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Abst r act

We describe in this report the numerical analysis of a particular
class of nonlinear Dirichlet problems. W consider an equival ent
variational inequality formulation on which the problens of existence,
uni queness and approximation are easier to discuss. W prove in particular
the convergence of an approximation by piecewise linear finite elenents.
Finally, we describe and conpare several iterative nmethods for solving the
approximate problems and particularly sone new algorithns of augmented
| agrangi an type, which contain as special case sone well-known alternating

direction nethods. Nunerical results are presented.
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1. - 1 NTRODUCTI ON
In this report we would like to discuss the numerical analysis of mldly
non linear elliptic partial differential "equations Of the follow ng type

Au + ¢(u) = f
(1.1)

Up = 0,
where in (1.1)

- Ais a second order elliptic operator, possiblynotself adjoint,
-$: R~>R, ¢cc’@®) and is.non decreasing,
- f is a function defined on Q.

In fact some of the results and nethods to be described here nay be extended
to nore conplicated problems or to problenms with other boundary conditions.
In Section 2 we give a variational fornulation of (1.1) (problem (P)) and
then introduce an equival ent variational inequality (problem(m)) for which

the existence and uniqueness properties, as well as the numerical analysis,
are easier to study. W also prove an existence and uni queness theorem and
various |lemmas useful in the nunerical analysis sections of this report.
In Section 3 we study a finite elenent approximtion of (1.1) and prove
that the approximate solutions converge to the solution of the continuous
-problem for some Sobol ev nornmns.

In Section 4 we describe various standard nethods which can be used to
solve the approximate problem obtained in Sec. 3. Sone of these nethods
are.. Gadient and Conjugate gradi ent methods, Newton's nethod, SOR, ADI.
In Sec. 5 we introduce some new nethods based on the sinultaneous use of
penalty and lagrange nmultipliers which contain some ADI algorithms as

particul ar cases.

In Sec. 6 we use the above methods to solve a test problem Conparisons
between the standard methods of Sec. 4 and the methods of Sec. 5 suggest
the superiority and nuch nore robustness for the new al gorithmns.



We may find in BARTELS- DANI EL [1], DOUGLAS- DUPONT [1](resp. EISENSTAT-
SCHULTZ- SHERVAN '1]) conjugate gradient algorithns (resp. Newton's
algorithns) for solving equations like (1.1), once a suitable approxi-
mati on has been made.

For the material concerning the Sobolev spaces, (definitions, properties,
etc...) we refer to the classical treatises of ADAMS [1], NECAS [11].

W refer also to D.J. FIGUEIREDO [1] where the reader interested by the
theoretical aspects of non linear elliptic equations will find a survey
of the various techniques which can be used to study these problens,

including the nost recent results of the theory of npnotone operators.

2. - A CLASS OF MLDLY NON LINEAR ELLIPTIC EQUATI ONS
2.1. Formulation of the problens
Let Q@ be a bounded domai n of RN (Nz2) with a snooth boundary I'. W

consi der

V=@ = lver?@®,% et?@ i=1,...x, v|, = 0}.
o BT( T
SL: VoR,i.e L(V) = <f,v> where fev' = H L@

(V' is the dual space of V and <+,+> the duality pairing between V'

and V).
-a: VxV >R bilinear, continuous and V-elliptic, i.e. 3Ja>0 such
t hat
2
(2.1) a(v,v) = OLHVHVVveV
wher e
2 1
@2 vl - <f I7v| 2axy /2 -
Q

we don't assune that a(*,*) is symetric.

-¢: R R, ¢eC°( R), non decreasing with ¢(0) = 0.



We then consider the followi ng non linear variational equation

Find ue Vv such that ¢(u) e L](Q) nv' and
(P)

a(u,v) +<¢(u),v> = <f,v> ¥V ve V.

It follows fromthe Riesz Representation Theorem (see, e.g. YOSIDA [1])
that there exists Ae£(V,V') such that

a(u,v) = <Au,v> Yu,ve V ;
therefore (P) is equivalent to
| AU+ d(u) = f,
(2.3) UEV,
oW e LI(R) nv'.
Exanple 2.1 : Let us consider aoeLoo(Q) such t hat
(2.4) ao(x) 20 > 0 a.e. on Q.

Define a(+,*) by

(2.5) a(u,v) = f ao(x)Vu'Vv dx + J BsVu v dx
Q Q

where B is a constant vector in RN‘

Fromthe properties of a and using the fact that
J BeUv v dx = 0 YveH (Q)
Q o

we clearly have

a(v,v) > af[v]|Z so that a(+,+) i's V-elliptic.



From (2.5) we obtain

Au = - V'(aOVu) + BeVu ,
hence in this particular case (2.3) becones

- V‘(aOVu) + B*Vu + ¢u) =T,

UEV, ¢(u) el ().
Remark 2.1 : If N=I we have Hé(Q)cco(ﬁ). From this inclusion there is no
difficulty in the study of one dinmensional problenms of type (P). If N22
the main difficulty is precisely related to the fact that H:)(Q) i s not

contained in c°(®).

Remark 2.2 : The analysis given bel ow may be extended to problems in
which either V = HI(Q) or Vis a convenient closed subspace of H] Q).

2.2. A variational inequality related to (P).
2.2.1. Definitions

Let
t
(2.6) 8(t) = J o (T)dT
0
(2.7) D) = {vev, o(v) el (@} .

. The functional j : 12(2) K is defined by *)

J d(v)dx if d(v) e L](Q),
(2.8) 5(v) it

v if a(v) L.

Instead of studying the problem (P) directly, it is natural to associate wth

(P) the following elliptic variational inequality(**)

(*) R =Ru{+o} u {-x} .

(**) For variational inequalities and their approxinmation see GLOWINSKI-LIONS-
TREMOLIERES [ 1], [ 21, GLOWNSKI [1]1, [2].



k a(u,v-u) + j(v) = j(u) =2 L(v-u) YveV,
(m)
UEV.

If a(+,*) is symmetric, a standard nethod to study (P) would have been to

consider it as the formal Euler equation of the following mninzation pro-

bl em encountered in the Calculus of Variations :

J) <J(v)VveV,
Q)

ueV

wher e

J(v) = ]7 a(v,v) + L} ®(v)dx - L(v).

Therefore associating (m) to (P) is a natural generalization of this approach.®

We clearly have

Proposition 2.1 : D) is a convex, non enpty subset of V.

2.2.2. Properties of j(*):

Since ¢ : R >R is CO, non decreasing with ¢(0) = 0 we have
(2.9) ®6C1(R), ® convex, ®(0) = 0, (s(t) 20 VYt eR.
The properties of j(+) are given by the following | emma :

(*)

Lemma 2.1 : The functional j(¢) is convex, proper and l.s.c.(**) over LZ(Q).

Proof : Since j(v) 20Vv eLz(Q) it follows that j(*) is proper. The convexity

of j(*) is obvious fromthe fact that ¢ is convex.

(x) j(*) proper neans that j(v) >-o yveV, | # +x,

(**) 1l.s.c. : abreviation for |ower sem continuous.




Let us prove that j(*) is l.s.c.:
2
Let (vn)rl s V€ L" () ¥ n, be such that

[im vn = v strongly in LZ(Q).
n >+

Then we have to prove that

(2.10) ['iminf j(vn)zj(v).

n>-+co

[f liminf j(vn) = +o the property is proved. Therefore assune that

n-—>+w
liminf j(v.) =2 <+« ; hence we can extract a subsequence (v_ )
n n n
n->+ow k 'k
such that
(2.11) lim j(v.) =2,
koo nk

(2.12) v_ > v a.e in Q.
x

Since ¢ e CI(R), (2.12) inplies
(2.13) lim ¢(v_ ) = o(v) a.e.
ko Mk
Moreover &(v) 20 a.e. and (2. 11) inplies that

(2.14)  {8(v_)}, is bounded in L.
My

Hence by Fatou's lemm, it follows from (2.13) (2.14) that we have

s el (@,

(2.15)
lim inf J (v )dx = J o (v)dx.
ko>+o Q) nk Q

From (2.11) and (2.15) we obtain (2.10) ; this proves the lemma. a



Corollary 2.1 : The functional j(+) restricted to V is convex, proper

and 1l.s.c. .

2.2.3. Existence and uni queness results for (m).

Theorem 2.1 : Under the above hypothesis on V, a, L and ¢, problem (m)

has a uni que solution in V nD(9).

Proof : From the above properties of V, a, L and j, we can apply sonme
standard results concerning elliptic variational inequalities (see, e.g.,
LI ONS- STAMPACCHI A [13, LI ONS [1], EKELAND-TEMAM [1], GLOANNSKI [17, [21)
which inply that (w) has a unique solution u in V.

Let us now show that ueD(9) :

Taking v=0in (1T) we obtain

(2. 16) a(u,u) + j(u) <L(w) < [[£]] [[ully

wher e
Hﬁl . = sup l<f+v>|_

vev-{0} [l

Since j(u)2 0 and using the ellipticity of a(e,+) we obtain

f
(2.17) llully < ”;l*

which inplies, conmbined with (2.16) that

2
1111

a

(2. 18) j(u) <

This inplies u €D(¢). ™

Remark 2.3 : If a(e,s) is symmetric, (m) is equivalent to the ninimzation

problem (Q of Sec. 2.2.1.

2. 3. Equival ence between (P) and (17).

In this Section we shall prove that (P) and (w) are equivalent. W prove
first that the unique solution of (m) is also a solution of (P). In order



to prove this last result we need to prove that ¢(u) and up(u) € LI(Q).

Proposition 2.2 : Let u be the unique solution of (7). Then ud(u) ggi
¢ (u) belong to L](Q).

Proof : Here we use a truncation technique. Let n be a positive integer.
Define

Kn ={vev,|vx)| < n a. el

Si nce K is a closed, convex, non enpty subset of V,the follow ng
variational inequality

aﬁhﬁﬁggﬁ(w—jwn)ZLWﬂ%)Vve K.,
(m)
‘n' ﬁw

has a unique solution. Now we prove that

[im u =u weakly inV,

n—>+co

where u is the solution of (m).
Since 0¢ KW taking v=0in (m ) we obtain, as in Theorem 2.1 of this
Section, that

£l
< .
(2.19) loplly < —
2
(2,20 ) Nk
. Ju ) = 5
It follows from (2.19) that there exist a subsequence - still denoted by

*
{un}n - and u €V such that

(2.21) lim u = u” weakly in V.

n->+coo
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Moreover from the conpactness of the canonical injection from H(])(Q) into
v
LZ(Q) (see, e.g., NECAS[1]1), and from(2.21), it follows that

(2.22) [limu_ = u strongly in LZ(Q).
n>-+00 n -
Relation (2.22) inplies that we can extract a subsequence - still denoted

by {un}n - such that

(2.23) l[limu = u a.e. in Q.

Now | et veVan(Q), then for n large enough we have ve K and
(2.24) a(un’\;un)+j (u) < a(un,v)+j (v)—L(v—un).

Si nce

L *  *
liminf a(u_,u ) >a(u ,u)
o+ o n’ n

and

liminf Q) =3
n->~+oo n

it follows from (2.21) and (2.24) that

g a(u”,uM+i ") £ a@”, M+ (V)-Liv-u™) Vvel (@) nv,

u* ev
which can also be witten as

a(u*,v—u*)+j (v)-] (u*) ZL(v—u*) Yve Vn Lw(Q),

*
u €V,

(2. 25) %
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For n>0 define T, ° VK by (see Figure 2.1)

(2.26) TV = inf (n,sup(-n,v)).

Figure 2.1

Then from STAMPACCH A [1] we have

1
(2.27) Tvev = H () Yn,

(2.28)

l[im t v = v strongly inV,
n-)'+00

[im Tnv = v ae ingQ.
>+

Moreover we obviously have

(2.29) lTnv(x) | < lv(x) . a.e.,

(2.30) V(X)Tnv(x) >0 a.e.

It

follows then from (2.28)-(2.30) that
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(2.31) 0< &t v) <0(v) a.e.,
(2.32) 11—I>~+|1]0 o(t v) = 2(v) a.e.

Si nce T Ve Lw(Q) nvit follows from (2.25) that

a(u*,Tnv-u*)+j (t_v)-] (u®) = L(Tnv-u*) Vvev,
(2.33)

*
u €V.

If v¢D(®) then by Fatou's Lemm

l[im_j(t v) = +=.
n++oo n

If veD(®) it follows from (2.31) and (2.32), by applying Lebesgue's.
Dom nated Convergence Theorem that

lim3 v) = j(v).
n—r+co

From t hese convergence properties, and from(2.28), it follows by taking
the linmt in (2.33) that

au’ v-u)+i(v)-i () 2Lv-u)Vvev,

*
. u €V.

*
Then u* i's solution of (m) and from the uni queness property we have u = u.

This proves that Iimun = u weakly in V.

n>+o

Let us show that ¢(u), udp(u) eL](Q).

Let vek ; then u +t(v-u ) e K vt €J0,1]. Replacing v by u +t(v-u ) in
(TTn) and dividing both sides of the inequality by t we obtain

@ (u_+t (v-u_))-¢(u )
§ a(u_,v-u_) + J n n % dx 2L(v-u)
n n t n

(2.34) &

| vvek .
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Si nce ®6C](R) with ¢ = ¢ we have

d(u_+t(v-u_))=-o{u )
(2.35) lim n - 1= 9(u ) (v-u ) a.e.
£>0
t>0

Moreover, since ¢ is convex, we also have Yte 10,1]

<I>(un+t (V-un) ) - CD(un)

(b(un) (V—un) < - <

(2.36)
< <I>(v)-<1>(un) a.e. in Q.

From (2.35), (2.36) and using Lebesgue's Dom nated Convergence Theorem in

(2.34), we-obtain
(2.37) a(un,v—un) + Jp(b(un) (v—un)dx 2 L(v—un)Vv €Kn.
Then taking v=0 in (2.37) we have
a(un,un) + JQdJ(un)undXS L(y, ) ¥n
which inplies, using (2.19), that

2
111
(2.38) JQ d)(un)undx < Vo .

a
Since ¢(v)v 20 a.e. Vv eV, it follows from (2.38) that
. . 1
¢(un) u s bounded in L ().
Moreover for some subsequence - still denoted {um}n - we have
[im cb(un)un = ¢(w)u a.e. in Q.

n -+

Then by Fatou's Lemma it follows that

ub(w) € L1 (@),
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and this inplies, obviously, that ¢(u) ¢ Ll(Q) and conpl etes the proof of
the Proposition.

Incidentally, when proving the convergence of {un}n to u, we have proved
the follow ng useful result

Lemma 2.2 : The solution u of (17) is characterized by

a(u,v-u)+j(v)-j(u) = Liv-u) Yve vaL (),
(2.39)
UEV, o(uw) eL'(®). m

In view of proving that (i17) implies (P) we also need the two follow ng
| emmas

Lemma 2.3 : The solution u of (m) is characterized by

a(u,v-u)+ | ¢(u) (v-u)dx 2L(v-u)¥ve Vn LOO(Q),
(2.40) L '
wev, ub(w) eL ().

Proof : W first prove that

(i) (m) inplies (2.40).
Let ve Lm(Q) nV,; then veD(®) and since D(®) is convex we have
u+t (v-u) € D(®) vte 10,1]. Replacing v by u+t(v-u) in (11) and dividing
by t we obtainVte 10,1]

Q

a(u,v-u) + J @(u+t(v—1tl))—@(u) dx > L (v-u)
(2.41) %

Vvevnl (Q).

. . 1 .
Since is ¢ and is convex, we have

(2.42) lim @(u+t(v—u2)-®(u) = ¢(u) (v=u) a-e.,

t->0
t>0
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(243) (b (w) (v-u) < @(U"'t(v_t))_@(u) < (I)(V)_Q)(u) .

By Proposition 2.2 we have ¢(u), ¢(UWue LI(Q). Hence ¢ (u) (v-u) ¢ LI(Q),
and ¢(u), () € LI(Q) ¥ ve Vn Lw(Q). Then using the Lebesgue's Dom nated
Convergence Theoremit follows from (2.42),(2.43) that

lim j PCurt(v-u))=0(u) 4, - J (u) (v-u)dx.
t>0 ‘Q t Q

Using the above relation and (2.41) we obtain (2.40).

(ii) We next prove that (2.40) inplies (17).
Let u be a solution of (2.40). Since ¢ is convex it follows that

- d(u) = 0(0)-d(u) 2 ¢(u) (0-u) = - ¢(u)u.

This inplies 0< ®(u) < up(u) and &(u) € L](Q)-
Let veVan(Q); then from the inequality

d(u)(v-u) < @v)-@u) a.e. in R

we obtain by integration
J ¢(u) (v-u)dx < j(v)-j(u) VVveVn Lw(ﬂ),
Q2

whi ch when conbined with (2.40) and @(u)eL](Q) inplies (2.39). Hence
fromLemma 2.2 we obtain that (2.40) inplies (m).®

Lemma 2.4 : Let u be the solution of (i11), then u is characterized by

a(u,v) + J o(wv dx = L(v) Y vel (@) nv,
(2. 44) % &

UEV, é(u) L (51).



- 16 -

Proof : (i) We first prove that (m) inplies (2.44).
Let v eVan(Q). Ifu is the solution of (m), then u is also the unique
solution of (2.40). Let T be defined by (2.26), then TI}IEVHLOO(Q).

Repl acing v by T utv in (2.40) we obtai n

a(u,v)+ J ¢(u)vdx + a(u,T_u-u)+ J ¢ (u) (T _u-u)
s Q n Q "
(2. 45)
( 2 Lv) + L(Tnu-u)Vve Y, ﬂLoo(Q)-

It follows from(2.26), (2.28)-(2.30) that

lim a(u,Tnu-—u) = 0,

(2. 46) e,
[imZL(t _u-u) = 0,
n—>+00 n

(2.47) lim¢@)(T u-u) = 0 a.e.,
n—>+oo n

(2.48) 0<d(u) (u—Tnu) < 2ud(u) a.e.

Then by Lebesgue's Domi nated Convergence Theorem and (2.47),(2.48)

we obtain

(2.49) lim ¢(u)(rnu-u) = 0 strongly in L}(Q).

n>+co

Then (2.45),(2.46),(2.49)imply

a(u,v) + fo(b(u)v dx 2 L(v) YyveVnL ().
Since the above relation also holds for -v we have
(2.50) a(u,v) + J ¢(u)v dx = L(v) Yve VAL ().

Q

By Proposition 2.2 we have ¢(u) e L'(Q), conbini ng this property with (2.50)
we obtain (2.44).
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This proves that (17) inplies (2.44).

(ii) Next we prove that (2.44) inplies (m).

% have
a(u,v) + f d(u)v dx = L(v) YveVn LOO(Q),
Q

t hen

(2.51) a(u,’fnu) + deJ(u)Tnu dx = L(Tnu) Vn.

Since T U strongly inV, {f ¢(u)T u dx}n i s bounded. But ¢(u)Tnu20

a.e., hence we obtain that &

qb(u)rnu i s bounded in L](Q).
W al so have
Illlg\o T, u ¢(u) = up(u) a.e.,
hence by Fatou's Lemma we have
(2.52)  ub(u) e L'(@.
But now we observe that
0<o(WT usd(Wu a.e.
Hence by Lebesgue's Domi nated Convergence Theorem

n>r+oo

[im f d(u)T u dx = J ¢(u)u dx
Q n Q



_18_

which along with (2.51) gives

(2.53) a(u,u) + Jﬂcb(u)u dx = L(u).

Then by substracting (2.53) from (2.44) we obtain
a(u, v-u) +I ¢ (u) (v=u)dx = L(v-u) YveV n Lw(Q),

(2. 54) g i

uev, udp(u) € Ll(Q)

and obviously (2.54) inplies (2.40).
This conpletes the proof of the Lema.

Corollary 2.2 : If uis the solution of (m) then u is also a solution of (P).

Proof : W recall that V' =H '(Q) <D () ) and that

a(u,v) = <Au,v> Yu,veV,

L(u) = <f,v> YveV.

Let u be a solution of (w). Then u is characterized by (2.44) and since
D) <V (where D) = {ve C (), v has a conpact support in Q}) we obtain

- (2.55) <Au,v> + [ d(u)v dx = <f,v> ¥YveD(Q).
Q

It follows then from (2.55) that

(2.56) Autd (u) = f in D' (Q).

Since Au and f € V' we have ¢(u) ¢ V' ; hence

d(u) € L1 ) n H'l )

and from (2.56) we obtain that uis a solution of (P).m

(*) D'(Q) : space of distributions on
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We have proved up to this point that the unique solution of (m) is also a
solution of (P). Now we prove the reciprocal property,that is, every
solution of (P) is a solution of (m) and hence (P) has a unique sol ution.

In order to prove this we shall use the following density |lemm :

Lemma 2.5 : D(Q) is dense in Van Lw(Q), Vn Lw(Q) bei ng equi pped with the

strong topol ogy of V and the weak * topol ogy of Lw(Q).

!
Proof : Let ve Vn L (). Since 'fD(Q)H (€

{vn}n, V€ D) such that

=V, there exists a sequence

(2.57) ~Iim Vi, =V strongly in V.

n—+ 400

Let us define v by (see Figure 2.2)

(2.58) W = min (v o) - min(v_,vr—l).

Figure 2.2

(The reinforced curve is the graph of wn)
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Then
(2.59) W has a conpact support in Q,
(2.60) llw_ll <Vl ,  V¥n.

L() L ()
Moreover, since (cf. STAMPACCH A [1 1) the mapping
v > {v+,v—}

i s continuous fron1Hl(Q) to HI(Q) ><HI(Q) (resp. v to v xV), we have from
(2.57) that

(2.61) [im W=V strongly in V.

n > +%°

From (2.60),(2.61) we obtain that

[im W=V in the weak * topol ogy of Lw(Q).
n‘++00

Thus we have proved that
= {v*eVrWLw(Q), v has a conpact support in Q}

is dense in V an(Q)for the topology given in the statement of the Lemma.
Let v €7, and (pn)n be a nollifying sequence, i.e.

LeD®Y, 0 20,

/
b (Mdy = 1,
|
\

limsupport (o) = oy (9,

n—++00

Then define v and Gn by

(¥ i.e., for n large enough, support () is contained in any given neigh-
bour hood of 0.
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v(x) if xeQ,

(2.62) v(x) = 3
0if x¢ O,

(2.63) \Nrn =pn*i7

i.e.

(2.64) Gn(x) = J pn(x-—y)\"}(y)dy Vxe]RN.
RN

It is well known then (see, e.g., LIONS [2],NECAS [1]) that

(2.65) ?;ne iD(RN), [im ‘~'n = v strongly in H](RN),

n > +°°
(2.66) Gn has a conpact support in @ for n_large enough:
Let v, = VH’Q’ then for n large enough

g v e D@,

limv_ = v strongly in V.
n—)~+00

Since ||¥| it follows from (2.64) that
L

= |lvll o
®Y) L ()

(2.67) lv. ol < JRN o= [V(y) [dy < HVHL,,O(Q)

It follows then from (2.67) that for n large enough we have
(2.68) 1V 1]
L () L () .

Summari zing the above results we have proved that vyve Lw(ﬂ) nv,

there exists a sequence (Vn)n’ v € DE) such that

(2.69) lim v_ = v strongly inV,
n—)+00 n

(2.70) Y n.

IVl o =M
L (R) L ()

Hence from (2.69),(2.70) we obtain that



Vn >vin LOO(Q) weak .

This conpletes the proof of the Lema.

Theorem 2.2 : Under the above hypothesis on V, a(+,*), L and ¢, probl ens

(m) and (P) are equivalent.

Proof : W have already proved that (m) inmplies (P).

that (P) inmplies (m).
From the definition of (P) we have

a(u,v) + <¢(u) ,v> = L(v) YvelV,
(2.71) %

eV, o e B @ a1l (@.

It follows from (2.71) that

W need only to prove

(2.72) a(u,v) + J d(u)v dx = L(v) Yve DEY.
Q

If ve VnLoo(Q) we know from Lemma 2.5 that there exists a sequence (Vn)n’

v € D) Vn, such that

(2.73) limv_ = v strongly inV,

. n>r+oo -

(2.74) limv_=vinL (2 weak .
n->+w -

Since v_e D) we have, from (2.72)
(2.75) a(u,vn)+JQ (i)(u)vn dx = L(vn) v n.
It follows from (2.73) that
lim a(u,vn) =a(u,v) , |lim L(vn)
n>+o© n>+o

and since ¢(u) eLl(Q), (2.74) inplies that

= L(v),
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[im J (b(u)vndx = J ¢(u)v dx.
Q

n>+® 9
Thus taking the limt in (2.75) we obtain
a(u,v) + J d(u)v dx = L(v) vyv eVnL Q).
Q

Therefore (P) inplies (2.43) which in turn inplies (r) (see Lemma 2.4)).
This conpletes the proof of the Theorem

2.4. Some conments on the continuous problem

W have studied (P) and (m) with rather weak hypothesis, nanely ¢ « c’®) and

is non decreasing, and fe Ho!

Q). The proof we have given for the equival ence
between (P) and (m) can be nade shorter using nore sophisticated tools of

Convex Analysis and the theory of nonotone operators (see LIONS [1] and the

bi bl i ography therei nf*). However our proof is very elenentary and sonme of
the lemmas we have obtained will be useful for the numerical analysis of the

probl em (P).

Regul arity results for problens a little nmore conplicated than (P) and (n)

are given in BREZI S-CRANDALL-PAZY [1]; in particular for fe¢ LZ(Q) and with
conveni ent snoot hness hypothesis for A the HZ(Q)—regularity of uis proved

t here.

3. - A FINTE ELEMENT APPROXI MATION CF () and (P).
3.1. Definition of the approximte problem

Let € be a bounded pol ygonal (x*) domai n of R2 and C’h be a triangulation of

satisfying

(i) Te@yvre T, J T =0,
Te T
h
(ii) TnT' = ¢, VT, T'eT, T #T' ; L) =0,
Tefh
(iii) If T,T'et,’h,T#T‘then TnT = ¢gor T and T' have either only
one common vertex or a whole comon edge ; as usual h will be

the length of the largest edge of ‘L’h

(*) See al so OSBORN-SATHER C].
(xx) This assunption is not essential.
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We approximate V by

v, = {v ECO(Q), v

h h = 0,V

r

wher e P1 = space of polynomials in two variables of degree <1. It is then
natural to approximate (P) and (i1T) respectively by

a(uh,vh) + Jﬂd)(uh)vh dx = L(vh) Y vy € Vh’

a(uh,vh—uh) + j(vh)-j (u) =2 L(vh—uh) Vv, ey,

uhe Vh

W th j(vh) = J @(vh)dx.
Q

Qobvi ousl y (P;) and (TT;;) are equivalent.

From a conputational point of view we cannot use in general (P;) and (ﬂ;)
directly since they involve the computation of integrals which cannot be
done exactly. For this reason we shall have to nodify ('n;) and (P;) by

using some numnerical integration procedures.

In fact we have to approximate a(*,*), L and j(*), but since the approximation
of af*,*) and L is studied in, e.g., STRANG FI X [1], Cl ARLET-RAVI ART [ 1], ODEN-
REDDY {1], CIARLET [1], [2] we shall assume that we still work with a(+,*)

and L, but we shall approximte j(*).

Hence using the notation of Figure 3.1 below, we approximte j(*) by

Z meas. (T)

Te‘Uh 3 i

Il D1

(3.1 3y, (vy) ¢ (v, (M) ) Yy eV .

]
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3T

1T MZT

Figure 3.1

Actual |y jh(vh) may be viewed as the exact integral of some piecew se constant
function. Mre precisely let us denote by Zh the set of nodes of 3% ; assune

t hat Zh has been ordered hy 1=l,2,...Nh wher e Nh = Card (Zh).

Let MieZh ; we define a domain ley joining, as in Figure 3.2, the centroids
of the triangles having M, as a comon vertex, to the midpoints of the edges
having M, as a commn extremty (if M, is a boundary point the nodification

of Figure 3.2 is trivial to do).

Figure 3.2

Let us define L,, a space of piecewi se constant functions by

h,
N

(3.2) Lh = {uhluh =iz=]uixi, My eR V1=1,...Nh} ,
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wher e X; is the characteristic function of Qi, i.e.,
Xi(x) = 1 if XEQ:I’
Xi(x) =0 if Xin.
. . 0,= 1
Then we define q : C ) n HO(Q) > 1L, by
Nh
(3.3) 9y Vv =i=1 vMOX; -

It follows then from (3.1), (3.2), (3.3) that
(3.4) iplvy) = [QCD (qu)dx Vv, eV.

W al so have

(3.5) jh(vh) = ] (qhvh) ¥v € V-

Then we approximte (P) and (m) by

a(uh.}’1 )+ fp(b (qhuh) 4V dx = L(vh) Y v € Vh'
(Ph) ’

Uh € Y

- and

a(uh,vh—uh)+jh(vh)-jh(uh) Z Lvp=u) Vv ey,

(ﬂh) g
h™ "n°

W have then the obvious

Theorem 3.1 : Problens (Ph) and (Wh) are equival ent and have a uni que sol u-

tion.

3.2. Convergence of the approximate sol ution

Theorem 3.2 : If as h -~ 0 the angles of ?S’h are uniforny bounded bel ow by
60> 0, then
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lim ||u
h~>0

h_u”V = 0,

where u and u, are respectively the solutions of (P) and (P

h h)'

Proof : (i) A priori estimates for up -

Taki ng vy T 0in (TTh) we obtain vh

e
(3.6) ”Uh”V s— >
2
£l
(3.7) OsJQ cb(qhuh)dxs 3

(ii) Wak convergence of up
It follows from (3.6) and from the conpactness of the injection of V in
LZ(Q) that we can extract from (uh)h a subsequence, still denoted by
(u )y, such that

(3.8) u, > u* weakly in V,
(3.9) u u* strongly in LZ(Q),
(3.10) uh->u*zﬁ in Q.

Admitting for the nonent the following inequality (which we shall prove later)

I av,v, | < 2 || 7vy

1'h h h

(3.11) P@ LP (@) x LP ()
Vv, eV WVp Wth 1 <p<+40

it follows from (3.6) and (3.9) that

u,_ > u*strongly in LZ(Q).

(3.12) q,up

Then, nmpbdul o another extraction of a subsequence, we have
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44, T U a.e. in §,
(3.13)

<I>(qhuh) + o(u*) a.e. in Q.

Taking ve D) it follows from STRANG FI X [1], CI ARLET [1],[2] that

t he assunptions on th in the statement of the Theorem we have

(3.14) Hrhv—vH | o <ch || vl| 2 o v ve D),
’ wo? (Q)
(315  frovvil, s o’ flvll , . ¥ve D@,
L () W)
where :

- Cis--a constant independent of v and h,

- Ty is the usual linear interpolation operator over th i.e.

1 0 =
rhvevh VVEHO(Q) nc ),

rhV(P) = v(P) VPeZh.
Moreover (3.11) with p = +o | (3.14),(3.15) inply that
(3.16) I QT VY ., = 0 Vve D).
L

(@)

Taki ng sy in (\Th) we obtain

, a(uh. uh) + L{I’ (qhuh)dx < a(uh,rhv) +
€3.17)

+J 0 (thhv) dx - L(rhv—uh) Y veDE).
Q
From (3.8), (3.12) and from Lemma 2.1 we have

* * *
a(u ,u ) + J d(u )dx < liminf (a(u,_,u ) + j d(q, u, ) dx).
Q h >0 h’h Q h™h

under
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Mor eover

IimJ @(thhv)dx = J d(v)dx = j(v) Yve DW®.
h>0 'Q Q

Then in the limt in (3.17) we obtain

a(u’,u’) + j (u*) <a(u’,v) + j(v) - L(v-u)
(3.18) 3
Vv e DE).

From Fatou's Lemma applied to (3.7),(3.13) we obtain

(3.19) s’y e 1 ().
It follows then from (3.18), (3.19) that u* satisfies

* * * *
a(u ,v-u )+j (v>-j (u ) 2L(v-u ) ¥Yv € D),
(3.20)
ut e v, ®u™) EL' (n).

W now take v €V an(Q) :it follows fromLemm 2.5 that there exists a
sequence {vn}n such that v e D(Q) and

(3.21) [im v_ = v strongly inV,
n->r4o0 n
(3.22) limv_=vin L7(2) weak *.

n-r+oo
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We have from (3.20) that

au,v ") +j(v )i @) Lv -u") ¥n,
(3.23)
* 1
u* e V,8(u ) e L ().

W obviously have from (3.21) that

. * * * *
lim a(u v Tu ) = a(u ,v-u ),
n=>+®©

. * *
[im L(vn-u )= L(v-u ).
n—>+x

Since v_ >V in the weak * topology of £7(Q), we have

(3.24) < Const. Vn.

IV Il
L Aarde)

Moreover, for some subsequence, (3.21) inplies that

(3.25) limv =vae in §.
n>r+©

From (3.25) we obtain that

(3.26) @(Vn) > ¢(v) a.e. in f.

From (3.25),(3.26) one can easily see that the Llebesgue's Donminated Convergence
Theorem can be applied to {<I>(vn)}n. Hence we obtain

limjv ) = 1lim [ @(vn)dx=J 2(v)dx = j(v).
nr+o n n>+o Y0 Q
Therefore in the limt in (3.23) we have

a(u*,v—u*)+j (V)—j(u*) ZL(v—u*) yve Vn LOO(Q),
(3.27) 3

S BV s e L@



- 31 -

Since fromLemma 2.2 we know that (3.27) is equivalent to (1) we have thus
proved that o = u where u is the solution of (m) (and (P)).
From the uniqueness of the solution of (w) it follows that the whole

sequence (u converges to u.

h)h
(iii) Strong convergence of (uh)h.
It follows from (Trh) and fromthe V-ellipticity of a(e,*) that

allu -ullZ+ 5, ) < a(u-u,umu)+i (a) =
(3.28) a(u,u)-a(uh,u)-a(u,uh)+a(uh,uh)+jh(uh) <
S‘a(u,u)—a(uh,u)—a(u,uh)+a(uh,rhv)+jh(rhv)—L(rhv —uh) ¥ veDE.
Using the various convergence results of Part (ii) we obtain from (3.28) that
j(W <liminf j,u) <lin inf Callu -ulld+5, (o)) <
(3.29) <lim sup (alluh—UIl\2,+jh(uh)) <
fa(u,v-u)+j(v)-L(v-u) Vve DE).

Using as in Part (ii) the density of D(R) in Van(Q) (for the strong

topol ogy of V and the weak * topol ogy of Lm(Q)) we obtain that (3.29) also
holds for all vevnL (9.

Taki ng T like in Sec. 2.3, relation (2.26)' we have then
j(u) < lim inf j, (u) < lim inf (alluh—ullv+ 3y (g )) <
. 2.
(3.30) <lim sup (0L||uh—u||V+ iy (up))

< a(u,Tnv—u)+j (Tnv)—L(Tnv—u) Y ve V,Vn.
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From the properties of T (see Sec. 2.3), we have at the limt in (3.30)

IA

| 3 <1 inf(OLHuh—uﬂé MENCH))

(3.31) <lim sup(OLHuh-uH‘zl + jh(uh))
<a(u,v-u) + j(Vv)-L(v-u) VveV.
Taking v=u in (3.31) we obtain that

limij (u,)=j(u),
ho0 h h

t11_1:(!)1 Huﬁ—uHV = 0.

This proves the theorem nodul o the proof of (3.11).

Lemma 3.1 : W have yp, 1 Sp<+» |

2
| q,.v, =v._|| <% h||lv || Yv, eV .
N b pyx Py P OB
Proof : W use the notation of Sec. 3.1.
T
M.
1
Figure 3.3
Ve have (see Figure 3.3)
(3.32) [agv, 00 v, (0] =]v, G1)-v, ()] ¥MeQ, T,

¢ P, we have

But since Vh‘T 1
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v, () = v (M) + M_i»’a_-vvh VMe @ n T
fromwhich it follows, conbined with (3.32)" that
Iqhvh(M)—vh(M)| < IMiMI lvvhl ¥MeQ, nT.
It follows fromthe definition of h that we have
2

|I\/HMI S $h YMeQ 0T, VT

fromwiich it follows that
lapv, -v o | = % h [V, () | a.e. in @, Vv €V,.

This inplies

N

| q, v, -v_| <
Bh 'hiypgy 3 LP (@)% LP ()

This proves the |emm.

Remark 3.1 : The nurerical analysis of problens like (P) but with much stronger
hypot hesis on a(*,*), ¢, f is considered in Cl ARLET- SCHULTZ- VARGA [1] where

error estimtes are given.

4. - A SURVEY OF | TERATI VE METHODS FOR SOLVI NG (Ph).

4.1. Oientation
-In this section we briefly describe some iterative nethods which nmay be useful

for conputing the solution of (Ph) (and (Trh)). Actually nmobst of these nethods
may be extended to other non linear problenms. Mny of the nethods to be des-
cribed here can be found in ORTEGA- RHEI NBOLDT [1].

A nethod based on penalty and duality techniques will be described in Sec. 5.

4.2. Fornulation of the discrete problem

Here we are using the notation of the continuous problem Taking as unknowns
t he val ues of u, at the interior nodes of th’ the problem (Ph) reduces to
the finite dinmensional non linear problem
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(4.1) Au + Dé(u) = f

where Ais a NxN positive definite matrix, D is a diagonal matrix with
positive diagonal elenents di's and where

N
u = {ul,...uN} eR , fe]RN,

d(w) €R with ($(w), = 9

Cearly fromthe properties of A,D,d,f we can see that (4.1) has a unique
sol ution.

4.3. Gadient nehtods
The basic algorithm with constant step (see CEA[1]) is given by

(4.2) W RN given,
n+l

(4.3) ™! = " psT! (au™Dg (™M -£), 0> 0.

In (4.3),Sis a symetric and positive definite matrix. A canonical choice

is obviously S = | but in most problens it will give a slow speed

N b
of convergence. |f A is synmretric the natural choice is S=A and if A# At
C
we can take S = A+§ If ¢ is locally Lipschitz continuous (i.e. Lipschitz

conti nuous on the bounded sets of R) then algorithm (4.2),(4.3) converges
to the unique solution u of (4.1) if pis taken sufficiently small. Coviously
the closer v’ is tou, the faster is the conver gence.

Remark 4.1 : |If A=At then Av+D¢(v)-f is the gradient at v of the convex
functional N
J(v) = 1 (Av,v) + z d.d(v.)-(f,v)
2 ~ $2 1 i ~0a
. -t
where (+, ® ) denotes the usual inner-product of R and Qt) =
J

_¢(r)dr .
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Remark 4.2 : In each specific case p has to be determined ; this can be done
theoretically, experinentally, or by using an automatic procedure, which
wi |l not be described here.

Remark 4.3 : Let us define g" by

gn = Au+D¢>(un)—-f.
Instead of using a constant paraneter p we can use a fanily (pg N of positive

paraneters in (4.3). Therefore (4.3) can be witten as
(4.4) U =u-pS g.
Suppose A=At, then if we use (4.2),(4.4) with o defined by

Jwho s7'gM <35 'gN  voer,
(4.5)
( P eR ,
n

the resulting algorithmis a steepest descent method. This algorithmis
convergent for ¢ ¢ c’®R) (we recall that ¢ is non decreasing in this report).
W observe that at each iteration the determ nation of ey requires the sol u-
tion of a one-dinensional problem (a "line search") ; for the solution of
such one-di mensi onal problens see POLAK [1], BRENT [1].

Remark 4.4 : At each iteration of (4.2),(4.3) or (4.2),(4.4),(4.5) we have
"to solve a linear systemrelated to S. Since S js symetric and positive
definite this system can be solved using the Chol esky nethod, provided

the factorization

has been done.

From a practical point of view it is obvious that the factorization of S
should be made in the beginning once for all. Then at each iteration we
just have to solve two triangular systens, which is a trivial operation.
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44.Newt on's et hod
The Newton's algorithmis given by

(4.6) R given,

(4.7) U™ = et ™) TN 08" (e () +8),

~

where ¢'(v) denotes the diagonal matrix

Cb'(v])

0
O

¢'(v)

. _d

with Cf)'—a—)—{-.

Since ¢ is non decreasing we have ¢'>0, this inplies that A+¢'(v) is nositive

definite yveR".

Remark 45 : At each iteration we have to solve a linear system Since the
matrix A+¢'(u™) depends on n, the Newton's method above may be not efficient
for large N However a variant of Newton's method avoiding partly that dif-
ficulty may be found in ElI SENSTAT- SCHULTZ- SHERVAN [1]. The idea is to replace
the conplete solving of (47)by a few cycles of an iterative nethod for

solving |inear systems ; for nore details see the above paper.

Remark 46 : The choice of u° is very inmportant when using Newton's nethod
. . 2

nor eover the convergence requires nore regularity for ¢ (let say ¢e C”)

than in most of the methods to be described in the follow ng sections.

45.Rel axati on and Overrel axati on net hods

We use the follow ng notation

£.}.

f = {f],... .

(@) 1cq,jen s &
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Since A is positive definite we have aii>0 Yi=1,2,...N. Here we shall
describe three algorithns :

Algorithm1 :
(4.8) u® eRN gi ven,

n+l i
then for u" known we conpute u , conponent by conponent, USinNg

-n+l -n+| n+l n
(4.9 a.. 4. + d.¢(u. ) = f. - z a.. u. —_Z a.. u,
i1 1 i 1 i i ij 7] 33113 ]
(4.10) ur.H'] =} 4+ w(ﬁr.‘”m’.‘)
1 i i i

for i=1,2,...N.

Si nce a.. >0, d.l >0, ¢ € CO(R) and ¢ is a non decreasing function,

(4.9) has a unique solution.

If w=1we recover an ordinary relaxation nmethod ; in this case it follows
from CEA-GLOWINSKI L1] that if A=At and since ¢ is c® and non decr easi ng,
then the sequence {En}n associated with (4.8)-(4.10) converges to the

solution u of (4.1).

If in (4.1), Ais not symmetric or w# 1, sonme sufficient conditions

of convergence may be found in ORTEGA- RHEI NBOLDT [1] and S. SCHECHTER
ar, f21,03].

Algorithm 2 : This algorithmis the variant of (4.8)-(4.10) obtained by
replacing (4.9), (4.10) by

a ™ o) = WGy o] ¢ oap o)) +
(4.11) i |
_ n+ - n
+ w(f. jz<ia' v U Jz>ia. 13 uj)

for i=1,2,...N.
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Remark 4.7 : If w= lor ¢is linear the two algorithns coincide.
In the general case the convergence of (4.8)-(4.11) seems to be an

open question. However, from our nunerical experinents it seens that
the algorithm 2 is nmore "robust" than al gorithml; may be

because it is more inplicit. Furthernmore it can be used even if ¢

is only defined on a bounded or seni-bounded interval Ja,R[ of R such
that ¢(a) = -=, $(B) = +=  in such a case if ¢e c°(Ja,Bl) and ¢

is increasing, then (4.1) still has a unique solution but the use of
(4.8)-(4.10) with w>1 may be dangerous.

Remark 4.8 : |f qbeCl(R), an efficient method to conmpute GI;H in (4.9
and u.rl1+1 in (4.11) is the one dinensional Newton's nethod :

Let ge CI(R). In this case the Newton's algorithm for solving the
equation g(x) =0 is

(4.12) X ¢R gi ven,
(4.13) AL -(C
g' (x")
If in the conputation of git! and u.n+1 we use only one iteration of

1
Newt on's nmethod, starting fromu?, then the resulting algorithms are

identi cal and we obtain
Algorithm 3 :
(4.14) W R given,

then for n20

n+1 n n
( z a..u. + Z a,.u., + d.¢(u.)-£f.)
n+l 5<i 13 3 35i ij ] 1 1 1

(4. 15) u. - , i=1,2,...N.

., 0
a;; * djo'(up)




_39_

Sufficient conditions for the convergence of (4.14),(4.15) are given
in S. SCHECHTER (11, (21, [31.

Remark 4.9 : We may find in GLOAN NSKI - MARROCCO [11], [2], applications of
rel axation nethods for solving the non linear elliptic equations nodelling

the magnetic state of electrical machines.

4.6. Aternating direction nethods

In this section we take p>0. Here we will give two nunerical methods for

solving (4.1).

First nethod :

(4.16) W erY gi ven,

. +1/2
once Un 1S kHOWH, we coerute Un 1/ by

un+1/2+AUn+1/2

(4.17) 0 = pu"-Dp(u") +£,
then u™! by
(4.18) ou™! + o™y = pu™!/2a™ 1 2eg

For the convergence of (4.16)-(4.18) see, e.g., RB. KELLOG[1].

Second net hod :

(4.19) W er" gi ven,

knowi ng u™ ve conput e unH/2 by

n+1/2

(4.20) pu T

= pu " -Do (u") +£

t hen unJrI by
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n n un+]/2+

(4.21) ou™ 4D @™y = puB-a £

n+l/2
u

~

(p in (4.18) has been replaced by ou™).

Using the results of LIEUTAUD [11it can be proved that for all p>0,

un+]/2 and u"

in Sec. 4.2.

converge to u if A D and ¢ satisfy the hypothesis given

Remark 4.10 : At each iteration we have to solve a linear system whose
matri x is independent of nif we use a constant step p. This is an

advantage from a conputational point of view (see Remark 4.4).

We al so have to solve a non linear system of N equations, but in fact
these equations -are independent from each other and reduce to N

non |inear equations in one variable, which can be easily sol ved.

Remark 4.11 : Variant of (4.16)-(4.18) and (4.19)-(4.21) are obtai ned
by inversion of the order in which we solve the linear and non |inear
problens. Doing so we obtain from (4.16)-(4.18)

(4.22) quRN gi ven,

and for n2 0

n+l/2
u

(4.23) ou™!2app(™ /%) = pul-nu™,

(4.24) ou™ Neau™! = pu™ 1/ Zpp ™/t

From (4.19)-(4.21) we obtain
0 N .
(4.25) u R given,

and for n2 0
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n+l1/2

Oun+l/2+D¢(u

(4.26) ) = pu“-A3“+§,

(4.27) ou™ Leau® ! = ouPopy(ut1/2

)+f.

If (4.16)-(4.18) and (4.22)-(4.24) may be viewed as the sanme al gorithm
(with different starting procedures) this is not the case for (4.19)-(4.21)
and (4.25)-(4.27) ; indeed for the class of problens under consideration

it appears that for the same p the convergence of (4.25)-(4.27) is faster

than the convergence of (4.19)-(4.21).

4.7. Conjugate gradient mnethods.

In this section wa assume that A=A“. For a detailled st udy of conjugate
gradi ent nethods we refer, e.g., to POLAK [1], DANEL [1], CONCUS-GOLUB
ill.If the functional J defined in Remark 4.1 (see also (4.28) below) is
not quadratic (i.e. if ¢ is non linear), several conjugate gradient nethods

can be used. Let us describe two of them the convergence of which is stu-
died in POLAK T17.

Let J given by

N
(4.28) Iv) = -;- (Av,v) + § 4 ®v)-(£,v)
i=1
t
where &(t) = $(t)dTt, ¢ being, as above, a non decreasing continuous

function on R',o with ¢(0) = 0. Let S be a NxN symretric, positive definite

matriX.

First method : (Fletcher-Reeves)

(4.29) W eRY gi ven,

(4.30) g = 87 (A (u)-6),

(4.31) w? = g°.
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+
Then, assuming that u" and w' are known, we compute u™' by
(4.32) né” _ lln" pn yn,

wher e Dn is the solution of the one dinensional minimnzation problem

J(gn—onyn) <J@™-pw'")  VPeR,

(4.33)
P_eR.
n
Then we conpute gnﬂ and wn+] by,
(4.30) g = 57T @™ sow™-p)
(4.35) n+1 ryl A ol
= n~
wher e
(s n+1 0n+])
(439 el
(Sg »,8")

Second nethod : (Polak-Ribiére)

This nethod is |like the previous nethod except that (436)is replaced by

n+l n+l_n

(Sg >8 g )
(4.37) An

Remark 4.12 : For the conputation of ° in (4.33)" see Remark 4.3.

Remark 4.13 : It follows fromPOLAK [1], that if ¢ is sufficiently snooth,
then the convergence of the above algorithms is super linear, i.e. faster

than the convergence of any geonetric sequence.

Remark 4.14 : The above algorithns are fairly sensitive to round off errors ;

hence double precision may be required for some problems. Mreover it may
be convenient to take periodically W= gn (in this direction see PONELL [1]

where nore sophisticated restarting procedures are discussed).
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Remark 4.15 : We have to solve at each iteration a linear systemrelated
to S, Remark 4.4 applied to these algorithnms also.

Remark 4.16 : Since the matrix S is synmmetric and positive definite, an
obvi ous choice is S = I\T , but in sone problens it nmay give a slow
convergence. Since A is symetric and positive definite another obvious

choice is S = A

In BARTELS-DANIEL [1] and DOUGLAS-DUPONT 1] cne may find applications of
conjugate gradient nethods (very simlar to those of this section) to the
nunerical solution of mldly non linear second order elliptic equations

l'ike v

—V'(aO(X)Vu) + ¢(u) = f on Q,

Assuming that (4.38) has been discretized (by finite differences or finite

el ements) the above authors take for S a discrete analogue of -A ; in the

case of finite difference approxinmations, this choice allows them to use

Fast Poi sson Solvers. W refer to BARTELS-DANI EL and DOUGLAS- DUPONT, loc.

cit., for nore details (see also the very recent paper of CONCUS-GOLLIB-O’LEARY
L-11).

48. Comment s

The nmethods of this Section 4 are fairly classical and may be applied to

nore general non linear systems than (4.1). They can be applied of course
to the solution of the finite dinensional systens obtained by discretization
of elliptic problems I|ike

-V-(ao(x)Vu)+B'Vu+¢(x,u) =f in Q,

+ suitable boundary conditions,

where, for fixed x, the functiont = ¢(x,t) is continuous and non decreasing

on R.
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5. - NUVERICAL SOLUTION OF (Ph) BY PENALTY-DUALITY ALGORI THVS
5.1. Formulation of the discrete problem Oientation.

We use the notation of Section 4. W have seen in Sec. 4.2 that (Ph)
reduces to a non linear system like

(5.1) AU + Do(u) = f

where Ais a NxN positive definite matrix, D is a diagonal matrix with
positive diagonal el enents di's and where

u = {u],...uN}eRl\i EERN,
.
(W) R with (6(w), . ¢u) .

If the bilinear forma(*,*) of Sec. 2.1. is symetric then Ais also
symretric.

Fol l owi ng FORTIN- GLON NSKI [1] and GLONNSKI [2, Ch. 5] we shall describe
in the following sections two algorithnms for solving (5.1). These two al-
gorithnms are based on a deconposition-coordination principle, via penalty-

duality (they are strongly related to augmented Lagrangian nmethods ; see

Remark 5.2 for notivation). The proof of the convergence of these algorithns
are not given here, since they follow from general results which nay be found

“in the two references above.

Nurerical applications of these methods to problems like (4.38) and com
parisons with other nethods are given in Sec. 6.
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5.2. Description of the algorithns. Renarks.
5.2.1. Afirst algorithm

Let r be a positive paraneter.

Let us denote by ALGl the follow ng al gorithm:

(5.2) 2° gRN, arbitrary given,

n ,n+l

then for n >0 we define un,p WA by

ru” + D¢(un) =f + rpn -t
(5.3)
(rI+A)p9 = ru™ + A" ,

Xn+] - An

(5.4) + p(un-pn).
Remark 5.1 : Looking at (5.2)-(5.4) it appears that the main difficulty when using
this algorithmis the solution of the nonlinear system (5.3). Fortunately (5.3) has

a very special structure making it very suitable for a solution by block-relaxation

(or under or over relaxation) nethods. Mre precisely (5.3) is a particular case
2N

of the following nonlinear systemin R
rx + Do(x) =ry + f,,
(5.5)

(rI+A)y =7 X-FLZ

A block relaxation algorithm for solving (5.5) is the follow ng

(5.6) y° eRN gi ven,

then for m>0 we conpute me and ym+l by
57 oMM =y g
(5.8) (rI+A)ymrI = rme +f:2 .
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W observe that if ym is known in (5.7) then the conputation of me is easy
since it is reduced to the solution of N independent, single variable nonlinear

equations of the followi ng type
(5.9) rt + de(t) = b

with d>0. Sincer >0and ¢ is ¢® and non decr easi ng, then (5.9) has a unique
solution which can be conputed by various standard nethods (see, e.g. HOUSEHOLDER
[1], BRENT [173).

mt| |

Simlarly if x is known in (5.8), we obtain yer by solving a linear system

whose matrix is rI+A. Since r is fixed it is very convenient in some cases to
prefactorize rI+A (by Chol esky or Gauss nethods).

| f A=At, then (5.5) is equivalent to

iGoy) < 35 Y (g} R,

(5.10)
{x,y} ERZN ’
wher e
1 N r 2
(5.14) J(gaD) = bl (AD’D) + izl dl @(gl)'(£]9§)_(£299)+ 'i'“g'g” .
Since j is a Cl strictly convex function of {&,n}, such that
[im j(E,D) = +o

gl +InlD+e ™

it follows from CEA-GLONNSKI [1] that the sequence {xm,ym} given by (5.6)-(5.8)
converges to the unique solution {x,y} of (5.5) (and (5.10)).

When using (5.6)-(5.8) to solve (5.3) an obvious choice for y° i sp n-I.
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Remark 5.2 : W suppose that A=A". Let us define

by

N
(5.12) £ (v,q,p) = %(Ag,gl)*‘ Z

2
L4200 2 lv-q]| 7+ (uav-g)

Then £ is an augmented |agrangian (see, e.g., HESTENES [1], GABAY-MERCIER [17,
FORTI N-GLOANNSKI [1] for nore details) related to the nmininization problem

N
(5.12) Mn  {3(Aq,0) + § 4 0(v) - (£,v)
. ~ . 1 | ~ o~
{V,q} eW i=]
wher e
W= {{Y’%} e'_RZN , \i—q = O} .

The minimzation problem (5.12) is obviously equivalent to

Il o~ =

Mg (mfAv,v) +

d. @(V~)_(f’ )}
veR i t L ~%

1
Au + D¢(u) = f,
which is the nonlinear system (5.1) under consideration.

One may easily prove that if u is the solution of (5.1), then {u,u,Au} is ¥ r>0,

~ ~

t he uni que saddl e- poi nt of ir over RN

From these properties it appears that the algorithm (5.2)~(5.4) (ALGl) may be
interpreted as an Uzawa al gorithm (see GLOAN NSKI - LI ONS- TREMOLI ERES {1, Ch. 2],
EKELAND- TEMAM [1]) for conputing the above saddl e- point of £ . Moreover A= Au
appears as a Lagrange nultiplier related to the linear constraints v-q = 0.

~ o~
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5.2.2. A second algorithm

Wth r as in Sec. 5.2.1., let us denote by AL& the follow ng algorithm

(5.13) {pO,A]}eRZN gi ven,

. +
then for n =1 we define un,pn,knI

by

~

(5.14) ™+ o™ = £ + rflo"

(5.15) (rI+A)pn = ru" + A

(5.16) A" = A"+ p(up™.

Remark 5.3 : Assune that in ALGl we use the bl ock-rel axation algorithm (5.6)-
(5.8) to solve (5.3). Then if we use ZO = pn'I as a starting vector,

and if
we only do one iteration of (5.6)-(5.8), then ALG! reduces to ALG.

Remark 5.4 : Supoose that p=r in ALG2 ; we have then

ra® + DY) = f o+ rptTlopR,

+ ap™ = ru” + 2]

ol
n+l

(5.17) rﬁ)
A

= A"+ r(un—pn) .
It follows from (5.17) that

(5.18)" APl = ap? .

Then from (5.17), (5.18) we obtain

(5. 19) ra® + DM +ap” ! =farp M
(5200  rp™ + Ap" + DH(uMy=f+rp L.
Ther ef or e,

if p=r, ALG reduces (with different

not at i on)
direction nethod described in Sec.

to the alternating
4.6 by (4.25)-(4.27).
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5.3. Convergence of ALGl, AL&. Further Renarks
5.3.1. Convergence results.

It follows from FORTIN-GLON NSKI [1], GLOWINSKI {2, Ch. 5] that the properties
of AL D, ¢ inply that we have convergence of W™t A™M to {U,B,Au} if in ALGI
(resp. AL&) we take

(5.21) 0<p<2r
(resp.

1+

(5.22) 0 <p < 2,/? r).

5.3.2. On the choice of p and r.
If r is given our conputational experiments with ALGl and AL& seemto indicate

that the best choice for pis p=r . The choice of r is not clear and AL& appears
to be nore sensitive to the choice of r than ALGl. In fact ALGlI seens to be nore

robust on very stiff problens than ALG. W mean that the choice of the paraneter
r is less critical and that the conputational time with ALGl nay becone nuch

shorter than with AL& for a given problem

Remark 5.5 : (On the choice of r in ALG).
About the choice of r in ALGI it can be proved that theoretically the largest is r,

the fastest is the convergence ; practically the situation is not so sinple for
the following reasons : the largest is r, the worse is the conditioning of the

problem (5.3). Then since (5.3) is numerically (and not exactly) solved at each
iteration, an error is done in the calculation of {yn,gn}. The anal ysis of this
error and the effect ot it on the gloval behaviour of ALGIis a very conplicated
probl em since we have to take into account the conditioning of (5.3), the stop--
ping test of the algorithms solving (5.3), round-off errors, etc...

Fortunately it seens that the combining effect of all these factors is to give
an algorithmwhich is not very sensitive to the choice of r.
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6. - NUMERI CAL EXPERI MENTS AND COVMPARI SONS W TH OTHER METHODS

6.1. The test problem

We consider the followi ng test problem

= Au + ¢(u) = f on Q,
(6.1)

u|39= 0,

where @ = 10,1{x]0,1[,

d(t) = sgn(t) {1:]Q = t|tlg—] . >0 .

If (with x = {X],xz}) we define u by
u(x) = sin ZTTX1 sin 2ﬂx2 s
then for f given by
f = 8rlu + lull—lu

the exact solution of (6.1) is u.

The behaviour of ¢ is shown on fig. 6.1

1
Figure 6.1.
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V& observe that ¢ is not smooth near t=0if 0<f& <1 ; hence Newton-type nethods
are not very suitable for this kind of ¢'s.

If we discretize Q using an uniform square grid with equal grid spacing in both
t he X, and X, directions, our matrix A in ALGl and ALG2, will be the usual dis-
crete laplacian matrix (since @ is a square, a finite difference approximation

of (6.1) is very convenient). So in both our algorithns ALGI and ALG we have to

solve the discrete Helmhotz's equation, nanely the discrete formulation of
(6.2) - Au + ru=f,

There existfastdirectsolvers of Helmhotz's equation on a uniformnesh in a
rectangul ar domain. We used such a solver called TBPSDN, witten by B.L. Buzbee
(cf. BUZBEE- GOLUB- NI ELSON [1]) at Los Alamos Scientific Laboratory, and tested
and modified for Lawence Berkeley Laboratory by Gary A Sod. This sol ver
incorporates the truncated Buneman's algorithm wusing the standard five point
difference approximtion for the Iaplacian.

We have seen in Sec. 5 that each iteration of ALGI and AL& requires the solution
of one-dimensional nonlinear equations of the form

(6.3) & + d¢p (&) = RHS
with d >0 (since we are using finite differences we have in fact d=l).
We do not want to use Newton's nethod to solve this equation because :

(i) If ¢ ¢ c] we may have troubles with Newton's nethod,

(ii) W think that an efficient method not using ¢' may be nmore interesting in

view of nore general problens.

There exists one-dinensional nonlinear equation solvers which do not require
derivatives. W used such a routine, called ZEROIN and due to Richard Brent.
This nmethod is described in BRENT [1]. ZEROIN Wi ||l always locate a root within
a given interval where it is known to lie, to within a given accuracy TOL.
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Fromthe facts that ¢(0) = 0 and that ¢ is non-decreasing, we can easily deduce
that the solution £ of (6.3) is in the interval [O,EE—S—] if RHS >0 and in the

i nterval [_I%I_S_ ,0]if RHS <0.

For the inner loop (5.7),(5.8) convergence test, in ALGI, we have used the zl
norm (the actual norm used is not inportant ; we have also used the 22 norm
and obtained sinilar results).

In our experinments, for the purpose of conparisons, we stop our iterations when

”pn-lithSACC where u is the exact solution of the discretized system

A‘:}h + (b(;;lh) = f (here D=I) ,

with a uniformspacing h (we recall that if pis well chosen, cf. Sec. 5.3.1.,

t hen {gn,pn,x“} converges to {uh,uh,Auh}).

In practice, u is not known and so some other kind of stopping criteria has

to be used, e.g.

< ACC

in sone suitable norm

Remark 6.1 : W can determ ne u with a very good precision by running ALG1 or
AL& on the test problemuntil (un—pn) is very, very small. Notice that if

u" :|clr:l then Ap™+ ¢(u™) = f and hence u = o™ = p™. Incidentally the closeness
of u” to pn car~1 be used as~anot her stoapi ng criteria or as a check on the final

iterate pn.

6.2. Study of parameters in ALGI and ALR2.

We would like to study the effect on the general performance of the algorithns
ALGl and ALG2, of the follow ng paraneters :
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a6l s {a°,8%,0% r,0,e, TOLY ;

¢ is the tolerance paraneter for the stopping test of the inner |oops of ALGl.
The paraneters )\O,r,p,TOL have been defined before. The vectors ﬁo,ﬁo deserve
some nore explanations. It follows from Sec. 5.2.1, Remark 5.1, t~hat~ the non-
l'inear system (5.3) nay be solved by the block-relaxation algorithm (5.6)-(5.8) ;
we have used precisely that last algorithm for solving the exanples of Sec. 6,

. n-1 n-|I
taking u ,p
[

as starting vectors to conpute Un,pn. Therefore to compute
v®,p° fromA®, we need some starting vectors which are precisely what we have
denoted by \¥ ,3°above. Since u" and p" converge to the sane linmt we have

systematically taken 1 = p°

(o]

A : {6°,p%.0 ,r,p,TOL} ;

. 1 .
W recall that in ALG2, p° and A are given (see Sec. 5.2.2.). Since WCis
conputed, from pO and Al, by an-iterative method we need an initial guess

say @° In fact we have systematical ly taken i = po.

In addition we want also to study, to some extent, the effects of the snpothness
of ¢ on the algorithns. This snoothness can be controlled by £, since

$(t) = t[t]z_] , 2>0 .

6.2.1. Effects of a°,p°.

Basical |y ALGI (resp. AL&) will converge for any starting vector ﬁ°(=f5°)
o]

"(resp. B°(=§ )). Obviously when an approximation of the solution .y of

h
(6.4) Au, + §u) = f

is known we should use it. But nost often (i.e. for general £) we do not know
what the solution is like. So we are often forced to start with some constant

A0

value like @~ =0(resp. p°=0) or &° (resp. p°) with constant conponents.

Intuitively if ¢ has a sharp junp at t* (in our case £¥=0 i f % ¢ 30,1[ since
*

¢'(0) = +x) we woul d expect that the points of the grid where u, is near t
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will produce the slowest convergence for the corresponding conponent of e
This was observed in our experiments. For our test problem ¢ has a sharp
junp at t* =0 (if 2¢]J0,1[) ; if we start with Ucl’ =10, Vi=l,... N ,

(resp. pcl’ = 10, Vvi=1,... N, the convergence is generally fast except for
points where u_ is close to zero. In all cases the maxinum final errors
occured at sucNh poi nts. However if we start with 3%=0 (resp. po = 0) no
difficulties were observed with these points. OJr~gu;ss is that is we start
with O we are starting with a good guess of the conponents of u at which ¢
has a sharp junp and which we expect slow convergence. Very often we know
where ¢ has a sharp junp and we can take advantage of this know edge (at [east

if ¢ is not too conplicated).
Therefore we can in general reconmend the followng :

(1) If ¢ is known to have a sharp junp at t*, and if we don't have a good

approxi mation of u
U‘i’ =t* yi=1,...N, idem for p°).

to start with, use 8° = t* (resp. p° = t*) (i.e. set

~

(ii) Oherwise, start with the best approximtion avail able.

For exanple, Figure 6.2 shows that AL& (i.e. with no inner loop c-test) works
just fine with p° = 0 but has problemif started with p° = 10. Luckily, as we

shall see later, ALGI (with inner-loop E-test) w |l overcome this trouble.

FormFigure 6.2 it appears that the convergence is linear if pO = 0 and

sub-linear if p° = 10.
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6.2.2. Effects of xo

Note that with the exact solution u we have

A= Agh =f - ¢(3h)'
So two natural choices for AO are

(i) AG° (resp. A po)

(i) f - 6(8°) (resp. £ - ¢(p°))

f a° (resp. p°) is a good approximtion to u

he then A° will be a good appr oxi -

mation to A.

For our test problem if & =0 (resp. p° = 0), then the two choices for A°
are 0 and f. W have tried both and conclude that the convergence of ALGI
and AL& was quite insensitive to these choices of A°.

6.2.3. Choice of p.

W actually found that the best choice for pis p=r for our test problem
Sim | ar observations have been done by G.ON NSKI - MARROCCO [ 3], GABAY- MERCI ER
(1], for algorithns |ike ALG!, ALG2, applied to the solution of other classes
of nonlinear problens.

6.2.4. Choice of TOL

TOL measures how accurately we want to solve, with ZEROIN, the one variable

nonl i near equations, obtained fromAL& and the inner |oops of ALGl. From
our experiences we recomend a value of TOL = ACC. Intuitively this nakes
sense because if TOL>ACC we won't be able to obtain the required accuracy
in the final solution because our internediate steps are not solved accura-
tely enough. |f TOL<<ACC, we spend nore work in each inner loop than it is
necessary and from our experience, this doesn't inprove the convergence of
the algorithms.
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6.2.5. Choice of .

This paraneter is used in the inner |oop of ALGI to decide when to stop
the inner iterations and update A". Note that if g++e , ALGI » ALQ
because we wi |l be updating A" after only one iteration every tine.

In general, ALGl (with a reasonably smale) is nmore robust than ALR.
AL will work a little better (takes less iterations) than ALGl if we
start with a "good" guess at the solution (po = 0 in our test problem
but if we start with a "bad" guess (p°=0, e.g) ALG2 wil have probl em
at points where has a sharp junp, ;s ;xpl ained earlier. In fact ALGI
solved the inner equations more accurately and thus its updating of A"
wilbe nore accurate and this is often enough to bring us very close to
the solution we want. (See Figure 6.3. For the test problem €=10_4 seens
to be a good choice.) In other words, ALGI's 'cautiousness” in updating A"
pays off. ALGlI may lose a little bit in the early itarations by spending"
too much time in the inner loop but it gives a better chance of obtaining
a solution to within the required accuracy. Therefore, in general, ALGI
is to be recomended. W think that some reasonably small value for ¢,
like ¢ = VACC, wilwork fine. Another approach is to use variable € i.e.
a sequence {gn}n ; this requi}'es further investigation.

6.2.6. Choice of r

W complete the Remark 5.5 of Sec. 5.3.2.. The paraneter r controls the relative
wei ght of the penalty termin the augnented |agrangian (see (5.10)). This
penalty term has the effect of providing some global convergence steering.

W varied the value of r in ALGI with the test problem and found that the
convergence is surprisingly insensitive tor (see Fig. 6.4). This is an
advantage over SOR and ADl type nethods which are very sensitive to their
parameters (as will be shown later).



_.58_.

Ef fect of €

ACC , 17x17 grid,

i
O
=

[}

r=p=5, =0

N.B. : For ALGI we count the inner iterations.

L2 error

! 2 3 4 5 6 7 8 9 10 1 12

- ] . | ] : : [ ] | ] L ] L] : :
iter.
\ circles indicate
]O_I-h \+ 5—updates .
. +§+\
_2 N +
10 "y +\ ALG2
*\* X. X -7
- “ﬂ—-@‘*\'hh—»\’—-@
10_3J. \ \
. * +
10744 \+-_@
5 j * %= 10
107 o o —O—O0—O—O—@® . - 02
p=20 N NG ALGI
ALG2 ® *
1078, \ \
' +
\ a°=o0 = 10
: e =104 T o= 10'4

ALG! ALGI

Fig. 6.3



_59_

6.2.7. Effect of the snoothness of ¢.

The snoot hness of ¢ can be controlled by g in our test problem W ran ALGI
with 2=.1 and 2=.5 and found that ALG! actually perforns a little bit better
for 2=.1than for the "snoother" %=.5. W al so determ ned the optimal r for
2=.5 and found it to be about the same as that for 2=.1.

6.3. Conmparisons with other nethods.

6.3.1. Description of the other nethods.

For a given accuracy ACC on Hgn—thz we want to conpare the efficiencies of
ALGlI, AL& and other methods for solving the discretized problem

Aup + 0(u) = £ .

Anong these methods conpared are the Successive over-relaxation method (SOR)
and the alternating direction inplicit (ADI) nethods discussed in Sec. 4.6.

These nethods are reproduced bel ow :
1) SOR: W can look at the discretized equation
Ay, + ®(u) = f

as a system of non linear equations

£ Gty = 0,
'(6.5) f (ul,uz, .uN) =0,
fN(u]’UZ’ .uN) =0 .

Then we can use (cf. Sec. 4.5) the two follow ng variants of SOR :
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SOR 1 :

(6.6) u® gi ven

+
at step n, with u” known, we conpute gnl by :
For i from1l to N, solve
n+1 ntl n+1/2 n B
(6.7) S Y Ui, ee) =0,
t hen
(6.8) TLARLRE w(u?+l/2— )
| 1 i
SOR 2 :
(6.9) o° gi ven,
. n n+l
at step n, with u known, conpute u by :
For i from1l to N solve
n+l n+tl n ol n+l
(6.10) fi(ul se ey ,ui+]...) = (1 m)fi(u]

2) ADT : W consider the following variants of ADI

ADI1 : W iterate on the follow ng

(6.11) u’ gi ven,

then for n 20

n+1/2

(6.12) (pI+A)u = f + pu-p "),

(6.13) pun+| + ¢(un+]) = f + pun - Aun+1/2,
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ADIIM: W replace (6.13) by

(6 14) Qun+| +¢(un+| Yy = £+ pun+]/2—Aun+1/2 |

ADI2 : It is defined by

(6.15) u® gi ven

then for n=0

(6. 16) P 2002y C g+ puead®

(6.17) oa™ E ™ o 4 ol - ™Y
ADI2M : W replace (6.17) by

(6. 18) ou™ A s ™2 L 2y

6.3.2. Conments. Further Remarks.
One of the main problemwith SOR and ADI is the sensitivity to the paranmeters w
and p respectively. Hence we first study the convergence of SOR and ADl as a

function of their respective paraneter w and p. See Fig. 6.5, 6.6, 6.7, 6.8.

Remark 6.2 @ ADII (and ADIIM both didn't work well and their plots are left out.
The difficulty may be due to solving the linear part first instead of the nonlinear

part first.

Remark 6.3 : Fromthese plots we can see that both ADI2M and SOR are quite sensitive
to their parameters whereas ALGl and AL& are not (specially ALGl1). For linear pro-
bl ens one can usually find sone good estimates for the optimal parameters. However,

for nonlinear problens this is often difficult.
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Remark 6.4 : It follows from Remark 5.3 that AL& and AD12 are in fact the sane
algorithm This appears clearly in Table 6.1 which summarize sone of our conpu-
tational experinents. Fromthis table we can see that ALGl perforns the best if

U0 is not close to the solution uh.

6.4. CONCLUSI ON.

From our experiments on the test problem we can make the follow ng enpirical
statenents :

(1) The convergences of ALGl and ALK are not very sensitive to their paraneters,
in particular the penalty parameter r.

(ii) ALGl is nore robust and as efficient as AL& in general.

(iii) ALGlis nore efficient than SOR and ADI for functions ¢ that are not snooth.
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Commari son of

the different

al gorithns

Requi red accuracy :

Q/ =
Opt i nal

o M,

2

paranmeters are used.

L. error< 10°°

¢ (W @ sgn(u) lu‘JL & 17 x 17 grid points

Ti e

(using

Al gorithm optimal parameter) [terations
ALGL(e=10"%) 2.54 sec. 1
ALG2 1.56 sec. 6
SOR1~ 5.47 sec. 36
SOR2 5.9 sec. 36
AD12 1.67 sec. 7
ADI2M 0.65 sec. 2

u° 10
. Time (using .

Al gorithm optimal parameter) [terations
ALG1(€=10_4) 3.1 sec. 14
AL&R 11.7 sec. 50
SOR1 7.0 sec. 48
SOR2 7.48 sec. 47
ADI2 11.5 sec. 69
ADI2M 7.5 sec. 45

IBM 370/168 , FORTRAN H, OPT = 2. - Doubl e precision

Table 6.1
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