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Abstract

We describe in this report the numerical analysis of a particular

class of nonlinear Dirichlet problems. We consider an equivalent

variational inequality formulation on which the problems of existence,

uniqueness and approximation are easier to discuss. We prove in particular

the convergence of an approximation by piecewise linear finite elements.

Finally, we describe and compare several iterative methods for solving the

approximate problems and particularly some new algorithms of augmented

lagrangian type, which contain as special case some well-known alternating

direction methods. Numerical results are presented.





TABLE OF CONTENTS

Acknowledgments

1. Introduction

2. A class of mildly nonlinear elliptic equations

2.1 Formulation of the problem

2.2 A variational inequality related to (P>

2.2.1 Definitions

2.2.2 Properties of j(e)

2.2.3 Existence and uniqueness results for (m

2.3

2.4

3.

3.1

3.2

4.

4.1

4.2

4.3

4.4

4.5

4.6

4.7
-

4.8

5.

5.1

5.12

Equivalence between (P> and 07

Some comments on the continuous problem

A finite element approximation of (7f) and (P)

Definition of the approximate problem

Convergence of the approximate solution

A survey of iterative methods for solving (',>

Orientation

Formulation of the discrete problem

Gradient methods

Newton's method

Relaxation and overrelaxation methods

Alternating direction methods

Conjugate gradient methods

Comments

Numerical solution of (P,> by penalty-duality algorithms

Formulation of the discrete problem. Orientation

Description of the algorithms. Remarks

5.2.1 A first algorithm

5.2.2 A second algorithm

5.3 Convergence of ALGl, ALG2. Further remarks

5.3.1 Convergence results

6. Numerical experiments and comparison with other problems

6.1 The test problem

Page No.

1

2

3

3

5

5

6

8

8

23

23

23

26

33

33

33

34

36

36

39

41

43

44

44

45

45

48

49

49

50

50



Page No.

6.2
/\ 6.2.1

6.2.2

6.2.3

6.2.4

6.2.5

6.2.6

6.2.7

6.3

6.3.1

6.3.2

6.4

Study of parameters in ALGl and ALG2

Effects of 6' , e"

Effects of 2Iv
Choice of p

Choice of TOL

Choice of F

Choice of r

Effect of the smoothness of Q

Comparison with other methods

Description of the other methods

Comments. Further remarks

Conclusion

References

52

53

56

56

56

57

57

59

59

59

61

62

69



-l-

Acknowledgments

The results in this report have been obtained while the second

author was visiting the Computer Science Department of Stanford

University with the support of DOE contract EY-76-S-03-0326 PA#30.

We would like to thank Professor Gene H. Golub for his interest

in this work.



- 2 -

1. - INTRODUCTION

In this report we would like to discuss the numerical analysis of mildly

non linear elliptic partial differential“equations  of the following type

Au + G(u) = f

(1.1)

u r = 0,I

where in (1.1) :

- A is a second order elliptic operator, possiblynotself adjoint,

- @ : IR -+lR, 4 E Co@) and is,non decreasing,

- f is a function defined on S-?.

In fact some of the results and methods to be described here may be extended

to more complicated problems or to problems with other boundary conditions.

In Section 2 we give a variational formulation of (1.1) (problem (P)) and

then introduce an equivalent variational inequality (problem (JT)) for which

the existence and uniqueness properties, as well as the numerical analysis,

are easier to study. We also prove an existence and uniqueness theorem and

various lemmas useful in the numerical analysis sections of this report.

In Section 3 we study a finite element approximation of (1.1) and prove

that the approximate solutions converge to the solution of the continuous

-problem for some Sobolev norms.

In Section 4 we describe various standard methods which can be used to

solve the approximate problem obtained in Sec. 3. Some of these methods

are.: Gradient and Conjugate gradient methods, Newton's method, SOR, ADI.

In Sec. 5 we introduce some new methods based on the simultaneous use of

penalty and lagrange multipliers which contain some AD1 algorithms as

particular cases.

In Sec. 6 we use the above methods to solve a test problem. Comparisons

between the standard methods of Sec. 4 and the methods of Sec. 5 suggest

the superiority and much more robustness for the new algorithms.
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We may find in BARTELS-DANIEL Cll, DOUGLAS-DUPONT Cll(resp. EISENSTAT-

SCHULTZ-SHERMAN [II) conjugate gradient algorithms (resp. Newton's

algorithms) for solving equations like (l.l), once a suitable approxi-

mation has been made.

For the material concerning the Sobolev spaces, (definitions, properties,

etc...) we refer to the classical treatises of ADAMS Cll, NECAS L-11.

We refer also to D.J. FIGUEIREDO [II where the reader interested by the

theoretical aspects of non linear elliptic equations will find a survey

of the various techniques which can be used to study these problems,

including the most recent results of the theory of monotone operators.

2. - A CLASS OF MILDLY NON LINEAR ELLIPTIC EQUATIONS

2.1. Formulation of the problems

Let Sz be a bounded domain of RN (N22) with a smooth boundary r. We

consider

- V = H;(n)
av

= (vlveL2(fi), s eL2(Q) i=l,...N, vIT = 01.
i

- L : V +R, i.e. L(v) = <f,v> where fcV' = H-'(a)

W' is the dual space of V and <*,a> the duality pairing between V'

and V).

- a : VxV -+R bilinear, continuous and V-elliptic, i.e. hs=O such

that

(2.1) a(v,v) 2 o.~~vll~  VVCV

where

(2.2) IVv12dx)1'2 ;

we don't assume that a(*,*) is symmetric.

-$: R’R, @do(R), non decreasing with 4(O) = 0.
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We then consider the following non linear variational equation

(p>

Find ueV such that @(u)E L'(fi)nV' and

a(u,v) +<$(u),v>  = <f,v> v vc V.

It follows from the Riesz Representation Theorem (see, e.g. YOSIDA Cl])
that there exists Ae&(V,V') such that

a(u,v) = <Au,+ ~U,VE V ;

therefore (P) is equivalent to

Au + G(u) = f,

(2.3) UEV,
1

$(U)E L (R) nv'.

Example 2.1 : Let us consider aoeLm(R) such that

(2.4) ao(x)la > 0 a.e. on R.

Define a(*,*) by

-
(2.5) a(u,v) = ao(x)Vu*Vv ax +

I
@Vu v dx

s2 52

where 6 is a constant vector inR
N

.

From the properties of a0 and using the fact that

J B*Vv v dx =
R

0 VveH;(Q)

we clearly have

a(v,v)> .llvllG so that a(*,*) is V-elliptic.
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From (2.5) we obtain

Au = - V*(aoVu) + @*Vu ,

hence in this particular case (2.3) becomes

I - V*(aoVu) + @*Vu + G(U) = f,

(
1

UEV, @(U)EL (a).

Remark 2.1 : If N=l we have HL(fi)cC'(a). From this inclusion there is no

difficulty in the study of one dimensional problems of type (P). If N22

the main difficulty is precisely related to the fact that Hi(Q) is not

contained in C'(n).

Remark 2.2 : The analysis given below may be extended to problems in

which either V = H1(fl) or V is a convenient closed subspace of H'(a).

2.2. A variational inequality related to (P).

2.2.1. Definitions

Let

(2.6)
t

ia(t) = 4d-r)d~
0

(2.7) D(O) = CVEV, @(V)EL1(fl)) .

- The functional j : L2(n)  +-K is defined by (*I

(2.8)

@(v)dx if Q(v) l L'(n),

if Q(v) QLl(Q).

Instead of studying the problem (P) directly, it is natural to associate with

(P) the following elliptic variational inequality (**> .

(*) iT =Ru{+4 u {-a} .
(**) For variational inequalities and their approximation see GLOWINSKI-LIONS-

TREMOLIERES [ 11, [ 21, GLOWINSKI cl], [21.
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i
a(u,v-u) + j(v) - j(u) 2 L(v-u) YVeV,

If a(*,m) is symmetric, a standard method to study (P) would have been to

consider it as the formal Euler equation of the following minimization pro-

blem encountered in the Calculus of Variations :

J(u)IJ(v)YveV,

(Q)
-_

uev

where

J(v) = ; a(v,v) + @(v)dx - L(v).
a

Therefore associating (n) to (P) is a natural generalization of this appr0ach.m

We clearly have

Proposition 2.1 : D(Q) is a convex, non empty subset of V.

2-2.2.  Properties of j(*) :

Since @ :R-+RisC ', non decreasing with @(O) = 0 we have

(2.9)
1

@'EC @), @ convex, Q(O) = 0, (s(t) 20 VteR.

The properties of j(O) are given by the following lemma :

Lemma 2.1 : The functional j(*) is convex, proper (*> and 1.s.c. (**I over L2(n).

Proof : Since j(v) ~0 vv eL2(,) it follows that j(e) is proper. The convexity

of j(*) is obvious from the fact that @ is convex.

(*) j(m) proper means that j(v) >-m VVEV, j f +m.

(**) 1.s.c. : abreviation for lower semi continuous.
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Let us prove that j(*) is 1.s.c.  :

Let hJn 9
2

vne L (s2) vn, be such that

lim vn = v strongly in L2(9).
n-t+03

Then we have to prove that

(2.10) lim inf j(vn) 2 j(v).
n-t+m

If lim inf j(vn) = +m the property is proved. Therefore assume that
n-t+m

lim inf j(vn) = R < +a ; hence we can extract a subsequence (v )
n++m nk nk
such that =

(2.11) lim j<v
k++(x) nk

) =R,

(2.12) v + v a.e. in R.
nk

Since @ l Cl(R), (2.12) implies

(2.13) lim (a(~- > = Q(v) a.e. .

Moreover o(v) 20 a.e. and (2. 11) implies that

(2.14) {WV >
"k

'k is bounded in Ll(fi).

Hence by Fatou's lemma, it follows from (2.13) (2.14) that we have

caw E L1 W) ,
(2.15)

@(v )dx 2 iP(v)dx.
nk s2

From (2.11) and (2.15) we obtain (2.10) ; this proves the lemma. a
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Corollary 2.1 : The functional j(e) restricted to V is convex, proper

and 1.s.c.  .

2.2.3. Existence and uniqueness results for (n).

Theorem 2.1 : Under the above hypothesis on V, a, L and $, problem (7~)

has a unique solution in V no(@).

Proof : From the above properties of V, a, L and j, we can apply some

standard results concerning elliptic variational inequalities (see, e.g.,

LIONS-STAMPACCHIA [l], LIONS Cl], EKELAND-TEMAM  cl], GLOWINSKI [l-J, [2])

which imply that (v) has a unique solution u in V.

Let us now show that ucD(@) :

Taking v=O in (IT) we obtain

(2.16)

where

II IIf * = sup
I<f,v>l

vu-(0) v lII II *
Since j(u)> 0 and using the ellipticity of a(*,*)  we obtain

(2.17)- II II
II IIf *

u v <-a

which implies, combined with (2.16) that

(2. 1'8)
II IIf 2*

j(u) 2 - .
a

This implies u ED(@). 9

Remark 2.3 : If a(*,*)  is symmetric, (7) is equivalent to the minimization

problem (Q) of Sec. 2.2.1.

2.3. Equivalence between (P) and (IT).

In this Section we shall prove that (P) and (7) are equivalent. We prove

first that the unique solution of (r) is also a solution of (P). In order
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to prove this last result we need to prove that Q(u) and u@(u)  E L'(a).

Proposition 2.2 : Let u be the unique solution of (n). Then u@(u)  and

Q(u) belong to Ll(fl). ._

Proof : Here we use a truncation technique. Let n be a positive integer.

Define

Kn = {VEV, Iv(x)1  2 n a.e.l .

Since Kn is a closed, convex, non empty subset of V,the following

variational inequality

-_
a(u,’ v-y+(v)-j(un) 2 L(v-u,)  V VE Kn'

0-y

u l K
n n

has a unique solution. Now we prove that A

lim un = u weakly in V,
n-t+m

where u is the solution of (?T).

Since OE K
n' taking v=O in (nn) we obtain, as in Theorem 2.1 of this

Section, that

(2.19)

(2.20)

It follows from (2.19) that there exist a subsequence - still denoted by

Ill 1 - and u*eV such that
n n

(2.21) lim u = un weakly in V.
n++a n
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Moreover from the compactness of the canonical injection from HA(G) into

L2(SI) (see, e.g., NEgAS Cl]), and from (2.21), it follows that

(2.22) lim u
n

= u strongly in L2(Q).
n-f+03

Relation (2.22) implies that we can extract a subsequence - still denoted

by {u 1 - such that
n n

(2.23) lim un = u a.e. in R.
n++m

Now let veVf~L~(fl),  then for n large enough we have VE Kn and

(2.24) a(u --;
n u,)+j (u,) 5 a(u,,v>+j(v)-L(v-un).

Since

and

lim inf a(un,un) >a(u*,u*)
n++m

lim inf j(u,)  >j(u*)
n-f+m

it follows from (2.21) and (2.24) that

-

a(u*,u*)+j(u*)  5 a(u*,v)+j(v)-L(v-u*)

u* < v

which can also be written as

VVE Lrn(Q) nv,

a(u*,v-u*)+j(v)-j(u*) >L(v-u*) VVE V n Lm(Q),

(2.25)

u*u.
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For n>O define 1: :V-+K
n n by (see Figure 2.1)

(2.26) Tnv = inf (n,sup(-n,v)).

-n

t V

Figure 2.1

Then from STAMPACCHIA Cl1 we have

(2.27) -rnV  E v = HA(n) Yn,
-

(2.28)

lim Tnv = v strongly in V,
n-f+03

lim
'nV

= v a.e. in Q.
n-t+m

Moreover we obviously have

(2.29) I-r$x) I 5 Iv(x)  I a.e.,

(2.30) v(x)Tnv(x)  20 a.e. .

It follows then from (2.28)-(2.30)  that
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(2.31) 02 @(Tnv) s@(v) a.e.,

(2.32) lim O(T,v) = Q(v) a.e. .
n++a ._

Since T,VE La(R) nV it follows from (2.25) that

( 2 . 3 3 )

a(u*,T,v-u*)+j(Tnv)-j(u*)  bL(Tnv-u*) VVEV,

u*u.

If v+!D(o) then by Fatou's Lemma- -

lim _j(-C,v) = +m.
n++m

If veD(@) it follows from (2.31) and (2.32),  by applying Lebesgue's

Dominated Convergence Theorem that

lim j(Tnv) = j(v).
n-t+a

From these convergence properties, and from (2.28),  it follows by taking

the limit in (2.33) that

1 a(u*,v-u*)+j(v)-j(u*)  rL(V-U*) VV E V,

u*cv.

Then u* is solution of (T) and from the uniqueness property we have u
*

= u.

This proves that lim un = u weakly in V.
n-++a

Let us show that G(u),  u@(u) EL'(~).

Let vcKn ; then un+t(v-u,) E Kn vt E 10,ll. Replacing v by un+t(v-u,) in

(7~~) and dividing both sides of the inequality by t we obtain

( 2 . 3 4 )

du/-un> + I
cp (un+t (v-u,> > -.Q(u,>

dx zL(v-un)
52

t
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Since @EC'(R) with 0' = $ we have

(2.35) lim
@(un+t  (v-u,) > - (P(uJ

t-+0
t

= Q(un)(v-un> a.e. .

t>O

Moreover, since @ is convex, we also have HtE IO,11

@dun> (v-u,) 5
@by-t  (v-u,> > - a?(un>

It
(2.36)

5 O(v)-@(un) a.e. in R.

From (2.35), (2.36) and using Lebesgue's Dominated Convergence Theorem in

(2.34), --we obtain

(2.37) ahn’v-un) +
R
@(un)(v-un)dx 2 L(v-un)tJv eKn.

Then taking v=O in (2.37) we have

a(un’un)  +
R
$(un>undX< L(u > Ynn

which implies, using (2.19),  that

- (2.38)
II IIf L

* vn .
Q

@(un)undx 5
a

Since $(v)v 20 a.e. 'YJ'V  EV, it follows from (2.38) that

Nu,) un is bounded in Ll(ti).

Moreover for some subsequence - still denoted {u,}~ - we have

lim @(u,>u, = $(u>u a.e. in Q.
n ++a

Then by Fatou's Lemma it follows that
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and this implies, obviously, that $(u) E L'(n) and completes the proof of

the Proposition.

Incidentally, when proving the convergence of {unjn  to u, we have proved

the following useful result : ._

Lemma 2.2 : The solution u of (IT) is characterized by

(2.39)

a(u,v-u)+j(v)-j(u)2 L(v-u) tJve VnLm(Q),

UEV, O(u) EL'(Q). I

In view of proving that (IT) implies (P) we also need the two following

lemmas :

Lemma 2.3 : The solution u of ('JT) is characterized by

( a(u,v-u)+ O(U) (v-u)dx 2 L(v-U)  be V n Lm(o),

(2.40)

Proof : We first prove that

(i) (r) implies (2.40).

Let VE Loo(Q) n V ; then VED(Q) and since D(Q) is convex we have

- u+t(v-u) E D(a) vte 10,ll. Replacing v by u+t(v-u) in (IT) and dividing

by t we obtain\dtclO,lI

(2.41)

a(u,v-u)+
G?(u+t(v-u>)-@(u) dx >L(v-u)

s2
t

‘dv~v nTT(fi).

Since Q, is C1 and is convex, we have

(2.42) lim '("+t(v-u))-@(u) = @(u) (v-u> a e
.

t
l 9

t-to

L

t>O
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(2.43) cb (4 (v-u> 5 @(u+t(v-u))-@(u)
t 5 @W-@(U>  l

By Proposition 2.2 we have $(u), $( u UE L'(n). Hence $(u)(v-u) E L1(Q),)

and Q(u), Q(v)E L'(Q) v ve Vn Lm(Q).  Then using the Lebesgue's Dominated

Convergence Theorem it follows from (2.42),(2.43) that

dx = J @(u)(v-u)dx.
R

Using the above relation and (2.41) we obtain (2.40).

(ii) We next prove that (2.40) implies (IT).

Let u be a solution of (2.40). Since @ is convex it follows that-_

- @(u> = O(O)-o(u) 2 $(u)(O-u)  = - $(u)u.

This implies 05 Q(u) 5 u@(u) and 0(u) E L'(n).

Let vd7nLm(R) ; then from the inequality

$(u)(v-u)I @(v)-@(u) a.e. in s2

we obtain by integration

@(u)(v-u)dx 2 j(v)-j(u) v v E V n Loo(Q),
f-2

which when combined with (2.40) and @(u)~L'(n) implies (2.39). Hence

from Lemma 2.2 we obtain that (2.40) implies ('IT).'

Lemma 2.4 : Let u be the solution of (IT), then u is characterized by

(2.44)

a(u,v) + I $(u)v dx = L(v) Y VE Loo(Q) nv,
i-2

1
UEV, @(U)EL (51).
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Proof : (i) We first prove that (n) implies (2.44).

Let v E V n Loo(Q). If u is the solution of (n), then u is also the unique

solution of (2.40). Let ~~ be defined by (2.26), then TzeVnLm(fi).
._

Replacing v by ~,u+v in (2.40) we obtain

(2.45)

du,v)+ J $(u)vdx + a(u,Tnu-u)+ J 4) (4 (-mu-u>
R s2

( 2 L(~) + L(T~U-U)  ~JVE v n LmCQ).

It follows from (2.26), (2.28)-(2.30) that

(2.46)

lim a(u,Tnu-u> = 0,
n-t+m-_

lim L(Tnu-u) = 0,
n++a

(2.47) lim $(u)(T,u-u) = 0 a.e.,
n+-+m

(2.48) O~@(u)(u-T,u)  5 2u$(u) a.e. .

Then by Lebesgue's Dominated Convergence Theorem and (2.47),(2.48)

we obtain

(2.49) lim $(u)(T,u-u) = 0 strongly in L'(Q).
- n-++m

Then (2.45),(2.46),(2.49) imply

a(u,v) + @(u>v  dx 2 L(V) ~vcVnL”(Q).
R

Since the above relation also holds for -v we have

(2.50) a(u,v) + J $(u)v dx = L(v) YVE VfILoo(sI>.
R

By Proposition 2.2 we have 4(u) EL'(Q), combining this property with (2.50)

we obtain (2.44).
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This proves that (IT) implies (2.44).

(ii) Next we prove that (2.44) implies (7~).

We have

ah,v) + $(u)v dx = L(v) bhc V n Loo(Q),
L-2

then

(2.51) a(u,'rnu)  +
n
4W-y dx = L(rnu) 'dn.

Since flu -t u strongly in V, (
f

$(u)~~u dx}n is bounded. But $(u)T~u~O

hence we obtain that
R

a.e.,

$(u)~~u is bounded in L'(a).

We also have

lim Tnu 4(u) = u@(u) a.e.,
n-k+00

hence by Fatou's Lemma we have

-
(2.52) u~(u> E Ll(G!).

But now we observe that

O~~(u)~nu~~(u)u  a.e. .

Hence by Lebesgue's Dominated Convergence Theorem

lim
f

@(u)T,u dx =
f
$b>u dx

n++m 52 52
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which along with (2.51) gives

(2.53) ah-d +
f

+(u)u dx = L(u).
c-2

Then by substracting (2.53) from (2.44) we obtain

(2.54)

a(u,v-u) + $(u)(v-u)dx  = L(v-u)
J

V VE v n l?(Sl),
s-2

and obviously (2.54) implies (2.40).

This completes the proof of the Lemma.

Corollary 2.2 : If u is the solution of (7~) then u is also a solution of (P).

Proof : We recall that V' = H-'(a)  ca)'(n> (*> and that

a(u,v) = <Au,+ 'ifu,v~ V,

L(u) = <f,v> \dVEV.

Let u be a solution of (1~). Then u is characterized by (2.44) and since

a>(Q)cV (where%)(Q) = (VE Cm(B), v has a compact support in Q) ) we obtain

- (2.55) <Au,+ +
J

cb(u>v dx = <f,V> kjVEa)(Q).
s2

It follows then from (2.55) that

(2.56) Au+@  (4 = f in%)'(R).

Since Au and f EV' we have G(u) E V' ; hence

1
$WEL (G)nH

-1
(G)

and from (2.56) we obtain that u is a solution of (P).m

(*) a>‘(Q) : space of distributions on R
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We have proved up to this point that the unique solution of (T) is also a

solution of (P). Now we prove the reciprocal property,that is, every

solution of (P) is a solution of (T) and hence (P) has a unique solution.

In order to prove this we shall use the following density lemma :

Lemma 2.5 : a>(Q) is dense in VI? Loo(n), V n Lm(fi) being equipped with the

strong topology of V and the weak * topology of Loo(n).

1
Proof : Let ve V n Loo(Q). Since 9(Q)H (') = V, there exists a sequence

{vnjn, v E B(G) such that
n

(2.57) -_ lim v = v strongly in V.
n-++m n

Let us define wn by (see Figure 2.2)

(2.58)
+

W = min
n

(v ,v+n) - min(v-,vi).

V
n /

Vn

Figure  2.2

(The reinforced  curve  is

V

\
n

the graph of "J
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Then

(2.59) wn has a compact support in Q,

(2.60) II”,11 5 v
LWW)

II II
LWW

Yn.

Moreover, since (cf. STAMPACCHIA cl I) the mapping

is continuous from H'(n) to H'(n) XH1(Q) (resp. v to v XV)) we have from

(2.57) that

(2.61) lim wn = v strongly in V.
n++W

From (2.60),(2.61)  we obtain that

lim wn = v in the weak * topology of LW(Q).
n+=+W

Thus we have proved that

V = (V EV nIT(O), v has a compact support in 0)

* is dense in V nLw(fi) for the topology given in the statement of the Lemma.

Let v EV, and (p,),  be a mollifying sequence, i.e.

I
P, E a>@iN),  P, -9

1:IR
N y$)dy = 1,

I
\ lim support (P,) = (01 (*).

n++W

Then define c and cn by

(*) i.e., for n large enough, support (p,) is contained in any given neigh-

bourhood of 0.
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v(x) if XE R,
(2.62) G(x) =

OifxBR,

(2.63) $
n
=p *c

n

i.e.

(2.64) V,(x)  = J ~Jx-y):(y>dy
N

VxxEW  .
‘cl

It is well known then (see, e.g., LIONS c21,NECAS ill) that

(2.65) lim 2;n = G strongly in H1@XN),
n++W

(2.66) Gn has a compact support in 0 for n large enough-

Let vn = GnWn,I then for n large enough

i lim vn = v strongly in V.
n++W

Since j/G11
Loo@iN>

= llvll
LWW>

it follows from (2.64) that

(2.67) RN ~,(x-y>~~(y)by  ’ llvll w .
L m

It follows then from (2.67) that for n large enough we have

(2.68) II IIV 5 v
n Lco(Q>

II II
Loo(Q)  l

Summarizing the above results we have proved that 'dve Lw(n> nV,

there exists a sequence (v~)~,  vne a>(Q) such that

(2.69) lim vn = v strongly in V,
n++W

(2.70) II IIV 5 v
n Loo(Q)

II II
Loo(Q)

Vn.

Hence from (2.69),(2.70)  we obtain that
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V
n

-+ v in Lw(n) weak 3;.

This completes the proof of the Lemma.

Theorem 2.2 : Under the above hypothesis on V, a(*,*), L and 0, problems

('JT) and (P) are equivalent.

Proof : We have already proved that (n) implies (P). We need only to prove

that (P) implies (r).

From the definition of (P) we have

(2.71)

a(u,v) + Wu> ,v> = L(v) b-v,

-_
UE V, $(u) E H-l(G) n L'(n).

It follows from (2.71) that

(2.72) du,v) + J $(u)v dx = L(v) YVE a>(Q).
i-2

If ve VnLw(Q) we know from Lemma 2.5 that there exists a sequence (v~)~,

vne a>(Q) vn, such that

(2.73) lim v
n = v strongly in V,

* n++w

(2.74) lim v
n = v in Lw(Q)  weak *.

n++w

Since vnc a>(n) we have, from (2.72)

(2.75) a(u,Q+ JR @(u)v, dx = L(vn) v n.

It follows from (2.73) that

lim a(u,vn) = a(u,v) 9 lim L(V,) = L(v),
n-t+" n++W

and since @(u)cL'(R),  (2.74) implies that
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lim J @(u)vndx = J $(u)v dx.
n++W Q !a

Thus taking the limit in (2.75) we obtain

a6-w) + J @WV dx = L(V) kjv EV n Lw(R).
c?

Therefore (P) implies (2.43) which in turn implies (n) (see Lemma 2.4)).

This completes the proof of the Theorem.

2.4. Some comments on the continuous problem.

We have studied (P) and (n) with rather weak hypothesis, namely $ E Co@) and

is non decreasing, and fe H-l(Q). The proof we have given for the equivalence

between (P) and--(n)  can be made shorter using more sophisticated tools of

Convex Analysis and the theory of monotone operators (see LIONS [l] and the
(*)bibliography therein) . However our proof is very elementary and some of

the lemmas we have obtained will be useful for the numerical analysis of the

problem (P).

Regularity results for problems a little more complicated than (P) and (n)

are given in BREZIS-CRANDALL-PAZY [l] ; in particular for fe L2(s2) and with

convenient smoothness hypothesis for A, the H2(Q)-regularity  of u is proved

there.

*

3. - A FINITE ELEMENT APPROXIMATION OF (r) and (P).

3.1. Definition of the approximate problem

Let s2 be a bounded polygonal (**I domain of R2 and "e, be a triangulation of R

satisfying

(9 Tc~,VTE &,, u T = 5,
T"Ch

0

(ii) ?'nT' = fl,t/~,T'/??h,T#T'; u T=&
TEch

(iii) If T,T'ech, T # T' then T n T' = 0 or T and T' have either only

one common vertex or a whole common edge ; as usual h will be

the length of the largest edge of ch.

(*) See also OSBORN-SATHER  Cl].
(**) This assumption is not essential.
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We approximate V by

'h = iv, E CO(D)  , Vh I r = " Vh,lTE '1 vTdh

where P 1 = space of polynomials in two variables of degree

natural to approximate (P) and (IT) respectively by

!

a(uh,vh) +(P;) Jn+(uh)vh dx = L(vh) v VhE vh,
Uh E v

h

Il. It is then

a(uh,vh-uh)  + j(vh>-j(uh> ’ L(vh-uh) yv EV
h h'

-_

u EV
h h

with j(v,)  = JR@(vh)dx.
Obviously (Pi) and ("t) are equivalent.

From a computational point of view we cannot use in general (Pi) and (n;[,

directly since they involve the computation of integrals which cannot be

done exactly. For this reason we shall have to modify (n;) and (Pt) by

using some numerical integration procedures.
*

In fact we have to approximate a(*,*),  L and j(O), but since the approximation

of a(.;) and L is studied in, e.g., STRANG-FIX cl], CIARLET-RAVIART cl], ODEN-

REDDY Cl], CIARLET Cl], r-21 we shall assume that we still work with a(*,=)

and L, but we shall approximate j(O).

Hence using the notation of Figure 3.1 below, we approximate j(O) by

(3.1) jhhh> = 1 meas.

Tcdh
3

i=l
a, (Vh(MiT> > VVh ' 'h'
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M3T

Figure 3.1

Actually j,(v,>  may be viewed as the exact integral of some piecewise constant

function. More precisely let us denote by Ch the set of nodes of c ; assumeh

that ch has been ordered by i=1,2,...Nh where Nh = Card (C,).

Let MieCh ; we define a domain fi. by joining, as in Figure 3.2, the centroids1
of the triangles having Mi as a common vertex, to the midpoints of the edges

having Mi as a common extremity (if Mi is a boundary point the modification

of Figure 3.2 is trivial to do).

Figure 3.2

Let us define Lh, a space of piecewise constant functions by

Nh
(3.2) Lh = (uhlph = 1 ~;x;, pi6-R vi=l,...Nh) ,

i=l
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where xi is the characteristic function of fii , i.e.,

I
x;(x) = ’ if xER.,1
x;(x) = 0 if x$!Qi.

Then we define qh : Co@> n Hi(Q)  + Lh by

Nh
(3.3) Qh V = C V(Mi)Xi*

i=l

It follows then from (3.1)'  (3.2)'  (3.3) that

(3.4) jhhh) ?-
fR

0 ( qhvh) dx \dvhEVh'

We also have

(3.5) jh(vh) = j (qhvh) vVhE 'h*

Then we approximate (P) and (n) by

(‘h)

* and

('h)

a(u v >+
Ih'h R$ (qh"h) qhVh dx = L(vh)

vv EV
h h'

u EV
h h

ahhYvh-uh>+jh(vh)-jh(uhn> 2 L(vh-uh) vv EVh h'

u EV
h h'

We have then the obvious

Theorem 3.1 : Problems (P,) and (7~~)  are equivalent and have a unique solu-

tion.

3.2. Convergence of the approximate solution

Theorem 3.2 : If as h + 0 the angles of ch are uniformly bounded below by

go> 0, then
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lirnII~~-uI~~  = 0,
h-t0

where u and u- - h are respectively the solutions of (P) and (Ph).

Proof : (i) A priori estimates for u
h'

Taking vh = 0 in (JT~) we obtain Vh

II IIf
(3.6) II II

*
U
hV'7'

(3.7) OS Jn
(ii) Weak convergence of u

h
It follows from (3.6) and from the compactness of the injection of V in

L2(n)  that we can extract from (u~)~ a subsequence, still denoted by

(u,>,' such that

(3.8) uh -+ u* weakly in V,

(3.9) Uh + u* strongly in L
2
(Q),

(3.10) u, -+ u* a.e. in R.
n

*
Admitting for the moment

11 qhvh-vh  11

. (3.11) LP (W

the following inequality (which we shall prove later)

\VVhEV h ,Yp with lIpr+w ,

it follows from (3.6) and (3.9) that

(3.12)
qhUh + u*strongly in L2(Q).

Then, modulo another extraction of a subsequence, we have
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i

qhuh -+ u* G. in R,

(3.13)

@(qh”h) +- (a(~*) a.e. in R.

Taking VE d)(9) it follows from STRANG-FIX [II, CIARLET Cll, [21 that under

the assumptions on ch in the statement of the Theorem we have

c3* 14) 11 rhv-vll
w1 ‘“(sl) < Ch II VII w2’“(s2>

v VE mw,

(3.15)

where :

II r v-vh I I
LW(Q)

5 Ch2 llvll
w2 '03(Q)

vvc %Nw,

- C is--a constant independent of v and h,

- r
h

is the usual linear interpolation operator over Ch i.e.

rhv cp> = v(P) VPECh.

Moreover (3.11) with p = +m , (3.14),(3.15)  imply that

(3.16) Ii qhrhv-v  11
LW (Q)

-f 0 vvc a)(a).

Taking vh h= r v in (IT
h

) we obtain

du
C3.17) i

u>+h' h J
@ (qhuh)dx ' du

52
h"h"> +

( J+ @ (qhrh”>  dx
52

- L(rhv-uh)  VvC a)(a).

From (3.8)' (3.12) and from Lemma 2.1 we have

a(u* &*I + J
i-2

@(u*)dx 2 lim inf (a(uh,uh) +
h-+0 i-2

@(qhuh)  d⌧) l
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Moreover

lim
f

@(qhrhv)dx = Q(v)dx = j(v) Vvc D(Q).
h-+0 s2 s2

Then in the limit in (3.17) we obtain

(3.18)

du*,u*) + j(u*) sa(u*,v) + j(v) - L(v-Uk)

vv E a>(R).

From Fatou's Lemma applied to (3.7),(3.13) we obtain

(3.19) @(-ill*)  EL'(Q).

It follows then from (3.18)'  (3.19) that u* satisfies

(3.20)

a(u*,v-u*>+j  ( v > - j  (u*) 2 L(v-u*) YV E a)(Sl),

u* (5 v, qu*> EL'(n).

We now take v EV nL"(n) ; it follows from Lemma 2.5 that there exists a

sequence {v 1n n such that vne d)(R) and

*
(3.21) lim vn = v strongly in V,

n++W

(3.22) lim vn = v in Lm(fi) weak *.
n++w
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We have from (3.20) that

*
du ,vn

-u*)+j(vn)-j(u*) '-L(vn-u*) Vn,

(3.23)

u* E v,@(u*)  E Ll(Q).

We obviously have from (3.21) that

lim a(u*,vn-u*)  = a(u*,v-u*),
n-++W

lim L(v,-u*)  = L(V-U*).
@-+a

Since vn -+ v in the weak * topology of La(Q), we have

(3.24) II IIV 5 Const. Yn.
n LCO(R)

Moreover, for some subsequence, (3.21) implies that

(3.25) lim vn = v a.e. in R.
n++W

From (3.25) we obtain that

(3.26) Q(vn) -+ Q(v) a.e. in Q.

*

From (3.25),(3.26) one can easily see that the Lebesgue's Dominated Convergence

Theorem can be applied to {Q(v~))~. Hence we obtain

lim j(vn) = lim
I
@(v,)dx= @(v)dx = j(v).

n++w n++w s2 I i-2

Therefore in the limit in (3.23) we have

a(u*,v-u*)+j(v)-j(u*)  2L(v-u*) VvE Vn Loo(Q),

(3.27)

u* EV, Q(u*) E LQQ).
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Since from Lemma 2.2 we know that (3.27) is equivalent to (n) we have thus

proved that u* = u where u is the solution of (n) (and (P)).

From the uniqueness of the solution of (7~) it follows that the whole

sequence (u~)~
. .

converges to u.

(iii) Strong convergence of (uh>h'

It follows from (ITS)  and from the V-ellipticity of a(*;) that

albh-uII; + j,(u,) <a(u
h
-u,uh-")+jh(uh) =

(3.28)

r-a(u,u)-a(u h'")-a(uYuh)+a(uh,rhv~+jh(rhv)-L(rhv -uh) v v c d)(Q).

Using the various convergence results of Part (ii) we obtain from (3.28) that

I j(u) 5 lim inf j,(u,> slim inf (CXlluh-uli:,+jh(uh))  5

(3.29)

I

slim sup (allu,-ulli+jh(uh)) 5

la(u,v-u)+j(v)-L(v-u) vvc d)(Q).

*
Using as in Part (ii) the density of a)(Q) in VnLw(i2)  (for the strong

topology of V and the weak * topology of Leo(n)) we obtain that (3.29) also

holds for all vcVnLw(S2).

Taking ~~ like in Sec. 2.3, relation (2.26)' we have then

j6-d "h inf jh(uh> 'lim inf (alluh-ullG+ j,(u,))<

(3.30) slim sup (~l~uh-ull~+ j,(u,)) 5

la(u,Tnv-u)+j(Tnv)-L(T,v-u) V VE V,Vn.
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From the properties of -cn (see Sec. 2.3)' we have at the limit in (3.30)

I j(u)Ilim inf(allu -ul12
h v + jhhh>> '

(3.31)

I

slim sup(al/uh-ull~  + jh(uh)> 5

Ia(u,v-u)  + j(v)-L(v-u) YvCV.

Taking v=u in (3.31) we obtain that

lim j,(u,) = j(u),
h-+0

limIIuI;-UIIV  = 0.
h-t0

This proves the theorem modulo the proof of (3.11).

Lemma 3.1 : We havevp, l<pI+w ,

II qhvh-vh II < ’ h Ibhll
LP(sI) - 3

vv EV.
LP(Q)X LP(Q) h h

Proof : We use the notation of Sec. 3.1.

Figure 3.3

We have (see Figure 3.3)

(3.32) 1 qhVh (M) -Vh CM) 1 = Ivh(~i)-~h(~)l  VMER. no.
1

But since vhlTc P1 we have
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Vh (Ml = vh(Mi) + ~~*vvh ~ME ~;n T

It follows from the definition of h

from which it follows, combined with (3.32)' that

1~~~1 vMER. nT.
1

that we have

I IM.M 5
1 $h VMeS$nT, VT

from which it follows that

Iqhvh(x)-Vh(x)  1 ’ $ h Ivvh(x) 1 a-e. inS2,  Vv 0J
-- h h'

This implies

II qhvh-vh II < f h IbhII-
LP u-0 LP(St)XLP(R) l

This proves the lemma.

Remark 3.1 : The numerical analysis of problems like (P) but with much stronger

hypothesis on a(*,*), $, f is considered in CIARLET-SCHULTZ-VARGA [Ill where

error estimates are given.

*

4 . - A SURVEY OF ITERATIVE METHODS FOR SOLVING (Ph).

4.1. Orientation

-In this section we briefly describe some iterative methods which may be useful

for computing the solution of (P,) (and (rh)). Actually most of these methods

may be extended to other non linear problems. Many of the methods to be des-

cribed here can be found in ORTEGA-RHEINBOLDT 1:lI.

A method based on penalty and duality techniques will be described in Sec. 5.

4.2. Formulation of the discrete problem

Here we are using the notation of the continuous problem. Taking as unknowns

the values of uh at the interior nodes of ch, the problem (Ph) reduces to

the finite dimensional non linear problem
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(4.1) Au + D+(u)  = f

where A is a NXN positive definite matrix, D is a diagonal matrix with

positive diagonal elements di's and where

u = Lll,...UN~ ERN ' feIRN,

Q(u) eRN with (Q(u)), = w;>.
- I 1.

Clearly from the properties of A,D,@,f

solution.

4.3. Gradient mehtods

The basic algorithm with constant step (see CEA Cll) is given by

we can see that (4.1) has a unique

(4.2) u"EIRN given,

(4.3) _
n+l

U =U-n- &(Aun+D$(un)-f), p>O._ _ _

In (4.3)'s  is a symmetric and positive definite matrix. A canonical choice

is obviously S = I
N ' but in most problems it will give a slow speed

of convergence. If A is symmetric the natural choice is S=A and if A# At
A+A=

ye can take S = -
2 l

If @ is locally Lipschitz continuous (i.e. Lipschitz

continuous on the bounded sets of W) then algorithm (4.2),(4.3) converges

to the unique solution u of (4.1) if p is taken sufficiently small. Obviously

the closer u" is to u, the faster is the convergence.

Remark 4.1 : If A=At then Av+D$(v)-f is the gradient at v of the convex'v Y
functional

J(v) = $
N

(Av,v)  +w - C di~(vi)-(f,v)
i=l

w w

where (a, l ) denotes the usual inner-product of IRN and Q(t) =
J
M-W-r .

0
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Remark 4.2 : In each specific case p has to be determined ; this can be done

theoretically, experimentally, or by using an automatic procedure, which

will not be described here.

Remark 4.3 : Let us define g" by

5” w _ -a
= Au+D+(u")-f

Instead of using a constant parameter p we can use a family (p )
n n

of positive

parameters in (4.3). Therefore (4.3) can be written as

(4.4)
n+l

U = un-pns-lgn.

Suppose A=At, then if we use (4.2),(4.4) with pn defined by

I J($-pnS-'g") <J($-pS-'gn) VPPER,

(4.5)

the resulting algorithm is a steepest descent method. This algorithm is

convergent for $ E Co(R) (we recall that 4 is non decreasing in this report).

We observe that at each iteration the determination of pn requires the solu-

tion of a one-dimensional problem (a "line search") ; for the solution of
*

such one-dimensional problems see POLAK Cl], BRENT [ll.

Remark 4.4 : At each iteration of (4.2),(4.3)  or (4.2),(4.4),(4.5) we have

'to solve a linear system related to S. Since

definite this system can be solved using the

the factorization

S = LLt

has been done.

From a practical point of view it is obvious

S is symmetric and positive

Cholesky method, provided

that the factorization of S

should be made in the beginning once for all. Then at each iteration we

just have to solve two triangular systems, which is a trivial operation.
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4.4. Newton's method

The Newton's algorithm is given by

. .
(4.6) u"ERN given,

(4.7) _
n+l

U = (A+D~'(un))-l(D~'(,n)~n-D~(un)+f),

where Q'(v) denotes the diagonal matrix

0
.

.

d+with @' = z .

Since $ is non decreasing we have @' 2 0, this implies that A+~'(v) is nositive
I .I L

definite VvelRN.

Remark 4.5 : At each iteration we have to solve a linear system. Since the

matrix A+$'(un) depends on n, the Newton's method above may be not efficient

for large N. However a variant of Newton's method avoiding partly that dif-

ficulty may be found in EISENSTAT-SCHULTZ-SHERMAN al. The idea is to replace

the complete solving of (4.7) by a few cycles of an iterative method for

solving linear systems ; for more details see the above paper.

Remark 4.6 : The choice of u" is very important when using Newton's method

moreover the convergence requires more regularity for $ (let say @E C2)

than in most of the methods to be described in the following sections.

4.5. Relaxation and Overrelaxation methods

We use the following notation

A = (a..)I-J lli,jLN  ' ,f = (fl'...fN1.
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Since A is positive definite we have aii>O Vi=1,2,...N.  Here we shall

describe three algorithms :

Algorithm 1 :

(4.8) -u" ERN given,

then for un known we compute u
n+l

, component by component, using

(4.9) aii cFW1+ di$(;q+')  = fi - 1 aij u;+* - 1 aij UT ,

j <i j>i

(4.10) uq+l = u; + w(;;+'+

for i=1,2,...N.

Since aii >O, d. >O, $ e Co@) and Q is a non decreasing function,
1

(4.9) has a unique solution.

If ~=l we recover an ordinary relaxation method ; in this case it follows

from CEA-GLOWINSKI i1I that if A=At and since $ is Co and non decreasing,

then the sequence {unjn associated with (4.8)-(4.10) converges to the

solution u of (4.1).

If in (4.1)'  A is not symmetric or of: 1, some sufficient conditions
*

of convergence may be found in ORTEGA-RHEINBOLDT Cl1 and S. SCHECHTER

Cl!, c23,  L31.

Algorithm 2 : This algorithm is the variant of (4.8)-(4.10)  obtained by

replacing (4.9), (4.10) by

I n+l n+l
a u.
ii i

+ di~(Ui ) = (I-bJ)(aii Up + d; I) +

(4.11)  (

1

n+l
+ W(f. - 1 a.. u. - 1 a.. ur!)

1 j<i lJ J j>i lJ

for i=1,2,...N.
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Remark 4.7 : If W = 1 or $ is linear the two algorithms coincide.

In the general case the convergence of (4.8)-(4.11) seems to be an

open question. However, from our numerical experiments it seems that. .
the algorithm 2 is more "robust" than algorithm 1 ; may be

because it is more implicit. Furthermore it can be used even if $

is only defined on a bounded or semi-bounded interval laypi of R such

that Q(a) = -03, $J(@) = +a ; in such a case if $E C"(]a,B[) and 0

is increasing, then (4.1) still has a unique solution but the use of

(4,8)-(4.10) with w>l may be dangerous.

Remark 4.8 : If $EC+R), an efficient method to compute E in (4.9)
n+l

and u.
1 in (4.11) is the one dimensional Newton's method :

Let ge Cl(R). In this case the Newton's algorithm for solving the

equation g(x) = 0 is

(4.12) x0 ER given,

(4.13) n+l nX gG>=x - - .
g' (xn>

-n+lIf in the computation of ui n+l
and u.

1
we use only one iteration of

Newton's method, starting from Uf, then the resulting algorithms are

identical and we obtain*

Algorithm 3 :

(4.14) u"EIRN given,

then for n>O

(4.15)
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Sufficient conditions for the convergence of (4.14),(4.15) are given

in S. SCHECHTER Cll, [21, c31.

Remark 4.9 : We may find in GLOWINSKI-MARROCCO Cl], [21, applications of

relaxation methods for solving the non linear elliptic equations modelling

the magnetic state of electrical machines.

4.6. Alternating direction methods

In this section we take p>O. Here we will give two numerical methods for

solving (4.1).

First method :

(4.16) u"eRN given,

n
once u is known, we compute u

n+l/2
bY

(4.17) ~u~+~'~+AL?+~'~  = pun--D$(un)+f,

then un+l by

(4.18) pun+' + D@(u"+') = pun+1/2-Aun+1/2+f .

For the convergenceof(4.16)-(4.18)  see, e.g., R.B. KELLOG cl].

Second method :

(4.19) _u" ERN given,

knowing un we compute u
n+1/2

bY

(4.20) ~u~+l'~ + Au
n+1/2

= pun-D@(un)+f  ,

then u
n+l

bY
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(4.21) pun+'+D$(un+') = pun-Au n+l /2+f

CPU
n+1/2

in (4.18) has been replaced by pun).

Using the results of LIEUTAUD Cl1 it can be proved that for all p>O,

un+1'2 and un converge to u if A, D and @ satisfy the hypothesis given

in Sec. 4.2.

Remark 4.10 : At each iteration we have to solve a linear system whose

matrix is independent of n if we use a constant step p. This is an

advantage from a computational point of view (see Remark 4.4).

We also have to solve a non linear system of N equations, but in fact

these equations -are independent from each other and reduce to N

non linear equations in one variable, which can be easily solved.

Remark 4.11 : Variant of (4.16)-(4.18) and (4.19)-(4.21) are obtained

by inversion of the order in which we solve the linear and non linear

problems. Doing so we obtain from (4.16)-(4.18)

(4.22) u” cRN given,

and for n>- 0

*
(4.23) pt~~+~'~+D@(u~+~'~) = pun-Aun+f,- Y

(4.24) pun+'+Aun+' = pun+1'2+)@(un+1/2)+fa

From (4.19)-(4.21) we obtain

(4.25) u" ERN given,

and for n2 0
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(4.26) _oUn+  l/2 +DQ(u
n+1/2

> = pun-Aun+f ,- w

( 4 . 2 7 )
n+l

+Au
n+l

PU = pun-D@(u n+1'2)+f.

If (4.16)-(4.18)  and (4.22)-(4.24)  may be viewed as the same algorithm

(with different starting procedures) this is not the case for (4.19)-(4.21)

and (4.25)-(4.27) ; indeed for the class of problems under consideration

it appears that for the same p the convergence of (4.25)-(4.27)  is faster

than the convergence of (4.19)-(4.21).

4.7. Conjugate gradient methods.

In this section wa assume that A=At. For a detailled study of conjugate

gradient methods we refer, e.g., to POLAK cl], DANIEL cl], CONCUS-GOLUB

ill. If the functional J defined in Remark 4.1 (see also (4.28) below) is

not quadratic (i.e. if @ is non linear), several conjugate gradient methods

can be used. Let us describe two of them, the convergence of which is stu-

died in POLAK cl:.

Let J given by

( 4 . 2 8 )
N

J(v) = ; (Av,v) + 1
i=l

di ~Vi)-(f,v) ,

t
where Q(t) =

f
$(T)d?:,  Q, being, as above, a non decreasing continuous

function on R,' with Q(O) = 0. Let S be a NxN symmetric, positive definite

matrix.

First method : (Fletcher-Reeves)

(4.29) u"cRN given,

( 4 . 3 0 ) _g” = S-'(A_u"+$(uo)-f),

( 4 . 3 1 )
0

w = go*
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Then, assuming that u
n and w

n
are known, we compute un+l by

n+l
(4.32) ,u = -““-$ yn,

where Pn is the solution of the one dimensional minimization problem

J(un+$) IJ(un+wn) VPPR,

( 4 . 3 3 )

\
Pn ER.

Then we compute 8
n+l

and wn+l by,

( 4 . 3 4 )  gn+* = S-!(A:
n+l

+O(ucvn+l>_f_) '

n+l
(4.35) yn+l  = g, n-+x wn

where

(Sgn+l,gn+l)
(4.36) An = - - .

(%?‘gn)

Second method : (Polak-Ribiere)

This method is like the previous method except that (4.36) is replaced by

Remark 4.12 : For the computation of Pn in (4.33)' see Remark 4.3.

Remark 4.13 : It follows from POLAK Cl], that if Q is sufficiently smooth,

then the convergence of the above algorithms is super linear, i.e. faster

than the convergence of any geometric sequence.

Remark 4.14 : The above algorithms are fairly sensitive to round off errors ;

hence double precision may be required for some problems. Moreover it may

be convenient to take periodically wn = gn (in this direction see POWELL [l]

where more sophisticated restarting procedures are discussed).
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Remark 4.15 : We have to solve at each iteration a linear system related

to S, Remark 4.4 applied to these algorithms also.

Remark 4.16 : Since the matrix S is symmetric and positive definite, an

obvious choice is S = I
N ’ but in some problems it may give a slow

convergence. Since A is symmetric and positive definite another obvious

choice is S = A.

In BARTELS-DANIEL cl! and DOUGLAS-DUPONT 111 cne may find applications of

conjugate gradient methods (very similar to those of this section) to the

numerical solution of mildly non linear second order elliptic equations

like

-V*(ao(x>Vu>  + G(u) = f on 9,

( 4 . 3 8 )
I I
’ Ulr = g.

Assuming that (4.38) has been discretized (by finite differences or finite

elements) the above authors take for S a discrete analogue of -A ; in the

case of finite difference approximations, this choice allows them to use

Fast Poisson Solvers. We refer to BARTELS-DANIEL and DOUGLAS-DUPONT, lot.

cit., for more details (see also the very recent paper of CONCUS-GOLLJB-O’LEARY

L-11).

4.8. Comments

The methods of this Section 4 are fairly classical and may be applied to

more general non linear systems than (4.1). They can be applied of course

to the solution of the finite dimensional systems obtained by discretization

of elliptic problems like

I -V*(ao(x)Vu)+Wu+$(x,u)  = f in R,

1 + suitable boundary conditions,

where, for fixed x, the function t -+ $(x,t)  is continuous and non decreasing

on W.
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5 . - NUMERICAL SOLUTION OF (Ph) BY PENALTY-DUALITY ALGORITHMS

5.1. Formulation of the discrete problem. Orientation.

We use the notation of Section 4. We have seen in Sec. 4.2 that (P,)

reduces to a non linear system like

(5.0 Au + D@(u)  = f

where A is a NXN positive definite matrix, D is a diagonal matrix with

positive diagonal elements d;'s and where

O(U) cRN with (~(u)>i = ~(u;>  l

If the bilinear form a(*,*) of Sec. 2.1. is symmetric then A is also

symmetric.

Following FORTIN-GLOWINSKI Cl1 and GLOWINSKI c2, Ch. 51 we shall describe

in the following sections two algorithms for solving (5.1). These two al-

gorithms are based on a decomposition-coordination principle, via penalty-

duality (they are strongly related to augmented Lagrangian methods ; see

Remark 5.2 for motivation). The proof of the convergence of these algorithms

are not given here, since they follow from general results which may be found

- in the two references above.

Numerical applications of these methods to problems like (4.38) and com-

parisons with other methods are given in Sec. 6.
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5.2. Description of the algorithms. Remarks.

5.2.1. A first algorithm.

Let r be a positive parameter.

Let us denote by ALGI the following algorithm :

(5.2) A0 ,RN, arbitrary given,

then for n ~0 we define un,p n,An+l byw w w

run + D$(un) = f + rpn - An ,

(5.3) - - - - -

(rI+A)pn = run + An ,

(5.4) An+] = An + p(un-pn).- w

Remark 5.1 : Looking at (5.2)-(5.4) it appears that the main difficulty when using

this algorithm is the solution of the nonlinear system (5.3). Fortunately (5.3) has

a very special structure making it very suitable for a solution by block-relaxation

(or under or over relaxation) methods. More precisely (5.3) is a particular case

of the following nonlinear system in R
2N

rx + D@(x)  = ry + fl ,
-

(5.5)

(rI+A)y = r x + f-2 l

A block relaxation algorithm for solving (5.5) is the following

(5.6) y" cRN given,

then for m?O we compute x
m+l

and ym+l by

(5.7) rxm+' + D@(xm+') = rym+f
-1 '

(5.8)
m+l

(rI+A)y
m+l

= rx + f-2 l
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We observe that if y"
m+l

is known in (5.7) then the computation of x is easy

since it is reduced to the solution of N independent, single variable nonlinear

equations of the following type

(5.9) rt + d+(t) = b

with d>O. Since r >O and Q is Co and non decreasing, then (5.9) has a unique

solution which can be computed by various standard methods (see, e.g. HOUSEHOLDER

[I], BRENT Cl]).

m+l
Similarly if x

m+l
is known in (5.8), we obtain y by solving a linear system

whose matrix is rI+A. Since r is fixed it is very convenient in some cases to

prefactorize rI+A  (by Cholesky or Gauss methods).

If A=At , then (5.5) is equivalent to

where

Since j is a C1 strictly convex function of {c,~}  , such that
5 ..a

lim j(S,q> = +a
(ll~ll+llrlll)++- - -

it follows from CEA-GLOWINSKI [1] that the sequence {x",y"> given by (5.6)-(5.8)

converges to the unique solution {x,y)  of (5.5) (and ;5.;0)).
5 w

When using (5.6)~(5.8) to solve (5.3) an obvious choice for y"
n-l

isp .
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Remark 5.2 : We suppose that A=At. Let us define

bY

N
(5.12) ~,(wl'l-d  =- .,, ,.., 1 di@(vi)-(fYv)+  5 l[V-ql12+  (p,V-q) .

i=l w ,., -.a ..d w w N

Then& is an augmented lagrangian (see, e.g., HESTENES [l], GABAY-MERCIER [l],

FORTIN-GLOWINSKI Cl] for more details) related to the minimization problem

(5.12) Min {~(Aq,q) + ~ di ~(V >i - (f'd
{v,q) E-W - - iyl - w

where

W = h,q) cR2N , v-q = 0) .- v w -

The minimization problem (5.12) is obviously equivalent to

Min {$Av,v) +
N

v,RN 2 -- i=l
C di ~(Vi)-(f,V)}- Ly

i.e. to

Au + Dr$(u) = f,

which is the nonlinear system (5.1) under consideration.

One may easily prove that if u is the solution of (5.1)' then (u,u,Au) is V rL0,

the unique saddle-point of drwover R3N
w- -

.

From these properties it appears that the algorithm (5.2)~(5.4) (ALGl) may be

interpreted as an Uzawa algorithm (see GLOWINSKI-LIONS-TREMOLIERES Cl, Ch. 21,

EKELAND-TEMAM [l]) for computing the above saddle-point ofzr. Moreover X= Au

appears as a Lagrange multiplier related to the linear constraints v-q = 0.
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5.2.2. A second algorithm.

With r as in Sec. 5.2.1.' let us denote by ALG2 the following algorithm

(5.13) {~“,X’}  cR2N given,
- w

then for n 21 we define u
n
,pn,h

n+l
bY-4 -.d N

(5.14) run
n-l

+D$(un) = f + rp -hn ,

(5.15) (rI+A)p
n

= run + An ,

(5.16) An+* = An + p(un-pn).-_ _ a.,

Remark 5.3 : Assume that in ALGI we use the block-relaxation algorithm (5.6)-

(5.8) to solve (5.3). Then if we use y" = p
n-l

as a starting vector, and if

we only do one iteration of (5.6)-(5.8)' then ALGl reduces to ALG2.

Remark 5.4 : Sunnose that p=r in ALG2 ; we have then

run + D+(un) = f + rpn-* - ~~ ,

(5.17) rpn + Apn = run + xy

\ x
n+l = An- + .[?f-pn)  l

It follows from (5.17) that

(5 .18) ’ An+* = Apn .

Then from (5.17)'  (5.18) we obtain

(5.19) run + D$(un)+Ap
n-l n-l

=f+rp ,

(5.20) rpn + Apn + D$(un)  = f + r pn-*.

Therefore, if P=r, ALG2 reduces (with different notation) to the alternating

direction method described in Sec. 4.6 by (4.25)-(4.27).



- 49 -

5.3. Convergence of ALGl,  ALG2. Further Remarks

5.3.1. Convergence results.

It follows from FORTIN-GLOWINSKI [l],..GLOWINSKI  [Z, Ch. 51 that the properties

of A, D, $ imply that we have convergence of {un,pn,hn) to {u,u,Au} if in ALGlex, m - 5..d v
(resp. ALG2) we take

(5.21) O<p<2r

(resp.

(5.22)
l+ J.7

O<p<-7j---- r).

5.3.2. On the choice of p and r.

If r is given our computational experiments with ALGl and ALG2 seem to indicate

that the best choice for p is p=r . The choice of r is not clear and ALG2 appears

to be more sensitive to the choice of r than ALGl.  In fact ALGl seems to be more

robust on very stiff problems than ALG2. We mean that the choice of the parameter

r is less critical and that the computational time with ALGI may become much

shorter than with ALG2 for a given problem.

Remark 5.5 : (On the choice of r in ALGI).

About the choice of r in ALGl it can be proved that theoretically the largest is r,

- the fastest is the convergence ; practically the situation is not so simple for

the following reasons : the largest is r, the worse is the conditioning of the

problem (5.3). Then since (5.3) is numerically (and not exactly) solved at each

iteration, an error is done in the calculation of (un,pn}.  The analysis of thisN N
error and the effect ot it on the gloval behaviour of ALGl is a very complicated

problem since we have to take into account the conditioning of (5.3)' the stop--

ping test of the algorithms solving (5.3)' round-off errors, etc...

Fortunately it seems that the combining effect of all these factors is to give

an algorithm which is not very sensitive to the choice of r.
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6. - NUMERICAL EXPERIMENTS AND COMPARISONS WITH OTHER METHODS.

6.1. The test problem.

We consider the following test problem

- AU + $(u> = f on R,

(6.1)

where R = 10,1cx10,1c,

$(t> = sgn(t) ltjR = tjtlR-l , R>O .

If (with x = {x 1,x2)) we define u by

u(x) = sin 27rx 1 sin 27Tx 2'

then for f given by

f = 8.rr2u  + @-*u

the exact solution of (6.1) is u.

- The behaviour of 4 is shown on fig. 6.1

1 t
Figure 6.1.
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We observe that $ is not smooth near t=O if O<R < 1 ; hence Newton-type methods

are not very suitable for this kind of $'s.

If we discretize R using an uniform square grid with equal grid spacing in both

the x
1 and x2 directions, our matrix A, in ALGl and ALG2,  will be the usual dis-

crete laplacian matrix (since R is a square, a finite difference approximation

of (6.1) is very convenient). So in both our algorithms ALGl and ALG2 we have to

solve the discrete Helmhotz's equation, namely the discrete formulation of

(6.2) - Au + ru = f.

There existfastdirectsolvers of Helmhotz's equation on a uniform mesh in a

rectangular domain. We used such a solver called TBPSDN, written by B.L. Buzbee

(cf. BUZBEE-GOLUB-NIELSON [l]) at Los Alamos Scientific Laboratory, and tested

and modified for Lawrence Berkeley Laboratory by Gary A. Sod. This solver

incorporates the truncated Buneman's algorithm, using the standard five point

difference approximation for the laplacian.

We have seen in Sec. 5 that each iteration of ALGl and ALG2 requires the solution

of one-dimensional nonlinear equations of the form

(6.3) rE + d+(c) = RHS

with d > 0 (since we are using finite differences we have in fact d=l).

We do not want to use Newton's method to solve this equation because :

(i> If + Q C* we may have troubles with Newton's method,

(ii) We think that an efficient method not using 4' may be more interesting in

view of more general problems.

There exists one-dimensional nonlinear equation solvers which do not require

derivatives. We used such a routine, called ZEROIN and due to Richard Brent.

This method is described in BRENT [l]. ZEROIN will always locate a root within

a given interval where it is known to lie, to within a given accuracy TOL.



- 52 -

From the facts that Q(O) = 0 and that $ is non-decreasing, we can easily deduce
RHS

that the solution 5 of (6.3) is in the interval [O, --r----J if RHS >O and in the

interval [F ,O] if RHS ~0. . .

For the inner loop (5.7),(5.8) convergence test, in ALGl, we have used the R1

norm (the actual norm used is not important ; we have also used the R 2 norm

and obtained similar results).

In our experiments, for the purpose of comparisons, we stop our iterations when

II n
p, -u4112<ACC where yh is the exact solution of the discretized system

Ayh + @(ljh> -7 f (here D=l) ’

with a uniform spacing h (we recall that if p is well chosen, cf. Sec. 5.3.1.'

then {un,pn,Xn}- w w converges to {"h,~h,Ayh}).

In practice, yh is not known and so some other kind of stopping criteria has

to be used, e.g.

II !!n+l-pn/l
2 KC

II n+lE II
in some suitable norm.

-

Remark 6.1 : We can determine uh with a very good precision by running ALGl or

ALG2 on the test problem until (un-pn)  is very, very small. Notice that if
n
u =pn then Apn+ Q(un) =fandhenceuh  n=pn.=U Incidentally the closeness

of u
n-+

to P
n 5

can be used as another stopping criteria or as a check on the final
ii

iterate p .

6.2. Study of parameters in ALGl and ALG2.

We would like to study the effect on the general performance of the algorithms

ALGl and ALG2,  of the following parameters :
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ALGl : {G",~o,Xo,r,p,~, TOL) ;Y _ w

E is the tolerance parameter for the stopping test of the inner loops of ALGl.

The parameters X0 ,r,p,TOL have been defined before. The vectors ci',p^' deserve.x. ..d
some more explanations. It follows from Sec. 5.2.1, Remark 5.1, that the non-

linear system (5.3) may be solved by the block-relaxation algorithm (5.6)-(5.8)  ;

we have used precisely that last algorithm for solving the examples of Sec. 6,
n-l n-l

taking u ,p n nas starting vectors to compute u ,p . Therefore to compute
0 8 - m

U ,p" from X , we need some starting vectors which are precisely what we haveQ w
:o -0denoted by u ,p above. Since un and pn converge to the same limit we have,.. _

A0 A0 -systematically taken u = p .

ALG2 : ~~",po,X1 ,r,p,TOL~ ;P.8 w -

We recall that in ALG2,  p" and x1 are given (see Sec. 5.2.2.). Since u" is

computed, from p" and hl, by an-iterative method we need an initial guess
*O

say u . In fact we have systematically taken 6' = p".

In addition we want also to study, to some extent, the effects of the smoothness

of Q on the algorithms. This smoothness can be controlled by R, since

@(t> = tltjR-* , R>O.

6.2.1. Effects of G",po.
w w

Basically ALGl (resp. ALG2) will converge for any starting vector G'(=p^')

'(resp. !'(=G')). Obviously when an approximation of the solution u of
,h

(6.4) Ayh + $(y,> = f

is known we should use it. But most often (i.e. for general f,) we do not know

what the solution is like. So we are often forced to start with some constant
*Ovalue like u = 0 (resp. p"=O) or f" (resp. p") with constant components.

Intuitively if @ has a sharp jump at t* (in our case t*=O if Re]O,l[ since

$'(O) = +m) we would expect that the points of the grid where u *
,h

is near t
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will produce the slowest convergence for the corresponding component of u
,h'

This was observed in our experiments. For our test problem, $I has a sharp

jump at t* = 0 (if JklO,lC)
A0

; if we start with u. = 10 , Vi=1
1

y... N Y
0

(resp. p. = 10 , vii=*,... N),
1 the convergence is generally fast except for

points where yh is close to zero. In all cases the maximum final errors

occured at such points. However if we start with So=0 (resp. p" = 0) no
w w

difficulties were observed with these points. Our guess is that is we start

with 0 we are starting with a good guess of the components of ,u~ at which $I

has a sharp jump and which we expect slow convergence. Very often we know

where + has a sharp jump and we can take advantage of this knowledge (at least

if r$ is not too complicated).

Therefore we can in general recommend the following :

(i> If C$ is known to have a sharp jump at t*, and if we don't have a good

approximation of u-h to start with, use 6' = t* (resp.  p
0
= t*) (i.e. set

y W
-0u. = t
1 * Vi=l,...N , idem for p').

(ii) Otherwise, start with the best approximation available.

For example, Figure 6.2 shows that ALG2 (i.e. with no inner loop c-test) works

just fine with p" = 0 but has problem if started with p" = 10. Luckily, as we

shall see later, ALGl (with inner-loop E-test) will overcome"this trouble.a

Form Figure 6.2 it appears that the convergence is linear if p" = 0 and

sub-linear if p
0

= 10.- -
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Effect of starting vector p”

ALG2 : 17 xl7 grid ,I, = .l , ACC = 10
-6

r=p=5 , AO=O.

L2 error of pn

1 2 3 4 5 6 7 8 9 iter.
. . I I I n . * n
I I n I I I I I I >

10 -1

1 f2

1 o-3

10 -4

- 1 o-5

lb-+

Difficulty : e(t) has a sharp jump at t=O.

0.3x10-j after 50 iterations

Figure 6.2
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6.2.2. Effects of X0

Note that with the exact solution jth we have

._
x = AEh = f - $(th).

So two natural choices for X0 are

(i) AGo (resp.  A PO)  ,

(ii) f - @(GO) (req. f - (4p">> .

If ci" (resp. p") is a good approximation to u then A0 will be a good approxi-
Nh' -

mation to X. -_

For our test problem, if Go = 0 (resp. p" = 0), then the two choices for A0

are 0 and f. We have tried both and conclude that the convergence of ALGl

and ALG2 was quite insensitive to these choices of X0.

6.2.3. Choice of p.

We actually found that the best choice for p is p=r for our test problem.

Similar observations have been done by GLOWINSKI-MARROCCO [3], GABAY-MERCIER

[l], for algorithms like ALGl , ALG2,  applied to the solution of other classes

of nonlinear problems.

6.2.4. Choice of TOL

TOL measures how accurately we want to solve, with ZEROIN,  the one variable

nonlinear equations, obtained from ALG2 and the inner loops of ALGl.  From

our experiences we recommend a value of TOL = ACC. Intuitively this makes

sense because if TOL>ACC we won't be able to obtain the required accuracy

in the final solution because our intermediate steps are not solved accura-

tely enough. If TOL<<ACC,  we spend more work in each inner loop than it is

necessary and from our experience, this doesn't improve the convergence of

the algorithms.
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6.2.5. Choice of E.

This parameter is used in the inner loop of ALGl to decide when to stop

the inner iterations and update Xn. Note that if E-+* , ALGl -+ ALG2

because we will be updating Xn after only one iteration every time.

In general, ALGl (with a reasonably small E) is more robust than ALG2.

ALG2 will work a little better (takes less iterations) than ALGl if we

start with a "good" guess at the solution (p" = 0 in our test problem)

but if we start with a "bad" guess (p"--0, e.g.) ALG2 will have problem
- -

at points where has a sharp jump, as explained earlier. In fact ALGl

solved the inner equations more accurately and thus its updating of Xn

will be more accurate and this is often enough to bring us very close to

the solution we want. (See Figure 6.3. For the test problem, ,,10B4 seems

to be a good choice.) In other words, ALGl's 'cautiousness" in updating AL1

pays off. ALGl may lose a little bit in the early itarations by spending"

too much time in the inner loop but it gives a better chance of obtaining

a solution to within the required accuracy. Therefore, in general, ALGl

is to be recommended. We think that some reasonably small value for E,

like E = dm, will work fine. Another approach is to use variable E i.e.

a sequence {E~}~ ; this requfres further investigation.

6.2.6. Choice of r .

We complete the Remark 5.5 of Sec. 5.3.2.. The parameter r controls the relative

weight of the penalty term in the augmented lagrangian (see (5.10)). This

penalty term has the effect of providing some global convergence steering.

We varied the value of r in ALGl with the test problem and found that the

convergence is surprisingly insensitive to r (see Fig. 6.4). This is an

advantage over SOR and AD1 type methods which are very sensitive to their

parameters (as will be shown later).
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Effect of fz

ACC=lO
- 6 ,I,=.1 , 1 7  x 1 7  grid,

r = p = 5 , ho = 0

10
- 6

N.B. : For ALGl we count the inner iterations.

L2 error

1 2 3 4 5 6 7 8 9 10 11 12
1 . . . I a . . . . I
. I I w m m m I I I n

a, ,
n

iter.

A0u =o 3O= 10
- - 4 - - 4. & = 10 ; = 10

ALG 1 ALG 1

Fig. 6.3
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6.2.7. Effect of the smoothness of $.

The smoothness of $I can be controlled by J?, in our test problem. We ran ALGl

with R=. 1 and R=.5 and found that ALGl actually performs a little bit better

for g=.l than for the "smoother" R=.5. We also determined the optimal r for

g=.5 and found it to be about the same as that for R=.l.

6.3. Comparisons with other methods.

6.3.1. Descrintion  of the other methods.

For a given accuracy ACC on Ilpn-yhl12 we want to compare the efficiencies of

ALGl,  ALG2 and other methods for solving the discretized problem

Among these methods compared are the Successive over-relaxation method (SOR)

and the alternating direction implicit (ADI) methods discussed in Sec. 4.6.

These methods are reproduced below :

1) SOR : We can look at the discretized equation

- as a system of non linear equations

5(U~,U2”‘UN)  = ’ ,

‘(6.5)

Then we can use (cf. Sec. 4.5) the two following variants of SOR :
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SOR 1 :

(6.6) y” given . .

at step n, with un known, we compute u
n+l

by :
-ts

For i from 1 to N, solve

(6.7) fi(u~+*
n+l n+1/2 n

Y"*"i_* Y U =i 'USI+*-•* > 0'

then

(6.8)
n+l _ n=-' u . n+l/2

U
i 1

+ o(u.1
-2) .

SOR 2 :

(6.9) _u” given,

at step n, with un known, compute u
n+l

by :

For i from 1 to N, solve

_ (6JO) fi(u;+*
n+l n

,...U. Y"i+*"' >1
= (*-0)f;(u’]‘+*...u~+;,u~  ,... ).

2) ADI : We consider the following variants of AD1

ADI 1 : We iterate on the following

(6.11) u” given,

then for n 2 0

(6.12) (~I+A)u~+*‘~ = f + pun-$(un) ,

(6.13)
n+l n+l n+l/Z

PU +$(u )=f+pun-Au .
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ADIlM : We replace (6.13) by

(6.14)
n+l n+l

PU +$(u > =f+pu
n+1/2-Aun+1/2

.

AD12 : It is defined by

(6.15) u" given

then for n>O

(6.16)
n+1/2

U +w-l n+1/2) = f + pun-Aun  ,

(6.17)
n+l

PU + Au
n+l

= f + pun - Q(u
n+1/2

> l

ADI2M : We replace (6.17) by

(6.18)
n+l

+ Au
n+l

PU =f+pu
n+1/2

- $(un+1'2) .

6.3.2. Comments. Further Remarks.

One of the main problem with SOR and ADI is the sensitivity to the parameters w

and p respectively. Hence we first study the convergence of SOR and AD1 as a
-

function of their respective parameter w and p. See Fig. 6.5, 6.6, 6.7, 6.8.

Remark 6.2 : AD11 (and ADIlM) both didn't work well and their plots are left out.

The difficulty may be due to solving the linear part first instead of the nonlinear

part first.

Remark 6.3 : From these plots we can see that both ADI2M and SOR are quite sensitive

to their parameters whereas ALGl and ALG2 are not (specially ALGI).  For linear pro-

blems one can usually find some good estimates for the optimal parameters. However,

for nonlinear problems this is often difficult.
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Remark 6.4 : It follows from Remark 5.3 that ALG2 and AD12 are in fact the same

algorithm. This appears clearly in Table 6.1 which summarize some of our compu-

tational experiments. From this table we can see that ALGl performs the best if
0

U is not close to the solution u
h'

6.4. CONCLUSION.

From our experiments on the test problem, we can make the following empirical

statements :

W The convergences  of ALGl and ALG2 are not very sensitive to their parameters,

in particular the penalty parameter r.

(ii) ALGl is more robust and as efficient as ALG2 in general.

(iii) ALGl is more efficient than SOR and ADI for functions 4 that are not smooth.



- 63 -

Effect of r (=p)

R=.l , 17 x 17 grid, ACC = 10
-6

, bO=O,

with E = 10v4
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J iter.

- 64 -

SOR

SORl
0

u =o

kc c* 0-6

R = .l

17 X17 grid points

30 I I I L
1 I I I >

1.4 1.5 1.6 1.7 0

0
opt

= 1.57

h iter.
X
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/

xl-x
34 _-

SOR2

u” = 0
m
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R = .l

17 x 17 grid points

32 -.
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w
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Fig. 6.5
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AD1

AD12 , u” = 0 , ACC = lo+ . Q. = .I

15

10

5

0

ADI2M  , u” = 0

10-

8

6

Fig. 6.6
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AD1 , u” = l$-ry
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Comnarison of the different algorithms

Required accuracy : L2 error< 10
-6

R = l * Y 0 (4 = w-h) I@ , 17 X 17 grid points

Optimal parameters are used.

0
u =o

Algorithm

ALG~(E=~O-~)

ALG2

SORl=

SOR2

AD12

ADI2M

Algorithm

ALG2

SORl

SOR2

AD12

ADI2M

Time (using
optimal parameter)

2.54 sec.

1.56 sec.

5.47 sec.

5.9 sec.

1.67 sec.

0.65 sec.

0
U = 10

Time (using
optimal parameter)

3.1 sec. 14

11.7 sec. 50

7.0 sec. 48

7.48 sec. 47

11.5 sec. 69

7.5 sec. 45

T

-

l-

Iterations

11

6

36

36

7

2

Iterations

IBM 370/168 , FORTRAN H , OPT = 2. - Double precision

Table 6.1
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