
II

fV.251

I, REFERENCES

[ll Carson&&B., Bolz,H.A,, and Young,H.H., Production Hand6ook, 3rd Edition, 1972, pp.
19-39 to 19-45.

[Z] Barnes,R.M., Motion and Time Study - Dcdgn and Measurement of Work, 6th edition,
John Wiley and Sons, 1968, pp. 496-510.

[3] Vaughn,R.C., Introduction to Industrial Engineering, Iowa State University Press, 1967,
pp. 373-384.

[4] J. Nevins, D. Whitney, and S. Drake, D. Killoran, M. Lynch, D. Seltzer, S. Simunovic, R.
M. Spencer, P. Watson, and A. Woodin, Exploratory Research In industrial Modular
AssemQ, Third Progress Report, No. R-921, Charles Stark Draper Laboratory, Inc.,
Cambridge, Massachusetts, August 1975.

[5] Paul,L., M d II’o e rng, Trajectory Calculation and Servoing of a Computer Controlled Arm,
Stanford Artificial Intelligence Project, Memo AIM- 177, March 1973.

IS] Binford,T.O., Crossman,D.D., Miyamoto,E., Finkel,R., Shimano,B.E., Taylor,R.H.,
Bolles,R.C., Roderick,M.D., Mu jtaba,M.S., Gafford,T.A., Exploratory Study of Computer
Integrated Asscmbby Systems, Second Progress Report covering the periodSeptember 1974 to
November 1975, Stanford Artificial Intelligence Laboratory.

[7] Paul,L.,ARM.LOU/UP,DOCj, Internal documentation resident on the system at Stanford
Artificial Intelligence Laboratory, October 1974.

[V.261

APPENDIX 1:MTMSTUDYOFASSEMBLYBY HUMAN BEING

REACH TO HANDLE
GRASP HANDLE
MOVE -TO FIXTURE

P O S I T I O N
RELEASE

REACH TO BASE
GRASP BASE
MOVE TO FIXTURE
P O S I T I O N
RELEASE

REACH TO SPINDLE
GRASP SPINDLE
ROVE TO FIXTURE
P O S I T I O N
ROVE 1 INCH

6 T I M E S
TURN 180 DEG
RELEASE
UNTURN
GRASP

REACH TO SHELL
GRASP
MOVE TO FIXTURE
P O S I T I O N
TURN AN0 APPLY PRESSURE
RELEASE

HOVE BACK R 30 A 1 7 . 5 3 8

TOTAL 3 8 6 . 2 8 2 3

TtlU* J I F F I E S
=.0006 M I N =1/60 SEC

R 24 A 14.9 3 2
GlA 2 . 8 4
M 18 C 1 3 . 5 2 3
P 1 NS 1 0 . 4 2 2
RL 1 2 . 0 4

R 16 A 1 2 . 3 2 7
GlA 2 . 0 4
M 16 C 1 8 . 7 4 0
P 2 NS 2 1 . 0 4 5
R L 1 2 . 0 4

R 24 A
GlA
M 24 C
P 2 NS
MlC.

T+AP 1 8 0 S 3 . 4

RL 1 2 . 0

T+AP 180 S 9 . 4

GlA 2 . 0

14.9 3 2
2 . 0 4

2 5 . 5 5 5
2 1 . 0 45 ’

3 . 4 7

2 0 . 3
4 . 3

2 0 . 3
4 . 3

6 X 22.8=136,8 4 3 . 2 =295

R 21 A 1 4 . 0 3 0
GlA 2 . 0 4

tl 21 c 2 3 . 8 51
P 2 NS 2 1 . 0 4 5
T+AP 45 S 3 . 5 8
RLl 2 . 0 4

=0,232 MIN =13.9 S E C

*’ TI-UE MEASUREMENT UN1 T

EXPLANATION OF SPECIFIC CASES OF ASSEMBLY PRIMITIVES’31

REACH R 24 A

R stands for REACH, 24 for 24 inches, and A one of the following categories:
A Reach to object in fixed location, or to object in other hand or on which other

hand rests.
B
c

Reach to single object in location which may vary slightly from cycle to cycle.
Reach to object jumbled with other objects in a group so that search and select
occur.

D Reach to a very small object or where accurate grasp is required.
E 1 Reach to indefinite location to get hand in position for body balance or next

motion or out of way.

[V.27]

: MOVE M14A

M stands for MOVE, 14 for distance of 14 inches, and A one of the foilowing categories:
A Move object to other hand or against stop.
B Move object to approximate or indefinite location.

- c Move object to exact location.

TURN & APPLY PRESSURE 7 & AP 180 S

T & AP stands for TURN & APPLY PRESSURE, 180 for a turn of 180 degrees, and S
one of the following ranges of weight that is turned:
S Small - 0 to 2 lb.
M Medium - 2.1 to 10 lb.
L Large - 10.1 to 35 lb.

POSITION P 1 NS

p stands for POSITION, 1 for class of fit, NS for non-symmetry of the part.
1 - Loose fit, no pressure required.
2 Close fit, light pressure required.
3 Exact fit, heavy pressure required.

(V-28 J

RELEASE RL 1

RL stands for RELEASE, for one of the two cases:
1 Normal release performed by opening fingers as independent motion.
2 Con tact release.

GRASP G 1 A

q stands for GRASP, 1 for a category, A for subcategory as shown.
1 Pick up grasp.
1 A Small, medium or large object by itself, easily grasped.
1 B, Very small object or object lying close against a flat surface.
1 C Interference with grasp on bottom and one side of nearly cylindrical object of

following subclasses.
1 Cl Diameter larger than l/2 inch.
I C2 Diameter l/4 inch to l/2 inch.

1 C3 Diameter less than l/t inch.
2 Regrasp.

3
.’ 4

Transfer Grasp.
Object jumbled with other objects so search and select occur,

4 A Object larger than 1 0 1 e 1 inch’.
4 B Object l/4 36 l/4 Q l/t to 1 Q 1 Q 1 inch .

. 4 C Object smaller than l/t a l/t * l/8 inch3.
6 Contact, sliding or hook grasp.

, [V.29]

APPENDIX 2: MTM STUDY OF ASSEMBLY BY MACHINE

This analysis of the movements of the Yellow Arm is based on estimates of the times taken
to make various motions, as programmed under WAVE. Each movement is allowed a grace
period of 20 jiffies (60 jiffies-l set). The time for each joint to complete its motion is
computed as the distance or angle it has to move multiplied by the time taken to move per
unit distance or angle, based on a desired maximum average velocity. Estimated time for
each motion is the maximum time over all six joints.

The aim was to record and measure the movements that looked reasonable in an attempt to
compare the actual assembly time with the estimated time for a working assembly. No
attempt was made to try to optimize the assembly time, or to run the arm at a higher speed.

Two different analyses are made, one to compare t-he movements of the arm with human
movements, the second to make use of motion primitives that were used in the analysis of

the washer gearbox by Draper Lab. [41 In doing the second, analysis, it was assumed that the

only tool used by the arm was the hand consisting of the two fingers with binary touch
sensors, and that this tool was not replaced.

PUT HANDLE
OPEN
GOT0 HAJR
POSITION
CENTER
GOT0 MAIN FIXTURE
POSITION
OPEN HAND (DROP HANDLE)
WAIT
CLOSE
PUSH INTO POSITION
LIFTOFF

PUT BASE
OPEN
GOT0 BA-GR (APPROACH)
POSITION
CENTER
GOT0 APPROACH OF MAIN FIXTURE
PLACE IN POSITION

0
tl
P
C
r-l
P
0
W
C
P
M

J I F F I E S
=1/60 set

DRAPER MOT I ON
P R I M I T I V E S

5 0 R e l e a s e
200 P o s i t i o n

5 0 * P . P o s i t i o n
5 0 Grasp

140 P o s i t i o n
140 P . P o s i t i o n

3 0 R e l e a s e
5 0 * W a i t
2 0 Grasp
5 0 Accommodate (Depress)
3 0 P o s i t i o n

S u b t o t a l 8 1 0

5 0 R e l e a s e
140 P o s i t i o n

5 0 P, P o s i t i o n

6 0 Grasp
140 P o s i t i o n
140 P, Position

[V.30]

OPEN HAND ,
MOVE UP
CLOSE HAND
MOVE DOWN
LIFTOFF

0 3 0 R e l e a s e
II 140 P o s i t i o n
C 5 0 Grasp
p 140 Accommodate (D e p r e s s)
M 3 0 P o s i t i o n

S u b t o t a l 970

PUT SPINDLE

.
0 G E T S P I N D L E

OPEN AND

GOT0 APPROACH OF SP GRIP
POSITION

’ C L O S E H A N D

140
4 5

140

R e l e a s e
P o s i t i o n
P. P o s i t i o n
Grasp

Subtota t 325

PLACE-SP I NDLE
GOT0 TOP OF MAIN FIXTURE M 380
TOUCH TOP OF FI XTURE P 110
MOVE OUT II 8 0
GOT0 SIDE OF MAIN FIXTURE M 380
TOUCH SIDE P 140
MOVE OUT II 5 0
SEARCH FOR HOLElASSUME GET RIGHT FIRST TIME)

GOT0 TOP OF HOLE M 200
MOVE DOWN P 80
TWIST AN0 FORCE DOWN T+AP 8 0

OPEN HAND 0 45
MOVE UP A BIT II 35
CLOSE HAND C 6 5

TURN SPINDLE
TURN 120 DEG CLOCKWISE

- OPEN HAND
3-* TURN 128 CCW
CLOSE HAN0

’ 3 t T U R N 1 2 0 C W
OPEN HAND
3 * TURN 120 CCW
CLOSE HAND

S u b t o t a l 1645

T+AP 8 0 R o t a t e
0 30 R e l e a s e
3*T+AP 150 R o t a t e
C 3 0 Grasp
3rkT+AP 240 R o t a t e
0 30 R e l e a s e
3mT+AP 1 5 0 R o t a t e
C 3 0 Grasp

P o s i t i o n
I n t e r f a c e
P o s i t i o n
P o s i t i o n
I n t e r f a c e
P o s i t i o n

P o s i t i o n I

Accommodate 1 I nser t 1
Accommodate (Camp I ex I

accommodate)
R e l e a s e
P o s i t i o n
Grasp

[X31]

'3 * TURN 120 CW
OPEN HAND
RN 120 CCW
CLOSE HAND
2 rlr TURN 128 CW

ASSEMBLE SHELL
OPEN HAND AND
GOT0 APPROACH OF SHELL
POSITION

CLOSE HAN0 (GRASP)

, GOT0 APPROACH OF BASE
WAIT
PUSH DOWN AN0 WOBBLE

WAIT
RELEASE
CLOSE HARD
FORCE DOWN AND WOBBLE

FORCE DOWN AND TURN 45 DEG CW T+AP

PARK ARM
OPEN
MOVE U P
PARK

3rkT+AP 2 4 0 Rotate
0 30 Release
3*T+AP 150 R o t a t e
C 3 0 Grasp
2*T+AP 160 R o t a t e

S u b t o t a l 1350

0
M 380
P 35
C 150
M 200
w _ 50
P 80

W 50
0 20
C SS
P 35

80

S u b t o t a l 1160

Release

Pos i t i on

P, P o s i t i o n

Grasp

Pos i t i on

Wait

Accommodate (Camp I ex

accommodate)
Wait

Release

Grasp

Accommodate (Camp I ex

accommodate) **
Accommodate (Camp I ex

accommodate)

0
II

f-l

40 Release

50 1
120 IReturn

S u b t o t a l 210

TOTAL ASSEMBLY TIME 6 4 7 0 j i f f i e s = 1 0 8 set

* W a i t a n d P . P o s i t i o n (P r e c i s e p o s i t i o n) a r e t w o p r i m i t i v e s i n t r o d u c e d h e r e
t h a t a r e n o t u s e d i n D r a p e r r e p o r t .

**This m o v e m e n t i s n o t t h e p e g i n h o l e i n s e r t i o n p r o b l e m i n t h e t r u e s e n s e :
r a t h e r i t i s t h e i n s e r t i o n o f a r o u n d h o l e o v e r a n o v a l p e g w i t h a l a r g e
c l e a r a n c e u n t i l t h e r e i s a n i n t e r f a c i n g .

‘I

VI, MATHEMATICAL TOOLS FOR VERIFICATION VISION

Robert C. Balks

Artificial Intelligence Laboratory
Computer Science Department

Stanford University

The author is a graduate student in the Computer Science Department.

[VU]

CHAPTER 1

I N T R O D U C T I O N

Verification Vision (VV), as defined in [BOLLES 751, has three main concerns:

(a) the confidence that the system is finding the correct object(s),

(b) the precision within which the system has located the object(s),

and (c) the cost involved in determining this information.

For each task, such as visually locating a rivet hole, the assembly engineer specifies the
desired confidence and precision, and possibly some cost limits such as the maximum real time
that the task can take. During the execution of the task, the VV system gathers more and
more information until the confidence and precision requirements have been met or until
some cost limit has been exceeded.

The VV system that will be discussed in this paper gathers information by applying
“opera tars,” such as edge operators, correlation operators, and region growers, which are
designed to locate and describe “features,” such as line segments, correlation points, and
regions. The information produced by such operators can be roughly classified into two
types: value information and position information. Value information includes such things
as the value of a correlation coefficient, the contrast across an edge, and the intensity of a
region. Position information, in addition to (x,y) or (x,y,z) information, may include
orientation information. For example, an edge operator can return the (x,y) position of a
point on a line and an estimate of the orientation of the line. The same edge operator may
return the contrast across the edge and the confidence that there really is an edge at that
place, both of which would be classified as value information.

-The distinction between value information and position information is made because
often it is reasonable to assume that the values from different operators are independent, but
it is seldom reasonable to dssume that the positions of features are independent (especially
features of rigid objects). “Independence” means that knowing the value of one operator
(such as a correlator) does not affect the expected value for another operator (such as an edge

01 mator). The position information, on the other hand, is not independent because the .
location of one point or the orientation of one line greatly influences the possible positions for
other features.

Figure 1.1.1 shows the general flow of control for a VV system based upon these ideas.
The flowchart suggests several important questions which this or any similar VV system has
to be able to answer:

(1) Given a sllecific set of objects, what are some candidate features and
what operators can be used to find such features?

(2) What information can a specific operator contribute toward
increasing the confidence that the correct object is being found?

(3) What is the expected cost of applying operator X?

(4) What was the actual cost of applying operator X?

(5) Which operator should be applied next?

(6) How can the results of several operators be combined to give an
overall confidence?

(7) How can the results of several operators be combined to determine
an estimate for the location of the object and a precision about that
estimate?

(II) What is the expected number of operators required to achieve a
certain confidence?

These questiorls can be partitioned according to the time at which they are most
irnf3ortaiit. For example, the question about the expected number of operators is important at
“plnnning time” when the system or user is trying to decide the expected cost of accomplishing
the tadi. The question about candidate features is important at “programming time” when
the tiser is describing potential sources of information. This paper divides a VV task into
four tin-zs, or stages:

(1) PROGRAMMING TIME: the user states the goal of the task, gives
the confidences, precisions, and costs for the task, and interactively
chooses potential features and oi)erators.

. EVI.3]

I n p u t t h e i n i t i a l c o n s t r a i n t s
o n t h e o b j e c t s ’ p o s i t i o n s

J
l ,

Y E S *Any m a x i m u m c o s t
1 limita e x c e e d e d ?

1 I NO
RETURN FAILURE

A
, .

NO A r e t h e r e m o r e
u n t r i e d o p e r a t o r s ?

I YES

I C h o o s e t h e n e x t opera,tor I

I A p p l y t h e o p e r a t o r I

4

C o m p u t e t h e b e s t e s t i m a t e a n d p r e c i s i o n
f o r t h e o b j e c t s ’ p o s i t i o n s

c I b

RETURN SUCCESS
A

1
Y E S + NO

A r e t h e c o n f i d e n c e a n d p r e c i s i o n h i g h e n o u g h ? 4

FIGURE 1.1.1

(2)

(3)

(4)

TRAINING TIME: the system applies the operators to several
sample pictures and gathers statistical information about the
effectiveness of the operators.

PLANNING, TIME: the system ranks the operators according to
their expected contribution, determines the expected number of
operators to be needed, and predicts the cost of accomplishing the
task.

ESECUTION TIME: the system applies operators one at a time,
combines the results into confidences and precision, and stops when
the desired levels have been reached or until a cost limit has been
exceeded.

This paper concentrates on the mathematics required at the execution and planning;
times. It describes methods for answering the questions about the contributions of operators
and how to combine the results of several operators. It is less concerned about how the
features and operators are suggested initially. The basic approach is to use a least squares
technique to combine the available information to form a current, best estimate for the
lucation of the object (plus a tolerance about that estimate) and Bayesian probability within a
sequential pattern recognition scheme to compute the necessary confidences. These are all .

well-known techniques, but they combine particularly nicely to ‘answer the various questionsI
raked within a VV system.

This paper relies heavily upon the domain of programmable assembly for its examples
and motivation. The techniques are discussed in the context of a highly controllecl
en vi ronmcnt in which mechanical arms are performing assembly tasks. Some of the
techniquej have been optimized to take advantage of specific properties of this environment,
t:jut the basic methods used to produce location and confidence information from the results or’
several visual operators are more widely applicable. Other promising tasks areas that require
similar types of visual information processing are the interpretation of aerial photograph,
calibration, and medical diagnosis.

CHAPTER2

EXECUTION-TIMEMATHEMATICS FOR INSPECTION

The description of the relevant mathematics has been separated into two segments,
execution-time mathematics and planning-time mathematics. The former is concerned with
combining the actual results of features as they are found. The later is concerned with
computing and combining the cxpccterl contributions of the features.

The mathematical tools are incrementally developed in conjunction with a sequence of
examples that has been designed to incorporate an ordered set of complexities.

Section 1
OPERATOR VALUE INFORMATION

Consider the task of deciding whether or not there is a screw on the end of the
screwdriver. For simplicity assume that normalized cross-correlation is the only type of
operator known to the VV system. Correlation uses patches from a ‘planning’ picture as
features to be found in the actual (ie. the execution time) picture. Figure 4.1.1 shows a
planning picture with the screw on the end of the screwdriver and several sample pictures,
some with the screw present, some with it missing. Figure 4.12 shows several correlation
“features” outlined on top of the planning picture. When operator 1 is applied to a sample
.picture it locates a match with a certain value for the correlation coefficient. Correlation
coefficient values range from -1 to +I. Figure 4.1.3 shows the results of applying operator 1 to
ten different sample pictures of the screwdriver with the screw on the end. If the frequency
of these correlation values is assumed to follow a normal distribution, the corresponding
distribution can be approximated from the experimental mean and standard deviation of
these values. The fitted, sample distribution is shown in figure 4.1.4.

If operator 1 is applied to a sample picture in which the screw is missing, there will not

.

[VI.83

FIGURE t.l.3

#49 *46 .M .66 .60 066 ,A) ,76 Bee 186 eve .96 1,110

CONFIDENCE

FIGURE 4. I.4

be a portion of the picture that “looks like” operator 1, and hence there will not be a portion
of the picture that correlates well with operator 1. Operator 1 will still locate a “best match”
but the correlation coefficient will be lower. Thus, operator 1, if reliable, will (1) match the
correct piece of the screw, if the screw is there, and (2) match some other feature (with a lower
correlation value) when the screw is not there. This performance difference is the basis for
deciding whether the screw is there or not.

If operator 1 is applied to several pictures without the screw, the resulting correlation
values will form some distribution. A table of ten such trials and the corresponding
distribution (again assuming a normal distribution) are shown in figure 4.1.5. The two
frequency functions are superimposed in figure 4.1.6.

If operator 1 is applied to a picture for which it is not known whether the screw is
there or not, the operator will find a “best match” with some correlation value, eg. .93. Eased
solely upon operator 1, should the system say that- the screw is there or not? One would
probably say that the screw is there, but what is the confidence of that decision? In
probabilistic terms, one is interested in the probability that the screw is there, given that
operator 1 has a value of .93, ie.

(4.1.1)

Let

P[<screw t h e r e > 1 <value(operator 1)=.93>).

(4 . 1 . 2) H i <the screw is on the end of the screwdriver>
v l a <value(operator 1) = X>

then Bayes’ theorem (eg. see [Hoe1 711) expresses the desired Q posteriori probability in terms
of the cz priori and conditional probabilities as follows:

(4.1.3) P[HIvl] =
P[vlIHJ * P[HJ

P[vljHJ * P[HJ + P[vlI-H) * PC-H)

or

(41.4) P[HIvlJ =
1

.
P[vljlH] * PC-H]

1 +
P[vllH] * P[H-J

These formulas state the desired probability in terms of probabilities that are often more

WI. 103

-8

-
7

3

-iii I 1
046 a46 ata a66 nufl .G6 .XI ,76 SUB *tati *30 *vs 1 . 0 0

CONFIDENCE

FIGURE 4.1.5

[VI. 111

E
N B
S
I
T -ii-

866 860 ,I36 #‘lb ,7S 800

CONF I OENCE

FIGURE 4.1.6

readily computed. The a priovl probabilities are based upon measured statistics or the
esperience of the assembly engineer. For example, if the screwdriver correctly acquires a
screw nine-tenths of the time, P[H] should be set to .9. The density functions shown in figure
4.16 can be used to compute the conditional probabilities, P[vll-l-11 and P[v 1IWI. Since the
functions are clcnsity functions, the probability of the operator producing any one particular
value is zero. But the probability of the operator producing a value within a certain range is
the integral of the function over that range. Thus one way of estimating the above ratio fo;
a specific value of the operator is to consider a small range about the value, compute the two
probabilities by integration, and form the ratio. Notice, however, that as the width of the

’region decreases, the approximations for the ratio approach the ratio of the two values of the
clcmity functions at X. That is, the ratio of the probabilities can be replaced by the ratio of
thi densities. This observation makes is particularly easy to compute the appropriate ratio fot
any value of the operator.

Eayes’ theorem can be extended to combine the values of several operators:

1
P[H)vl,vZ, . ..vN) = .

P[vl,vZ ,...vN/THJ PC-HI
1 + R-

P[vl,v2 ,...vNIH] PI31

Since

(4.1.G)
WLU

P[vlIHJ fi
PlYI

,
and

P[vl,v2,H] f’W,W
(4 .1 .7) P[vl,v2jH] 8 t = P[vllH,v2] * P[v2lH],

PIHI P[H,vi]

then, more generally, the conditional probabilities can be expanded into:

(4 .-1 .8) P[vl ,v2 ,...vNIH] = P[vl(H,v2,v3 ,... vN] * P[v2lH,v3,v4 ,... vN] *

I

t P[v(N-l)IH,vN] * P[vNIH].

[VI.13]

If the v’s are assumed to be conditionally independent, ie.

(4.1.9) P[vjlH,vj+l,. . .vN] = P[vjIH]

then these probabilities reduce to

(4.1.10) P[vl,vt ,... vNIH] 0 P[vlIH] * P[vEJH] * . . . * P[vNIH],

and Bayes’ theorem becomes

1
(4.1.11) P[Hlvl,v2, . ..vN] = .

N P[vil-HJ W-U
,+n k-

i=l- P[vilHJ WI

In this form it is apparent that the contribution of an operator is the value of the ratio:

(4.1.12)

P[vil-H]
.

WWU

The contribution of an operator is the amount of influence that the operator’s value has on
the estimaie of the overall probability of H. The inverse of ratio 4.1.12, ie.

(4.1.13)
P[vi IH]

P[vi I-H]’

is known as the likelihood ratio. The logarithm of the likelihood ratio is also important, as
the chapter on planning-time mathematics will show. The larger the likelihood ratio, the
stronger the evidence that the screw is present. This formulation agrees with one’s intliition
in several ways. Consider figure 4.1.7 in which three values of the operator have been
indicated: W, X, and Y. If the operator happens to produce the value W, the likelihood
ratio is 1.0, and the probability of the screw being there is unchanged. Any value to the left
of W implies a likelihood ratio less than 1.0, and thus decreases the estimate of the
probability that the screw is there. Both X and Y are to the left of W. Both suggest that the
screw-is not there, but Y contributes*more (as expected) toward decreasing the estimated

, probability that the screw is there than X does.

It is not true, however, that any value to the right of W increases the probability that
the screw is there. Consider figure 4.1.8. It emphasizes the difference between the two

WI. Ml

E
N

E
S

,411 046 ,tb $66 eolf ,176 ,711 ‘,76 a80 *OS ,9B ,96 1.00

CONFXOENCE

FIGURE 4.1.3

[VI.151

ra

36

38

0E 26

2
I ee
T
Y 16

ii

5

n

b I I I I I 1 I I
.6b ,66 em 1 l.se

I
i:NF I:ENt;IBS I

09s l.B0

Ho(
FIGURE 4.1.8

[VI. 161

K
E

k
H
0
0
0’

H
A
Y
0

iii

6

-lb

-16

i

_ f

.-
:

a
0

-PO

840

,46 -60 .6S *OR .55 ,-al a75 908

CONF I DENCE

146 .C0 .6& ,GB .t5 ,B .76 *aa .06 .98

CONF I DENCE
$96

FIGURE 4.1.9

[VI.171

standard deviations so that it becomes clear that there is a region on the right of W in which
the values produce likelihood ratios that are less than one. There is only a small interval
(labeled a) that contains values that increase the probability that the screw is there. The
likelihood ratios for every value in a are greater than one. AlI other values for the operator
produce likelihood ratios less than one. Figure 4.1.9 shows the likelihood ratios and the log
likelihood ratios associated with the distributions shown in figure 4.1.7.

This last form for Bayes’ theorem is computationally convenient. For example, consider

(4.1.14)
PI-HI

to 0 -
PIHI

P[vNI-H]
tN = * t(N-l-)

PCvNlHl

1
a n d P[HIvl,...vN] = -.

1 + tN

(for N > 0)

This set of formulas gives a straightforward way of incrementally incorporating the results of
* sequentially applied, conditionally independent operators. In fact, it is a powerful way of

combining the value information of operators into a probability that an object (or part of an
object) is present.

Section 2
KNOWN ALTERNATIVES FOR A FEATURE

In the last section, an operator was applied over some portion of a picture under the
assumption that there are only two possible results: (1) the screw is present and the operator
locates the appropriate piece of the screw or (2) the screw is not present and the operator
located some other “feature.” It was also assumed that the operator was applied over the whole
region before returning the “best” match. In effect, these assumptions guarantee that the value
returned by the operator belongs to one of the two density functions (H or -H). This is
pleasant if true, but there are-several reasons why these assumptions might be false:

(I) There may be other similar features in the same local area that sometimes

(3

appear better to the operator than the “real” match. If a “similar” feature
al7pears regularly enough so that the system can determine the corresponding
density function, the feature will be called a knoz~tr dtcmativc. In that case
the desired feature will no longer be special. It will simply be one of the
alternatives. For any particular application of the operator, the system will
have to decide which alternative is being matched. If a similar feature occurs
itlfrequently and unpredictably, it will be referred to as a surprise.

The measurements made by the operator may not immediately single out the
“best” match. The value returned by a correlation operator orders the
possible matches (the larger the correlation coefficient, the better). Other
operators may return values along multiple scales, The “best” match is
ex~~erimentally defined to be the one that produces values “closest” to the
training values. For example, an edge operator may return (a) the
distinctness of the edge and (b) the contrast-across the edge. If the “desired”
line is a fuzzy line with a high contrast, it is not clear how to determine the
“best” match. A distance function has to be defined.

(?I) The “desired” feature may not be in the portion of the picture scanned by the
optra tar. This problem may occur if the system has incorrectly narrowed
down the set of possible positions for a match, or if the feature has been
obscured for some reason. The operator will still return the location and

- value for the best match it can find, but it would be incorrect to assume that
such a value belonged to one of the two densities and then draw some
conclusions about the confidence of H.

(4) Some global factor may change (eg. one of the work station’s lights may be
out) so that the feature appears quite different, even though it is in the
correct area.

(5) Each application of the operator may be so expensive that it is prohibitive to
scan it over the complete area and choose the best match. Instead it has to be
sequentially- applied until sdme “reasonably good” match is found. If there
are a few similar features in the local area, a “reasonably good” match may
not be the best match and hence the value produced by the operator may not
belong to one of the two density functions.

This section develops the necessary mathematics to include known alternntives in the
conf ideiice -Comj3Utations,

Consider the problem of correctly deciding which one of three possible line segments an
edge operator has located. There are several sources of information (orientation, fuzziness,

, [V1.19]

contrast, etc.), but for the time being only consider one dimension (eg. contrast). Assume that
during #the training session the system gathered enough statistics about the three lines to
approximate the three density functions associated with their contrast values. If an edge is
found with a certain contrast in an actual picture, which line is the operator on (assuming
that there are only three possibilities) and what is the confidence associated with that
decisiori? This question can be answered by compueing three probabilities: the probability
that the operator has located line 1, the probability that the operator has located line 2, and
the probability that the operator has located line 3. Let

r

(4.2.1) Ll L <operator 1 has
L2 P <operator 1 has

and L3 i <operator 1 has

ocated a point on line l>
ocated a point on line 2>
ocated a point on line 3>.

Then Bayes’ theorem states that

1
(4.2.2) P[LlIv) = .

P[vI-Ll] * P[lLl]
1 +

P[VJLlJ * P[Ll]

Since
.

(4.2.3) -Ll = L2 @ L3 { @ stands for exclusive OR }.

Then

(4.2.4) P[vI-Ll] = P[vIL2]*P[L2j-L1] + P[VIL33*P[L3jVLlJ.

Bqyes’ theorem reduces to

(4.2.5)
1

P[LlIv] =
P[vIL2]*P[L2,1Ll] P[vlL3]*P[L3,-Ll]

1 + +

P[vl Ll]*P[Ll] P[vjLl J*P[Ll J

or, sirke L2 and L3 are contained in -Ll,

(4 .2 .6)
1

P[Ll(v] =
P[vlLZJ*P[L2] P[v,L3]*P[L3,'

1 + +
P[viLl]*P[LlJ P[vJLl]*P[Ll J

When there are N known alternatives this becomes

(4 .2 .7)
1

P[Ljlv] =
P[v,L1,*PCLi,'

1 + c
i#j P[v(Lj]*P[Lj]

This formula is convenient because the desired prtibability is stated in terms of a priori

probabilities and the simple ratios discussed in the last section.

The formula states how to compute the probability that the operator has located a
p:~rticular feature, given several known alternatives. The alternative with the largest ,
probability is the “best” match. Some best matches are better than others, however, in the
sense that there is less chance of being wrong. For example, if there are four known
&crnatives, the system should. be more confident in its choice for the best match if the
probabilities are P[LlIvl - .52, P[L21v1 - P[LSIv1 = P[L41v1 = .16 than if the probabilities are
P[L llvl - .52, P[LZIvl - .46, PILSIVI - PLL4lvl - ,Ol, even though the best match has the
same probability in both cases. One possible measure for this confidence is the ratio:

(4 .2 .8)
P[“best? Iv J - P[%ccond best" 1 v]

.
P["best" Iv]

Jf the probability of the second best alternative is almost as large as the probability of the
lx,tt alternative, the confidence will be low.

When the task is an inspection-type task (cg. checking to see if there is a screw on the
screwdriver or not), there may be two or three known alternatives that are possible wlm the
ol-1 jcct is there and two or three known alternatives when the object is not there. In this case
the system is less concerned with which alternative is the best match than it is with the overall
probability that the object is there or not. A derivation similar to the one ustxi above
produces the formula needed in this situation. Let fl, f2, . . . fM be the known alternatives that
might occur when the object is there and let gl, g2, . . . gN be the alternatives that are possible .
whcri the object is not there. -Bayes’ theorem states:

A
P[Hiv) = .

P[vilH] * PC-H]
1 +

J’CWI * PIHI

(4 . 2 . 9)

By assumption

(4 . 2 . 1 0)
and
(4 . 2 . 1 1)

P[H] = P[fl] + P[f2] + . . . + P[fM]

PC-H] = P[gl] + P[g2] + . . . + P[gN].

Notice that this is equivalent to assuming that there are no surprises. Bayes’ theorem can be
expanded into

(4 . 2 . 1 2)
1

P[vlgl]eP[gl] + P[vlg2]*P[g2] + . . . + P[vlgM]*P[gN]
1 +

P[vlfl]rP[fl] + P[vlfE]+P[f2] + . . . + P[vJfM]*P[fM]

o r

(4 . 2 . 1 3)

1

P[HIv] =

C PIvlgWP~gU l

1SiSN
1 +

C P[vIfi]*P[fi]
lsi<M’

In essence, this formula gathers all of the evidence for and against H and forms a ratio
between them. To use this formula the system has to know a great deal about what can be
e x p e c t e d i n a runtime pic ture . In particular, the system must know what the possible

alternatives are, what their values are, and how probable they are. Within the contest of
programmable assembly this assumption is often reasonable because the environment is highly
constrained and the system has the opportunity to watch several examples of the assembly.

This type of formula can be easily extended to incorporate the results of several

operators, all of which may have known alternatives. Assume that there are K operators. Let

fj,l; fj,2; . . . ;f j, Nj be the N j known alternatives for the jth ollerator, w h e n t h e

object is there . L e t sJ,l; g&2; . . . ;g j ,Mj be the Mj known a l ternat ives for the j th

operator, when the object is not there. Then

(4 . 2 . 1 4 .)

P[Hlvl,v2,...vK] *

1

. (K-1) C’ PLWgiLOWc&il’
PCH) K MsNj

1 + lk n

(K - l) j=l c P[vjlfj,i J*P[fj,i]’

PC-N 1SisMj

The e+ponent (K-l) appears because the expression for each of the K operators produces a
f ;3ctor o f

(4.2.15)
PM1

P[-HI’

and the ratio of a priori probabilities in Bayes’ theorem cancels one of them.

Section 3

S U R P R I S E S s

The main assumption of the last section was that all of the alternatives were known and
characterized in advance. Sometimes, however, operators match unknown features and return
CIIIlIsllal val1rcs. Such unknown and unexplained matches will be referred to as su.rpriscs.

The values produced by surprises can not be accounted for by the usual density functions.
‘i’hcre are two possible ways of dealing with theie values: (1) filter out l)articularly bad values
and (2) sca le down the potent ia l contr ibut ion (in the probabi l i ty computat ions) of any
opcr;r[or that is known to find surprises. The first method involves a check on each value

produced b y an operator to make sure that it is a reasonable value for at least one of the
k n o w n alternatives. For example, any value that is not within three standard deviations of
the me& of a known alternative can be classified as an unusual value. There are severa l
pc~ssiblt explanations for such a value (some global change, the feature is not present, or a
surprise), but in any case the value should not be used to “improve” the confidence value. It
may corltribute to other considerations (such as some global error), but it should not be
blindly cranked through the formula.

The second method lowers the possible contribution of the suspect operator because an
operator that finds surprises should be trusted less than one that doesn’t. The assumption
used in the previous section that all of the alternatives are known is equivalent to the
following equation relating the Q priori probabilities:

(4 . 3 . 1) P[H] = P[fl] + P[f2] + . . . P[fN].

If the operator occasionally locates surprises, a better model is

(4 . 3 . 2) P[H] = P[fl] + P[f2] + l . . P[fN] + PCs]

w h e r e P[s] is the a priori probabi l i ty of f inding a surpr ise . To ref lect th is model in the
probability computations requires some density function to be associated with the surprises.
What should the form of this density be? If surprises can produce any value for the operator,
one reasonable assumption is that the density is a rectangular distribution. And in light of
the filtering mentioned in the last paragraph, it also seems reasonable to restrict the domain
of this function to the interval between the smallest reasonable value for the operator and the
largest reasonable value. Figure 4.3.1.a shows three density functions, one for the case when
the screw is there and two known alternatives when the screw is not there. If the OfJeratOr
occasionally locates surprises, a rectangular density function is added, as shown in figure
4.3.1 .b.

The density function for surprises can be incorporated into the confidence computation
in a straightforward way. Since a surprise may occur whether the object is there or not, the
new possibil ity is included in both the numerator and the denominator. T h a t i s , i f ‘2”

represents the surprise, the formula is

(4 . 3 . 3)
1 .

P[‘H)v] = .
. N

PCvlsWfsl + C PCvls~l*Ptsil
i = l

1 +
M

‘P[vls]*P[z] + C P[vlfi]*P[fi]
i=l

The additional density function, therefore restricts the contribution of the suspect operator.
The operator can not be as strongly for H or as strongly against H as it could when all of the
alternatives were known. For example, if all of the P[vlgi]‘s are essentially zero, the operator
can no longer force the overall probability to one. The new addi t ion a lso means that

W I . 2 4 1

1
I
E
s

6

.oo 666 ,70 .76

CONF I’;ENc:s

.9a

FIGURE 4.3. La

,36

6

l60 ,66 I 78 ,76

CCJNF Iit%NCi?
.90 ,96

FIGURE 4.3.1.b

[VI.25 J

sometimes the “best” match will be the surprise. For example, if the operator happens to
return the smallest reasonable value, the best match will probably be the surprise (depending
upon the a priori probabilities).

If the operator happens to find surprises more often when the object is there (or not
there), it is possible to set up two separate density functions and include one in the numerator
and one in the denominator. Let fj,O be the surprise associated with the jth operator when
the object is there and let gj,O be the surprise for the jth operator when the object is not
there. Then the formula that combines the results of: several operators, each of which may
have known alternatives and/or surprises, can be written as:

(4 . 3 . 4)

1

P[Hlvl,vZ,...vKJ =

C WjlgJ,il*U2xLil ’
PC-H] K

n(

PCHI OSiSNj
1+-r -*

>
P[HJ j = l P[-h c P[vjlfj,i J*P[fj,i J

O<iSMj

This extension of the formulas to include surprises means that there are three possible
outcomes whenever an operator is applied: (1) the value is outside the “reasonable” rarr~;e, (2)
the value is reasonable, but it implies that the best match is a surprise, or (3) the value is
reasonable and the best match is a known alternative. The interpretat ion, i f any, of the
unusual values and surprises has to be left up to a higher level system. A later chapter will
pursue this question in more depth.

Sectioil 4
M U L T I P L E - V A L U E D O P E R A T O R S

Some operators return more than one value; the description of what they have found
contains values along several scales. For example, a texture operator may describe a local
region in terms of many different characteristics. It has already been mentioned that edge
operators-often return two or three values. When dealing with such operators one wants to
combine all of the available information into one probability that the object is there, or to
determine the best alternative. Again there are Bayesian probability formulas that provide
one way of doing this. Consider an inspection task and one operator that returns N values,

v 1 v”I c, **. and vN. Then the standard Bayesian formula is

(4.4.1)
1

P[Hlvl,v2,...vNJ =
P[vl,v2 ,...vN 1 4lJ PI,H]*

1 + *-

P[vl,v2 ,...vN 1 H] NH1

It’ the values are conditionally independent of each other, the usual reduction yields

(4 . 4 . 2)

1
P[Hlvl,v2,...vNJ = .

N P[viJ-H) PHI

l+ I-l t-

i = l -P[viIH] PM1

These formulas can be extended to include several operators, each of which may return
scvcral values. Assume that there are N operators and each operator returns M j values (M j r
I). Let vj,l; v j,2; . . . vj,M j be the M j values returned by the jth operator. If the values for
one operatot are interdependent, but the values of separate operators are conditionally
inclependen t, then

-(4.4.3)

P[H I (vl,l; v1,2; . . . vl,Ml), . . . (vN,l; vN,Z; l ** vN,MN)] =

A

N P[(vj,l;vj,2;...;vj,Mj) I 1H) P[ill]’

l+ l-l R-

j=l P[(vj,l;vj,Z;...;vj,Mj) I HJ PI31

If all of the values are conditionally independent of each other this formula collapses back
into the previous formula (with a suitable renumbering of the v’s).

This formula can be further extencled to include operators that have several known
altet’natives and even surprises. Assume that the values for one operator are intcrdcpendcnt,
but thdt the va lues of separate operators are condi t iona l ly independent . Let there be K
operators. Let the jth operator have M j known alternatives when the object is there, and N j
known alternatives when the object is not there, and surprises. Assume that the jth operator
returns R j values as a description of what it finds. Then the appropriate formula is:

[VI.27]

(4 . 4 . 4)

P[H 1 (vl,l;vl,2;...;vl,R1), . . . (vN,l;vN,2;...;vN,RN)] =

1 .N3K c . P[(vi,l;vi,2; . . . ;vi,Ri) 1 gj,i]*PCgj,;]

NH1 K i=O
I+-* r-l

K j=l M j

N+U C P[(vi,l;vi,Z; . . . ;vi,Ri) 1 fj,i)*P[fj,i]i=o
To use operators that return several interdependent values the system has to gather

enough information to approximate the multi-dimensional density functions. Once this has
been done, the ratio of density values can be used in place of the ratio of probabilities, just as
in the one-dimensional case.

Since the expression “(v j, 1;. v j,!2; . . . vj,R j)” can be validly substituted for “vj” in any of
the der ivat ions which fo l low, the remaining der ivat ions wi l l only be concerned wi th
single-valued. operators. The formulas apply to multiple-valued operators, but for notational
%mplicity they will not be stated in their full generality.

Section 5
P O S I T I O N I N F O R M A T I O N

The local value information produced by an operator is important, but the relative
structure of the matches is crucial in verification vision. This section describes a method for
incorporating the structural information into the relevant mathematical formulas.

F igure 4.5.1 .a s h o w s @e positions of three typical features in a planning picture.
Assume that the task involves determining the change from the planning picture to the actual
picture -and the change mainly consists of an X and 1’ shift. If the three opera tor -s we
applied to an actual picture and the features are found at the positions shown in f igure
4.5.l.b, a least squares fitting routine (or some other fitting routine) would be able to produce
an estimate for the shift such that the errors between the actual locations for the matches and
the predicted positions are quite small (as shown in figure 4.5.1.~). In this case one would

WI.281
- I

n

0
a

II
3

0c

0e

FIGURE 4.5.1

[VI.29]

probably say that rhe operators are structural/y consistent. However, if the three matches at-e
found at the posieions shown in figure 4.5.l.d, the best fit would still contain large errors (see
figure 4.5.1.e). In this case one would probably be suspicious of at least one of the matches.

The impl icat ion is that the errors (remain ing af ter a f i t t ing rout ine has t r ied to
determine the best transform that maps the planning positions of the features into their
matching positions) are a function of the structural consistency of a set of matches. The less
consistent the matches are, the larger the errors are. The sum of the squares of the ef’l*ors is
commonly used to measure this type of consistency. It is a convenient measure because there
are well-known techniques for minimizing it. It is also appealing because the distribution for
the sum of the squares of the errors is known to be a Chi-square distribution if the errors are
normal ly distributed [ref LS book]. Since measurement errors are known to be normally
distrjbuted for a large number of situations, the use of least-squares techniques looks quite
promising.

The theorem that specifies the distribution of the sum of the squares of the errors can
be stated as follows:

.

THEOREM : I f t h e r e a r e N l i n e a r e q u a t i o n s ‘ r e l a t i n g t h e a c t u a l
matching positions with the planned positions and if there are R
parameters to be adjusted in the transformation from the planned
t o a c t u a l p o s i t i o n s , t h e s u m o f t h e s q u a r e s o f t h e e r r o r s (f o r
n o r m a l l y d i s t r i b u t e d e r r o r s) f o r m s a C h i - s q u a r e d i s t r i b u t i o n
with (N-R) degrees of f r e e d o m .

This means that a Chi-square test can be applied to a particular sum of squares to determine
whether it represents a consistent transformation between the planned and actual positions. If
the test indicates that the set of matches is not consistent, it is possible to determine which
match is’ the least consistent. This least consistent match can be temporarily left out of t h e
solution and another least squares fit can be computed; another test for consistency can be
made, and so forth. This culling of “bad” matches can continue until a consisrent set of
matches has been found. Thus, another measure of the consistency of a set of matches is the
percentage of matches deemed consistent by this culling procedure.

As expected, the concept of Jtructural consistency is an important aspect of verification.
The question is how to integrate it with the value information. Let

(4 . 5 2) P i i < o p e r a t o r i f i n d s a m a t c h a t p o s i t i o n (x,y)>,

then Bayes’ theorem becomes:.

1
(4.5.2) P[HJvl, . ..vN.pl, . ..pN] ::

P[vl ,..,vN,pl . . .pNJ-H] P[-H]’
1 + *-

P[vl ,...vN,pl...pNlH] PCHI

If the v i ’s are assumed to be condi t iona l ly indefxndent of the pi’s (and each other), this
reduces to:

1

(4 . 5 . 3) P[HIvl, . ..vN.pl,... pN] t .
N P[vil-H] PEP1 . . .pNI-H] NW

l+ l-l * t-
i=l P[vi IH] PLPl . ..pNIH] Pl?U

The assumption that the vi’s are conditionally independent of’the pi’s means that the value
of an of3crator is indqjendent of the location of the match. That is, i f the correct m a r c h i s

made, the value of the operator can be expected to be the same for all matching positions.
‘I’llis assumption is generally reasonable. However, if different positions consistently produce
different lighting conditions (for example, cause a shadow to fall on a feature), the operator
values may depend upon the position.

. T h e a s s u m p t i o n o n e d o e s not w a n t t o m a k e i s t h a t t h e P i ’ s a r e c o n d i t i o n a l l y
independent o f each other . Such an assumption would completely ignore the structural
consisttncy, which is precisely what the mathematics is intended to capture. But what is the
va lue o f

(4 . 5 . 4)
PSPLP2 ,.r.pN 1 4-l]

1
PLPLPG 9 e l P~J I HI

It w o u l d b e p a r t i c u l a r l y h a r d t o g a t h e r s u f f i c i e n t sta.tistics i n o r d e r t o c o m p u t e t h e s e

probabilities directly. One heuristic that has proved to be experimentally useful is to replace
this ratio by

(4 . 5 . 5)
<percentage of consistent features, g iven -H>

.
<percentage of consistent features, given H>

This ratio dots not really appl:oximate the ratio ‘af the probabilities, but it is useful because it
provi’les a way of including a factor based upon the structural consistency of the matches.

In the simple case that each operator matches a ztniqw feature when H is true, the
system knows which feature to associate with each match. The least squares culling routine
processes the l ist of pairs (planned feature position, matching position) and returns the
number of consistent matches. Similarly, if each operator matches a unique feature W~CI~ H is
false, the system can construct the appropriate list of (planned position, actual position) pairs
and determine the number of consistent matches. Since the total number of possible matches
is the same for the two cases (H and 4-I) the ratio of peicentages reduces to

(4.5.6)

< n u m b e r o f c o n s i s t e n t f e a t u r e s , g i v e n -H>
.

< n u m b e r o f c o n s i s t e n t f e a t u r e s , g i v e n H>

, Thu! the contribution of “structural consistency” in the probabi l i ty formulas has been
transformed into a ratio of the numbers of consistent matches.

Recall that in the inspection-type tasks being described, the system does not know
whether H is true or false, so it applies the same list of operators in both CBSCS. T h e
difference, of course, is that the operators will be matching different features in the two
situations. The set of features for each situatio;i (eg. -H) forms a geometr ic patrern {or
structure). The structural consis.tency check involves assuming one such pattern, seeing how
well it agrees with the resulting positions of the operators, and then trying the other pattern.
T h e relative consistency o f t h e s e t w o p a t t e r n s d e t e r m i n e s t h e c o n t r i b u t i o n t o w a r d t h e
confidence of H.

In most cases the structure of the planning features when H is true is significantly
different from the structure of the planning features when H is false. This guarantees that
the ratio will seldom be close to 1.0. Intuitively this result is correct because it would be
surprising for the operators to find their best matches in both cases (H and -H) in such a way
that they-formed the same geometric pattern..

An important assumption of this discussion is that the operators match unique features,
one for H and one for -H. In order to apply the least squares cull ing routine the s y s t e m
needs to know which feature on the object to associate with each match. If the systcill does

not know which features are being matched, it has no way of knowing what the structure o f
the matches should be or how consistent the set of matches is.

If there are several known alternatives, the system can use the alternative with t h e

higheSt probability of being the correct match. Recal l that the basic formula used to
’ determine-the best alternative is

(4 . 5 . 7)

1

PMlvl = .
P[vlli JnP[Li]

1 + c
i#j P[vlLj]*P[Lj]

If there happen to be two or more alternatives that have approximately equal probabilities of
b e i n g t h e “best” match, the least squares cull ing procedure can be extended as follows:
whenever the first choice is about to be discarded (because it is the least consistent match),
another approximately equal choice can be tried in its place. This increases the complexity of
the least squares culling routine, but it provides an automatic way of giving an operator the

e necessary second chance whenever there is more than one possible explanation for its results.

‘The incorporation of the position information does n’ot alter the ease with which the
probabilit ies can be computed . Sequentially acquired information can still be included very
nicely. Since the least squares culling procedure can not be applied until some minimum
number of features has been located, the position information can not contribute anything
until then. The minimum number depends upon the number of parameters being adjusted,
the number of equations contributed by each feature, and any independence conditions. For
e>;ample, if the least-squares method is performing a planar fit, there are three parameters,
clS, dY, and dcc. Since each correlation feature and each point-on-a-line feature contributes
two equations, any two of these features would be sufficient. Three or four would be better

kause the least squares technique works better when the parameters are over-constrained.
Since this is true, the system may chose more than the minimum number of features before
trying to incorporate the position information.

If there are several k n o w n al ternat ives for each feature, each operator does not
nccessa.rily contribute one “good” match toward the minimum needed to incorporate the
posi t ion in format ion. A better estimate is the probability associated with the ,best match.
Thus, if the probability of matching one of the alternatives is 3, it must be the best match,
and the operator contributes .8 of a “good” feature toward the desired minimum.

Figure 4.5.2 outlines the general method suggested by this section. One operator after
another is applied until the accumulated value information indicates that sufficient features
have been located; then the least-squares method is applied. Additional features are added
until the confidence reaches the desired limit. This algorithm could form the basis for a
“discrete inspection” system. It could be used to check to see if a gasket is already on or not, if
a hole has been drilled or not, or if the expected subassembly has been added.

, [VI.331

Compute the
overall confidence I

if-{~~

RETURN UCCESS

.I 4
Choose the best matching-alternative

If the best al ternative can
cont r ibu te to the pos i t ion

information, add its confidence
touard the minimum number required
+ b

I YES

Apply the least-squares
culling procedure I

I
I Incorporate the pdsition cont r ibu t ion

into the overal l conf idence I

RETURN SUCCESS

I

Suff ic ient conf idence?

FIGURE 4.5.2

C H A P T E R 3

E X E C U T I O N - T I M E M A T H E M A T I C S F O R L O C A T I O N

If the verification vision system is trying to locate, not inspect, an object, there are two

important parameters: (1) an estimate for the object’s location and (2) the precision associated
wi th that est imate . In the context of VV the location of an object refers to the positiori a n d
orient&on of the object’s coordinate system in terms of some other coordinate system (eg. the
work station’s coordinate system). Usually there is-some point on the object of particular
interest; eg. the center of a hole or the tip of a screw. Such a point will be referred to as a
point of interest.

The last chapter briefly mentioned that a least-squares method conveniently combines a
SIX of planned positions with a set of corresponding measured f>ositions to produce an estimate
for the transformation between them. Given this transformation and the planned position of
the object , i t is easy to compute the current est imate for the object ’s locat ion. T h e
least-squares technique can also produce the standard deviations associated with the estimates
for the individual parameters in the transform. These standard deviations can be combined
to produce an estimate for the precision.

T h e a p p l i c a t i o n o f t h e l e a s t - s q u a r e s t e c h n i q u e d e p e n d s u p o n k n o w i n g t h e

correspondence between the matching points and the planning features, If the cor~q~ondence
is correct, the estimate for the object’s location and the associated precision will be correct.
t Iowever, it is possible for an incorrect correspondence to lead to a (seemingly) structurally

consistent subset of the features, which leads in turn, to an incorrect estimate for the object’s
location. This problem only arises when there are several known alternatives for the features
or when the operators find surprises. To avoid incorrectly reporting a location it is necessary
to incorporate the operators’ value information with the least-squares information to produce
an overall probability that the object is within the stated precision *of the estimate. This
chapter begins with a detailed explanation of how a least-squares method can be applied to
t hc V V problem to produce a location and a precision. The second section describes a
situation in which the results of the least-squares method are incorrect and then presents a
sim+ method for producing a rough estimate for the confidence associated with a statement
of precision.

[VI.35]

Section 1
D E T E R M I N I N G P R E C I S I O N

T h i s s e c t i o n p r e s e n t s a g e n e r a l m e t h o d f o r p e r f o r m i n g nonlinear g e n e r a l i z e d
least-squares adjustments. A major portion of this discussion is a restatement of an internal
p a p e r zit the Stanford Artificial Intelligence Project written by r)on;ild B. Ccnnery enti t led
“Least -Squares StereowCamera Cal ibrat ion.” T h e m e t h o d u s e s p a r t i a l d e r i v a t i v e s t o
approximate the problem under the general linear hypothesis mode1 of statistics, and then
iterates to achieve the exact solution. For more detailed information see [Graybill 611.

The notational conventions are the following. Capital letters denote matrices. l’ectors
are represented by column matrices. A particular element of a matrix is represented by the
corresponding lower-case letter followed by the appropriate indices. T h e t r a n s p o s e o f a
matrix A is denoted by A’, and the inverse of A is denoted by AN. Mul t ip l icat ion (e i ther
scalar or matrix) is denoted by an asterisk.

Let the vector G denote a set of m unknown parameters for which values are desired.
Let the vector U be a set of n scalar quantities (nrm) that are functions of C and can b e
measured with Jane error. Let F represent the vector of n functions that relate elements in U
with C. Given an estimate for G, F(C) produces an estimate for U. Finally let the vector V
represent the n residuals (ie. the unexplained errors) that remain between U and an estimate
produced by F(G). Thus

(5 . 1 . 1) U= F (G) + V .

The goal is to eliminate (or minimize) V by modifications to C.

In verification vision C is the set of parameters in the transform that maps the pku-med
positions of the features into their matching positions (ie. the planned positions into the
measured positions). Typical elements in G are the displacement in >((dx), the displacement
in Z (dz), and the unknown rotat ion about the Z-ax is (da) . D i f ferent features contr ibute
different components to U and F. For example, when the transform is planar (so that the
unknown parameters are dx,dy, and da), a correlation feature contributes two measured values
to UC the)i and Y components of the match (let. them be referred to as Xm and Ym>. T h e
corresponding functions in F are:

(5 . 1 . 2) Xe = (Xp-Xc)*COS(da) - (Yp-Yc)*SIN(da) + d x + X c
Ye = (Xp-Xc)*SIN(da) + (Yp-Yc)*COS(da) + d y + Yc

w h e r e (Xc,Yc) is the center of rota t ion for dct, (Xp,Yp) is the p lanned posi t ion for the
corre la t ion patch, and (Xe,Ye) is the t ransformed posi t ion of (Xp, Up). T h e t r a n s f o r m e d
posi t ion of (Xp, VP) is the estimate for (Xp, VP)% position in the current picture. The two
residuals that would be associated with a correlation feature are

(5 . 1 . 3) Xm - Xe

a n d Y m - Y e .

1, of course, is to use the measured valuesThese residuals are the components of V. The goa
to improve the estimates for the parameters,

The quadrat ic form

(5 . 1 . 4) 9 g V’*W*V

is the criterion of optimization that is to be minimized. W denotes an n by n weight matrix.
If W is the inverse of the covariance matrix of the errors in the observations, the result will
be the maximum likelihood {in the F space) solution if the errors have a normal distribution.
If W is a diagonal matrix, which indicates no correlation between errors in the different
observations, the quadratic form reduces to a weighted sum of the squares of the elements of
V. Thus the problem as stated here can be said to be a generalized least-squares adjustment.

The difficulty in obtaining a solution to the above problem lies in the fact that F in
(5.1.1) is a nonlinear function, and thus in general there is no closed-form solution. One way
of solving the problem is to use some type of general numerical minimization technique,
which tries new values of G, recomputes q, and tries to drive q to a min imum. However ,
such methods tend to converge rather slowly. Also, numerical problems may occur if q has a

very broad minimum, for round-off errors may give rise to spurious local minima. Instead o f
such an approach, the method described here approximates (5.1.1) by a linearization based on
the partial derivatives of F, solves the resulting linear problem, and iterates this process to
obtain the solution to the nonlinear problem.

Let the n by m matrix P be composed of the partial derivatives of the functions in F,
such that

(5 . 1 . 5)

6fi
pij = -9

a3

Let GO denote an approximation to C. Then equation (5.1.1) can be approximated as follows:

[V1.37]
-

(5 . 1 . 6) U = F(G0) + P(GO)*(G - GO) + V

where the functional dependence of P on C has been explicitly indicated. Define

(5 . 1 . 7) E = U - F(G0)
0 = G-GO.

.
Then (5.1.6) can be rewritten as

(5 . 1 . 8) E = P*D + V .

Thus the nonlinear equation (5.1.1) has been replaced by the linear equation (5.l.S), in which
E represents the discrepancy between the ohscrvations and their computed values (uriny the
curr&t approximations of the parameters), and D represents the corrections needed to the
parameters.

It is necessary to solve for D in (5.1.8) in order to minimize q in (51.4). This is a
standard problem in linear statistical models (eg. see [Graybill 711). The solution for D is

(5 . 1 . 9) D = (P'*W*P)-(P'*W*E)

and the covariance matrix of errors in the solution for D is

(5 . 1 . 1 0) s = (P'*W*P)w

assuming that W is the inverse of the covariancc matrix of the observation errors.

Several other quantities of interest can be derived from the solution. The espected
v a l u e o f q i s n - m . If the scale factor of the covariance matrix of observation errors i s

unknown, W can be adjusted by the ratio (n-m)/q and S by the ratio q/(n-m). Orhen*isc, q
can be used as a test on the adjustment; for, if the observation errors have the G:iussirrn
distribution, q has the chi-square distribution with n-m degrees of freedom. S represents the

covariance matrix of errors in the adjusted parameters. The square roots of the dirigonal
elements of S are the standard deviations of the adjusted parameters. The correlation matrix
of the parameters can be obtained from S by dividing the i,j element by the product of the-
standard deviations of the ith and jth parameters, for all i and j.

-Other results pre the covariance matrix of the adjusted observations P&:P’ artd the
covar iance matr ix o f the res iduals WH - (P.J:S:I~P’). I t is of ten usefu l to c o m p a r e t h e
magnitude of the residuals to their standard deviations, ie. the square roots of the dktgonal
elements of their covariance matrix. If a residual is greater than two (or three) s tandard
deviations it indicates that the associated measured value is “inconsistent” with the other

values used to compute the estimate for the transform. This test is the basis for the
least-squares culling procedure mentioned in the previous chapter.

The covariance matrix about a point not in the solution is WN + (P:I:S:I:P’) where P is
the set of partial derivatives at the point and W is the inverse of the covarimce matrix that
weights the measured values. In VV the standard deviation that can be computed from this
covariance matrix can be used to determine the uncertainty associated with any other point on
the ob jcct (cg. a point of intsrcst). It can also be used to determine the tolerance region about
the next feature to be tried.

The solution of the nonlinear problem can now be described as follows. An initial
approximation is used to compute the discrepancies Ei and the partial derivatives Pij. Then
I3 is computed from (5.1.9) and is added to the current approximation for C to obtain a better
appros imation. This process repeats until there is no further appreciable change in C. Then
the final values from the last iteration can be used to obtain S, Vi, q, and the other derived
quantities described above. Of course, in order to converge to the absolute minimum of q
rather than convergence to some local minimum or divergence, it is necessary that the initial .

a/~proximation be sufficiently close to the true solution. In most, practical problems the initial
approximation is not criGcal;^in fact, often there is only one minimum.

Since on the last iteration the partial derivatives have been computed for the converged
VALIC of C, rht solution gives .the true generalized least-squares adjustment regardless of the
nonlinearity, However, some of the other properties of the adjusrment arc only approximate
in the nonlinear case. Among these are the use of S as the covariance matrix of the errors in

the final value of G, and the properties that the solution for C is minimum-var iance and
unbiased. However, if the amount of nonlinearity over the range of the measurement errors
is small, these results will be fairly accurate.

A few comments should be made about the numer ica l aspects of per forming the
computaGons. The H matrix is always non-negative definite; that is, if it is not singular it is
positive definite. The best strategy to use when inverting a positive-definite matrix by an

elinlination technique is to p ivot on the main d iagonal (see [Forsythe 711). Therefore, a
simple matrix inverttr without any pivoting can-be used to obtain HY H is also symmetrical;
therefore , some computat ion t ime can be saved i f the inver ter makes use of th is fact .
Howcvcr, if II is considerably larger than m, much more time is spent in computing H than in
illvet ting it, so this special care is hardly worth the trouble. In problems where the soWion is
nearly indeterminate, H will be nearly singular, and much accuracy can be lost because of
humerical roundoff e r r o r . In such cases it may be necessary to use double precision in the
computat ions for H, C, II, and S according to (5.1.9), and for the inversion of I-I. (If a good
inverter is used, there is usually not much point in having it in double precision unless a
double-precision H is ava i lab le to inver t , as expla ined in [Forsythe 711.) H o w e v e r , h i g h
precision is not needed in computing the discrepancies Ei and the partial derivatives Pi, as

-

WI.393

If the best al ternative can
cont r ibu te to the pos i t ion

information, add its confidence
toward the minimum number required

. .

v
NO

Minimum number reached? r b
c

YES

+
4

Apply the least-squares
culling procedure
(with cul l ing and

replacement)

.
Did the least-squares rout ine determine NO

a structurally consistent subset? L *
t ,

YES

Determine the precision about

YES . NO
S u f f i c i e n t p r e c i s i o n ? 1

4

FIGURE 5.1.1

long as consistent values are used throughout the computations for H and C.

Figure 5.1.1 is a flowchart that outlines the basic steps involved in using a least-squares
method to compute an estimate for an object’s position and a precision about that estimate.
The algorithm is a sequential algorithm that applies the least-squares routine as soon as a
sufficient number of features has been found. The best values for the parameters are used to
map the object’s planned location into an estimate for its current location. The standard
deviations associated with the best parameter values are combined to produce a region of

uncertainty about the estimate. As stated, the algorithm is concerned with the object’s
locat ion. Given the object’s estimate and precision, it is easy to produce estimates and

uncertainty regions for any other points ojCnfetert on the object.

Sectiorl 2
C O N F I D E N C E I N TI?E P R E C I S I O N

The algorithm shown in figure 5.1.1 can be used by itself to locate objects. However, to
do so requires an assumption: if the least-squares culling routine determines a structurally
consistent subset of the features, and if the desired precision has been reached, then a correct
correspondence has been established between the positions produced by the operators and the
known a l ternat ives for the features . This assumption is generally reasonable when the
number of known alternatives is small and the operators are reliable (ie. they do not locate
surprises very frequently). However, it is possible to locate a set of features that appears (to
the least-squares culling routine) to be structurally consistent, when in fact, some of the results
have been incorrectly associated with alternatives. For example, consider figure 5.2.1. Figure
5 . 2 . 1 . a s h o w s a p o i n t o f ingest a n d a s e t o f k n o w n a l t e r n a t i v e s f o r f o u r o p e r a t o r s .
Operators three and four can each find two known alternative features. Figure 5.2.1.b shows
the acitr.al positions of all of these points in a particular runtime picture. These positions are
not the positions where the operators found them, but the positions where the operators
should have found them, if the operators were reliable. Figure 5.2.1.~ superimposes the four
positions where the operators think they have located known alternatives on top of the actual
positions. So far the operators are correct. However, if the system decides that operator three
has matched alternative 3.a and that operator four has matched alternative 4.a (both of which
are wrong), the least-squares routine will probably decide that the features are structurally
consistent and proceed to place the estimate for the point of interest at the position shown i n

’f igure 5.2.l.d. Th is conclus ion is wrong. The cause of this error was the system’s incorrect
assignment of alternatives to the operators’ results. T h e resulting assignment h a p p e n s t o
al-q-tear to be structurally consistent and the system, having fooled itself, proceeds to draw an
incorrect conclusion. This example is a simple example, but it points out a potential danger

k

Y

in unconditionally believing the results of the least-squares culling routine.

One way to avoid this type of incorrect deduction is to use more and more features,
which makes it tess and less likely that the results will be incorrectly judged to be structurally
consistent. This solution is fine if the features are inexpensive to apply. However, if the
s~stcm cries to minimize the number of features applied and minimize the amount of work
reyuired CO locate each match, some measure of the confidence in the precision produced by
the Icast-squares routine is necessary. This confidence helps the system minimize the nun-tbcr
of features by allowing the system CO stop applying features as soon as the desired precision
ad confidence in the prec is ion have been met. It helps to minimize the amount o f w o r k
required because it provides a way of decidin g when a precision can be sajdJ used to restrict
the region that should be scanned in order to locate a new feature.

tinfortunately, it is difficult to compute the probability that the object is actually within
the stated precision of the least-squares’ estimate of 2s location. The computation requires
several ,new assumptions. There are , however , some an kc, but exper imenta l ly usefu l
methods for developing an estimate for the confidence.

One crude measure of the confidence associated with an assignment is the average of
the probabilities associated with the individual matches:

(5 . 2 . 3)

c P[fi,mi 1 v i]
1SiSN

N

where f I ,mi is the known alternative chosen by the least-squares culling routine as the match
for operator i. The higher the average, the more confidence there is in the assignmenr. The
average of the individual matches has the nice property that one uncertain match can be
“averaged out” by’ several distinctly matched features. This property is nice because it means
that one (or two) dubious matches can be part of an assignment without drastically lowering
its confidence. However, in conjunction with this, it is not possible C O combine severa l
rtajonaMy Rlsrincr matches into*an assignment with a very h’igh overall confidence.

This type of measure is really only a general indicator of the overall confidence that
should be associated with an assignment. It does not approximate the probability that the

object has been correctly located.

C H A P T E R 4

P L A N N I N G - T I M E M A T H E M A T I C S

The goal of this chapter is Co investigate ways of producing information that is useful
to a strategist. In this context a strategist is a program (or possibly a person) that evaluates
the various alternatives and develops a plan Co achieve a particular goal. At one level a

strategist might be trying Co decide whether Co use visual feedback or force feedback to check
for a screw on the end of the screwdriver. AC that-decision point it needs information about
the expected costs and reliabilites of the alternative methods (see [Taylor 761 and [Sproull 761
for descriptions of strategists and the information used Co make decisions). This chaprel
develops techniques. for producing this type of cost arid reliabilty estimates for verification
vision.

Execution-time mathematics provides methods for combining the results of sequentially
applied operators Co .produce estimates for inspection confidences, precision, and precision
confidences. These methods make it possible for the system CO stop gathering information as
soon as the desired confidence and precision have been reached. The underlying techniqile is
an or&ren list of operators CO be tried. The ordering criteria are important because some
operators are more reliable than others, some contribute more than others, and some operators
cost more CO apply than others . This chapter investigates techniques for ordering the
operators according Co their exprctcd contributions and costs. It also presents techniques for
estimating the erpcclc~ number of features (and costs) required CO achieve certain coniidcnce
and precision limits.

The first few sections describe the mathematical tools used to rank operators by value
and cost estimates. The last few sections develop techniques CO predict the espccted number of
features necessary CO reach various limits like the minimum number of features required to
apply the least-squares culling routine.

Section I
R A N K I N G F E A T U R E S BY V A L U E

Consider the task of inspecting a scene to decide whether a screw is present or not.
Section 4.1 developed a formula that reduces the value information from several operators
into an overall confidence ,that the object is present. It also pointed out that the contribution
of an operator is the value of the ratio:

(&Cl)

w h e r e v i is t h e v a l u e (or set of v a l u e s) r e t u r n e d b y t h e o p e r a t o r a n d H d e n o t e s t h e
I‘II oposition that the object is there (SEC formula 4.1.12). For ranking purposes the logarithm
of the inverse ratio is more convenient:

((5.1.2)
P[vi IH]

mJ()*
P[vi)-HJ

The greater the ratio, the better the contribution. The logarithm of the likelihood ratio is

used because there is a theorem (to be discussed in section 6.5) that shows how to compute an -

estimate for the number of operators required to reach a ‘certain confidence from the
log-ratios of the operator&

At planning time, vi does not yet have a specific value, so the system is interested in the
average (or expected) value of this log-ratio. To compute this expected log-ratio one needs
the density fumion for vi, which is a weighted sum of the density functions for H and -M

(as shown in figure 4.1.6). The weights are simply the a priori probabilities. Therefore,

(6 . 1 . 3) donsi ty(vi) = P[H] * H-density(vi) + PI-H] * -H-density(vi).

This is a valid density function since

(6 . 1 . 4)

+00 +00 +OO

s
densi ty(X)dX 8 s P[H]*H-density(X)dX + $ P[-H]*-H-density(X)dX

'00 '00 -00

+oo too
= P[H]*/H-dcnsity(X)dX + P[~H]*Sltl-density(X)dX

-00 '00

= P[H'J + PI-H] = 1 .

The expected value can then be computed as follows:

+oO

(6.1.5) e x p e c t e d - l o g - r a t i o = s l o g - r a t i o (X) ' * d e n s i t y (X) dX.

MAXSYMA (see [MAXSYMA ref]) was used to expand this integral symbolically, assuming
that the density functions are normal. The derivation is given in the appendix. The result is
a readily evaluated expression of the two means (M 1 & M2), the two standard deviations
(SD1 & SD2), and the a priori probability of H (ie. P):

(6 . 1 . 6) e x p e c t e d - l o g - r a t i o = l o g (S D 2) - l o g (S D 1) + l/2 - P

2 2 2 2
SD1 + (M2 - Ml) SD2 + (M2 - EIl)

+ Pr - (l - P) * .
2 2

2 * SD2 2 * SD1

Later sections will also need estimates for the expected log-ratio, given either I-1 or -H.
The expected log-ratiq, given H, can be computed as follows:

(6 . 1 . 7)
+@I

ELR-given-H = s l o g - r a t i o (X) * H - d e n s i t y (X) dX.

The integral can be expanded to produce

2
S D 1 +(M2-Ml) 1

(6.1.8) ELR-given-H = log(S02) - log(SD1) +p- -,

2 2
2 * so2

Similarly, the expected log-ratio, given -H, can be expressed as

2 2
1 SO2 + (M2 - Ml)

(6.1.9) ELR-given--H = log(S02) - log(SO1) + - - .
2 2

2 t SD1

S i n c e t h e espected l o g - r a t i o f o r a n operatot represents the operator’s average

contribution, operators that have large expected log-ratios should be applied first in order to
minimize the number of operators used to reach some confidence limit. Thus, a s imple
operator - rank ing s c h e m e consists of computing the expected log-ratio for each of the
operators and then ordering them according to their expected value (largest first).

,

Sectiorl 2
K N O W N A L T E R N A T I V E S A N D S U R P R I S E S

The method used in the last section can be used to compute the expected contributions
for operators that have severa l ltnorun alternariz~s and/or are subject to stQriscs. However ,
it is quite difficult to expand symbolically the integrals that express the expected value. A
rrumerical technique is used instead.

Formula (4.3.4) expresses the probability that the object is present given the values of
several operators, each of which may have several known alternatives and surprises. That
formula is

(6.2.1)

1
P[H)vl,v2,...vK] g P

c Wdlc4j,il*PlkLi3
P[YHJ K

n(

W-U OSiSNj
1+-e -*

>
P[H] j=l PI-HI c P[vjlfj,i]*P[fj,i J

0S;iSMj

where f&l; fj,2; . . . fj,Nj are the Nj known alternatives for jth operator when l-1 is
true, 05.1; gj,2; . . . gj ,Mj are the Mj known alternatives for jth operator when H is
false, f j, 0 is the surprise for jth operator when H is true, and g j, 0 is the surprise for jth
operator when H is false. The contribution of the jth operator toward the overall probability
is:

C PCv~lsk~l*UWl
/ PCU OSiSNj \

(6 . 2 . 2) L -*) .
PI-H] c P[vjlfj,i]*P[fj,i] .

OSiSMj

For ranking purposes the logarithm of the inverse of this ratio is used:

c P[vjlfj,i]*P[fj,i]

PC-HI OSiSMj

(6.2.3) log-ratio(vj) = l o g (
- * >

PIHI c PCvjlsj,il*PCgLil l

OSiSN j

The expected value can again be computed by

(6 . 2 . 4)
+m

expected- log-rat io '0 s l o g - r a t i o (X) * d e n s i t y (X) dX,
'06

where the density depends upon all of the known alternatives and surprises. Since

(6 . 2 . 5) P[H] I: P[fj,OJ + P[fj,l] + . . . P[fj,Nj]

and PI-4 = FWMI + PCsJJl + . . . PCsMtil,

the density for operator j is

(6.2.G)

M3 NJ
d e n s i t y (X) = C(P(fj,i]tdensity(fj,i)) + x(P[gj,i]*density(gj,i)).

180 i=O

Thus, if ELR denotes the expected log-ratio for the jth operator, then

J6.2.7)

c P[vJlfj,i]*P[fj,i)
+06 PC-J-0 OSisM j

E L R =
s (

l o g -*
>

* densi t y (X) d X

-00 WI c Pl3JlgS~W’Cg~,~l
05isN j

01

(G . 2 . 8)

c P[vjlfj,i]*P[fj,i]

E L R = log(PI+))-log(P[H]) + ;o,(
OSisMj

>
*density(X)dX.

-a0 C ~Cv3laJ,WJlaJ,~l
OSi<N j

The logarithms of the sums could be expanded into Taylor series in order to integrate this
expression symbol ica l ly , but i t is simpler t o u s e a n u m e r i c a l i n t e g r a t i o n t e c h n i q u e t o
approximate the value for a specific operator. High-precision values are not needed because
they are on ly used to rank the operators and predict the expected number ‘o f operators
required to achieve a certain confidence in I-l.

It is not necessary to integrate the function from minus infinity to plus infinity. Recall
the discussion in section 4.3 about “filtering” ‘out unu~uui values for an operator. Any value
that is not within three standard deviations of at least one of the alternatives’ means is so -
unusual that it is treated as a mistake. It is therefore sufficient to integrate the function overI
the interval of tljtial (or useful) v a l u e s . This interval is s imply the union of a l l the
alternatives’ intervals defined by their means plus or minus three standard deviations. The
resulting interval is finite, which makes it easier to compute the integral numerically.

The result of this section is a set of formulas, which compute the expected contribution
of an operator , even if i t may involve several known alternatives and surprises. These

expected contributions will be used in later sections to compute other important quantities.

Section 3
COST INFORMATION

Since different operators cost different amounts to apply, a slightly more sophisticated
ranking scheme can rank the operators according to a cost-adjusted version of their expected
contribution, ie.

(6 . 3 . 1)

< e x p e c t e d l o g - r a t i o >
.

<expected cost>

The cost of applying an operator could involve such factors as training time, computation
time and memory space, but in this discussion, for simplicity the expected cost of an operator
is defined to be the expected computation time required to locate a match.

Computation time is a function of several variables: (1) the initialization time, (2) the
number of times the operator is applied, and (3) the computation time for each application. If
an operator is applied over a complete region (eg. the tolerance region about some alternative),
it is relatively easy to predict the expected cost. However, if an operator is sequentially

q applied in a region (using some search strategy) until a reasonably goon match is found, one
has to predict the number of separate applications -to be used to find such a match. This
prediction is a little more difficult. It is based upon the type of feature, the expected
distributions of the feature and its alternatives, and the local characteristics of the operator
(eg. the size of the region covered by one application). Each feature-operator-strategy triple
needs a separate mechanism for predicting the average number of applications required to
find a match. Some of these prediction methods are discussed in a later chapter.

An operator-ranking scheme that incorporates cost estimates is: c o m p u t e t h e
benefit-cost ratios (as in formula 6.3.1) for each of the operators and order them according to
the largest first.

Sect ioll 4
LEAST-SQUARES CULLING

As mentioned in section 4.5 the least-squares culling routine requires a minimum
IWVLW~ of matches. Let M represent th is min imum number . Let N be the number of

operators that must be applied in order to find M matches. Since an operator may or may

IKI~ locate a k n o w n alternative (ie. a match), N is greater than or eqllal to M. This sect ion
cicvrlops a method for predicting N, given M and an ordered list of operators. The following
sectiotjs continue to derive methods to compute estimates for the expectetl num6cr of op~afors
rcquircd to achieve some goal. It should be pointed out ‘that it is possible to compute a n
estimate for such numbers by simply applying the ol)erators to enough training pictures and
averaging the number of operators needed to reach the desired goal. Often this direct way is
t h e b e s t w a y t o p r o c e e d . However , somet imes i t is usefu l to be able to produce an

independent estimate of the expected number. The following sections discuss some alternative

ways of computing the desired estimates.

In order to predict the average number of operators needed to locate M matches it is
necessary to compute each operator’s expected contribution toward M. Consider figure 6.4.1.
Figure 6.4.1.a shows the possible matches associated with a typical operator: three known
alternatives and a surprise (fl,fZ,f3, and S). Assume that the a priori probabilities for t h e s e
possibilities are:

(G.&l) P[fl) = .5,
P[f2] = .2,
P[f3] = .l,

and PCS] = .2.

Figure 6.4.l.b shows the densities associated with the various possibilities, but they are scaled
by their CI priori probabilities of occurring. Figure 6.4.1.~ shows the weighted density function
for the Operator. That is,

3

(6 . 4 . 2) d e n s i t y (X) = P[SJ*donsity(S) + x(P[fj]*density(fj)).
j=l

Given a specific value for the operator, the best alternative is the alternative with the
highest probability of being the correct match, ie.

,66 $70

S
C
A
L
E
0

T W1.51]
3 .

FIGURE 6.4.1.1

.

0 0

f* I
0 .

.86 .70 .7s

CcN= I iGENCF

FIGURE 6.4.1 .b

[VI.521

M
A
X

FIGURE 6.4.1.~

i i

CL I

f
. .

l

� I

0 .

. . n
0 . n

l -s�s

-fi
l 0

.
a I l m*� me***...

0. .�a . .
l e l l

.I... l . . .

*PO a86 ,749 .Sb 096

FIGURE 6.4.l.d

(6 . 4 . 3) MAX(P[flIv], P[fZlvJ, P[f3lv], P[SlvJ).

[VI.53]

The algorithm shown in figure 4.5.2 uses the probability associated with the best match as the
operator’s contribution toward the goal of M matches, except when the operator’s vale is
unusual or it suggests that a surprise is the best match. In the case of an unusual value or a
surprise match, no contribution is credited to the operator. F i g u r e 6.4.l.d superimposes t h e
graph of the operator’s contribution (scaled by IO) on top of the scaled densities shown in
figure 6.4.i.b. Figure 6.4.1.d also labels each interval with the name of the possibility that
would be returned as the best match. Notice that there are three intervals that imply that the
surprise is the best match.

. . The expected contribution of an operator toward M (abbreviated EC) can be computed
in the standard way:

(6 . 4 . 4)
+ob

EC = s < c o n t r i b u t i o n a t X> * d e n s i t y (X) dX

I 0 (i f u n u s u a l o r s u r p r i s e)
(6’.4.5) < c o n t r i b u t i o n a t X> = I

1 MAX(P[fljX],...P[fnjX]) (o t h e r w i s e) .

Again a numerical integration technique is the easiest way of computing the value of EC.

Formula 6.4.4 is important because it computes the expected contribution of an
operator. Given an ordered list of operators and their expected contributions it is possible to
estimate the number of operators that have to be applied in order to locate M matches. The
expected number of operators is the minimum N such that

(6 . 4 . 6)
N

c< o p e r a t o r J’s e x p e c t e d c o n t r i b u t i o n > 2 M .

Sectiorl 5
INSPECTION

In an inspection task each operator contributes a certain amount toward increasing (or
decreasing) the overall confidence that H is true. Sections 6.1 and 6.2 developed methods for
coniputing the cspcctccl contribution of an operator. Given the expected log-ratio (the
contribution) of each operator, what is the expected number of operators required to generate
a certain confidence in H? The answer to this question is based upon a theorem in sequential

‘pattern recog-nition [PR book]:

THEOREM: Let e(H) be the error rate allowed for saying that H is
true when it really is false and let 8(-H) be the error rate
allowed for incorrectly saying that H is false when it really is
true. Let

1 - e(-H) ebW
A = and B =

e(H) 1 - e (H) ’

Then, given that H is true, the expected number of operators to
be used to make a decision is given by

(10e(-H))*log(A) + e(-H)*log(B)
expected-#(H) = .

<average log-ratio, given H>

And given that YH is true, the expected number of operators to
be used to make a decision is given by

e(-H)*log(A) + (l-e(H))*log(B)
expected-#(-H) t: .

<average log-ratio, given lH>

- And finally, the expected number of operators to achieve the
specified error rates is

expected-# = P(H)*expected-#(H) + P(~H)*expected_P(~H).

_ l_______ --_c__ _e_- ----.---- -

.- _ .- . --- -TF-- .I.- - - - _ _ - : - ..

II

The theorem is based upon the assumpt ion that there are an in f in i te number o f
operators whose average log-ratios are known. However, there are only a finite number of
oi~~ators (usually on the order of ten) for any specific VV task. The theorem can still be
USNI to produce an approximate number of operators expected by assuming thar there are an
illfinite nun>Ler of operators with the contribution of the best operator. If that were the case,
how many operators would be needed? If the answer is one or less, then the best operator will
11: dx+tJly be sufficient, on the average. If the answer is more than one, consider the away
of the first two operators and compute the number needed if there were an infinite ~u.mdxr of

ol.lerators with that expected ratio. If the answer is less than or equal to two, the best two
c~px~to~~s will be enough on the average, etc. Figure 6.5.1 lists eight operators and thei r
espected log ratios. Using those operators and a goal of e(H) - e(-H) - 45, the e x p e c t e d
n~mlber of operators would be one. The expected number of operators to achieve e(i-I) =
+I-I) ” 405 would be three.

This theorem is powerfu l because i t prov ides a way of predic t ing the number o f
fcaturcs, on the average, that will be necessary to achieve a specific confidence. The theorem
applies to all operators whether or not they have several known alternatives and/or surprises,
The only effect of alternatives and surprises is that the operator’s expected contribution will
probably be smaller than if it did not have such potential confusions.

Section 6
P R E C I S I O N

Chapter 5 developed a method to locate objects (in the domain of VV). The method
divided a location task into three subtasks:

(1) locate enough features to be able to apply the least-squares

culling routine (this set of features is referred to as the kernel),

(2) locate e n o u g h a d d i t i o n a l f e a t u r e s t o p r o d u c e t h e d e s i r e d
precision about the point of interest,

a n d (3) locate enough addi t ional features to develop the requi red
amount of confidence in the statement of precision.

,In order to predic t the to ta l number of operators needed in a locat ion task , one needs
estimates for each of the subtasks. Section 6.4 developed a method to predict the expected
number of operators required in subtask (1). This section and the next section will develop

[VI37 3
e

methods to pred ic t the expected number o f operators requi red by subtasks (2) and (3),

respectively.

Given an edge operator and a specific line to be found, the edge operator will be able

to locate a point on the line to within some precision. Given a different line (maybe a fuzzy
line), the precision of the same edge operator will probably be different. Thus, there is a
precision associated with each operator-feature pair. In fact, the precision of most operators
also depends upon the type and a m o u n t of change between the planning picture and the
actual picture (eg. the amount of rotation or the change in the overall light level). In order to
predict the number of operators needed it is necessary’ to have a model of each operator’s
precision. A statistical model provides the variance about each value. Given the variances
about the operators’ values, the weight matrix (ie. W) can be constructed, which makes i t
possible for the least-squares routine to determine the variances about the resulting parameter
v alties.

In VV, and in particular in programmable assembly, one assumes that there are no
l a rge unknown changes between the p lanning p ic ture and the actua l p ic ture . T h e
environment is highly constrained. The main factors that affect an operator’s precision are
(1) the inh crent operator character is t ics (eg. i ts maximum rcsolutior-I), (2) the local feature
characteristics (eg. fuzziness), and (3) small rotations (eg. 15 degrees). Often the opeJxot’s
inherent character is t ics are the dominant factors involved in determining an opC:.ator’s

precision. In this case an a prio~i estimate can be used to mociel the precision. If this is not
- true, it is possible to apply the operator (in conjunction with several other operators w i t h

known precisions) to several trial pictures and produce an estimate for the operator’s vari?nce.

One property’of the least-squares fitting technique is that it produces essentially the
same precision no matter what ‘the position values from N matches are, as long as t h e y
conform to the stated variances. Therefore the precision produced by any one application o f
the fitting routine can be used as an estimate for the precision from the N operators. This
property is the basis of a straightforward method that predicts the number of features needed
to reach a certain precision: Given a trial picture, locate a kernel set of matches, and apply
the least-squares technique. If the resulting precision is sufficient, stop and return the
number of operators used as the expected number operators to be needed. If the precision is
not sufficient, locate another match, apply the least-squares routine, and repeat the precision
check.

[VI.!%]

Section 7
CONFIDENCE IN A PRECISION

As mentioned in section 5.2 it is often reasonable to assume that the confidence in the
precision is high enough whenever the least-squares routine produces the desired precision.
Under this assumption, the expected number of operators required for a location task is the
same as the expected number of operators needed to reach the desired precision. If this
assumption is not true it is possible to use a method similar to the one used in section 6.5 to
estimate the expected number of operators required to reach a*ccrtain confidence level.

Formula 5.3.11 shows each operator’s contribution toward the overall confidence.
Given this symbolic expression for the contribution, it is possible to employ a numerical
integration routine to compute the expect&f contribution from an operator. The sequential
pattern recognition theorem referred to in section 6.5 can be applied again. Given the
expected contributions for the individual operators, the theorem produces the expected
nunlber of operators to be needed.

The general prediction scheme for
expected number of operatdrr required
expected number of operators required
maximum of these values as the expected number required for the task.

location tasks can now be stated: determine the
to achieve the desired precision, determine the
to reach the desired confidence, and return the

Section 8
EXPECTED COST

Given (1) an ordered list of operators and (2) the expected number of operators (ie. N)
required to achieve a certain goal (either an inspection or location goal), it is easy to produce
an estimate for the expected cost associated with achieving the goal: sum the expected costs
for the first N operators. That is

(G . 8 . 1)
N

c <expected cost of operator j>.
J=l

This expression is just a rough estimate for the expected cost because it assumes that the
expected cost is the sum of the expected costs for the expected number of operators, which is
not generally true. A better estimate is:

(6.82)

m
~(Pkil * Cd),

j=o

where AJ means that the goal is achieved after applying operators one through j and C j
denotes the expected cost of applying the first 3 operators.

CHAPTER 5

ASSUMPTIONS

This chapter discusses the assumptions that are required by the mathematical formulas
used to compute confidences and precisiona These assumptions are fundamental assumptions
about the C/W of tasks referred to as verification vision tasks and about the probabilistic and
least-squares mcltho& used to model such tasks. A_n example of such an assumption is the

cot-hditional independence of the operators’ value and position information. If this assumption
is not approximately true for a particular task, none of the Bayesian probability formulas can
be applied; their preconditions are not satisfied.

The assumptions have been classified into three types: (1) Bayesian probabi l i ty

assumptions, (2) value distribution assumptions, and (3) conditional i n d e p e n d e n c e

assumptions. Each type will be discussed in a separate section.

Section I
BAYESIAN PROBABILITIES

Bayes’ theorem states a desired CL posterior-i probability in terms of the a priori and
conditional probabilities:

(7 . 1 . 1)
PCWWCHJ

PIWI = .
P[vjH]*P[H] + P[v]-vH]*P[vH)

This formula is convenient because the conditional probabilites P[vIH] and P[vl lH] are
generafly easier to measure (or estimate) than P[HI v]. However, Shortliffe and Euchanan
(see [Shortl iffe and Buchanan ‘151 and [Nilsson 751) have pointed out two related problems
involved, in applying Bayes’ theorem to various decision tasks. The first problem is that it is
of ten d i f f icu l t to est imate P[VI -HI, especially if H is a compound proposition (ie. it is a
co!> junction of several propositions). It is often unclear what the negation of H means. The

second problem is that the amount of statistics required to estimate P[vi +] can easily
become prohibitive, even if it is clear whaf statistic&should be gathered.

The Bayesian formulas developed for VV in chapters 4 through 6 avoid the first
problem by insuring that H is not a compound proposition. For example, in inspection tasks t{
represents the proposition that the object (eg. the screw) is there. The negation of t! denotes
the proposition that the object is not there. There are no other possibilities. Within
programmable assembly this assumption is reasonable because the environment is highly
controlled; the screw is either on the end of the screwdriver or it is not. The environment is
so predictable in programmable assembly that even the objects that form the background
(behind the screwdriver and screw) are known in advance.

.

VV relies heavily upon the assumption that there are only two possible events that cat1
occur. If there are more than two possible events, other techniques have to be used because
the “H or YH” model is insufficient. Consider the task of deciding whether a carburetor
subassembly has been attached or not. The assumption that H or -II is true implies that the
only two possibiities are: (1) the carburetor is attached and in its proper place and (2) it is not
there at ail. If a third aiternarive is possible (eg. a carburetor of the wrong type is attached),
the VV formulas are not directly applicable. It might be possible to extend the formulas to

cover three or four possibilities, but the modified VV techniques would essentially be
recognition-type techniques that choose the best match from several possibilities. Some of the

power of the specialized VV techniques would be lost.

It should be noted that there is a difference between three or four knozcrn altcr~tive’s
for an operator and three or four possible events that can occur. Known alternatives for an
operator are local to the operator. Possible events are global and hence affect ail of the

operators. In particular, for each possible event there may be several known alternatives for
each operator. Therefore, it is quite a different problem to provide for several different
events than it is to provide for several known alternatives. The formulas developed for VV
deal with the latter, but not the former.

. Even though the VV formulas avoid Shortliffe and Buchanan’s first problem, rhey do
not avoid the second. Since they provide for several known alternatives for each operator,
the training session has to gather statistics for ail of the alternatives. Fortunntcly, in
programmable asselnbiy there is usually no shortage of potential operators so operators with
several known alternatives can often be avoided. In theory the ordering criteria for the
operators should include a measure of the expected training’time and the space required fat
the alternatives. These additions would automatically reduce the rating for an operator that
has s&era1 known alternatives and reduce the chance that the operator would be used in the

‘task.

S e c t i o n 2
VALUE DISTRIBUTIONS

Throughout the development of the formulas a normal distribution was assumed for
the operaters’ value information. That is, the values associated with an alternative were
assumed to have a normal distribution. This assumption, however, is not necessary t o
compute the likelihood ratios

(7 .2 . i)

P[viIH)

P[vi ,4l]’ -

,Any distribution is sufficient. It is even possible to use the histogram of values produced at
training time as the distribution, as long as there is a sufficient number of trials.

A normal distribution was assumed in the derivations because it is a good model fot
several of the operators. If the values of an operator are not normally distributed, there may

he a change of variable that can convert them into an approximately normal distribution. A
later portion of this section will discuss a change of variable that converts correlation values

into a distribution that is approximately normal.

If an operator’s values are known to follow some distribution other than a normal
distribution, it is easy to incorporate the new distribution into the execution-time formulas.
The only information needed in addition to the density function is a specification for the
interval of msonable values. What values of the operator should be classified as unusunl
and hence should be filtered out (see section 4.S>? For normal .distributions it is easy to
specify an interval by setting a threshold in terms of the number of standard deviations away
front t h e m e a n . Other distributions require some ocher specification for the interval of
reasonable values.

It is a little more difficult to incorporate an operator into the planning-time formulas if
its values form some distribution other than a normal distribution. It requires a different
function to be integrated in order to compute the operator’s expected log-likelihood ratio.
I Iotieve?, since the integration can-be done numerically, the extension to a new distribution
gcneraiiy only requires a straghtforward modification of the existing routines.

One of the main points of this section is that any distribution can be used for an .
operator’s value information. For example, if some a. priori ‘information implies that the

.

,

distribution for a particular operator is a gamma distribution, a gamma distribution cnn be
substituted into the appropriate formulas. If the training results imply that the distribution is
not one of the standard distributions, the density function defined by the histogram can be
used in the formulas.

One operator that is known to produce a non-normal distribution is cross-correlation
(see [Hoel 711). Consider the following formula for the correlation coefficient:

N

c (Xi-Mx)*(Yi-My)
i=l

(7.22) r = #
N * Sx R Sy

where Xi and Yi are jointly normally distributed, Mx and My are the sample means of X and Y,
respectively, and Sx and Sy are the sample standard deviations. It would be possible to use
the actual distribution of r, but there is a convenient change of variable that converts r into
a distribution that is approximately normal. The change of variable is

(7.2.3)
1 1 + r

2 = - * log()*
2 1 - r

The mean of the new distribution is

1 l + a
(7.2.4) Mz = - * lw(),

2 1 - a

where c(represents the theoretical value of the correlation coefficient. The standard deviation
for the new distribution is

1

I (7.2.5) St = I
I sqrt(N - 3)

where N is the number of samples used to compute r.

The correlation operator implemented by Hans P. Moravec at Stanford behaves
according to this theory. Consider figure 7.2.1. Figure 7.2.l.a is a histogram of fifty
correlation coefficient values. The values are the results of applying the same correlation
operator to fifty different pictures of a scene for one VV task. The interval site along the

L
L1-

L .
-
-

r
*r

horizonal axis of the graph is one-half of the sample standard deviation. As predicted the
correlation values form a skewed distribution (with a theoretical upper limit of 1.0). The
&i-square value is based upon the eleven intervals centered about the sample mean. Figure
f.Z.1.b is the histogram of values produced by the change of variable in formula 7.2.3. Fit;clre
7.2. IX is the histogram that would be expected if the sample formed a perfect normal
distribution.

The chi-square value drops significantly from 25.4 (with eight degrees of freedom) to
9.3 (with eight degrees of freedom) for the new distribution. The improvement is not always
that dramatic, but the change of variable seldom increases the chi-square value. Consider
figure 7.2.2. It is a scatter diagramof the pairs:

(7 . 2 . 6) (<chi-square of raw values), <chi-square of changed values>).

Ahy point to the right of the diagonal line represents a case in which the change of variable
made the distribution for an operator’s values look more like a normal distribution (according
to the chi--square test). The change of variable only slightly degrades the chi-square value
in the few cases that it makes the distribution worse. A point in the shaded area of figure
7.2.2 represents an operator whose distribution was improved significantly. Eefore the change
of variable the chi-square test (at the 5% level) rejected the hypothesis that the sample could
have come from a normal distribution. After the change of variable the chi-square test
indicated that it was plausible for the sample to have come from a normal distribution. .

The question ‘about which distribution to use to model an operator’s results is a hard
one. The chi-square test used gbove is helpful, but mainly as a method for rejecting a
proposed model.

After deciding which distribution to use to model an operator’s results, one still has to
decide how many samples are needed to produce a good approximation to the distribution. If
the chosen distribution is normal, one needs enough samples to appoximate the n-mm and
standard deviation, since a normal distribution is completely determined by these two
parameters. How many samples are needed? There are two theorems that help answer these
questions (see [Hoe1 711):

T H E O R E M : I f X i s n o r m a l l y d i s t r i b u t e d w i t h v a r i a n c e V a n d

N 2

c (X i - M S)
i=l

1 - vs =
N

(VI.66 I

,
C
t-i
I

s
a
u
A
R
E

0
F

it
A
N
G
E
D

FIGURE 7.2.2

is t h e s a m p l e v a r i a n c e b a s e d u p o n a r a n d o m
M S is the s a m p l e m e a n , t h e n

N*Vs

s a m p l e o f s i z e N a n d

V

h a s a c h i - s q u a r e d i s t r i b u t i o n w i t h (N - l) d e g r e e s o f f r e e d o m .

T H E O R E M : I f X i s n o r m a l l y d i s t r i b u t e d w i t h mean M a n d v a r i a n c e V a n d
a r a n d o m s a m p l e o f s i z e N i s t a k e n , t h e n t h e s a m p l e m e a n MS w i l l
b e n o r m a l l y d i s t i b u t e d w i t h m e a n M a n d v a r i a n c e V / N ,

’ Let CS(n,p) represent the value such that a chi-square distribution with n degrees of
freedom has p percent of the population to the rigk of that value. One application of the
first theorem slates that there is a ninty-five chance that the sanyle variance and actual
variance are related as. follows:

N*Vs

(7 . 2 . 7) CS((N4),.975) 5 - 5 CS((N-1),.025).
V

d Let S and Ss represent the standard deviation and the sample standard deviation of the
distr ibut ion. S ince V s - SS:I:SS and V = Ss:S, formula 7.2.7 can be converted into the
following statement concerning the actual and sample standard deviations:

(7 . 2 . 8)
sqrt(N) * S s sqrt(N) * S s

s s s

sqrt(CS((N-1),.025)) sqrt(CS((N-l),.975))’

The second theorem can be used to produce a ninty-five percent confidence interval
about the mean. That is,

(' 7 . 2 . 9)

2*s

IM - Msl 5

swt(N)

or, substituting the larger value from (7.28) into (7.2.9) produces

a, .

(7;2.10)
z*ss

IM - Msl s .
sqrt(CS((N4),.975))

For e x a m p l e , i f MS - 1 . 3 a n d Ss - 2, the ninty-five percent confidence intervals based upon
8 sample size of 15 are

(7.2.11) IM - Msl s ,16950
a n d J5092 s S < .32824.

For a sample size of 30 the intervals are

(7 . 2 . 1 2) IM - MsJ 5 .10022
a n d .16151 s S 5 .27446.

one interesting possibility is to use the planning-time formulas to predict the effect o f
gar hering more samples from an operator’s distribution. Two important questions can be
answered in this way:

(1) Given a sample mean and a sample standard deviation, plus
confidence intervals about them, what is a reasonable, but
conscrvalive distribution (or set of distributions) that can be
used to model the operator?

(2) Given an additional set of N samples from a distribution, what
is the probable change in the operator’s expected contribution?

In this situation a conssrvativs distribution is a distribution that understates the contribution

‘of the operator. The use of such a distribution may require mgre operators to be. applied
than theoretically necessary, but there is a smaller chance of making an incorrect decision.
For example, assume that a potential operator in an inspection task has the following
characteristics:

(7 . 2 . 1 3) (s a m p l e s i z e o f 1 5)

H YH
M S = 1 . 3 - MS = 1.95
ss 8 .2 ss = .22

Assume that the probability of l-1 is .9. Then the expected log-ratio for the operator is 3.41 .
7’0 p ick a more conservat ive d is t r ibut ion for the operator consider the s ix ty percent
confidetice intervals about the means and standard deviations:

(7.2.14) (sample size of 15)
H VH

1.234s M s1.365 1.8785 M ~2.022
.182?: S s.252 .2OOs S s.277

If one assumes that the the most conservative set of distributions is produced at the cstrcnlcs

of these intervals, there are sixteen possible combinations for the pair of distributions to be
used to model the operator. Figure ‘1.2.3 shows the expected contribution of the opcrato~~ for
each of the sixteen possibilities. The most conservative set is the set that has the lo\:jcst
expected contribution, ie.

(7.2.15) * (sample size of 15)
H VH

M= 1.365 M = 1.878
S =.182 s = ,277

(the expected log-ratio is 1.25).

What is the expected gain from gathering another fifteen samples from the operator’s
distributions? The intervals are:

(7 . 2 . 1 6) (sample size of 30)
H 1H

1.258s M 51.342 1.904s M 51.996
.185s S s.231 .203s S s.254

and the most conservative distribution (within the sixty percent intervals) is

(7 . 2 . 1 7) (sample size of 30)
H 41

M= 1.342 M= 1.904
S =.185 S= ,254

(the expected log-ratio is 1.80).

The potential gain is significant in terms of the increase in the expected log-ratio for the
c&nservative set of distributions. More samples would increase the expected log-ratio even
further. The upper limit on this log-ratio would be reached when the conservative set of
distributions was the same as the sample set. At that point the expected log-ratio for both of
them would be 3.41. The number of samples actually used in a VV task depends upon h o w
conservative the programmer is, how important execution time is, and how much time can be
&Goted to training the system. Sample sizes on the order of twenty to fifty have worked well.

In programmable assembly since each VV task is performed repeatably, it is possible to

WI.701

.

Expected Log-ratiod

min Ml, min 51, min M2, min S2:
min Ml, min Sl, min M2, mex S2:
min Ml, min Sl, max M2, min S2:
mfn Ml, min Sl, max M2, max S2:

min Ml, max Sl, min M2, min S2: 4.38
min Ml, max Sl, rnh M2, max S2: 2.11
mtn Ml, max Sl, max M2, min S2: 6.52
min Ml, max Sl, max M2, max S2: 3.15

max Ml, min Sl, min M2, min S2: 2.57
max Ml, min Sl, min M2, max 52: 1.25 t
max Ml, min Sl, max M2, min S2: 4 . 2 0
max Ml, min Sl, max M2, max SZ: 1 . 9 8

max Ml, max Sl, min M2, min S2: 2.81
max Ml, max Sl, min M2, max S2: 1.35
max Ml, max Sl, max M2, min S2: 4.56
max Ml, mex Sl, mex M2, mdx.SP: 2.20

4.04
1 . 9 0
6.03
2.79

I the minimum expected log-tWio,.the most conservative set
of distributions

FIGURE 7.2.3

[VI.?I]

gather additional samples during production runs. This is important because a larger. set of
samples can help to refine the model for an operator in two ways. First, more samples can
improve the distributions being used to model the operator, and second, if one of the $obal

variables (eg. lighting or camera sensitivity) changes slowly over time, continuous s3n~pling
can maintain an up-to.-date model for the operator.

Scctiotl 3
CONDITIONALINDEPENDENCE

’ The derivations of several of the formulas depend upon two important assumptions
about the conditional independence of the operators’ values: (1) the value of an opmtor is
conditionally independent of the values of the other operators and (2) the value of an
operator is conditionally independent of the position of its match. Both of these assumptions
are instrumental in simplifying the relevant formulas. For example, in chapter 4 they make it
possible to simplify formula (4.5.2):

1
(7.3.1) P[Hjvl ,...vN,pl,...pN] = .

P[vl ,...vN,pl . ..pNIA-VJ PC-HI
1+ *-

P[vl ,...vN,pl...pNjHJ W-U

into

(7.3.2) P[HJvl,... vN,pl,... PN] =
N P[vIIXj P[Pl . . .pNJ-rH] Pf41, l

1 + l-l * *

. i=l P[vilH] fTP1 . ..pNjH] WI

The assumptions significantly reduce the number of dependencies in the conditional
probabilities and make them feasible to compute.

-There are several reasons why the appearance of a feature might change from one
, picture to-the next:

I.

(1) The feature itself may be different. For esample, in assembly
tasks all of the pump bases arc not exactly the same. In

I

(2)

(3)

(5)

6)

p h o t o - i n t e r p r e t a t i o n (a b b r e v i a t e d P I) t h e r o a d s m a y b e
widened, or otherwise changed.

The.position and orientation of the objects in the picture may
change. In assembly the range of positions and orientations for
an ‘object is generally specified in advance by an assembly
engineer.

The lighting may be different. The sun may be in a different
location, c a u s i n g d i f f e r e n t s h a d o w s a n d g l a r e s . I n
programmable assembly the lights can be controlled more easily,
but they still may vary slightly.

The position and orientation of the- camera may be different.
In assembly a camera may be in a fixed location, or it may be
calibrated to a certain precision. In PI the inertial guidance
system specifies the position and orientation of the camera (to
within some uncertainty) when a picture is taken.

The sensitivity of the camera may be different. All cameras
have internal parameters such as the target voltage that change
o v e r t i m e .

The noise level is variable.

AlI of these sources of change can be considered to be global variables with respect to a V V
task. In effect the two conditional independence assumptions state that in VV none of these
variables change the expected distribution of values produced by an operator.

There do exist operators and situations for which the assumptions are not true. This
fact raises two important questions: (1) in general are the assumptions true for a sufficient
number of operators to accomplish practical VV tasks? and (2) is there a way of determining
if the assumptions are true for an operator in a specific situation? The remainder of this
section deve lops some ins ight in to the complex i ty of these quest ions by analyz ing the
assumptions further and investigating some of the situations in which they are not true.

The first assumption states that the value of an operator is conditionally independent o f
the valUes of the other operators, eg.

(7’. 3 .3) P[v2JHjvl) = P[v21H].

This formula says that given H, the probability of operator 2 producing the value v2 is the

same whether or not the value of operator 1 is known. This statement is generally true in
verification vision. The probability of producing a certain value for a correlation ope:*ator is
generally unaffected by knowing the results of a a previously applied edge operator. An
obvious case in which the assumption is not true is when operator 1 and operator 2 are tJcd1

correlation operators and they overlap. Knowing the value of one operator would certainly
alter the possible values for the second. However, overlapping operators are quite uncommon
and can be easily avoided in VV.

The second assumption states that the appearance of a feature on an object dots not
change as the object moves through its possible positions. Put another way, if an operator i s
applied to several different pictures, and it locates the same known alternative in each, the
value returned by the operator is independent of the location of the alternative in the picture.
This is generally true in programmable assembly and VV because the changes are so small

that the appearance of a feature is essentially constact.

There are two situations in which the second assumption might be false. The first i s
when a small change in one of the transform’s variables causes a shadow to fall on a feature.
At some locations the feature is in a shadow and at others it is not. The value of almost any
operator attempting to locate such a feature would depend upon whether the feature is it-1 a
shadow or not as determined by the position. Hence the value of the operator depends upor
the position of the feature, which makes the assumption false. . The second situation arises
when a small change in position causes a dramatic change in the appearance of a feature. As
an example one view may show a screw hole that is partially occluded on the left by a shaft
and a second view of the same hole may show the shaft occluding the hole on the right. This
problem is the standard problem of dqpncratc viczus first referred to in conjunction with the
blocks world.

Both of these situations lead to operators that produce bivariate (or at least high
variance) density functions. One peak is produced by the pictures showing the feature in the
shadow and the other peak is produced by the pictures showing it in the light. Since the
expected contribution for such operators is generally low, the automatic ranking scheme will
place this type of operator near the bottom of the list of potential operators to be used in a
task. If the VV system is interactive, a programmer could discard this type of feature if one
were suggested by the system,

CHAPTER 6

BIBLIOGRAPHY

Anclrews, tl. C. 119723, “Introducbion to Mathematical Techniques in Pattern
Recognition," John Wiley and Sons, Inc., 1972.

blles, R . C . [1975], %rification Vision within a Programmable Assembly
System: An Introductory Discussion/' Stanford Artificial
Intelligence Laboratory Memo f275, December 1975.

Forsythe, G. E. and Moler, C. 8. [19671, 'Computer Solution of Linear
Algebraic Systems," Prentice-Hall, 1967.

Graybill, F. A. [1961], 'An Introduction to Linear Statistical Models,"
Volume I, McGraw-Hill Book Company, 19Gl.

Heel, P. G. [19711, “Introduction to Mathematical Statistics,' John Wiley
and Sons, Inc., 1971.

Mathlab Group [19741, IMAXSYMA Reference Manual," Massachusetts Institute
of Technology, September 1974.

fdilsson, N. 3. [1975], "Artificial In te l l igence - Research and
Applications," Stanford Research Institute, Nay 1975 .

Shortliffe, E. H. and Buchanan, B. 6. [i975J, "A Model of Inexact Reasoning
in Medicine," Mathematical Biosciences 23, 351-379, 1975.

Sproull, R. [19761, "(something like: Decision Theory within Artifici;,;
I n t e l l i g e n c e) “ , Stanford University Ph.D. Dissertation, 197G.

Taylor, R. H. [197G] "The Synthesis of Manipulator Control Programs from
Task-level Soocifications," Stanford University Ph.D.
Dissertation, 197G.

VII. DISCRETE CONTROL OF THE ARM

Michael D. Roderick

Artificial Intelligence Laboratory
Computer Science Departmetlt

Stanford University

The author is currently a Technical Staff Member of the Engineerialg
Systems Division of TRW Corporation, 1 Space Park, Redondo Beach,
California. At the time this research was performed, he was a graduate
student in the Electrical Engineering Department at Stanford University.

‘.

(VII.I]

I. INTRODUCTION

A. Genera l

The use of computer controlled manipulators for industrial assembly tasks is becoming
increasing popular and feasible. Experimental systems are now being developed which
combine world modeling and sensory feedback to complete tasks not previously possible with
conventional “pick and place” manipulators which move through a preplanned seyu~~ce of
points. .

As the application of programmable manipulator systems becomes more widespread, the
number of manipulators utilized in an assembly task will increase. In some applications, all
of the manipulators will be controlled by a single medium sized computer. In others,
micrpprocessors will be dedicated to individual manipulators. In both of these cases, the
computer processing time available for control will be at a premium. The sampling rate of
the control systems will then become a critical factor that will determine the number of
functions that can be controlled.

The purpose of this thesis is to determine the minimum sampling rate needed to effectively
operate a manipulator and to pinpoint those factors which have the most predominant effect
on the minimum sampling rate. This thesis deals specifically with the Stanford robot arm

located at the Stanford Artificial Intelligence Laboratory. Previous analysis of the Stanford
arm control system has been performed in the continuous Laplace transform domain. This
approach is accurate for high sampling rates, but at low sampling rates, Laplace transforms
cannot accurately model discrete digital computations. An analysis was needed that could
accurately represent both discrete computations and the continuous arm servo system at low
sampling rates. t

In this thesis, the a;m is modeled using z transforms, which can represent a sampled-data
system exactly at each sampling instant. The model is used to determine the effect of inertia
and sampling rate varations on the dynamic response of the arm. Recommendations are then
made’describing methods for reducing the effects of inertia variations and for running the
arm at reduced sampling rates.

B. Description of Stanford Arm

The Stanford Arm has six joints plus a gripper consisting of two fingers with microswitches
for touch sensors. Each joint of the arm has a potentiometer and tachometer for sensing
position and velocity. Joint torque is determined by’measuring the joint motor current.a..

The arm motor drives generate a current proportional to the command signal from the
computer, so that motor torque is directly proportional to the computer command signal.
Brakes are applied to each joint when the arm is stopped to eliminate the need to servo the

_ arm continuously. The arm’s absojute accuracy IS iO.1 inches and its repeatability is k0.03

[VIIP]

inches.

An extensive manipulator programming system, known as “AL”, has been developed at the
Artificial Intelligence Laboratory for running the arm. The AL system contains a compiler
for planning the arm’s trajectories and a run-time system which executes the programs (
generated by the compiler. The compiler is written in a language similar to ALGOL and
resides on a PDP-10. The run-time system is written in PALX assembly language and runs
on a PDP-1 l/45.

C. Arm Trajectory Calculations .

The’ arm’s trajectory is determined by evaluating the fifth order polynomial given in
equation (l- 1) below.

ep - a, + a’&kTI + a2[kT12 + a,$kT]’ + a4[kTJ4 + a,[kT15 (G)

where ’

6,(k) - command joint position

T - sampling period ’ ,
k - discrete time variable . ’ ’
ao to a5 - polynomial coeff ic ients I,

The command arm velocity, WC(k), is determined by differencing the current and previous

positions and then dividing by the sampling period.

qki - c
8 (k)‘- 8 (k:l)

T
(l-2)

The arm’s command acceleration,, a,(k), is determined by differencing the current and

previous velocities and then dividing’by ihe sampling period.

u,(k) - o (k) - o (k-l)

T

- 8 (k) - 26 (k - l) +’ 8 (k - 2)

T2

(l-3)

[VII,3]

The z transforms of w,(k) and at(k) are given by

0 ,w = (z-1) 8(z) (l-4)

Tz

qz) - (z-l)2 8(z) . ’

(W*

(l-5)

where z - z transform operator.

[VII.4]

II. CL,ASSICAL ANALYSIS OF THE ARM

A. Joint Mode.1

The motor torque difference equation used to control each of the arm’s six joints is given by

’ T(k)‘- J(k)a,(k) + C(k) + F .- kckp [8,(k) - e,(k) I

k
- k,k, J(k) [0 ,(k) - WC(k) I - kcki C I e,(j) - 8,(j) II J(j)

j-l -
(2-l)

where

’ T(k) -’ command motor torque (oz-in)
8,(k) - actual joint position (deg) -

8,(k) - command joint position (deg)

w,(k) - actual velocity (deglsec)

- O&F) - command joint velocity (deglsec)

a,(k) - command joint acceleration (deglsec 2)

J(k) - joint inertia (oz-in-set*)
G(k) - joint gravity loading (oz-in) .
F - joint friction with same sign’ as velocity (oz-in)
kp - proportional feedback constant (oz-in)

kV - derivative feedback constant (llsec)

ki - integral feedback- constant (or*-in*-se,*) ,
, kc - constant to cdnvert degrees to ,radians - .01?45 (rad/deg)

The gravity Ipading, G(k), is calculated ‘using a first order polynomial.

G (k) - go + ig kT/S

where *

1 (2-2)

- go - initial gravity loading

dg - change in gravity loading (or-in) .

T - sampling period (set)
kT - elapsed time in segment (set)
s = total time required to pass through segment (set)
kT/S - fraction of time through segment (0.040)

[V11.5]

The inertia, J(k), is also calculated using a first order polynomial.

J(k)‘- j, + bj kT/S

where ’

(2- 3)

jo’ - initial inertia (oz-in-set 2)

bj - change in inertia (oz-in-sec2)

kTlS = fraction of time through segment (O.O+ 1.0)

A block diagram of the control system described by equation (24) is shown in Figure 2-l. A

mot;e detailed diagram of this model is given in Figure 2-2.

CONTROLLER

F +‘C(k)

P L A N TL

where

8,(k) - command arm position (deg)

8,(k) - actual arm position (rad).

T
8 (k)a

- FF = feedforward compensation for inertia = J(k)Crc(k) (oz-in)

PLANT = one joint of the arm and its associated gear train and motor
CONTROLLER - joint feedback equations

Figure 2-1: joint Model

8 (k) -
c .

cm4 m-l

‘I’(k)

T

i
ee (k)

- +
T

F + G(k)

where

T z

1GG, (z) s
W,(k)

-

I *
G&) - position transfer function of plant (radloz-in)

S G&) - velocity transfer function of plant (rad/or-in-set)

A/D ‘- analog to digital converter
6/A - digital to analog converter

Figure 2-2: .Detailed Joint Model

LVll./J

B. Joint Transfer Function

The transient response’of a servomotor system is described bythe differential equation given
i n e q u a t i o n (2,4), l

T(t) - J d2ea(t) + B d&(t) + F (2-4)

dt dt

where

J - Joint inertia (oz-in-set)2

B = viscous damping constant (oz-in-.set)
F - coulomb friction constant (oz-in)

The inertia in the above equation is assumed to-be a constant, although on some of the
joints, it is a time varying function which depends on the ‘configuration of the arm. The
effect of variations in joint inertia will be discussed in Section V-B.

A compensation is made for coulomb friction in the arm control system given in Figure 2-2.
A constant offset is added to the motor torque whenever the velocity of the motor is greater
than zero. The sign of the offset is the same as the sign of the velocity. With this friction
compensation, the effects of coulomb friction are minimized and the friction constant in
equation (2-4) can be assumed to zero.

The Laplace transform transfer functions for position and velocity of the arm are then given

bY

C&) - B,(s) - 1 (2-s)

To 2Js + Bs

0, (9 -wa(s)‘- 1 (2-Q

T(s) Js+s

where s - Laplace transform operator.

When a D/A converter is placed in series with an analog ‘plant, the response of the analog.
plant can no longer be described exactly by continuous Laplace transform transfer functions.
A design tool which becomes very useful at this point is the zero-order-hold (ZOH)
approximation. The ZOH, approximation can model the response of a D/A converter and a
continuous plant exactly at each sampling instantThe ZOH approximation is given by

ZOH(z) f: b-1) z (C(s)) (2 - 7)
i- S

where~ 2 - z transform operation.

Since each, joint df .the4tanford arm uses a D/A converter between the output of t h e
computer and the+input of the motor drive, the two transfer functions of the arm system can
be derived usirig the ZOH approximation:

C&) - B,(z) - (z- 1) Z{G*(s)j - (z- 1) Z(1)

s(Js 2 + Bs)

- (TB + J(fl-1))~ - TB.fl - gJ@- 1)

B2(z- 1 XZ:~)

(2-N

G,(1) - o,w - (z-1) Z{C,(s)j - (z-1) Z{ 1]

TOT-i- -Z Js2 + Bs ’

- 1-B
B(z-8). ’

(2-9)

w h e r e B - eNpTIJ.

The equations for the command torque T(z) have been computed using Figure 2-2 and are
given by

T(z) = kc [Jk, e@(t) + (kp + kiz I e&> + J(z:~)’ 8,(z) J (2-W
.

Jz-1) ’ (Td2

where

eW (z) - (z- 1) 8,(z) - G,(Z) ‘I’(z)

Tr kc

(2-l 1) ’

Q(Z) - e,(z) - Gg(f) F(z)
*

k; *
(2-12) ’

[VII.9]

Combining equations (2-10) through (2-12) gives the transfer function for the controller
cp.

kcB2(z-l)(z-8)) x I z3 + d 1 z2 + d2 z + d3 3

z 3 2+c z +c Z+C31 2
’ (2-13)

where

kg ,- gain constant - kgl/kg2

kgl, - 1’2 [ki ’ kpJ] + J2 [kvT + 1]

’ kg? - JB2

bl-TB+J&l)

b2 - TBfl + J(b - 1)

cl - { bl [+ + kpJ I- JB [B(2 + 8) + k,J@ - 1) I j/kq2

‘2’~ JB’B+2BB+2kvJ(~-‘)I-b2[ki+kpJJ~~pJbl~/kg2

c3 - (kpJb2 - JB [sg + kv J@ - 1) 1]/kg2

dl -(-JbpT2+ J[2kvT+311j/kgl

d2 - (J2 [k,T + 3 1]/kg1

d3 - l -J 2 I/kg1

Combining equations (2-S) and (2-13) gives .the closed loop transfer function from 8,(z) to

ep

H(z) - e,(z) - [b,z-b2][z3+d,z2+d,ztd3]

(Tz)’ 1 z3 + c z2 + c1 z + c‘ I2 3

(2- 14)

There are several simplifications of the above transfer function that will be used later in
other sections. The first of these is the transfer function of the arm without the feedforward
coinpensation term, JC#,(k):

H(z) - [blz - b2 I[z2 + el z + c2]

[z3 + Cl z2 + c2 z + c3 I

(2- 15)

[VIX.lO]

where

kg - gain constant - kg3/kg4

kg3 - T L ki + kpJ I <kvJ2
*

,
kg4 - JB2 ’

bl -TB+ J<fl- 1)

b2 - Ti3fi + J<6 - 1)

c~-~b~[ki+kpJI~JB[B(2+~)+k~J(B-“I~~kg~

~2 - 1 JB [B + 2BB + 2kv J@ - 1) 1~ b2 [ki + kp J 1~ kp Jbl I/kg4

c3 - { kpJb2 - JB [BB + k, J@ : 1) 1 j/kg4

el +J[kpT+2kvJl~/kg3

e2 - 1 kvJ2 Ykgs

The second simplified tranifer function includes proportional and d’erivative feedback only.
The feedforward and integral feedback terms have been deleted.

H(z) -

8,(z) Tz [z2 + fl z +‘f2 1

where

kg - gain constant

kg5
- kpT + kvJ

k
Ei.6

- B2

(2- 16)

l

- kg5�kg6

. b; -‘TB + J(fi - 1)

b2 - TBfi + J@ - 1)

fl - (kpbl - B?(l + fi, + k,JBU - 5)]/kg6

f2 - 1 B28 + k,JB(l - 5) - kpbi l/kg6
g - 1 -kvJ l/kg5

[VII.11]

I I I . S T A T E S P A C E C O N T R O L O F TliE A R M

A: State Space Concepts

1: GENERAL EQUATIONS

The state and output equations for a continuous, linear, constant coefficient system are g-iven
below.

dx(t)/d t - F x(t) + G u(t)

- y(t) - H x(t)*+ D u(t)

where

.

(3-l)

x(t) - state vector (n x 1)
u(t) - control vector (p x 1)
y(t) - output vector (q x 1)
F - system matrix (n x n)
C - control distribution matrix (n x p)
H - output matrix (q x n)
D - feedthrough matrix (q x p)

If the system is time invariant, the matrices F, G, I-1, and D become constant matrices. In
most cases, the feedthrough matrix D is not needed and it will be omitted in the following
discussion.

The system described above can also be represented, at discrete instants of time (t=kT where
k-0, 1, 2, and T is the sampling period), by a set of difference equations, as shown in
equations (3-2).

x(k+l) - Q x(k) + r u(k)

y(k) - H x(k) (3 - 2)

where

-

@ - d iscrete system matr ix (n x n) - eFT - (I t FT t F2T2 + ..,)

2!

and

-

[VII.l’L]

r’ i discrete control distribution matrix (n x p) ,

I
s eFa da G
0

- (IT + FT2 + F2T3 + +)G ’. . .

A diagram of the discrett state space system described above is shown in Figure 3-1.

The z-transform transfer function, derived from the difference equations (3-2), is shown
b e l o w .

The characteristic equation of the transfer funition given above is

det [~1-9) = 0 *

u (k)

x (k+l) fm, x (k)

where 2:-1 represents a delay of one sampling period

(3-3)

(3-4)

y(k)

Figure s-1: Discrete State Space Systtk Represerltatiou

[VII.13]

2. CONTROLLER LhWCh’

A diagram of a discrete state space controller with state feedback is shown in Figure 3-2.

’The general state feedback equation is given by

u(k) - -K x(k) + uo(k) (3-5)

where

K - feedback ga in matrix (p x n)
u,(k) - system input vector (p x I)

If the feedback equation (3-5) is substituted.into the state difference equations in equ+tions

(3-2), the following state difference equation is obtained.

x(k+l) - [(9 - I”K 1 x(k) + rue(k) ’ (3-6)

The characteristic equation obtained from equation (3-6) is

det [ZI - @ + rK 1 = 0 P.*

- y(k)

x (k+l) ‘m x (k)

Figure 3-2: Discrete State Space System With State Feedback

(3-7)

[VII.14]

A system is defined as “controllable” if its controllability matrix,

c- [r rw re2 . . . w-]

is nonsingular. If a system is controllable, the roots of ‘the system can be positioned at any
desired location by choosing the appropriate feedback gain matrix K.

B. Design of a Joint Controller 5

The differential equation describing the transient response of a servomotor system is
repeated below from Section 11-B. The coulomb friction term has been omitted, however, ,
since the friction compensation used in the motor torque equation minimizes the effects of
the coulomb friction. I ’

.

8 ItIa
x = 9 F =

T(t) - J d2ea(t) + B d&.(t) , (3-N*-
dt dt

If posjtion and velocity are chosen as states, the matrices describing a single joint are given
by *

where

u =,[1tiT(t) , He: 18[1

8, - actual position (rad)

(da - actual velocity (rad/sec)

T(t) - motor torque input (oz-in)
7 - B/J (radlsec)

-lr: - l./ J (1 /(or-in-sec2))
* B - viscous damping constant (oz-in-set)

J - inertia (oz-in-set2)
t - continuous time

[VII.151

The discrete difference equations for a single joint are given by

x(k+l) - Q! x(k) + r ‘I’(k)

y(k) - H x(k) (3-9)

where

H= 1 0[l-
and

The motor torque input was given in Section II-A as

T(k) - J(k)ac(k) + C(k) + F - kckp [8,(k) - e,(k) J

k
- k,k, J(k) I 0 ,(k) - U,(k) I - k,ki C [e,(j) - 8,(j> I/ J(j)

. a (24
J= 1

The gravity loading and the friction compensation terms are updated by the computer
during motions, so G(k) and F do not need to be .included in the joint model. The inertia,
J(k), will be assumed to be a constant, although on some of, the joints, it is a time varying
parameter which depends on the configuration of the arm. The effect of inertia variations
will be examined in Section V-B. Taking the z transform of the remaining terms in equation
(2- 1) gins

T(Z) - J(Z-‘)*‘c(Z) - kc ~ ‘p + ky J (t-1) + ki Z) [e,(Z) - 8,(Z) J

O-d2 TZ

A block diagram of the system described above is given in Figure 3-3.

(3-10)

[VII.I6]

wa (k)

clk”
+I

I‘/kc

i

- eE(k)

Figure 3-3: Two State Joint Model

.

By adding three more states, equation (3-10) can be combined with equations (3-g) to give a
new set of difference equations:

x(k+l) - [@ - rK 1 x(k) + r e,(k)

y(k) - H x(k) (3-l 1)

The new x, a, r, H, K, and u matrices are given by

X =

u =

[

1

x3(k)

ea tk)

O,(k)

x2(k)

x1 (k)

c .
1 l/kc 8 8 8

0 1 ‘Y 0 0

(ho + kiU 8 c .1 98
C

H

I 0 0 0 0 0 0 0 0 ,0 1
1

,

r

0 -1

kcKg 0,

kcKY 0

0 0

0 1

=
[

0 1 0 0 0 1

ho - (kpT2 + k,T J +. J)/T2

h 1 - -&,TJ + 25)/T*

h2 - J/T2 ’

A diagram showing the additional states is given in Figure 3-4.

x2 (k)

-1
sz .

LJ1

ea (k)

Le-lk /kc Iki/k, J

Figure 3-4: Five State Joint Model

[VJI.19]
e
The transfer function for the closed, loop system given above can he calculated usil~g

equation (3-6) which is repeated below.

H(z) = 8,(Z) ,’ H [ZI - # + rIi I” r (3-6)

6,(z) ’

Expanding equation (S-6) gives

Hiz, = 0 1.0 0 0 1

.
z-l -Vkc 0 0 0

kCkiaJN2 2z-l+kp.N+ki@h kvW’ kch2W k&W

kckiYK2 2
kPY”+kiCla

z-B+kvY kch2YK kchlY”

0 0 Z -1

0
0 0 Z

II 0

0

X

Recking equation (3- 12) gives

0 -1

kcKC] 6,

k,h’Y 0

0 0

0 1

U-12)

H(z) - 8,(z) - N U M

q5 DEK

where

NUM 3I kcK [kiKZ + ho(Z-1)Z 2 + hl(z-1)Z - h2(Z-I) I [(Z-19+kv~)CJ + (Y-kVCI)Y J

DEN I Z* ([Z-B+k,Y J [ki~K2 l (Z-l)(Z-l +kpcI~+kicIK2)]

+ ’ [‘-kvCI I [ki’lr’ + (Z-l)(kpY + kiYK)])

[VII.20]

Further reduction gives
.

H(z) - c Fk k [blz-b2][z3+dlz2+d2z+d9]

(Tz)* [z3 + c1 z* + c2 z + c3 1

(3-13)

where

kg - gain constant - kgl/kg2

Ilgl
- T* [ki + kpJ 3 + J2 S k,T + 1 1 .

kg2
- JB*

bl - TB + J(B - 1)

’ bz - .TBo + J(b - 1)

’ C~~(b~~‘~+kpJI-J’~‘(*+8)+k~J(8”)1)~kg~ ’
~2 9 (JB [B + 2BB + 2kv J(B - ~) I -‘b2 [ki + kl) J I - kp Jbl)/kg2
c3 - (kpJb2 - JB t d + k, J(b - 1) I)/kg2

F’ I = { -J [kpT2 + J [2k,T + 3 11 j/kg1

d2 = (J* I: k,T. + 3 1]/kg1

d3 - 1 -3 2 l/kg1

This is the same transfer that was obtained in Section II-B using a classical analysis.
Classical and state space methods of analysis often give the salne transfer function, especially
for single input - single output systems. The transfer function above has two closed loop
poles at the origin of the z-plane, one real pole, and two poles which can be either real or
complex. If 10 feedback gains had been used in the feedback gain vector K, instead of five, s
it ‘would have been. possible to position the five poles at any desired location. Only five gains
were used, ‘however, since there is no advantage in altering the positions of the two poles at
the origin. ,

The feedback gains required to obtain the desired joint characteristic equation given by

z*[,3 +u z1
* + & z + u 3 i 0

2 3 (S- 14)

can be computed using equation (3-15).

K - &A-Cl (3-15)

[vrr.zl]

where

A =

c .
“1

a2

a3

K =

-J2B#4 blJ bl

2J2B(8-11 - (bl+b2) J -b2

0-J2B@-1, b2J J

The computation of feedback gains will be d,iscussed in further detail in Chapter VI.

. [VII.22] I

IV. DETERMINATION OF ARM PARAMETERS

A. Summary of Measurement *Techniques ’ ,

The differential equation describing the transient response of a single joint of the arm is
- repeated below from Section II-B.

T(t) - J d’e,(t) + B de,(t) + F

dt dt
(2-4)

where

* T(t) - motor torque input (oz-in)
8,(t) - actual joint ‘position (rad)

J - inertia of motor, arm, and load (or-in-set 2)
B - viscous damping of motor and arm (ot-in-set)
F - coulomb friction of motor and arm (oz-in)

It can be seen from equation (2-4) that inertia, damping, and friction are the three arm
parameters which have the most predominant effect on the arm’s time response. Inertia can
be calculated from a knowledge of the mass and relative position of each of the component
parts of the arm. An excellent reference on this subject is [BE].

The arm’s coulomb friction and viscous damping are difficult to measure because they are
position dependent. The position dependency is illustrated in Figure 4-l where the velocity
of each of the six joints has been plotted as a function of position for a constant torque step
input. If friction and damping were independent of position, the velocity would be constant
after an intial period of acceleration. In Figure 4-1, it can be seen that the velocities of the
joints are not constant, even ,after the acceleration period has ended. When the motions ’
plotted in Figure 4-1 were repeated, the velocities were found ‘to be repeatable functions of
position.

The position dependency complicates the measurement process, but using the average values
of the friction and damping in the motor torque equation and the arm model gives an
accurate prediction of the arm’s transient response. The insensitivity of the model to friction
and d.amping is a result of the fact that the velocity feedback overides the effects of errors in
the vikous damping, and the position and integral feedback minimize the effect of errors in
the coulomb friction.

[VII.23]

l . ZE-01

b.lE-01

0

O.lE-@l

0

..1E-01

.

1
I I 1 I I I I I I

I
I I I I I 1

0 100

JOSWT 1

(76 86 98 118

JOIN1 2

10 12.5 1 5 1 7 . 5 2 2 . 5

J O I N T 3

POil TION (DE0

Figure 4-l: Positiolr Depelldence of Frictiorl

[VII.24]

@.SE-@l

W’ ”
n O.ZSE-01
w

J O I N T 4

J O I N T S

J O I N T 6

POSITION (DE0

’ Figure 4-1 (continued): Position Dependence of Friction

[VII.25 J

A measurement of the arm’s average coulomb friction can be obtained using a method

developed by Richard Paul and Eruce Shimano at the Artificial Intelligence Laboratory.
The method consists of applying a constant motor torque to a joint, and thin measuring:

@ the restraining force required to maintain a constant velocity in the direction of.
applied torque

8 the force required to pull the arm at a constant velocity in a direction opposite to
the applied motor torque.

The friction
by two.

is determined bY dividing the difference between the two force measurements

‘Five methods, which have been investigated for measuring joint viscous damping, are listed
below.

1. Terminal Velocity - Torque Step Input
2. Least Squares Fit - Torque Step Input
3. Transient Response - Position Step Input
4. Least Squares Fit - Position Step Input
5. Bode Plot Analysis - Position Sine Wave Input

Some of these methods also measure inertia or coulomb friction as well. Of the methods
listed above, methods r3 and +5 give the most consistent results and are the easiest to use. All
of the methods are summarized briefly below, but tests r3 and w5 are explained in detail in
the following sections.

1. TERMINAL VELOCITY -TORQUE STEP INPUT

The feedback and feedforward terms in the motor torque equation are deleted and the joint
is given a step input in torque. After the joint’s initial acceleration, the velocity of the joint
is given by equation (4-l).

wa(t) - 0 - F)/k,B

where kc - constant to convert degrees to radians = .0174’5

(4- 1)

Both the viscous damping and the coulomb friction can be determined as functions of
position by using different values of torque on successive runs. This test does not work well
on joints which have a limited amount of rotation. The applied torque must be kept very’
low to allow the joints to reach their terminal velocities, yet at low torques, the erratic effects
of coulomb friction mask the real terminal velocities.

[VXI.26]

2.LEASTSQVARES.FIT-TQRQVESTEP INPUT

The feedforward and feedback terms are deleted from the motor torque equation and the
joint is given a step input in torque. A least squares curve fit is then made between
equations (4-2) and (4-3) and the joint’s actual transient response.

’ B,(t) - I([t-r (1 -eq (4-2) *

c&J ,(t) - K (1 -e-t’7) (4- 3)

where

K - (T - F)IB .* I

This test also does not work well for joints which have a limited amount of rotation. The
curvature of the velocity versus time response of these joints is small and the values
obtained from the least squares fit vary with the applied motor torque.

The feedforward and the velocity and integral feedback terms are deleted from the motor
torque equation. The joint is then, given a step input in position and its proportional gain is
yaried until the joint’s response to the step is underdarhped, The joint’s viscous damping
and inertia can be computed from the peak time at tihich the arm begins to reverse its
motion and the magnitude of the peak overshoot. This test is the easiest to use of the five,
and. it produces repeatable and accurate results. It is discussed in detail in Section IV-B.

- ~LEA~TSQVARES FIT-POSITIO~VSTEP INPUT

The feedforward and the velocity and integral feedback terms are deleted from the motor
torque equation. The joint is then given a step input in position and and its proportional
gain is varied until the joint’s response to the step is underdamped. A least squares fit is
made between the output df equation (4-3) and th’e joint’s actual transient response.
(Equation (4-4) is derived in Section IV-B-I.)

B,(t) - k&l - ewrunt(cos bit + (I’

(1 . p2

1 sin w,t)]

’
(4-4)

This test is the best method to use when extremely accurate values are needed for inertia
and damping. If the coulomb friction compensation is adjusted until the transient response is

.”

. [VII.27]
e

exactly second order, this test will tive the most accurate results of the five tests presented in
this section. The added difficulties incurred in d&ermining the exact coulomb friction
compensation, however, make this test difficult to use.

5. BODE PLOT ANALYSIS - POSITIQV SINE WAC/E INPUT

The feedforward and the v.elocity and integral feedback terms are deleted from the motor
torque equation and the joint is excited with a sine *we position command. The frequency
which produces the largest peak to peak displacemenc is the joint’s resonant frequency and
can be used to compute the joint inertia. The viscous damping can be calculated from the
magnitude of the,displacement at the resonant frequency.

Thiz test produces accurate and repeatable results and is moderately easy to use. It is a good
backup test’for verifying the results obtained from the Test +3.

B. Detailed Description of Preferred Measurement Techniques

I, TRANSIENT .RESPONSE - POSITION STEP lNPVT

This method uses thk peak time and peak dvershoot of a joint’s transient response to
determine the joint’s inertia and viscous damping. The block diagram of the system
configuration used for this iest is given in Figure 4-2.

where

kp - proportional feedback constant

kc - constant to converi degrees to radians - .01745

Figure 4-2: Conf iguratiorl for Transietlt Response Test

r ep

[VII.28]

The joint is given a step input in position and its proportional gain is varied until the
joint’s step response is underdamped. The peak time at which the arm begins to reverse its
motion, and the magnitude of the peak overshoot are then noted for step inputs of various
sizes. A typical motion is shown in Figure 4-3.

‘Since the present 60 hz sampling rate is more than 15 times higher than the bandwidth of
the joint configuration shown in Figure 4-2, a continuous transfer function can be used to
model the arm’s closed loop transient response. The transfer function can be determined by
inspection of Figure 4-2 and is given by

H(s) - a - kck~8 (4

8,(s) Js2 + Bs + k’
P

(4-5)

For a step input of magnitude 1.0, the response of the arm is given by

B,(s) -

I

k k

s(Js2 -+ Bs + kp)

. (4-6)

where

(4-7) .

h-8)

t - damping ratio
W, - undamped natural frequency (rad/sec).

. .
I

The time domain step response, e,(t), can be calculated by taking the inverse Laplace

transform of equation (4-6).

f,(t) - k,[l - e’IWnf(cos wdt + (’

(1 - 12)“2

) sin w,t)] (4-9)

2 l/2whereWd-Wn[l-r 3 .

) I I I I I I l II l l II I l

0 258 S W 758 1800

TllE (E1ILlISEc)

Figure 4-3: Typical Step Response l Transient Response Test

[VII.30]

The peak titie t
P

can be determined by taking the derivative of es(t) given in equation

(4-9) and equating it to zero. This gives

= n/w5 d (4-N)

The peak overshoot, M
P’

can be calculated by evaluating 8,(t) at t .
P

Mp - exp[#‘/(1-r2)1’2] (4- 11)

Since tP and Mp can be measured experimentally, equations (4-10) and (4-l 1) can be

rearranged to give t and W, as functions of t and M
P P

. The inertia and damping can. then

be determined from f and W, by rearranging equations (4-7) and (4-8):

q r [(Id l/Mo)2]1/2m

T2 + (In(1/Mp))2

On I 7r

t (lj2)1’2
P

J - kp/wn2

(4-12) b

(4- 13)

(4-14)

+2fw,J . (4- 1.5)

A more detailed derivation of equations (4-6) through (4-l 1) can be found in reference
LOCI. The results obtained using this test are shown in Table 4-l.

2. Bode Plot Analysis - Position Sine Wave Input

For this method, the joint is excited with a sine wave position command and the peak td
peak dis p lacement of the joint’s response is recbrded as a function of the frequency of the
sine wave. The system configuration for this test is identical to that given for the closed loop
transient response test in Figure 4-2. The prbportional gain should be adjusted to make the
join& transient response underdamped. (r should be approximately 0.1)

where F - compensation for joint coulomb friction.

Table 4-1: Results - Transient Response Test

fVII.31]

Joint Step Input
kP tP

beg) * kc)

1 20 IOK 0.616
1 30 10K 0.616
1 40 1OK 0.616

8P
B J

(deg) I (oz-in-set) (oz-in-sec2)

41.5 ~87 384
62.4 94 384
84.3 127 * 384

1 F - 1150 oz-in AVG: 102 354

.2 30 1OK 0.712 4s. 1 709 501
2 40 1OK 0.696 65.9 610 482
2 30 20K 0.512 52.5 688 525

2 F = 1000 oz-in AVC: 669 503

3 5 7 4 6.880 S.8 0.34 0.55
3 6 7 0.895 11.1, 0.2 1 0.57
3 7 7 0.864 ’ 13.1 0.1s 0.53

’3 ,F - 12 oz-in AVC: 0.24 0.55

4 40, 1K 0.304 67.5 22.8 9.2
3 . 50. lK 0.304 86.9 18.6 9.3
4 60 1K 0.304 107.4 14.5 9.3

4 F = 110 oz-in AVG: 18.6 9.3

5 40 * 400 0.67’2 59.6 37.0 I 7.4
5 ’ 50 400 0.664 79.5 27.6 17.4
5 55 4.00 0.692 90.9 23.4 19.1

5 F - 30 or-in AVG: 29.3 18.1

6 50 300 0.440 75. I 17.6 5.6
6 60 300 0.4 32 95.2 13.7 5.6
6 70 300 0.4 j2 120.3 8.6 5.6

6 F - 23 oz-in ‘AVG: 13.3 5.6

’ [VII,32]

The computations for this test can be performed in the s-plane since the sampling rate is 15
times the maximum joint bandwidth. The transfer function for this configuration is
repeated below from Section IV-B-l.

H(s) - ‘a(‘) I kcko (4-5)

8,(s) 2 - pJs + Bs + k

P
(40 16)

(s2 + 2{w,s + on 2)

where

(40 7)
, (4-8) l

Then

H(jw) ‘- k

1 + 2t (jolW,) + (jW&J2

The magnitude of the response is given by

IHjW - k

([1 -w2/w n212+[2~w/w~ n.
12f2 ,

(4-17)

(4-18)

The value of 1 H(jw) 1 peaks at the resonant frequency of the joint. The resonant frequency
can be computed by, taking the derivative of equation (4-18) and equating it to zero. The
resonant frequency is then given by

5 I w n [1. - 2r2 31’2 (4-19)

Since the proportional gain for this test was selected so that the system’s response would be
highly underdamped, r is very low and

wr z w, (4-20)

The inertia of a joint can be determined from the joint’s transient response using equation
(4-7)

J

The magnitude of the response at Cd = Ir),

equation (t- 18).

can be found by substituting equation (4-19) into

Mr (4-22)

Thus

I- *[5 - (1 - l/M 2)1’2 1l’2r - (4-23)

The viscous damping can then be determined from equation (4-8).

B - 2tJy (4-24)

A detailed derivation of equations (4-16) through (4-19) can be obtained from reference
[OGI. The experimentally determined values of inertia and viscous damping have been

tabulated in Table 4-2.

JointJoint Sine InputSine Input k
P

(deg P-P)(deg P-P) ’ (set)..

k
P

kc>
fpfp

66
66
11

1010
1010

- 8- 8

7.5K7.5K
5OK5OK

IOIO
21c21c
1K1K
11~11~

0.640
1.350
0.4 00
0.800
0.500

S.425S.425
0.640
1.350
0.4 00
0.800
0.500

*P
B

(deg P-P) (oz-in-set)

J
2(oz-in-set)

15.9 272 386
15.1 9ss 519

21.9 0.28 0.46
15.8 24.2 8.1
16.9 23.7 16.2
18.8 15.2 6.3

Table 4-2: Results l Bode Plot Analysis

3. COMPARlSON OF TEST RESULTS

The results of the Transient Response Test and the Bode Plot Ana.lysis are listed in Table
4-3. For purposes of comparison, the table also shows inertias computed by the present
run-time program using equations given in reference [BE] with parameter values for the
Stanford. Arm.

[VII.34]

The results of these tests will be used in the following chapters for computing the positions
of the closed loop roots of the joints. The tests have also pointed out a discrepancy between
the computed inertia and the actual inertia of joint 6 and possibly joint 1. The feedforward
compensation on joint 6 will be more effective when the constants used to compute its inertia
are updated.

Joint METHOD * B

(oz-in-set)

1 ’ TR 102
1 BP - 272
1 BE 0

2 TR
2 BP
2 BE

669 - 5 0 3

988 519
. 4 5 7

3 .TR 0.24 0.55

3 BP 0.28 0.46
3 BE 0 0.48

4 TR 18.6, 9.3
4 BP 24.2 8.1
4 BE 0 10.4

5 TR 29.3
5 BP 23.7
5 BE 0

T
J

2(oz-in-set)

384

386

2 2 8

18.1
. 16.2

12.1 *

5.6

6.3

0.89

w h e r e

TR - Transient Response Test
BP - Bode Plot Analysis
BE - ‘Run-time inertias calculated using equations from reference [BE]

Table 4-3: C’ompatisoa of Test Results

II, V. STABILITY ANALYSIS

A. Root Locus Analysis

A root locus analysis can be used to indicate the stability of the arm as a function of its
feedback gains, inertia, or sampling rate. In the analysis that follows, the arm has been
analyzed in the z-plane where the stability of the arm decreases as its closed loop poles move
away from the origin of the z-plane toward the unit circle. When the roots move outside of
the unit circle, the arm becomes unitable.

The closed loop transfer function for the arm control system given in equation (2-14) is
repeated below.

where

,

H(z) = e,(z) = kk.[b,z-b2][z3+d i2+d z+d (2- 14)

qz)
23 2 -(Tt) [t +clz +c z+c J2 3

kg - gain constant - kgl/kg2

kg1 = T* [ki + kpJ I+ J* [k,T + 1 1

kg2 - JB 2

bl -TB+ J(& 1)

b2 - TBfl+ J(b - 1)
“1 - (bl [ki + kpJ] - JB [~(2 + ~)~t k,3(8 - 1)] l/kg2

~2 - (JB E B ’ 2BD,+ 2kiJ(b - 1) I - b2 [ki + kpJ I - kpJbl]/kg2

c3 - (kp Jb2 - JB [BP + k, J(b - 1’) 1]/kg2

d 1 - (-J [ipT2 + J [2k,T + 3 11)IkgI

d2 - (J* I ,$,T + 3 3]/kg1

‘2 * .
d,3 - 1 -I l’kp i

. The parameter values and the present feedback gains for each of the joints are listed in
Table 5-l. The values given for viscous damping and inertia are the averages of the
expefimental measurements listed ‘in Table 4-3.

Using these paramete; values, the positions of the closed loop poles of edch of the joints
have been determined. The positions of the closed loop poles for joint 1 are plotthd in
Figure 5-1A. The far right side of Figure 5-1A has been expanded in Figure 5- 1E. In the
interest of brevity, this report presents graphical results only for joint 1. Readers interested

- in seeing the graphical results for the other joints are I’eferred to my thesis.[RO]

[VI1.36]

Joint J B k
P kV

I ki

2, (oz-in-set) (oz-in-set) (o t - i n) (Ilsec) (oz2-in*-set*)

’1 385 187 1.5 E5 50 * 6.0. E5
2 511 82? 3.0 E5 ’ 70 1.0 E6
3 ’ 0.51 0.26 . - 200 30 4.0
4 8.7 21.4 * 7000 30 3.0 E3
5 17.2 26.5 2000 40 ’ 1.0 E3
6 6.0 14.3 . rood 100, 50.0v

. ’

where’ for joint 3 the units are J - oz-set 2/in and B = oz-se&n.

Table 5-l: Arm Parameter Values

B. Inertia Effects

, The dynamic response of a joint is affected by its inertia and the inertia of any load picked
up by the arm. To illustrate the ,effects of inertia on the arm’s closed loop poles, the joint 1
pole locations have been plotted in Figure 5-2 for inertias of 1, 2, 4, 8, and 16 times the
nominal joint inertia listed in Table 5-1. In this analysis the feedback gains were held fixed
at the values shown in Table S-J, and it was assumed that the inertia terms in the motor
torque equation were updated to include the ,additional inertia. Similar graphs are presented
in my thesis (reference [RO]) for the remaining 5 joints. These graphs show that the z-plane
pole locations ‘are sh,ifted by inertia variations, but all joints remain stable for inertia
variations of at least a factor of 16 times the nominal inertia.

The inertia of, joint& 1 and 2 can vary by a factor of two, depending upon the configuration
of the arm. The effect of this variation on the closed loop poles of joint 1 is roughly equal to
the distance between points rl and w2 on Figure 5-2.

In reference [BE], Bejczy shows that the act of picking up a 4 lb cube approximately
doubles the inertia of each of the joints. Thus, the closed loop poles of the joint, when the
arm is holding the cube, are shown as the r2 points in Figure 5-2.

In Section VI-A, a modification to the present motor torque equation will be discussed that
will significantly reduce the effects of inertia demonstrated above.

-1.
. 0

I. .

, [VII.37]

‘Figure 54A: Joint Root Loci

[V11.38]

0.5E’Ol

O.ZSE-@l

x
a 0 ’

-O.ZSE-01 -

-

.

0.15

6

2 1 4 3
x

12
” 1

” .
1 0

. 6

I I I I
I

I I I I
I

I I I I :

9.95

REN AXJS

Figure 5-1B: Joirlt Root Loci l Expanded Scale

1

.
P- An

4
I I I I I I I I I I I I I

1

0.2s a.5 , 0.75 1

R O O T al

u)
u
X
a

a.2

@.2E-Rl

O.lE-01

R O O T cl2

8 16 I
0

v

-a.tc-at ,

-@.2E-ml

e.90 ' 8.1192s 0.995 0.9975

ROOT ~3

RERL AXIS

/

I - Figure 5-2: Inertia Effects - Joint 4 Root Loci

‘.

C. Sampling Rate Sensitivity

’ The dynamic response of the arm control system is a strong function of the system’s sampling
rate. Figure 5-3 shows the movement of the closed loop poles of joint 1 as the sampling rate
is reduced from 100 hz to 10 hz. All feedback, gains were held fixed at the values specified
in Table 5-l. Similar root locus plots for the other joints indicated that all of the joints
become unstable before the sampling rate reaches 10 hz.,

When the sampling rate sensitivity of the joints was verified by running the joints at
, * reduced, sampling rates, it was found that that the actual joint responses agreed with the root

locus plots, except for joint 6. The root locus plots indicated joint 6 would become unstable
at 50 hz, yet actual tests on the joint showed that it did not become unstable until the
sampling rate fell to between 5 and 10 ht. The anomaly was traced to the error in the

. computed inertia noted earlier in Table 4-3. The derivative feedback gain in the motor
torque equation is multiplied by inertia to ieduce- the sensitivity of the control system to

inertia. The inertia computed for joint 6 was shown in Table 4-3 to be 0.89 oz-in-set2 while

actual measurements showed the inertia to be 6.0 oz-in-set2. Thus, the actual gain of the
derivative feedback term’was 6.5 times smaller than expected. The root loci for joint 6 were
recomputed using the reduced value of derivative feedback. The new plot showed that the
joint will go unstable at 7.5 hz, in good agreement with the experimental findings.

CW future arm systems, it would be interesting to investigate the feasibility of changing the
sampling rate dynamically, so that the sampling rate would be higher during periods of
acceleration and deceleration. It would then be desirable to make the control system as
insensitive as possible to variations in the sampling rate. A suggested modification for
reducing the present sensitivity to sampling rate variatidns will be presented in Section VI-B.

[VII.41]

-1

* ..a-01

a. lf-01

*(o
U
.x 0

a .

e.5 e.75 . 1

ROOT r1

J-

180 38,
n L.

.

O.SO?S 0.99, 0.9925 9.995 0.9975

-1
I I I

-2.5

ROOT *3

REAL MS

0

Fighe 5-3: Sampling Rate Sensitivity - Joint 81 Root Loci

‘VI. RECOMMENDATIONS

A. Reduction of Inertia Effects

In Section V-B; it was shown that the locations of the arm’s closed loop poles are affected by
. changes in inertia. The effect of joint inertia variations can be significantly reduced by
rearranging the inertia terms in the joint motor torque equation so that each of the feedback
gains is multiplied by the inertia. The feedback terms in the present motor torque equation
are given by

T(kjfb = - kc (kp [8,(k) - e,(k) 1 + k, J(k) [o,(k) - w,(k) 1

+ ki i [e,(j) - 8,(j) l/J(j))
j= 1

If the inertia terms are rearranged to.give

T(kjfb - - k,J(k) (kp [oak) - e,(k) 1 + k, 1 w,(k) - WC(k) J

k
+ ki C 1 es(j) - 8,(j) 1)

j-1

then the joint transfer function becomes

,
H(z) = 8,(t) - kck [blz - b+ z3 + dl z’ + d2 z + d3 1

(Tz)~ [z3,+ c z* + c z + c 11 2 3

where

kg - gain constant - kgl/kg2

kgl
9 T2 [kp + ki J + kvT + 1

kg2 = B
2

bl -TB+ J(b- 1)

b2 = ‘TBfl + J(fi - 1)

C~*(blJ[kp+ki]~B(B(2+~)+kvJ(~-l)]~/kg2

~2 = 1 B [B + 2Bb + 2k, J(B 0 1) I - b2 J [kp + ki I - kp Jb 1 l/kg2

c3 - (kpJb2 - B [B/3 + k,J@ - 1) 1 j/kb2

dl - (- [kpT2 + 2k,T + 3 I]/kg1

d2 - { k,T + 3]/kg1

(6-O

(6-2)

(e-3)

. [VII.43]

The root locus plot for the modified motor torque equation for joint 1 is plotted in Figure
6-1 using crosses to mark the root locations. The original inertia sensitivity from Figure 5-3
is plotted for purposes of comparison, using circles. It can be seen that the root variations
from the modified motor torque equation are concentrated within a sma’ll area, while the
variations from the original motor torque equation cover the entire plot.

B. Reduction of Samolinrr Rate Sensitivity

The sensitivity of the present arm control system to variations in sampling rate was

demonstrated in Section V-C. It was shown that, when the feedback gains are held fixed, all
of the joints become unstable between 5 and 35 hz.

* Ideally, we would like to keep the closed loop poles in stationary positions as the sampling
rate is varied. Looking at the z-plane poles can be misleading when the sampling rate is
varied, however, because the same z-plane poles give different responses at different
sampling rates. The effect of sampling rate variations on the arm’s dynamic response is best
illustrated by using a transformation to map the z-plane poles to the s-plane.

Keeping the s-plane poles in stationary positions as the sampling rate is varied minimizes
the effect of sampling rate on the arm’s speed of response. To determine how the feedback
gains would have to be changed to keep the s-plane poles stationary in the presence of
sampling rate variations, a transformation was used to determine how the z-plane
characteristic equation would have to. vary to keep the s-plane poles constant. The sampling

rate was then varied and the gains required to keep the s-plane poles stationary were
computed using equation (3.15), It was found that the required proportional and derivative
feedback gains doubled as the sampling rate was doubled. The integral feedback’ gains
varied only slightly as the sampling rate was varied. By modifying the motor torque
equation so that the proportional and derivative feedback terms are divided by the sampling
period, the movement of the s-plane poles is significantly reduced. Thus, the feedback
portion of the motor torque equation given in equation (6-2) should be modified to ’

TO& - - k,J(k) (kp [e(k) - ec&) l/T + k, [w(k) - w,(k) l/T

+ ki i [8(j) - B,(j) I]
j=.J

to become less dependent on sampling rate and inertia.

(6-4)

ul
l-l
X
a

ii
z .
0”
a
t

R O O T a l

@.875 i.9 0 . 9 2 4 6 . 9 5 0 . 9 7 5 1 ’

R O O T r2

8.2E-@l -’

@.lE-61 _

1 2 4 8 16
0 _

1 16
-0.lE-@I _ I

.

-0.tE-It -b , , , , I .I I 1 1111 I I I I I I I I

8 . 9 9 e. 9 9 2 5 0 . 9 9 5 8.9975 ’

ROOT a3

Figure 6-l: Reduced Effect of Inertia - Joint 4 Root Loci

[VII.15]

With the recommended motor torque equation (6-4), the final joint transfer function becomes

H(z) - 8,(z) -, k,k [blr : b2 I[3t + dI 2 d22 + 2 + d3 1 65)

(T2J2 E 23 +Clt 2 + C2 2+C31
.

kg - gain constant - kgl/kg2

kgl
- kpT t kiT* l kv + 1 ,

kg2 - B
2. .

byTB+J(&l) * ’

b2’TBBi J<b 1) ,

Cl 0 (blj I ki + kp/T I - B [B(2 + 6) + k,, J(B - 1)/T I)/kg2

~2 I i B [B +‘2BB + 2kv J(B - J)/T I 0 ‘2 J [ki + kp/T I - kp Jb I/T)/kg2

c3 -’ (kp Jb2/P B E BB + k, J@ - 1)/T I)/kg2

dl -I-[kpT+.2kV+31j/kgl

d2 - (kv + 3]/kg1

d3 - -l/kg,

The effect of sampling rate variations on the new motor torque equation described above is
illustrated in Figure 6-2 where the closed loop poles are plotted in the z-plane. By comparing
Figures 5-S and 6-2, it can be seen that the sampling rates at which the pates cross the unit
circle and cause the joints to become unstable are .lower in every case for the modified motor
torque equation.
.

[VII.461

O.fE-01

-O.SE-01

>
o! -0.6
a

.Z

0 . e.25 0.5 6.75 1

E ROOT rt

w
w.5

e.96 0.975

ROOT l I

a.5 0.6 0.7 0.9 w.9 1
I

ROOT ma ,

.

ml AXIS

Figure 6-2: Reduced Samplirlg Rate Serlsitivity l Joint ~1 Root Loci

[VII.47]

The modifications to the motor torque equation could be carried one step farther by
including equation (3-15) for computing the feedbact gains in the motor torque equation.
The resulting equation would consume a great deal of computation time on the computer,
but theoretically, the s-plane poles could be made perfectly stationary in the presence of
sampling rate variations. Thus, the speed of response of the arm could be held fixed
regardless of the sampling rate. This sounds somewhat idealistic, and it is. Whenever the
sampling rate is reduced, the arm perfomance is degraded in several ways.

1. The arm’s response time increases (even when the s-plane poles are held stationary).

2. The arm’s sensitivity to disturbances (such as those caused by friction) increases.

3. The arm’s sensitivity to parameter variations (such as those caused by errors in the
estimation of inertia) increases.

4. The roughness of the arm motions increases because the steps begin to appear in
the command signal from the digital to analog converter.

The above factors are discussed in detail in reference IKAI. Before the effects of sampling
rate on the arm’s response can be fully understood, the relative importance of each of, the
above factors must be determined.

The Cffect of the sampling rate on the response time of the joints is illustrated in Figure 6-3
for joint 1. For the motion shown in Figure 6-3, joint 1 was commanded to move 90 degrees

, in one second. It can be seen that the response time increases as the sampling rate is
.decreased, although the response time does not increase significantly until the sampling rate
is reduced to 20 hz.

The sensitivity of the joint to disturbances is shown in Figure 6-4 where joint 1 was again
commanded to move 90 degrees in one second. To simulate a disturbance, the coulomb
friction compensation was removed from the motor torque equation. It can be seen that the
disturbance creates an additional ‘error of almost 0.9 degrees in the 20 hr plots, but the error
for the 62.5 hz plots never exceeds 0.2 degrees.

The joint’s sensitivity to parameter variations was simulated by altering the computed
inertia. The resulting error is plotted in Figure 6-5. It can be seen that the additional error
generated by varying the inertia is worse for the 20 hz sampling rate than for the 62.5 ht
rate.

The roughness due to the steps in the digital to analog converter signal is not an important
factor. At reasonable sampling rates above 20 hz, the roughness cannot be seen in the
position plots in Figure 6-2.

[VII.481

TlflE MlLLISEC>

Figure 6-3: Effect of Sampling Rate 011 Response Time - Joirlt 81

20 hz + DISTURBANCE

62.5 hz + DISTURBANCE

I I I I I I I I I I I l I I I I I

258 508 756 lee0

TlK QIlLLlSEC>

Figure 6-4: Effect of Sampling Rate 611 Sensitivity to Disturbances - Joint 81

[VXI.50]

5

2.5

Z
0

F .

i
0
a .

-2.5

-

20 hi + PARAMETER VARIATION

258 500 758

PARAMETER
VARIATION

TltIE MlLLISEC>

Figure 6-5: Effect of Samplhg Rate on Seruitivity to Parameter Variatiom - Joint #l

[VII.Sl}

In Figure 6-6, the error appearjng in joint 1 for a one second, 90 degree motion is plotted as
a function of the sampling rate. Here the feedback gains have been adjusted so that the
s-plane poles remain fixed when the sampling rate is changed. It can be seen that the
additional error’ created by reducing the sampling rate is almost insignificant at 40 hz. At

62.5 hz the magimum error in the middle of the motion is 1.5 degrees, while at 40 hz, the

’ maximum error is only 2.0 degrees.

The root mean square (RMS) error defined by equation (6-6) has been calculated for the
niotions described above and plotted in Figure 6-7A. Surprisingly, the rms error seems: to
have no correlation with the inertia of the joints. In Figure 6-7B, the plot of rms error has

been normalized by subtracting the 92.5 hz value from all of the rms errors and then
dividing by the 10 hz value. The scale of the normalized rms error has been expanded in
Figure 6-7C. The normalized rms error gives a measure of the relative sensitivity of the
joints to sampling rate. It can be seen that joint 2 has the least percentage increase in rms
error when the sampling rate is reduced to 40 hz. Joint 6 has the largest increase.

Erms = [i (T ej)’ J1j2
i-l

(6-6)

The final recommendation of the sampling rates for each of the joints is an engineering
judgement based on the accuracy required in the middle segments of a motions and on the
amount’of processing time available for control functions. The best performance will always

be obtained at high sampling rates. When operating conditions limit the arm sampling rate,
the joints should be sampled at rates which are based on the relative sensitivity of the joints.
For the Stanford Arm, I recommend that the available sampling time be distributed as
shown in Table 6-1. This table also gives the recommended minimum sampling rate for each
joint. When the joints are operated below these sampling. rates, the increased error and
roughness will soon become noticeable to the eye.

J O I N T

I I

Z OFSAMPLING TIME MINIMUM SAMPLING RATE
(hd

J O I N T Z OFSAMPLING TIME MINIMUM SAMPLING RATE
(hd

11 17.5 47
22 14.9 40
33 17.8 48

-4-4 15.2 41
5 5 17.1 46 ..

66 17.5 47

17.5
14.9
17.8
15.2
17.1
17.5

47
40
48
41
46
47

Table 6-l: Sampling Rate Recommendations

[VII.52 J

& : 2.6
a
V

-2.5

Ill1 III1 II I l Ill l I

TltIE (HILLISEC)

Figure 6-6: Effect of Sampling Rate 011 Joint 81 Error

WIPL INC RRTE ‘(HZ)

Figure 6.7A: Effect of Samplhg Rate OII RMS Error

28

I I ‘I I I I I. I III I I III I I

30 40 60 66

SRMPLINC RATE, 0

Figure 6-7B: Effect of Sampling Rate OII Normalized RMS Error

[VII.55]

..76E-01

0.6E-ml

0: ZSC-01

0

1111. I III III1 I II I

10 58

SRIPL ING RATE (HZ)

78

Figure 6.7C: Effect of Sampling Rate OII Normalized RMS Error - Expanded Scale

[VII.561 . ’

VII. CONCLUSIONS

The discrete z transform transfer function was computed for the joints of the Stanford robot
arm using both a classical model and a state space model. Several measurement techniques
were then devised for measuring and tabulating the parameters of the transfer function for

. * each joint.

The sensitivity of the present control system to variations in ‘inertia and sampling rate was
demonstrated and recommendations were made to reduce these sensitivities. The suggestion

* was made that the feedback gains should be adjusted to maintain the same s-plane po!e

locations whenever the sampling rate is changed.

It was shown that the sampling rate of the joints can be decreased at the expense of reduced
speed of response, increased sensitivity to disturbances and to parameter variations, and
increased roughness due to the larger discrete steps in the digital to analog converter output
signal. It was noted that the additional roughness and reduced response speed were not
significant at reasonable sampling frequencies. The increased sensitivity to disturbances and
to parameter variations was significant and was the limiting factor governing the minimum
effective sampling rate. Plots were made showing the error in each .of the joints as a function
of sampling rate. From these plots, recommendations were made concerning the relative
sensitivity of each of the joints to sampling rate and the minimum effective sampling rate of
each joint;

[VII.57]
-

VIII. REFERENCES

[BE] Bejczy, A.K., Robot Arm Dynamics and Control, Technical Memorandum 33-669, pp.
48-64, Jet Propulsion Laboratory, Pasadena, Ca., February 15,1974.

[CA] Cadzow, J.A. and H.R. Martens, Discrete-Time and Computer Control Systems, Prentice
Hall, Inc., Englewood Cliffs, N. J., pp. 55-57 and pp. lOO- 104, 1970.

[CHJ Chen, CT., Introduction to Linear System Theory, I-Jolt, Rinehart & Winston, Inc., New
York, 1970.

[FR] Franklin, C.F. and J.D. Powell, Digital Control, Notes .prepal’ed for EE207, Stanford
. University, Stanford, Ca., Winter 1976.

[GO],Gopinath, B., On the Control of Linear Multiple Input-Output Systems,’ Bell System
Technical Journal, vol. 50, pp. 1063-1081, March 1971.

([KA] Katz, P., Selection of Sampling Rate fog Digital Control of Aircrafts, SUDAAR Report
No. 486, Stanford University, Dept. of Aeronautics and Astronautics, Stanford, Ca.,
September 1974.

LOCI Ogata, K., Modern Control Engineering, Prentice Hall, Inc., Englewood Cliffs, NJ., pp.
228-239 and pp. 384-387, 1970.

[ROI Roderick, M. D., Discrete Coytrol of a Robot Arm, Engineers Thesis, Electrical
Engineering Department, Stanford University, Stanford, Ca., July 1976.

VIII. POINTY USER MANUAL

M. Shahid Mujtoba

Artificial Intelligence Laboratory
Computer Science Department

Stanford University

The author is a graduate student in the Industrial Engineering Department,

[VIII.1]

AN INTERACTIVE SESSION USING POINTY

POINTY is a program that helps to generate an affixment structure of frames as described

in the AL manual [AI Memo-243, AL, A Programming Sytem JOY Automation, by Raphael
Finkel, Russell Taylor, Robert Belles, Richard Paul and Jerome Feldman, November 19741.

The user is relieved of two burdens:

(1) The tedium of measuring the locations of workspace features in three
dimensions with a ruler and protractor by simply pointing to those

locations with the manipulator.

(2) The mental gymnastics involved in determining the frames and transes
from the physical measurements by using POINTY as a sort of “desk

calculator.

POINTY was designed by Russell Taylor and David Grossman and is described in A I
Memo-274, interactive Generation of Object Modds with a Manipulator, December 1975, and

has been jmplemented on both the Yellow and Blue Arms at Stanford.

At this stage POINTY is used to generate affixment structures of the world model used in
AL programs. Since AL has been implemented on the Blue Arm, the following directions
are for use of POINTY on the Blue Arm. (The Yellow Arm runs on the PDP-IO under

[VIII.2]

WAVE.) In the explanations, bold type (e.g. R 11TTY) represents characters typed by the
user, while italicized type (e.g. CORE) represent response by the system.

After logging in at a III or a DD terminal, the first thing to do is to load the PDP-11 with
. the servo program to read joint angles, etc. using the following sequence of commands:

.R 1lTTY <CR,

’ This Fads 1 ITTY which is a program that loads other programs into the PDP-11. 1lTTY
when loaded responds with an asterisk for further instructions.

~ZEROCORE/CONFIRM/<CR>
*GET SAV FILE - DlAG[HAL,HE]*CR,
&TART AT (DFOR DDT)- BCR,

On the VT05 (the DIGITAL terminal with the ‘ti&zd glass in front of the screen) type

W SALT, G
. ’

You should see continuous scanning of the VT05 screen as follows:

‘JTI JT2 JT3 JT4 JT5 JT6 HAND
‘179.99 -89.86 13.99 -89.82 89.86 .08 1.99

-1126 -61 ,965 627 -1241 -35 -159

x .Y Z 0 ,A T
43.57 16.87 10.89 89.91 89.64 .OO

. JT 1 through 6 except 3 represent joint angles in degrees. JT 3 gives the reading of the
boom cxt&wion in inches; the hand opening is given in inches. The second row of numbers
represent the A/D readings. X Y 2 0 A T represent the x,y,r coordinates and the
oriimtation of the hand.

If at any time you accidentaNy hit one of the other keys of the VT05 and scanning stops, it
can be started again by the W <ALT> G sequence.

If the VT05 does not respond as described, do the following at the PDP-11 console:

- Press HALT
Set SiNitch Register to octal 0
Press LOAD ADO
Set Switch Register to o&l 1
Press DE?
Prem RUN
Go back to VT05 and do the W<alt>G sequence again

. [VIII.3]

When the VT05 is running along happily, 1 ITTY must be killed by hitting the CALL key
on the terminal. Then type

.RU POINTY[HAL,HE]

System will respond with (in the following italics represent response of the system)

BAIL is yout command scanner.
BAIL WY. 6- Jun-76 using POiNTY.BAI/HAL,HEJ
End of BAIL initialization.
4 2 0 7 OUTSTR(“BAIL is your command scanner?);

,-BAIL;
1:

POINTY is now ready to accept commands through BAIL. Release all the brakes of the
arm and move the hand to the reference point (called fiducial point). Grab the fiducial point
between the fingers, then reset the brakes. The hand co-ordinates will be shown on the
VT05. We are ready to give the first command to POINTY

DEFFID;<CR>
Note that the semi-colon must be typed in. This instruction will define the position of the
fiducial point in world coordinates. Note that the co-ordinates of ARM and FIDUCIAL are
the same on the table. The last three co-ordinates of the transform represent the location of
the hand co-ordinates while the first three represent the orientation information in degrees
(0 A T X Y 2). Do not move the arm until the system responds with

1.

Relcu;’ all the brakes again and grab the pointer in the hand, and reposition the hand so
that the tip of the pointer is now pointing to the fiducial point.

ATFID;<CR>
This defines the relationship between the pointer and the arm in terms of the relative
position between them. Note that the TR of POINTER is no longer (O,O,O,O,O,O). The
transform of POINTER is with respect to arm. If POINTER were made independent of the .
affixment structure at this point, its co-ordinates would be those of FIDUCIAL. To verify
this do the following:

1: APUSH(ABSLOC(“POINTER”));42’
This pushes th& absolute value of the pointer on the arithmetic stack “A:“, which is the
default arithmetic stack at initialization. To select stack “B.:” instead you could have done
instead:

1; ’ APUSH(ABSLOC(“POINTER”),“B:“);<CR~
Verify that this value is the same as that of FIDUCIAL on the display screen.

You should note that merely moving ,the arm does not update the value of ARM in the
affixment structure, until an explicit instruction has been given to do so. The routine that ~
does this is READARM; and can be called directly by you. Certain other instructions (like
POINTIT; and CRABBIT; described below) also call READARM, so in those cases you
need not call it explicitly.

[VIII.4]

Let us now find the location of the base of the pneumatic vise, and the coordinates of the
jaws with respect to the base. First, we will arbitrarily choose the corner of the base plate
closest to the top left hand corner of the table as we face the blue arm as the origin of our
co-ordinate system translated in world co-ordinates without any rotation. Release the brakes
again and point the end of the pointer to the base point of the base plate, making sure that
the pointer does not bend or deform in the process.

POINTIT;<CR>
The Transformation of the base plate origin appears on the A: stack. This instruction is
equivalent to the two instructions

READARM;GR,
APUSH(ABSLOC(“POINTER”));<CR,

We could have done POINTIT(“A:“); or POINTIT(“B:“); to put the frames into the
appropriate arithmetic stack. Note that the orientation of the vectors are non-zero. Let us
edit the values so that they are zero, since we want _the origin of the base plate to be merely
translated without being rotated. We know that the pointer is pointing to the origin of the
base plate. Let us define a new node called “BASE-PLATE”.

I:
MK,NODE(“BASE-PLATE”);<CR>

Push the transform of the pointer on top of the B: stack.
J: .

,

APUSH(ABSLOC(“POINTERf’),“B:“);<CRp
Note that there are two arithmetic stacks A: and B: and the default stack is the last used
stack; initialization makes the A: stack the default stack initially.

I:
Let us change the orientation of the value at the pointer by changing the value of the top
element of the B: stack

TEOlT;<CR,
Computer responds with

1:
APUSH(TR(156,132,-l 02,-.030,49.3,.20),“B:“);

Edit the first three values to make them zeros
1:

APUSH(TR(0, 0, 0, -.030,4 9.3,. 20),“B:“);<CR>
The new value will appear on top of the B: stack. We want this value to be the value of

BASE-PLATE;
1:

ABSSET;<CR>
-I:

Let us now define a point on the vise, say the outer jaw of the vise. The z-axis points in the ’
direction opposite to the world co-ordinate z-axis, and the x-axis is 45 deg from world
coordinates.

Point the pointer to the corner of the outer jaw.
POINTIT;<CR>

. [VIII.5]

1:
Now point the pointer to a point vertically below the previous point - this is equivalent to
pointing to a point on the z-axis.

. POINTIT;<CR>
1:

Point the pointer to a point on the face of the vise (a point on the x-z plane).
POINTIT;<CR>

1:
Using the x,y,z position information of the last three transforms (ignoring the 0 A T values)
construct a transform giving the location and orientation of the outer jaw.

CONSTRlJCT;<CR>
1:

Define a new node “OUTER-JAW”
MK,NOOE(“OUTER-J AW”);<CR>

1:
ABSSET(“OUTER,JAW”);<CR, -

This sets the value of the transform on the arithmetic stack as the absolute lckation of
OUTER-JAW. We know that OUTER-JAW is fixed rigidly to BASE-PLATE, so let us
define it as such. Set “BASE-PLATE” on the “D:” stack (the DAD stack).

I:
CPU&(x(“BASE-PLATE”),“D:“);<CR>

I:
RIGID;cCR>

Note the asterisk which marks OUTER--JAW as rigidly connected to BASE-PLATE. A “+”
indicates non-rigid affixment, while a “-” indicates independent affixment. Be very careful

of rigid affixments - when one of the members of a rigid affixment is changed, the other is
affected too. In the above example, had OUTER-JAW been rigidly affixed to
BASE-PLATE before the ABSSET instruction, the execution of the latter would have
changed the value of BASE-PLATE since the affixment structure would have updated
BASE-PLATE on the basis of the relative transform set up when RIGID was invoked.

1:
Let us now define another point at the other end of the jaw; by measurement, we find that it .
is 8 inches along the x axis and 0.5 inches along the z-axis of “OUTER-JAW”; First we
define the transformation we want

APUSH(TR(0, 0, 0, 8, O,O.S),“B:“);GR,
1: I

Define a new node called “OUTER-JAWZ’
MK,NO;DE(“OUTER-JAW 2”);4+

1:
GOSON(“O:“);<CR,

Cursor D: is now at OUTER-JAW

1:
RIGID;<CR>

This connects OUTER-JAW2 RIGIDLY to OUTER-JAW. However, the transform
assumes that OUTER-JAW2 was at the origin. Let us set the value of the top of the B:

[YIILG]

stack as the relative location of OUTER-JAW%
I:

RELSET(“OUTER-J AW 2”);cCRa
We now have a lot of garbage on the Arithmetic Stacks; let us get rid of them, starting with
stack B:

I:
APOP;<CRp

This pops the top element off the stack. Keep on doing this until there are no more elements
on the B: stack.

1:
Now start emptying the A:stack

APDP(“A:“);<CR,
’ After this keep on doing APOP; if at any time just after popping you decide you really
want the value, type OOPS; and the value will be retrieved; however, if instead of APOP
you say AFLUSH; you won’t be able to get the value again by saying OOPS;

I:
Let us now define the center of the outer jaw and call it “OUTER-JAW-C” and join’ it
rigidly to BASE-PLATE. The following operations will do the trick.

MK,NODE(“OUTER-J AW,C”);<CR,
I:

APUSH(TR(0,0,0,4,0,.25),“A:“);<CR~ ’
1:

RIGID;<CR>
1:

RELSET;<CR>
1:

GODAD(“D?&CR~
- I:

This has been done by rigidly affixing OUTER-JAW-C to OUTER-JAW and defining its
relative position and then reaffixing it rigidly to BASE-PLATE.

Having done enough editing for one day, let us save the model in an AL-FILE an! in a
P-FILE. An AL-FILE will contain the model’of the affixment in terms of AL declarations
for future use with AL programs. A P-FILE will contain instructions to generate a model

. which POINTY understands. Note that POINTY’ cannot understand the affixment
structure in terms of AL declarations. It can only understand the type of instructions we
have been using here.

To clean things up before saving what we want, let us move the “D:” pointer to WORLD,
and “N:” pointer to BASE-PLATE. The final cursor of aN:” and “D:” referenced before
saving will point to the node to be saved.

1:
GODAD;<CR>

-. repeatedly untli D: points to “WORLD”. Then do

. (VIII.7)

1:
GODAD(“N:“);<CR>

and if necessary CODAD; repeatedly until N: points to BASE-PLATE
1:

NOhiRl&CR> .

.

This will affix BASE-PLATE non-rigidly to the world.
(1:

AL,WRITE<CR>
Computer responds with

OUTPUT FILE (NULL TO FORGET JT)-
Type in desired filename (say VISE.AL). Note that this filename will appear on the display.
The file remains open for future input to it unless it is explicitly closed as in the following
instruction, or until EXIT; is typed. Other nodes can be dumped in AL declaration format
by -moving the ‘N:” or “D:” cursor to the relevant node before typing AL-WRITE;. Note that
only one AL-FILE can be open at any one time. If an AL-FILE is open the computer will
not respond with the OUTPUT FILE (NULL’ TO FORGET IT) = prompt. If AL
declarations are to be saved in more than one file, the files have to be opened and closed

one at a time.
I:

AL,CLOSE;<CR>
This instruction has the effect of closing the output file. Computer responds with

CLOSING VISE-AL
I:

PSAVE;<CR,
Computer responds with

OUTPUT FILE (NULL TO FORGET IT)=,
Type in desired filename (let’s call it V1SE.P). Instructions to generate the affixment
structure connected to the node pointed to by “N:” cursor will be dumped out.

1:
Let’s call it a day and quit.

EXIT;<CR>
End of SAIL execution

Note that this instruction automatically closes any files that are open. If &ONTROL>C or
CALL had been hit on the keyboard, any files would .be lost, so be careful if you do not
want to lose your data. Note that if N: had been pointing to WORLD before we had asked
for PSAVE or AL-WRITE, everything would have been saved, including the ARM,
FIDUCIAL and POINTER transformations, which we are not really interested in.

The last instruction that we typed in gives us back to the monitor again, so let us look at the
AL-FILE and the P-FILE that we have generated. To do this we type

.ETV VISE.AL<CR>
The monitor will respond with .

NEED TO REFORMAT VISEAL. OK?(Y OR N)
to which you should respond Y.

[VIII.8]

Examination of VISE.AL will show that it consists of FRAME Declarations and
transformations and affixment relations of OUTER-JAW, OUTER-JAW-Z, and

’ OUTER-JAW-C and BASE-PLATE. Examination of VISE.P in a similar manner will
show a set of POINTY instructions. You can use the text editor to modify or add
instructions if you like, so long as you make sure the arguments are in the right places.

Suppose we want to continue and start over again the next day. Go through the whole
process from the beginning up to and including RU POINTY, and wait till POINTY, after

. initializing, prompts:
1:

DSKIN(YISE.P”);4ZR>
POINTY will then read in the state of the world as we read it in previously into VISE.P;
affixment structures for BASE-PLATE with OUTER-JAW, OUTER-JA WZ, and
OUTER-JAW-C will then appear. We now redefine the positions of the FIDUCIAL and

POIfiTER with instructions similar to what we used before.
I:

DEFFID;<CR,
1:

ATFID;<CR>
I:

The BASE-PLATE location has shifted since the last time we used it, so let’s redefine the
location. (Looking at the location, we see that it has shifted 4.5 inches in the -y direction.)

Release the brakes, and point the pointer to the origin.
POINTIT;<CR>

I:
Move the pointer to a point on the Z-axis and then type POINTIT, and then. move the
pointer to a point in the XZ-plane and type POINTIT, again.

POlNTIT;~CR~
1:

POINTIT;<CR> .
, I:

Let’s now construct the trans of the origin.

CONSTRUCT+CR>
I: * -

Let’s now define the position of the screwdriver. It is sitting on the BASE-PLATE, and by
grabb,ing it, we want to be able to define its position. Release the brakes again, and move the

arm to the screwdriver and grab the screwdriver between the fingers.

GRABBIT;<CR>
-J:

MK,NODE(“DRIVER”);<CR>
I:

ABSSET(“DRIVER”);<CR>
An alternate way of doing the same thing without releasing the brakes is to go through the
following sequence

I:-. FREE;<CR>

[VIII.9]
. .-

This frees the joints and enables you to move the arm around for five seconds - after
moving the arm around to the location you want it, you should press the BLACK
BUTTON on, the control box to apply the brakes. This feature is not supported yet.

1 : HERE(“DRIVER”);<CR>
Let’s try it but without the FREE, and call the new position DRIVER2

I:
HERE{ “DRIVER2”)j<CR>

Note that the values of DRIVER and DRIVER2 are the same. It’s uncomfortable to have
two of the same node around, so let’s kill DRIVER. First we have to get to DRIVER. Note
that DRIVER is the elder brother of DRIVER2 (just below it), so we have to go there first.

I: .
- ELDER;<CR>

Cuisor N: has now shifted to DRIVER;
1: -

KILL;<CR>
This kill’s node DRIVER. Now we have a node DRIVER2 without DRIVER, so let us
rename DRIVER2 as DRIVER, first making sure that “N:” is pointing to DRIVER2.

1:
NAME,NODE(“DRIVER”);<CR, a

We know that “DRIVER” is non-rigidly fixed to BASE-PLATE, and we want to show this
on the ‘affixment structure.

1:
CPUSH(A(“BASE-PLATE”),“D:“);cCR>

1 :
NONRIGID+CR>

DRIVER is now the youngest son of BASE-PLATE. Suppose we now want to put “N:” at
qIDUCIAL. One way to do it would be to do a GODAD, followed by ELDER; Another
way, ii WC want to do this pretty often is to define a MACRO (call it UNCLE).

1:
MDEF(“UNCLE”);4ZR~

Computer responds with
TYPE IN MACRO BODY.(*AtT s.WHEff DONE):

So we type In
GODAD; ELDER+ALTj -

-UNCLE DEFINED.
1:

Let us call UNCLE to verify that it works.
MCALL(“UNCLE”);4ZR,

“N:” jumps to FIDUCIAL, thus verifying that UNCLE works. Let us redefine the macro so
that UNCLE means to go to younger brother rather than elder brother.

1:
MDEF;<CR,

Without any arguments in MDEF, the default is the last referenced macro, namely
“UNCLE”.

TYPE IN MACRO BODY,(+!tT, WHEN DONE): .
,

.

[VIII.IO]

GODAD; ELDER;
Change ELDER to YOUNGER and type <ALT>

GODAD; YOUNGER; <ALT>
-DEFINED.

I:
Let us save this macro in a file called V1SE.M

MSAVE(“UNCLE”);<CR>
OUTPUT FILEtNULL TO FORGET IT)=

VISE.M<CR>
SAVING UNCLE TO V1SE.M

Note that MSAVE uses the current P-FILE if one is open.
I:

PSAVE;<CR>
This saves BASE-PLATE on V1SE.M too;

I:
AL,WRITE;<CR>

To save the affixment structure in High level Al code.
OUTPUT FILEtNULL TO FORGET lT)=

VISE.AL3<CR>
I:

EXIT;<CR>
End of SAIL execution

End of session. The two files that are open will be automatically closed. On our next session
D S K I N (“V1SE.M”) will define both UNCLE and BASE-PLATE.

, [VIII.Ii]

POINTYCOMMAND SUMMARY

INTRODUCTORY INFORMATION ,

There are three arithmetic stacks, two of them being used for arithmetic operations, and the

s third for storing things that are popped off the first two in case at some future time you

decide that’ you didn’t really mean to pop what you did. There are seven cursor stacks and

the variable which contains the the pointer of the top element begins with the prefix CUR.
We will mostly be cdncerned with the N stack and the D stack - the N stack acts as a general

working register while the D stack is used together with the N in making affixments.

Any of the procedures after the DECLARATIONS section may be called by typing out the
procedure name with the relevant parameters, and a semi-colon followed by a carriage
return. The type of procedure is given as a matter of record for the advanced programmer.

The following sections of the command summary are arranged in the following order:

DESCRIPTION OF TERMS USED IN ARGUMENTS OF PROCEDURES
DECLARATIONS
NODE MANIPULATION
AFFIXMENT
MACRO DEFINITION AND MANIPULATION
A R IT H M ET I C

ARITHMETIC STACK OPERATIONS
CONNECTION OF AFFIXMENT STRUCTURE TO ARITHMETIC STACKS
ARM READING
ARM MOVEMENT
FILE INPUT OUTPUT
SPECIAL PARAMETERS
EXIT

.DESCRIPTION OF TERMS USED IN ARGUMENTS OF PROCEDURES

The term in the parentheses, usually called NULL below, contains the default argument.

STRING STKID(NULL)
This is the name-of the arithmetic stack used, and STKID + “A:” or “B:“. If no argument is

given, the default stack is the last referenced stack. Initialization makes “A:” the default stack.
.

S T R I N G CID(NULL) ’
This is the name of the cursor stack used, and CID+ “N:“,“D:“,“P:“,“R:“, “M:“,“T:“, or “K:“. If
no argument is given, the default stack is the last referenced stack. Don’t forget the colon “:*

[VIII.IZ]
s

in both’STKID and CID.

STRING NDSPC(NULL) or STRING NDSPC(“N:“)
Here the print name of the node or frame must be given in quotation marks, e.g.,
“VISE-JAW”. If no argument is given, the default string is taken from the N stack, except

in the case of procedure X.

RPTR(NODE) VAL
This could be a procedure which generates a pointer to a node, or a pointer to a desired
node. e.g. CTOP, x(“NODE”) or CURNODE.

OPND
This is a type of data structure and members of the arithmetic stack are of this nature.
XFELT, VECTOR, and SCALAR are all OPNDs.

Each member of the affixment structure is called a node, and its print name is the name we
give the node. The elements of cursor stacks are nodes. The cursor top elements are also
contained in the variables defined with the colon, e.g., “N:“. The identifiers beginning with

CUR are pointers to the top elements of cursor stacks. The actual names of the stacks in
POINTY begin with 8, e.g. the A stack is called #ASTACK, and the N stack is called

JCCURNODE, but when referenced by the user “N:” is considered to be the name of the
stack.

Suppose we have a node called VISE-JAW which is the top element of the N stack, and its
;qbsolute location is on the t6p of the A stack. Then

The print name of the node is “VISE-JAW”.
“N:” 8 “VISE-JAW”
CURNODE 8 X(“N:“) = X(“VISE-JAW”)
A BSLOC(“N:“) l ATOP(“A:“)

where m indicates that both sides of the equation have the same value. Thus,
CPUSH(CURNODE), CPUSH(x(“N:“) and CPUSH(X(“VISE-JA W”)) will all have the same
effect.

DECLARATIONS

This section gives a list of declarations made in POINTY and can be skipped for a first

reading without much loss of understanding.

RCLASS NODE(STRING PNAME;RANY DAD,SON,EBRO,YBRO;
INTEGER HOWLINKED; REAL ARRAY X.F);

This is the definition of a record called NODE, showing the fields associated in the record,
-. including the name of the node, information it has on any ancestor or son or elder or

[VIII.13]

younger brother, how it is linked, and an array giving the transformation.

These are the cursor stack declarations: . .

DCLSTK(CURNODE,NODE,4,“N:“);
DCLSTK(CURDAD ,NODE,4,“D:“);
DCLSTK(CURPATH,NODE,q”P:“);

DCLSTK(CURREF ,NODE,4,“R:“);
DCLSTK(CURMOVE,NODE,4,“M:“);
DCLSTK(CURTREE,NODE,4,“T:“);
DCLSTK(CURKILL,NODE,4,“K:“);

general working register;
where subparts are to be affixed;
current name recognition subtree; ’

currbt reference frame for motion;
current motion frame;

current base node for display of tree;
magical kill stack;

These are the arithmetic stack declarations:

DCLSTK(ASTACK,OPND, l.OO,“A:“);
DCLSTK(BSTACK,OPND, 100,“B:“);
DCLSTK(OSTACK,OPND, 100,“O:“);

-operand stack;
operand stack;
“oops” stack;

These are the stack indicator declarations:

RPTR(STACK) LASTCURSOR;
RPTR(STACK) LASTARITH;
RPTR(STACK) LASTSTACK;

last cursor operated on;
last arithmetic stack operated on;
last stack operated on;

These are the definitions of types:

DEFINE CURSORS “[I”
=[!?CURNODE,SCURDAD,BCUR~ATH,BCURREF,
SCURMOVE,SCURKILL,SCURTREE];.

DEFINE OPND “[I” = [XFELT,VECTOR,SCALAR];
DEFINE ARITHS “[3” = [SASTACK,SBSTACK,SOSTACK];

NODE MANIPULATION COMMANDS

RPTR(NODE) PROCEDURE x(STRING NDSPC(NULL));
Pointer of node name stored in NDSPC. If the name is a cursor name, returns top of that
cursor stack. A null argument will give the same pointer given by the previous call of X.
Note that the last node returned by X appears on the display.

RPTR(NODE) PROCEDURE CITH(INTEGER I(O);STRING CID{ NULL));
Returns the pointer to the ith element on the appropriate cursot stack. This instruction is

useful when the element of interest is not on the top of the stack, and you do not want to
upset the stack. Thus CITH(2,“N:“) refers to the element labelled 2: in the N stack.

[VIII.14]

RPTR(NODE) PROCEDURE CPUSH(RPTRINODE) VAL;STRING CID(NULL));
Pushes the pointer pointing to the desired node VAL into the appropriate cursor st,ack.

RPTR(NODE) PROCEDURE CPOP(STRING CID{ NULL));
Pops the appropriate cursor stack.

RPTR(NODE) PROCEDURE CTOP(STRING CID{ NULL));
Gets the top element of the appropriate cursor stack.

RPTR(NODE) PROCEDURE CROLLUP(STRlNG CID(NULL));
Rolls up all the elements of the appropriate cursor stack cyclically so that the top element
goes to the bottom and the rest of the elements are pushed up one place.

RPTR(NODE) PROCEDURE CROLLDOWN(STRlNG CID(NULL));
Rolls down all the elements of the appropriate cursor stack cyclically so that the bottom I

element goes to the top and the rest of the elements are pushed down one place.

PROCEDURE CEXCH(STRlNG CID(NULL));
Exchange the two top elements of the appropriate cursor stack.

.

AFFIXMENT COMMANDS

PROCEDURE MKJUODE(STRING ID);
Defines a new node whose name is given by ID.

PROCEDURE COPY,NODE(STRING NDSPC(“N:“));
Produces another node (a copy) on the N stack with the name given in NDSPC.

PROCEDME NMAE,NO~E(STR~NG ID);
. Renames’ top node of N stack to the name specified in NDSPC.

PROCEDURE KILL{ STRING NDSPC(“N:“));
Kills the node named by NDSPC.

PROCEDURE UNKILL;
Retrieves the last killed node. Actually, it retrieves the node on the top of the K cursor stack.

PROCEDURE RIGID;
Attaches the node pointed to by N as a son of node pointed to by D rigidly. Represented by

* s i g n .

(VIII.15]

PROCEDURE NONRIGID;
Attaches the node pointed to by N: as a son of node pointed to by D: non-rigidly.
Represented by + sign.

PROCEDURE INDEPENDENT;
Attaches the node pointed to by N: as a son of node pointed to by D: independently.
Represented by - sign.

PROCEDURE MERGE;
Merges the nodes pointed to by N: and D: cursors.

PROCEDURE GOSON(STRING Cl@ NULL));
The cursor goes to the son of the present node pointed to.

PROCEDURE GODAD(STRING CID(NULL)); -
The cursor goes to the dad of the present node pointed to.

PROCEDURE ELDER{ STRING CID(NULL));
Goes to the node just below (not above) the present one if the next node is at the same level
(i.e. is an elder brother), otherwise goes to a dummy node and the cursor will point to
<empty>.

PROCEDURE YOUNGER(STRING CID(NULL));
Goes to the node just above (not below) the present one if there is one at the same level,
otherwise goes to a dummy node and the cursor will point to <empty>.

MACRO DEFINITION AND MANIPULATION COMMANDS

The macro facility available is a primitive one and requires that parameters be stored on a
macro parameter list.

INTEGER MPTOP; STRING ARRAY MPS[O:lOO);
MPTOP contains the position of the last parameter (last element) pushed into the macro
parameter list, which is one less than the total number of parameters used since the
parameter list begins at MPS(0). The maximum stack size of the macro parameter list is
arbitrarily set to 100 at present.

PROCEDURE MDEF(STRING lD(NULL));
PROCEDURE MDEFQ(STRING ID, BODY);

Define a macro whose name is referred to as ID if there isn’t one with that name present, or
redefines the macro if it already exists - the default (in case no argument is included) is the
last macro referertnced. The first allows the macro text to be typed in instruction by

.

[+III.l6]

instructign,the second enables the whole macro to be typed in and defined In the same line.
There are some useful macro defintions on MACROS[PNT,RHTl

PROCEDURE MCALL(STRING ID(NULL)); .
Expands and executes the macro referred to as ID.

PROCEDURE MPUSH(STRlNG PARAM);
, Pushes the string PARAM on the macro parameter stack. ,

STRING PROCEDURES MPO,MPl ,MP2,MP3;
Special procedures to return the top, Znd, 3rd and 4th elements on the macro parameter
stack.

(STRING PROCEDURE MPGET(iNTEGER I);
Get the Ith parameter on the macro parameter list, which is actually stored in MPS[MPTOP
- I]. If I - 0 means the top of the parameter stack.

STRING PROCEDURE PROMPT(STRING S);
This procedure will output string S as a message and will return INCHWL (i.e. wait for a
string to be typed at the terminal followed by a <CR>).

RECURSIVE PROCEDURE BCALL(STRING S 1 (NULL),S2(NULL));
This procedure will output string Sl as a message and will accept a line of text S2 which it
interprets and executes. If S2 finishes with !!GO; execution will resume where it left off,
otherwise BAIL will prompt for more input. In that case, type EGO or <ALT>G to proceed.

Suppose we want to define a macro to construct the frame of a point but giving the user
helpful advice in the process. One way of doing it is as follows:

MDEF(“CONSTRUCT-FRAME”);
BCALL(“POINT AT ORIGIN”); POINTIT;
BCALL(“POINT AT 2 AXIS”); POINTIT;
BCALL(“POINT AT .X-Z PLANE”); POINTIT;
C O N S T R U C T ;
MK,NODE(PRQMPT(“NODE NAME - “));
A B S S E T ;
CPUSH(x(PROMPT(“DAD = “),“D:“);
@CALL(NULL,PROMPT(“AFFIXMENT - “)&“;!!GO”);
APOP;
<ALT>

An MCALL(“CONSTRUCTlRAME”); will wait for three prompts which must be replied
to by !?GO or <ALT>G after telling where to point the pointer, and push the transforms
into the arithmetic stack and then generate one transformation from these frames. Then
there will be prompts for the node name, where it is to be affixed to and how it is to be
affixed, and then then the frame is popped from the arithmetic stack. The <ALT> is

[VII1.17]

prompted for by the computer to end the macro definition.

The following example in which the nodes to which two cursors point have their pointers
changed and illustrate the use of macro parameters.

MDEF(“EXCHANGE-POINTERS”);
CPUSH(xtMPO),MPl);
CROLLUP;
CPOP(MPO);
CPUSH(x(MP 1),MPO);
CPOP(MP1);
CROLLDOWN;
MPTOPtMPTOP-2;
<ALT>

A sample calling sequence to this macro would be as-follows:
MPUSH(“N:“);
MPUSH(“0:“);
MCALL(“EXCHANGE,POINTERS”);

This macro call will have the effect of changing the elements pointed to by D. and N with
each other. At the end of the execution, the macro parameter list will be popped.

ARITHMETIC COMMANDS

RPTR(XFELT) TR(REAL W,PH,TH,X,Y,Z);
Defines a trans which may be used as the first argument of APUSH. Note that XFELT is
an OPND.

RPTR(VECTOR) PROCEDURE VE(REAL X,Y,Z);
Defines a vector with components x,y,t

RPTR(SCALAR) PROCEDURE SC(REAL VAL);
Defines a new scalar and pushes it on the top of the current arithmetic stack.

REAL PROCEDURE VMAGN(RPTR(VECTOR) VI;
Returns the magnitude of vector V).

RPTR(VECTOR) PROCEDURE VADD(RPTR(VECTOR) Vl,V2);
Returns a new vector which is the sum of the vectors V l+V2.

RPTR(VECTOR) PROCEDURE VSUB(RPTR(VECTOR) V 1 J/2);
Returns a new vector which is the difference of the vectors V I-V2.

[VIII.18]

I liPTR(VECTOR) PRdCEDURE NORM(RPTR(VECTOR) V);
Returns a new vector whose components are those of V but rormalited so that the
magnitude is 1.

RPTR(VECTOR) PROCEDURE VCROSS(RPTR(VECTOR) Vl,VZ);
Returns a new vector which is the cross-product V 1 x V2.

REAL PROCEDURE VDOT(RPTR(VECTOR) V 1 ,V2);;
Returns the scalar dot product of vectors V 1 and V2.

RPTR(XFELT) PROCEDURE VVVTRANS(RPTR(VECTOR) A,B,C);
This creates a trans with origin at A, z-axis through B, x-t plane through C.
CONSTRUCT makes use of this procedure by making using of the x,y and t coordinates of
the three transes on the top of the appropriate arithmetic stack, popping them, and pushing
the result on the top of the stack.

Note that no special commands for arithmetic operations on scalars have been defined, since
BAIL is able to do routine arithmetic computations. To find the value of an arithmeiic ,
expression, simply type the expression followed by a “;” and a carriage return, and the value
will be given.

i

ARITHMETIC STACK OPERATIONS

RPTR(OPND) PROCEDURE AITH(INTEGER l(O);STRING STKID(NULL));
This is a reference to elements in the appropriate arithmetic stack when the element is not at
the top of the stack. AITH(2,“A:“) refers to the element labelled 2: in the A stack. Note that
the argument refers to the current position in the stack, and that this prodecure does not
alter the stack in any way. An example on its use as as follows: .

APUSH(AITH(S”B:“),“A:“);
This has the effect of pushing the. element labelled 2: in the B stack onto the top of the A
stack.

RPTR(OPND) PROCEDURE APUSH(RPTR(OPND) VAL;STRING STKID(NULL));
This pushes the transform given by VAL on the arithmetic stack. Be careful with the first
argument: it is the pointer to an OPND and should be a procedure that generates such a
pointer, e.g. ATOP or TR().

, RPTR(OPND) PROCEDURE APOP(STRING STKID(NULL));
Pops the top element of the appropriate arthmetic stack.

RPTR(OPND) PROCEDURE AFLUSH(STRING STKID(NULL));
-. Like APOP except doesn’t save anything on the 0 stack.

.

[VIII.l9)

RPTR(OPND) PROCEDURE ATOP{ STRING STKID(NULL));
Gets the pointer to the top element of arithmetic stack.

RPTR(OPND) PROCEDURE AROLLUP(STRING STKID(NULL));
Rolls up all the elements of the appropriate arithmetic stack cyclically so that the top element
becomes the bottom element, and the other elements are all shifted one element.

RPTR(OPND) PROCEDURE AROLLDOWN(STRING STKID(NULL));
Rolls down all the elements of the appropriate arithmetic stack* cyclically so that the bottom
element becomes the top element, and the other elements are all shifted down one element.

PROCEDURE AEXCH(STRING STKID(NULL));
Exchange the top two elements of the appropriate arithmetic stack.

.

PROCEDURE TMUL(STRING STKID(NULL)); -
Multiply the top two elements of the appropriate stack and pop them, and push the answer
into the stack.

PROCEDURE TINV(STRING STKID(NULL));
Replace the top element of the appropriate stack with the inverse transform.

PROCEDURE TEDlT(STRING STKID(NULL));
Puts the top element of the appropriate stack into the line editor with the instruction to push
it back onto the stack after editing or correcting.

PROCEDURE OOPS(STRING STKIDf NULL));
Gets back the value of the element we just popped from the appropriate stack.

PROCEDURE CONSTRUCT(STRlNG STKID(NULL));
This constructs an implicit frame from the top three frames on the last arithmetic stack
referenced. The three frames are popped off, and the new implicit frame is pushed on.

PROCEDURE VA{ STRING STKID(NULL));
PROCEDURE VS(STRING STKID(NULL));
PROCEDURE VM(STRING STKID(NULL));
PROCEDURE VC(STRING STKID(NULL));
PROCEDURE NV(STRING STKID(NULL));

- PROCEDURE VD(STRlNG STKID(NULL));
These procedures have the same functions as VADD, VSUB, VMAGN, VCROSS, NORM,
and VDOT respectively, except that the operands are popped off the relevant arithmetic
stack, and the result then pushed into the stack. In the case where two operands are
necessary, V2 corresponds to the top element of the stack, while vl corresponds to the next
element.

[VIII.20]

PROCEDURE PV(STRING STKID(NULL));
, If the top element of the appropriate arithmetic stack is a TR, then it is popped off, and the

position coordinates are left on the top .of the stack. If the top element is not a trans, an error
message is returned.

CO.MMANDS TO CONNECT AFFIXMENT STRUCTURE TO ARITHMETIC STACKS

RPTR(XFELT) PROCEDURE ABSLOC(STRING NDSPC(ON:“));
Absolute location of a node, the default node being the node pointed to by the “N:” cursor.
The argument must be the name of a node that has been previously defined.

RPTR(XFELT) PROCEDURE RELLOC(STRING NlJSPC(“N:“));
Similar to ABSLOC except the relative transform of the node with respect to its parent is
returned.

PROCEDURE ABSSET(STRING NDSPC(“N:“),STKlD(NULL));
Sets absolute location of the appropriate node (default is where N points) as the value on the
top of the appropriate arithmetic stack.

PROCEDURE RELSET(STRING NDSPC(“N:“),STKID(NULL)) j
Sets relative location of the appropriate node (default is where N points) as the value on the
top of the appropriate arithmetic stack.

ARM READING COMMANDS

PROCEDURE READARM; _
Reads the current position of the arm.

PROCEDURE ATFID;
Asserts that the pointer is at fiducial and updates the value of the arm.

- PROCEDURE DEFFID;
Very first step; define fiducial with respect to world. This procedure asserts that the fiducial
is currently at the ARM frame.

PROCEDURE POINTIT(STRING STKID(NULL)); ’
Reads position at the end of the pointer .and pushes it into the appropriate arithmetic stack.

-. STKID is either “A? or “B:“;lower case a or b invalid.

.

/

. [VIII.21]
c

PROCEDURE GRABBIT(STRING STKID(NULL));
Reads position at the finger and pushes it into the appropriate arithmetic stack.

PROCEDURE HERE(STRING NAME);
Defines a new node called NAME and puts the current position of ARM into it.

ARM MOVEMENT COMMANDS

(These do not work on the Blue Arm at present.)

. PROCEDURE GOARM(REAL ARRAY BXF); l

This moves the arm to the 4x4 transformation given by BXF.

PROCEDURE MOVEABS(STRING STKID(NULL));
This moves the frame pointed to by CURMOVE to the frame specified in the arithmetic
stack. With no stack defined the appropriate stack is the last referenced arithmetic stack.

PROCEDURE MOVEREF(STRING STKID(NULL));
This moves the frame pointed to by CURMOVE to the frame specified in the arithmetic
stack assuming that the latter frame is with respect to a co-ordinate system pointed to by
CURREF.

PROCEDURE MOVEREL(STRING STKID(NULL));.
This moves the frame pointed to by CURMOVE by a amount specified on the Arithmetic
Stack assuming that that value is’on a co-ordinate system pointed to by CURREF.

.PROCEDURE FREE;
’ This frees the arm for 5 seconds, during which time the user should move the arm to a

desired location and push the panic button. The absolute frame of the arm is then updated.
’ If instead there is a time-out without the panic button being pushed, nothing happens.

PROCEDURE DMOVE(REAL X,Y,Z);
Move the frame pointed to by CURMOVE differentially by x,y,z in the x,y,t directions
respectively.

PROCEDURE DX(REAL X);
Move the frame pointed to by CURMOVE differentially in the x direction by quantity
specified.

PROCEDURE DY(REAL Y);
Move the frame pointed to by CURMOVE differentially in the y direction by quantity
specified.

PROCEDURE DZ(REAL Z);
Move the frame pointed to by CURMOVE differentially in the L direction by quantity
specified.

FILE INPUT/OUTPUT COMMANDS .

PROCEDURE AL-WRITE;
Dumps into an AL-file in high-level’ Al code the affixment structure pointed to by
CURNODE. *

PROCEDURE AL-CLOSE;
Closes the file containing the AL declarations of the data structures.

PROCEDURE PSAVE(STRING NDSPC(“N:“));
Dumps out all the POINTY instructions necessary to generate the code needed to obtain the
affixment associated with the node NDSPC in case we lose everything carelessly into a P-file
- if there is no P-.file open PSAVE will take the necessary steps to open one; the default
node is the node pointed to by CURNODE.

RECURSIVE PROCEDURE SAVEJODE(RPTR(NODE) ND);
Dumps out into a P-file the affixment tree rooted at node ND.. This routine is called by
PSAVE, which it is more desirable to call. RPTR(NODE) ND can be either of the form
CURNODE, CURDAD,etc or A(“N:“) or A(“N.ODE”).

PROCEDURE P-CLOSE;
Closes the currently open P-file.

RECURSIVE PROCEDURE DSKIN(STRING FlQ;
Reads in and executes POINTY instructions from a disk file FID to generate affixment
structure(s) and set up the macros.

PROCEDURE MSAVE(STRING IMNULL));
Save macro ID onto P-file. If one is not currently open, instructions. to open one will be
given. “s” will dump all the macros. A null argument will dump the last macro referenced.

S P E C I A L P A R A M E T E R S

INTEGER UPDSUPPRESS,TISUPPRESS;
, If UPDSUPPRESS>O then do not display anything. UPDSUPPRESS is incremented by

-.. integer TISUPPRESS at the start of a macro expansion or DSKIN and restored to the

[VIII.23]

previous value upon exit. Thus, setting TISUPPRESScO; will allow you to observe
successive steps in the macro expansion.

BOOLEAN SHOWXFS,SHOWLINKS; ’
These control the display (display if TRUE, suppress if FALSE) of the Transes and the
Link structures of nodes (the last used for debugging purposes) respectively.

’ REAL n;
POINTY knows the value of n to be 3.14 1592653.

h
*

E X I T C O M M A N D,

. PROCEDURE EXl>
Exits from POINTY, and closes any output files that might be open.

ACKNOWLEDGEMENTS

The author would like to express his thanks to Russell Taylor for valuable suggestions
help with POINTY, and to Dave Grossman for editorial help.

and

ix, M O N T E C A R L O S I M U L A T I O N O F T O L E R A N C I N C

David D. Grossman

Artificial Intelligence Laboratory
Computer Science Department

Stanford University

The author is a Research Staff Member in the Computer Science Department, IBM T, J,

WItsaIr Research Center, P. 0. BO X 218, Yorktown Heights, N. Y. 10598. At the time this
research was performed, he was a visiting Research Associate in the Computer Sciellce
Department at Stanford University on sabbatical from IBM.

INTRODUCTION

The assembly of discrete parts is a major fraction Of industrial production. The role of
computers in this field has been limited primarily to production and inventory control,
computer aided design, and programming numerically controlled machine tools. Very little
progress has been made in applying computers to the problem of simulating assembly
processes, in spite of the fact that such simukttion offers the possibility of considerable
savings over the alternative cost of building pilot production tines.

When one examines other large industrial fields one finds that computer simulation .is a
much more widely used tool. There are basically two reasons, however, why this tool has not
been extensively applied in discrete parts assembly. First, because assembly is not a scientific
discipline, experience is formulated as a set of an hoc principles ratF;i than as a
mathematical theory. Although such principles may be set forth in textbooks, it is difficult
to embody them in computer simulations. This situation is in sharp contrast, for example, to
the way differential equations can be used to model Complex chemical processes. The second
reason is that assembly environments Contain an immense variety of dissimilar objects, This
aspect of assembly is in sharp contrast, for instance, to nuclear physics simulations where ali
neutrons behave in the same way.

The only obvious unifying principle in discrete parts assembly is that in 3-dimensional space
no two objects may intersect. This fact suggests a formulation of the simulation problem in
terms of set theory, an approach which is being taken in research on parts description at the

University of Rochester.[2,3,41 Set theoretic representations are good for determining if a
given point is inside a particular set, but performance difficulties arise on problems
involving pairs of sets. For example, the question of whether or not a piston intersects a
motor block is difficult to answer because it is likely to cause a lengthy search for a point
contained in both sets. Compounding this difficulty is the fact that assembly involves
continuous motion of the discrete parts, SO that it is desirable to be able to solve set
intersection problems at every instant of time. The computational algorithms would not be
hard to formulate, but the execution times would be extremely long, even on the fastest
computers in the world. For this reason, simulation of the full assembly process is intractable,
although simulation of special classes of assembly problems is still a practical and achievable
goal.

From among the many aspects of assembly which could conceivably be modeled, this paper
is concerned with the implications of tokrancing and imperfection. In the literature on this

. subject, dimensional tolerancing has Come to mean specifying the tolerances of parts in
mechanical drawings. A national standard has been established which defines the meanings

of tolerancing s mbols in
dl

drawings[53 and textbooks have been written to explain the use of

these sym bds. The emphasis on drawings, however, tends to obscure the underlying
reasons for being concerned with tolerances. The issue is not so much what 3.000-+.005 cm
means but rather wA3, the designer chose to specify this tolerance in the first place.

[1X.2]

There are three factors which enter into specifying tolerances in drawings. First, the discrete
part which is described must ultimately be assembled into a product which is expected to
have some function, and the tolerance may be needed to provide this function. For instance,
it is highly desirable that each chamber of a GoIt revolver align accurately with the barrel.
Secondly, the part may be required to have certain tolerances in order that the assembly
process itself be feasible. For example, in order to assemble an automobile engine, the holes
in the gasket must align with those in the block. Ab, it IS often necessary to have very
accurate parts to avoid jamming vibratory feeders. In fact, it is often necessary to design
higher precision into the assembly process than is functionally needed in the final product.
Finally, tolerances may be assigned to correspond to the capabilities of the manufacturing
method chosen. Tolerances achievable by sheet metal stamping would not be the same as
those achievable on a numerically controlled machine tool, and it would be foolish to assign
tolerances in a drawing which would give unreasonably small yields.

The’ product designer uses his expertise in product design, assembly, and manufacturing to
specify tolerances in the drawing which are both-adequate and achievable. An excellent
textbook has been published which describes the considerations involved in this process. t73

The process is complicated because the design criteria depend on the combined tolerances,
rather than on the tolerances individually. Typically, the designer must trade off between

alternative ways of selecting individual tolerances in order to achieve some resultant
tolerance with minimum cost. Unfortunately, the S-dimensional relationships involved are
usually too tedious to allow a rigorous mathematical treatment in all but the simplest cases.
The designer therefore uses a great deal of intuition in reaching a decision. Finally he writes
down a number like 3.000f.005 cm and throws away all the information which went into thjs

decision.

A recent paper from General Motors describes a system which enables product designers to
specify a set of individual parts tolerances and simulate the stochastic properties of

interesting resultant tolerances. r83 The system is based on the Monte Carlo method, a
simulation technique which is well known and has been widely used in many other

applications. EJI The existence of the GM paper shows that a need exists for simulation tools
in the fjeld of parts tolerancing. The problem of tolerancing is sufficiently hard, and the
stakes are sufficiently high, that infuition is no longer a satisfactory method for specifying
p a r t s t o l e r a n c e s .

The approach taken in the GM work is to provide an interactive system in which the user
can obtain high statistics very quickly. In order to achieve execution speed, the user must
explicitly provide all the equations which tell how the resultant tolerances depend on the
jndividual tolerances. The system models just the positions and orientations of a few features
of the part, rather than the entire part shape. This system is apparently proving quite useful
to GM designers.

Aside from the GM work, the only other published papers relating to modeling parts .
tolerances are those from the University of Rochester, where a language called PADL for

I
-.

.

-
..” ,

(1X.3]

representing a class of discrete parts is being developed.r2’3’4’ The hope is that PADL
descriptions can someday be used to generate programs for numerically controlled machine
tools which can make the parts.

The topic of parts representation without regard to tolerancing has been studied by Binford,

Agin, and Nevatia, [lo,1 1,123 Braid t13’14’ Baumgart ” 5’ 16’ Crossman,[’ ‘IB v
and Lavin.[18Plg1

and Lieberman
Although none of these parts modeling schemes was designed with

tolerancing in mind, both the Baumgart and Grossman approaches offer a natural way of
adding Monte Carlo procedures to simulate tOkranCeS. As the author of one of these papers,
my choice of which of the two systems to use for the current work was highly biased. I chose

.

to use my own system solely because I am much more familiar with it.

Although the balance of this paper describes a specific implementation of Monte Carlo
tolerancing within a parts representation system, many of the issues discussed are
implementation independent. The point of this paper is not simply to give a blueprint for a
specific way of simulating tolerances but rather to show that such a system is possible, to
expose some of the design issues, and to give examples of ways in which the system might be
used.

The simulation method described in this paper most closely resembles that of the GM paper,
but there are several major differences. Whereas the CM system computes the resultalIt
tolerances of individual parts from tolerances specified in mechanical drawings, the current
work is much more comprehensive. It allows one tp simulate the propagation of tolerances all
the way from the manufacturing process right through the assembly process. Also, while the
CM work requires that the user explicitly Supply formulas for the resultant tolerances as
functions of the individual tolerances, the current work provides system routines which
automatically perform these sorts of operations numerically. This provision is particularly
useful because in many situations the relevant formulas can not be derived in closed form. *
On the other hand the GM system is interactive, runs at high speed, and yields higt-,
statistics answers, while the current system runs in batch mode, executes much more slowly,
and therefore yields much poorer statistics.

The next section of this paper reviews the- main features of my earlier publication on
representing parts by PL/I procedures and explains how this system can easily be applied to
the Monte Carlo simulation of parts tolerances. This method is then illustrated by four
specific examples, one of which is chosen from the field of assembly by computer controlled
manipulators. The reason for chasing this example is that this research was carried out as
part-of continuing manipulator projects at the IBM T. J. Watson Research Center and the
Stanford University Artificial Intelligence Laboratory. i-kwever, it is important to stress that
the simulation techniques described here are applicable not only in the domain of computer
controlled assembly, but also in the much wider dom’ain of manufacturing and assembly as
they exist in industry today, using conventional equipment and procedures. The paper closes
with a discussion of research areas appropriate for extension of the Monte Carlo tolerancing
method.

(xX.4]

MONTE CARLO METHOD

Distributions

The basic idea of any Monte Carlo Cy;;tiatiOn is to generate an ensemble of models which
simulates an ensemble of real entities. The statistical properties of the real entities may
then be simulated by studying the corresponding properties of the models. Such simulation is
useful when purely analytical methods cannot be found.

For the case of discrete parts manufacturing and assembly, the real entities consist of
three-dimensional objects at a workstation. These objects include component parts and their
features, tools and fixtures, measuring instruments, and automation equipment up to the
level of complexity of transfer lines and computer controlled manipulators. For a]] of these
&j&s, the primary attributes to be modeled are shape, position, and orientation.

In simulating statistical distributions of shape, position, and orientation attributes, it is
necessary to define the meaning of expressions Of the form 3.000&.005 cm. One possible
definition would be a normal distribution with a mean of 3.000 cm and a standard deviation
of which .005 cm is some small integral multiple. This choice would allow dimensions to fall
outside the specified range, albeit infrequently. Another possibility would be to have a
distribution which goes rigorously to zero outside the specified range. Inside the range, the
distribution could be uniform, or peaked at 3.000 cm, or bimodally peaked at 2.995 cm and
3.005 cm. The distribution function might also be skewed if, for example, a part has been
nlanufactured in a fixture which is showing signs of progressive wear.

The ANSI dimensioning and toierancing standards do not specify what statistical
distribution is implied by expressions of the form 3.000*.005 cm.[53 This omission is actually
necessary, because the shape of the distribution function depends on the manufacturing
process, so that the choice of this shape is best left to the production engineer. In the system
described in this paper, an arbitrary choice was made to restrict the class of allowed
distributions to be either uniform or normal. This choice was made for the sake of
convenience and does not represent any inherent limitation in the method.

Part Ensembles

In most parts modeling systems the user describes each part in terms of numbers which are
enter&d directly into a data structure. This! data structure, therefore, represents a particular
instance of a part rather than an ens&& of similar parts. For the Monte Carlo simulation
of tolerances, however, it is necessary that the parts modelihg system provide some simple
means of representing ensembles. What is needed, therefore, is a system in which the user
describes parts not in terms Of ?itl&~J but in terms Of @~ramsters that are assigned
numerical values when a part is instantiated. The advantage of such a system for this Monte
Carlo simulation is that a random number generator may be used to assign values to these

parameters.

[1X.5]

The use of parameters to characterize arbitrary attributes of parts is one of the principle
features of the Procedural Geometric Modeling System (PCMS) developed earlier by this

author! “I This modeling system was therefore used for the current study, The reader is
referred to the earlier publication for details concerning the way in which PCMS represents
$dimensionai objects as PLII procedures. A brief summary of the main features of this
system are included here for the sake of completeness. Further features will be explained in
subsequent sections of this paper as the need arises.

.

In PGMS, a hypothetical part whose name is “widget” and which has two attributes might
be invoked by the calling sequence

CALL SOLID(WIDGET,A,B);

The generic widget itself would be represented by a PL/I procedure whose entry point is

named WIDGET. This procedure would describe how the widget is hierarchically
constructed out of its component subparts. These subparts might be positive SOLID’~ or
negative HOLE’s. For example,

WIDGET: ENTRY (A,B);
CALL SOLID(CUBOID,A,A,Bk
CALL HOLE(CUBOID,A,A/2,B-10);
RETURN;

A library of parts procedures already exists which starts with the primitive POINT and
includes such objects as LINE, CUBOID, CONE, WEDGE, CYLNDR, and I-IEMISPH.
More complicated objects have also been coded, up to the level of complexity of IMM, which
represents the IBM Research mechanical manipulator, and SUARM, which represents the
Stanford University arm.

In addition to parts procedures, PGMS provides routines to perform transformations in
$dimensionai space. For example, if the generic widget were translated by C units along the
Y-axis and then rotated by D degrees about the X-axis, the calling sequence would be

I - CALL YTRAN(C);
CALL XROT(D);
CALL SOLID(WIDGET,A,B);

A particular instance of a widget would be invoked by assigning values to the parameters.
For example,

CALL YTRAN(12);
CALL XROT(30);
CALL SOLID(WIDGET,3.000,16.5);

[1X.6]

A& ensemble of 500 similar widgets would be represented by the calling sequence

.
DO 1-l TO 500;

C A L L YTRAN(12+RAND(-0.1,+0.3));
CA LL XROT(30+GA USS(2.5));
CALL SOLID(WIDCET,3.000+RAND(-.005,+.005), 16.5+RA ND{-.2,+.2));
END;

where the function RAND(X,Y) returns a random number uniformly distributed on the
interval from X to Y, and the function GAUSS(Z) returns a random number normally
distributed with mean 0 and standard deviation 2.

Semantics

Once an ensemble of parts has been represented, PGMS provides a way to derive properties
from the representation. This process is referred to as attaching semantics to the
representation. The first step is to code a semantic routine which can compute a desired
property. For example, the routine TOTVOL shown below adds up the volume Of all
positive and negative CUBOID’S in any object.

TOTVOL: PROCEDURE (NODE,X,Y,Z);
DECLARE NODE ENTRY;
IF NODE-CUBOID THEN VOLUME-VOLUME+POLARITY~~X~:~Y~:~Z;
RETURN;
END TOTVOL;

Next, calls to system routines BEGIN, EXEC, and END are used to attach t
the system and the part procedure of interest is executed. In the case of the
widgets, one could print the volume of each widget with the following code.

hese semantics to
ensemble of 500

DO I- 1 TO 500;
VOLUME-O; /sINITIALIZE VOLUME~I/
CALL BEGIN(5000);
CALL EXEC(TOTVOL); -

/@ALLOCATE STORAGE+/
/sATTACH SEMANTIC&/

CALL YTRAN(12+RAND(-O&+0.3));
CA LL XROT(30+GA USS(2.5));
CALL SOLID(W1DGET,3.00O~RAND(-.005,+.OO5),16.5+RAND(~.2,~,2));
CALL END; /aDEALLOCATE STORAGE,B/
PUT SKIP DATA (VOLUME); hPRINT WIDGET VOLUME,)/
END;

Generalizing from this example, one can easily see how to provide semantics to display
histograms of almost any desired properties of the ensemble. What is probably not clear
from this example is the fact that fat more realistic parts, the hierarchy of subpart calls

[1X.7]

involves so much computation that execution is usually rather slow, For instance, when the
procedure for the Stanford arm is executed on an IBM 370/165 running the VM time
sharing system with 120 users, each instantiation takes about 6 seconds of virtual CPU time
and 1 minute of elapsed time. Deriving the properties of an ensemble of 500 Stanford arms
would therefore require about 8 hours of elapsed time. This number is prohibitively long for
casual use of the system. However, 8 hours of elapsed time in simulating a complex
mechanism would certainly not be excessive if the derived properties were to reveal a design
deficiency which would have taken months to correct had the hardware been built first.

Another fact which is not clear from the example above is that parts of typical complexity
require the allocation of several hundred thousand bytes of intermediate storage. The
Stanford arm procedure, for inStanCe, requires nearly 3OOK of storage. The reason behind
this need for intermediate storage relates to the detailed implementation of PGMS, a topic
which is discussed in my prior publication and which will be omitted here.

E);AhIPLES

Rivet-Hole Bracket

The first example chosen to illustrate Monte Carlo tolerancing in PGMS is similar to the
rivet-hole bracket used as the example in the GM paper. A few changes were made because
the original drawing shows only a partial view of the bracket in two dimensions, while in
pGMS it is desirable to model the part completely and in three dimensions.

The modified rivet-hole bracket may be represented by the following code:

RHBRAK: ENTRY (X 1,Y ~,RAD~,X~,Y~,RAD~,ANG,THICK,LENG,NSBCT);
DECLARE RHBFRAME(4,4) FLOAT;
CALL STORE(RHBFRAME);
CALL SOLID(WEDGE,TH ICK,LENG,ANG,l); /+BRA CK ETQ/
CALL XYZTRAN(X l,Y LO);
CALL HOLE(CYLNDR,THICK,RADl,NSECT); /sHOLE Is:/
CALL RECALL(RHBFRAME);
CALL XYZTRA N(X2,Y2,0);
CALL HOLE(CYLNDR,THICK,RAD2,NSECT); /<(HOLE 2:sj
RETURN;

The call in the above code to the PGMS routing STORE is used to save the current
coordinate frame in the local array RHBFRAME. Subsequently, the current frame is
translated from the corner of the bracket to the position of the first hole. The current frame
is then returned to the bracket corner by the RESTORE routine, so that it may subsequently
be translated to the position of the second hole.

[1X.8] .

Figure 1: Drawing of RivebHole Bracket

[IX .9]

RHBRAK ()
WEDGE (I)

GLINE (I,])
LINE (l,l,l)

POINT (I,l,l,l)
POINT (1,1,1,2)

GLINE (IR)
LINE (1,2,1)

POINT (1,2,1,1)
POINT (1,2,1,2)

GLINE (1,s)
LINE (1,3,1)

POINT (1,3,1,1)
POINT (1,3,1,2)

. . . (a total of 9 GLINE’S)

CYLNDR (2)
GLINE (24

LINE (2,&l)
POINT (2,1,1,1)
POINT (2,1,1,2)

. . . (a total of &INSECT GLINE’S)

CYLNDR (3)
GLINE (3,l)

LINE (3,1,1)
POINT (3,1,1,1)
POINT (3,1,1,2)

. . . (a total of INSECT GLINE’S)

Figure 2: Rivet-Hole Bracket Subpart Hierarchy

[1X.10)

The ten-parameters of this procedure represent the seven dimensions subject to tolerancing,
the part thickness and length, and the number of sectors used in approximating the
cylindrical holes by polyhedra. The effect of this polyhedral approximation can be seen in
Figure 1 which was generated by attaching a standard graphics semantic routine to the
RHBRAK procedure.

The RHBRAK procedure represents a subpart hierarchy of 40+24bjNSECT nodes as
indicated in Figure 2. At the top level, the RHBRAK consists of a solid WEDGE and two
CYLNDR holes. The WEDGE in turn is composed of nine GLINE’s (general lines), each of
which is made out of one LINE with two end POINT’& Every level in this hierarchy can be
referred to by a unique &address, also shown in Figure 2. For instance, the LINE along the
bottom left edge of the RHBRAK has a subaddress of (1,3,1). The importance of these
subaddresses will become clearer in the discussion which follows.

In the GM paper, the designer is concerned with the clearance between the two holes and
the clearances between the second hole and the edges of the part. In order to study these
resultants, the following semantic routine might be used.

BRA KRES: PROCEDURE (NODE,X 1,Y 1,RAD l,X2,Y2,RAD2);
DECLARE (RGHTEDGE,LEFTEDGE,HOLEl,HOLEP) POINTER;
DECLARE NODE ENTRY;
IF NODE-RHBRAK THEN DO;

CALL DEFINE (RCHTEDCE,1,2,1);
CALL DEFINE (LEFTEDGE, 1,3,1);
CALL DEFINE (HOLE 1,2);
CALL DEFINE (HOLE2,3);
CLEAR l-DISTOO(HOLE1,HOLE2)-RAD1-RAD2;
CLEAR2=DISTOX(HOLE2,RGHTEDCE);
CLEAR3=DISTOX(HOLE2,LEFTEDGE);
END;

RETURN;
END BRAKRES;

The DEFINE routine of PGMS h used to associate a PL/I pointer variable with any
previously specified frame in the part hierarchy. The first argument in the call to DEFINE
gives the name of the pointer variable and the subsequent arguments give the subaddress in
the part hierarchy. Encoding these subaddresses requires that the user have a manual which
summarizes the subpart hierarchy generated by each procedure in the part library and
shows drawings of the basic volume shapes. Understanding subaddresses is currently the
most tedious aspect of PGMS.

The function DISTOO invoked in this semantic routine returns the distance from Origin to
Origin (00) of the two specified frames. The function DISTOX returns the distance from
Origin to X-axis (OX) of the two specified frames. In order to have written this code it is
necessary to have known that every LINE runs along the X-axis of its frame, and that every

[IX.11]

cYLNDR runs along the positive Z-axis of its frame. Thus CLEAR 1, CLEAR2, and
CLEAR3 are the desired clearances. It can be seen from this example that the polyhedral
approximation has absolutely no effect on the statistical properties of these clearances.

Finally, a short program may be written tO attach these semantics to the system and print the
three clearances for each of 500 rivet-hole brackets.

DO 1-I TO 500;
CALL BEGIN(50000);
CALL EXEC(BRAKRES);
CALL SOLID(RHBRAK,1.325+GAUSS(.005/3),

.875+GAUSS(.OO5/3),

.2+RA ND(-.0075,.0075),L
2.525+GA USS(.OO5/3),
1.6 15+GAUSS(.OO5/3),
1.2+RANb(-.0075,.0075),

*
67+RAND(-.25,+.25),
0.25,
8.0,
1);

CALL END;
PUT SKIP DATA (CLEARI,CLEARP,CLEAR3);

1 END;.

Because execution time varies roughly in proportion to the total number of nodes in the
subpart hierarchy, NSECT has been set to 1 here. This simulation of 500 rivet-hole brackets
takes about 3 minutes of CPU time on an IBM 3%X168.

Iu .

For this example, using PGMS to model tolerances is somewhat more difficult than using
the GM system, largely because the tedium of understanding subaddresses outweighs that of
writing down a few trigonometric formulas. AS the examples become more complicated,
however, the subaddress problem remains about constant, while the trigonometry problems
become much worse. The overall balance therefore swings in favor of PGMS,

Box Manufacture

This example of Monte Carlo tolerancing iS concerned with a manufacturing process in
which 4 holes are drilled into a rectangular box. The holes are made by a gang drill with
drill bits held in four separate chucks, while the box is held in a fixture attached to the drill
bed. The box is 12 cm long, 8 cm wide, and 4 cm. high, and the four corner holes have
radius 3 mm and depth 2.5 cm and are nominally 1 cm from each edge.

I

1 I
Tolerance errors in the positions of the holes are generated because the fixture may be
translated or rotated slightly in the plane of the drill bed, and each of the four drill chucks

may be’ radially displaced slightly from its nominal position. To make the eXampleSsomewhat
more interesting, it will be assumed that the rotational error in positioning the fixture is
about an axis which runs through a corner rather than the center of the box.

Each of the drill bits may be modeled as a cylinder which has been radially displaced by
RADERR in a random direction from its desired position.

DRILBIT: ENTRY (RADERR,LENG,RAD,NSECT);
CALL ZROT(RAND(O,SBO));
CALL XTRAN(RADERR);
CALL SOLID(CYLNDR,LENG,RAD,NSECT);
RETURN;

An ensemble of boxes manufactured by this process may then be represented as a cuboid
with holes cut out by the four drill bits.

RECTBOX: ENTRY (X,Y,Z,LENG,RAD,NSECT,
XERR,YERR,ANGERR,RADERR);

CALL SOLID(CUBOID,X,Y,Z); /aBLOCK*/
CALL ZROT(ANGERR);
CALL XYZTRAN(XERR,YERR,Z-LENG);
CALL XYZTRAN(l,l,O);
C A L L HOLE(DRILBIT,RADERR,LENG,RAD,NSECT); /#IHOLE Is/
CALL XTRAN(X-2);
C A L L HOLE(DRILBIT,RADERR,LENG,RAD,NSECT); /MOLE 2+,/
CALL YTRAN(Y-2);
C A L L HOLE(DRILBIT,RADERR,LENG,RAD,NSECT); /sHOLE 3,:q
CALL XTRAN(P-X);
C A L L HOLE(DRILBIT,RADERR,LENG,RAD,NSECT); /9HOLE 4#4/
RETURN;

The next step is to code a semantic routine which can derive the coordinates of the four
holes with respect to the coordinate system of the box.

HOLFIND: PROCEDURE (NODE);
DECLARE (HOLE l,HOLE2,HOLE3,HOLE4) POINTER;
DECLARE NODE ENTRY;
IF NODE-RECTBOX THEN DO;

CALL DEFINE (HOLE L2h CALL ORIGIN (HOLE 1,POs 1);
CALL DEFINE (HOLE2,3); CALL ORIGIN (HOLE2POS2);
CALL DEFINE (HOLE3,4); CALL ORIGIN (HOLE3,POS3);
CALL DEFINE (HOLE4,5); CALL ORIGIN (HOLE4,POS4);
END;

RETURN;
END HOLFIND;

t

Figure 3: Double-Exposure Drawing of Rectangular Box

- -

,. _;

[IX.13]

[1X.14]

The pGMS routine ORIGIN returns the origin vector associated with the frame of the
object pointed to by the first argument. Finally, the locations of each of the four holes in an
ensemble of 500 boxes may be printed by attaching these semantics and executing the
RECTBOX.

DECLARE (POS 1(3),POS2(3),POS3(3),POS4(3)) FLOAT;
DO I-l TO 500;

CALL BEGIN(80000);
CALL EXEC(HOLFIND);
CALL SOLID(RECTBOX,12,8,4, IOX ,Y ,zo/

2.5,0.3,1, /sLENG,RAD,NSECTa/
GAUSS(O.1/3), IoXERRo/
GAUSS(0. i/3), I:jY ERR:#
R A ND{-2.5,2.5), lsANGERRs/
GAUSS(0.0513)); /<gRA DERRa/

CALL END;
PUT SKIP DATA (POS I,POS2,POS3,POS4);
END;

Execution time is about 8 minutes OII an IBM 370/168. A “double-exposure” drawing
showing overlapping views of two boxes in the ensemble appears in Figure 3. This drawing

was generated by attaching a standard graphics semantic routine and calling the
RECTBOX procedure twice. The fact that graphics are produced so easily within P(;MS is
of considerable help in verifying that the simulation is working properly.

One aspect of this simulation which is perhaps unrealistic is that the fixture is perturbed for
each box in the ensemble. In an actual manufacturing Operation, on the other hand, the
fixture would be locked in place. The statistical distributions obtained in the actual
manufacturing operation would therefore be narrower than those derived from this
simulation.

What has been simulated here is an ensemble of boxes produced by independent setups as
opposed to an ensemble produced by a fix&f setup. In most cases of batch production, this
simulation would be good enough for all practical purposes. One can imagine situations,
however, in which the independent setup assumption is not appropriate. For instance, if
pairs of consecutive boxes were to be attached to one another, the fact that both were
produced on the same setup might be important. For this case, the code would have to be
changed to simulate pairs of boxes instead of single boxes.

Actually, the box would probably be manufactured by trying a succession of setups until one
was found which yielded satisfactory boxes, and this setup would then be retained for the
remainder of the batch. Simulating the resulting ensemble is possible within PGMS, but it
entails modeling the conditions used to determine whether or not the setup is satisfactory,
Modeling conditional decisions is discussed briefly in the section of this paper dealing with
extensions of the Monte Carlo method.

[1X.15]

Box and Lid Assembly

This example is concerned with attaching a lid to the box of the previous example. The lid
is 12 cm by 8 cm by 0.5 cm thick and is assumed to have been manufactured in the same
manner as the box. At assembly time, a fixture is used which holds the lid rigidly in place
on top of the box in such a way that the edges line up perfectly. The issue is whether or not
the holes in the lid are aligned sufficiently well with those in the box to allow four screws to
be inserted.

A procedure which represents both the box and its lid is shown below.

BOXNLID: ENTRY (X,Y,ZBOX,ZLID,LENG,RAD,NSECT,
XERRB,YERRB,ANGERRB,RADERRB,
XERRL,YERRL,ANGERRL,RADERRL);

CALL SOLID(RECTBOX,X,Y,ZBOX,LENG,RAD,NSECT, /ttBOX::r/
XERRB,YERRB,ANGERRBB,RADERRB);

CALL ZTRAN(ZBOX);
CALL SOLID(RECTBOX,X,Y,ZLID,ZLID,RAD,NSECT, I9LXDs/

XERRL,YERRLbNGERRL,RADERRL);
RETURN;

The next step is to code a semantic routine which computes the alignment errors for each of
the four pairs of holes.

ALIGNER: PROCEDURE (NODE);
DECLARE (BOX,LlD) POINTER;
DECLARE NHOLE BINARY FIXED;
DECLARE NODE ENTRY;
IF NODE-BOXNLID THEN DO;

FOR NHOLE-1 TO 4 DO;
CALL DEFINE (BOX,l,NHOLE+l,l);
CA LL DEFINE (LID,2,NHOLE+ 1,l);
ERROR(NHOLE)=DISTOZ(BOX,LID);
END;

END;
RETURN;
END ALIGNER;

The subaddresses in these DEFINE statements identify frames of corresponding CYLNDR
h&s in the box and lid. The function DISTOZ returns the distance from the Origin to
Z-axis (02) of these two frames.

If it is assumed that the assembly process is unsuccessful whenever any of the four screw
hole misalignments exceeds 2 mm, a simple procedure can be written to determine the
number of successful assemblies in an ensemble of 500 boxes and lids.

Figure 4: Drawing of Unsuccessful Box and Lid Assembly

[1X.1?]

DECLARE ERROR@);
DO I-l TO 500;

NSUCCESS-0;
CALL BEGIN(120000);
CALL EXEC(ALIGNER);
CALL SOLID(BOXNLID,12,8,4,0.5,

2.5,0.3,1,
GAUSS(O.1/3),
GAUSS(O.1/3),
RAND{-2.5,2.5),
GAUSS(O.O5/3),
GAUSS(O.1/3),
GAUSS(O.1/3),
RAND&2.5,2.5),
GAUSS(0.05/3));

CALL END;
IF ERROR{ lk.2

8c ERROR(2)<.2
8c ERROR(3)<.2
& ERROR(4)<.2

/sX,Y,ZBOX,ZLID:::/
/QLENG,RAD,NSECT~~/
/sXERRBt:f/
/sYERRB:::/
/+ANGERRBQ/
/ttRADERRBtl/
/QXERRLI:~/
/slYERRLs/
/eANGERRL+/
/QRADERRL#~/

THEN NSUCCESS=NSUCCESS+ 1;
END;

PUT SKIP DATA (NSUCCESS);

When this program is executed, it determines that 27% of the assemblies would be successful.
About 10 minutes of CPU time are required to obtain this result using an IBM 370/168. A
drawing of one of the unsuccessful assemblies is shown in Figure 4.

Since in principle the lids are symmetric, it is also possible to generate an ensemble in which
the lids have been randomly flipped upside down or rotated 180 degrees in the horizontal
plane between the time of manufacture and the time of assembly. Such an ensemble
simulates the common industrial practise of throwing freshly manufactured parts into a tote
bin. The simulation then yields 18% successful assemblies. The reason why this percentage is
much lower than the previous one is related- to the fact that the rotational error in the
fixture was assumed to be about an axis which ran through a corner of the box rather than
through its center.

Stanford Arm

The final example is taken from the field of computer controlled manipulators. Currently,
two manipulator arms are being used at the Stanford University Artificial Intelligence
Laboratory to study problems in industrial automation. Figure 5 shows a drawing of one of
these arms holding a power screwdriver and a screw. Although the arm had been modeled

much earlier by Baumgart, [161 this picture was obtained by using PGMS procedures instead.

[1X.18]

Figure 5: Drawing of Stanford Am

[1X.19)

In advanced manipulator applications, it is frequently necessary to perform inspection to
measure the locations of objects or even simply to determine whether an object is present or
missing. For instance, since a SCreW Can Wily fall Off a screwdriver, it may be desirable to
verify that the screw is actually still on the end of the screwdriver.

Both touch sensing and computer vision have been used in the past to perform this type of

inspection.t201 Currently, Bolll;, is working on a more systematic approach to doing

inspection by computer vision. One of the main problems encountered in this endeavor
relates to the fact that the location of the end of the screwdriver is not known precisely by
the program, because of backlash and compliance in the manipulator. The vision program,

therefore, can not simply look at the nominal location of the screw. Instead, it must search
the image over a finite region whose extent depends on the tolerance errors of the
manipulator joints.

The purpose of this example is to show that it is po_ssible to do a Monte Carlo simulation of
as complex an object as a manipulator, without having to write down the trigonometric
formulas for the location of its gripper as a fUnCtiOn Of all the joint angles. An ensemble of
10 Stanford arms may be modeled simply by coding

DO I=1 TO IO;
CALL SOLID(SUARhI,-4l+RAND(-2,2), ItJOINT ANGLE I,:</

-92+RA ND{-*,*), /::JOINT ANGLE 2:::/
15+RAND(-.2,.2), , /<#JOINT ANGLE 3x31
-9O+RA ND{-*,*), /(JOINT ANGLE 4::J
90+RA ND(-2,2), /9JOINT ANGLE 5::t/
O+RAND(-2,2), /o]OINT ANGLE 601
1.5); /GRIPPER OPENIN&/

END;

It is only slightly more difficult in PCMS to model an ensemble of arms, each of which is
holding a screwdriver with a screw. A semantic routine may then be supplied to draw the
first object in this ensemble, and for all subsequent objects to draw a little asterisk at the
location of the tip of the screw, as shown in Figure 5. Alternatively, semantics may be
provided to compute the parameters of an error ellipse in the image plane, so that a vision
program will know what region must be searched to verify the presence of the screw.

EXTENSIONS

In all four of the preceding examples, the simulation of tolerancing was used to derive
in&p&cnt distributions of resultant properties. It is also possible to derive con&tio&
distributions of resultant properties. The need for considering conditional distributions arises
primarily whenever there are steps in the manufacturing and assembly process which

[1X.20)

involve conditional actions. Actually, such actions are quite common in discrete parts
production, although they tend to be overlooked because these steps are usually implicitly
assume!d.

For instance, one expects an assembly worker ‘to know without being told that

IF the lid doesn’t fit
THEN throw it out and try another one

ELSE attach it

Alternatively, the worker might ignore any rquirement of intetchangeability and save the
nonfitting lid until a matching box was found. In either case, the statistical properties of the
resulting assemblies would no longer be the same. This fact is true whether or not the
conditional instructions are stated explicitly.

Not all conditional actions have the simple form IF . . . THEN . . . ELSE. For example, the
wembly process might iniolve sliding the lid until it is aligned with the box. This step
would move each lid by a different atint, depending on the initial misalignment of that
particular lid and box.

In a PGMS tolerancing simulation, the addition of steps which simulate conditional actions
is a straightforward process, provided that these actions can be stated in the form of
procedures which involve spatial transformations no worse than rotations and translations
by well defined amounts. For an IF . . . THEN . . . ELSE action, one simply adds the
appropriate IF . . . THEN . . . ELSE clause to the program. A problem arises, however, that
there ate conditional actions which can not be easily expressed in the form of well defined
procedures.

A common and insidious example of such actions relates to the way parts are often
chamfered to make the assembly ptocess easier. As the assembly is performed, the chamfers
force parts into slightly different positions and alter their subsquent statistical properties.
The effect of a chamfer in locating a single pin can be exprtssed fairly easily in the form of
a ‘procedure, but for more than one pin the, effect of chamfering becomes very difficult to
state explicitly.

Th’e effect of chamfers is a spedfic case of a general process which may be called fitting or
accommo&ion. Case studies performed at the Charles Stark Draper Laboratory indicate that

in typical industrial assemblies, roughly 15% of I the steps involve accommodation.t22J

Although this process is industrially important, it is very’difficult to simulate except in the
simplest situations. For instance, it is well known that the way to attach a lid to a box is to
put all four screws in loosely and then tighten them, rather than tightening each one
immediately. Unfortunately, even in this case it it not known how to express the exact
proCess of accommodation in the form of a well defined procedu”.

However, it 1s possible to uppro~~mutr many accommodation processes. For example, in the

[1X.21)

box assembly one can say that the first screw to be loosely inserted produces a translation of
the lid such that its *hole aligns with the corresponding box hole. The second screw produces ’
a rotationof the lid which makes the vector from the first to the second lid hole align with
the corresponding box vector, followed by a translation of the lid along this vector to make
the two alignment errors qua1 and opposite. The third screw only produces a translation
orthogonal to the previous vector, and the fourth screw has no effect. Clearly, this procedure
is only an approximation to what really happens, but the chances are that it is a good
enough approximation for most practical purposes. An alternative approximation would be
to say that each successive screw produces a transformation of the lid to a new position such
that the sum of the squares of of the alignment errors is minimized. In either of these cases,
one can easily add to PGMS procedures which simulate the approximate accommodation
process.

Another extension of Monte Carlo tokrancing would be to simulate the process of making
measurements with imperfect measuring tools. For example, suppose a computer vision
system is used to locate the position of a hole in a part so that a manipulator can insert a
screw. This measurement is limited by the camera resolution, Which may be on the order of
one picture element in the scanning array. The measurement is also limited by pan and tilt
errors in aiming the camera. Projecting the camera errors from the image plane back to the
actual hole in three-dimensional space will generally give an elongated region within which
the location of the hole can not be resolve. If several features of a part are located in this
manner, the position and orientation of the part itself may be derived. All of these steps can
be simulated within PGMS. ’

It is also possible to simulate part imperfections of a much grosser nature than those
n.yrmrlly considered in tolerancing. For instance, Agin has written a compvter vision

program ‘which inspects lamp bases for displaced or mlr&g grommets. , I,n ‘order ioI) [233
0,’

simulate ah ensemble of lamp bases with an appropriate range of defects, one could
represent the generic lamp base by a routine with parameters specifying whether or not the ,
grommets are present.

LAMPBAS: ENTRY (GROM 1,X 1,Y I,GROlW,X2,Y2); .
CALL XYZTRAN(X 1,Y 1,O);
IF GROW-1

THEN CALL SOLID(GROMMET);
CALL XYZTRAN(XP-X l,Y2-Y 1,O); ’
IF CROMZ-1 ,

THEN CALL SOLID(GROMMET);
RETURN;

Gross defects of this type are quite common in industry. The most familiar example is that
, roughly 2% of all machine screws are ordinarily defective. Some have no heads, while others

have no slots or no threads. The defective fraction may be reduced by preinspection, but for
most applications the additional cost can not be justified. It is therefore worth emphasizing
the fact that errors of these types can also be simulated within a Monte Carlo parts

[1X.22)

tolerancing system.

I CONCLUSION

.
This paper has described a Monte Carlo approach to the simulation of tolerancing and
other forms of imprecision in discrete parts manufacturing and assembly. An implementation
of the method, based on the Procedural Geometric Modeling System developed earlier by
this author, is illustrated by four Specific examples, one Of which was chosen from the field
of assembly by computer controlled manipulators.

There appears to be a pressing need for simulation techniques relating to discrete parts
manu’facturing and assembly. The assembly process is strongly affected by imprecise
components, imperfect fixtures and tools, and inexact measurements. It is often necessary to
design higher precision into the manufacturing and assembly process than is functionally
needed in the final product. Production costs are highly dependent on specified tolerances
and the resultant product yields.

r

The technique described in this paper can provide production engineers with a systematic
way of analyzing the stochastic implications of tolerancing and other forms of imprecision.

ACKNOWLEDGEMENT

This paper was partially motivated by Russell Taylor’s work on high level languages for
computer controlled manipulators. One of his programs determines allowed loci of
workpieces by resolving symbolic geometric COnSmintS. The paper was also motivated by the
computer vision research of Bob Belles. One of his programs calculates the region of an
image to be searched for a desired feature of a workpiece that has been displaced slightly
from its nominal position. Discussions with Taylor and Belles in the early stages of this work
have proved very valuable. Their results, incidentally, Will be published soon as part of their
doctoral dissertations.

This work was performed at the Stanford AI Lab, as part of the Computer Integrated

Assembly Systems project headed by Tom Binford. I want to thank Peter Will, manager of
the Automation Research project at the IBM T. J- Watson Research Center, from which 1
was on sabbatical leave, for making my year at SAIL possible.

Finally, I want to acknowledge the logistical assistance of Mike Blasgen and Larry
Lieberman in this work.

-I I

.

[1X.23] .

REFERENCES

[1 J W. V. Tipping, An introduction to Mechanical A~~cmbly, Business Books, London,
E n g l a n d , 1 9 6 9 .

[23 An Introduction to PADL, Production Automation Project Technical Memorandum
TM-22, University of Rochester, December 1974.

[3] A. A. G. Requicha, N. M. Samuel, and H. B. Voelcker, Part and Assembly Description
Languages - II, Production Automation Technical Memorandum TM-20a, University of

Rochester, revised November 1974.

c
[4] I)iscretc Part Manufacturing: Theory and Practice, Production Automation Project

. Technical Report TR-l-1, University of Rochester, 1974.

[5] Dimensioning and Tolerancing, American National Standards Institute Report ANSI

Y 14.5- 1973, published by IEEE, New York, 1973.

[6] Lowell W. Foster, Geometric Dimensioning and T&ranting: A Working Guide,
Addison-Wesley Publishing Co., Reading, Massachusetts, 1970.

[7] Earlwood T. Fortini, Dimensioning For Interchangeable Manufacture, Industrial Press

Inc., New York, 1967.

[a] H a r o l d W . GUgel, Monte Cd0 simldatiO?l With InteYiXCiVe Graphics, CM Research
Publication CMR-1531, General Motors Corporation Research Laboratories, Warren,
Michigan, October 1974.

[9] John M. Hammersley and David C. Handscomb, Monte Carlo Methods, Wiley, New
York, 1964.

[101 Gerald J. Agin, Representation and Description of Curved Objects, Stanford Artificial
Intelligence Laboratory Memo AIM-173 and Stanford University Computer Science Report
STA N-CS-305, October 1972.

[1 1] Gerald J. Agin and Thomas 0. Binford, Computer Description of Curved O&cts, Third
International Joint Conference on Artificial Intelligence, Stanford, August 1973.

[121 Ramakant Nevatia, Structured Descriptions of Complex Curved Objects for Recognition
and Visual Memory, Stanford Artificial Intelligence Laboratory Memo AIM.250 and
Stanford University Computer Science Report STAN-CS-464, October 1974.

[131 I. C. Braid, Designing With Vohmes, Cantab Press, Cambridge, England, 1974.

[1X.24]

[I41 I. C. Braid, The Synthesis of Solids Bounded 6~ Many Faces, Communications of the
ACM, Volume 18, Number 4, p. 209, April 1975. ,

[15] Bruce G. Baumgart, Winged Edge PdyAedron Represenfafion, Stanford Artificial
Intelligence Laboratory Memo AIM- 179 and Stanford University Computer Science Report

I’ STAN-CS-320, October 1972.

1161 Bruce C. Baumgart, GEOMED, Stanford Artificial Intelligence Laboratory Memo
AIM-232 and Stanford University Computer Science Report STAN-C%4 14, May 1974.

[171 David D. Grossman, Procedural RepreJentatfon of TAtir-DCnlcndoncrl Objects, IBM
Research Report RC-5314, T. J. Watson Research Center, Yorktown Heights, N. Y., March
14, 1975; to be published in IBM Journal of Research and Development.

~
[181 Mark A. Lavin and Laurence I. Lieberman, A- System JOY Modeling Thee-Dtmcnsfonal
O&ecft, IBM Research Report RC-5765, T. J. Watson Research Center, Yorktown Heights,
N. Y., December 17, 1975.

[191 Mark A. Lavin, MODFEAT: A Sysfcm for Naming Polyhedral Features of
Three-Dimensfoncrl O@ectt, IBM Research Report RC-5764, T. J. Watson Research Center,
Yorktown Heights, N. Y., December 17, 1975..

1201 Robert Belles and Richard Paul, The he of Sensory Feedbac& fn a ProgrammaNe
Aste&y, System, Stanford Artificial Intelligence Laboratory Memo AIM-220 and Stanford
University Computer Science Report STAN-CS-396, October 1973.

:. ., :
[2 I] Robert C: Bo es,11 Vertficafion Vision Within a Programmable Assembly System: Ai *’
htrodwtory’ Pfscussion, Stanford Artificia! Intelligence Laboratory Memo AIM-275 atid

, Stanford University Computer Science Report STAN-CS-75537, December 1975.

1221 j. Nevins, D. Whitney, S. Drake, D. Killoran, M. Lynch, D. Seltzer, S. Simunovic, R. M.
. Spencer, P. Watson, and A. Woodin, Exploratory Research in industrial Modular Assembly,

Charles Stark Draper Laboratory Report R-921, Cambridge, Massachusetts, December 1,
, 1974 to August 31, 1975.

[231 C. Rosen, D. Nitzan, G. Agin, G. Andeen, J. Berger, J. Eckerle, G. Gleason, J. Hill, J,
Krcmers, B. Meyer, W. Park, and A. Sword, Exploratory Research fn Advanced Automation,
Stanford Research Institute Project 2591 Report 2, Menlo Park, California, August 1974.

