Stanford Artificial Intelligence Laboratory August
Hemo ATM-285

COmputer Sclence Depart ment
keport No. STAN-CS-76-568

% STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
l Computer Science Department
Stanford University

Stanford, California 94305

PROGRESS REPORT 3

Covering The Period December 1,1975 to July 31, 1976

EXPLORATORY STUDY

OF COMPUTER INTEGRATED ASSEMBLY SYSTEMS

by
T.O.Binford, D.D.Grossinan, C.R.Liu, R.C.Bolles, R.A.Finkel,
M.S.Mu jtaba, M.D.Roderick, B.E.Shimano, R.H.Taylor,

R.H.Goldman, J.P.Jarvis, V.D.Scheinman, T.A.Gafford

Prepared for:
NATIONAL SCIENCE FOUNDATION
WASHINGTON D.C. 20550

1976

" ABSTRACT

The Computer Integrated Assembly Systems project is concerned with developing the
software technology of programmable assembly devices, including computer controlled
manipulators and vision systems. A complete hardware system has been implemented
that includes manipulators with tactile sensors and TV cameras, tools, fixtures, and
auxiliary devices, a dedicated minicomputer, and a time-shared large computer equipped
with graphic display terminals: An advanced software system called AL has been
developed that can be used to program assembly applications. Research currently
uhderway includes refinement of AL, development of improved languages and
interactive programming techniques for assembly and vision, extension of computer

*vision to areas which are currently infeasible, geometric modeling of objects and
constraints, assembly simulation, control algorithms, and adaptive methods of
calibration.

TABLE OF CONTENTS

INTRODUCTION

Overview

AL SYSTEM AND ASSEMBLY

1. ALAID: An Interactive Debugger for AL

111, Improvements in the AL Run-Time System

IV. Generating AL Programs from High Level Task Descriptions
v. Case Study of Assembly of a Pencil Sharpener

VISION AND MODELING

VI. Mathematical Tools for Verification Vision
VII. Discrete Control of the Arm

VIIl. POINTY User Manual '

IX. Monte Carlo Simulation of Toierancing

RN e P

. OVERVIEW

Thomas 0. Binford

Artificial Intelligence Laboratory
Computer Science Department
Stanford University

The author is a Research Associate in the Computer Science Department and

is a co-principal investigator on the Computer Integrated Assembly Systems
Project.

[L.1]

INTRODUCTION

This report is the third in a sequence of reports summarizing research progress in Computer
Integrated Assembly Systems. This project, supported by the National Science Found'ation, is
concerned with. the software technology of programmable automation, including computer
controlled manipulators and vision systems. The basic god is the smplification of assembly
and visua programming.

Prior to the period covered in this current report, a complete hardware system was
implemented, including manipulators with tactile sensors and TV cameras, tools, fixtures,
and auxiliary devices, a dedicated minicomputer, and atime-shared large computer equipped
with graphic display terminals. An advanced software system called AL was developed as a
research tool for studying problems in assembly automation.

During the past year, the AL system has been debugged, improved, and extensively
documented. In the near future AL will be used to program some simple assembly
applications examples. From a succession of applications, generic assembly routines can be
identified and accumulated in alibrary. Additionally, a design review of AL has recently
been started to identify its strengths and weaknesses. As a preliminary to this review, a
questionnaire concerning the potentia use of AL a other |aboratories has been circulated,
and responses are being received.

Work has begun on the classification of assemblies; assembly processes, and manipulators.
Improved languages and interactive programming techniques for assembly and vision are
aso being studied. It is hoped that this work will lead to the extension of computer vison to
areas that are currently infeasible, such as picking discrete parts out of a bin. Research has
also included geometric modeling of ob jects and constraints, assembly simulation, control
agorithms, and adaptive methods of calibration.

This overview offers a concise summary of recent progress by the varied research efforts
that constitute the Computer Integrated Assembly Systems project. The progress report is
divided into two main sections: work directly related to AL and assembly, and work on
computer vision and modeling. It is through a comprehensive project of this sort that
-prototype systems will eventualy be developed for practica programmable assembly.

AL SYSTEM AND ASSEMBLY

Extensve experience has shown that the debugging process is vastly more time-consuming
. than people are willing to admit. In AL, this problem is accentuated because the system
.interacts with the real world in real time and because there are two computers and a
language hierarchy. In response to these problems, Raphael Finkel has developed ALAID,

(1.2]

an interactive debugger that allows ‘AL program execution to be monitored and that
provides a means of patching AL programs to avoid the otherwise lengthy debugging loop.
A LAID resides on both computers and partial recompilations are done on the planning
machine, which maintains symbol table information. A by-product of the ALAID design is
that it can be used to interface complex feedback routines on the planning machine to the
runtime execution of AL programs. Finkel’s work is described in the section ALAID: An
Interactive Debugger for ‘AL. In industry, as microprocessors spread, multi-machine

, hierarchies will be usual and debugging systems like ALAID will have wide potential
application.

Within the AL run-time system, the speed of routines that transform between Cartesian

space and joint-angle space is of considerable.importance. Bruce Shimano has derived faster

. procedures for computing these transformations. Additionally, he has found, simpler

procedures for calibrating force sensors, needed in those industrial applications that involve

-, force-controlled compliant motions. Compliance using sensing is an essential means of

" coordinating two or more devices. Shimano explains his contributions in the section
Improvements in the AL Run-Time System.

Russell Taylor has been studying ways to generate AL motion programs automaticaly from.
higher level task descriptions. A paradigm of progressive refinement is used to expand ‘a
single statement like “put peg in hole” into a succession of detailed steps necessary to get the
job done. The'task is non-trivia if attention is given to making the generated code rugged

- with respect to positioning errors. The work therefore requires an ability to maintain
extensive planning information concerning the description of the semantics of the
manipulator language, the definition of the task, the objects being manipulated, and the
execution-time environment. Taylor discusses his approach in the section Generating AL
Programs from High Level Task Descriptions.

Shahid -Mu jtaba has analyzed the automatic assembly of a pencil sharpener and compared
the motion times for the Stanford Arm with those obtained by the technique of Methods
Time Measurement for a person doing the same assembly. The task was aso andlyzed using
assembly primitives developed at Draper Lab. For this task, the mechanical arm was
considerably slower than the human. Identifying, the sources of this lethargy should make
considerable speed improvements possible in the future. This work is discussed in the section
Case Study of Assembly of a Pencil Sharpener.

In recent years, the manipulator hardware has stabilized, and the need for hardware
congtruction has declined considerably. Nevertheless, certain hardware necessary for AL’s
operation is being developed. These additions, which are not described in this report,
include hardware that provides increased PDP-11 memory for the run-time system, a second
arm interface to facilitate testing AL’'S novel software capability of controlling two arms in
simultaneous coordinated motion, a force-sensing wrist to provide greater accuracy in
determining forces and torques than is possible by monitoring servo errors, and an improved
gripper that should alow greater versatility in grasping small objects.

[1.3)

COMPUTER VISIONANDMODELING

Robert Bolles has ‘shown that the execution time and memory size of his experimental
program for visual inspection are almost practical, and that programming is simple. ‘His
recent work is concerned with establishing a firm mathematical basis for making verification
decisions. A least-squares technique is used to combine available information and derive
estimates for location and location accuracy of objects. Bayesian probability is used to
determine necessary confidences within a sequential pattern recognition scheme. These
" well-known techniques are combined to answer various questions raised within a verification
‘vision system. The work is described in the section Mathematical Tools for Verification

Vision.

Michael Roderick has been investigating the possibility of reducing the sampling rate used
by the run-time computer to control the Stanford arm. His analysisis based on the use of
z-transforms, since Laplace transforms are not applicable for low sampling rates. Specific
recommendations are derived for the lowest possible sampling rates a which the Stanford
Arm might be controlled. Roderick’s approach is described in the section Discrete Control of
the Arm.

A previous progress report described POINTY, an interactive program for generating object
models by manual positioning of the manipulator. During the course of writing applications
programs, Shahid Mujtaba has found this technique to be an aid in reducing the labor of
coding AL models. He has prepared a guide to the system entitled POINTY User Manual,
useful for both training and reference purposes.

David Grossman has used a geometric modeling program to simulate discrete parts
tolerancing, showing how manufacturing errors can’ propagate until they affect the
probability of successful assembly. The assembly of discrete parts is strongly influenced by
imprecise components, imperfect fixtures and tools, and inexact measurements. Production
engineers must choose among alternative ways to select individual tolerances in order to
achieve minimum, cost while preserving product integrity. Grossman describes a
comprehensive Monte Carlo method for systematicaly analyzing the stochastic implications
of tolerances and related forms of imprecision. The method is explained in the section Monte

, Carlo Stmulation of Tolerancing. This work is one example in which technology developed
initially for programmable assembly is proving applicable in a much wider domain,
particularly manua assembly.

[I. ALAID: AN INTERATIVE DEBUGGER FOR AL

- Raphadl A. Finkel

Artificid Intelligence Laboratory
Computer Science Department
Stanford University

The author is ‘currently an Assistant Professor in the Computer Science
Department, University of Wisconsin, Madison, Wisconsin 58706. At the time
this research was p&formed, he was a graduate student in the Computer
Science Department at Stanford University.

(IL1]

CHAPTER 1

BACKGROUND

The road to constructing working code in any programming language can be long and
tedious. Several of the important milestones are these: 1) understanding the problem
(conceptualization), 2) creating an agorithm to solve it (design), 3) writing that algorithm in a
suitable programming language (formalization), 4) submitting the program to the scrutiny of
the computer (compilation), 5) running the program (execution), 6) getting the program to do
what was intended (debugging), 7) making sure that the program behaves under diverse
conditions (testing), and 8) production runs of the-finished prdgram (bliss). These steps are
not necessarily distinct; it often happens that conceptualization, design, and formaization are
performed simultaneously, and the stages from formalization through debugging are often
repeated several times.

The problem of successfully traversing this route is compounded in the particular case of am
code by several factors. The first obstacle is that the real world is less tractable than the
highly controlled world of the computer. ‘Any given Strategy to accomplish a given task may
fail, because the actual real-world result of the program may not be what the programmer
desired. An effort to insert a pin in a hole may result in a jammed pin or a jarred workpiece.

Not only is the, world, recacitrant, it dso is complex. A programmer in a purely agebraic
language can attempt to keep in mind the various states of his program at different places.
State information like loop invariants provides enough environment so that reasonable code
may be written. Not 0 in the reddm of mechanical manipulation. Objects can be modelled,
‘but only partially, and the extent to which models reflect the rea objects is subject to design
choices on the part of the programmer. He may only discover during debugging that his
model is incomplete in a crucial way, that some important feature of an object has been
omitted from consideration.

Design of appropriate error recovery routines depends greatly on what errors are encountered.
"It is a waste of effort to design the program to carefully detect and remedy an error like
dropping a workpiece if in fact the arm never or rarely commits this error in practice. It is
even ‘more frustrating to fail to foresee the possbility that a screw hole is mispositioned if that
error turns out to be frequent. Experience and sharpened intuition can dowly train a
programmer in what Sorts of errors to expect, but the learning process is full of necessary and
clumsy-iterations through the debugging loop.

Another feature (some would no doubt consider it a bug) of the real world is that many
actions are irreversible. In algebraic languages, most actions have inverse actions, and if it is

ur2)

important to be able to back up, care can be taken to preserve either the state of the
computation or a history of the actions that have been taken so that the code can be retried..
But the moving finger dips, and having smashed, moves on. Nor al our history lists nor glue
shall lure it back to fix but half the wreck, nor all our work shall make it look like new.
Even non-destructive actions, like putting a pin in a hole, cannot be reversed automaticaly,
since there is no way to determine what forces ought to be applied during the backward
motion; they are not closaly related to the forces applied during the initia insertion.

In many programming languages, the debugging loop is exceptionally long. AL is no
exception. In order to fix a known error, it is necessary to modify the source code and then to
resubmit the program to the compiler. The compiler (which isfairly slow) produces an
intermediate output, which, is finaly loaded into the PDP-1 1. And then the pieces mugt, be
reinitialized to their starting positions, and the race must be run up to the point where the
falure occurred in order to test the fix. The faillure may not be very reproducible, so the new
code may not be easily tested. The effort that must be exerted to locate a bug in the first
place can be immense;, Making some small change and resubmitting the program in the hope
that the change will make the bug more tracesble is very tedious due to the long turn-around.

There are severa debuggers for the PDP-1 1 machine; one typical example is 1 1-DDT, based
on RUG, another similar debugger, and implemented by Jeff Rubin at Stanford [Binford 75].
DDT is a symbolic interactive debugger, but it has no knowledge of AL; its microscopic
vision cannot see the forests of manipulator code built out of the trees of machine
instructions. The AL runtime environment has been implemented and debugged with the
assistance of 11-DDT, but the debugger is fairly useless for debugging manipulator programs,
especialy if the person using AL is not an expert on the implementation. The problem is
mostly one of level; 11-DDT is a low-level debugger, and AL is a high-level language.

The intent of this report, which is taken from the third chapter of my thesis, is to examine
the problems of preparing correct manipulator code and to suggest the design of a user
interface that assists the programmer in fulfilling his function. This interface will have some
of the flavor of a debugger and some of the flavor of an operating system. Although it is
based specificaly on the implementation of AL, the design of the interface is of interest for
more general reasons. it provides added insight into control structures for operating
. mechanical devices under programmed computer control, and it proposes a uniform
debugging and preparation technique that might find use in any large and complex
programming environment. For this reason, this report may be read independently of the
remainder of my thess.

The discusson has two distinct flavors. On the one hand, philosophical issues dealing with
debugging in general and arm code debugging in particular are treated in a rather abstract
fashion. On the other hand, details of implementation are mentioned in an attempt to
demonstrate how needed facilities can be obtained. This second type of discusson deds both
with a preliminary test ‘implementation currently running in the AL context and with
extensions to it, both smple and complex.

[11.3]

CHAPTER 2

CLASSICAL INTERACTIVE DEBUGGING

Success is the mother of disaster.
-- V. Caf

The art of debugging programs has developed as a bastard son of the art of computer
programming. The first debugging was done by staring at the code until a bug was found, or
by inserting intermediate output statements to test hypotheses concerning the expected state of
the computation. An entire generation of programmers became familiar with the core dump,
ether in raw machine representation (it is said that one can even come to love hexadecimal)
or with some preliminary transcription into instructions or, more often, ASCII or EBCDIC
tcx t rcpresen tation.

Programming in machine language has given rise to such interactive debuggers as DDT,
which alow the user to interrupt his program, investigate it, make changes, and then alow it
to continue. The fact that in machine language, program and data are represented by the
same forms, namely, machine words, makes such debugging especialy natural. Fundamenta
to such debugging is the concept of breakpoints, which are locations in the program of
interest to the programmer during his debugging. When breakpoints are encountered, the
interactive terminal is connected directly to the debugger, and execution of the program is
suspendedl During this time, the user ‘can examine the values of variables, set and remove
breakpoints, and then alow the computation to continue.

High level languages like FORTRAN and ALGOL no longer maintain a unity of program
and data, and debugging techniques either use post-mortem dumps and traces of procedure
cdls and variable. assgnments, or they force the user to debug the generated machine code
using a DDT-like debugger. Some student-oriented languages (SNOBOL and ALGOL W
come to mind) provide the facility of optiona post-mortem dumps that wind back through the
'stack of procedure calls and print out the values of all variables for each procedural level.
These languages aso dlow the tracing of procedures, so that an examination of the program
output will reveal the sequence in which control entered and exited procedures. In short, the
debugging facilities allow examination of the path of control and the values of variables.
(See[Satterthwaite 75] for a discussion of the debugging facilities of ALGOL W and avery
good summary of the history of debugging.)

Interactive high-level languages, like LISP and SAIL, increase the user’s control over his
program. He can interrupt it at will and restart it. (This alone is a fantastic advantage over
batch systems. Many are the times that there is no apparent failure of the program, but the

(11.4]

- programmer suddenly remembers a mistake, and he can stop the program to fix it without
wasting unnecessary computer time to complete a worthless computation.) The idea of a
program trace has been strengthened to allow the user to do his examination whenever an
interesting place is reached. All the features developed in DDT for machine language

' programs are incorporated into LISP debuggers.

LISP completes the circle; it is a high-level language that unifies program and data, so that a
program can be self-aware; it has become naturd to write LISP debuggers in LISP itsdlf.

Once it has become clear why a program isfailing, it is often useful to patch that error and
let the program proceed. In this way the next failure can be found, and the patch can be
tested. An interactive debugger allows not only examination but, also modification of the
contents of the program. In alanguage like LI1SP, where there is no distinction between
programs and data structures, the facility to modify data structures is extremely powerful,
because it implies a power to modify the program itself. This power is reflected in the
debugging packages found in most LISP implementations. (See, for example, [Teitelman 74]).

Flow of control is aso a plaything in’ the hands of interactive debuggers. If some bad code is
to be avoided, the program can be made to jump over it. Special code to be executed for
restorative purposes (initialization routines) can be executed directly from the debugger, and
then control returned to the ailing program.

- In most algebraic languages, the input syntax is compiled into a machine language
representation, which is then executed. Interactive debugging of programs in these languages
is made difficult by the fact that the programmer must be able to associate machine code to
source code. . This process is made easier by such debuggersas DDT and RAID (the latter
being a display version’ of DDT, a standard debugger on the PDP-10), which can display
memory cdls in various modes, including symbolic instruction mode and various arithmetic
modes. -Another feature that these debuggers offer is that they can refer symbolically to
locations in memory; if the programmer has named a varigble “feicity”, then that name may
be used during debugging as well. If a program label is “charity”, then that is how the
debugger will refer to that section of code. Thus, these debugging programs contain
disassemblers that can take assembled code and recreste the source that spawned .it. In order
to dlow the user to modify instructions, classical debuggers aso include primitive assemblers

-as well.

The use of symbolic names for instructions (as opposed to numeric format), for labels, and for
variables is a special case of a very important ‘idea in debugging: the code that is being
debugged- should be presented to the programmer in as close a way as possible to the code
that he himself wrote. Unfortunately, DDT and RAID only work on the machine language
level, a level a which most programs are not written. A significant effort in the direction of
source-language debugging is the debugger BAIL [Reiser 751, which -is used for debugging
SAIL [VanLehn73) programs. It is capable of displaying the exact text that is being
executed (by maintaining cross-references into the source file) and takes commands that are a

[15]

subset of standard SAIL commands, especialy procedure invocations. In this case, the
disassembly process is made possible by keeping pointers to the source code, not by

. examination of the object code. BAIL contains a primitive compiler, in that it can parse
some constructs of SAIL for the purpose of patching code. Other source-language debuggers
also, exist; COPILOT [Swinehart 74) includes a sophisticated example. None of these can
display macros in their expanded form.

Style of debugging varies from person to person. A common technique is to proceed the
program until afatal error occurs (like a memory reference trap). By examining the failing
instruction it is often possble to deduce what data are wrong; these data are then examined.
If they are indeed wrong, an atempt is made to locdize the bug by instaling a breakpoint at .
some place where it is expected that the data are ill right. The program is then restarted or
backed up to a safe place and allowed to proceed. When the breakpoint is encountered, the
suspect data are examined. If they already are in error, an earlier breakpoint isinstalled and
the process is repeated. If they are still good, single stepping is employed to see where they go
wrong. One powerful technique is to use a procedure that checks the consistency of the
World, and to call this procedure from the debugger at each of the test breskpoints. [Charles

* 'Simonyi, personal communication] Procedure calls that are expected not to be relevant to the
problem are executed, asasingle step. Finally the error is localized and the programmer
convinces, himself that his code in fact makes a mistake. It is surprising how resistant the
human mind is to the suggestion that a perfectly straightforward piece of code might fail
under some circumstances. Once the error is found, it is fixed in place if a al possble (and

- it often is possible if the debugger is capable of patching one piece of code in place of
another) and tested by backing up once again and seeing if the same fatal error occurs as
before.

A more cautious technique .of debugging is to step through all, new pieces of code one
instruction at atime in order to make sure they do not fail. The methods for determining
sources-of error and fixingthem are similar to the outline above. This method works well if
the failing program is not heavily context dependent, ‘or if the error is so severe that the
program never works. A later stage of debugging deals with programs that fail only

occasionally; stepping through such programs to find bugs is tedious and generally
unproductive. In these cases, debuggi ng often proceeds by setting breskpoints and trying to
figure out the exact Stuation that causes failure, then reproducing the failure at will until the
source of the error has been tracked down.

In summary, what we might cdl classicd interactive debugging has these interlocking features:
_ 1. Symbols are used extensively.

2. Both examination and modification are possible.

3. These congtructs are available for examination and modification:
program labels
program code
flow of control
values of variables (data structures)

(L6] |
4. Backing up (or restarting) and patching are typical operations.

- The realm of examination includes such abilities as searching for code or data having a
particular form, displaying instructions and data, setting * breakpoints or traces on code or
variable-reference so that the flow of control and history of variables may be traced, and
single-stepping to execute only one instruction or procedure call at a time. Modification
involves depositing replacement code or data, zeroing large blocks of data, interrupting
execution, restarting execution at arbitrary places, inserting new labels or moving old ones
(athough no debugger is yet capable of changing al old references to a label to correspond to
the new meaning, with the possible exception of SNOBOL), and directly executing
ingructions from the debugger, especidly procedure invocations.

(11.7]

CHAPTER 3

INTERACTIVE ARM CODE DEBUGGING

The fact that AL is a real-time language for control of rea-world devices in an environment
of multiple processes residing on severa machines presents some unique problems for the
design and implementation of a debugger. The purpose of this chapter is to discuss
debugging issues raised by manipulator programming in generd and by the AL language in
particular. Some conclusions will be reached not only for the design of a debugging package
for AL, but also for the implementation of AL so that it might be easier to debug. These
conclusions can be generalized’ beyond the context of debugging to the larger issue of
preparation of workable code in general and arm code in particular.

Section 1
Block Structure

AL isablock-structured language. In most ways, it conforms to the scope rules standard in
such languages. Asablock is entered, all variables for that block are declared and room
made for them in the environment of the current process. These variables include special
ones for condition monitors, force feedback, events, and caculators. As control exits from a
block, each of these variables is released and its space reclaimed. An attempt is made to sever
any connection between these variables and the state of the computation outside the block:
variables and expressions are unlinked from any graph-structural relations, condition
monitors are awakened to tell them to disappear, and events are returned to the kernd, which
awakens any process waiting on them with a failure indication.

Due to details of implementation, block structure is violated in a few ways. Changers can be
applied to a global variable in such a- way that after control leaves the block in which the
changer was applied, the globa variable till has the changer associated with it; this anomaly
should perhaps be considered more of an implementation bug than a part of the design of
the language.

During the course. of debugging, it often happens that control must be forced to exit from a
block or transferred into the middle of another block: This facility is, most easily implemented
by associating information on variables that must be created and destroyed with each block
entrance and exit. A premature block exit is then simulated by jumping to the end of the

U]

block where the exit. code is to be found. ‘ If the programmer wishes to make a wild jump

from one part of the program to another, it is only necessary to carefully close all the blocks

" that lead’ out to the first common ancestor of the current locus of execution and the desired

one, and then to enter all blocks that lead in’ to the specified place. Once the appropriate
block has been entered, a direct jump to the-indicated code should work.

Section 2
Parallelism

. Thefirst problem that AL presentsisits paralelism. The source language itself alows the
user to split control explicitly into severa threads of-execution. These threads are treated as
Separate processes in the running program. Condition monitors are implicitly aso understood

to refer to processes that have a specia scheduling priority. Even less explicit is the use of
processes to implement joint servos and force feedback variables. Paralelism in AL is
therefore only partidly a result of the explicit nature of the language; any implications such
simultaneity may have for the debugger are equally valid for any language supporting
concurrency (like SAIL, or concurrent PASCAL). Other parallelism derives from the
real-time aspect of AL: condition monitors are intended specifically for rapid response to

- real-time feedback. Still other parallelism is due to implementation decisions taken in the
coding of AL: Both servoing and force monitoring make use of the process structure available
in the runtime environment. Each joint is separately treated by a software servo; to read
forces on. the arm it is necessary occasionally to recompute some configuration-dependent
information. Force caculation is readily scheduled as an infrequent concurrent process, while,
servos are frequently executed.

During a debugging session, one would like to attack problems in one thread of execution
without interfering with other threads. This consideration is especially important if one of
the threads is causing an arm to move, and a bug has been discovered in a different and
independent piece of code. It is not a good idea to throttle the machine by debugging a high
machine priority while waiting for interactive input (unlike 1 1-DDT, which assumes control
of machine interrupts). The problem of non-interference has been discussed by D. Swinehart
[Swinehart 74); hisinterest is to allow the debugger to oversee and report on the state of
continuing computations without interfering with them. The method he employs is to make
the debugger itsdf a process Just like the others.

The debugging process is a window into the inner secrets of any other process it chooses to
examine. It can link itself into the data structures of that process and therefore it has access
to variables and code local to the object of its scrutiny. If variables are held in common
among several processes, then the data structures within any one of them point to all the
global variables. Of course, there is a problem of naming, since different variables may be

[11.9)

caled the same thing in different blocks and in different threads. This problem of
non-unique naming is fairly well understood; standard PDP-IO DDT (and RAID) have
separate symbol tables for separate blocks, and they maintain a current block. If a variable is
requested, it is sought first in the current block, and then in successively more globa blocks.
Commands are provided to change the context by moving to other blocks. This separate
symbol table idea can be generaized to the domain of concurrent processes;, each one has its
own symbol table that associates internal names (those that the process itself uses when

making reference ‘to a variable) with programmer-defined names. Along with a current
process currently under scrutiny by the debugger is a symbol table that dictates how that
process names its variables.

, The naming problem takes a different form with regard to names of processes themselves.
Somehow it must be possible to point to a process and sic [sic] the debugger on it. Naming
problems are exacerbated by the fact that processes come and go during the execution of the
program. It is necessary to be able to name a process that does not yet exist in such away
that when it does exigt, the debugger will use its symbols. -

There may be some use to structuring the set of processes that have been examined so that
one may return to a previous one. A stack of processes that have been under examination is
one such technique, but it suffers from the. fact that the order in which one examines .
processes during debugging is often independent of the actual structure of processesin the
program. Therefore, stacking the processes violates the dictum of naturalness, which implies

- that the debugging structures should be the same, as the programming structures. A more
‘attractive alternative to stacking is to name processes as parents, siblings, and offspring of
other processes. If the current process splitsinto three (for aCOBEGIN nest), then each of
the three can be considered an offspring of the current process and siblings to each other. It

" is, however, unclear to what extent it is necessary to provide such process structure during the
debugging phase; what is clear is that each process that the user may wish to examine must
be accessible, either by an explicit name or implicitly in relation to other processes.

It is conceptually easiest for the debugger always to be pointed at one particular subject
process, known as the current process. All commands to examine or modify data or control
structures will apply only to that process. If another process should encounter a breskpoint, it
‘will send the debugger ,a message and wait, but will not be automatically connected as the
current process. This concept can be fruitfully generalized to the idea of ‘current context,
which is arelated set of processes, all of which are under scrutiny. If the context includes
only one process, and it splits into several new ones, then each of the offspring are aso part
of the same context; no explicit switch is necessary to examine them. Contexts are related to
each other according to the lexica pattern of the program; it makes sense to switch to the next
more genera context (the parent) or to one of several more specific contexts (the offspring).

Paralelisn makes the problem of backing up especidly difficult. One seldom discovers a bug
until it has caused incorrect actions, the debugger must assist the user in restoring the world
to the state it had before the bug struck in order to track it down and try repaired code. The

(11.10]

essentia ability is to have access to dl the state of the machine that defines the world at any
point in the execution and to be able to modify it.

First, the point of execution must be defined in the presence of paradldism; it refers to a point
aong each of the many threads that may be active. That is, the context in which execution is
understood is the most general context of all: the outermost block. This definition is more
restrictive than is gtrictly necessary, since backing up may only be needed with respect to one
or severd threads, that is, within a more specific context. However, there is no guarantee that
a given context will contain any active processes unless that context is the most general one.

Next, a debugger that deds with parallel processes must be able to observe and manipulate
al synchronization control between them. If one thread has produced a signal that another
thread will eventually await, and a bug strikes, it must. be possible to back up past the
signalling of the event. This consideration forces the debugger to keep track of what events
are signdled and awaited. If the event has been successfully awaited by another process, then
to back up the first requires that the second one be backed up at least to the point at which
the event was awaited. This consideration forces the debugger to hold a context large enough
to include al processes that use any important events.

An alternative that has shown some success when signals and waits, are paired into a synch
command involves signals that have short lifetimes. If no process has received a signd after’
a period of time, the signa disappears, and the signalling process repesats the signal. Backing

- past such a piece of code is easy, since its effect, is transitory. This solution cannot be
generdized to the types of events present in most pardle structures, including those found in
AL.

Section 3
Levels of Detall

Another problem presented by AL is the fact that the code and data exist a severa levels of
detaill. Each statement in the source language is trandated to a set of pseudo-operations for
the target machine; that machine is implemented in PDP-11 assembler language, in which
each pseudo-operation is expanded to a hand-coded procedure. Variables are used to clothe
many-disparate entities, including program variables, and, expressions, which are in many
ways symmetric to program varigbles. Condition monitors are dso implemented as a funny
kind of variable, the value of which determines the state of the monitor and the code that it
executes. Force feedback is implemented through yet more complicated variables.

The question is a what level the user would like to carry on his extermination activities. For
errors in logic of his program, he would most like to work in terms of the source language. If

[IL.11]

‘he wants to know the current status of the affixment structure, information not available in

the source language, he might want to track through the graph structure, assuming that he
understands how it is put together. If he istrying to implement a new pseudo-operation, he
may want to work at the level of machine instructions. In general, the debugger has the
responsibility to make accessble al information and power that the user will need in a form
that he can understand. This implies that there should be commands for examining graph
structure, even if it is not subject to scrutiny in the source language. The ingtructions that are
being executed should be visible either in source formalism, pseudo-code, or machine, code, at
the desire of the user.

Part of this problem would disappear if the source formalism were directly interpreted in the
target machine. Thisis not an absurd idea, although the implementation chosen did not
follow that direction. Debuggers for LISP (See [Teitelman 74] for example) take full
advantage of the fagt that all code in LI1SP is representable within the data structures native
to the language. Therefore there are no hidden structures' except for compiled routines,
which are usualy not used unless they are assumed to be bug-free.

Short of implementing AL in AL, some steps could be taken to add features to the language
that alow examination of structures. One such feature would alow the program to discover
if one frame is attached to another. It may happen that such investigatory functions would
be useful in their own right as parts of programs, independently of debugging strategies.
Another suggestion that leads still farther into the L1SP-like realm is to make the debugger
homoiconic with the language, that is, let al debugging commands be available as statements
in the language. Then extend the debugger so that any statement in the language can be
given to it to execute.

The ‘same argument holds a the level of the pseudo-code; not only should statements of the
source language be directly executable from the debugger, but pseudo-operations should also
be accessible. These' operations are useful for performing only a part of a full-fledged
statement. For example, to cause @ new variable to exig, it is most convenient to execute the
pseudo-code that creates variables.

The problem of unusual data types is related to the level-of-detail problem. Not only does
AL have algebraic types (scaar, vector, transform), it also has control types (events,
expressions, condition monitors, force feedback variables, motion tables), each of which has a
peculiar representation of its own. How is a motion table to be displayed so that the user can
seeits destination, initial point, and what clauses have been associated to it? This problem
requires a disassembler with some rather speciad knowledge of not only the code, but aso the
data structures involved in the runtime implementation. The strange format used for such
things as force feedback variables, condition monitors, and motion tables can also pose
problems for medifying their information. According to the philosophy of representing
congtructs in source formalism wherever possible, the way for the user to enter a correction to
these structures would be to restate his source code, and let the debugger regenerate the
proper forms. In this sense, the debugger should have the full power of the compiler.

[11.12]

Y et another suggestion with regard to language design can be’ made in regard to these

- complex data structures. In order to easily point the debugger at any object, it is most
convenient to somehow label that object. *Variables automaticaly have names; that is why it
is so easy to refer to them during debugging. We have aready seen that the fact that
processes do not have explicit names Causes problems in pointing the debugger at a particular
process. The same consideration carries over to such cumbersome Structures as motion tables,
not to mention statements. A reasonable suggestion is to associate variables of the
appropriate type with each of the control and data structures used by the AL language. Not
only would this association facilitate debugging, but it would aso render the concepts
represented by the structures. more flexible. For example; if motions are values that can be
named by variables, it becomes naturd to consider composition and extraction operators that
can act on this datatype. Even some “arithmetic” operators may not be out of the question;
perhaps a scalar multiplied by a trgjectory changes the overall timing of the motion. This
concept of increasing flexibility by explicit naming aso arises in the context of limitations to
the language. The fact that the same suggestion arises naturally in the context of debugging

supports the hypothesis that debugging and programming are very similar activities that are
carried out in the same domain and require identica structures.

_ Section 4
Multiprocessor Environment

The best way to gain the full power of the compiler without actually writing one for the .
execution system is to use the one that already exists. As we have seen, the trgjectory
calculation problem is hard enough to warrant using a larger computer for at least that stage
of the compilation. This desire leads to the need for a linkage between the target machine
and the compiler that will aliew parts of programs to be recompiled’and reloaded during the
debugging phase. If the input formalism to the debugger is to be the same as the statement
formdism of AL, then for every debugging request it is necessary to compile the code; implied
in the request and make the resulting pseudo-code available to the debugging process.

Theidea of atwo-machine link in which one machine can monitor and control the other is
found in some recent computers. The best example is the DEC KL-10, which uses a
PDP-11/40 to monitor and control the PDP-10 main machine. Another exampleisfoundin,
the CDC 6600 computer, in which a set of peripheral processors each has access to the main
memory and can cause interrupts in the main processor, although there is little communication
in the reverse direction, and the several peripheral processors cannot pass information among
themselves. The concept we wish to develop in the context of debugging is dightly different:
Two machines, with overlapping but not identical capabilities, cooperate to solve problems,
where the problems may originate on either machine, and the solution may be found on

[IL13]
aether machine.

This concept is a generalization of that found in the XNET debugger [Beeler 76}, which
alows programs in a PDP-I 1 to be debugged across a network. XNET works with a skeletal
debugger in the PDP-11 capable of handling a small set of examination and deposit
operations (not in a symbolic fashion) and a sophisticated symbolic debugger in a larger
remote machine. Thi two machines are linked by a communications protocol described in
[Mader 74). The coricept mentioned above generalizes XNET-type interactions by allowing
the debugging to proceed under direction from either machine, with symmetric
question-asking potentias in the two computers.

Linking two machines has many delightful properties beyond the ability to compile and
recompile. Firstly, it allows the debugging to take place from either machine. Information
can' be distributed in such a way that the information necessary for the response to-some
gueries is immediately available in the host machine, that is, the one with which the
programmer is directly communicating. At other tjmes, the host computer will need to request
information from ‘or perform actions on data’ that is only available on the remote machine,
that is, the one not currently discussing the knotty issues of bug control with the human
guide. In these cases, the host will send a request to the remote machine in exactly the format
that would be used by the human if he were working from that machine. In fact, thereisno
particular reason why several people cannot be simultaneously debugging from different
portas, each with his own debugging process and his own host machine.

A second feature of’ linking the compiler to the execution machine is that it provides a
mechanism whereby the entire execution can be controlled.by a supervisory program residing
on either machine. Instead of going through the standard stages of writing code, oomplllng it,
loading, and then trying it al out, using a different program for each stop on. one machine or
the other, a unified command structure can control the entire program preparation endeavor.

A third. happy’ result of the -link is that complex forms of feedback (for example, visual
feedback) can be interfaced to running manipulator programs across this link. The running
program can wait for a picture to be taken and processed on the large machine and the
‘results of this exercise can be translated into new values to be deposited in variables in the
running program. This interfacing of high-leud or computationally expensive feedback is
easly obtained by, using a program to emit the commands that the human usualy would feed
‘into the debugger. That same program would be in charge of controlling the television
camera or other feedback device. If the debugging commands are the same as the source
language Statements, the debugger is also an ideal hook on which to hang strategist programs
that reduce abstract task descriptions into AL programs.

[11.14]

Section §
Sde Effects

AL is desgned with two independent types of programmable side effect: condition monitors
and affixment structures. The ability to associate side effects with Situations that are suspected
of leading to bugsis very useful in debugging, but the fact that hidden responses are taking
place can be very confusing:

How can condition monitors be used to assst debugging? If it is suspected that some code is
failing because the arm is never fedling a desired force, a condition monitor can be designed
to stop the arm after some period of motion as if the force had been felt, and the program
can be continued. In this case, a structure is used to simulate a desired result so that other
errors can be found. The condition monitor can also be used to scan for the presence of a
bad condition; for example, suppose that an erroneous signal is being emitted on an event
somewhere and it is not possible to figure out who the culprit is. A condition monitor that

waits for that signal can then immediately stop execution and let the programmer poke
around and find out what is happening. Tracing evanescent situations is the most efficient
debugging use of condition monitors. A monitor can be used to trace the forces on an arm, so

- that the programmer can figure out what a reasonable threshold might be for stopping the
arm. Condition monitors are also capable of testing variables and complaining if the vaues
are bad, but variable testing is the special forte of affixment structures. A specia changer
can be associated with a suspect variable; whenever its value is changed, the changer can
either trace the current value or it can make a validity check and complain if the value.is
bad. ’

Both of these programmable side effects find debugging use, therefore, in testing out °
suspicions and running traces during the execution of the program. In this sense they are
very like output statements with which a programmer peppers his code in order to get some
flavor of how the ingredients of his program are interacting. In order to use this approach it
IS necessary to have some suspicions, to modify the program in such a way’that the suspicions
can be tested, and to then try out the code anew. Interactive debugging usualy does not
follow such atracing paradigm; the debugger itself is used to do the necessary tracing. If we.
aHow the debugger the same power as the source language, there is no reason why a changer
could not be patched into the graph structure for avariable, or a condition monitor spawned
by the debugging process to perform the desired tracing. In this way, the power of the side
effects can be brought under the control of the debugger.

Side effects, although easily brought into the house as pets, are not so easily domesticated.
Those' instances wherechangers, cdculators, and condition monitors influence the values of
important variables or arm motions can be difficult to perceive. Mistakes in affixing frames

(IL15]

can cause particularly opague results. All that can be observed is that the arm goes to the

~,wrong place’ But' how the destination frame managed to get such a value may be a complete
" mystery. Condition, monitors cause a new flow of control to temporarily exist, and during that

time, ‘commands that ‘move arms may be encountered. In fact, it is possible to program
changers so that a side effect of assignment into a particular variable is to park an arm!

The debugger must help the programmer figure out the causes for alt observable behavior.
If the arm starts to move unexpectedly, the user must be able to halt it and find the source
code that ‘is is causing the motion. Tha means that the processes that implement condition
monitors and changers ' must be subject to the same scrutiny as all other, garden-variety
threads of control. In particular, these specia processes have unusual states that the debugger
should be able to influence. For example, a condition monitor has these states. inactive, active
but waiting for the next checking time, busy checking, executing the conclusion, and
uncreated (its block is not being executed). The debugger should be able to put a Aold on the
monitor so that it does not leave its present state, and then be able to force it into some other
state; in this way, it is possible to test out the conclusion of a condition monitor without
having to actually create the condition that normally triggers it.

[11.16]

CHAPTER 4

DESIGN OF A DEBUGGER

What’s in a name? That which we call a rose
By any other name would smell as sweet.
Shakespeare, Romeo and Juliet, IL:ii,43

This chapter describes some of the design of adebugger for AL. Following the pattern of
RAID, AID, and BAIL, this debugger is termed ALAID, although other suggestions [Cerf,

personal communicationl include TRYAL, ADDALD, DEBAL, and even ALDEBERAN
(AL DEBugging Execution Arm Environment).

ALAID is an attempt’ to meet the special needs of an arm code debugger. Its driving
principles are these: 1) The link between the two computers alows a partitioning of planning
and runtime information. 2)'Debugging should proceed equally well from ether machine; they

, should be symmetric as far as possible. 3) Debugging should be possible without the link
insofar as the necessary information is available on the machine used. 4) Debugging should

- condst of symbolic examination and modification of data, program, and control flow. 5) The
debugger should be usable as a top-levdl command structure for the system composed of the
compiler, the runtime, and the debugging package. 6) Insofar as possible, al structures of AL
. code should be available for examination and modification under formaisms present in the
source language.

"~ The purpose of this chapter is to discuss the structures needed to implement such a debugger.
This treatment is heavily based on the nature of the current AL implementation at use at
Stanford, both its software and its hardware. The ideas, however, are generally applicable to
any AL implementation and in part to any programming language implementation.

The state of ALAID at the moment is fairly primitive; it resides on the two machines and can
start up the interpreter, examine and set arithmetic variables, signal/wait events, and cause
the runtime system to enter 11-DDT. These initial facilities alone make the current ALAID
implementation quite useful for testing out new runtime routines, AL programs, and
high-level feedback that requires the PDP-10. Many of the concepts introduced here are
therefore ideas for extensions to ALAID and design strategies for accomplishing their
implementation.

T

[1L.17]

, Section 1
The Link Between Machines

ALAID isintended for the interactive debugging of a program that has been compiled on
one machine and is being executed on another. (The XNET debugger [Beeler 76] also
operates in a multi-machine environment.) The compilation phase not only transforms the
input code into a form acceptable to the target machine, but aso develops a planning model
of the values of variables throughout the program. Furthermore, it creates a symbol table
associating the printing names of variables with level-offset pairs. One might expect the
compilation phase to emit some of this state information into the output code, so that the
debugger can reside entirely on the target machine: However, since the compilation machine
would be needed anyway if the programmer decides to rewrite a section of code, it seems
reasonable that the compiler (or ‘at least some of its tables) remain available during a
debugging run in order to assist in associating names and planning values to variables and to
help in making patches. In this way, the runtime environment does not become cluttered with
too much information that is not directly needed during the execution of a program; such
information can be found in the other machine.

In order te make use of several machines, it is necessary to have a form of communication
between them. In this case of AL, the compiler process resides on the PDP-10, running under
a timesharing multiuser system, and the target machine resides on the PDP-11, running under

, the kernel. The purpose of the &nk is to provide an efficient communication path between

these machiries so that each machine can appear to be both a debugging user and a source of
information from the point of view of the other machine. This link has been implemented as
described below.

1. PROTOCOL FOR THE LINK
The actual link implementation uses the hardware interface that connects our PDP-10 with
the ‘PDP-11. That interface allows either processor to generate interrupts on the other, and
the PDP-10 can read and write the PDP-11 unibus. In this way, information in the memory
df the PDP-11 is available to both processors.

In the following discussion, it is assumed that the interface is a foolproof channel; al .
communications in both directions reach their destinations. Much work has been done in
computer networking to provide for noisy channels, most methods developed in such
environments involve positive acknowledgement, retransmission, and sequence numbers.

‘These technigques could be employed in .the ALAID context as well if the channel were

unreliable; since the present hardware is no less reliable than the processors themselves,
problems of’ inaccurate transmission have been ignored. The current link is aso less powerful

* [11.18)

than a full-fledged network-based communcations protocol; the two machines must be
physically connected by the PDP-11 unibus. These restrictions are not fundamental to the
idea of the two-machine link.

In order to avoid conflict in the allocation of this memory for communications, two fixed
blocks of memory, called noteboxes, are reserved at dl times. One is for the PDP- 10 to send
little notes to the PDP-1 I, and the other is for the PDP-11 to send notes to the PDP-10. As a
sgn that the note has been received and to clear the notebox for further communication, the
receiving processor overwrites the first word of the note, setting it to zero. The traffic in
notes provides for agreements on the use of the larger memory for more substantial messages;
al actual -allocation is treated by the PDP-11, which honors requests for message space both
from its own processes and from foreign notes.

There are very few note types required to maintain the link, since the dlocation of message
buffers is the prime activity at this level. Allocation is non-symmetricaly handled by the
PDP-11, so the two processors send different kinds of notes to each other. Each noteis at
most three words long; the noteboxes occupy very little space. The first word identifies the
type of note, and the second two words provide room for arguments to the requests and
responses.
2. NOTES FROM THE PDP-IO TO THE PDP-II
- These are the note types that the PDP-10 can place in the PDP-1 I's notebox:
note type CETBUF <>
Allocate a message buffer s bytes long. The expected response is the BUFALC note.

note type USEBUF <a>

The buffer that starts at address a is a message. Look at it, act on it, and then reclam the
. message buffer.

note type RELBUF <a>

The PDP-11 sent the PDP-IO a message at address a. The PDP-10.has looked at it and is
-finished with it.

3. NOTES FROM THE PDP-1l TO THE PDP-JO

These are the note types that the PDP-11 can place in the PDP-10's notebox:

[11.19]
note type BUFALC <s, a>

A requested buffer has been allocated for the PDP-10's use. It has size s (bytes) and is at
address a.

~note type TAKBUF @ .

The buffer that starts at’ address ais a message for the PDP-10, which should look at it
and act on it.

4. MESSAGE BUFFERS

Once the dickering between processors has established room for a message, the responsible
processor fills the given area (known as a message buffer). There are several kinds of
messages. The first is arequest; which is either a query for information or a directive to be
obeyed. The second message type is an enswer, which either contains information queried by
some other message or indicates that some directive has been carried out. A third type of
message is the tidbit, which is information possibly (but not necessarily) interesting to the
destination processor, and which may be ignored; it is never acknowledged.

Each message buffer holds the contents of the message along with a few header words that
indicate the nature of the communication:

buf fer header MESID
This entry is the communication number of the message. Answers to requests have the
same number, as the request; in that way, when a processor receives an answer it can use

the communication number to determine which process within its domain made the request
and is awaiting the response.

buff et header MESTYP .
This field distinguishes whether the message is an answer, a query, or a tidbit, and
whether it comes from the PDP-10 or from the PDP-I 1. When a message arrives at a
processor, this information is used to decide what to do with the message.

buff& header =~ MESLTH

The length in bytes of the message.

[{1.20]

5. A SAMPLE DIALOG BETWEEN MACHINES

Suppose that the user has asked the PDP-10 for the value of ‘some variable. The
communication between the machines might look like this:

GETBUF 50 from PDP-10

BUFALC 50.20436 from POP-11

<message at 20436: type request. SHOW VALUE SNAMEvarl)>

USEBUF 20436 from POP-10

<PDP-11 gets value, makes an answer at 22312: type answer. SCALAR 3.0)>
TAKBUF 22312 from POP-11

<PDP-10 gets answer , reports It to user>
RELBUF 22312 from PDP-10

6. ROUTINES RESIDENT ON THE TWO MACHINES

Even though symmetry of form between the two processors is ‘desired, each has a different
regime in force that constrains the implementation. The runtime system is under the tutelage
of the kernel, which has control over the various processes and scheduling. The part of
ALAID that resides on the PDP-10 must be compatible with the compiler, so it has been
, written in SAIL (the language in which the compiler is written) using the SAIL Process
- mechanisms.

The most primitive routines on each processor are those capable of receiving and sending
notes. The implementation could make use of the interrupts that each machine can generate
on the other, but at present this is not done; the receiver on the PDP-11 sleeps for a short
time between checks of the notebox, and the receiver on the PDP-10 is a SAIL process that is
explicitly called when communication is expected. When the receiver gets a note, it makes a
copy and zeroes out ' the first word of the notebox as a sign that the note has been seen.

When the sender ‘is asked to transmit anote, it waits until the proper notebox is free (its first
word is zero) and then dumps the note in place, putting the first word in last.

These routines are under the control of a process known as the server, which perpetually

loops,. caling the receiver to get a note and then deciding how to trest that note on the basis

, of itstype. For example, the server on the PDP-11 must interpret RELBUF, GETBUF, and

USEBUF. The first involves only the free storage allocator; the second also must call the

. sender to inform the PDP-10 that a buffer has been allocated. The third note, USEBUF,

. implies that a message has arrived, in which case the routine treatmessage is called to handle
it.

Treating a message involves different actions for different kinds of messages. If the message
"isarequest, a new process is started to handle it and eventually to return an answer. If the
message is an answer, then it is made available to whatever process sent the corresponding
request. The correspondence between process and request message number is kept in alist

(1X.21)

that is modified whenever arequest is sent or an answer is received across the link. If the
message is a tidhit, then its contents are directed to a tidbit handler. The usual response to a
tidbit is to print it for the user to see. (A process that has encountered a breakpoint makes its
plight known by passing tidbits.)

Just as there is only one server on each machine, there is likewise only one requester.
Sending arqguest involves adding the.name of the requesting process to the waiting list and
sending notes across the link to agree on the transfer of the message. The process that asked
for the transfer is suspended until an answer arrives.

7. FLOW OF INFORMATION

To demonstrate the manner in which information is passed among the various pieces of
ALAID, consider the user request to place a breakpoint at a particular point in the code.
Assume that the user is communicating directly with the PDP-10, and that he uses the name
of a program label to identify the spot. The request looks like this:
'BREAK SADDRESS L1
Now the PDP-10 cannot itsalf insert breakpoints, so it passes the entire request to the PDP-11.
The PDP-11 cannot interpret the label, since it has no symbol table. Therefore it must ask
the PDP-10 to identify the location in its code:
CONVERT PADDRESS ““SADDRESS L1*
The appropriate symbol table resides in the PDP-10, so it takes this request and finds that L1
© is at location 132012. It then responds to the PDP-11:
PADDRESS 1320 12
Now that the label has been resolved, the PDP-11 proceeds to place the breakpoint. Having
finished its task, it responds to the PDP-10:
. DONE :

Some tasks rquire more communication than this simple example demonstrates. If the user
wishes to assign a value to a variable, then the variable must be sought in a symbol table, the
value must be evaluated (possibly involving compiling code and running it, or else by
repeated requests for the values of variables), and finally the assgnment can be made.

These examples point out the various portals to which each ALAID member must respond.
One portal is the user: In the example above, this portal is In use on the PDP-10 member -
only. Each of the two members in the example has a portd devoted to the other member. In
addition, ALAID can be used as an interface into AL from another program; in this case, a
portal is ‘devoted to that program. One example is when the executing AL program
encounters the breakpoint set in the scenario above. It then informs the PDP-11 member of
ALAID through its own portal; ALAID then sends a tidbit to the other member.

More than one portal can be in use smultaneoudly, as we have seen; the PDP-IO0 member is
active on two portals during the breskpoint-setting example. In fact, the program porta can
be thought of as a potentialy infinite set, with one portal for -each process currently active.

(11.22]

This would be the case when more than one process has hit a breskpoint.

Given the plurdity of portas, effort must be exerted to direct information to the right place.

" Queries, are signed by the originator, and responses carry the same signature, o it is
straightforward to direct the answers back to the proper portal. A harder question is to
decide where to send a query that cannot be answered locally. In the case of atwo-member
ALAID, the usuad answer is to send the query to the other member. If the query itself can be

, answered, but to complete the answer requires some information that is not available, then a
query can be formed to get that information from the other member. If that query fails, then
the user can be asked; he is dso a member of the ALAID community, athough perhaps not
in such good standing. In that case, care must be. taken to distinguish between the user’'s
answers and further queries that he might make. In this way, portals can be characterized by
their ability to make and respond to queries. The portal that connects ALAID with a
program is usually useful only for transmitting queries into ALAID and answers back out.
The user is aso usualy a questioner, but in some situations he can be asked queries directly.
The other members have both properties of originating and responding to requests. For the
sake of completeness, one can imagine a portal connected only to symbol tables; such a portal
can be queried but will never generate a request.

Given the multiplicity of ways to direct queries that cannot be directly answered, how can
ALAID know that a query cannot be answered at al? A simple approach for two-member
ALAID is to try only the other member, and if he cannot help, then the request is
- unanswerable. If the impossible part is only .a subset of the whole request, it can be useful to
report back that this particular part was the bottleneck. Otherwise, a smple falure return
suffices. More complicated Stuations ensue if there is more than one porta to, which the
request can be directed, or if there are several ways to subdivide the query into easier
guestions. " Then the process of finding an answer. has the appearance of a depth-first tree
search; every node represents a subquery, and has a set of aternative strategies, each of which
leads to a collection of other, nodes that must be successfully treated for that strategy to work.

In order to prevent the search from becoming circular, each query must contain some history
that tells which members of ALAID have tried to answer the question and have failed. The
initid history list indicates the originator of the query. If a member ever sees a query that he
has seen before, he immediately returns falure. In fact, queries should never be sent to any
member already on the history list. If a query generates a subquery that is somehow
equivalent, then circularity is still possible, because the subquery does not share the history
list of its parent, but can perhaps spawn another subquery that has exactly the same form as
the original one. The only way to avoid this problem is to disalow equivaent subqueries or
to give them the same history list as the original queries.

Some frequently used information might be duplicated in severd members. In this case, any
one that receives a query. that requires, that information can service it. As long as the
information is static, there is no danger that inconsistencies will arise between the several.
repositories. If, on the other hand, the information is subject to fluctuation (for example, the

i11.23]

current context), then some method must be developed to keep the various versions as
consstent as possible. Tidbits can be sent to al interested parties to inform them of a change
in their data base; the issues reside in who should initiate these tidbits and to whom they
should be sent.

. If every piece of shared data has an owner, then only that owner should be alowed to make a
change to the data, and when he does, a tidbit should be sent to the other members to inform
them of the change. That means that a request whose effect is to change information that
has. duplicate copies must be directed to the member that owns that information; queries that
only investigate the information can be serviced from: any of the sharing members. An
aternate technique is to allow.any of the sharing members to make modifications, but to force
them to send tidbits whenever so doing. The disadvantage of this strategy is that it is not
possible to be sure of getting the most recent value of such information, because one of the
members may have changed it without yet informing the rest of the community. In the first -
approach, a good value can aways be generated by asking the owner specificaly.

Tidbits advising that multiply copied information must be updated could be broadcast to the
entire community of members, or each type of duplicated information could include pointers
linking it to the various members who have copies.

8. GENERALIZATIONS OF THE LINK

The idea, of connecting two processors together to share in the work of debugging has some
obvious generdizations. Thelink that has been described is designed to share information
structures in a domain that naturaly divides labor between two processors. Cases in which
‘more than two processors are in use are becoming more frequent; the ARPA network of
‘computers presents an environment in which cooperation among many machines may be used
in the execution of a single agorithm. Furthermore, the decreasing cost of processors seems to
be creating a trend to divide complex algorithms among several, perhaps many, machines.
The natural question is how well the two-machine link can be extended to treat many
machines.

The two issues raised in the previous section, directionality and circularity, pose the major
problems to extending ALA ID to more members. The circularity issue becomes worse with
many processors, since one question can generate several subordinate questions, each of which
can be directed to a different machine.

The directiondity issue is the more severe. Each member could have a list associating types
of queries and members that are capable of responding to them. If aquery is not found on
that list, then it might be sent to each of the members in turn under the hope that the current
recognition list is out of date. If a member returns failure from a query, it must also indicate
what other members have been asked to ook at the same query; otherwise, there could be
wasted effort involved in sending the same query back to members that have aready seen it.
A spanning treethat contains all the members could be used to direct queries; it would be

[11.24]

illegal to pass a query along any link not in the tree or back across the link by which it
arrived. In this way, it is dso possble to reduce the interconnectedness of the entire graph of
members.

may be unreasonable that each processor should be able to recognize all the possible
questions. In this case, a set of clearinghouse processors can keep track of who will answer a
given query. So the first action on receiving a query that cannot be immediately answered is
to query the clearinghouse for the name of the members to which to direct the origind query.
Thus alega datatype of the response language includes member names.

What does it mean to have many processors running on one algorithm? In the case of AL,
one is an execution processor, the other is a planning processor. The most general case is to
have many execution and many planning processors. In AL, the two processors have very
restricted normal communication. The genera case may include many channels of
communication among the execution machines. This communication could be handled’
exclusively through ALAID on each machine through the program portal. In this way, the
communication link that is aready present would be put to good use.

How to connect the various members together is a well-studied problem. ALAID takes some
advantage of the interface between PDP-10 and PDP-1 1. The requirement for many-way
connection is that any machine must be capable of getting messages to any other machine.
One. common memory (with one non-reentrant process for parceling out memory) will work,

- but short of that, especially for more than 10 or so processors (at which point such linking

may get too expensive) anew kind of message could be used, the transit message. It is not
intended .for the recipient, but should be handed on. At this poi nt we are getting into
networking, not debugging issues. As long as any processor can get, a message to any other
one in such a way that the sender is.identified, it suffices.

One generdlization of treating each processor as an indivisible entity, is to treat each process
as an entity. The ALAID member on each process could be shared among al the processes
within a single processor, giving rise to a .two-level hierarchy of ALAID communication.
Once ahierarchy of processesisintroduced, it can be used as a general ordering technique
for the entire cooperative computation, with higher level processes charged with parcelling out
tasks to inferior ones and directing communcations between those lower processes and the
outside world. Using ALAID-based communication might be fruitful in this domain; much
further research is warranted to investigate these issues.

Another realm for further work is the dynamic redistribution of information. Space
constraints may force one Processor to relieve itself of some information of secondary
importance by giving it to another processor to store. Frequent references to some data may
imply that thosedata should be made-more accessible by copying them or moving them to the
requesting processor. To identify these situations, set up new processors with ALAID
members, and transmit the information is a problem of some difficulty whose solution may
prove quite powerful.

(I1.25]

Section 2
Sym bol Tables

As we have seen, debugging is an activity that requires repeated examination and
modification of a test program. The link that has been described in such detail is
fundamental to making information available to the various parts of ALAID. In particular,
symboal tables residing on the PDP-10 provide correspondence between symbolic entities in the
source code and physical entities in the object code. A symbol table can be pictured as a
memory of bindings kept so that the decisions made in binding can be quickly simulated
without being explicitly recomputed. In this way, al the information that goes into the
decisions can be discarded; the result itsef is digtilled for future reference. Three examples of
symbol tables will be discussed here: variables, processes, and code. Each of these symbol
tables must work in both directions: the PDP-11 representation must be resolved into PDP- 10
representation and vice-versa.

1. VARIABLES

The runtime representation of variables is based on their lexical level within the source
program and the order of declaration within that level. A new lexica level is started for each
COBECIN and PROCEDURE (athough procedures are not fully implemented); a slightly
different design might have counted each BEGIN in the lexical level count. , Thus each
variable is identified (athough not uniquely) by level and offset. Typical vaues for the level
are 0, 1, and 2, and typical offsets are even octal numbers from 10 to 100. In the runtime
system, these two cuantities are combined into one 16-bit word with the level in the left 8 bits
and the offset in the right 8 bits. In order to make a level-offset pair uniquely refer to a
variable, it is necessary to know which of several parallel blocks, that is, which context,
contains it uniquely. For example, consider this piece of code:

(11.26]

BEGIN {level 0} {name 1}
. SCALAR $1; {offset 10)
COBEGIN
BEGIN (level 1) {name 2)
. SCALAR S$2; (offset 10)
SCALAR $83; {offset 12)
END;

BEGIN {level one) (nhame 3)
SCALAR $4; (offset” 10)
END
END .
. SCALAR 85; {offset 12)
END

and $4, because they are each the first variable in the first level. During execution, thereis
no possible conflict, because two different interpreters are active; the one that has access to §2
cannot see 4, and vice-versa. Therefore a third datum is necessary to distinguish variables:
the name of the interpreter, or, equivaently, a context in which the variable is unambiguous.
Variable S2 is fully described by the triple (2,1,10), which gives the name, the level, and the
offset; variable $3is(3,1,10). During execution, the name is aways implicit, and no code need

- be generated. However, if ALAID wishes to access a variable, it must specify the name as
well, either explicitly or implicitly. The current context gives a partia implicit specification; if
it contains only one interpreter, no interpreter name is necessary. If there are severd
interpreters, then those variables to which each has access need no interpreter names; the
others do. *

The symbol table for variables, which is used to make correspondences in both directions, is
structured according to interpreters. This structure implicitly includes the interpreter name in
each entry. The individua entries include source code name, interna compiler name (which
is different), and the level-offset pair. Search in the table for level-offset pairs is conducted
first in the top-level interpreter of the current context, and then, if necessary, in each of the
next lower-level interpreters. The result of the search is either a level-offset if that will
suffice, or a name-level-offset if necessary, or an error condition: found more than once, in
which case the context is not sufficiently specific. If the variable is not found at the current

interpreter, then surrounding contexts are searched until the variable is found. To find the
source- name for a given level-bffset pair, if the level is deeper. than the current context, then
there iS no unique solution.” Otherwisg, it is fairly easy to find the source name.

Once a name-level-offset triple has been found, to find the value of that variable on the
PDP- 11 requires that al interpreters be accessible by name. This is accomplished by keeping
alinked ligt of dl interpreters (a tree structure would be more efficient if there are many) and
providing a specia-purpose pseudo-op INAME that causes the interpreter that executes it to
assume a New name.

1

[I1.27)

2. PROCESSES

The previous discussion shows that it is necessary to identify processesin order to properly
access variables. Each process is given a unique name by the compiler. An obvious
extension is to alow the user to assign process names himsdf; this will alow greater ease in
setting the context during a debugging session. A simple pairing of user-given names and
- compiler-generated names suffices. (The actual implementation might use hash coding,
athough the tota number of processes is likely to be smal enough so that even linear tables
are adequately efficient.)

3. CODE

The organization of code on the two machines is quite different. The basic unit in the source

. language is the statement, which is compiled into a” stream of pseudo-operations. There are
four different naming techniques that can be partially interconverted: source code, source
labels, pseudo-code, and addresses on the runtime machine. Let us restrict our atention to the
problem of determining the current statement in the source language given the. runtime
address.

If the entire source program is kept in the PDP-10 memory (thisis the case for the current

implementation), then markers can be emitted dong with the code that refer back to statement

names that the compiler understands. In this way, the pseudo-code can be made.
self-descriptive, and to find the source code from an address on the PDP-11, one need only go

back in the pseudo-code until a, marker is ‘encountered. The price for this method is the
space occupied in the pseudo-code for the marks, which might amount to about 25 percent of

the total code, not counting trajectory files and congtants. (If these are also taken into account,

then the expetise of the marks is only about five percent.)

A related technique is for the compiler to emit a separate symbol table that coordinates
pseudo-code addresses.with source language statements. Such a table would be searched by a
binary chop - methed. About the same space requirements would be necessary in this case; the
advantage is that the symbol table is separated from the objects it is describing, and it can
therefore be moved to the other machine. The trouble with this method is that during
“compilation, no information is maintained about the location where the code will be placed,
and, furthermore, it is hoped that AL will soon become capable of compiling relocatable
modules. The implication of this observation is that the symbol table must be manipulated
by the loader to convert relocatable addresses into actual addresses.

The best solution is to combine these two approaches. The relocatable output should contain
marks that relate the code- to source statements, and the loader should remove these marks,
congtructing a symbol table in the process. In this way, the binding of the symbol table takes
place at the time that all necessary information is available, and at that point extraneous
information (the marks) can be discarded. This solution also lends itself to the problem of

(11.28]

finding the pseudo-code location of a given source-language Statement.

Section 3
Control Over AL

Various programs must be applied in order to achieve execution of an AL program. One of
the purposes of ALAID is to control the compilation, loading, and execution process so that a
unified, face is presented to the user. The ideas in this section lay a groundwork for such a
facility; these concepts have not been implemented in the current verson of ALAID.

The primary unit of compilation is the module. It is-one statement long, and is self-contained.
In general, the statement is a substantial program, but it can be very short aswell. To refer
to variables that are not in that module, a global declaration is given. The planning values
for al globd variables starts as “undefined”, so assertions are necessary before these variables
can be used. The output of a compilation is a load module that has symbol table, linking,
and planning model information. in the form of decorated parse trees.

A linking loader is invoked to take this load module and insert it into the current runtime

- sysem. Thisloader is one of the resident programs on the PDP-10; symbol tables on the
PDP-10 are referenced and modified during the loading process. Direct memory access on the*
PDP- 11 is used to actualy put the program in place.

One useful concept is unloading, which takes the current set of modules on the PDP-11 and

~ packages them into asingle load module for future reference. In thisway programs that are

congtructed piecemea can be combined together into larger modules. The source code for the

various modules currently resident on the PDP-10 might be in part available on the PDP-10;

a amilar process to unloading creates a source file that combines the various modules together
into one program.

Together, these facilities alow programming by experimentation. Routines are written and
tested until they seem to work, and then they are embedded. in larger drivers. A legal
statement in the source language would be “MODULE <name>" that refers to a previoudy
compiled module. The compiler could either read the source code back in and compileit
again,-at some cost of duplication of effort, or recover the decorated parse trees from the
compiled file.

The modules currently’ loaded in the PDP-11 are therefore a dynamic set; new ones can be
added (patched in), and old ones can be removed. A simple symbol table keeps track of
where each module beginsin core, where it ends, and where it is referenced (which should
only be in one place, since procedures are not yet available). To remove a module, its

(11.29]

physical space is reclamed, and’ the place where it is referenced is patched to give an error
should it ever be cafled.

While programs are being written in this experimental mode, it is useful to be able to
manually move the arm, read the position with ALAID, and use the frame value as a
constant in the program. A’ smple facility that alows the result of a previous query to be
embedded in a new query will alow the arm position to be embedded in the program under
construction. Each snippet of program that the user constructs is remembered as a module,
and together the modules can be assembled into & working program, then stored for future
reference.

R gk L

[11.30)

- CHAPTERS
COVVANDSFOR DEBUGGING -

This chapter demonstrates a ten'tative subset of the commands to be available in a full
verson of ALAID. Some of these commands have been implemented in the first preliminary
verson; others are proposed.

In his work on COPILOT [Swinehart 74), Daniel Swinehart gave great attention to the use
of East video displays for showing the state of a multi-process job. In addition to standard
debugging and control commands, he includes -a set of display-oriented commands to
distribute the limited screen among the various data that could be shown and to point to
objects of interest by moving cursors: The display orientation of COPILOT could form a
useful base for ALAID, and the commands listed in this chapter would be enriched by the
addition of display features. It is likdy that such facilities would be available only on the
.ALAID member that resides on the larger machine, since space is a a premium on the smal
machine. Therefore, rapid redisplay of changing status may not be possible in the ALAID

. environment, but even occasiona redisplay would be useful.

The commands are divided into functional groups by the entities they deal with: interna state
, of ALAID, data structures, control structures, control flow, and advanced commands. Each
group has three sections. First, the set of relevant typeout modes is introduced. These modes
 dictate which of severa equivalent forms output is to take. Next, commands for examination
are listed, each with a brief description. Last, commands for modification are listed, again
with descriptions.

L.TYPEIN MODES

Many of the commands require specification of variables or code. For example, in order to
ask for the current value of a variable, one needs to name that variable. In generd, there are
severd dternate formalisms. Some can be immediately recognized in the PDP-1 1, and others
require the symbol tables that reside in the PDP-10. Whenever alternatives exist, the user
should preface his typein with an identifying word that indicates what type he is using. (This
is a ample way of restricting the input syntax to avoid complex type determination. It is not
necessary to the ideas behind the debugger.) In the following discussion, typein modes will be
introduced as needed. AS an example, to refer to the variable “creativity” by its
source-language name, one would type
SNAHE creativity

[11.31]

Section 1
Internal State of ALAID

The internal state of ALAID consists of the current context and a set of modes with which
various data are printed. The context is athread of execution, possibly containing other
threads within it as subprocesses. Contexts are used to disambiguate the meaning of variable
names and to select processes for interaction. Typeout modes dictate the format in which
varigbles and code are displayed. Commands that affect execution (like hating and jumping
commands) influence all active processes in the current context; therefore one should be
careful to distinguish contexts and threads.

This section will discuss the way modes are set; the appropriate typeout modes will be
discussed in the sections in which they arise. Once a mode has been set it is permanent until
reset. (Most versons of DDT have both permanent and temporary modes. RAID associates a
mode for every one of the twenty or so variables that can be concurrently displayed.) Every
time a query is answered in some mode, the name of the mode prefaces the result. The
purpose of thisisto make all output self-identifying, so that the result of one query can be
used as the input to the next. For example, the result of a query for the current locus of
~ control might be:

PADORESS 132024,
or it might be

SCODE ““HOVE BARM TO BPARK VIA BP1"

1. TYPEOVT MODES.

Contexts can be displayed by the code that starts up the thread of execution
(CONTEXT-BY-CODE mode). That code can be named by location or ‘by contents.
Locations in the control store can be referred to either by octal location in the PDP-11 .
(PADDRESS mode) or by labels and offsets in the source code (SADDRESS mode). The
contents of the control store can be shown either as pseudo-ingtructions (PCODE mode) or by

the source code that generated them (SCODE mode). Each. process has a compiler-generated
‘identifier. The identifier associated with the top-level thread of a context can be used to
identify the context (CONTEXT-BY-IDENTIFIER mode).

2. EXAMINATION

et ke et Y

SHOW CONTEXT
The current context is displayed. For example:
CONTEXT-BY-CODE ~ SAOORESS LAB3

[1.32]

SHOW MODES
Each of the current modes in effect is listed. The only typeout mode in which this list can
be printed is LIST mode. For example:
LIST
CONTEXT-BY IDENTIFIER
SADORESS

3. MODIFICATION

SET CONTEXT <thread name> .
The thread can be currently in execution or not. If not, then no information will be
available for variables local to that thread. The named thread can include many
subthreads; only those variables in active subthreads may be accessed. The name of a
thread can be given by the same modes used for showing the context.

MOVE CONTEXT «<list of codes>
The context is to be changed from the current thread. One lega code is “UP n”, where n
is a pogtive integer. This code moves the context to the surrounding thread n levels more
global. Another code is “ACROSS n”, where n is any integer. The context is to be moved
to ,a sibling thread, either forwards (n>0) or backwards (n<0). The last code is “DOWN
n", which moves down one level only, to the nth daughter thread. An abbreviation for
“DOWN n DOWN m .."is “DOWN n, m, . .".

SET MODE <mode specifier>
The typeout mode is st to the one given in the command.

Section 2
Data Structures

1. TYPEOVT MODES

All arithmetic quantities are displayed according to their type, which is built into the runtime
data structure. That is, vectors will always be typed as three numbers. However, there is
some flexibility in typing rotations (and therefore frames and transforms, which have rotation
components). One mode (ROT mode) reduces the rotation to one swivel about one axis, and
reports the'rotation the same way the source language accepts them:
ROT(vector ,angle)

The other mode (EULER mode) reduces the rotation to up to three rotations about cardinal
axes. Thismode is far easier for the human to understand.

[11.33]

Non-arithmetic quantities include expressons and events. Expressions are printed as code;
the relevant modes are PADDRESS, PCODE, SADDRESS, and SCODE, as described above.

Variables can be named as they are called in the source language (SNAME mode) or as they
. are trandated for the pseudo code (PNAME mode).

2. EXAMINATION

SHOW VALUE <variable name»
The variable must be available in the current context. The name can either be in
SNAME or in PNAME modes: | '
SHOW VALUE SNAME brrm
SHOW VALUE PNAME' 32

EVALUATE <expression>
The expression, which, is given in the source language (SCODE mode) is evauated in the
current context, and the'value is returned. With this command ALAID has the full power
of. the source language t0 investigate data structures.

3. MODIFICATION

SET VALUE <variable name> <expression>
The variable name is given as for SHOW VALUE. The expression can be an expression
variable (in SNAME or PNAME modes) or a source-language expression (in SCODE
mode). The facility for executing source language statements (to be discussed in detail
below) Cal also e USEd to set values:
EXECUTE SCODE "<variabled « Cexpression>®

Section ‘3
Control Structures

I. EXAMINATION

SHOW CODE <address>
The' address can be in SADDRESS or PADDRESS format; the code that is displayed will
be in SCODE or in PCODE depending on the current typeout mode. Thus the SCODE
corresponding to a PADDRESS can be displayed. If the PCODE isin the middle of a
single SCODE statement, the SCODE displayed will be annotated in progress.

[11.34]
2. MODIFICATION

SET CODE <address> <code>

The given code (in SCODE or PCODE mode) is placed at the given address (in
SADDRESS or PADDRESS mode). There is no space problem if both the address and
the code are in P modes; other combinations cause difficulties. SADDRESS and PCODE
is usually foolish; it replaces the entire code for the statement with a single PCODE and a
jump to the next SCODE entry. PADDRESS and SCODE is interpreted to mean that
the SCODE at that PADDRESS is to be changed from the beginning, even thought the
PADDRESS may ‘be in the middle. SADDRESS and SCODE is hard because the new
code might not fit in the old location. The newly compiled code is therefore placed in a
fresh location, and appropriate jump instructions are inserted to patch it in.

. Section 4
Control Flow.

1.TYPEOUT MODES

Locations in the control’ store can be referred to either by octal location in the PDP-11
- (PADDRESS m d Or by labels and offsets in the source code (SADDRESS mode). The
contents of the control store can be shown either as pseudo-ingtructions (PCODE mode) or by
the source code that generated them (SCODE ‘mode). (An extension to this facility would be
tb’ allov MC ODE ‘and MADDRESS to refer. to machine ingtructions.). If the location is a-
~ pseudo-ingtruction in the middle of severa that al accomplish the same satement, then ‘the
SADDRESS and SCODE outputs will be annotated in progress.

2. EXAMINATION

SHOW EXECUTION
All interpreters in the given context are listed, with the name of the statement currently in
execution. The statement is listed in pseudo-code and its address is given.

3. MODIFICATION

BREAK <address>
A breakpoint is inserted at the given address. When execution encounters this point, a
message will be sent to the user and control will pause until the user alows the program to
continue. The breakpoint influences only that process that hits it; al others that are active
will continue. The message that the affected process transmits to the user includes a
context specification that uniquely defines which process it is; in this way, the user can set

[11.85)

the context appropriately before issuing investigatory commands.

SINGLESTEP
Once a breakpoint has been encountered, the user often wishes to execute a small piece of
code and observe its effect. The single step command allows a halted process to continue a
short distance and then once again pause. The process that this command affects is the
one pointed to by the current context; if that context includes several active processes, then
the command applies to all of them. This exemplifies the convention that ALAID uses
with regard to contexts: all commands given affect all processes in the current context. It is
always possibk to restrict the context to contain only one process. If the. single step
command is given to a process that is not in a halted state, then the process will be halted.
The amount that an affected process will execute when singly stepping depends on the
. current code typeout mode: if the mode is SADDRESS or SCODE, then one statement of
." the source language is executed; if the mode is PADDRESS or PCODE, then one
statement of the pseudo-code is executed. After the single step command has been
executed, each affected process will send the user a message that identifies the process and
where itis executing.

PROCEED
Any halted process in the current context is allowed to continue execution. Once the user
is satisfied that the program is behaving properly in the region of a breakpoint, this
command is useful for proceeding to the next breakpoint.

HALT
All processes within the current context are halted. As they stop, they send the user a
message telling where they are. This command will not stop’ a moving arm, since the
proéess controlling the arm is in the middle of a single pseudo-operation.

JUMP <address> .
All processes in the current context stop executing at their current location and start
executing at the given address. If a block must be exited or entered before this jump can
be done, then the block exit/entry code is executed appropriately. Since this command is
dangerous, it is not honored if the current context contains more than one active process.

EXECUTE <instruction>
All processes in the current context execute the given instructjon. It is not necessary that
the processes be halted first; as soon as they are finished with the current instruction, they
- perform the given instruction ‘and then proceed with whatever they were doing. Of
' course, it is most usual to give this command to a stopped process. The instruction can be
in SCODE or PEODE modes. This facility is quite powerful; any operation available to
the AL language can be performed in this way. For ex‘amp’le, to set the value of X to .
‘VECTOR(1,1,8), one would tell ALAID
EXECUTE SCODE "X + VECTOR(1,1,3)".

- [11.36])

SIGNAL <event variable>
, WAIT <event variable>

These commands are not strictly speaking either control or data modification commands,
but have some of the flavor of both. Their intent is to allow processes to proceed from
event waits by explicitly supplying the signal and to deactivate the ALAID portal until the
program supplies a signal. These facilities allow feedback routines residing on the PDP-10
to communicate with the program on the PDP-I 1. When the AL program wishes feedback,
it signals a particular “need feedback” event, and waits for the “feedback ready’ event.
The cooperating routine waits for the “need feedback” event, computes the desired
guantities and feeds them into the program by means of ALAID commands, and then’
signals the “feedback ready” event, thereby allowing the program to proceed.

Section 5
Advanced Coin mands

This section describes some miscellaneous powerful features of ALAID that do not easily fit
into the pattern used to describe the other commands.

1. CONVERSION

CONVERT <new mode> <string>
. Direct conversion of typeout modes is possible by means of this command. The string
* should be’ prefaced with the mode that it carries. Not only does this facility allow direct
symbol-table lookup, but it also allows temporary modes to override the permanent modes.
For example, if the current mode is PCODE, then
" CONVERT SCODE *SHOW PCOOE PADDRESS 132024”
is equivalent to
SHOW SCODE PADDRESS 132024
ALAID will respond with the source language representation of the code at location
132024. This example also demonstrates the, use of embedding, which allows one ALAID
guery to be embedded in another one. First the innermost query 8 serviced, and the resuit
of that query is treated as the argument to the next. The conversion facility is used by the
PDP- 11 to translate modes that it does not understand.

2. SUPERVISION

COMPILE <logical name> <source>
LOAD <logical name>)
START <logical name>

DUMP <logical name>

[11.87)

GET <logical name>
INITIALIZE

These commands are intended to place ALAID as the sole supervisory program over the
entire AL system. Each program module can be given a logical name by the user, for
example “SAMPLE”. (LNAME mode applies.) The source might be a file on the PDP-IO
(FILE mode) or a literal statement (SCODE mode). The result of compilation is a file
with name "SAMPLE.PSC", this file can be loaded by the.command

LOAD LNAME SAWPLE

Before the loading can take place,.the AL runtime environment must be available on the
PDP-11. If it is not, then the INITIALIZE command will provide that environment.
This command also can be used te flush any old A’L programs that might still be
cluttering the execution system. The LOAD command will load the named module after
whatever modules are already loaded, so that several modules can be linked together. Part
. of the LOAD command is to make the PDP-10 environment aware of the necessary

symbol tabks.

The pair GET and DUMP are used to save an entire state of the world. DUMP creates
the file "SAMPLE.ALD", which contains the entire core image of the PDP-11, the
information necessary to continue it, ‘and pointers to the necessary symbol tables in the
PDP-10. GET reverses this operation. In this way, safe points can be created during the
debugging of the program. After a GET command has restored the state, it IS wise to
issue the command .
EXECUTE S$CODE “MOVE BARM TO BARH WITH DURATION . 5”

which will have the effect-of dowly moving the arm from whatever position it happens to’
“have back to the place that it occupied when the DUMP was performed.

3 . HISTORY

Messages pass through portals in both directions. Those portals that connect to .humans
contain -the most important information from the user point of view; therefore it is natural to
keep track of that information so that it is easy to recover. If ALAID has responded to a
query, it is likely that the user will wish to ‘use that response as part of his next query.
Therefore two history lists are kept for each portal that leads to a user: queries he has issued
and the responses that have been engendered by them. A legal field in any query is a
reference to a ‘previous query or response; these references are BACKQ and BACKR, which
take numeric arguments. Therefore, if the user examines the value of a frame and then
decides to add a small vector to it, the dialog may look like this:

user. SHOW VALUE SNAME DEST
alaid: FRAME(ROT(XHAT,180%DEG),VECTOR(1,2,3))

user: SET VALUE SNAME DEST SCODE "BACKR(1) + VECTOR{0,0,1)"

For this reason, BACKQ and BACKR are not allowed as variables in the AL language.

_111.38)

4. THE AL PORTAL

AL programs can talk to ALAID in the same manner as the user. The AL statement
ALAID(Cstring>)

sends the string to ALAID and waits for a response; the string that contains the response is

the value of the call to ALAID. In this way, a program can itself make use of the

state-saving features of ALAID, and it can.callin anew load module.

5. ABBREVIATIONS

Certain frequently used commands have standard abbreviations. For example, to look at a
long set of consecutive pseudo-code instructions, it is ‘awkward to repeat

SHOW CODE PADDRESS 132004
SHOW COOE PADDRESS 132006
SHOW COOE PADDRESS 132010

Instead, the simple command <linefeed> suffices after the first location has been opened. Also
<control-P> can be used for the PROCEED command. Other abbreviations can . be
introduced as needed.

(11.89]

CHAPTER 6

CONCLUSIONS

In this report we have seen an approach to debugging that extends to control of the entire
programming process. During debugging, the compiler is available, so that all code and data
structures can be examined as they appear in the source language, and - modifications can be
made in the source language formalism. Modules of acceptable code are joined together into
larger modules, and eventually a working program is prepared, all under the unified control
of the debugger. In order to increase the investigatory power of the debugger, as many data
structures as possible are available to the scrutiny of the source-language program, and the
debugger has access to all the constructs of the source language.

Structures necessary to the implementation of such a debugger include special-purpose symbol
tables to keep track of the correspondences between the source code and the object code,
multi-machine links, and debugging processes that act in parallel to the processes they are
manipulating.

"l'jhe entire programming system that uses ALAID to cement it together and to act as a
supervisory program can be extended to include computationally expensive sensory feedback
by direct communication between the feedback processes and the running programs through
the ALAID links. In addition, this unified structure allows simple programs to be written in
‘AL that mimic several different modes of manipulator programming,,. from tape-recorder
mode (in which positions are manually set and a program is written to repeat those positions)
to completely textual modes (in which all positions and uses of feedback are specified in the
source language). The unification of the various stages of AL compilation and execution also
provides a groundwork on which to base saving and restoring contexts from one stage of
debugging to another, and by the same token, allows backing up to a previous state in any
production run. Real-world problems that mitigate against reversability are not solved by
ALAID, but internal structures can be reset and then queried so that the user has some
assistance in repairing the state of the world to what is expected.

- [11.40)

BIBLIOGRAPHY

. [Beeler 761 M. D. Beeler, XNET, A Cross-net Debugger for TENEX: User’s Manual,
Updated by R. S. Tomlinson, BBN report to be published, May 1976.

[Binford 75] T. 0. Binford, D. D. Grossman, E. Miyamoto, R. Finkel, B. E. Shimano, R. H.

. Taylor, R. C. Bolles, M. D. Roderick, M. S. Mujtaba, T. A. Cafford, Exploratory Study of
Computer Integrated Assembly Systems, Prepared for the National Science Foundation.
Stanford Artificial Intelligence Laboratory Progress Report covering September 1974 to
November 1975

[Mader 74) Eric Mader,” Network Debugging Protocol, Request For Comments #643, Bolt
Beranek and Newman division 52, 50 Moulton St, Cambridge, Mass. 02138, July 1974.

[Reiser 76] John R. Reiser, BAIL —~ A Debugger for SAIL, Stanford Artificial Intelligence
Project Memo 270, Stanford Computer Science Report STAN-CS-75-523, October 1975.

[Satterthwaite 75] Edwin Hallowell Satterthwaite, Jr.,, Source Language Debugging Tools, PhD
Thesis, Computer Science Department, Stanford University, May 1975.

[Swinehart 74] Daniel C. Swinehart, COPILOT: A Multiple Process Approach to Interactive
‘Proggamming Systems, Stanford Artificial Intelligence Project Memo 230, Stanford Computer
Science Report STAN-CS-74-412, PhD Thesis, Computer Science Department, Stanford
University, August 1974.

[Teitelman 74] Warren Teitelman, Interlisp Reference Manual, Xerox Palo Alto Research
Center, Palo Alto, California, 1974 (revised December, 1975).

[VanLehn 73) Kurt A. VanLehn, ed, Sail User Manual, Stanford Artificial Intelligence
Project Memo 204, Stanford Computer Science Report STAN-G-73-373, July 1973, updated
by James R. Low, Hanan J. Samet, Robert F. Sproull, Daniel C. Swinehart, Russet H. Taylor,
Kurt A. YanLehn, March 1974.

[1l. IMPROVEMENTS IN THE AL RUN-TIME SYSTEM

Bruce E. Shimano

Artificia Intelligence Laboratory
Computer Science Department
Stanford University

The author isa graduate student in the Mechanical Engineering Department.

[I1L.1)

A. KINEMATIC SOLUTION PROGRAMS

To date, several methods have been described for computing the joint angles necessary to
position the Stanford Scheinman Arm at a given point with a specified orientation.

, Pieper[3] presented a method of solution for the general case of any manipulator with three
intersecting axes. Paull1] presented a geometric solution which has been used at the
Artificial Intelligence Project since 1972. More recently, Lewis(4] described a method using
vector cross products to obtain expressions for the last three joint angles and Horn[2)
presented a method Of solution using Euler angles for the MIT-Scheinman Arm.

The following is yet another method of solution which has the advantage of extreme speed.
The equations presented below were derived by Lou Paul ‘and Bruce Shimano using two
different methods, one using vectors and the other algebraic. Only the algebraic solution is
presen ted here.

1. Transformation Equations

Given a 4x4 matrix (1) representing the transformation from a coordinate system fixed in
the hand of the manipulator to the base coordinate system, we wish to find one set of link
variables {6,,0,5,5,,0,9,.6,} for the Stanford Arm which will produce an equivalent
transformation.

Ty Ty Tys Ty,
Ty Ty Tyy | Ty
Ty, T@z Tba Ty,

0 1

The transformations for the individual links of the Stanford Arm were derived by Paull1].
If we multiply these six matrices together symbolically and equate the components of the
total manipulator transformation to the required matrix ‘elements (1), we get the following 12

» equations in the SIX joint variables, where "s" denotes the sine function and "¢" denotes the
cosine function.

(1

T, , =s0,(-s0,50;+c0,c0,c00) + cO,(~s0,50,c0; + cO,58,c0,c0 +c0,cO,36,) (2)

Ty = - 30,(0,c0; t c,chs0) + c (58,506, - cB,s0,c0,50, T cb,c8,c0,) (3)
Ty = s0,cB,50, + cB,(s0,cH; + cBys0,0,) (#)
Tiy = 30,(cB,50,84-8,)+ch, (0,05, T 6,8, t ¢6,50,50,5) (5)
Tyy = $0,(- $0,30,c04 + 0,50,c0:ch + B,c,s6) + cB,(s0,50, - c8,e6c8,) (6)

Ty = $0,(s8,50:50 - cb,50 0,50, + cfyc0,¢0) + c6,(504c0‘S + c0,c0s8,) @)

- [111.2])

Tyy = $0,(s0,c0; + c0y38,50;) - ¢0,c0, 50, (8)
Ty = 50,(s0,¢0,S¢ + 30,8, + 0,30 ,56,5¢) + <0, - c0,50,5¢ + Sy) (9)
Ty = = (s0y38,c8,c8; + 30,c0,80 + cb,305¢6,) (10)
T3y = $0,80,c0,50 - 0,¢0,c0¢ + cb,50,s0, (1n
Tyy = - 0,58,0; + cOych (12)
Ty = - 38,30,58,8¢ + cBychS¢ + 0,85 + ‘ (18)

Of these 12 equations only Six are independent - the three equations representing position
(5),(9),(13) ‘and any three of the remaining nine equations which, specify orientation.
Furthermore, no unique solution exists for the above set of equations. For the geometric
configuration of the Stanford Arm, there’ are aways at least eight sets of joint variables
which satisfy the equations, but due to physica stop limits only two of these eight can ever
be attained.

2. Solution for 6,8,5,

To solve for the joint variables, we begin by taking advantage of the fact that the axes of
the last three joints of the Stanford -Arm intersect forming a spherica joint. This smplified
geometry allows us to reduce the problem from one of simultaneousy solving for al six
degrees of freedom to two separate three degree of freedom problems. This is accomplished
by subtracting the directed length of the last three joints from the postion of the hand.
This gives us three equations representing the position of the end of the prismatic joint.
These equations are only functions of the first three joint variables. Denoting the end of
the prismatic joint by {T,Ty.T,} and combining equations (4) & (5), (8) & (9), (12) & (13),
we get:

TY - Tz‘ - SGT23 - ‘Co‘s2 + 80159253 (15)
Tz =Ty - S¢Tay = B8y + 8 (16)

We-can now obtain a quation in, the single variable 8, by simultaneously eliminating s,
and $, from equations (14) and (15). After substituting tangent of the half angle equivalents

; _ 8
for the sine and cosine of 8, the equation becomes a quadratic polynomia in tan 'il' whose
solution follows:

[111.3]

9, - Tx *.‘/ Txn * Tyz - 822
tan 5= e T)’ (17

This equation will yield two values for §, corresponding to the two configurations
obtainable by flipping the prismatic joint over, thus changing from a right to left shouldered
arm or vise versa. The solutions computed using the “+" sign in front of the radical will
produce positive rotation angles for joint 2, whereas the solutions using the negative sign

" will product negative values of 02. Since we always operate our arms with 02 in the range
r-175, -5), we will use the negative form of the solution.

If $,+T is equal to ZE0, two special cases must be considered: either T 20, which indicates
that 0, is equal to 180 degrees, or T <0 in which case equation (17) is indeterminate and the
following equation, can be derived after simplification of the polynomial used to develop

eq uation { 17):
6, T,
tan -§'- - Ti- (18)

Once the tangent of the half angle is determined, the sine and cosine of 8, can be computed
from the following trigonometric identities:

2tan 61 . 1 - tan? 0'
501 - T b, = 2 (19)
1 + tan? -2-1- , 1 + tan® -21

Next, re-writing quations (15) and (16), we obtain the following expressions for the sine
and cosine of .

;0 - T‘r'szcel ce . Tz‘sl
2 33551 2 53

Substituting expressions (17){(19) for the sine and cosine of §,, we obtain:

9, T T 5T 9 (20)
R A

“ Since we are limited to working with the extension of the prismatic joint, $,, between 6 and
35 inches, the ratio of above equations will be determinate and independent Of S3. Hence, we
can co-mpute 4 using an arc-tangent function and quations (20).

The extension of joint’ three can now be found by evaluating the following equation which
was derived by simultaneously solving equations (14) and (15) for Sy:

-T111.4) ,

{xce'l + TYSO‘
. 8 2

s, 1)

Since mechanical stop limits prevent @, from being either 0 or -180 degrees, the equation for
S, is never indeterminate.

-Having found values for 8;, §,, and $;, we can now solve the remaining nine transform
element equations for values of 0“, 05, and 06’

3. Solution for 6,8,8,

There are primarily two forma oOf the following equations that can be used to solve for the
last three joint ‘angles. The two Sets of quations differ in how the degenerate condition for
the last joints must be treated. The arm configuration is called degenerate whenever 8 is
equal to O or 180 degrees. At these times the axes Of rotation for joints 4 and 6 are collinear
and only the sum of 8, and 64 can be treated as an independent variable. One form of the
solution equations for the last joints has the advantage of producing valid results whether or
not the arm is in a degenerate position. However, these equations are slower to evaluate
than the equations which require that degenerate configurations be treated as a special case.
For this reason, only the latter form of the equations will be presented.

We will find it convenient to work with combinations of the equations for the third column
of the transform matrix in deriving expressions for 8, ‘and 8,. Since this column indicates

the direction of the Z-axis Of the hand, &l of its terms are independent of 6. From
equations (4),(8), (12) we obtain the following expressions:

Tygshy - Typeby = sy (22)
Ty380, + Ty386,¢0, = s0,c0; - cB,30,c0, 50, (23)
Ty3chy - Tyys6,50, = 56,50,50; - cf,c0,t0 56, (24)
T3¢0, - T33c0,88, = s8,c0,c 50, + cb,s0,s6, (25)

‘In order to distinguish between degenerate and non-degenerate configurations, we will Qegin
by deriving quations for the sine and cosine of @y in terms of 8,, ,, and S,. Combini ng

quations (22) & (23) and (22) & (24) & (25), we obtain:

305 - *J«Tlaco"Tza‘oi)002"1'33862)2 + (Tlasel‘Tzacol)z
(26)

The sine quation reflects the fact that 8, can' be arbitrarily selected to be positive or

[I11.5]

negative. Since the last three joints have intersecting axes any two sets of joint angles
{0,,85.04} and {6,+180,-8,,6,+180} are equivalent and in fact occupy the same volume in
space. If joints4 or 6 have less than 360 degrees of rotational freedom, the duplicate
solutions can be used to minimize the loss in orientation capability. Otherwise the choice
among the solutions can be made on the basis of producing the minimum total change in
joint angles.

If 8, is equal to O or 180 degrees, then either 6, or 6, can be selected arbitrarily and. the

remaining angle of rotation must satisfy the transformation equations. As the full range of
6; for the Stanford Arm is[-110,110), we need only concern ourselves with the case of 6,

equa to zero. Equations (10) and (11) yield the desired equations for this degenerate case.

: Ty T3

sin(Bg + 0,) = - ‘—6—2- cos(fg + 6,) = - E? 27
If the configuration is not degenerate than we can use the following expressions for 6,
which can be derived from equations (22), (24), and (25).

(Tl 3C01 + 23‘0])002 - Taasoz ce T13591 - Tnce‘

i B X (28)

In order to form expressions for 6, we will now make use of the remaining two columns of
the transform. These first two columns give the orientation of the hand about itSZ axis.
We will find it convenient to immediately combine equations (2) & (3), (6) & (7), and (10) &
(11) to eiminate some of the variables.

T30 + TyycO = =50,56, + c0,cb,c0, (29)
Tyy80g + Tygcy = 50,c0, + s0,c0,c0, (30)

From these three equations, we can obtain explicit formulas for the sine and cosine of 0.
However, rather than use these equations we can obtain much smpler expressions if we
. combine the three equations above with (22),(24), and (25) to obtain the following formulas.

) 50,

(T”c9| + 22501)502 + T'35¢0,

s 3,

606 - (32)
, This completes the solution for the joint angles of the Stanford Arm from a desired

tranformation.

-- [111.6]

4, Solution Execution Time

A new arm solution program has been written which employs the equations presented in this
paper. The execution time for this routine is approximately 2.2 milliseconds on a PDP 1 1/45
using ‘hardware floating point arithmetic. This is roughly half of the time that was formerly
required to compute the joint angles given a tranformation.

4. Reverse Solution Program

To compute the hand transformation from the joint angles, Horn [2) demonstrated that for
the MIT-Scheinman Arm it was very efficient to symbolically expand the matrix products of
the first three and last three joint transformations and hand code the computation of the
resulting matrix elements. The total arm transformation could then be determined by
multiplying the two matrices together in the standard fashion. A further improvement to
this scheme has been suggested by Lou Paul. Instead of forming the full 4x4 matrix
representing the transformation for the last three joints, only its last three columns are
explicitly computed. The last three columns of the full arm transform can then be
determined by multiplying the two partial transformations together, while the first column of
the full transformation can be formed by taking the cross product of the second and third
columns. We have written a program to perform these operations for the
Stanford-Scheinman Arm and find that it executes in approximately a third of the time of
our former method of multiplying the siX link matrices together. The nominal execution
time for this new program is approximately 2.0 msec. Thetwo partial transforms used for
- this computation are presented below. All four columns of the transform for the last three
joints are presented for the sake of completeness.

Transform from Al to AS:

- 86, ' A 'co,coz cf,s0, -50,S,+¢0,50,S,
-cf, s0,¢6, s6,50, $6,50,5,+¢0,S,

0 -5, <6, c0283+S,

0 . 0 0 !
Transform from A4 to A6:
-8 ;50+c0 ,c0sch, ~50 ,c6¢-cf 0,56, cd,s0, c6,s0,S¢
$0,c0,c04+c0,s8, -s0,cO,s0¢+cO,cO, s6,s0, s0,59,S¢
0 0 0 |

‘B. AUTOMATIC FORCE WRIST CALIBRATION

In an earlier report {6], we discussed the design criteria and operational specifications for a
six degree of freedom force and moment sensing wrist that was designed and built for the

[111.7)

Stanford Arm. At that time, we noted the importance of calibrating the force wrist since we
found that unpredictable mechanica coupling had caused our theoretica estimates of the
response of the wrist to be in error by as much as 5 percent. Furthermore, while the thermal
drift and hysteresis were fairly small, it nevertheless seemed a wise precaution to re-calibrate
the wrist from time to time. For our initia tests, we calculated the caibration matrix using a
method that required that we apply three orthogonally oriented forces and three
orthogonally oriented moments to the geometric center of the wrist. To this end, we set up
“an elaborate system of pulleys and weights. While this type of procedure is acceptable for
testing purposes, it will prove to be too time consuming to employ when the wrist is in daily
use. Indeed, once the force wrist is mounted on the manipulator, applying pure forces and
moments to the force sensing wrist may be impossible without either detaching the hand or
attaching special collars. A more acceptable method than either of these two aternatives is
to use amethod of calibration that can deal with coupled combinations of forces and
moments. Also, in order to minimize the set-up time, we wanted to employ a method of
cdibration that requires the minimum number of special purpose attachments to the arm.
With thisin mind, the following calibration procedure was devised.

1. Forward and Reverse Calibration Matrices

F or our force sensing wrigt, a total of eight pairs of strain gages must be sampled in order to
resolve the three components of force and the three components of moment gpplied to the
wrist. If the assumptions of superposition and perfect elasticity are made, any one of the
components of force or moment would in theory be only a function of two or possibly four of
the strain gage readings. In fact, we found that, it was necessary to consider each component
of force to be a function of al eight strain gages in order to achieve better than 1% accuracy.
If we let {Fy FyFz.My MM, } represent our force vector and ¢ (i= 1 to 8) the eight strain
gage readings, caculating the force vector from the strain gage reading can be accomplished
by the following matrix operation.

F =CXxr (33)
where

¢ = | o g ¢ g 7 cg I
€11 ©C12 €13 €14 C15 €15 €17 ©18
€21 ©22 ©23 €24 C25 €26 €27 C28
C - €31 ©32 ©33 ©34 ©35 €36 €37 €38
€41 ©42 C43 C44 ©C45 C45 47 C48
€51 C52 ©53 Cg4 Cg5 Cgg Cg7 Oy
61 C2 ©63 Cs4 g5 C66 ©B7 CB8

The objective of calibrating the force sensing wrist is to compute the ¢; j matrix elements
based upon experimental information. To do this, we will first compute the elements of the

-~ (.81

" pseudo inverse calibration matrix which -was described by Watson [5]). The calibration
matrix, C, and itS pseudo inverse, Cn, are related by the following formula.

C=(Cnl x Cn)'1 x Cn? (34)

The ‘pseudo inverse matrix has terms called en, . {i= 110 8, j= 1 to 6). The pseudo inverse is

analogous to the normal inverse matrix but it is defined for non-square as well as square
matrices. The Cn matrix can be used for computing the response of a single strain gage to
the application of a specified force vector. This relationship can be written as follows:

¢ = CnxF (35)

Once we have computed Cn, we can use equation (34) to compute the elements of the
forward calibration matrix, C.

2. Computing the Pseudo Inverse Calibration Matrix

To compute the elements Of the pseudo inverse matrix, six independent, known force vectors
must be applied to the wrist. These force vectors need not be orthogona nor do they have to

“ be pure forces or moments; however, we will require that their values be known at a single
point whose position is known relative to the center of the force wrist. For each of these
force systems, all eight strain gage readings are to be recorded. We will define the values of
the force vector and the readings as follows:

STh the reading Of the jth strain gage due to the
application of the ith force vector (i= 1t0 6; j= 1 t0 8).

fix = the kth component of the ith independent force
vector (i=1t0 6; k=110 6).

For each of the six independent force vectors, equation (35) must apply, so we can write;

(ij -f‘“mcnjl
fori=12..6)=12,.,8

.« .. ""'fis“‘“‘js

These 48 equations can be re-written as the following matrix equations:

13 f11 f12 fiz fie fis fig cn;y
€2; f21 f22 f23 f24 f25 fop cnj2
3; | . | f31 f32 faz f34 f3s f3g | | ©"j3 (36)
€4 fa1 fa2 T4z fas fus fup cnj4
€5 fs1 fs2 fs3 fg4 fos fog cn;g
€6j fs1 fe2 fe3 fes fes fes cn;ig

This formula represents a System of eight matrix equations, each of which relates the

[I11.9)

response of an individua force sensing element to a series of force vectors. For each of the
matrix equations, ‘we have read the six values of the specified strain gage and so long as the
gx force vectors are independent, the 6x6 matrix in equation (36) will be non-singular.
Therefore, by applying a standard routine that solves sets of linear equations, we can solve
equation (36) for the values of the elements of one row of the inverse calibration matrix,
cnjk (k=1 to 6). By repesting this procedure for each of the eight matrix equations, al of

the elements of the pseudo inverse calibration matrix can be determined . Equation (34) can
then be used to compute the forward calibration matrix.

It should be noted that this basic method of caculating the pseudo inverse caibration
matrix would still be applicable if one wanted to utilize the information from more than six
force vectors. If there are n samples taken (n>6), the matrices in equation (36) can be
replaced by (n x m) matrices and an approximate solution for the rows of the inverse
calibration matrix can be found by the method of least squares.

3. Calibration Procedure for the Stanford Arm

As we are no longer restricted to applying pure forces and moments, we will be able to
calibrate the force wrist while it is mounted on the Stanford Arm. In fact, we can utilize the
positional and rotational degrees ‘of freedom of the manipulator together with the weight of
its hand to aid in the calibration procedure.

Since the force wrist is mounted between the last active rotary joint and the hand of the
manipulator, the known weight of the hand will be used as a standard of reference against

“which al other weights will be compared. While the weight of the hand is not the best of
al possible references, due to its light weight compared to the maximum load that the force
wrist can measure, it does have the advantage of being constant and ever present. Also,
since the weight of the hand must be subtracted from whatever readings we take with the
force. wrist, using it as a reference will reduce the absolute error when small forces are to be
measured. Furthermore, since calibration measurements only require the reading of static
forces, many readings can be taken for each force vector and digita filtering can be applied
to increase their precision.

We now present the outline of a smple program which can be used to cdibrate the force
sensing wrist automaticdly, i.e., without the intervention of manipulator programmers. For
our measurements, we will define HW to be the weight of the hand, DCM to be the distance
from the center of mass of the hand to the center of the force wrist, and DH to be the
distance from the center of the hand fingers to the center of the force wrist. We will resolve
dl forces and moments at the geometric center of the force wrist.

1. The first force vector to be applied is {0,02HW,0,0,0}. To obtain the
corresponding strain gages readings, the arm is first moved to a position with
the hand pointing directly down and a series of readings are taken. Then
the arm is re-positioned so that the hand is pointing directly up and a

- {111.10]

second set of readings are taken. The difference between the two sets of
readings are saved as our ¢ 1j

2. Next the wrist of the arm isrotated until the hand is horizontal and the X
axis of the force balance is vertical. The readings taken in this position and
with the hand rotated 180 degrees about its central axis correspond to the
force vector {2H W ,0,0,02H W «DCM,0}.

3. The third set of readings are to be taken in exactly the same manner as the
second set except that the hand is first rotated about its central axis 90
degrees to dign the Y axis of the force sensor with the vertical. The force
vector associated with this set of readings is {0,2HW,0,-2HW«DCM,0,0}.

4." In order to obtain two more independent readings that combine forces and
moments aong the X and Y axes, the manipulator is now directed to locate
and pick up any convenient object in the work area. After the object has
been grasped, al that we need to know is the position of center of mass of
the object relative to the center of the force wrist. For this purposg, it is
convenient to work with a fairly symmetric object that can be grasped such
that its center of mass coincides with the geometric center of the finger tips.
li thisis true, then the weight of the object can be determined by repeating
step 1 with the object in hand. The new readings can be scaled against the
old and the weight of the object can be determined in terms of the known
weight of the hand. We will call the weight of the object WT. We can now
repeat step 2 with the object in hand. The force vector corresponding to
these readings will be {2HW+2WT,0,0,02HW«DCM+2WT+DH,0}.

5. We now duplicate step 3 with the weight in hand to obtain a new set of
readings. The force vector produced by the combined weight of the hand
and object will be {0,2HW+2WT,0,-2HW«DCM-2WTxDH,0,0}.

6. For the final force vector, the manipulator must grasp an object fixed in
place. This can be a vise, another manipulator, or even a willing and strong
human volunteer. After ensuring that no net forces or moments exist along
any of the axes, the motor of the last rotary joint of the arm is driven with a
constant and known torque, T. Readings are taken for the torque directed in
both directions and the corresponding force vector is given by {0,0,0,0,0,2T}.

Oncethe drain gage readings for the six independent force vectors have been taken, the
procedure discussed in the previous section can be used to compute the calibration matrix
for the-force sensing wrist.

4. R esolving Forces and Moments at an A rbitrary Point

It is often necessary to resolve the strain gage readings into forces and moments that act at a

{IIL.11]

point other than the position used for the calibration. For example, we might wish to
monitor the forces at the finger tips to enable us to stop on contact or we might be interested
in the interaction between a tool we are holding and a work piece. In ether of these cases
the problem is to determine the applied force vector at a point located at a distance
{dy dy.dy} from the calibration point. For a smple linear trandation, the new force vector,

{Fx"FY"FZ"MX"MY"MZ'} is related to the force vector at the point of calibration,
{Fy.Fy.FzMy My M}, by the following matrix equation.

Fye 1 8 @8 8 ‘0 8 Fy
Fye 8 1 8 8 0 0 Fy
Fze 5 8 1 8 0 8 F
My 0 =dz +dy 1 8 0 |7 |nmy &
ﬂyo +dz 8 -dx 8 1 8 NY

We now call the 6x6 matrix on the right D. Then in order to directly resolve the strain gage
readings into an equivalent force and moment at a point located at {dy.dyd5} in the

cdibration coordinate system, we combine equations (37) and (33) to obtain:
F=D=xCxe¢

Findly, if we desire to rotate the coordinate system aong which the forces and moments are
resolved, we can again pre-multiply the calibration matrix by an appropriate 6 x 6 matrix.
Assuming that the rotation is represented by a 3 x 3 matrix, R, which defines the rotation
from the caibration to the new coordinate system, the tota transformation from strain gage
readings to the desired force vector will be given by:

Fe RXDXCXe
where

-

5. Current State of zAe Force Sensing System

The calibration method that has been described in the preceding sections has been used to
calibrate aforce sensing wrist with an attached hand that was not as yet mounted on a
manipulator. From these initial tests it appears that the calibration method works quite well.
We were able to compute a calibration matrix that could accurately resolve subsequent forces
and moments to within approximately 1%.

At present, we are awaiting the mounting of our force sensing wrist on one of our Stanford
Arms. In anticipation of this event, software has been written which can be used to cdibrate

- [111.12]

the wrist automaticaly. In addition, the software now exists to compute forces from the
strain gage readings given the calibration matrix and to resolve these forces at a point
separated from the calibration center by a linear transformation.

Bibliography

(1 Richard Paul, Modelling, Trajectory Calculation end Servoing of a Computer
Controlled 4rm, Stanford Artificial Intelligence Laboratory Memo AIM- 177,
Stanford Computer Science Report STAN-CS-72-311, November 1972.

[2] Berthold K. P. Horn, Hirochika Inoue, Kinematics of the MIT-41-VICARM
Manipulator, Massachusetts Institute of Technology Working Paper 69, May 1974,

(3] Donald L. Pieper, The Kinematics of Manipulators Under Computer Control,
Stanford Computer Science Report, STAN-CS-68-116, October 1968.

143 Richard A. Lewis, Autonomous M anipulation on a Robot: Summary of Manipulator
Software Functions, Jet Propulsion Laboratory Technicd Memorandum 33-679,
March 1974,

(5] P. C. Watson, S. H. Drake, Pedestal and Wrist Force Sensors for Automatic
Assembly, Proceeding ‘of the 5th International Symposium on Industrial Robots,
September 1975, pp. 501-511.

L)) T. 0. Binford, R. Paul, J. A. Feldman, R. Finkel, R. C. Bolles, R. H. Taylor, B. E.
Shimano, K. K. Pingle, T. A. Gafford, Exploratory Study of Computer integrated
A ssembly Systems, Prepared for the National Science Foundation. Stanford
Artificia Intelligence Laboratory Progress Report covering March 1974 to September
1974,

IV.GENERATING AL PROGRAMS FROM HIGH LEVEL TASK DESCRIPTIONS

Russell H. Taylor

Artificia Intelligence Laboratory
Computer Science Department
Stanford University

The: author is currently a Research Staff Member in the Computer Science
Department, IBM T. J. Watson Research Center, P. 0. Box 218, Yorktown
Heights, N. Y. 10598. At the time this research was performed, he was a
graduate student in the Computer Science Department at Stanford
University.

T (iv.1)

Chapter 1.

INTRODUCTION

This report summarizes recent work on the automatic generation of AL programs from
high level task descriptions. It is divided into three major chapters. First, the AL language
is reviewed briefly, and an extended programming example is used to illustrate the problems
that arise when people write manipulator programs. Next, the modeling req uiremcnts for
automatic coding are analyzed, since the automation of coding decisions requires that the
necessary information be represented in a form usable by the computer. Finally, the
extended programming example is revisited, this time with the computer using -its planning
model to generate the AL code automatically.

The material contained in this report is a condensed version of part of my dissertation

*[28]. The main omissions are a discussion of the AL planning model, object models, and
the representation of location and accuracy information, although the appendix in this
report summarizes some of the latter material.

{1v.2].

Chapter 2.
THE AL PROCRAMMING PROCESS

2.1 Introductory Remarks

This chapter provides a brief overview of the AL language, illustrating its characteristics
by an extended programming example, which allows us to examine in some detail the AL
programming process.

2.2 Overview of the AL Language

Superficially, AL programs look very much like ALGOL programs. The language IS block
oriented, and variants of the usual ALGOL structures are used for program control. Since
the programs must be executed in a real-time environment, where several things can be
happening at once, additional control structures for concurrency and synchronization are
required. The necessary capabilities are supplied by the well known cobegin .. coend and

event signal and writ primitives.’
Data Types

One of the key attributes of a formal language for manipulator control is the use of named
variables to describe positions, forces, and other relevant data. Using only the data types of
ALGOL would make programs hard to read and would increase the chance of bugs. AL
avoids these difficulties by providing data types and “arithmetic” operations for the physical
and geometric entities rquired for describing manipulation. The most important of these
special types are frames, which are used to represent coordinate systems, and transes, which
tell how frames are related. AL programs use frames to describe hand positions and object
locations; the set of frame variables and their associated values thus constitute a major part
of a program’s execution-time model of the world.

Affixment

In manipulation tasks, it is common to have several frames associated with the same ob ject,
with each frame playing an important role. When the object IS moved, the frames all
assume new values. AL provides two distinct ways for handling this. One way is to use a
trans ‘variable to recompute each frame value each time it is needed. Thus, a user might
write an expression like

boxsgrasp_xf

to specify the proper hand position for grasping the object whose coordinate system |S given

' Various flavors of these primitives come under many names. See, for instance, [8] for
further discussion.

[1v.3)

by the frame box. This approach can get tedious where the same frames are being
referenced repeatedly, and tends to hide the *intent” of a program behind a smokescreen of
frame transformations. The alternative method of using a separate frame variable for each
frame of interest makes motion statements easier to read and write, but means that all
associated variables must be updated whenever something is changed. The affix construct

.in AL allows the user to specify that a variable is to be “continuously” computed from other
variables. For instance,

affix box_grasp to box at grasp_xf
would cause the assignment statement
box-grasp * boxegrasp_xf

to be performed automatically every time box is updated.* When one object is assembled to
another, or when an object is grasped by the manipulator, it is customary to affix their
location variables. For example,

affix cover to box;
. affix box to blue

The data structures associated with affixments thus form another important part of an AL
program’s model of the world.

Motion Statements

In the tasks for which AL was designed, the hand is the only part of the manipulator that
interacts directly with other objects. The position of the rest of the arm is generally
irrelevant, so long as it doesn't collide with anything. Thus, AL programs describe motions
by specifying a sequence of frame values through which the hand must pass. For instance,

move blue to box_grasp via grasp_approach;
Since the purpose of manipulation iSto move objects, rather than to get the manipulator’s
hand to particular places, thts concept has been generalized to allow the user to describe
motions in terms of frames other than the hand itself. Thus,

affix dex to blue;

move box to new_box_placé via midair_point;

Here, the affiX statement tells the system that changes in the value of the blue hand are to

2 Actually, this is an over-simplification. box-grasp would merely be marked as invalid and
a new value recomputed when required.

3 The manipulator hardware at Stanford consists of two Scheinman arms, one of which is
anodized blue, and the other, gold. Thus, blue and yellow are predefined AL frames
corresponding to the hands of the two arms. (At the time of this writing, only blue has
been interfaced to the runtime system)

{1v.4).

cause corresponding changes in the value of box. This information is used to produce
hand positions that cause box to pass through midair-point and wind up at new-box-place.
The sequence of destination points is translated by AL into the corresponding joint
behavior by a combination of compile-time planning and execution-time revision.

Although a simple list of destination points is sufficient for some purposes, many tasks
require a more detailed specification of how motions are to be performed. Items of interest
include the time to be spent on each motion segment, forces to be exerted by the hardware,
external forces to which the manipulator iS to be compliant, and conditions to be monitored
during the motion. This information is supplied in AL programs by the use of clauses
which modify the basic motion statement. For example,

move carburetor to inspection-station
via unloading-pint
where force(xhat)s0,%
force(yhat)s0,
duration > 2#sec -
via approach-point
on force(zhat) » 8+0z do
stop
on electric-eye-interrupt do
signal passed-checkpoint;

might occur in a carburetor assembly program, where a carburetor has been assembled in a
fixture and now must be moved to an inspection station. While the carburetor is removed
from the fixture, the arm is made compliant to forcesin x and y, and the motion is slowed
down to take at least two seconds. The carburetor is then moved to the inspection-station
via an intermediate approach point. To avoid the possibility that a small positioning error
might cause the manipulator to shove the carburetor through the table, the motion is
terminated as soon as the force in the direction exceeds a half pound. Finally, as soon as
an electric eye detects something, an external control signal is generated.

Tta jectories

Ultimately, ail manipulator motions must be described in terms of joint motions, since joints
are what the runtimc System can control. However, this representation is awkward for
specifying motions and introduces a needless degree of hardware dependency if it is used.
Motions are specified in AL programs by giving a list of positions through which an object.
is to pass. The requited coordination is achieved by solving the joint angle equations for
each position. These data points are then used to produce polynomials (in time) which

describe the behavior of each joint.”

Unfortunately, the computation required for preparation of these polynomials is non-trivial.
Consequently, the compiler must pre-compute trajectories, based on a planning model of

4 xhat, yhat, and that are unit vectors in the X, y, and z directions.

® This method was developed by R. Paul, and, is reported in [19]. More recent refinements
may be found in [5) and {10). In his recent work, Paul has abandoned polynomials in
favor of an intapolation scheme [21,20].

[IV.5)

expected affixment and frame values. These precomputed polynomials are modified by the
addition of higher order terms just before the motion is executed, so that the positions
reached correspond to the actual runtime values. This approach produces well behaved
motions, so long as the required modifications are not too great. However, it also creates a
number of problems for the compiler, which must maintain the planning model.
Eventually, it is hoped that trajectory planning can be done completely at run time.
However, this will not eliminate the need for a planning model, which is also used for

affixments and for other purposes.®

2.3 Sample AL Program

Manipulator programming is a non-trivial intellectual activity, even for simple tasks. This
section illustrates the use of AL to accomplish a simple assembly operation — the insertion
of an aligning pin into a hole = which is a typical subtask for many assembly programs.
The discussion provides some insight INtO the process Of writing AL programs. First, an
outline for the program will be developed. A simple “first cut” program implements this
task outline. We then examine the flexibility and “toughness” of this program. Methods for
error detection and recovery are discussed, and a new, more elaborate, program is produced.

2.3.1 The Task

Initially, the pin sits in a tool rack, and a metal box with holes in it sits on the table in some
known position. Our mission is to get the aligning pin into one of the holes. The way to

-do this is to grasp the pin between the manipulator’s fingers, extract it from the rack hole,
transport it to a point over the hole, and insert it into the hole. Thus, our program, in.
cutline, looks something like this:

begin “pin-in-hole”

{ Declarations and initial affixments }
{ Grasp the pin }

{ Extract & transport over hole }

{ Insert }

{ Let go of the pin }

end

2.3.2 Declarations and Afixments

The declarations include frame variables for the pin, hole, and other points of interest. In
addition, we must write affixment statements describing how the various frames are linked.
Strategy decisions are embodied in these declarations. For instance, we need to declare a
frame, pin_grasp, for use in the grasping operation. It seems natural to affix this frame to
pin, But where? If there is any chance that the pin can bind in the rack or box hole, then

6 As present capabilities are extended, we will probably ‘want to include other facilities (like
collision avoidance) which are too expensive to be done at runtime, and, so, require pre-
planning.

-[1v.6)-

it will probably be a good idea to twist the pin during extraction and/or insertion
operations. To do this effectively, we must grasp the pin so that its axis lines up with the
wrist axis. Alternatively, grasping the pin a an angle may be better for reasons of collision
avoidance or may allow US to produce a more efficient program by reducing arm motion
times. In this case, we' ve decided to twist the pin, so that the “end on” grasping position

, must be used. - Usually, one doesn’t sit down and write all the declarations before writing
any code. This has been done here largely for convenience of exposition:

frame pin, pin-grasp, pin_grasp_approach;
frame pin-holder, pin-withdraw;

f tame Aole, in-hole-position, hole-approach;
frame box;

affix pin-withdraw to pin-holder
at trans(rot(zhat,30xdeg),vector(0,0,4«cm));
pin-holder « frame(nilrotn,vector(l5+inches,/0xinches,0))

affix pin-grasp to pin at trans(rot(xhat,/80+deg),vector(0,0,2¢cm))
affix pin-grasp-approach to pin-grasp at trans(nilrotn,vector(0,0,-3scm));
pin « pin-holder!

affix h-hole-position to hole rigidly

at trans(nilrotn,vector(0,0,-Ixem)};
affix hole-approach to hole at trans(nilrotn,vector(0,0,+Ivcm));
affix Aole to box at trans(nilrotn,vector(5vcm,dxcm,3vcm))
box « initial-box-position;

There may be several choices of what affixments to make, as well as where to make them.
For instance, we have affixed pin-grasp to pén. One consequence is that, if pin should be
rotated, the position of the hand (with respect to the tool rack) when the pin is grasped will
similarly be rotated. The rotation won’t make much difference in this case, since pin is
assigned an explicit value and since the arm configuration won't be much changed by
rotations of pin, anyhow. In other circumstances, arm solution or collison avoidance
considerations may make it desirable to affix pin-grasp to pin-holder instead.

2.3.3 Grasping the Pin

To grasp the pin, it is necessary to open the fingers an appropriate amount, move the hand
to pin-grasp, and close the fingers. The corresponding AL code is

open bfingers to 1.0xinches;
{ The .LO,INCHES is sort of arbitrary. }
move blue to pin-grasp;
close bf ingers;
affix pin to bluey
{ The pin will move if the hand does. }

The most serious difficulty- with this code is that the manipulator may collide -with
something on’the way to pin-grasp. Since the AL compiler does not do collision avoidance,

[1v.7)

we must tend to this detail for ourselves by specifying enough intermediate points so that
we stay out of trouble. What points are required depends on where the manipulator is
before starting the motion, which we haven't specified, and on what other objects are in the
workspace. For the moment, we assume that the manipulator is “clear” of any extraneous
obstructions, and consider only the possibility that the fingers might collide with the pin
while moving to pin-grasp. This may be avoided by moving through an intermediate
point, pin-grasp-approach, affixed to pin-grasp in such a way that the final part of the
motion will take place along the wrist axis of the hand.! Note that this affixment structure
guarantees that the fingers will stay out of the way of the pin even if we change the relation
of pin-grasp to pin.

Another difficulty is that the execution-time value for pin-holder may be inaccurate. If the
rack is bolted to the table, the CLOSE statement may overstrain the manipulator. This
problem can be avoided by adding some compliance to the motion:

close blue
with force(xhat)=0, force(yhat)=0;

An alternative is to use the center statement, which, makes the motion compliant to the
touch sensors on the finger pads.

2.3.4 Initial Program

Once the pin is grasped, a single motion statement can perform the extraction, transport,
and insertion operations. After the pin is in the hole, we can let go of it and move the arm
back out of the way, again being sure not to hit the pin with the fingers while moving off.
These operations and the (revised) grasp code gives us the following program:

begin “pin in hole”
{ Declarations and initia affixments }

{ Grasp the pin }

open bfingers to 1.0sinches;

move blue to pin_grasp via pin_grasp_approach;
cen ter Df ingers;

affix pin to blue;

{ Extract, transport, and insert }
move pin to in-hole-position via pin-withdraw, Aole_approach;

{ Let go Of the pin}

open bfingers to 1.0sinches;

unfix pén from blue;

move blue to bpark via pin-grasp-approach;

end;

7 For this reason, Paul calls z the “ approach” axis of the manipulator. we will adopt this
usage occasionally, also.

[1v.8].

The value oOf pin-grasp-approach in the final move statement will have been updated as a
consequence of its (indirect) affixment to pin. If we had chosen to affix pin-grasp to
pin-holder, rather than to pin, this updating would not occur, and the motion specified
would be rather wild. In this case, we could always invent a new variable and affix it to
hole. Alternatively, we could compute the withdrawa point directly, as in:

move blue to bpark via bluestrans(nilrotn,vector(0,0,-3¥cm));

This works because the values of all points in the destination list are computed before the
motion is begun. If we have a number of such motions, it may be convenient to invent a
frame and affix it to the manipulator:

frame withdraw,3;
affix withdraw_3 to blue at trans(nilrotn,vector(0,0,-3scm));

move'blue to bpark via withdraw_3;

2.8.5 Critique of Initial Program

The program we have just written is complete in the sense that it describes a sequence of
operations that should transfer the pin to the box hole. Whether it will work reliably
enough is another question.® Certainly, any “easy” things that we can do to make the code
more robust ought t0 be given careful consideration.

We have already built one important form of flexibility into the program by using
variables, rather than constants, to describe locations. This has several advantages. The
code is easier to understand, since an identifier like “pin-holder” is generally more
informative than an expression like “frame(nilrotn,vector(I5sinches,/0xinches,0))".
Modification of programs to accommodate changes in part locations is much easier, since the

values only appear explicitly once?

These advantages could also have been derived from the use of compile-time variables or
macros for symbolic definition of constants. An advantage unique to execution-time
variables is the fact that values can be recomputed and saved when the program is run.
Thus, our program will work correctly for many different initial box positions, so long as
the built-in assumptions (that the box is upright on the table, in reach of the arm, etc.) are

not violated.'®

8 Murphy [17] has investigated the reliability of systems in some detail. Experience has
verified that his results apply With special force to manipulator programming.

% Indeed, One can write programs like the one developed in this section at one’s desk. The
required location values can then be measured during initial setup. (For instance, using a
system like POINTY, which is discussed in [14,6)). There are number of tradeoffs
involved in this mode Of programming, the principal advantage being the reduction of
manipulator downtime while a new application is programmed, and the principal
disadvantage being the loss of immediate feedback while the program is being written.

10 Actually, the fact that AL preplans arm_traje;tbries means that the underlying
assumptions are rather more restrictive, though still quite broad.

[1V.9]

In addition to the relatively broad assumptions about what the various runtime values are
apt to be, the program includes a number of much more restrictive assumptions about the
accuracy of its runtime model. If the values stored in the variables differ by even a small
amount from the actual locations they represent, then the program will not work correctly.
It is worthwhile to consider what can be done to reduce the accuracy required, since extreme
precision May be rather expensive and difficult to attain.

2.8.6 Error Detection
Missing the Hole

Earlier, we noted that a simple close statement could overstrain the arm if the pin rack were
bolted down off center. A similar difficulty can arise if the box is displaced from where its
location variable says it is. If the error is big enough, then the pin tip will hit the top
surface of the box, rather thah go into the hole. Here, we cannot just add asimple
compliance clause to the motion statement and expect things to work. We can, however,
detect failure by monitoring force and stopping if & collision is detected:

in_hole_flag « true; { Assume it will work }
Mmove pin to in_Aole_position
via pin_withdraw,hole_approach
on force(pinszhat) > 80z do
begin
stop; { Stop the motion }
inaholc_ﬂag'-false; {We lost }
en

The force threshold of eight ounces is rather arbitrary; a certain amount of “tuning” may be
required to get the best’ value.

, Post-insertion Checks

This code assumes that successful pin insertion occurs if and only if the pin doesn't hit the

top of the box. However, if the box is displaced far enough, the pin may miss it entirely.

Since the force threshold isn’t exceeded in that case, the fingers will open, dropping the pin

on the floor. One way to avoid this problem would be to attempt small hand motions after
, insertion and check for resistance. For instance,

move pin to pinsrot(x hat,/0«deg)

on torque(xhat) > 10sozsinches do
begin
stop;
in_hole_check+true;
end

on arrival do
begin
{ If the motion goes all the way, we lost }
in_hole_checkef alse;
end;

HV.10] .

Two objections to this check are that the extra motion statements take time and that the
box may be moved inadvertently.

Always Stop on Force

Another possibility is to alter the insertion statement so that the successful insertion, as well
as a near miss, will trigger a force monitor that stops the motion. Success and failure can
then be distinguished by looking at how far the motion actually went.

move pin to in_hkole_position+vector(0,0,-. 3xinches)
via pin_withdraw,hole_approach
on force(pinszhat)> 8xoz do
stop;

distance_off « that * inv(in_hole_position)spinsvector(0,0,0%

if distance_off <-.2¢inches then
missed_box_flag « true

else if distance-off >.2sinches then
hit-top-flag « true

else
in_hole_flag « true;

An additional advantage of this “plan to hit something” strategy is that it is much less
vulnerable to small errors in the vertical position of the hole. If a fixed destination point
had been used, and the hole were slightly higher than the runtime value said it was, then
- the forces produced as the arm tried to servo to the “nominal” position could become quite
large. If the hole were slightly below nominal, then no real damage would be done for this
particular task, since the pin would most likely drop into place when released. However,
other tasks are not so forgiving. If we were inserting a screw, for instance, the initial

insertion must bring the screw threads into contact with the threads in the hole.” In such
cases, it is much better to get a positive contact than to rely on brute force accuracy.

“Tapping”

An important requirement for using distance travelled along the hole axis as a success
criterion is that the plane of the hole and the expected penetration distance be known well
enough so that the various cases can be distinguished. In this case, there is no problem,
since the pin goes in a considerable distance and the box sits firmly on the table. However,
we may nhot always be so lucky. For example, the box might have been placed in a vise.
Instead of aligning pins, we could be inserting screws that go in only a short distance before
the threads engage. In such cases, it is sometimes possible to win by deliberately missing the
hole on the first attempt and then using the result to tell where the box surface is. This
might be done as follows:

" Actually, this is a slight oversimplification, since we would probably push down while
driving the screw.

[IV.11}

move pin to spot_on_surfacesvector(0,0,-1.0¢inches)
via pin_withdraw,spot_on_surfacesvector(0,0,/.0¢inches)
on force(pinszhat) > 8s0z O StOp
on arrival do
begin
{ This should never happen }
abort("Help! Help! The box has been stolen")
end;

correction « that * inv(spot_on_surface)spinsvector(0,0,0%

move pin to in_Akole_position via hole_approach
on force(pinsthat) > 8+0z do stop}

distance-off « zhat . inv(in_kole_position)spinevector(0,0,0) . correction;

{ et cetera }

Alternatively, one could use correction to make an appropriate modification to the box or
hole location. FoOr instance,

box « DOX + vector(0,0,correction);

It is possible to take advantage of affixment to do away with the need for any explicit
mention Of correction. For instance,

affix spot-on-surface to box rigidly . . .;

{move down until hit the spot }
move pin to spot_on_surfacesvector(0,0,-1.0¢inches)
on force(pinszhat) > 8+0z do stop;

{ Say that's where we got to }
. spot-on-surface « pin;

The rigid affixment asserts that whenever either frame is updated, the other is to be
update& appropriately. Thus, the assgnment statement will translate the box location to
account for whatever distance the pin actualy travelled. This technique is easy to write,
. since you don’'t have to invent variables or figure out complicated arithmetic expressions.
Also, it is easy to read, since the code is terser, and the assgnment statement more nearly
reflects the “intent” of the motion statement, which was to get the pin to spot-on-surface.

2.3.2 Error Recovery

So far, we've been discussing ways for the program to discover that it has lest.'2 Once a

12 An optimist would say “discover that it has won”, but this is unjustified. There is bound
to be at least one failure mode for which a program check has been left out. Evenif it

RiLVAL)

failure has been detected, we must do something about it. The simplest course is to give up.

if not éin_hole_flag then
abort("Pin is not in hole.);

A somewha more graceful termination might include some cleaning up to get ready for the
next iteration.

if not in_kole_flag then
begin { Put your toys away }
move pin tO pin_holder Via pin-widthdraw;
{ We redly should do some checking here, too }
open bfingers 10 1.0sinches;
unfix blue from pin;
move blue tO bpark via pin_grasp_approach;
abort("Pinis not in hole.");
\ end;

In many cases, thisisall that can be done. On the other hand, it would be nice if some
degree of error recovery could be built into the program.

Searches

Even if the first attempt to find the hole misses, it is plausible to assume that it is somewhere
near where the runtime model says it is. This suggests that we try searching the vicinity of
our firgt attempt. The original AL design included a very complicated search construct for
doing this. This construct has since dropped from sight; the desired effect can till be had
by means of a loop, however:

were possible to anticipate and test for all failures, it would not necessarily be economica to
do so.

(IV.I8)

if not in_Aole_flag then
begin
vector dp;
scalar n;
dp « vector(0.I+inches,0,0);
for n« Jstep Juntil 6 do
begin
dp + rot(zhat,60«deghdp;
{ Try to put pin in perturbed hole }

move pin to in_kole_position+dp+vector(0,0,-1.+inches)
via hole_approach+dp+vector(0,0,1sinches)
onN force(pinszhat) > 8+oz do stop;

{ Check distance travelled, €c. }

if in_Role_flag then
ne?;{ This terminates the search }
end;

if not in-hole-flag then
abort("The hole doesn't seem to be there”);
end;

There are many variaions possible on this theme, depending on how large an areais to be
searched, what pattern is to be used, etc. If vison is available, we may want to use it to
compute a correction for the next trial.

2.3.8 Refined Program

Combining a search loop with the other refinements and adding a check to be sure that the
pin is successfully grasped, we get the following program:

begin "pin-in-hole"

f tame pin, pin_grasp, pin_grasp_approach;
frame pin-holder, pin-withdraw;

f tame Aole, in_hole_position, hole_ap proach;
frame box

affix pin-withdraw to pin-holder
at teans(rot(zhat,30+deg),vector(0,0,4scm))
pin-holder « frame(nilrotn,vector(I5sinches,/0sinches,0))

affix pin-grasp to pin at trans(rot(xhat,180sdeg),vector(0,0,2¢cm));’
affix pin-grasp-approach to pin-grasp at trans(nilrotn,vector(0,0,-3+cm))
- pin « pin_holder;

{IV.14)

affix in_hole_position to hole rigidly

a t trans(nilrotn,vector(0,0,-I+cm)); :
affix hole_approach tO hole at trans(nilrotn,vector(0,0,+Iscm))
affix hole to box at trans(nilrotn,vector(5+cm,4scm,3xcm));
box « initial_box_ position;

{ Grasp the pin}
open bfingers to 1.0sinches;
move blue to pin-grasp via pin-grasp-approach;
cen ter bf ingers
on opening < O.lsinches 0o
begin
stop,
abort("Grasp failed to pick up pin”);
end;
affix pin to blue;

{ Extract, transport, and insert }
move pin to in_kole_positionsvector(0,0,-. 3¥inches)
via pin_withdraw,hole_approach
on force(pinszhat)> 8xoz do
stop;

distance-off « zhat . inv(in_kole_position)xpinsvector(0,0,0);

if not (0.2«inches > distance-off > ® .25rlches) then

begin

. vector dps

scalar n; boolean in_hole_flag;

dp « vector(0.Ixinches,0,0);

in_hole_flag « false; ne0;

while (ne#n+l) s 6 and not in-hole-flag do;
begin
dp « rot(zhat,60+deg)rdp;

{ Try to put pin in perturbed hole }

move pin t0 in_hkole_position+dp+vector(0,0,-1.inches)
via hole_approach+dp+vector(0,0,Ixinches)
on force(pinszhat) > 8+oz o Stop:

{ Check distance travelled, etc. }

distance-off « that * inv(in_Aole_positionxpinsvector(0,0,0%

if 0.2¢inches > distance_off > -0.2¢inches then
in_hole_flagetrue;

end;

if not in_hole_flag then
abort("The hole doesn't seem to be there’);
end;

[IV.15)

{ Let go of the pin}

open bfingers to 1.0sinches;

unfix pin from blue;

in_hole_position+pin; { Update our modd }
move blue to bpatk via pin_grasp_approach;

end;

2.3.9 Further Discussion
Cost of Error Recovery

An important consideration in writing error recovery code, such as the loop above, is that it
is' not always cheap. The amount of programming involved can frequently rival that
required for the ‘main” part — as, indeed, Is the case here. If a useful purpose is served,

this cost is generally unimportant, aside from Procrustean considerations.'® More important
is the extra time rquired in execution. The extra computer time spent in “head scratching”
isn't likely to be an issue.'* The time spent in manipulator motion is another matter. For
instance, each iteration through the loop may take nearly as long as does the initial attempt.
In an assembly line, this kind of delay can get very expensive, athough some provision for
buffering between dtations can help to smooth things somewhat.

Fortunately, some forms of error recovery impose amost no additional manipulation cost.
The principal example is the use of previous measurements to correct future behavior. For
instance, suppose we are putting screws into al the holes in the box. As each screw is
inserted, its location can be noted and used to update the value of sox. Since the remaining
hole locations are updated implicitly, the likelihood of having to search decreases with each
screw. Vision is especiadly important in this regard, since the computations can be done in
the background, in paralel with necessary motions. For example, suppose there is some
chance that the pin may be misaligned in the fingers. If a picture is taken when the pin is
removed from the rack, the actual pin-fingers relation can be computed during the time that
the pin is being transported to the hole.'® This correction can then be used to get the
insertion right the first time.

13 |f the program won't fit into the runtime space available to it, then it is necessary to
decide what to cut out. In many cases, the answer may be to get a larger machine.
. Computers are aready cheap, compared to other components in a manipulator system, and
are getting cheaper by a factor of ten every five years. This suggests that manipulator
systems should be designed for easy expansion, since the marginal cost of going to a whole
"~ new system is considerably greater than expanding a pre-existing one.

14 An exception is if something realy hairy is contemplated. For instance, several systems to
do “problem solving” to figure out how to correct errors have been proposed. See [12].
Sproull [25] has investigated the question of when runtime planning is cost-effective.

15 Bolles [7] is currently investigating techniques for accomplishing exactly this kind of
task. Although, his system isn't quite up to the rea time requirements described here, his
resultsindicate that the task could be performed with essentiatly the present hardware,
provided that someone wanted to do the necessary programming on the runtime machine.

{1V.16}

“If we could first know where we are and whither we are
-tending, we could then better judge wkat to do, and Aow to
do it

Abraham Lincoln
Speech before the lllinois Republican Convention
June 16, 1858

Chapter 3.

8.1 Introductory Remarks

This chapter explores the relation of planning information to programming, in generd, and
to manipulator programming, in particular.

Programming is a form of planning; the essentid quality of a computer program is that it is
aprior specification of how the general capabilities of the machine are to be applied to a

_ specific problem. Every program embodies some assumptions about the special
circumstances in which it will be executed. Thus, an inherent part of the programming
process is the maintenance of information about the predicted execution-time environment,
and the use of such information as a basis for programming decisions. Indeed, the
intellectua burden of maintaining such a planning model is one of the mgor factors in
determining the effectiveness of a particular programming formalism, when gpplied to a
task domain. This burden cannot be escaped; if we wish to help the programmer by taking
over some of the coding effort, then the computer must keep track to the information
relevant to the coding decisions it is asked to make.

5.2 Planning Information in Algorithmic Languages

3.2.1 An ALGOL Fragment

Congder the ALGOL fragment below, which is intended to select the largest element from
an unsorted array, 6.

[Iv.17}

integer array a[/:100%
integer i,n,maxel;
maxel « -23%}{ largest negative number in machine }
{ Assume we want the maximum of the first a elements of a.}
for i« | step 1 until » do
if maxel<a[i] then maxel«a[i}

When we write the statement in the loop body, we know that variable i will contain a value
between 1 and r, that maxelsa[j] for Isj<, that maxel=a[j) fOr at least one j in that range,
and that, by the time the loop has exited, we will have examined all vaues for i from 1 to

n. Further we assume n$100."! A process of great interest to researchers intent on proving
the correctness of programs has been the formalization of these assertions and the use of
well-formulated language semantics to prove the assumptions correct [l 1, 27, 1).
Similarly, one of the strongest claims of ‘structured programming” advocates Is that one
should proceed from such assertions to a“correct” program [9). There has been a great
deal of interest in applying theorem proving methods to automate the generation of
programs from assertions. [e.g., 161.

My own impression is that one does not, usualy, write programs in such a step by step
fashion. Rather than working out from first principles how to synthesize this loop to
compute a maximum element, most programmers would reach into a grab-bag of tricks, pull
out a skeleton program structure, and then fill in the appropriate slots.2 To some extent, the
program is thus composed of “higher-level” chunks, with the programmer acting in a dual
role as a problem solver and coder (trandati n? between the conceptua units in which the
program was composed and those made available by the programming system).

Planning information is used at both levels. For instance, the fact a is an unsorted array or
that the loop sets maxe! to the maximum eement of ae[#n) would be typicd “high level”
facts useful primarily in performing the problem-solving function. Coding information
includes the fact that ¢ is available for use as an index variable, that @ is the name of the
array to be searched, etc.

! Severa people have commented that the loop should be written, maxel«a{I}; for i « 2 Sstep
luntiindo.... Itisinterestingto notethat thisformis equwalent only if n2l. In other
words, we can make a margina improvement in program performance if we have an
additiond piece of planning information.

2 Program bugs happen when some precondition for using the trick is forgotten. (E.g.,
might be in use for some other purpose). It is not necessary to accept the psychologica
validity qf this paragraph in order to gppreciate the main point: that much coding can be
done by adaptation of standard “skeletons’ to fit particular situations.

-[IV.18]

8.2.2 Getting the Computer Involved

A dominant theme in the history of programming system development is the progressive
transfer to the computer of coding responsibilities. The nature of coding is largely clerical.
One keeps track of particular facts and applies them in a stylized manner. As elements of
programming practice become better understood or, at least, better formalized, this process
has been extended into areas of increasing abstraction.

Thus, symbolic assemblers feature the ability to keep track of addresses, maintain a litera
table, etc., providing a substantial improvement over ‘octal” or “push the switches’
programming. Similarly, algebraic compilers perform many functions of an assembly
language coder. They keep track of information like assgnment of variables to registers,
where temporary results are stored, etc., and follow highly stylized (though sometimes
extensive) rules to generate programs that are “equivalent” @ their input specifications.

There are severd important points concerning such “automatic. coding” systems: First, they
use thelr “understanding” of the forma semantics of-the source language and of their own
decisons (e.g., to keep maxel in register 1) to keep track of those facts that are appropriate
to its task as an assembly language coder. Second, optimizing compilers produce more
efficient output code than non-optimizing compilers can, but they must keep track of more
information to do it. Third, there are limits imposed by what can be dated explicitly in the
source language. In generdl, it is much more difficult to “infer” the intent of a particular
piece of code than to write code to achieve a particular purpose. The computer has no
“understanding” that our loop is intended to compute the maximum element of a. It could
not, for instance, decide (because of some earlier code) that ¢ is sorted and compile the loop
as though it were

maxel « a[l}

- On the other hand, if the user’s program were expressed in terms of concepts like “sort
array &", and “sdect the maximum eement”, then the computer might, in fact be able to
write the appropriate code. Recently, there has been a great ded of interest in “very high’

. level” languages, in which programs are expressed in exactly this fashion. [e.g., 2, 13,
15, 26, 81.

Occasionally a user map wish to share coding responsibility with the programming system.
Fdr instance, he may wish to “hand-code’ the inner loops of an ALGOL program, in the
belief (however deluded? that he can do a better job. This creates certain difficulties for the
compiler, which generally only realy “understands’ code that it has written itself, and there
. hasbeen a tendency among language designers (especially those wishing to enforce
particular programming methodologies) to outlaw such tampering. An dternative would be
to provide constructs that allow the user to tell the system about relevant assumptions or
effects for aparticular piece of code, such registers used to contain the results of machine

language statements.®

8 Another possibility, investigated by Samet [24) for LISP progams, is to write both “high
level” and hand-coded versions of the same program. The system can then verify that both
programs are, indeed, equivalent, even though it isn't necessarily clever enough to figure out
the hand-coded versién on its own.

[IV.19)

This sharing of coding responsihility is especialy important early in the evolution of an
automatic coding system, when many things cannot yet be handled by the computer. In
Chapter 4, we describe procedures for making the AL coding decisions of Section 2.3
automaticaly. Incorporation of this facility into a manipulator programming system
requires either that enough primitives be available so that a2 manipulator-level coding
decisions can be made by the system, or that coding be shared, perhaps by having the
computer generate program text for subsequent modelling by the user. Again, some
assertional mechanism is dmost certainly necessary to help the system ‘understand” code
written for it by the user.

3.3@® Paming Information in Manipulator Programming

Many of the book-keeping requirements of manipulator programming are essentidly the
same as those for “agebraic” programming. One must keep track of what variables mean,
what things are initiaized, what control structures do; etc.

In addition to these general requirements, the domain requires the maintenance of
information particular to the problems of manipulation. This information may be divided,
roughly, into the following categories.

1. Descriptive information about the objects being manipulated.
2. Situational information about the execution-time environment.

3. Action information defining the task and semantics of the manipulator
language.

Subsequent sections discuss these issues in greater detall.

3.4 Object Models

Programs which specify explicitly what actions are to be performed by the manipulator
generaly need contain little explicit description of the objects being manipulated. In the
AL program developed in Section 2.3, for instance, there is no information about the shape
of the pin, hole, or anything else. The principa language construct for describing objects is
the affix statement, which is used to specify how the location of an object is related to the
location of its subparts or features. For instance,

affix hole tO box at trans(rot(xhat,90«deg),vector(2.4,1.3,3.2))

On the other hand, a great many assumptions about the objects have been built into the
program. For instance, the check used to verify that the pin has been grasped successfully
relies on knowledge of the pin diameter; the extraction, grasping, and insertion positions
implicitly assert that the hand or pin will not crash into anything; the insertion strategy
assumes that the pin will accommodate to the hole somewhat, that misses will cause the pin
to hit a surface coplanar with the hole or else miss the object atogether; and so on.

{1V.20]

These assumptions do not get built into programs by accident. Information about objects is
used extensively in both the ‘problem solving” and coding functions involved in
manipulator programming. In mechanical assembly programs, the task is largely defined by
the design of the object being put together. In addition to specifying what Is to be done,
the design dso dictates many. aspects of how to do it, such as in what order the various
parts must be assembled, how the parts can be grasped by the hand (or put in a fixture),
what motions are required while mating parts, and so forth.

For manipulator programming, the most important aspects of object descriptions derive
from the shape of the objects being manipulated. Unfortunately, good shape
representations for computer use have yet to be developed. Many decisions that are
intuitively obvious to a human programmer require a laborious computation by the
computer. On the other hand, it is possible to identify many “loca” properties that play an
important role in coding decisions. For instance, in coding the pin-in-hole example of
Section 2.3, we used object information in a number of ways:

1 Filling in parameters. The most obvious example is the location of the hole
with respect to its parent object:

affix hole to box at trans(nilrotn,vector(3.8+cm,3.2¢cm,4.9¥cm));

Other uses include setting the minimum grasp threshold, the expected
penetration of the ﬁin into the hole, and selection of a grasp point that kept
the fingers out of the way.

2. Estimating the accuracy required to guarantee that the pin will seat
properly in the hole. The alowable error is determined by such factors as
the point on the pin, chamfering around the hole, clearance between the pin
shaft and hole bore, etc. It is Important in deciding whether the insertion
method used here will work and in setting the “step size” for the search
loop.

The object representations used in this work are described in my dissertation [28). It is
important to note, here, that these uses predominantly involve loca properties of features
(eg., the chamfering around a hole, or the placement of holes in a surface) that are, in
principle, computable from a uniform shape representation, but which may also be
represented directly in severa different forms to serve different purposes.

3.5 Situational Information

Manipulation programs transform their environment by moving objects around. This
means that the principal fluent'properties that must be considered are:

‘1. Where objects are in the work station.
2. -What objects are attached to each other.

4 By “fluent” properties, we mean any factors relevant to the task which may not remain
congtant during execution of the task.

(Iv.21)

3. How accurately relevant locations are known by the manipulation system.

The use of this information was illustrated in our discussion of the pin-in-hole example.
Among the more important considerations were:

1. We made a number of unstated, though “obvious’, assumptions about the
location of the various entities. For example, the hole was assumed to be
unobstructed (i.e., the box better be right side up).

2. In grasping the pin, we had to consider whether the hand could reach the
required locations. If it is possible for the box to be in more than one
position or orientation, then this must be taken into account.

3. We made use of the fact that the pin could be attached temporarily to the
hand by grasping. Similarly, it is important to redlize that a subsequent
motion of the box will cause the pin to move, too.

4. The code contains many assumptions about the accuracy of our variables
pin and hole. In deciding whether “tapping” or a search were necessary, for
Instance, it is necessary to consder whether the “adong-axis’ determination is
good enough and whether in-plane errors are within the “capture’ radius
required by the pin to hole geometry.

Any reasonably sophisticated maniputator language alows much of this information to be
represented explicitly in the program. In AL, for instance, object locations are represented
by frame variables and attachments, by affixments. In writing programs, it is thus
necessary. to keep track of programming information, such as what variables have been
declared and what calculations have been performed, and to relate this information to the
physical redity being modelled. It does little good to know that, once we have closed the
fingers on the pin, it will move when the hand does, unless that information is reflected in
the program by a corresponding affix statement:

3.6 Action Information

Clearly, it is necessary to understand the semantics of the manipulator language in order to

write programs in it This is essentid both for transating desired manipulator actions into
the corresponding code and for keeping track of Situationa information.

Earlier, we described the coding component of programming as adapting previously defined

code skeletons to fit particular facts. This occurs in manipulator programming to a
surprising extent. For instance, the “grasping” sequence of our pin-in-hole example is
readily adapted to pick up more or less arbitrary objects.

5 Of course, this knowledge does not have to be perfect. There are those whose approach
to programming is empirical, to say the least. Even where a certain amount of
experimentation Is attempted, however, one generaly requires at least an approximate
model of what a particular statement is supposed to mean.

-[1v.22]

open blue to initial-opening;
move blue to object_grasp
via object_graspstrans(nilrotn,vector(0,0,-4sinches);
center blue
on opening < minimum-opening do
begin
stop;
abort("It just isn't therel”);
end;
move object to object_pickup_point;

The slots to fill in are initial_opening, minimum-opening, object_grasp, and
object_pickup_point. As we will see in Chapter 4, these may be computed from the
situational and ob ject modelling information.

8.7 Concluding Remarks

This chapter has discussed the role of planning information in prggramming and has

described the particular kinds of information that are needed for manipulator .
programming. A key point, here, is that the burden of maintaining this information cannot

be escaped. If manipulator programs are to be generated automaticaly, then the planning

Ejnfor_mation must represented in aform that the computer can use to make reasonable
ecisions.

A full discussion of the representation methods used by the automatic coding procedures
described in Chapter 4 may be found in my dissertation [28]. To make this report self-
contained, a short summary of the most important technical results is given below.

The AL Planning Mode

The AL compiler itself performs a number of coding functions, such as planning
trajectories and rewriting motion statements, not ordinarily found in agorithmic languages.
These functions require that the compiler keep a better model of stuationa information —
especidly, the expected value of frame variables and affixments - than might otherwise
be the case. The compiler associates a data base of assertiona “forms’ with each control
point in the program graph, and uses smple smulation rules to propagate facts. The same
mechanism = a multiple world assertional data base - is used by the automatic coding
procedures discussed in Chapter 4 to keep track of stuational information.

Object Information

Object modeling is done by “attribute graphs’, in which shape information is represented in
the nodes, structural information by links, and location information by properties of the
links. The most interesting point is that coding decisions can generally be based on “local”
properties of the object.

[1V.23)

Situational Information

In order for the computer to make reasonable coding decisions it must often have numerical
estimates of object locations and of how accurately those locations will be known at
execution time. Techniques were developed for expressing “semantic” relations between
object features in terms of mathematical constraints on scalar “degrees of freedom” and for
applying linear programming techniques to predict limits in inter-object relationships.
Differential approximation methods were aso developed and used to predict errors. The
appendix to this paper gives examples of both techniques.

Action Informrtion
In. the system described in this report, action. information is not represented explicitly.

Instead, It is embedded implicitly in the procedures that make the coding decisions and
generate the output programs, as we will see in the next chapter.

[1v.24]

*Watch me pull a rabbit out of my hat!”

Bullwinkle Moose

Chapter 4.
AUTOMATIC CODING OF PROGRAM ELEMENTS

In Section 2.3, we described the process of writing AL code for acommon subtask in
assembly operations ~ insertion of a pin into a hole. We saw that writing the program
required a number of decisions, based on our expectation of where the objects will be and
how accurately their positions will be determined at runtime. The discusson of Chapter 2
focused on the modeling requirements for automatic coding. The key point was that

- automation of coding decisions requires that the necessary information be represented in a
form usable by the computer. This chapter describes the use of the computer’s planning
model to make these decisions automaticaly.

The program outline followed is essentidly that derived in Section 2.%:
1. Grasp the pin.

2. Extract it from the pin rack and transport it to the hole via a point just
*above” the hole.

3. Attempt insertion by moving the pin along the axis of the hole until a
resisting force is encountered. Use the distance travelled to determine
whether or not the pin insertion is successful.

4. 1f the insertion is unsuccessful, then use a local search to attempt to correct
the error.

The decisions that must be made include:

1. Where to grasp the pin.

2. How to approach the hole. Although we have decided on a co-axial
approach, we gill must decide the relative rotation of the pin and hole
frames.

3. What threshold values to use on our success test. Also, whether or not it is
necessary to “tap” the object surface to get a better determination of the pin-
hole relation before trying the insertion.

4. What search pattern,” if any, to usein error recovery. ,

[Iv.25)

The overall approach isfairly direct: First a number of preliminary calculations are
performed, based on the task specification and initid planning model, to obtain initial
position and accuracy estimates and to determine basic tolerances. Then, the system
generates possible ways to grasp the pin, subject to geometric feasibility constraints. For
each distinct grasping strategy, a “best” approach symmetry for the pin relative to the hole is
computed, using expected motion time as an objective function. The grasp-approach. pairs
are sorted by “goodness” and. then are reconsidered in “best first” order, to see what
additiona refinements are required, based on the estimated pin-to-hole determination. If
the error aong the hole axis is too large, then a “tapping place” is found as near the hole as
is safely possible. Similarly, if the errors in the plane of the hole are too great, then a
decision to search is made. The expected time required for tapping and search are
caculated and added to the cost. The process is continued until an optimal strategy can be
chosen. Once the decisons have been made, it is fairly straightforward to generate the
corresponding AL code sequences, which are quite stylized.

Subsequent sections will describe each of these phases in greater detall.

4.1 Data Structures

" Internally, strategies are tepresented by SAIL record structures summarizing the decisions
that have been made. This section describes the more important parameters kept for pin-

in-hole and pickup strategies.?
Pin-in-Hole Strategy

prelimin aries— A list of “preliminary” actions that must be performed before
the code for the actual pin-in-hole code is begun. Typicaly, this involves
cleanup actions left over from the previous task, and IS set up by the initial
processing.

pickup - A “pickup strategy” to get the pin affixed to the hand and free of any
obstructions. For picking up an object by grasping it in the fingers, this field
would point to a strategy”, defined below.

dtty = The distance into the hole that we will try to poke the pin.

standoff — The distance above the hole that we will place an approach point.

¢ — The relative rotation of the pin to the hole upon insertion.

' The combination of grasping method, approach symmetry, and expected penetration
_distance into the hole constitutes sufficient information to write a “first order” program that
ignores errors, such as was produced in Section 2.8.4. However, as we saw earlier, the job
isn't yet half done.

2 The gtructures shown here are dightly different from those actually kept. The changes
have been made for ease of explanation; the information content is the same. Section 4.8
includes a computer generated summary of the actual interna structures. You have been
warned, SO o‘OrT’t) get confused.

[1V.26)

tapping place — Point on the object to be ‘tapped” to reduce the error dong
the hole axis, if necessary.

Ax, Ay, Az, § - Parameters summarizing the “error” footprint of the pin, tip
with respect to the hole. Define a rectangular parallelepiped with sides (Ax,
Ay, Az), rotated by ¢ about the hole axis. See Figure 4.1.

A6 - Maximum expected tilt error for the pin axis with respect to the hole
axis. :

ttimﬁ I- Expected time spent in grasping the pin and transporting it to the
ole.

finetime — Time expected to be spent in “fine ad justment” motions. Currently,
time for tapping motion + search time.

goodness -~ Estimated cost of this strategy. Here, ttime + finetime +
goodness(pickup).

Grasp Strategy
object — The object to be grasped.
preliminaries - As before, alist of preliminary actions that must be performed
before the object (here, a pin) can be grasped. A typical eement would be
code to put down atool.

grasp point — Point where object is to be grasped. The structure used to
specify such “dedtination points’ is discussed below.

approach point - Via point on the way to the grasp point.

approach opening — Required opening for the fingers by the time the hand
gets to the approach point.

grasp opening = Minimum expected opening for the hand to hold the object.

grasp determ - An estimate of the accuracy with which the object will be held
by the hand, once the grasping operation is successfully completed.

departure point — Via point through which pickup-and-move operation must
pass.

goodness — Measure of the cost of this pickup strategy. Typicaly, an estimate
of the amount of time required.

Destination Points
Destination points in AL motion statements redly involve two.components.

1. A frame-valued expression specifying some location in the work station.

[1v.27}

Figure 4.1. Error Footprint

2. A ‘controllable” frame variable whose value is to be made to coincide with
the target value.

Thus,
move a to b

is, in some sense, a manipulatory equivalent to the assignment statement
ae b

For our present purposes, it will be sufficient to restrict the “right hand side” component of
all destination peints to the form

<object or fcatun namedecconstant trans expressiond
Thus, the data associated with each destination point consists of:
whrt — The ob ject or feature which 18 to furnish the controllable frame.
base — Object or feature for target expression.

Xf — Constant trans-for target expression.

[1V.28)

Section 4.7 describes how sequences of such “destination points’ may be turned into
motion statements.

4.2 Initid Coinputations
The most important initidd computations are those responsible for caculating the expected
initial positions and error determinations of the pin and hole. Following the methods
developed in my dissertation [28], we get

H = estimated position of hole (with respect to work station)
= HQ\ () = HO)

Pinit = estimated initial position of the pin.
= Pinitl¥))

AH = estimated accuracy of H at runtime
= AH®)

APjni¢ = estimated runtime accuracy of P.
= APt

" subject to congtraints on Au, b ande For planning purposes, we will mainly ded with the
expected locations

HO« H(0)
Phit = Pinit(®)
Also, we need several important paramters describing how the pin fits into the hole:
direction — The end of the pin which is to be inserted into the hole.

dg — The distance the pin is to go into the hole.

dg — The maximum @ dticking distance’ into the hole that the pin can “jam”
without making it al the way to where it is supposed to go. Thus, dgdg

represents a minimum threshold for telling whether the pin insertion is
successful.

3 Here, we are being a bit soppy in our use of “H”. The difficulty is that we must desl with
three separate entities representing the hole: (1) the object modd representation (a LEAP
item); (2) our location estimation; and. (3) a variable in the output program. Generally, this
discussion will center on (I) and (2); (8) isn't needed until time comes to generate the actual
program text.

[Iv.29]

A6y - Maximum possible axis misalignment for the pin insertion to succeed.

Qrgy — Maximum possible radius misalignment between the pin and hole for

the insertion to succeed. Thus, &8y and Argy congtitute a measure of the
effectiveness of accommodation during insertion.

The direction must be supplied by the user as part of the task description.4 In principle, df
and dg may be computed by looking at the profiles of the pin and hole. At one time, this
was done. However, the computation turned out to be extremely tedious, and ignored some
important factors, such as friction.® Therefore, these numbers were determined by
experimenting with the actua objects and included in the object models, as were Argy, and
Qbg,. This approach does not seem unreasonable, since pins and holes may be

standardized. Presumably, a data base could be built containing the relevant parameters
for each tip-hole combination encountered in a class-of assemblies.

4.3 Grasping the Pin

Once the initid computations have been done, we proceed to generate dternative strategies
for picking up the pin. For each such strategy, we create a “grasp strategy” record, as
described in Section 4.1. Although we confine ourselves to grasping the pin directly between
the ‘fingers, it is interesting to note that aternative methods, such as loading a screw onto the
end of a screwdriver, could be handled similarly. The rest of the pin-in-hole code (ex

for the part about *letting go”) makes no assumptions about what the hand actualy holds
onto. The important data used by the rest of the planning arc:

1. The relative position of the pin to the hand.
2. The accuracy with’which the pin is held with respect to the hand.

So tong as this information is available, the remaining decisions can proceed more or less in
ignorance of the actual technique used.

“4 This may not be gtrictly necessary. If the pin is to be part of afinished assembly, then the
direction and' df may be obtained from the description of the object being assembled.

Alternatively, it might be possible to tell which end to use by looking at the pin and hole
diameters or to keep adata base telling what the “standard” direction for each pin type.

® Whitney [18) has done an exhaustive analysis of some of the factors required to compute
tolerance requirements for insertion of a peg into a hole.

gv.s0].

431 Assumptions

The grasping method described in thiS Section assumes that the pin initially sits in a hole
and that the hand is empty. The basic strategy is to open the fingers, move the hand to the
grasping position, and center the hand on the pin. Thus, we require that there be at least
one grasping position reachable by the manipulator and that the pin’s position be known
with sufficient accuracy for the centering operation to succeed. Once the pin is grasped, it is
extracted from the hole. We assume that the pin will be free of obstructions once its tip has
cleared the plane Of the hole by some fixed amount (currently, 1 inch).

4.3.2 Grasping Position

The key element in our grasping strategy is where to grasp the pin. The. present hand
consists of a pair of opposed “fingers’, which open and close through a range of about 4.5
inches. On each finger is a circular rubber pad, and in the middle of each ‘pad is a
microswitch “touch sensor”. The AL center command assumes that the object being
grasped will trigger the touch sensors whenever it is in contact with one of the fingers.
Since we intend to use center, the finger pads must be centered on the pin shaft? The
important parameters remaining are thus:

v-The @ grasp angle’ between the pin axis and the approach vector (;) of the
hand.

d - The “grasp distance’ along the pin axis.
W - The orientation of the approach vector of the hand about the pin axis.

Following the convention that the “long” axis Of pins is the z-axis, this means that the
grasping position will be given by

blue = pinsgrasp_xf = pinstrans(rot(zhat,w)srot(xhat,Y),vector(0,0.d))
Geometric Considerations

In sdecting values for these parameters, it is important to guarantee that the hand not get
in the way Of accomplishing the task. In generd, this might require much better geometric
modelling capabilities than the system described here currently possesses. Therefore, we
must assume a relatively “uncluttered” environment. The following considerations are,
however, enforced by the present implementation:

1. The hand cannot intersect the body in which the hole is drilled. Asan
approximation, we enforce this constraint with two sub-constraints for both
the initial and target holes:

® When sensitive force sensors are added to the fingers, center will presumably be modified
to respond to forces on the fingers, rather than triggering of amicroswitch. This would
allow greater freedom in picking finger positions and would relax the accuracy
reg uiremen ts.

[1V.31)

a. The fingers may not pass below the plane of the hole.

b. The hand’s approach direction must be at least 90 degrees
to the outward facing norma to the hole.

2. The “pdm” of the hand cannot intersect the shaft of the pin.
Method

It is necessary to verify that arm solutions exist for the approach, grasp, and liftoff points.
However, the computation reCﬁired by the arm solution procedure is non-trivial. Thus, we
proceed by pretending that the hand is moved by levitation. Arm solutions will only be
attempted for those grasping positions that do not try to do’ something bad with the hand.
If we assume that conditions (a) and (b) above are sufficient to guarantee that the hand

stays clear of any objects, then we can ignore w in selecting grasping positions to consider.
Our overdl sdection method looks like this:

1. Use the postion of the pin in the initid and target holes to determine legd
limits on ¥ and d.

2. Use the limits established in step 1 to generate “significantly” distinct values

for v and d. For each such (v,d) pair, determine values of w for which

“there is an arm solution.” Each (v,d.w) will then specify a possible grasping
position for the pin.

8. Once a grasping position has been generated, the remaining parameters to
the grasping Sirategy may be filled In, and the cost of the Strategy assessed.
This process may result in some of the proposed grasping positions being
rejected, due to inability to find a suitable approach or departure position
or because of accuracy considerations.

These steps are discussed in somewhat greater detail below.
Determining vaues for ¥ and d
To smplify the discussion, let us assume that the pin initidly has its z-axis paralel with its

starting hole, and that the origin of the pin's coordinate system is at the pin tip inserted into
the hole.® The first step in determining ¥ and d is to determine the distances, di and d,

that the pin goesinto theinitial and final holes. There are two subcases:

1. The sameend of the pinisinserted in both holes.

7 1f additiond feashility tests are to be made, this would be a good place to include them.
For instance, if good enough shape models (e.g., those produced by CEOMED [4)) ‘are
available, then a check can be made to see if the hand or arm do, in fact, interfere with
ob jects in the environment. Two problems with this check are (1) the difficulty, of
distinguishing intersections caused by approximations and those caused by actua collisions
and (2) the difficulty of modelling sets of possible positions.

8 |f the initid hole and pin axes are anti-paralel, the modifications required are obvious.

[1V.32]
2. Opposite ends of the pin are inserted in the initid and find holes. |.e,, we
must *turn over” the pin while transporting it from hole to hole.
In the firgt case, the lower bound on d will be given by

d 2 dpyyp = max(didg) + rgp +

where

ep = radius of finger tips.
«= a smal extra clearance factor (currently 0.1 inch)

To compute the upper bound, dg,,x, We must consider the pin geometry; if the pin has a
painted tip, then we must grasp further down the shaft:

d S dmax = Ipin - (kaper*)
where

Ipin = length of pin

ltaper = length Of point on pin tip
If the interval dpax-dmin IS reldively short (currently, less than 2.5 inches), then we just
pick the midpoint

d « (dmin*dmax)/2

Otherwise, a succession - of values must be considered. Currently, *three values are
congdered: one near the top of the pin, one near the bottom, and one In the middle.

dy=dmax - 0.6 inches
d2 = dpyin + 0.6 inches
dg = (dmin*dmax)/2

. For each value of d, the system must generate values for ¥. Similarly, three approach
directions are consdered:

7= 180 degrees (i.e. anti-pardle to the pin axis)
7= 135 degrees
7= 100 degrees (i.e., approximately perpendicular to the axis)®

, With ¥ - 180 degrees, it is necessary to check that the pin doesn’t poke up through the
palm of the hand. Thisis easily handled by checking to be sure that lpin-d isless than the

length of the fingers.

® 90 degrees could be used here; however, the extra 10 degrees lessens the chance that the
hand or wrist will interfere with something.

[Iv.33)

In the second case, where hoth ends of the pin will go into holes, we have -
'pln‘(df"'fp"‘) 2dz2di+ I‘fp + Kk

Again, if the interval is short, its midpoint will be picked. If the interval is longer, then
three values will. be’used. Since the pin must be turned around, the only value for 7is 90
degrees.

Picking Values for @

Once we have picked values for ¥ and d, we still must determine the rotation value w.
Here it is necessary to consder actud arm solutions. Unfortunately, the only way presently
available for doing thisis to invent values and try them out.!® Values of w are considered
in increments of 45 degrees. For each value, the grasping position is calculated, and the
arm solution procedure is called to see if the position is feasible. In some cases, we m

produce a great number of candidate grasping positions. Therefore, the solutions for &l
feasible podtions are graded for “toughness’ and non-degeneracy, ‘and only the best few
vaues are retained for further investigation. The current rule for evaluating arm solutions
is very crude: the angle of the “elbow” (joint 5 of the Scheinman arm) is examined; Angles

near 45 degrees are considered best.!! Our sdection procedure looks something like this:

for w « 0 step 45+deg until 315+«deg do
begin trans hand_place,grasp_xf}
grasp_xf + trans(rot(zhat,w):rot(xhat,Y),vector(0,0,d));
hand-place « initial_pin_locationsgrasp_xf
if solve_arm(hand_place) then
begin
cost « abs(45+deg-joint_angle[5)i
« insert w into list of candidates, ranked by cost »

end:
end;

For the example situation described in Section 4.8, and grasping parameters.

19 shimano is currently investigating the possibility of a“closed form” solution that will
, give the range of possible approach orientetions for a given hand postion. Such a solution
would be extremely useful, both as a guide for selecting grasping positions and as a means
for evauatingthe robustness of a particular position under variations in object position.

1! Alternatives include examining the error hypercube at the fingers or just using the
expected time to reach the grasping position. The latter objective function will eventualy
be applied to any points that get through this filter (see Section 4.4).

[IV.34]

7 = 135 degrees
d=354cm
we get:
w cost
0° 42.1°
45° 9.98°
90° 31.4°
135° 56.0°
180° 56.0'
225° 56.0°
270° 45.5°
315° 56.0°

At present, only the best three values are retained, so we will select w = 45° 90° and 0°.

This pruning introduces some risk that the program will fail to find an acceptable dtrategy

in some cases where it might otherwise have won. If this problem should become

sign_ifigt; it would be fairly easy to provide a “try harder” mode where dl possibilities are
. retained.

4.3.3 Approach and Departure Positions

-The purpose of ¢n @pproach point for the grasping operation isto prevent the arm from
trying to run its fingers through the Pin. Currently, the only aplj_p_roach direction consdered
iSone along the approach vector of the hand, as shown in Figure 4.2. One plausible
alternative would be to move to apoint above the pin and then move down along the pin
axis to the grasping postion. ‘If it should prove desirable to consider such aternatives, we
could do so by planning €ach route and then sdlecting the via point which gives the shortest
time.

Similarly, a departure point is needed to get the pin clear of itsinitial hole before trying to
move it away, We presently only use a standard takeoff point two inches above the hole.

move pin t0 pimtrans(nilrotn,vector(0,0.Ztinchesnii);

where d; isthe distancethe pinisinserted into its starting hole. If this fixed choice should

ever become troublesome, it would be fairly easy to generate a set of alternative departure
points, and then pick the one giving the shortest motion time.

(V.35)

Figure 4.2. Approaching the Pin

4.3.4 Hand Openings

The present decision for hand opening is smilarly arbitrary. On approach the hand is
opened by 1 inch plus the diameter of the pin at the grasp point. The closure threshold is

set to the pin diameter minus 0.1 inch.'?

4.4 Moving to the Hole

Once the pin has been grasped and lifted clear of its initial hole, the next step is to try
inserting it into the target hole. For the seke of smplicity, we assume that the origin of the
pin coordinate system is a the tip being inserted into the hole. Thus, our motion Statement
. will leok something like:

move pin to Aolestrans(rot(zhat,$),vector(0,0,-dtry))

via Aolestrans(rot(zhat,$).vector(0,0,standoff))
on force(pinsthatP8eoz do . . .

where

12 This latter figure comes from the observed behavior of the center primitive; relevant
factors Include flexion of the fingers and compression of the Anger pads.

[IV.36]

¢ = rotation angle of pin with respect to hole.
dtry = distance try to push pin into hole.
standoff = distance of approach point from the plane of the hole.

Of these parameters, the most important is ¢. The congderations in choosing a good value
are essentialy the same as for selection of the grasping orientation, w. The method
followed is also the same, except that a single value of ¢ is picked to minimize the expected

motion time and the destination location is used instead of the initial pin location. Thus,
the expected final position of the hand will be given by:

hand_destination = pin_destinationsgrasp_xf
. holcttrans(rot(zhat.¢.vector(0.0.-dﬁ)¢gra:p__xf:

For our example situation (Section 4.8) and grasping-parameters.

v =135 degrees
w = 90 degrees
d=354cm
we get
') time

. o° .960 sec
45° 491 sec
90° 468 sec
135° .582 sec
225° 1.21 sec
270° 1.54 sec

815° 1.67 sec
¢ = 90 degrees will therefore be chosen;

The exact values of dtry and standoff are less important. The principal constraint is that
they be large enough to guarantee that location errors in the hole (or pin) will not cause the
motion to stop prematurely or to knock the pin into the object while approaching the
approach point. Currently, arbitrary values,

dtry = df + 1inch
standoff = | inch

are used. Thus, for ‘this case, our destination approach and target locations will be,
respectively:

[IV.87)

pin = holestrans(rot(zhat,90+deg),vector(0,0,2.54));
pin = Aolestrans(rot(zhat,90+deg),vector(0,0,-4.25))

When vaues for ¢, dery, and standoff have been picked, they are combined with the

grasping strategy to form an embryo ‘pin-in-hole’ strategy. The expected time to execute it
IS just the time expected for the pickup operation plus the time for moving to the hole.

4.5 Accuracy Refinements

In the absence Of errors, the ‘strategies derived in the previous section. would suffice to
accomplish the task. Unfortunately, the world is not so kind, and we must consider the
effects of errors. For each strategy, we apply the machinery given in my dissertation (28)
and illustrated in the appendix to estimate the error between the pin and hole at the
approach point as afunction of free variables: '

Dppp =Z8pkp [Eqn 8.5.1)
ORpg = 1+ 2 Mk,

subject to congraints
¢ j‘(g,z) b j
“on the free variables. We are principdly interested in three things:

1. Axis misalignment (Af) between the pin and hole.
2. Displacement error (At) dong the axis of the hole.

3. Displacement errors (Ax,4y) in the plane of the hole.

Each of these entities is discussed below.

4.5.1 Axis Misalignment

For suitably small values, A8 may be approximated by
aX R4 y'Athl “+ X'ARhPI
Thus, we can use [Eqn 3.5.1] to compute the maximum expected misalignment.
T QDO = max A
where

Ad; = max | vector(cosf;,sinf;,0) ~Ath; |

[1V.38]

At present, we consider six values of §;, ranging from O to 315 degrees.

For example, suppose that we are considering the in-hole position

pin = holestrans(nilrotn,vector(0,0,-1.71));
hand = pinstrans(rot(zhat,315xdeg)srot(xhat,/80«deg),vector(0,0,3.54));

corresponding to grasping parameters w = 315 degrees, ¥ = 180 degrees, and d = 3.45 cm;
. and pin-hole rotation angle ¢'= 90 degrees. '® We assume that the hand holds the pin with

essentialy no error, but the hand may be Subject to orientation errors of up to £0.25 degrees
. about the hand x, y, and z axes, and the hole orientation may be subject to rotation errors
of +5 degrees about the z axis. These values give usan estimate of the pin-hole rotation
error:

ORpy %1+ ROT@2E MMy + nyMy + 1;M,BROT(2-225% + VM,

where My, My, and Mz are related to infinitesmal rotations about the x, y, and zaxes and
are shown below:

10 0 0
My= |0 01
(0 1 0f

The constraints on the free variables are:

-5degsvs5deg
-0.25 degrees snys 0.25 degrees

-0.25 degrees sy s 0.25 degrees
-0.25 degrees sn, s 0.25 degrees

where ny, n)and n, represént the hand rotation errors, and v represents the rotation error
of the hole. Solving, we get

13 These parameters correspond to the best overall strategy found in Section 4.8.

(IV.39]

0° .354°
30° .306°
60° .306°
90° .354°
120° .306°
150° .306°

Consquently, A8pay=354°.

Once this value is computed, we compare it to the allowabk limit, A8 If the valueis

out of bounds, then the pin-to-hole aignment may not be good enough to guarantee success.

"Presently, this is grounds for rejection of the strategy. Other options would be to add
another parameter to the search loop, so that different pin orientations, aswell as different
*xy” positions are tried; to include “smarter” accommodation techniques; or to attempt in
some way to ascertain the pin-hole orientation more accurately.

4k.2 Error Along the Hole Axis

Az is easily computed from
At = tApyy

Recall that our “in hole” test examines how far the pin gets along the hole axis before being
stopped. If it doesn’t, get far enough, then we assume that we hit the object, and must try

again. For this test to work, we must be sure that Az cannot be big enough to cause
confusion. |.e.,

IAz] < Toldedy)

where T is a suitable’ “fudge factor” (currently’ 0.75) designed to keep us well within the
“safe” region. |If the maximum value of At falls within this limit, then no further

refinement is needed. If not, then ‘tapping” is considered as a means of getting the
necessary accuracy, 10 use this strategy, the system must select a place to tap. The
[principal considerations in making this choice are:

1. The point should be as close to the hole as practica, to minimize the effects

of rotation errors in the hole surface' and to minimize the time wasted in
moving t0 a tapping place.

14 _Actually, this consideration is too strong. The “right” thing to do is to compute the
expected misorientation and then use that result to compute the allowable distance from the
hole.

[IV.40)

2. The point should be far enough from any confusing features (like holes) so
that we are sure to hit the surface we expect to hit.

The method used is roughly as follows: .

s « surface into which the hole is drilled;
(xpyp) + location of hole in coordinate system of surface;

114 * radius of hole « radius of pin tip;
Aryg ~ max(0.3 inches, Dxpy, Dypy)

maxr «+ maximum distance of any point on s from the hole;
dbest « O;

for r « rpq + Aryq step Qryq until rmax do
begin real &
for & « 0 step Aryg/r until 21 do
begin real xy.d;
x & xp + racoski § © g, + rasink

d « distance of nearest hole or edge in s from (xyk
comment d<0 if (xy) isoutside of s ;
if d>dbest then
b e g i n dbestedixbestexiybesteyiend;
end;
if dbcst)Ax,,P then done;

end;
The tapping place is then computed from xbest and ybest as

pine holcttrans(nilrotn.Rshtvector(xbest.ybc:m)-p shh
where

Tsh =trans(Rgp.psp)
=position Of hole with respect to s

The results of a typical application of this method is shown below. Here, we are looking for
a tapping place near one of the corner holes of our box, located at (3.85,8.20) with respect Co
the top surface of the box. In this case, we assume that the box location is known precisely,
so that, the only xy error comes from the hand. Thus,

Aryy = max (0.3 inches, Ax, Ay)
=max (.762 cm, .243 cm, .226 cm)
=762 cm

On the first iteration through our outer (Y) loop,

[IV.41]

r=45cm +.762cm=1.21 cm
Going through our inner loop produces.

x y d
5.0 320 -e12!®
483 391 -.397
4.22 435 -.b58
347 435 -552
2.87 391 -111
2.64 3.20 577
2.87 249 -115
348 2.05 229

Thus, xbest » 2.64, ybest « 3.20, and dbest + .577 on this iteration. Since this value of dbest
is considerably larger than our possible confusion radius (248 cm), we have found an
acceptable tapping place, and can stop looking. The corresponding tapping point is:

trans(nilrotn,vector(-1.21,.002,0))

Once such a point has been found, then At is re-evaluated, taking account of the
additional measurement. If the potential error has now been sufficiently limited, then the
tapping place is entered into’ the strategy record, and the estimated cost is updated to
include the time of the extra motion. In this case, the reduced error is Az =.180 cm, which
is much smaller than the required accuracy of 1.71 cm, and the estimated extra time is 1.2
seconds.

If no tapping place.can be found, then the system currently must give up on the strategy,
and hope that ene of the other grasping positions will produce more accuracy along the
hole axis. Unfortunately, this hope Is frequently a forlorn one. Eventually, we would like
to consider other measurement tricksto try if tapping doesn't work. These alternativetricks
presumably could be weighted according to their expected cost, and a*“best” combination

picked.

45.3 Errors in the Plane of the Hole -

These errors cause the pin to miss the hole, and are overcome by searching. To estimate in-
plane errors, we compute

g, = max | (cos{k,sin{k.o)'Aphp |

for
$i = 30k degrees
-0sks5

Then, we take

18 Negative values mean outside surface or on top of a hole.

[IV.42]

AX = max &

AY'E(k¢3) mod 6
§={y

This produces an “error footprint” rectangle with sides 248x and 24y, rotated by & with
. respect to the hole. We set '

Ar = max(QAx,AQy)

A, typical instance of this calculation isillustrated below. Here, the nominal pin and hole

positions are the same aSthose given in Section 4.5.1. In addition, we assume that the

rotation errors are as previously stated and that the object in which the hole is drilled is

sub ject to small displacement-errors in x and y. This gives us the following expression for
" pin-hole displacement errors.

APhp . vavector(-3.20,-3.85,0)
+ nyavector(2.5,-2.5.0) + uytvector(-2.5.2.5.0) + nyevector(0,0,0)
+ b, svectar(.707,-.707,0) + Sytvector(.-.707.-.707.0) - §,4zhat

- €, 4xhat . €yryhat

where ny, ny, andw, represent rotation errors in the hand; 8y, 8y, and 8, represent

displacement errorsin the hand; ¥ represents rotation error in the object containing the hole
. (our familiar box); and € and €, represent object displacement errors.

" The corresponding constraint equations are: .

ti1.60. » .ge¢ , .8e0 , .888 , 888 , ,888), VI @00
ti.00 , .888 , @@ , .80® |, 883 , .88®) ., Vi

{ .608 , 1.00 , @ , .866 |, .00 , .88 1 . Vi @0
t.ee¢ , 18 , .68 , .8e® .p08 , .08) . Vi

t.e88 » .83 , Itee , .e¢® , 883 , .888) . VI Q.
{1,888 » .088 , 1,88 , .889 , g3 , .000) . Vi

1 .e00 » .000 , .608 , 1,88 888 v 4888) . VIS .436e-2
1.e886 » .88 , .008 , 1.8 , <800, 280), Vi2-. 436e-2
t.066 » .83 , .680 , .e06 , 1,88 , .808) . VIS .436e-2
{.0008 » 888 , 680 , .00 | 1,80 , .988) . V12-.436e-2
{ .888 » .000 , .00 , .08 , .00 , 1.80) . VIS .436e-2
[.000 s ,888 , +000 , 000 , 808 , 1.88 1 . Vi 2-.43680-2
t 1.88 | o.ae y ..o.) . V2 ‘ 0762

1 1.88 , 008 , 880) . V2 2-.782

{ .000 , l.00 , 0880)} . V2<g 688

[..00 y 1.88 y o...] . V2 2--5‘8

[,688 ' 000 , 1,88) . V2 s .873e-{

t t... ’ -..‘ y 1..] . Vzl-. ‘73.-1

where

[IV.43]

vietd,5,6 Nyer ﬂyv n 3

x? g' b 34

V2. LE, €, N
Computing Ek for six values of § gives US.

G &
0°1.05 cm
30° 1.43 cm
60° 1.50 cm
90° 1.24 cm
120° 1.16 cm
150° 1.15 cm

Consequently, AX = 1.50 cm, Ay = 1.15 cm, and § = 60 degrees.

If Ar islessthan Argy, then we won't have to worry about searching, since the pin ‘will

always be within the allowable error radius of the hole, If not, then a search will have to
be planned. The search loop used is shown in Section 4.8.

Ifa search is requited, the cost of the strategy must be adjusted to account for the time

spent doing it. This is difficult, Snce we don't know anything about the distributions of the

errors. A worst-case estimate can, of course, be obtain& by multiplying the time to make

. one try by the total number of points in the search pattern. However, this seems too
- pessimistic. Therefore, we only count those points within Ax/2 and Ay/2 of the hole.

4.6 Selecting a Strategy

We wish to select the strategy with the smallest execution time. The most direct way to do
thisis to plan all strategies out fully, evaluate them, and then take the cheapest. This
approach has the drawback that we may spend considerable time refining strategies whose
basic motions are S0 inefficient as to rule them out. Therefore, we first decide on the basic
motions for each distinct grasp point. All candidate Strategies are sorted according to gross
motion time, and then considered in “best first” order. If we reach a point where the next

best unrefined strategy iS more expensive than a fully planned strategy, then we can stop
searching.

strategies « null;
‘for each g such that g iS a grasping strategy do

begin

Decide best way to get pin to hole, using g.

if there is a way then
Create a pin in hole strategy & insert it in strategies,
ranked by expected time.

&

e n

[IV.44)

best-strategy ¢ Incantation;

shortest_time « 1077 seconds; { avery long time }
minimum_refinement_cost « lower bound on *fine motion” times

for each s such that s € strategies do
begin
if cost(s)sminimum_refinement_costzshortest_time then
done; { best_strategy is the best Strategy We've found)
Refine $toaccount for accuracy considerations.
Revise the cost estimate for s
if cost(s)<shortest_time then
begin
shortest_time « Cost(s);
best-strategy «s;.
end;
end;

Here, we have used minimum_refinement_cost t0 tighten our cutoff somewhat. It may be
computed by assuming that there iSno error in the arm or grasp, so that all error between
pin and hole comes from errors in the hole location, and then consdering what refinements
would be necessary.

4.7 Code Generation

QOnce We have selected astrategy, the actual Synthesis of program textis accomplished by
calling procedures that extract the appropriate values from the strategy record, substitute
them into the appropriate slots in code skeletons, and print the results.

Pickup Strategies
The procedure for writing pickup Strategies Idoks something like this:

procedure write_pickup(pointer(pickup_strategy) pkp)
begin
print("{ PICKUP “,Klklg.“:”,remarks[pkp].“}",crlf 16),
print("OPEN BHAND TO “approach_opening{pkp).";"s
write_motion_sequence({{approach_point[pkplgrasp_point[pkpJ}}.null)
print("CENTER BMANIP"crlf)y

16 «Carriage Return, Line Feed”

, [IV.45)

print(ON OPENING < ".grasp_opening[pkp)" DO ".crif);
print(ABORT(GRASP FAILED');"crif);

print("AFFIX "Jocation_variable(object[pkp))," TO BMANIP;"crif)
write_motion_sequence({{departure_point[pkpl}}.null)

end;”
Pin-in-Hole Strategies

The write_pin_in_kole procedure is slightly more elaborate than write-pickup, which it uses
as a subroutine. In addition to generating more output, write_pin_in_kole must make
severd decisions about what code to emit:

1 Is “tapping” t0 be performed?
2. Is a search to be made?

Actually, these decisions have already been made and are reflected in the data structures.
Thus, our code writer |00KS at the tapping place field of the strategy record to decide
question 1. If the record is null, it does nothing; if a point is specified, it emits the
appropriate code. (An example may be found at the end of Section 4.8). Similarly, in

deciding whether to emit code for a search, it lookt to See if AX is greater than Argy. '8 If
so, the search is produced; otherwise, a perfunctory check:

IF ABS(DISTANCE_OFF) > Ta(dpd,) TreN
RBORT("pin MISSED Aole™ UNEXPECTEDLY)

is written instead. The program text produced for atypical strategy, together with further
discussion of the particular constructs used to .implement search loops, may be found in
Section 4.8.

Motion Sequences

Both write_pickup and write_pin_in_hole use ,a procedure, writ&-motion-sequence, to
generate motion statements. This procedure works roughly as follows:

17 *ymanip” isan alternative name (used in the current AL implementation) for the blue
‘arm, and "bhand” is the name for the blue hand.

18 Recall thatin Section 4.5.3, we selected § so that AxzAy.

[1V.46]

procedure write-motion-sequence&t destinationsistring qualifiers);
begin integer ijk;
00

. while j<length(destinations) do
begin
ic-jc-j..];
controllable « what[destinations[i 1}
while j<length(destinations) and what[destinations(j+1]}scontrollable dO
j'-jol?
corn men t Now, {{destinations[i}.....destinations[j]}} is a
subsequence With, the same controllable frame.;
print("MOVE "Jocation_variable(controllable) TO *,
location_variable(base[destinations[i))), " xfldestinations{i]}crif);
for k « i+l step 1 until § do
print(if ksi+l then “VIA " else *, ",
location_variable(base[destinations[k]]),
"s"xfldestinations[k])crif);
prin t(qualifiers.crif)
end;
end:

Here, we first break . the destination sequence up into subsequences with common
“controllable” frames, and then generate a motion statement for each subsequence. There
are several possible’ pitfals, since the semantics of two successve motion statements are not
identical to a single Statemerit, especially where the qualifiers include stop-on-force tests. At
present, this difficulty is solved by bein% caeful that the procedure will not be called with

“arguments that “split” the motion at a bad point. This solution was satisfactory for our

*present (small) set of code emitters, but something better will have to be donein the long
run. An alternative approach would be to compute the relation between each controllable
frame and the manipulator, and then to ‘write the motion purely in terms of the
manipulator frame. Thissolves the abovementioned difficulty, but introduces additiond
complexity, making the output programs harder to read. A better fix would probably be to
extend the syntax of AL to allow hybrid destination lists, and then allow the AL compiler

~ toworry about. the relation to manipulator frames.'?

4.8 Example

. The task, strangely -enough, is insertion of an aligning pin into a hole drilled in the top
surface of asmall metal box. Initialy, the box body sits on the work table at Ty, and is

sub ject to displacement errors Of Up to #0.3 inches along the x-axis Of the table and up to
0.2 inches along the y-axis and to rotation errors of up to 5 degrees about the table z-axis.
The hole (bAl) islocated at Tbh with respect to the box, the pin (pinl) is held in atool rack

at Ty, and the manipulator (bmanip) is parked at bprrk, where

19 Suplh an approach is anatural extension to the present translation performed by the AL
compiler.

[1v.47)

Twp = trans(nilrotn, vector(45.2, 102., 0))

Tbh = trans(nilrotn, vector (3.85, 3.20, 4.90))

Twp = trans(rot(zhat,90+deg), vector(24.1, 117.,.537))
bpark = trans(rot(yhat,/80+deg), vector(43.5,56.9,10.7))

From the initial computation, we determine that

direction = axes parald
dg=1.71cm

dg= 0
Qrgy # 0.762 cm
Adgy » JO degrees

In other words, the pin iSexpected to go 1.71 cm into the hole. When we make the attempt,
if the pin tip is within 0.762 cm of hole center and the axes are within 10 degrees of
parallel, then the insertion operation will succeed. If we miss, then we won't go any distance
into the hole a all. (I.e,, we won't get stuck hafway in).

The pickup Strategy generaior now goes to work and decides on asingle grasping distance,
and a range of grasp angles:

dgrasp = 3.54 cm
100 degrees s 7 < 180 degrees

It then produces nine feasible pickup strategies, ranging in cost from 4.08 seconds to 8.58
seconds. These are then elaborated into unrefined motion strategies, with time estimates of
5.47 seconds 10 12.7 seconds. A computer generated summary of the best of these strategies

isshown below?

PHL SPEC 132757
PREL IMS8: NULL-RECORD
PICKUP: PICKUP SPEC 162775
PRELIMINARRIES: NULL-RECORD
APPROACH OQREMINA: 2.88 .
APPROACHs BMANIP=PIN1aTRANS (ROTN(VECTOR(.678,.679,.281),1494DEG),VECTOR(-3,.59,8,7.13))
GRASP OPENING: .185
GRASP: BMANIP«PIN1aTRANS (ROTN(VECTOR(.679,.679,.281),1494DEG) ,VECTOR(8,8,3.54))
GRRSP DETERM: NILTRANS
DEPARTURE POINT: PIN1=PIN1&TRANS(NILROTN,VECTOR(8,8,6.79))
GOODNESS: 4.13
REMARKS: W « 98,8 dog Grasp RAngle « 135. dog Grasp DIrtancr = 3,54
APPROACH: PIN1=BH1aTRANS (ROTN (ZHRT,98.+DEG),VECTOR(8,0,2.54))
DESTINATION: PIN1=BH1sTRANS (ROTN(ZHAT,88. $DEG) , VECTOR (8,8, -1.71))
TARGET: PIN1=BH1s#TRANS (ROTN (ZHAT,S9.DEG),VECTOR (0,0, -4,25))
XPORT TIME: 1.34
GOODNESS: 5.47 . _
Tep: NULL_Recoro (The fields below aren't filled in yet)
FINE TIME: .008
~PH D2: ,800
PH FP DX: .008

“Theoutput has been edited slightly to improve readability.

[1V.48]

PH FP DY: ,888
PH FP ROT: ,888

In terms of the parameters described in earlier sections, this strategy corresponds to:

w = 90 degrees

Y = 135 degrees

grasp distance = 5.54 cm
dtry = 425 cm

standoff = 2.54 cm

¢ = 90 degrees

Once all our candidate motion Strategies have been generated, we St about refining them, in
best-first order. To do this, we generate the error terms and compare them against the
requirements established at the very beginning. For the'rtrategy just shown, we get

Aze 180 cm
AX =1.50 cm
Ay =115cm
§ = 60 degrees

The value of Azis thus small enough so that we are sure not to be confused about whether
the pin will make it into the hole. Thus, we don’t have to “tap”. On the other hand, the
“error footprint” is bigger than A"ok- so we will have to search. The estimated extra time

for thisis 1.8 seconds, giving USa total estimated cost of 7.27 seconds.

The refinement of Sirategies continues until we reach:

PHL SPEC 134823

PRELINS: NULL-RECORD

PICKUP: PICKUP SPEC 163875
PRELIMINARIES: NULL-RECORD
APPROACK OPENING: 2.98
APPROACH: BHMANIP=PINiaTRANS (ROTN(VECTOR(.688,.608,.518),126.%0EG) ,VECTOR(-5.,8,4.42))
GRASP OPENTNG: .185
GRASP: BHANIPePIN1#TRANS (ROTN (VECTOR (. 608, .608,.510), 126, «DEG) ,VECTOR (S, 8,3.54))
GRASP DETERM: NILTRANS
DEPRRTURE POINT: PIN1sPINI#TRANS (NILROTN,VECTOR(6,0,6.79))
GOODNESS: 4.88
REMARKS: M = 88.8 dog Grasp Rng lo = 188, drg Grasp Oittancr = 3.54

APPROACH: PIN1sBH1sTRANS (ROTN (2HAT,98. +DEG) , VECTOR (3, 8, 2.54))

DESTINRTION: PIN1s=BH1#TRANS (ROTN (2HRT,98.084DEG),VECTOR(8,8,-1.71))

TARGET: PINi=BH1sTRANS (ROTN (2HAT, 9. 8+DEG) , VECTOR (8,8, ~4.25))

XPORT TIME: 2.56

GOOONESS: 6.64

TAP: NULLJECORO

.FINE TIHE: .080

PH D2: .808

PH FP ox:.e80

PH FP DY: 888

PH FP RroT: .008

This strategy will take at least 6.64 Seconds to execute, and &l the rest will take even longer.
However, at this point, the best completely refined drategy is:

(IV.49]

PHL SPEC 138523
PREL IMSs NULL-RECORD
PICKUP: PICKUP SPEC 72827"
PRELININRRIES: NULL_RECORD
RPPRORCH OPENING: 2.98
RPPRORCH: BMANIPsPIN1xTRANS (ROTN (VECTORY,924,.383,.001),188.2DEG),VECTOR(S,8,8.62))
GRASP OPENING: .185
GRASP: BMANIP=PIN1xTRANS (ROTN(VECTOR (.924,.383,.881),.180.2DEG),VECTOR(8,0,3.54))
GRRSP DETERM: NILTRANS
DEPRRTURE POINT: PINi=PIN1«TRANS(NILROTN,VECTOR(®,8,6.78))
GOODNESS: 4.16
REMARKS: W = 315. dog Grasp Anglo s 188. deg Grasp Distance = 3.54
RPPROACH: PIN1=BH1#TRANS (ROTN (ZHAT, 88, 8+DEG) , VECTOR(2,8,2.54))
DESTINRTION: PINl=BHlx TRANS(ROTN(ZHAT, 98 BB“DEG) VECTOR(.888, .888,-1.71))
. TARGET:PIN1=BHI1#TRANS (ROTN(ZHKAT,S8. OtDEG) VECTOR (8,0, -6 25))
XPORT TIME: 1.38
GOOONESS: 6.14
. TAP: NULL-RECORD
FINE TINE: .608
PH D2s .127
PH FP OX: 1.58
PH FP 0OY: 1.15
PH FP ROT: 1.85

Since we aready have a refined strateg%/ better than any of the remaining unrefined
drategies, we can stop looking, and write the AL code for our current best Strategy. In this

case, the computer generated the following program text?!

{ PIN-IN-HOLE STRATEGY 138523:
DROK = .762 FEPX = 1.58 FPY s 1.15 FPU « 1.8%
02 . J127 ESTIMRTED TINE = 6.14 |

| PICKUP 72827:
W = 315. dog Grasp Anglo s 188, deg Grasp Distance = 3.54 |

OPEN BHRNO TO 2.88;:
MOVE BMANIP TO PIN1sTRANS (ROTN(VECTOR(.924,.383,.081),188.40EG),VECTOR(8,8,3.54))

VIR PIN1aTRANS (ROTN(VECTOR(.924,.383,.601),188.s0€G) ,VECTOR(8,0,8.62));
CENTER BMANIP
ON OPENING < 185 00
BEGIN RBORT ("GRASP FRILED"); END;
RFFIX PIN1 TO BMANIP;
MOVEPINL TO PINLI&TRANS(NILROTN,VECTOR(8,8,6.78));

| FIRST ATTENPT }

NOVEPIN1 TO BH1sTRANS (ROTN (ZHAT,98. 8sDEG) , VECTOR (8, 8,-4.25))
VIA BH1sTRANS (ROTN (ZHAT,90. 8+DEG) , VECTOR (9, 8,2.54))
ON FORCE (ORIENT (PIN1) #2HAT) > 8402 00 STOP
ON ARRIVAL 00 .@BORT.EXPECTED 9. FORCE MERE"},
DISTANCE_OFF«ZHRT _ INV(BH1&TRANS (ROTN (ZHAT,90. mzm VECTOR(8,8,-1.71)))DISPL (PIND) ;
IF ABS(DISTANCE_OFF) » ,168 THEN
BEGIN {PINIMISSED BHL }
BOOLEAN FLAG;
I SEARCH LOOP: I
RERL R,0M,H, X, Y;FLAG-FALSE
R « .572; | 8.754DROK |

2 The progbam has been edited very dightly to improve readability by removing excess
blanks and by rounding all numbersto three significant digits. (For instance, the computer
output had ® ~ 0.00 106", ingtead- of *0.001")

[1V.50]

WHILE NOT FLRG AND R § 1.72 00
BEGIN
W e 8; DM « € ,572/R)%RAD;
HHILE NOT FLRG AND H<258%DEG 00
BEGIN
IF ABS (XeR2COS(W))< 1.58 AND RBS (YR&SIN(W))< 1.15 THen
BEGIN FRAME SETPNT;
SETPNT«BH1&TRANS (NILROTN,ROT (ZHRT, 1.85) ¢VECTOR(X,Y,8));
MOVE PIN1 TO SETPNT% TRANS (ROTN(ZHRT,98.8+«DEG),VECTOR(8,8,~4.25))
VIR SETPNT%TRANS (ROTN (2HRT,88.8%DEG) ,VECTOR(8,8,2.54))
ON FORCE (ORIENT(PIN1)#2HRT) > 8202 00 STOP
ON ARRIVAL 00 RBORT("EXPECTED a FORCE HERE");
DISTANCE_OFF«2HAT _ INV(SETPNTTRANS (ROTN(2HRT,99.840EG) ,VECTOR(3,8,~1.71)))
*0ISPL(PIND)
IF ABS(DISTANCE_OFF) < ,169 THEN
FLRG+TRUE}
END;
HeleDN j
END;
ReR 4 .572;
END;
IF NOT FLRG THEN RBORT("PINLNISSED BH1");
END;

I LET GO 1
OPEN BHANO TO 2.98;
UNFIX PINi FROM BHANIP;

{ NOU GET HRND CLEAR 1
HOVE BMANIP TO BMANIPsTRANS(NILROTN,VECTOR(8,8,-5.88));

The search loop used here works by generating (xy) offsets in ever-widening circles about
the origin. Each point generated is tested to see If it iS Within the footprint limits:

Ax s x s Ax
Ay s ys Ay

If s0, then a displacement vector (in the coordinate system of the hole) is computed by:
rot(zhat,{)svector(x,y,0)

and used to produce an offest candidate |ocation (sezpne) for the hole location. If the

insertion attempt for this, point succeeds, then flag IS Set to indicate success and the loop is

terminated. If the attempt fails, O if (x,5) was outside the error footprint, then the next
point is tried. . The loop continues to be executed until either the entire expected error

range has been exhausted or the insertion succeeds.??
Variation

The example above required a search, but ne “tapping”, since the error along the z-axis of
the hole was much smaller than the expected penetratiion of the pin into the hole. if we

22 5ome people have commented on the computational inefficiency of generating (possibly)
many values Of (xy) which will be thrown away. For any reasonable error limits, however,
this cost can be ignored, since the time required for moving the manipulator far exceeds
that rquired to compute atarget point.

(IV.51]

increase the uncertainty along this axis, then a tap (or some other measurement) must be
used before the insertion can be tried. Thisis illustrated by the code below, which was
written for the same assumptions as those used earlier, except that the box position is
assumed to be subject to no rotation or “in plane” displacement errors, but may have an
error of up to 0.75 inches up or down.

| PIN-IN-HOLE STRATEGY 1343561
DROK = .762 FPX = .243 FPY = ,226 FPU o .824
D2 = .188 ESTIMATED TIRE = 6.67 }

I PICKUP 147167 '
H = 90.8.deg Grasp Angle o 135. dog Grasp Distance « 3.64 |

OPEN BHAND 70 2.88; ‘
MOVE BMANIP TO PIN1xTRANS (ROTN(VECTOR(.679,.678,.281),1494DEC) ,VECTOR(8,8,3.54))
VIA PINIsTRANS (ROTN (VECTOR(.679, .679, .281),149+DEC) ,VECTOR(~3.59,0,7.13));
CENTER BMRANIP
ON OPENING < .18 DO
BEGIN ABORT("GRASP FAILED™)) END;

RFFIX PIN1 TO BMANIP;)
MOVE PINL TO PINisTRANS(NILROTN,VECTOR(S,3,6.78));

I MUST TAP |

WOVE PINL1 TO BH1aTRANS(NILROTN,VECTOR(-1.21,-.802,-5.88))
VIA BH1sTRANS (NILROTN,VECTOR(~1.21,~,002,5.08))
ON FORCE (ORIENT(PIN1)#2HAT) > 8402 DO STOP
ON ARRIVRL DO RBORT("EXPECTED A FORCE HERE™);
CORR « ZHRT _ INV(BHis TRANS(NILROTN, VECTOR(-1.21,-.882, .0880)))sDISPL(PINI);

I FIRST ATTENPT |

NOVE PIN1 TO BH1#TRANS (ROTN(ZHRT,90.8+DEG) ,VECTOR(S,08,-4.25))
VIR BR1sTRANS (ROTN(2HAT,90.0+0EG) ,VECTOR (8,8,2.54))
DN FORCE (ORIENT(PIN1)#2HAT) > 8x02 00 STOP
ON RRRIVRL DO RBORT("EXPECTED A FORCE HERE");
OISTANCE_OFF «ZHAT. INV(BH1#TRANS (ROTN (ZHAT,80. 8sDEG) , VECTOR (0,8,-1.71))) sDISPL (PIN1) -CORR;
IF RBS (DISTANCE_OFF) > ,238 THEN
ABORT("PINL HISSED BHL UNEXPECTEDLY.®);

| LET GO 1
. OPEN BHAND TO 2.98;
UNFIX PIN1 FROM BMANIP;

{ NOU GET HAND CLEAR }
HOVE BMANIP TO BMANIPsTRANS(NILROTN,VECTOR(B,8,-5.88));

In this case, the error footprint in the plane of the.hole is small enough so that no search is
needed. On the other hand, the uncertainty along the hole axis is quite large.
Consequently, the system has chosen a tapping place at

trans(nilrotn,vector(-1.21,-.002,0))

with respect to the hole, which is then used to locate the top surface of the box more
precisely. Thisisaccomplished by moving the pin along a path starting two inches above
the nominal height of the surface and ending two inches below it. When the pin hits the
surface, the motion is stopped and used to compute a correction (o) for use in the success
test.

[IV.52]

Chapter 5.
CONCLUSIONS AND FUTURE WORK

The g:lloal of this research was the Pene_ration of AL manipulator control programs from

high level task descriptions. The full topic of automatic generation of AL code IS extremely
broad, and many narrowing assumptions have been necessary in order for us to
demonstrate basic feasibility while keeping the scope of effort within reasonable bounds.
This report has explained how AL programs have been generated automatically for a

-particular programming example, the insertion of a pin into a hole, which is atypical
subtask Of many assembly operations.

The example was first discussed from the point of view of a programmer coding directly in
AL, to show that the task is non-trivial if attention is given to making the code rugged with
respect to positioning errors. Next, the modeling requirements for automatic coding were
anayzed, since the automation of coding decisions requires that the necessary information
be represented in aform usable by the computer. Finally, the programming example was
revisutedéatﬁﬂs time with the computer using its planning model to generate the AL code
automatically.

Extensions

Although the pin-in-hole task was used as an example throughout this work, a conscious
effort was made to avoid undue specidization. The modelling requirements for this task -
expected locations, accuracies, etc. - are applicable to ‘other assembly operations, and the
techniques used to represent planning information were developed without any particular
task in mind. When time came to write the automatic coding procedures described in
Chapter 4, no substantial changes to the modelling mechanisms were required, although a
certain amount of bug killing was necessary.

However, it is worthwhile to consider how hard it would be to add automatic coding
procedures for other tasks.

As one might expect, the easiest additions would be for variations of pin-in-hole, such as

screw-in-hole, for which most of the analysis has already ‘been done.” The principal
additional difficulty that a screw-in-hole writer must handle would beflgun ng out how to
pick up a screwdriver and how to load ‘a screw onto it. Since these are fairly speciaized
operations, it seems reasonable to congtruct asmal library containing the appropriate code
for different drivers and screw dispensers. \We would also want to consider aternative

methods, such as using the hand to start the screw into the hole? and then driving it down.

Almost as easy would be the task of fitting anut or washer over astud, although keeping
the f|n%eers out of the way would probably be more of a problem. Only dlightly harder
would be mating operations, such as fitting a cover plate or gasket over digning pins, and
operations such as putting apart into a vise or smple fixture.

! Appendix A.2 illustrates a typical error calculation for a screw on the end of a driver.

2 ‘Thisisjust pin-in-hole with a twist a the end.

(IV.53])

The important characteristics of these tasks are that they can be performed with relatively

. simple motion sequences and straightforward verification’ tests, that the accuracy

rquirements are fairly easy to state, and that the coding decisions all rely on fairly locat

ﬁropemes. Where these characteristics are not present, automatic coding will be much

arder. Assembly tasks requiring clever uses of force, workin%in cluttered environments,

and handling limp objects are typical difficult tasks. It should be pointed out that humans

don’t know much about programming such operations, either. Since it is very difficult to

, automate coding decisions which cannot be clearly identified, these tasks must be much
better understood before much success can be expected.

Planning Coherent Strategies

My early research on automatic manipulator programming was primarily concerned with
the problem of how to write coherent programs which took account of interactions between
individual coding decisions. This work was done at a somewhat “symbolic” level;” typical
decisons were sdection of the order in which operations were to be performed, selection of

good” workpiece positions, etc. It proved fairly easy to get a system to make these decisions
inatoy world of symbolic assertions.. The rude awakening came with the trandtion to real
data. The work reported in this dissertation has been largely concerned with representation
of planning knowledge about real-world situations and then using it to make rather more
‘local” coding decisions.

Although it is certainly possible to “put up” a system which plans each task-oriented
operation independently of the others, Interactions must be considered if really efficient
programs are to be produced.

-In Chapter 4, we saw that when selecting a grasping point to pick up the pin, we had to
consder both the initid and finad postions of the pin. The estimated motion time included
both the time for the hand to reach the pin and the time for the pin to move to the hole.
Also, we discovered that some grasping strategies gave larger search patterns than others.
All these factors affected our final choice.

This sort of interaction is not confined to choices made within individual assembly
operations. For instance, suppose we must place pinsinto two holesin our favorite box.

en, in selectm%a grasping method for the first pin, we should remember that our choice
will also affect how much time will be required to pick up the second pin. Other
interactions may be more subtle. Inserting the first pin gives us information about the box
location. Since this information can be used to reduce the search required for the second
insertion, we perhaps ought to consider the accuracy associated with different grasping
orientations as well.

One of the key ideas of the earlier work was planning by progressive refinement. Within
this paradigm, a program outline is prepared, then elaborated into a more detailed one, and
the process is iterated until a finished product is produced. The advantages of this
approach are that planning for individual operations can proceed within the context of
other parts of the program and that effort is not wasted on contradictory or irrelevant

strategies.” Before these advantages can be obtained for real manipulator programs, we
need a better understanding of how individual coding decisions affect each other. Although

3 Sacerdoti (22, 28) successfully applied similar ideas to a different domain.

[1V.54)

the modelling techniques developed in this dissertation - particularly, those for representing
object relations and for relating planned actions to accuracy information - can, perhaps,
provide a basis for such understanding, much very hard work needs to be done. The
devel oBénent of a good constraint formalism for position requirements, discussed earlier,
would be especidly helpful.

5.1 Acknowledgements

| ‘wish to thank my thesis advisory committee, Jerome Feldman, Vinton Cerf, and Thomas
Binford, for their continued interest and encouragement and for many suggestions which
have helped give this work some measure of coherence. Also, | must thank all the many
Beople with whom | have discussed various aspects of this work. | owe a special debt to

ave Grossman, who had. the patience to read these chapters severa times, and who made
many valuable editorial improvements. '

[IV.55)

Chapter 6.
BIBLIOGRAPHY

0 .
(1] Pro_cccdinﬁnof an ACM Conference on Proving Assertions About Programs, SSIGPLA N
Notices, January 1972.

[2] Association for Computing Machinery, Proceedings of a Symposium on \Very High
Level Languages, SICLAN Notices, April 1974

(3] David Barstow, The PS| Coding Expert: A Knowledge-Based 4pproack to Automatic
Coding, Manuscript, Submitted to Second International Conference on Automatic
Coding, October 1976.

(4] Bruce G. Baumgart, GEOMED - A Geometric Editor, Stanford Avrtificia Intelligence
Laboratory Memo AIM-232, Stanford Computer Science Report STAN-CS-74-4 14,
May 1974.

(51 T.O. Binford, D. D. Grossman, E. Miyamoto, R. Finkel, B. E. Shimano, R. H. Taylor,
R. C. Bolles, M." D. Roderick, M. S. Mujtaba, T. A. Cafford, Exploratory Study of
‘Computer Integrated Assembly Systems, Prepared for the National Science Foundation.
Stanford Artificid Intelligence Laboratory Progress Report covering September 1974
to November 1975.

(6] T.O.Binford, D. D. Grossman, C. R. Liu, R. C. Bolles, R. Finkel, M. S. Mujtaba, M.
D. Roderick, B. E. shimano, R. H. Taylor, R. H. Goldman, J. P. Jarvis, V.
Schdnman, T. A. Gafford, Exploratory Study of Computer Integrated Assembly
Systems, Prepared for the National Science Foundation. Stanford Artificial
Intelligence Laboratory Progress Report covering November 1975 to July 1976.

(7] Robert C. Bolles, Verification Vision Within a Programmable Assembly System, Ph.D.
Dissertation, Summer 1976.

(8] Per Brinch-Hansen, Operating System Principles, Prentice-Hall Series in Automatic
Computation, Englewood Cliffs, New Jersey, 1973.

[9] 0.). Dahl, E. W. Dijstra, C. A. R. Hoare, Structured Programming, Academic Press,
New York, 1972.

[10) Raphael Finkel, Constructing and Debugging Manipulator Programs, Ph.D.
Dissertation, Stanford Computer Science Department, 1976.

[11] Robert Floyd, Towards the Interactive Design of Correct Programs, Stanford Computer
Science Report STAN-U-71-235, September 1971.

(12) Guiseppi Gini, Maria Gini, and Marco Somalvico, Emergency Recovery in Intelligent
Robotr, Proceedings of - the Fifth International Symposium on Industrial Robots,
September 1975.

. [1V.56]

(13)

(14]

" [18)

(16]

m
[18]

-[19]

[20]

(21]

[22]

(23]

[24]

[(25)

[26]

C. Cordell Green, et al., Progress Report on Program-Understanding Systems, Stanford
Artificia Intelligence LaboratoQ/ Memo AIM-240, Stanford Computer Science Report
STAN-CS-72-444, August 1974.

David D. Grossman and Russell H. Taylor, Interactive Generation of Object Models
Witk a Manipulator, Stanford Artificial Intelligence Laboratory Memo AIM-274,
Stanford Computer Science Report STAN-CS-75-536, December 1975.

James R. Low, Automatic Coding: Cheice of Data Structures, Ph.D. Dissertation,
Stanford Artificial Intellgence Laboratory Memo AIM-242, Stanford Computer
Science Report STAN-CS-74-452, August 1974.

Zohar Manna and Richard Waldinger, Knowledge and Reasoning in Program
Synthesis, Stanford Research Inditute Artificid Intelligence Center Technical Note 98,
November 1974.

‘C. Murphy, The Reliability of Systems, unpublished manuscript, date unknown.

J. L. Nevins, D. E. Whitney, H. H. Doherty, D. Killoran, P. M. Lynch, D. S. Sdltzer, S.
N. Smunovic, R. Sturges, P. C. Watson, E. A. Woodin, Exploratory Research in
Industrial Modular Assembly, The Charles Stark Draper Laboratory, Inc., Prepared
for the National Science Foundation, Memo No. R-800, covering June 1973 to
January 1974, March 1974; Memo No: R-850, covering February 1974 to November
1974, December 1974.

Richard Paul, Modelling, _T_rajectorf_/ Calculation and Servoing of a Computer
Controlled Arm, Stanford Artificia Intelligence Laboratory Memo AIM-177, Stanford
Computer Science Report STAN-CS-72-311, November 1972,

Richard Paul, Manipulator Path Control, Proceedings of the 1975 International
Conference on Cybernetics and Society, 1975, pp. 147-152.

C. Rosen, D. Nitzan, R. Duda, G. Gleason, J. Kremers, W. Park, R. Paul, Exploratory
Research in Advanced Automatton, Prepared for the National Science Foundation,
Stanford Research Indtitute Project 4391 Fifth Report, January 19%.

Earl D. Sacerdoti, The Nonlinear Nature of Plans, Stanford Research Institute
Artificid Intelligence Center Technicd Note 101, January 1975.

Earl D. Sacerdoti, A Structure for Plans and Behavior, Stanford Research Institute
Artificid Intelligence Center Technica Note 109, August 1975.

Hanan Samet, Automatically Proving the Correctness of Translations Involving
Optimized Code, Ph.D Dissertation, Stanford Artificid Intelligence Laboratory Memo
AIM-259, Stanford Computer Science Report STAN-CS-75-498, May 1975.

Robert F. Sproull, (Title Unknown), Ph.D. Dissertation,, Stanford Computer Science
Department, Summer @ 1976.

J. T. Schwartz, Automatic Data Structure Choice in a Language of ¥ery High Level,
Courant Indtitute, NYU, 1974.

(IV.57)

[27) Norihisa Suzuki, Automatic Verification of Programs with Complex Data Structures,
Ph.D. Dissertation, Stanford Artificial Intelligence Laboratory Memo AIM-279,
Stanford Computer Science Report STAN-CS-76-552, February 1976.

(28] Russell H. Taylor, Tke Synthesis of Manipulator Control Programs from Task-Leve!
Specifications, Ph.D. Dissartation, July 1976.

[29) Richard Waldinger, Achieving Several Coals Simultaneously, Stanford Research
Indtitute Artificia Intelligence Center Technical Note 107, July 1975.

[1V.58]

Appendix A.

Box in a Fixture

This sequence of problems illustrates the translation of symbolic relations into constraints,
and shows the output estimates that result from application of the iterative method
described in my dissertation [28). Here, we have placed our box into an open-topped
fixture, asillustrated in Figure A, 1. In the first problem, the box is allowed to rattle
around loosely inside the confines Of the fixture. In subsequent subproblems, we push the
cornel edges up againg sides of the fixture, thus further restricting the box.

First Problem

The box has been placed in the fixture, with the bottom surface of the box in contact with
the bottom inside surface of the box. This iS reflected in our data base by the assertion:

(contacts, bxbtm, bjl.sb, inside-of)

where bxbtm is the bottom Of the box, and bjL.sb is the bottom of the fixture. This produces
the constraint set:

YHAT#R#* 5.85% VECTOR(-.760,-.649, ,886) S 5.818 - YHRT . PV
~XHATsRs S. 85#¢ VECTQIR(-,760,-.649, .000)< 4.810 - -XHAT . PV
~YHATsRe 5.85s VECTOIR(-.768,-.649, .088) 4 5.818 - -YHAT , PV
XHAT#Rs 5.85¢ VECTOR(-.768,-.649, 888) S 4.818 = XHAT . PV
YHAT#Rs 5.85% VECTOR(.76@,-.649, ,808) 4 5.018 - YHAT . PV
-XHAT#R2 5.85s VECTOIR(.768,-.648, .0008) € 4.818 - -XHAT _ PV
~YHRTsRs §.85s VECTOR(.768,-.649, .880) S .81 - -YHAT , PV
KHAT#Re 5.85¢ VECTOR(.768,-.649, ,838) < 4.818 - XHAT . pv
YHAT#R# 5.85¢ VECTOR(.768,.649, ,868) S 5.818 — YHAT . PV
-XHATsRs 5.85% VECTOR(.768,.648, .008)S .08 - -XHAT . PV
~YHATsR« 5.85¢ VECTQR(,768, 649, ,888) € 6.818 - -YHAT . PV
XHATsRs 5.858 VECTOR(.768, 649, .808)S 4,010 - XHAT _ PV
YHAT#R+ 5.85s VECTOR(-.768, 649, ,888) $ 5.818 — YHRT . PV
~XHATsRe 5.85s VECTOR(-.768, 649, ,888) S 4.018 — -XHRT , PV
-YHATsRs 5.85; VECTOR(-.768, .649, .088) S 5.810 — ~YHRT | PV
XHAT#R* 5.85% VECTOR(-.768, 649, .808)S 4.818 — XHAT . PV

8= .000 - ZWAT . PV
WHERE R « N LROTNaROTN(-2HAT,W)
PV = IX,Y,2)

Applying the algorithm gives two possible orientations:

ESTINATE LIST:

1TEN416:
X1 -.204 TO .204
oY -.886 T O .585
23 -.081 T O .801
He_ 87.36840EG T O 92.832+0E6

COS(Ne) = .068 SIN(WO) = 1.888
COS (DW) = 899 R . .846

\) w - [1v.59)

Figure A.L Box in Fixture

Figure A.2. Screw on Driver

[IV.60]

These results aso iilustrate the replacement of equality . constraints with a pair of
inequaities. here, Z goes from -0.001 to 0.001. This approximation is not strictly necessary.
However, it proved useful in some (other) cases where overdetermination was a problem.

We now assert that one of the corner edges of the box iS in contact with a side of the

fixture,

ITENG17:

X3 -.284 TO .2084

Y: -.585 TO ,555

2z -.801 TO .081

W ~92.632+0EC TO ~-87.36840DEG

COS(N@) « .0800 SIN(NG) = -1.888
COS(DW) = .999 R = .848

Second Problem

(contacts, bxbtm, bjl.sh, inside-of)
(con tacts, be9, bjl.s2, ex ten t_irrelevan t)

This gives:

Notice that we have now rid ourseves of the ambiguity in the gross orientation of the box.

~XHRTeRe 1.00¢ VECTOR(-.797,-.707, .800) S -.707
YHATsRe 5. 85¢ VECTOR(-.760,-.649, .008) € 5.888 « YHRT .

~XHAT#R« 5. 85% VECTORD.788,;,649, ,888) $ 4.888 - =XHRT .

~YHAT#Rs 5. 85¢ VECTOR(-.760,-.649, .880)-S 5.868 - -YHAT .
XHAT#Re 5. 85s VECTOR(-.768,-.649, ,888) S 4.888 - XHAT .
YHAT#Rs 5,85« VECTOR(.760,~.649, .888) S 5,888 - YHRT .
-XHAT#Rs 5. 86# VECTOR(,768,-.649, ,888) S 4.888 = =XHRT _
-YHATsR# 5. 85s VECTOR(.760,-.649, .888) S 5.808 - =YHAT .
XHATeRe 5,85+ VECTOR(,760,-.648, ,888) S 4,888 ~ XHAT .
YHATeRe 5. 85¢ VECTORC .768, ,649, ,888) § 5.888 - YHAT .
-XHATsRe 5_85s VECTOR(.768, .649, ,888) € 4.888 - -XHAT .
~YHATsRe S.85s VECTOR(.760, ,649, .080) S 5.989 - -YHAT .
XHATsRe 5. 85s VECTOR(.768, .649, .808) S 4.888 - XHAT .
YHAT#Rs 5. 85& VECTORD.768, ,649, .888) § 5.888 - YHRT .
~XHATsRe 5. 85¢ VECTOR(-.760, .649, .000) S 4.888 - -XHAT _
~YHATsRs 5.85¢ VECTOR(-.768, .648, .808) S 5.888 - -YHAT .
XHATeRe 5. 85+ VECTOR(-.768, ,649, ,898) S 4.088 - XHRT .

PV

~XHAT#Rs S. 854 VECTOR(-.760,-.649, .0080) = ~4.0808 - ~XHRT . PV

8= .0080 - ZWRT . PV .
WHERE R = NILROTNsROTN (~ZHRT, ?)

ESTINRTE LIST:

1TENG26:

X3 -.008 TO ,288

Y:

4] «W-50T0T0 550

Hs =-92.632¢DEC TO -58.0880sDEG

COS(HB) = ~.823 BIN(N®) = -1.888
COSW)s 1.880 = o .023

Fina Problem

We now proceed to add two more edge-to-surface contacts:

. [1IV.61)

gcontacts, bxbem, bjl.sb, inside-of)

contacts, be9, bjl.s2, extent_irrelevant)
(contacts, bel0, bjl.s3, extent_irrelevant)
(contacts, bell, bjl.s4, extent_irrelevant)

and wind up with the find estimate:

-YHAT#R¢ 1.881, VECTOR(.707,-.787, .088) S -.787

XHAT#Rs 1.00% VECTOR(,787, ,787, .808) S -.707

~XHRT+R+ 1.802 VECTOR(-.707,-.787, .080) < -.707

YHRTsRe 5.85s VECTOR(-.768,-.6439, .008) < 5,008 - YHAT . PV
=XHRT#R# 5.85% VECTOR(-~.768,-.649, .000) S 4.888 - ~XHAT . PV
-YHAT«Rs 5_850 VECTOR(-.768,-.649, .880) S 5.988 - -YHAT , PV
XHAT#R+ 5.854 VECTOR(-.760,-.649, .808) S 4.899 - XHAT , PV
YHRT#R» 5.85s VECTOR(.768,-.648, .880) € 5.888 - YHRT . PV
-XHAT#R* 5.85% VECTOR(.768,-.649, .800) € 4.888 - -XHAT _ PV
-YHAT*R* 5.85+ VECTOR(.760,-.649, .8080) S 5,800 - -YHAT . PV
XHRT#R#» 5.85% VECTOR(.768,~.649, .880) S 4.888 - XHRAT . PV
YHAT#R» 5,85« VECTOR(.768, .643, .888) £ 5,868 - YHRT . PV
-XHATeR+ 5.85¢ VECTOR(,768, .648, .0808) § 4.888 ~ ~XHRT . PV
-YHAT+R+ 5.85¢ VECTOR(.768, .643, .0808) S 6.888 = =YHRT _ PV
XHATsR+ 5.854« VECTOR(.760, ,649, .800) S 4.888 = XHAT . PV
YHRT#Rs 5.85%¢ VECTORL.768, .648, .8088) € 5.888 - YHAT . PV
-XHAT#R* 5.85% VECTOR(-.760, .649, .888) S 4.889 - ~XHAT _ PV
-YHRT#R#* 5.855 VECTOR(-.768, .649, .888) § 5.888 - -YHRT _ PV
XHRT#R» 5.85» VECTOR(-.768, .649, .08008) S 4,888 - XHAT . PV
~YHRT#R% 5.85% VECTOR(.768,-.648, .068) . -5.888 = ~YHAT . PV
XHAT#R» 5.85& VECTOR(,768, ,649, .808) = -4.880 - XHRT . PV
-XHAT+R% 5.85% VECTOR(-.768,-.649, .088) . -4.688 - -XHAT . PV
8=« 883 - ZHAT . PV

WHERE R s NILROTN&ROTN(-ZHRT,?)

ESTINATE LIST:

ITEN&42:

X3 .888 TO .808

Yi .378 TO .381

21 -.881 1O ,881

LH] -92.632:DEG TO -92.683+DEG

cos (N8) . -.846 SIN(WB) = -.998
COS(DW) = 1.888 R = .088

A.2 Screw on Driver

This example illudtrates use of, the differentiad approximation methods to estimate runtime
errors. The task isinsertion of a screw into ahole of our favorite box. The box is
assumed to gt on the table, with possible displacement errors in the xy plane and rotation
€rror about the z axis:

Dbox = tnnsl(?s; + u;)»arot(;.‘?)
W here

_. -0.8inches s A s 0.3 inches
.-0.2 inches sy 0.2 inches
-5 degrees s ¥ s 5 degress

[1V.62]

The screw is held on the end of a driver, asshown in Figure A.2, and the driver is held in
the hand. We assume that errors in the driver’s position with respect to the hand are
negligible. However, the hand's position will only be assumed accurate to within 0.05 inch
in displacement and 0.25 degree in orientation.

ADhand = transl(vector(Bx.by.bz))trot(;.cﬁx)trot(;.¢y)trot(;.¢z)
where

-0.05 inches s &y, By, 8, s 0.05 inches
-0.25 degrees s ¢y, 9y, ¢, s 0.26 degrees

Likewise, the screw can wobble about the tip of the driver.

ATgs = rot(x.akrot(y,5)
SIeaMy +6M,

where

-5 degrees s a s 5 degrees
-5 degrees < f s 5 degrees

Weare interested in producing a parameterized estimate for ATy, the relation between the

center Of the hole and the tip of the screw. In this case, the system finds only one acyclic
path of relations linking the hole and tip.

The = holelutip
= (boxs Ty) le(handuTy 4o T g Ty)
= TghoboxborandeTy goT g T,

where

Tpp, = Locaion of hole with respect to box.
Thqa = Location of driver with respect to hand.
Tds = Location of screw with respect to driver.
Ty = Location of tip with respect to screw.

box "= Locetion of box in work station
hand = Location of hand in work station

In this case, the nomina values for these quantities are given by:

[IV.63)]

Tbh = trans(nilrotn,vector(3.85,3.20,4.90)) (Distances in cm)
Thq - = niltrans
. Tas = trans(nilrotn,vector(0,0,25.4))
Ty = trans(nilrotn,vector(0,0,3.18))
"box = trans(nilrotn,vector(45.7,101.6,0))
hand - trans(i'ot(;.180tdeg).vector(49.6,104.8.30.3))

All errors other than. those described above are assumed to be negligible. Using this
information, application of the algorithm gives us a parameterized form for ATy,:

ATy, = transQpp #ARp,

where
Oppe * Ysvector(3.20,3.85,0)
+ ¢, vector(0,28.6,0) + dyrvector(-28.6,0,0) + § avector(0,0,0)
+ awvector{0,3.18,0) + Bevector(-3.18,0,0)
l.Ax.pyqsxx+8yy+szl
~
ARy =1+7M; + M, + ¢yMy +$ M, + aMy + BMy
“Sub ject t0 constraints:
{i1.0¢6 , .ee8 , .g88) ,VlsS .762
(1.6 , .ese , .888 1. VI 2-.762
[.e68 , 1.88 , .888 1. Vis .508
[.088 , 158 , .ees) . Vi 2-.5088
[.ae8 , .eee , 1.88 1 . VI .873¢-1
[. 108 » .868 , 1.08 1. Vi2-.873e-1
tilee .e08 , .808 , 888 ., .88 , .888 1 . V25 .127
| e , .eee , .e0® , g88 , .08 , .880) | V2 2-.127
(liee , i.88 , .e0® , .,008 , .68 , .888) . V2 < .127
t.e¢¢ , 188 , .ee® , .ee®6 , 888 , .8@8) . V2 2-.127
{ 000 v .000 , 1.88 y .0808 , .800 , +088] _ V2s.,127
t.a¢® , .e06 , 1.8 , .e88 .eee , .888) . V2 2-,127
{ .66 , .ee8 , .960 , 1.88 , .888 , 888) . V2 S .436e-2
[.08 , .00 , .00 , , 686 , .808) , V2 2-,436e-2
{.ae@ , ..086 , .08 , 1888 , 1.8 , .888 1 _ V2 € .436e-2
{.008 . 633 , .08 , .80 . 188 , .868 1 V2 2-,436@-2
{.000 , 833 , ,000 , .000 . .060 , 1.88). V2 s .436e-2
(.08 , .,s08 , .000 , .000 . .008 , 1.80 1 . V2 2-.436e-2
(1,886 , 888 1 .V3g .873e-l
{1.08 , .08 1 . V3 2-.873-l
& .“l. [] 10.0) . V3 S 0673..1
000 st 1.88] . V3 2-.873¢-4

where

[IV.64)

Vield 4,7
v2atb, 85,85, 4, 9,9,
ieta, 81

We areinterested in finding the maximum displacement errors in the plane of the hole (Ax

and Ay) and along the axis of the hole (Az). These quantities are given by the objective
functions:

AX = [3.28, .068, -23.6, .009, .808, -3.18, 1.88,00, .008, 008 | .V
Ay = € 3.85, 23.8, .088, .888, 3.13, .808, .88, -1.88, .008, 1.55, .08 1 . V
Oz - 1 .088, .068, .098, .000, .08, .800, .008, .000, .000, .80, 1.00) . V

where

Vel 7, ¢.’ ¢ui ¢t' a, 6’ A' H, 8:: 8“' 6:]

Solving these linear programming problems, the system gets.

-1.57 s Ax s 1.57 (157 cm = 0.62 inches)
-1.37 S Ay s 1.37 4 " (1.37 cm = 0.54 inches)
-127 < At £.127 . (127 cm = 0.05 inches)

Also, we need to know the maximum direction eror between the screw and hole axes. This
quantity will be given by:

where

A0, - .t .00, -1.88, .000, .000, -1.88; 008) . V

Aou o 1 .000, .000, -1.80, .008, .000, -1.00 | . .

and
Va7, ¢x9 ¢yn ¢!' a, 5’
Solving gives us:

-0916 s &b, s .0916 (0.0916 radians = 0.525 degrees)
4916 s AOY < .0916

v. CASE STUDY OF ASSEMBLY OF A PENCIL SHARPENER

M. Shahid Mujtaba

Artificia Intelligence Laboratory
Computer Science Department
Stanford University

The author isa graduate student in the Industrial Engineering Department.

(v.1

INTRODUCTION

A mechanical pencil sharpener was assembled using the Stanford Arm to gain insight into
analyzing the mechanical assembly process. The process can be considered as a sequence of
motions of the component parts; these motions in turn dictate the need for a sequence of

motions of the manipulator hand.

The software system used for programming hand motions is of considerable importance in
determining the ease with which a manipulator can be used, and the path along which it
moves. For analyzing the hand motion times, however, software is much less important than
hardware, since the hardware characteristics of the manipulator largely determine the speed
and types of motions which may be made. It is believed, therefore, that whether the pencil
sharpener is assembled using WAVE or AL will not significantly affect the types of motions
used or the speed of execution. We plan t0 check this conjecture by assembling ‘the pencil
sharpener both in WAVE and in AL. The results reported here use WAVE.

The main results which emerged from this study are these:

a) Specia purpose fixtures were desirable for holding the parts in place so that
the manipulator could work on them. Plaster of Paris fixtures were easy to
design and produce, relatively cheap, and adequate for the purpose.

b) Positioning of parts could often be accomplished more readily by dropping
the parts and tapping them into place than by trying to position them accurately.

c) Anaysis of the movements made by the manipulator showed them to be
similar to human movements as defined by Methods Time Measurement
(MTM),[2’3] but since the mechanical arm was larger, clumsier and less versatile,
and had to avoid objects in the path of movement, had to check the precise
location of the spindle in its hand, and had to grope for the hole tO insert the
spindle shaft in, total assembly by the manipulator took longer than by a human
by afactor of 8 times when the assembly was done, neglecting overhead. The
same factor was expected from theoretical ‘analysis.

DESCRIPTION OF THE ASSEMBLY TASK

The parts of the assembly are shown in Figures 1, 2, and 3. Four parts were assembled
together - the handle (crank), body of the sharpener (base), spindle (assembled with the
cutters in place), and the shell.

Jauadieyg pousy jo aseq 1 aindyy

[V.3)

Jauadieyg [1ouag Jo 1ayg :g ainSiy

. N R . R
B H .
. H - B .
- : [.-l....
e g e e sy T am v e
U - J
- - . LS 3 L . :

G et e b en

, .
< | —————
. e ——t——————
e —r——
] —
oo ee——
.
C ek e

Figure 8: Handle and Spindle of Pencil Sharpener

[V.5]
The whole assembly task was broken up in broad terms as follows:

a) get and position handle (crank)

b) get and’ position base (body) ‘

C) get and insert spindle shaft through hole in base

d) screw spindle into hole in crank

€) get and position shell of sharpener against base, placing it over spindle
f) seat shell and turn it 45 degrees into place

g) bring arm back to initial position

FIXTURES

A fixture” isa holding device which supports the workpiece in a fixed orientation with.
respect to the tool (in this case the manipulator hand). Each fixture has locators to position
the workpiece and clamps to hold it rigidly.

A freerigid body has three degrees of freedom of rotation and three degress of freedom of
trandation. Locators redtrict these six degrees of freedom in order to give points of reference.
As shown in Figure 4, the workpiece would lose three degrees of freedom when placed and
maintained, on the locators lettered (A); locators lettered (B) restrict another two degrees of
freedom, and .locator (C) restricts the last degree of freedom. The form of the locator selected
depends on the condition of the reference surface of the part; finished surfaces can be -
supported on a surface rather than suspended on points, while rough surfaces are given as
few points of contact as deemed necessary for stability of the part. Clamps hold the
workpiece firmly against the locators provided and resist all forces introduced by the
operation.

In the assembly of the pencil sharpener, fixtures were used to locate the parts precisdly; since
the forces encountered in the assembly process were smal (much smdler than in the case of
machining), clamping was not done by externa clamps. Instead the manipulator was used to
provide the necessary reaction againgt the locators.

Fixtures were made by casting plaster of Paris in a box, and dipping the parts, suitably
covered with modelling clay and masking tape, and coated with a thin layer of petroleum
jelly into the plaster to make a mold for the part. The plaster was then machined to provide
space for the manipulator fingers to be inserted around the part to be gripped. Since the
surfaces of the sharpener were smooth, surface contact was used instead of point contact.
Drawings of some of the fixtures used are shown in Figures 5, 6, and 7.

The advantage of using plaster of Paris was that making the initial mold and machining
was a very smple and economical process which did not require specidized tools.

[V.6)

-a\ /7 ‘\
A e

[(n,

C (8) ‘B,

Figure 4: Placement of Locators

[v.7)

Figure 5: Fixture for Pencil Sharpener Base

[V.8]

o leb

Figure 6: Fixture for Pencil Sharpener Shell

R——————

[V.10]

Overmachining of the plaster resulting in too much iossage could be easily corrected by the
application of more wet plaster which was later alowed to dry. The biggest disadvantage of
using plaster as the potting material was that it chipped very easily, and each time the
fixture was used, alittle bit of it wore out or broke off, resulting in more uncertainty of the
locations. This disadvantage could be overcome by using other potting compounds instead.

Another possible improveﬁwent in fixtures would be to design them to alow functional
ingpection. By putting sensors in the fixture at the appropriate places, it would be possible to
tell if the object has falen in at the right postion. An interesting but unanswered question
is whether or’not a “universal” fixture can be designed.

ASSEMBLY OF THE SHARPENER

The handle was located with respect to the edge. at the hole end. It was placed in the fixture,
and pushed until it touched the side of the fixture. The base fixture had parts removed to
ensure that the bottom or the back end-did not bind against the base when the base was
lifted. In fact, without those parts removed, the fixture came up with the base when. the
latter was lifted! The shell fixture did not need to have any parts removed, since it held the
shell securely at the bottom.

Problems were encountered with the origind main fixture in which the assembly was done.
When the handle was being positioned in the fixture, either the hole end or the roller end ,
touched the fixture and then the orientation of the handle was lost. Asaresult, the handle
ended up at unpredictable places, making correct positioning impossible. To correct this
problem, the well for the roller handle was tapered,. as shown in Figure 7, so that when the
handle was dropped from about half an inch above the well, it landed in. roughly the right
place, and just needed to be tapped into place by having the manipulator hand rest on it
and drag it towards the center by friction until the hole end of the crank was flush with the
fixture. The base was put into place by wobbling it alittle while moving it down, and
stopping motion of the arm when a force was encountered; after releasing the base, the hand
was lifted, closed, and tapped down on the base.’

The spindle presented specia problems since the clearance between the shaft and the hdle
into which it was inserted was 0.004 inches while the arm reading was given in terms of 0.01
inches; dthough noise in the A/D ‘channels and devices resulted in an uncertainty of 0.04
inches. (This meant that two successive readings without movement would indicate the arm
to have moved by as much as 0.04 inches.) The spindle shaft was touched against the sides
of the main fixture in order to locate more precisely the position of the hole, and then a
spiral search in steps of ‘0.04 inches was done to. actudly insert the spindle shaft into the
hole. While this small step may appear to be very close to the uncertainty of the A/D
channels, it had to be used since larger steps would have. resulted in the arm making serious
overcorrections. Once the firgt part of the insertion had been accomplished (as evidenced by

[V.11]

not encountering reaction at the end of the spindle), the spindle was pushed down and
twisted at the same time in order to seat it without binding. It was then twisted into the
handle hole by applying adownward force and turning the hand through 360 degree

revolutions.

The shell was lifted verticaly out of its fixture and positioned over the assembled spindle,
then lowered in place and released at a height of 0.2 inches from the mating surface,
regrasped and wobbled gently while being pressed down in order to ensure seating. It was
then turned 45 degrees to finish the final assembly, stopping when a resisting moment was
encountered. \

COMPARISON OF ASSEMBLY BY MANIPULATOR VERSUS ASSEMBLY BY HUMAN

TIME DATA

The compiled program of about 20k bytes was ableto-assemble the pencil sharpener in 2.4
minutes. Of this time, about 1.8 minutes or 108 seconds was actual CPU time, mainly for
servoing. The rest was overhead due to interprocessor communication and loss of the
processor in time-sharing mode. A theoretical estimate of the time taken for the arm to

- perfotm the assembly also gave 108 seconds, assuming continuous motion and disregarding
lossage of the processor and overhead. Detailed analysis of the assembly procedure by the

~ manipulator is given in Appendix 2, and it should be noted that much time is spent in
opening and closing the hand, centering over the object, and trying to verify the postion of
*the hole.

Estimates of a human operator using one hand on the basis of MTM data to do the same
assembly showed that it took 14 seconds (verified by the author taking 15 seconds to do the
job), a factor of 8 times faster than the manipulator. It must be remembered that the
manipulator did not utilize vision, for help as a human operater does, and was thus akin to a
blindfolded, one armed, two fingered human operator doing the job. A table showing the
andysis of the MTM study for the human operator is given in Appendix 1.

It should be noted that the assembly procedure does not represent the optimum sequence of
movements, or placement of the component parts initialy. The determination and
elimination of inefficiencies would mean running the system at the limit of its capability,
which would result in reduced assembly time.

ASSEMBLY AND MOTION PRIMITIVES

MTM and Draper use assembly primitives in studying the sequence of tasks involved in
putting an assembly together, while WAVE uses motion primitives to specify arm motion.
The former primitives are descriptive in nature since they describe the actions performed,

[V.12]

but not the motion for the manipulator to achieve the action. WAVE primitives are
strategic, since they specify where and how the arm has to move rather than what the

assembly task is.
MTM ASSEMBLY PRIMITIVES! %721

MTM primitives generally consist of severa parts. the assembly primitive, the distance
involved, and. specific cases involved in the the assembly primitive. For example, R 24 D
means to REACH 24 inches to an object in a fixed location, or to an object in the other
hand, or to an object on which, the other hand rests., The following is a partial list of
primitives, their abbreviations and a description. A fuller description of the specific cases is
given in Appendix 1.

REACH(R) : Move hand to a detination or general location.

MOVE(M) - Transport an object to a destination.

TURN(T) . Turn the hand by a movement that rotates the hand,’
wrist, and forearm about the long axis of the forearm.

GRASP(G) - Secure sufficient control of one or more objects with the
hand.

POSITION(P) . Align, orient and engage one object with another when
. the motions are minor. .

RELEASE LOAD(RL) Relinquish control of an object by the fingers or hand.

APPLY PRESSURE(AP) Apply force aong the axis of the forearm.

TURN & APPLY TURN and APPLY PRESSURE are tabulated

PRESSURE(T & AP) together in MTM tables

Draper Lab ASSEMBLY PRIMITIVES!#/

While Draper Lab has defined 9 main primitives and 9 subprimitives for
“ACCOMMODATE”, only the ones used in this paper are described below:

GRASP Device uses tool to grasp part(s) to be assembled or to
grasp another tool.

POSITION Device executes gross motion trgectory carrying tools
and/or parts.

INTERFACE Device goes from state of no contact between tool or

carried parts and other parts to astate of contact: i.e. -
device touches something,'makes contact”.

RELEASE Device causes tool to release its grasp on part or other
) tool.

RETURN Device returns tool to storage area,

ACCOMMODATION Device allows the forces between parts to modify the

motion of parts according to one of the following
subprimitives:

COMPLEX ACCOMMODATE Accommodation executed during a

INSERT
DEPRESS

complex motion having no convenient
name to describe motion.

Push shaft into hole.

Deflect a part in its compliant direction.

WAVE MOTION PRIMITIVES!”!

The following isalist of WAVE motion primitives used in programming the arm.

PARK
GOTO

GO-
MOVE

CHANGE
PLACE

- OPEN
CLOSE
CENTER

Generates a trgjectory to the PARK (at rest) position.
Generates a three part trgjectory consisting of the
departure, center and approach segments.

One part direct move without liftoff or setdown.

Same as GOTO except that a smooth trgjectory is
fitted through the three segments.

Generates atrgectory for differential motion.

This causes the hand to move down until it meets some
resstance.

Opens the hand.

Closes the hand.

Closes the hand centrdly over the object to be grasped.

WAVE ASSEMBLY PRIMITIVES

[V.13]

The following primitives, smilar to ‘motion primitives, were used to describe the assembly

using the mechanical arm:

CENTER and CLOSE
GOTO(MOVE)

POSITION

OPEN
WAIT -

TURN &
APPLY PRESSURE

Results in the hand grasping the object.

Three part move that uses GOTO primitive to make
a gross motion.

Motion which alows some form of mating of one object
with another, or adjusts the position of the hand so
that the next motion can be easly executed.

Has the same effect as releasing the object.

A short pause between movements.

Turning about an axis while applying force along the
axis

Pkt OV g i ek M e o

(V.43

COMMENTS

It should be noted that the comparisons are made between assembly primitives rather than
motion, primitives, except where it is of interest to show correspondence between them. As
there was no one to one correspondence with MTM and WAVE primitives because smilar
motions could be specified in several ways in WAVE, it was decided to use primitives
smilar to those in MTM for the mechanica arm. Different fonts are used when referring to
different primitives to enable easier recognition of what the primitives are. The fonts are
summarized below:

MTM ASSEMBLY
DRAPER ASSEMBLY

WAVE MOTION
WAVE ASSEMBLY

No distinction is made between MOVE and REACH in the case of the mechanicd arm, since
the parts are so small and light compared with the arm that it does not make a difference in
the movement whether the arm is carrying anything or not. WAIT are tabulated, since
these were explicitly inserted for the purpose of preventing the overlapping of consecutive
movements which tended to cause unpredictable results. For instance the WAIT after
dropping the handle ensured that the drop was not affected by the hand closing before the
handle had a chance to drop in place. The CENTER and CLOSE operations are
equivalent to the GRASP of the human but take much longer to do. OPEN for the
manipulator is equivalent to RELEASE performed by the human operator except that it is
not quite as gentle, and the hand usudly opens quite suddenly.

The POSITION (obtained generally by GO) in the case of the mechanica arm is almost
the same as GOTO(MOVE) and could have been considered the same and tabulated
together. The GOTO(MOVE) was movement to an approach point, while the
POSITION (mainly GO) was a one part directed move to the location of the grasping
position - a smooth move tended to cause a collision with the object being grasped even
when the direction of approach was well defined, since the arm did not successfully null out
errors in al the six joints at the end of the allotted motion time - a one part downward
directed move required only the movement of three joints, joint 2 to lower the arm, joint 3
to extend the boom so that the hand would move down vertically, and joint 5 to keep the
hand approach vector vertical.

[V.15)

ASSEMBLYDATA

NUMERICAL BREAKDOWN OF ASSEMBLY ELEMENTS FOR ASSEMBLY BY- HUMAN

GRASBP| RREACH |ROVE POSI- [RELE- | TURN +
TION ASE APPLY
PRESSURE
PUT HANDLE 1 1 1 1 1
PUT BASE 1 1 | 1 1
PUT SPINDLE 7 1 2 1 6 12
PUT SHELL 1 1 1 1 1 1
HOVE BACK 1
oAl 10 | s | s || & || o 13

TIMES REQUIRED FOR THE ELEMENTS (JFFIES)
(60 jiffies = 1 second)

GRASP | REACH|HOVE POSI- | RELE- | TURN +
TION ASE APPLY
PRESSURE
PUT HANDLE 4 32 29 22 4
PUT BASE 4 27 40 45 4
PUT SPINDLE 30 32 62 45 26 244
PUT SHELL 4 30 . 51 45 4 8
MOVE BACK 38
TOTAL | 42 159 | 182 157 38 252
AVERAGE | 4 32 36 39 4 19

ESTIMATED TOTAL ASSEMBLY TIME = 830 JFFIES = 13.9 SECONDS

[V.16]

BREAKDOWN OF ASSEMBLY ELEMENTS FOR YELLOW ARM USING WAVE

CENTER GOTO POSI- OPEN|TURN + WAIT
+ (HOVE) | TION APPLY
CLOSE PRESSURE
PUT HANDLE 2 3 3 2 1
PUT BASE 4 3 2
PUT SPINDLE
GET SPINDLE 1 1 1 1
PLACE SPINDLE 1 6 3 1 1
TURN SPINDLE 3 3 18
ASSEMBLE SHELL 2 2 3 2 1 2
PARK ARM 2 1
TOTAL I 18 13 12 l 20 | 3

TIMES FOR ASSEMBLY BY YELLOW ARM USING WAVE (JFFIES)

CENTER GOTO POSI- OPEN TURN + WAIT
+ (MOVE) TION APPLY
CLOSE PRESSURE
PUT HANDLE 70 370 240 80 - 50
PUT BASE 110 450 330 80
PUT SPINDLE
GET SPINDLE 140 140 45 0
PLACE SP | NDLE 65 1125 330 45 86
TURN SPI NDLE 90 90 1170
ASSEMBLE SHELL 230 580 150 20 86 100
PARK ARM 170 40
TOTAL 705 2835 1095 355 1330 150
~ AVERAGE TI HE 64 158 84 30 67 50

ESTIMATED ASSEMBLY TIME.- 108 SECONDS

[(V.17)

BREAKDOWN OF ASSEMBLY TASKSBY YELLOW ARM USINGDRAPFRANALYSIS

(GRASP | POSI | PRE- [REL- | ROT- | INT- | JAIT|RET-|ACCO- | | DEP | INS|CPX
TION | CISE | EASE | ATE |ZRF- RN |MMOD- | [RES| ERT | ACC
POS ACE ATE 5 %
PUT HANDLE 2 3 2 2 1 1 1
PUT BASE 2 4 2 2 1 1
PUT SPINDLE
GET SPINDLE 1 1 1 1
PLACE SP INDLE| 1 6 1 2 2 1 1
TURN SPINDLE 3 3 | 18
ASSEMBLE SHELL| 2 2 1 2 2 3 3
PARK ARM 1 1
TOTAL 11 16 6 | 12 | 18 2 3 1 7 2 |1 4

ASSEMBLY TIMES FOR YELLOW ARM BY DRAPER ANALYSIS (1IFFIES)

5RASP |POSI [°RE- | EL-| ROT{ INT-| JAIT|RET- [ACCO- | | DEP| INS|CPX
TION | 21SE| EASE [ATE |ERF- JRN | 1MOD-| | RES | ERT | ACC
"0S ACE ATE 5 *
PUT HANDLE 70 370| 190| 80 50 50 50
PUT BASE 110 | 450 190| 80 140 140
PUT SP | NDLE
GET SPINDLE 140 | 140 45| @
PLACE SPINDLE| 65 |1125 45 250 160 801 80
TURN SPINDLE 30 30 |1170
ASSEMBLE SHELL | 230 | 580| 35| 20 100 195 185
PARK ARM 40 170
TOTAL 705 |2665| 46€|355 |[117@8{258 |[150 |170 545 190 | 8011275
AVERAGE TIME 64 | 167 77| 30 65125 | 50 |170 78 35| 80 63

ESTIMATED ASSEMBLY TIME = 108 SECONDS

» Complex accommodate

(V.18])

DISCUSSION

COMPARISON OF MOTION PRIMITIVES

A comparison of different motion primitives reveals several interesting features. More .
motions are required by the mechanical arm than the human arm (64 vs 36, or 78% more),
since the mechanical arm cannot perform complex motions as easily as the human arm;
motions have to be broken up in order to prevent the hand from hitting something when it
tries to null out errors and mechanica arm motions take longer to complete especialy when
nulling out errors.

Consider GRASP vs CENTER and CLOSE. 42 jiffies (0.7 second) are required by the
human operator for IO GRASPs during the whole assembly while the mechanical arm
requires 805 jiffies (13.4 seconds) for 1 | CENTER and CLOSEs. Average motion times
were 4 vs 64 jiffies (0.07 vs 1.07 seconds), or a factor of 16 times. Grasping is thus performed
a lot more quickly by the human arm than by the mechanica arm. The human operator can
move his fingers according to what he sees, while the mechanical arm in the CENTER
operation closes the hand until one touch sensor is triggered, and then moves the arm until
both sensors are triggered. By moving only small inertias, the human operator is able to
accomplish the GRASP much more quickly than the mechanicd arm. While the difference
in total number of GRASPs and CENTER and CLOSEs may be small, their distribution
between the different tasks of the assembly is different. The human hand cannot rotate
through 360 degrees, and 2 GRASPs and 2 RELEASE;s need to be done for one done by the
mechanical arm rotating through 360 degrees. However, the mechanica hand has to release
the object and close the fingers before it can tap the part in place - unlike the human who
can position the object precisely while holding it al the time.

The human operator performs 10 REACHes or MOVEs in 341 jiffies (5.68 seconds)

compared to the 18 GOTO(MOVE) by the mechanical arm in 2835 jiffies (47.25 seconds)
which amountsto 34 vs 160 jiffies (0.57 vs 2.67 seconds) per movement. The human arm

performs faster than the mechanical arm by a factor of 5, white the mechanical arm does 2
times as many movements as the human arm when it is trying to position the spindle in
place. The reason is that the human operator does not need to worry about nulling out
errors, and utilizing visua feedback, does not have to spend time trying to locate the relative

_positions between the spindle and the hole precisely, something which the mechanical arm
requires 4 MOVE;s and 2 POSITION;s to accomplish, and in addition the use of
movements that are too rapid result in overloading the motors with a demand torque that is
too high. -

The human operator performs 4 POSITION; in 157 jiffies (2.62 seconds) compared to 13
POSITION: in1095 jiffies (18.25 seconds) performed by the mechanica arm, i.e. 39 vs 85
jiffies (65 vs 1.42 seconds) per movement which means a factor of 2 in speed and a factor of
3 in number of movements. In each of the assembly subtasks the mechanical arm does three

[V.19]

times as many POSITION;s asthehuman arm, since it has to get itself verticaly over the
part before grasping and vertically above the main fixture before releasing the part, and
then actually position the part in place.

The human arm does 9 RELEASE;s in 38 jiffies (63 second) compared to 12 OPEN s in 355
jiffies (5.92 seconds) by the mechanical arm, i.e. 4 vs 30 jiffies (.07 vs.5 second) per motion
which means a factor of 7 in speed and a factor of 1.3 in number of movements.) The
human does twice as many RELEASE;s in the turning of the spindle as the mechanical arm,
just asit did twice as many GRASPs, but in the placement of the parts, the mechanical arm
does twice as many OPEN s, since the mechanical arm must first open the right amount to
grasp the part, then do a second OPEN to release the part.

The mechanical arm requires 3 WAITs after opening the hand to ensure that the
subsequent motion does not overlap with the opening of the hand. Waits are not tabulated
for’ the human arm since the human operator does not consciously have to take any
discernable pauses between overlapping motions.

All the motions seem to be fundamenta and necessary in the mechanica assembly, except
for the 3 WAITs which took 150 jiffies (2.5 seconds), and trying to locate the position of
the hole which took 4 MOVE;s and 2 POSITION s and 1140 jiffies (19 seconds) of
assembly time. Eliminating these items would have resulted in a time saving of 21.5 seconds
or roughly 20% Spiral searching for the hole was not considered since the arm performed
this operation only some of the time.

VALIDITY OF MOTION PRIMITIVES FOR THE MECHANICAL ARM

The analysis done has tried to model mechanical arm motion primitives in the light of
motion primitives known for the human arm enabling a direct comparison of the two. Itis
apparent that the process of programming the manipulator to do the assembly the way a
human being does required special techniques in positioning and force and touch sensing
which the human operator takes for granted. The human operator makes use of vision,
which enables him not only to precisely locate the parts, but also to avoid obstacles, and
perform smooth and precise motions. Having more fingers and additional degrees of
freedom over the mechanical manipulator enables the human operator to perform motions
without having to go through the contortions the manipulator does. For instance, the
mechanica am has to turn through 90 degrees when the hand touches the top and sides of
the main fixture to maintain the fingers parallel to the surface being touched, since
otberwise the spindle would tilt in the hand in the plane of the fingers and lose its
orientation.

[V.20)

COMPARISON OF MOTION PRIMITIVES WITH THOSE OF DRAPER ANALY SIS

The similarities between the assembly primitives used by Draper and MTM and
 relationships to WAVE are shown in the following table:

Draper MTM(HUMAN) MTM(YELLOW) WAVE
RELEASE RELEASE OPEN OPEN
GRASP GRASP CENTER CENTER
CLOSE CLOSE
POSITION MOVE, GOTO(MOVE) GOTO,
REACH MOVE
ROTATE T& AP T & AP CHANGE
INTERFACE, POSITION POSITION PLACE,
ACCOMMODATE, CHANGE,
CPX ACCOM, GOTO
INSERT,
DEPRESS,
- [PRECISE
POSITION]
RETURN REACH " GOTO(MOVE) PARK
[WAIT] [WAIT] WAIT WAIT

Elements is square brackets [J indicate elements that were necessary as assembly primitives
but were unavailable.

PRECISE POSITIONING OF THE MANIPULATOR

The time taken for the manipulator to null out position errors, while not obvious in the

analysis, dowed down the assembly process. To speed up the assembly, the motions which

did not require precise positioning were performed without nulling out the final position

errors. Of special importance was screwing in the spindle since software limitations required

that the rotation be made in steps of 120 degrees. To null out the error at the end of each

120 degree twist meant that the motor ground away to achieve the last bit of unnecessary

precision. Not nulling the movement resulted in the handle turning a few degrees more or ,
less than the desired amount, but this was not at all critical.

[(v.a1)

It was found that asking the arm to move directly to the part to be picked up inevitably
resulted in the collision of the fingers with the part even though a vertical approach vector
had been specified, since although feedback was used to correct errors, at the end of the
alotted motion time there were errors in some of the joints which had to be corrected. While
the fingers did eventualy get to the position desired, they did so with a lot of pressure and
hard pushing against the part, since the approach vector may tend to be tilted dightly from
the direction of force application. To overcome this problem the arm was asked to go to a
point vertically above the part to be picked up and then told to swoop down upon the part
in a vertical motion so that there was no danger of lateral movements of the fingers hitting
the part, since joint |, the motor at the shoulder, did not move.

The arm performed differential motion precisely when the movement involved only one
joint and the change was of the nature of the joint movement, e.g., angular motion could be
performed precisely by the rotary joints as long as the joint axis was parallel to the axis of
the desired rotation. This was illustrated particularly when the hand performed rotation
precisely around the z-axis when the wrist was vertical, but tended to change the wrist
orientation when told to make a differentia verticd motion.

FORCE CONTROL OF THE MANIPULATOR

Paul[5] has shown that the arm can exert forces with a typical tolerance of 10 oz. Depending
on the motor used, the tolerance could be worse. This imprecison of the force application
and measurement caused problems where these should not have occurred. Firstly, low contact
forces of the order of 2 or 3 oz were dominated by the noise force. Secondly, the manipulator
tended to apply more force than necessary or specified, especialy in the sdeways direction
when trying to locate the hole position by touching the sides of the fixture, and at times
caused a slight movement or tilt of the spindle in the hand that resulted in difficulty later
when insertion of the spindle into the hole was attempted. The magnitude of force applied
in the downward direction did not matter so long as buckling did not occur, or the spindle
did not tilt, since the reaction of the table prevented any movement in the vertical direction.

Draperm has shown that such forces are important to the extent that jamming occurs, and
this is discussed further below.

FURTHER ANALY SIS OF THE SPINDLE IN HOLE INSERTION PROCESS

Insertion of the spindle into the hole was an example of the pin in hole problem studied
intensvely at Draperm with -the parameters being as follows:

d = shaft diameter = 0.40 inches
D-d = clearance = 0.004 inches
{= insertion depth = 1.06 inches at full insertion

[V.22]

C = clearance ratio = 1 -(d/D) = 0.01

28, = minimum wobble a full insertion = 2C (D/l) =-0.430 deg
61- wobble from center line = 0.2 15 deg

To dlow initid entry into the hole the limiting tilt angle is arc cos(1-C) = 8 degrees.

Note that while the Stanford Arm gripper was designed not to be compliant, compliance was
assumed at the gripping point for purposes of this discussion. The spindle had a step and
the hole had a chamfer, so the Draper parameters are:

Lg = distance from spindle end to grasping position = 2 inches

§ = chamfer = 0.025 inch
‘Step=0.05inch

Dealing with the step as though it were a chamfer, insertion al the way was possible without
two point contact if the offset from the center, €< 0.05+ 0.025 = 0.075 in. in addition, the
entrance tilt (6 < 91 . c/Lg) will be less than 0.215 deg, depending on the offset e

With the hardware available and the friction characteristics of the joint motors, it was
caculated that a minimum penetration of 0.8 inch using a nomina downward force of 10 oz
was necessary to prevent jamming.

SENSING REQUIREMENTS

Position Sensing

Position sensing would be all that is necessary if the arm could be positioned with a
tolerance of within 0.001 inch and tilt of 0.1 degree, and if parts could be positioned to these
tolerances within the fixtures. However, given the Stanford Yellow arm with a repeatability
of 0.04 inch and possibility of specifying distances to within 0.01 inch, it is essential that
force and touch feedback be used.

Vision Sensing

Verification visionm would be useful in determining the initial process of inserting the
spindle into the hole. Before insertion takes place, it is assumed that the spindle and the hole
are "near" each other, and verification vision could tell how close they are and actually
monitor the positions of the spindlie and the hole as the spindle approaches the hole. For the
task given, being able to sense a tolerance of 0.002 inch and an angle of 0.1 deg would
enable decisions to be made as to which direction to move or tilt the spindle. Resolution a a
finer level would enable “how much” to be computed as well. With verification vision, a

[V.23]

spiral search would not need to be done to locate the hole, as was necessary in the assembly,
Force and Touck Sensing

Touch sensing is necessary at the fingers, together with ability to measure hand openings as
a means of telling whether the object has been grasped at the right place, if a al. Since the
parts are fairly rigid, the touch resolution is not critical, as the gripping force is about 5 Ib.
Force sensing to aresolution of 0.5 oz would allow the arm to know if the part has slipped
out of its grasp, by checking the weight at the end of the hand. Force sensors behind the
hole (at the fixture) and behind the spindle would be helpful in telling the forces and
moments a the hole and the spindle and together help to prevent jamming.

ARM DESIGN

Some of the problems in the movement of the arm stem from the fact that six degrees of
freedom determine an essentially unique solution for motion from any frame to any other
frame, so that even small motions may require that large inertias have to be moved. This
fact suggests alternative arm designs with redundant degrees of freedom alowing small
motions to be made with low inertia. Some of the possibilities are described below:

a) Extendible wrist which can elongate about 2-3 inches, so that hand can move
aong the direction of approach without moving joints 1, 2, or 3.

b) Extendible boom, so that joint 4 can move out of the boom a distance of 1-2
inches without moving joints 1, 2, or 3.

C) Independent finger movement, so that to grasp something without moving it,
it would be sufficient to move only the fingers without having to use the
CENTER command in which the whole arm has to move. When necessary, it
would be possible to move both fingers together, eg., when the postion of the
hand is known precisely, and it is desired to move the grasped object to the
position defined by the location of the hand.

If redundant fine motions were provided in this fashion, then one might consider providing
detents for joints 1 through 3 so that these joints can stop only in a finite number of known
positions (say every 5 degrees or 1 degree apart) which can be determined to a high degree
of precision. If there were no backlash and no dtatic deflection of the arm components due to
loading, the use of stepper motors in joints I, 2, and 3 would accomplish the same purpose.

The advantages of these changes would be faster nulling out of small errors and higher
spatial resolution for given A/D resolution. Disadvantages would be that the programming
language might become more highly hardware dependent, and there would be times when
additional gross motions would be needed to bring the fine motors back nearer the
centerpoints of their ranges.

[V.24]

It is not known whether or not the advantages outweigh the disadvantages. In any event, we
do not plan to modify our am hardware in the foreseeable future.

CONCLUSION

This paper has discussed some of the problems encountered assembling a pencil sharpener
with the six degree of freedom Stanford Yellow Arm and comparison of the assembly
motions required with those of the human operator using MTM and Draper assembly
primitives. While arm resolution was lower than the clearances involved in the assembly, the
use of suitably designed fixtures enabled parts to be located to a high degree of precison by
just dropping the part and nudging it into place rather than actually trying to position it
precisaly. Analysis showed that the human operator is faster and requires fewer operations
for the assembly process than the mechanical arm since the human operator makes more
effective use of far more sensory feedback information, and the human arm is lighter and
more flexible, and the hand is more dexterous and has more fingers than the mechanical
counterpart. With these handicaps it was found that the manipulator took eight times longer
to do the assembly job than the human operator did. It should be emphasized that this
study has indicated the presence of inefficiencies in the present setup. The quantitative
determination and elimination of these inefficiencies, the optimization of movements (in
itself another important research area), and increased use of sensory feedback, would bring
about a reduction in the assembly time.

ACKNOWLEDGEMENTS .

The author would like to express his thanks to Richard Liu who suggested this particular
assembly and for his valuable comments, to Tom Binford whose val uable suggestions and
advice provided new: insghts, and to Dave Grossman for his editorial help in putting this
paper together.

