consists of exactly four

conponents, all of which are trees.
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Proof: By (6), MG has at least four conponents. In show ng
it has at nost four and they are trees, we consider two cases,

Case |, FEvery vertex of G has degree at least 3, This
neans MG has no isolated vertices, and each conponent has at
| east one edge. G nust have at least 8 vertices of degree ex-
actly 3, else the sumof all degrees will exceed 4n-8, which is
twice the nunber of edges, By (7), a vertex x of degree 3 has
c(x)=1. By (8), M(G) has at npst one edge not in c(x)uc(f(x))
uc(n(x)), so there can be at nost one other conmponent. |f any
component were not a tree it would have at |east as many edges
as vertices. Then the remaining three conponents would have
together at |east four morvertices than edges. As before such
a situation requires at least four conponents,

Case Il. G has some vertex x of degree 2. (C(x) is an iso-
|ated vertex in MG. By (7), c(x)=0. Since M(G)n0(x) and
M(G)nI(x) can have no cycles, (8) then inplies ¢(f(x)) and
C(h(x)) are trees and all other conponents are isolated vertices
Two trees have two nmore vertices than edges. Since MG has n-4
edges, the two conponents have n-2 vertices, leaving x and one

other isolated vertex for a total of four conponents, [

REMARK (10). For any x in a NOHO-graph G MG contains at
| east n/2-2 edges of 0(x) and of [I(x).
Proof: At nost one edge of Qx) lies in F(GQ and at most n/2

in L(G, while I(x) has at nost one edge in L(G and n/2 in F(Q,
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The remaining lenmma in this section becomes useful when we show
|ater that for a NOHO-graph every tree in MG is of the type
inits hypothesis, This |lemm applies to all graphs, because
i f G does not solve the gossip problemwe can still define Q(x)
and I(x) with the sanme construction, and sinply grow the trees

as far as possible. They may not span.

LEMVA (11). A tree lyigin both Q'x) and I(y) for some x and

y is a caterpillar with an increasing path touching every edge.

Proof: Let (vo,vl) be the least edge in the tree, and |et
(VosVineessvy )=V be the longest increasing path in the tree.
Suppose the assertion is false, and the tree contains an edge
(w,2z) With neither wnor z in Vi Since the tree is connect-
ed, there nmust be sone path that joins V to this edge, say
U=(vj,ul,u2,...,ur,w,z). Each edge is in o(x) and nust lie

on an increasing path fromx. Consider (vj.ul). If the in-
creasing path containing it does not include (Vj-l'vj)' there
woul d be two increasing paths to vj, inpossible in o(x), If

it does, then (Vj-l’vj) (vj,ul).

Applying this argument to each successive edge of U we
find that (VO,Vl,...,Vjﬂhj...,ur,w,z)i S an increasing path.
Simlarly, each edge is in I(y), and nust lie on an increasing
path toy. Vis part of such a path, Since I(y) is a tree, an

argunent |ike that above yields (u1 YT) (v.yv. .) . Applying

J'jn
the argument to each successive edge of U we find that

.se0+,VK) is also an increasing path. This can

(Z.W.ur.-.‘pl.vJ
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happen only if (w,2z) is the only edge in U  So, every edge
of the tree is incident to a single increasing path, |f it
Is not on the path, it occurs between the neighboring edges

of the path in the edge ordering, [

4, @*, the "CGeneralized Cube"

The remainder of the characterization of NOHO-graphs var-
les greatly depending on whether the graph has a vertex of de-
gree 2. In this section we consider the case where it does not.

Let Q* be the set of 8-vertex j-regular graphs with no tri-

angles, Q* contains the cube. W have

THEOREM (12). A NOHO-graph With no vertex of degree two may be
any graph in Q*, but no other.

Proof: By (9), MG consists of four non-trivial trees. Thus
nz8, |f n=8, then M G consits of four single edges. So G ad-
mts a factorization into disjoint matchings F(G, M@, and
L(G, and by (1) it nust lie in Q*. W claimany graph in Q*
can be suitably edge-ordered.

Suppose GeQ*, wewi || assign first neigbors, |ast neigh-
bors, and "m ddle neighbors" (denoted g(x)) to satisfy all the
required conditions, Consider the passage of information out
fromx. It can reach f(x),g(x),h(x),g(f(x)),h(f(x)),h(g(x)),
and h(g(f(x))). To reach all vertices, these must all be dis-
tinct, (This inplies there is no duplication of transm ssion

in these solutions. See (40),) So, we find a spanning tree with
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two neighboring vertices of' degree 3, each of whose other neigh-
bors have degrees 2 and 1, For a graph in Q*, this is always
possible, since it has no triangles. Place the central edge in
F(G, the end edges in L(G, and the remainder in MG. Infor-
mation can come to x fromh(x), g(x), f(x), g(hi(x)), f(n(x)),
f(g(x)), and f(g(h(x))) along a sinmlar tree. Five edgés re-
main unassigned in G This tree will use four of them adding
three edges to F(G and one to MG, Again, for a graph in Q¥
it is possible to- find the additional tree, The remaining edge
Is assigned to MO,

In choosing and labeling this second tree we nust take
care to preserve the matching property of F, L, and ¥ and to
avoid conpleting a circuit with two edges of ¥ and one each of
Fand L, Such a circuit would result in duplicated transm ssion
between two other vertices. Having |abeled these trees to sat-
isfy vertex x and these latter conditions, detailed checking
shows that all other information is also transmtted and NOHO
Is satisfed.

. Suppose n>8 and Gis a NOHO-graph, W will produce a con-
tradiction. Let x be an end-vertex of one of the trees in MG,
d(x)=3, so c(x)=1 (7). (8) shows that at |east one of the re-
mai ni ng conponents is entirely useless to x and nust be a single
edge, Applying the sane argument to an endpoint of that edge,
we obtain a second isol at ed edge in MG,

Let (xy ,xz) and (x7, 2) be such single edges By (10),

C(f(x?)) contains increasing paths from f(x ) to at least n/2-3
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ot her vertices, and C(h(x%)) contains increasing paths to h(x%))
frqnlat | east n/2-3 other vertices, Sjnce c(xg)zl, f(xﬁ) and
h(xg) must lie in different conmponents, each of which contains
hal f the remaining vertices. \Wen n>8 these conponents con-
tain nore than two vertices, and all their edges nust be use-
ful to x5, In par ti cul ar, c(f<x§))co(x§) and c(h(x§>)c1<x§).

Suppose f(xg) and f(ng)' lie in the sane conponent of MG.
That conponent is a tree of increasing paths out of each of
those vertices, so they nust be joined by the |east edge in
that component. Therefore, it is not possible for three such
vertices to lie in the same conponent, sinilarly, no three of
{h(x%)} lie in the same conponent. Each of the "large" conpo-
nents contains two each fron1{f%x§)} and {h(x%)}, so by (11)
they nmust both be caterpillars,

Let (v,w) be the least edge in one of the caterpillars,
SO v=f(x3), w=f(x}.). Let y=h(x§), z.—.h(x;::). y and z lie in

the other caterpillar, For v and w both to be "roots" of the
caterpillar, one of them nust be an endpoint, say v. Now
d(v)=3, c(v)=1, f%v)=x§ lies in a single-edge conponent; ipe
ot her such conponent nust be the edge useless to v, Theref or e,
the other caterpillar nmust be a tree of increasing paths into

h(v). -However,, it already does that for y and z, also. vy, z,

and h(v) are distinct, since their |ast neighbors are distinct,
but we saw in the last paragraph that three distinct vertices

could not all play this role, This gives us the final contra-
diction that elimnates the possibility n»8, [
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Figure 2 gives several exanpl es of NOHO-graphs in Q*, in-
cluding the cube. The usual conventions are observed for draw

ing edges in F, M and L.
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Figure 2, Some graphs in Q
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5. NOHO-graphs as Quadrupl es of Sequences

Ve now enbark on a journey to narrow down and finally
characterize NOHO-graphs having a vertex of degree 2, Hence-
forth when we refer to NOHO graphs we generally ignore Q*. W\
already know by (9) that the "mddl e edges" of such a graph
form four conponenents, at least two of which are isolated ver-
tices. Proceeding fromthere, this section describes the edges
of a NOHO-graph with four integer sequences, The first edges
and | ast edges are described by permutations, and the mddle edges

by two binary sequences.
Ve begin by taking a closer ook at the conponents of MG.

LEMVA (13). If a NOHO graph with a vertex of degree two has
adj acent vertices of degree two, then it is a 4-cycle, |If
n>4, then it has exactly two non-adjacent vertices of degree
two, and the remaining components of MG are caterpillars

on n/2-1 vertices,
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Proof: Suppose G has adjacent vertices {x,y} of degree 2.
(x,y) my lie in F(@Q or in L(G. Suppose (x,y)eF(a) and con-
sider Qx). Qx) contains (x,h(x)), (x,y), and (y,h(y)), but
after hitting these edges in L(G there can be no further in-
creasing paths in Q(x). h(x)#n(y) by (1) or (2), so G con-
tains exactly &4 vertices and nust have an edge in F(G |oining
h(x) and h(y). |f (x,y)eL(G), then considering I(x) leads to
the same concl usion.

Now suppose n»4, "By (9) there are two vertices of degree
two, and the remaining two conponents nmay be two trees or a
tree and isolated vertex, Suppose the latter, so we have
{xl,xz,x3} isolated in MG. By the above they must be non-
adj acent in G Consider the increasing paths by which infor-
mation is exchanged among them  Let z; be the last vertex be-
fore X3 =Xy and x;=x, permanently diverge edgew se, That is,
we have increasing paths (Xi,n.,yi,ziﬂHj,,,,,%g) and
(xi....,yi,zi,uik,....xk)’ wher e uijﬂLik. z; IS different from

1
x;, since all increasing paths fromxi to non-adj acent vertices

must pass through f(x;). So the edge (yi,zi)co(xi) IS well-
defined. Simmilarly, let vi be the first vertex where XXy

and x, —-»x; share an edge. W have increasing paths (§;,”.,tji,

V-1 'wi“”'xi) and (xkloOOltkilv Wi,...,xi). Again, Vi Is dif-

i!
ferent from x; since all paths from non-adjacent vertices pass
through h(Xi) when d(x;)=2, SO the edge (vi,wi)tI(xi)i S well-
defi ned,

In fact, the paths fromx; to x; are all unique, so that
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zi and v lie on a single increasing path from x; to vy sup-
pose there are two increasing paths fromvertex r to vertex s,
where d(r)=2, Since Q(r) is a tree containing the edges inci-
dent to r (6), some other edge in the paths is useless or lies
inl(r). The forner is forbidden by (7) since c(x)=0, while
the latter creates r-»r., The same conclusion follows from
considering I(s) if d(s)=2,

Now, consider the ordering of zi and Y- 0N x;-ax Ve

J'O
have three cases:‘ Case I, v strictly precedes z; on the
path, ie. (vj,wj)s(yi.zi). Then for the remaining vertex Vie

there eXi sts Vk—')Vk Via (xk;--botkjpvj’---pziouikpocogxk).

Case Il. z; strictly precedes y-on the path, ie. (zi,uij)

s(tij,vj). | (zi,uij)tl(xk), then (z ) lies on X; =PX

1094
and z; Was not the furthest shared vertex from X;, OF I(x,) S

not a tree. If (z5,uy )60(x,), t hen (zi,u ) 1ies on Xy =X

J ij J
and vy vas not the first shared vertex on the way to X0 OF
O.(xk) IS not a tree. But (zi,uij) Cannot be useless to xk
since c(x,)=0,

Case |Il. Neither of these possibilities can occur for
any pair (i,j), so we nust have,v =2V S 2V =24, To avoid

x.=»xl We nmust have (vi,w.

5 ;)<(y;,2z;) for all i, but to maintain

the other paths we need (yi,zi)<(vj,wj) for ij. But (vy,w;)
<(yi,zi)<(vj,wj)<(yj,zj)<(v.l,wi) IS inpossible.

So, there nust be exactly two isolated vertices x; and x,
in MG, and the two remaining conponents are non-trivial trees.

f(x;) and h(x;) appear in different conponents, since c(x;)=0,
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By (10) each of these conponents contains exactly n/2-2 or half
of the edges in MG, and C(f(x;))e0(x,), C(h(x;))eI(x;). I'n

order to have x;-x,, f(x;) and h(xj) must appear in the sane

3
conponent,  Now we can apply (11) and conclude that the two

non-trivial conmponents of MG are caterpillars on n/2-1 ver-

tices each. {

To facilitate the subsequent discussion, we introduce sone
addi tional notation, Henceforth fix m=n/2-1. Label the ver-

tices of G{x%: i=1,2; j=0,1,...,m}. Let x(i) be the vertices
of degree 2, and xizf(xé). Let ¢! be the caterpillars of w(ag).
The vertices of ¢? get the |abels x?, where j=1,2,...,m and x'j

is the jth to receive the information originating fromxt., W
my refer to x8 as xiﬂ.

Since ¢' is a caterpillar of increasing paths from xé to

i

. the followng properties are obvious.

X

REMARK (14), Let ol be defined as above. Then

i) c¢* contains x}—)xi whenever j<k,
i) xi nei ghbors exactly one xg with j<k,

1

) If x}i{ nei ghbors any X W th r>k, it neighbors every

x} with ke<jsr,

V) "11:""3 within ¢t with j<k requires (x}ls,x%)eE(G).

.

Suppose we have a caterpillar Cwith a fixed initial and
final vertex, and an ordering of edges to make it a tree of

I ncreasing paths both out of the former and into the latter.
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W claim C can be uniquely described by a forward sequence R(C)
or a backward sequence R (C) of zeroes and ones. The length of
these sequences is one |less than the nunber of edges in C W
will not use the backward sequence, W nerely note it exists,
arises from considering the edges in reverse order, and refers
to a different ordering of the vertices,

To ebtain R(C), proceed as follows, Begin with the |east
edge and a null sequence for R(C), Call the initial vertex the
"active" vertex (%i in the caterpillar CG) and its neighbor the
“current” vertex, \Wen the next smallest edge is added to the
caterpillar, adding also a vertex, the new vertex becomes the
current vertex. The label "active" stays where it is if the
new edge is incident to it. |f the new edge is incident to the
former current vertex, then that vertex becones the active ver-
tex. In the former case, append a 0 to R(C) as generated so
far, In the latter case append a 1,

As each edge is added to the tree in order, it can only be
incident to the active vertex or the current vertex, This fol-
| ows- because the caterpillar must remain a tree of increasing
paths toward the final vertex, At any stage the tree is one of
increasing paths toward both the active and current vertices.

Al 2F binary sequences of length r describe caterpillars
in this way and correspond one-to-one with caterpilars On r+l
edges and r+2 vertices, where the initial vertex and order of
edges is specified, The initial vertex must be specified to

di stingui sh between sequences that differ only in the first
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pl ace.

If we add the edge (h(xg)-,xg) to Ci. we still have a cat-
erpillar, since this is a last edge. It has paths from xi and
to xg. This is the caterpillar of interest. Note that h(xg)
need not be x; Let S(G be the associated sequence
R(clu(n(x2),x%)), and let T(G be the associated sequence
R(CZU(h(x]d),x%)), but written backwards. \Wen we discuss ir-
reducizbility and concatenation in section 8 it will becone
clear why 7¢(G) is witten backwards,

From S and T we can reconstruct MG and know the first
and | ast neighbors of X, To conpl ete the characterization of
G we need to know which pairs of sequences (s,T) can be assoc-
lated with a NOHO-graph and how the edges of F(G and L(G can
be placed to conplete the graph,

No vertex in ¢t can have a first or last nei ghbor in ct,
By (14,i), having such an edge in F(G or L(G would violate

NOHO, So, the edges in F(G and L(G can be described by per-

mitations P(G and G, where P.=j means f(xi‘)*x?, and Q,=j
means h(x]_{)=x’ﬁ2.:~J~ (Whenever R is a sequence of integers, we de-

note its i element by R;.)

S and T have m| elenents; P and Q as described have m
elenents. P is a pernutation of {2,3,...,m+#1} which begins
W th m+l, Since xé=xi+l=f(xi). Qis a pernutation of {0,1,...,m}
with sone element deleted. The deleted elenent is j, where
h(xé)=x§. Note that 0 is never deleted. W wll see that 0

appears in Q at the sane position as 2 in P, so that P and Q
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could be conmpressed to ml| pieces of information. However,
bookkeeping and proofs will be easier if we |eave them as is,
To align the useful information properly, we say that the ele-
ments of S and T as generated above appear in positions 2
through m s, indicates what happens when ¢! reaches xliﬂ.
and T, indicates what happens when c? grows to reach xi_i+3.
W can sumarize the construction of these sequences and
the properties required of themin the last few pages by the

following remark;

REMARK (15), The quadruple (p,Q,s,T) defined above conpletely
speci fies a graph. Such a graph has the properties ascribed

t 0 NOHO-graphs in (2) through (14).

If (p,Q,S,T) =(P(G),Q(G),sS(G),T(G)) for sone NOHO-graph G,

we call the quadruple realizable, W have not yet determned

what is required of (p,q,S,7) to transmt all information and
to satisfy noHO, For exanple, although any S or T except the
zero sequence can appear in realizable quadruples, it is not

true that every pernutation P or Q defined above appears in a
realizable quadruple, nor is it true that every pair (s,T) is
realizable. In the next section we determne necessary

conditions for realizability.
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6. Necessary Conditions for Realizability

VW will derive a number of necessary conditions for pairs

from(pr,Q,S,T) to be realizable.

LEMVA (16). For a NOHO-graph G the pair (P(G),Q(G)) satisfies
i) py>q for all i=1,2,...,m.
i) If P;=Q;, then i>j,

iii) P, is the element mssing fromQq, and Q=0 | ff Py=2,

Equi val ent 1y, f(x%)=h(x(i)).
Proof:  Consider (i). Py=m+l, which is greater than any ee-

ment of Q  For some k from 1to m Q=0, which is |ess than

1

any element of P. For iA, i#, f(x7) and h(x%) lie in ¢,

If P,<Q,, (14.i) guarantees xg —oxé_ in c% Now we can add

| 1

(x]{,xgi) to the beginning and (xé ,x’il) to the end to ob-
|
tain xi}-ax%.
For (ii), we argue simlarly, If Py =k=q, with i<j, then
we can add (xlf,;‘.l‘) at the beginning of :gg—ox]} and (xJJ:,xi) at

its end to obtain x?}‘(-)x?;.

Finally, consider P,. By (ii), if it appears in Q it nust
be Q,. Then f(x]é)=h(x]l_). The caterpillar ¢t al ways contains
t he edge (xi,xé), so we have a triangle. Simlarly, if p.=2
but Qk;!o. (i) says @-=1. Now f(x%)=h(xf), and again we have

a triangle. {

If Por.Qq is not strictly decreasing, certain edges nust

appear in the graph,
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LEMA (17). For a woio-graph G, P(G and QG satisfy

DI pergwith i<y, then E(Q contains {c,x)), G )3,

.
2

i) If Q;<Q; with i<j, then E(Q contains at |east one of

2

{(X]i.'xé)’ué nXQ_)}'

Proof: Consider any in

Pj=s, where i<j and r<s

J
creasing pair in P. Suppose P,=r and

. If (X!L'XS) IS not an edge, then (14.iv)
1

inplies information from X could reach xi only via the other

caterpillar. So, we us

2 2 .
wher e tzs or (x;,x;) IS

t>r would inply Q;>P.,

‘nust be an edge, with t<res, By (14,iii), (x

edge, but this creates

Now suppose (xg,x;z

reasoning that swtches

xé—»xi w |l contradict

1
i
an edge, and finish with (xz%'.x%)cL(G).

e (x ,x’i‘)eF(G), continue to )(2t in c?

violating (16.1). therefore (x2,x%)
i,xﬁ) is also an
a triangle with xll.

) is not an edge, By a sinilar chain of
the roles of Cl and C2, conpl eting

(16,ii) or (1),
1.1

Finally, suppose q;<q. With i<j, but (x5 ,x3) is not an

J
2 2

edge. We use (1k.iv) again to require x; =X in c? for

xl;->x1§. By (16.i) Q<

J

. T 2 2
Q;<P;, SO (14.1v) requires (xp.'in) %

an edge to conplete that path, wNow (14.iii) says

(xg ,xg )
i J

must al so be

an edge,

ion in a pernutation to be a maxi mal

W define a revers

consecutive subsequence
element is the |east.

tion it into segments,

of the per-nutation where the first
The reversions of a pernutation parti-

| n a NOHO-graph, the reversions of P(G
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have a very special form

LEMMA (18), |If Gis a NOHO-graph, then P(G has the follow ng

form
i) Every reversion of P is a single element or has the

form(r,s,s-1,...,r+l) With s-r+1 el enents,
1) Equivalently, P has no subsequence of l|ength 3 whose

| ast element is |argest.

Proof: First we show equivalence, By definition, the first
el enents of reversions form a decreasing subsequence, else the
reversions would not be maximal. |f reversions are as in (i),
any increasing subsequence nmust lie entirely within a single
reversion, The form described in (i) prohibit6 two increasing
pairs with the sane second el ement.

Conversely, assume (ii), Suppose a reversion has nore
than one elenment and we drop the first elenent r, This nust
| eave a decreasing subsequence beginning with s, since any in-
creasing pair would violate (ii) wWith r. Suppose there is sone
el ement t, r<t<s, that does not appear in this reversion. 7Tts
appearance before r violates (ii) with r and s, and its ap-
pearance in a later reversion violates (ii) with r and the
first element of that reversion

That (ii) holds for realizable P follows inmediately from
(17.1), (14,iii), and (1). They provide a contradiction if

some such subsequence is assuned to exist.
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REMARK (19), Apermnutation P satisfying (18) is uniquely de-
term ned by choosing a subset of Indices from{3,...,m}
at which reversions will begin in P, in addition to the
reversions beginning at P, and P,. Hence, there are 2M?2

such pernutations.

Note the equivalence of (18.i) and (18.ii) is independ-
ent of realizability, We will see that the necessary condi-
tions (16) and (18) together are sufficient. Also, it is easy
to see that for any P satisfying (18) there is at |east one Q
satisfying (16),

Next, we derive a condition for the pair (P,S),

LEMVvA (20). If Gis a NOHO-graph, then P(G and S(Q satisfy
the foll ow ng,
i) Suppose Pj begins a reversion in P(G, P begins the
next reversion, and kzj+2, Then sj=1, and if k>j+2
t hen Si41=e e+ =Sy _5=0.
ii) If Pp,=2, beginning the last reversion in P(G, then

s,=1 and any succeeding elements of S(G are 0,

Proof 5 If Pj begins a reversion of length at least two, every
succeeding elenment of the reversion forms an increasing pair
with P, By (17.1).{(x§.x§): i=j+1,...,k-1}€E(G). Si indi-
cates what happens when ct grows to meet x%'u-l' Consi dering
the edges we have just shown to exist, x%_,_l Is joined to the

then-current vertex, and succeeding xi are joined to the active



35

vertex, Sos].=1 and succeedi ng s, are 0, if k»j+2, Sk 1
tells what happens when the vertex beginning the next rever-
sion is added to the tree, so it is unrestricted,

Now consider the last reversion in P(G, which begins

with =2, By (16Jii) Q=0 and (xL,x,,)is an edge, Apply-

ing (14,iii) to the caterpillar ClU{(x%,xg)}, we deduce that
{(xi,x%)x i=t+l,...,m+*1} are all edges, since tsm. As above

we conclude s.=1 and any succeeding Si are 0. [

REMARK (21), For each P satisfying (18), the number of se-
quences S satisfying (20) is 2™1 \where r is the number

of reversions after Py,

Proof: An elenent of S is unrestricted if and only if its po-
sition (s,_, in (20)) corresponds to the last elenent of a re-

version in P other than the last reversion. [|

Define (P'(%),Q'(G),s'(),T'(c)) as follows. Set P'=]

if P;=i, Extend Qso that ,=x where =n(x3), then set @=j

| f Qf=i. Set Sy =T ., s:» and set Sh=S ., e Ve call (P,@ ™

the reflection of (P,Q,S,T). Alittle "reflection" shows

REMARK (22). The reflection of a realizable quadruple is also

realizable, in fact by the sane graph.

Proof: Considering (P @s,1 instead of (P,QST) is equiva-
lent to interchanging the roles of ¢t and C2 and | ooks at the

graph upsi de down, [
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|f 6 is a NOHO-graph, We define the reverse graph X(g) as

the graph with the sane vertices and edges as G, but with
(x,y) (u,v) in K(G if and only if (x,y) (u,v)inaG. Al in-
creasing paths of G are increasing in the opposite direction
in K(G and vice versa, so X(G is clearly a NOHO-graph, Note
that the vertices need to be relabeled with Cl and C% to o
tain the defining sequences for K(G. The "hairs" of the cat-
erpillar swing around as the wind blows fromthe other direc-
tion.

By reflecting and reversing, we obtain additional neces-

sary conditions.

REMARK (23), |If G is a NOHO-graph, then
i) (P(G),T(G)) issuch that (P'(G),S'(G)) satisfies (20),m.
ii) (Q(Gg),s(G)) is such that (P(x(G)),s(x(g)) satisfies (20),m.
iii) (Q(G),T(G)) is such that (PYx(c)),S'k(G)) satisfies (20),08

(16), (20), and (23) are necessary conditions for any pair
from{p,q,s,T} except (s,T) to be realizable. There are appro-
priate conditions for (s,T), but we have no sinple expression

for them W will soon see that when paired with (18) each of

these conditions is sufficient,

7. The Nunber of Realizable Quadruples

Besi des showing the sufficiency of the previous conditions,

we will show that any pair from{p,Q,s,1} satisfying them
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is realized by a_uni que NOHOgraph. To prove this, we need a
lemma that will enable us to generate one sequence in {P(Q,
Q(G),S(G)} wnen we know the other two, By reflection we can
apply it to {P, @5}to obtain simlar results for {P,QT}.
S(G is a binary sequence indexed from 2 through m n

Its index set we can define a function b that points to the

previous 1 in the sequence. Let b(i) be the greatest positive

I nteger such that jci and SJ,.=1, If such exists. |If there is

no such integer, set v(i)=l. Then we have

LEMMA (24). For a NOHO-graph G P(Q, Q G, and S(G are re-
| ated by
i) s;=1 if and only if Pi 41 (1)
i) s;=01f and only if P, =Q.

Proof: |In one direction the lemma is trivial, Recal | the
construction of S from active and current vertices. S;=0 i f

and only if (;c}l)(i).x%ﬂ) is an edge, and s;=1 if and only if

1

1 : . _ . _
(x74%x747) 1S an edge, So, if P; .1=Q;,» then choosing s.=1 cre-

1

ates a triangle, while if P, ,=qb(i) then s.,=0 creates a tri-

angl e,
W prove the other direction by induction. For the basis

step, b(2)=1, and by (16.ii,iii) we al ways have P4=Q, Of P =Ql,

3
If S,=0, then choosing P3=Q) creates a triangle, while if
S,=1 then P4=q, creates a triangle.

Now we prove the lemma for k, assumng it holds for all
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jsk. Suppose j=k. Then if s =0 we are finished, while if
s,=1 we have a triangle, Suppose j-b(k), Now if s.=1 we are
finished, and if s,=0 we have a triangle, So, if the lemma
fails we may assume j<k, j#b(k). |f S =0, then by induction
we have P, ,=Q;=r, whi ch contradicts P being a pernuation,

So assune Sj=1, in which case jsb(k) by the definition of b,
W assuned j#b(k), so let t be the least integer greater than
j such that s.=1, j=b(t), and t<k since Sp()=Ls SO Ve have
jetsb(k)<k. Applying induction, Pt+1=Qb(t)=Qj=r, whi ch again

contradicts P being a permutation, [

Now we proceed to the main results. Henceforth, fix

p=(n-4)/2=m-1,

THEOREM (25), Any pair from(?p,Q,S,T) which satisfies the cor-
responding necessary conditions for realizibility in (16),

(18), (20), (23) is realized by a unique NOHO-graph.

Proof: First we show how to uniquely generate the remaining
sequences from any pair satisfying the necessary conditions,
Then we show the resulting quadruple is realizable.

Suppose the two known sequences lie in {P,Q,S}. We gen-
erate S from(P,Q) satisfying (16) ,(18) so as to satisfy (24).
Initialize k=1, Then for i=2,3,...,m in order, if P; ,=Q,

set S. =1 and reset k=i, |If Pi+1=Qi, set S, =0 and | eave k un-

changed, This is well-defined for (P,Q) satisfying (16). p,

di sappearing |eaves oreindex "free." As we proceed in P, the
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enly previous elements of Q which have not been encountered in
P are q and q;.

We claimthe resulting (p,S) satisfies (20). It is easy
to show the requirenent for when Si nust be 1 holds. (O her-
wise, we have P, .,=q; when Pi starts a reversion and is less
than P, ,, violating (16.,i), For the other requirement, con-
sider the first time Si is set to 1 by Pi+l=Qk wWith i+1 in the
mdst of a reversion, k is the previous 1, so it is the start-
ing position-of the reversion, Thus P.1”>P,, and we violate
(16,i) again,

Next we generate Q from (p,S) satisfying (18),(20) so as

to satisfy (24). Set Q=0 if P.=2, If k is the least integer

such that s, =1, Set Q=Py 4. (If S has no ones, xg'-'-'h(f(xé)).
Wth (16,iii), this contradicts n»4,) For all other i, if

S;=0 Set Q;=P; 5, While if S;=1set Q (;y=P;, . Again, this
is well-defined, The Q skipped by the first option are those
With s.=1, so that subsequence is just shifted within itself
fromP to Q P, disappearing makes room for the shift, and
0 under P;=2 fills the hole left at the end, since that's where
the last 1 occurs in S

W claimthe resulting (P,Q satisfies (16). (16.ii,iii)
are obvious by construction, so assune sone PJ:<QJ,. The al go-
rithm sets Q,=P; for some i»j, s by (18) Pj nust begin a re-
version containing P.. By (20) Sj=1,sij IS set the next
time a lis encountered in S, i,e, at Si 1 Wth i-1>j, (20)

then inplies Pi nust be in a later reversion than Pj.
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For the remmining cases, we give |ess detail. To gener-
ate P from(q,s), set P, =m+1, and fet P, be the elenment in
{1,...,m} missing fromQ For all other i, if $; _1=0 set

Pi=Qi_lo while if si-l=l set Pl:Qb(l } 1)1 This is well-defined

for (q,8) satisfying (23), since the only elements of Q not

placed in P at the i*! stage are Q _;and Q(j-1)+ The re-

sulting (p,Q) clearly satisfies (16.,ii,ii)) and can be shown
to satisfy (16,1) and (18). By the construction, they also

satisfy (24).

To generate T from (P,QS), form (p',Q') and use the first
al gorithm above to get s'. Then T=(S')".

To generate the unknown sequences knowing T and one of
{r,Q}, reflect them and apply the above algorithms for S and
one of {P,Q}. This generates T' and the unknown el enent of
{p',Q'}, and reflecting again gives the desired quadruple.

This | eaves the case of generating (P,Q knowing (S T).

Set Py=m+l, P,=j wher e T 4o 1S the first 1 in T, and Pj=2

1 -
wher e sj Is the last 1in S J These requirements follow from
(16,i1ii), since those elenents of S and T determ ne h(xé).
The remaining elements of P and Q can be uniquely generated
by refusing to violate (17), (24), or (1). W onmt the details
of this algorithm

By (24), ete., the unknown sequences can only be as gen-
erated above. W have shown uniqueness, now we show suffi-
ciency. No matter what pair we started out with, we have shown

that for the generated quadruple all the necessary conditions
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are satisfied, W nust show that increasing paths exist be-
tween all ordered pairs of vertices and NOHO is satisfied.

As noted in (14,i), x%-—)x}i{ With jek exists, Next we show
xflj—w-xf exists, |If Pj=s Wi th ssk or Q.=k with raj, we are done
by (14,i) again. Suppose both of these possibilities fail and
P,=k, T t<j, the (Pt.P ) form an increasing subsequence of P,
The condition (20) on (P,S) was determned so that ¢ would
satisfy (17.i). So, ( g,xﬁ) Is an edge of G, and (s %,xg,xi)
is the desired path. Suppose instead t>j, and apply (24).
Since rej<t, we have t#r+l but P,=Q., SO we nust have r=b(t-1)

and Sy_y=1. so, (xk,xg ) €E(G). By (1&ii1), Ggux})is

al so an edge, making (X?]',x% x2) the desired path.
W nust also have x%-ixil,, even if rcj, Let s=p. and kx=q_,
1 1 2 . J r
| f (xg,x*) or (xs,xk) is an edge or if ssk, then we are done,
I n considering x%-)x above, we showed that if r<j and s»k we
nust have (x% x},) or (x ?Xk,,) as an edge.

2, 2
J

reflection and the preceding tvvo par agr aphs,

That paths xa‘jt-axi, and x%

al so exist follows from

As constructed, G trivially satisfies NOHO, v—v cannot
occur using the edges in a single tree, so it must cross to
f(v) and return fromh(v), Suppose f(v)=x55 and h(v)=x}j;. Com~
pleting the path requires (XE’Xllc) to be an edge or jsk, The
former never occurs because we've constructed a graph with no
triangles, and the latter never occurs because (P,Q satisfies
(16). So, the graph determined by the generated quadruple is
a NOHC- graph. [
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THEOREM (26) . The number of realizable quadruples is 3P-I

where p=(n-4)/2, n even, né,

Proof: By (25), pairs (P,S) determne the rest of the quad-
ruple, so we count those. As noted in (21), a realizable P
has 2°°! realizable S associated with it satisfying (20),

where r is the number of reversions atter P;. By (19), there

are (f‘:%) such realizable P. Using the binomal theorem the
: : » =L r-I -1
total nunber of realizable quadruples is : Q_l)z =3P

Figure 3 exhibits the quadruples and associated graphs

for n=6 and n=8,

—
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Figure 3. Small NOHO-graphs

G has 180" rotational symmetry when drawn as in Figure 3
if and only if (p',Q',s',7')=(P,Qq,S,T)., This occurs for all
the graphs in Figure 3, If (p',Q',8',T7")#(P,Q,3,T), then G is
counted twice when the quadruples are enumerated. In the next
section we enunerate the symmetric solutions, so we wll know

the extent to which NOHO-graphs are overcounted here,
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8. Symmetric NOHO-graphs

In this section we count the symmetric NOHO-graphs, We

define a symmetric quadruple as a realizable quadruple for

whi ch (p*,Q',s',T")=(P,Q,S,T), A symmetric NOHO-graph i S one

where the vertex permutation interchanging xf{ and x}J; for all k

| eaves the graph unchanged, As noted earlier,

REMARK (27). Gis a symetric NOHO-graph if and only if
(P(G),Q(G),s(G),T(G)) is a symetric quadruple,

The following remark applies to all P(G, and is useful

in determning the nunber of symmetric ones.

REMARK (28). In a realizable P, P.=j inplies i+j2m+3,

Proofs By (18,i), the number of positions after i in P nust
be at least as big as one less than the nunber of elenents |ess

than P;, SO m-i2j-3. ]

LENMNA (29), The nunber of symretric realizable P is 2L(m-l)/2_j.
Proof: P symmetric requires %.=i if p,=j, so P corresponds to
a matching of the positions (2,...,m). Sone positions maybe
matched to themselves, if P.;=i, (In fact, this can only happen
tuice. ) Note we always have Pi=m+l and P_,.=l, W construct
P match by match from m down to [(m+3)/27, mat ching P, oN step
mj.

At each step there are two choices. By (18.1i),P _e{2,3}
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and at step | Pm_jc{z.B,....m-j+3}, However, | of these have
al ready been nmatched with higher positions on previous steps,
This |eaves two choices for Pm_j, one of which is m=-j+3, Since
It was not available before, Upon reaching P[’(m+3)/2‘]' the
choi ces are [(m+3)/2] and one lower value. If mis odd, we
choose between matching them to each other or to thensel ves.
If mis even, set Pr(m+3)/2-) equal to one of them and match
the remaining one to itself, Now we have made m-[(m+3)/27+1
= [ (m-1)/2] choices and conpleted the matching, Every P so
coustructed satisfies (18), and these are all the symetric P

which do so. By (21),(25), they are all realizable. {

Exam ning the construction in the proof above, we can de-
fine a binary sequence B(P), indexed from |(m+3)/27 to m
wher e Bj=o | f Pj=m-j+3 and Bj=l | f Pj<m-j+3. Now we can count

the graphs associated with each P.

LENMA (30), Suppose P is realizable by a symetric NOHO-graph,
Then the number of symmetric NOHO-graphs realizing P is 2%,
where g is the nunber of ones in B(P).

Proof: N consider how many ways symmetric Q can be construct-
ed so that (p,Q) satisfies (16), W claimthat each way deter-
mnes a unique symetric quadruple, By (25) it determnes a

uni que realizable quadruple. Using the algorithnms in (25) we
generate S and T. Reflecting and applying the algorithms again,
we find s'=s and T'=T, since P and Q are symretric. So by (27),

-
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t he NOHO-graph realizing the quadruple is symetric,

First suppose B(P)=(0,...,0). Then P=(m+1,2,m,m-1,...,4,3),
There is one reversion after P;, so (21) and (25) inply there
s one realizable quadruple with this P. The corresponding Q
s (m0,m=1,...,%,3,1), which is symetric as desired,

Now suppose B(P)#(0,...,0). By the way B(P) is construct-
ed, B,=1 inplies. Pk begins a reversion in P, The uppernost
1 occurs when P, =2, beginning the last reversion. That post-
pones picking mk+3 until the next lower 1 in B, at which point
it nust begin a reversion, and so on.

Recal ling (20), the elenments of S are unrestricted if and
only if they correspond to the last element of a reversion
other than the last one, So, covering the index range [ (m+1)/2]
tom there are 2% ways to wite down this portion of a realiz-
able (p,s)., Using the algorithmin (25), we can wite down
what the corresponding segnent of q nust be.

Determ ne the rest of q by setting Q=K if q.=j, where
ka(m+l)/2., That this is well-defined is ensured by (28). Q
is now symretric and camletely defined, W need only verify
that (p,Q) satisfies (16).

For (16.iii), we have guaranteed Q=0 placed where P, =2,
since B(P)#(O,...,0) and the last reversion begins in the "good*
segment. By symmetry P,=k and k is the elenment nissing fromq,
(16.i,ii) hold for all elenments of Q at (m+l)/2 or later. sup-
pose Q;=P.=k with jei<(m+1)/2. Then by symmetry and (23),

J
P<Q Wi th k>(m+l)/2, violating (16.i). Finally, suppose Py<q;
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with je<(m+l)/2, Applying symetry and (28) again, we violate
(16,ii) in the good segment.

To summarize, we have shown that there are 2% symetric q
that mght be paired with P, and that all such pairs are real-

i zable and determne symretric quadruples, [

THEOREM (31).  The nunber of Symmetric NOHO-graphs i s 3P/2]

Proofs |f B(P) has q ones, they may occur at any of the [p/2]

steps in constructing P. sSo (29), (30), and the binoni al
»a
t heorem yiel d ‘);o(Lpézj)zq = 3LP/2] a5 the number of symetric

solutions, [

Symmetric quadruples are one-to-one with symmetric NOHO-
graphs. Qher realizable quadruples are two-to-one wth other

NOHO-graphs, So we have from (26), (27), (31)

COROLLARY (32), The nunber of NOHO-graphs on nz6 vertices, n
even (other than Q* when n=8) is (3P‘1+3LP/ZJ)/2.

9. Concatenation of KOHO-graphs

Before defining the concept of an irreducibl e NOHO-graph,
we need to define a way of conbining NOHO-graphs, Suppose we
have two NOHO-graphs G; and G, on n, and n, vertices {x%} and
{y%}, with associ ated quadruples (Pl,Ql,Sl,Tl) and (P2,Q2,$2,T2).
VW define the concatenation of Gy and G,, denoted G,*G,, as a

new graph G3 constructed as follows.
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To obtain the edge set of GB' unite those of d and Gy
deleting the edges incident to x% and y%. The vertex set of

G3 is the union of the vertex sets of Gy and Gy W th xg and
yé del eted, Furthernore, identify h(xg) Wi th y% and h(yé)

with xg. NowG, is a graph on ny=ny+n,-4 vertices, wth

2n =4+2n,-h-l = 2n3-u edges.
For the ordering of edges, any edge that was a first edge

or last edge in G, or G, remains a first edge or l|ast edge,

2
The order between two edges fromthe same G is preserved, In

addition, every edge from Cl(Gl) Is set less than every edge
from Cl(Gz), and every edge from C2(G2) Is set |ess than every
edge from Cz(Gl).
Figure 4 gives an exanmple of concatenation,
V \ v \ \ \ :‘% xi '
? );L "?—? )"c\___(s\ "? AR Y’:
4 ‘.\1 ..;:_..-' \:\"NA; %\_; '\-.\.' ?.\y: %:h!\ :,.." ‘\\:~....' \.\y.l
- . NN T SN
[ N 'R . . ~ 1- ~
o x o R T
G‘ Gl G\ + Gl

Figure 4, Concatenation

Note that concatenation is not a commutative operator,
Also, if we |abel the vertices of theb-cycle {xé,xi,xg,xg , It
becomes an identity elenment under concatenation. |n fact,
NOHO-graphs not in Q* form a non-conmutative seni-group under
concatenation, Associativity is clear from the construction.

The next |lemma verifies closure,
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LEMMA (33), |If Gy and G, are NOHO-graphs, then the concatena-

tion Gy 4G, I s al SO a NOHO-graph,

Proof: W need only show that G,+G, contains paths between
all pairs of vertices and satisfies NOHO, W nmy consider the
identified vertices as elenments of either of the original
graphs, Any path wholly within one of the conponent graphs is
still present in G,+G,, unless it used one of the deleted ver-
tices,\ The only paths which used them as non-endpoints are
(Xf.xg.h(xg) ) an&(yi,yé.h(y%). In the concatenation these

paths can be replaced as follows. Since we have identified

2 . 1
1 with h(yo

as originating fromthe other summand graph, The transnission

X ) and h(xg) with yi, we can consider the endpoints

path between these vertices in that graph uses noreof the de-
| eted edges,

Obtaining an increasing path froma vertex of G to a ver-
tex in GJ Is quite sinple, If v Ilies in G, and win Gy, vow
can be formed by attaching -371"”' fromG, to the end of v—yh(xg)
fromG,. Sinmlarly, w-sv can be formed by attaching le-w
from G, to the end of w-)h(yé) from G,. These constructions
work because every edge incident to Jl in G, +G, that cones from
G, is greater than every such edge from G;,» and every edge in-
cident tO x% in G +G, from Gy
The edges that could have violated that were the

Is greater than every such edge

froma,.
edges del eted from the union.
Finally, to prove NOHO we note that no increasing path

which starts at a vertex from G can |eave those vertices and



L9

|ater return, This would require traveling along Ci(Gl+G2),
crossing to d (Gy+G,), and returning, The crossover could

only use a first edge or |ast edge, which would prohibit in-
cluding the earlier or later portion of the path. On the other
nand, no path violating Noito can lie entirely within the edges
comng from one of the sunmands, since they are NOHO graphs. {]

To determne (p,Q,s,T) for G1+G2=c—~3, we obtain S(GB) and

T(¢,) by concatenating in the usual sense S(g ) and T(G,) W th

)
3 :
5(G,) and T(G,). That is, with m1=rT/2-1, S(GB) cont ai ns S(Gl)

in positions 2 through m, and it contains s(G,) in positions

)
2
my+1 through My=m)+m -1, SmiGB) descri bes what happens
when Cl(GB) reaches y%, which is the sane as what happened

when Cl(Gl) reached x}n The remai nder of Cl(Gi) IS as before,

+1°
The same argument appl iles to T, P and qQ can be determned as
in (25), or they can be determned directly by adjusting and
combining P(G;) and Q(G;) as was done with S and T, This re-
quires dropping an elenent, adding p;, or p, to the elenents in
one portion, and concatenating.

If is natural to call a realizable quadruple or a woxo-

graph irreducible if it cannot be expressed as a concatenation

of two smaller ones, In the next section we will count the
nunber of realizable quadruples in subclasses involving

irreducibility.
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10, Irreducibility and NOHO-graphs

Before discussing irreducibility, we introduce sone stan-

dard termnol ogy about conpositions of integers. A conposition
. . of pstiive inteqers
of an integer p is an ordered sequence,whose parts sumto p.

Again, we are using p here because (n-4)/2 adds sinply in con-

catenation. The i*® partial sum q; of a conposition is the

sumof the first i parts, A refinement of a conposition of p

Is a conposition of p with as |east as many parts whose par-
tial sums contain the partial sums of the original conposition,

The | east refinement of two conpositions is the conposition

whose partial sunms are the union of the partial sums of the
original conpositions. For exanple, the least refinenent of
(2,3,5) and (1,3,1,4,1) is (1,1,2,1,4,1),

This termnology will be useful for the follow ng |emm,
which states a very convenient fact about concatenation,
Namely, NOHO-graphs are "uniquely factorable" into irreducible
pieces, In algebraic terms, this means the irreducible solu-
tions are the generators of the semgroup of NOHO-graphs under

concat enati on.

LEMMA (34). Any realizable quadruple can be uniquely expressed

as a concatenation of irreducible quadruples,

Proof: Any such deconposition of a quadruple breaks up (s,?)
into segnments which each determ ne NOHO-graphs. For exanple,
describing graphs as S, T), we have G(101010,111101) = G(1,1)
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+ G(010,111) + G(10,01). W can describe the deconposition
by a conposition of the integer p=(n-4)/2,

W claimthe l[east refinement of two conpositions of p
whi ch correspond to deconpositions of G also corresponds to
a deconposition of G If one conposition is a refinement of
the other, we are finished, If not then the |east refinement
has two consecutive partial sums q;=r and q;,,=s, where r is
a partial sum for exactly one of the conpositions, and s is
a partial sumonly for the other. Performng the deconposi-

tion, we have indices j and k such that the segments <Sj.Tj)

through (Sg,11Tg4) and (S5 Tryp) through (Sy,Ty) deternine
NOHO-graphs G; and G,. (W have assunmed r<s.)
Define another graph Gy whose vertices and edges include

the vertices and edges that lie both in G and in G, plus two
vertices y and z of degree two. (By "both in G, and in G," we
mean When the vertices are labeled as the fit into G) The

nei ghbors of y and z are defined by fGB(y)=Xi+l. hGB(y)=

(£, (x2_)).

)
hg, (£ (xE41)) fo, () g 204 P (z)=hg ° .

3 1 1

G, i S a NOHO-graph, and the proof of this rests on the

3
fact that increasing paths which |eave G, can never return to
it, Wen such a path |eaves G it sinultaneously leaves G, or
G,. By the same argument used to verify NOHO in (33), it can-
not return, So, the increasing paths in G between vertices of
G

y and z also, since y takes the place of a vertex in a, O

must lie wholly within Gj. Information is transmtted for
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degree 2 and z does the sane in G,. That nNoHO is true follows
because any increasing path in Gy appears in G orin G,

(except y-»z and z-9y), and they satisfy NOHOC,

Let G be obtai ned fromGl by deleting vertices and edges
bel onging to Gy Add a vertex wof degree two with f,,(w)=
!

h, (y) and hGi(w)=fG3(y). By the argunents in (33) and above,

3 .
it is easy to see G! IS a NOHO-graph and Gi+93=q: So G, was

1
not irreducible,
Repeating-this argument over all deconpositions of G we
see the only deconmposition into irreducible segments is the

| east refinement of all the deconpositions. [

Havi ng proved unique deconposition, it becomes easy to

count various classes of solutions by induction.

THEOREM (35). The nunber of realizable quadr ples forned by

concatenating k irreducible quadruples is (ﬁ:i)zp'k.

Proof: By induction on p, Examning Figure 3 yields the
basis steps for p=1 and p=2, Assune the theoremis true for
smal | er val ues than p.

First consider kx>1, To obtain such a quadruple we deter-
mne a conposition of p and fill the quadruple with irreducible
(s,T)-segments Of those lengths. p is the eventual length of
Sand T from positions 2 through m=n/2-1, By induction, each

1

segnent of length r can be filled by 2% irreducible pairs,

Filling each segnent in all possible ways, (33) says these are
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realizable, and (34) says there are no others. So, for each

conposi tion rytes.tr, =D wth-k parts, there are 2F1-1

...Zrk-l
=2P-K quadruples of this type, There are (ﬁ'_,ﬁ) Conposi tions
of Pwith x parts, so the total nunber of solutions is
(Po1)2P K,

This holds also for k=1, since that is precisely how many
remain of the 3*"! quadruples counted in (26). The binonial

theorem says there are 2P| jyreducible quadrupl es, [

THECREN (36). The number of symmetric NOHO-graphs fornmed by

concatenating k irreducible parts is tp .+ Where
f ﬁ//’g %)2(p-k)/2 . p even, k even
0 .
Lo = { /2 oz LoD/2) ; p odd, k even
pyk = olp/2]-r 1)_:; (q" ; k odd, k»>1, r=(k-1)/2
2k i k=1

Proof: W use a sinlar induction to the above. Figure 3
again provides the basis, though now p=1 and p=2 are both nec-
essary. Assune the theoremis true for smaller values ofan p,

First consider x>1, |f k is even, p nust be even to allow
symetry. W determine a conposition of the first p/2 places
into k/2 parts, fill it with irreducible (S T)-segments, and
then obtain the rest by reflection (27). (33) and(34) again
justify the conclusion that this counts everything, There are
ﬁ,z 1) conposi tions and 2(P=K)/2 5o ytions for each one.

If k is odd and k>1, determine a conposition of g with
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r=(k-1)/2 parts, where 2q<p. The widdle segnent Of (S,T)

will have length p-2q. In that segnent we place a symmetric

irreducible segment, of which by induction there are 2b(P-2a)/2]

There are 2%°T ways to fill the remainder, Wth the usual ar-
gunents about reflection, nunber of conpostions, and the cor-
rectness of the count, we have t ol (31)2a-r oL (p-2q)/2]
= oLp/2]-r u& 925y r=(k-1)/2. > o

qel -1
To conpute tp 1» We subtract the other tp . from 3[P/2],

the total nunber- of symetric NOHO-graphs, derived in (31),

Not e t hat
Lti;“:JL /2J-r“’:£’/? gy u:gﬂiLP/ZJ -q Ez(q _1)20-T
= olp/2]- 1“’2 21-459-1
- 2bo/2l00 G )L 10/20 11 (5007
2.30/2-1_ ,p/2 i p even
{3(P-l)/2_2(p-l)/2 ' o odd
-Wen p is even, we nust also consider k even. |f g=x/2, we

have (p/g_-g.)zp/Z-—s = 3p/2'l as the number of these solutions,
So,-

313/2'1+2-3p/2‘1-2p/2 i p even
t — BLp/z_' -

P,1 =
3(p"1)/2_2(p‘1)/2 ip odd

gLP/?J ﬂ
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11, Planarity and Hamltonicity

In this section we note two properties of NOHO-graphs
that are commonly of interest. Constructions are given for

both, First, a quick [emm,

LEMMA (37). |n a NOHO-graph, consider a path R that begins

at x% and alternates along first edges and last edges, Then

i) The path alternates between ¢ and C2, reachi ng ¢l al-

way's on first edges and c? on |ast edges,

2

1) R eveatually reaches Xge

g, Riz a sinple path.

iv) Among the x:iL and X that appear along R until xcz), the

indices i increase and the indices j decrease,

i) Fromx; to x

Proof: (i) is obvious, W verify the remainder in reverse or-
der. For (iv), it suffices to consider pairs of consecutive
appearances, |f x%.= f(h(x%)) so that f(x%.)=h(x%), then (16.1)
says i'>i, |f x§.=h(f(x12)) SO that ®g=n(xp) and x%=£(xp),
then (16,1) says Jj'<j. (i) inplies the consecutive appearances
are as described. (iv) imediately inplies (iii). Since the
path connot contiue in the same direction forever, (iv) also

implies (ii),

THEORE¥ (38). In a NOHO-graph (other than @), uniting the

first edges and |ast edges yields a Hamiltonian Circuit,

Proof: Consider the alternating paths guaranteed by (37) that



emerge from xé and proceed to x%. One begins with a first edge,
one with a last edge, Call them Ry and R,, respectively. W

claimR and R, intersect only in {}6.){5}.
1

If not, let v be the first vertex where they neet after X5

If it is before =, it lies in Ct or incC2 sy (37.i), both

paths reach it via the sane type of edge, i.e. first or |ast,
But F(GQ and L(G are matchings by (2), so there is only one
such edges incident to v. This neans the paths had to neet at
the previous vertex,

So, uniting R, and R, yields a sinple circuit, It is easy
to see it nust be Hamltonian, |If v lies outside it, we can
begin paths there that proceed alternately along first edges
and last edges, By the argunent of (37), one such path R, pro-

ceeds tO x(z). The next-to-last vertex on it IS in Ry OF R,

since R, and R, reach xg separately and d(x§)=2. It also lies
inclor c? As in the preceding paragraph, all of ®  includ-

ing v lies in that same R, or R,. [

THEOREM (39). Every NOHO-graph (excluding q*) is planar.

Proof: W construct a planar representation. p|ace the ver-
tices on the boundary of the shadow of a sausage. Pyt X% at

the left end, xg at the right end, xi along the top edge from

left to right, and xf to xn21 along the bottom edge from right

to left,
Let ®, and R, be as in the previous proof, Draw in R, as

a path of chords, By (37.iii,iv), there are no crossings,
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Blur the boundary of the sausage so that the top and bvotton
boundaries become doubled, still neeting at the endpoints

Let the vertices of &, remain on the inside boundary, and nove
the vertices of R, to the outside boundary, R, can be drawn
as a path of non-crossing chords in the outside infinite face,
again by (37).

We still must show that the edges in the caterpillars can
be added without crossings, The interior of the boubled bound-
ary has not yet been entered by any edge, Yo edge of the cat-
erpillars joins two vertices on the same R, i.e, On the same
side of the doubled boundary, If so, (14.1ii) and (37.iv)
require a triangle. So, we can draw the caterpillar edges as
chords across the interior of the boundary,

We claimthere are no crossings. Since the vertices have

been placed in order, (Xﬁ'xi) cannot cross (x,,xg) With

max{j,k}<min{r,s}, If a crossing exists, we may assune jer<,

r<s, By (14,iii), (x%,xi) is an edge. Simlarly, if k<s then
(Xi,xi) is an edge, while if k>s then (xg.x;) is an edge.

Either way, we have created a triangle in a tree, using x%,

xi. and one of {xi,x;}.ﬂ

Figure 5 shows a representation drawn with this method.

~ -
-~ —
-—— - J

Figure 5. A planar representation
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12, Related Gossip Questions

Golumbic[6] and Harary and Schwenk[8] have shown that any
connected graph with n vertices, 2n-4 edges, and a 4-cycle ad-
mts an edge-ordering which solves the usual gossip problem
By 2n-4 edges, we mean 2n-4 calls wll be made using “allowed"
edges, O course, nost of these violate NOHO, The quest i on
remai ns open, however, whether every optimal solution of the
gossi p problem contains a 4-cycle. An affirnmative answer woul d
characterize these solutions, Examining (12) and (16.iii), we

not e

RENARK (40). Every optinmal solution of the gossip problem

satisfying NOHO has a 4-cycle,

It may be possible to prove the conjecture by applying this

remark,

G aph theorists have also considered solutions of the
gossip problemin which no transmssion of information is dup-
licated, so there is a unique increasing path from each vertex
to every other, Usually this includes the condition NOHo,
Paradoxi cal |y, forbidding wastage requires nmore work, if in-
deed the problem can be solved at all. |n other words, the

information cannot be transmtted in 2n-4 calls unless n=4 or

n=8, which follows from

] ]



59

RELARK (41), Every NKOHO graph other than Cyy and those in g*

duplicates some transm ssion,

Proof: ¢, and graphs in Q*, as remarked in (12), duplicate no

transmssion. Consider any other NCHO graph, and suppose
1

$,=0, We claimthere are two paths from x‘g to x;. By (16,ii1),

f(x3)=h(x5), By (14.000), (a(x)is an edge. So (x2,

2, 1
h(_xS),x;) forns one such oath, By (14,i) there is an increasing
pathe 1N o2 from x2 to every other vertex of ¢2, incl udi ng

2
h(xr*;), which conpletes the path, On the other hand, if 5.1,

t hen xnl,l:h(xg). Applying (16,iii) again, there exist increasing

pat hs (xg,xl}l,h(xf),xf) and (xg,xf). 0

Finally, we describe a generalization of the problem con-

sidered here, Consider an n by n "transmssion matrix" on

vertices {vy,...,v } with entries from{1,0,-1}. |f a, =L,
We require an increasing path from Vi to Vi | f a'lJ. =1 e
forbid such a path, |f a.lJ.:o we don't care, we ask whether

a callinsg scheme satifying the matrix exists, what is the |east
nunber of calls in such a scheme, what schenes achieve the uin-
imum, and so on. The original gossip problem results when di-
agonal entries are 0 and off-diagoanal entries are 1, Chang-
ing the diagonal entries to -1 yields the subject here, The
problem with ones above the diagonal and zeros on or below it
Is clearly optimzed by a chain of n-1 edges, For a matrix

in block diagonal form we require the sum of the calls re-

quired by the smaller probleas. Here's another exanple:



60

REMARY (42), Consider a transmssion matrix wth a; =0,

aij=0 for isrz2j, and all other“aij=l. The smal |l est graph
solving this gossip problem has 2n-7 edges, This remains

true if aii ==1, n even, r even,

Proof: Take an ordinary (2r-4)-edge solution # on {vy,...,v. }
and an ordinary (2n-2r-4)-edge solution H, on {v. . ,....v }.
order the edges so all those of #, occur after all those of
dp Add an edge joining a vertex of the last edge in i
to the first edge in x,, and let it occur between them This
uses 2n-7 calls and satisfies the matrix.

To show optinality, take any solution and delay all edges

not wholly within {v v}, inoorder, until after every

10
edce Within that set, The resulting scheme still satisfies
the matrix, But now it nust consist of an ordinary scheiie on
r vertices, followed by at |east one connecting edge and a
solution on n-r vertices, So, there are at l|east 2n-7 calls,
|f aii =-1, sinply use NOHO-graphs in the dy, H, con-

struction. This requires n and r even. [

There are 1nnumerable variations.
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