ADDITION CHAINS WITH MULTIPLICATIVE COST

by

R. L. Graham
A. C.-C. Yao
F.-F. Yao

STAN-CS-76-540
JANUARY 1976

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY
Addition Chains with Multiplicative Cost

by

R. L. Graham
Bell Laboratories
Murray Hill, New Jersey

A. C-C. Yao
Massachusetts Institute of Technology
Cambridge, Massachusetts

and

F-F. Yao
Brown University
Providence, Rhode Island

Abstract

If each step in an addition chain is assigned a cost equal to the product of the numbers added at that step, "binary" addition chains are shown to minimize total cost.

/* The work on this-paper was done by all three authors while visiting Stanford University, Stanford, California 94306. Partially supported by National Science Foundation grant DCR 72-03752 A02, by the Office of Naval Research contract NR044-402, and by IBM Corporation. Reproduction in whole or in part is permitted for any purpose of the United States Government. */
Introduction.

For a positive integer \(n \), by a chain to \(n \) we mean a sequence
\(C = ((a_1, b_1), (a_2, b_2), \ldots, (a_r, b_r)) \) where \(a_k \) and \(b_k \) are positive integers satisfying:

(i) \(a_r + b_r = n \),

(ii) for all \(k \), either \(a_k = 1 \) or \(a_k = a_i + b_i \) for some \(i < k \), with the same also holding for \(b_k \).

The cost of \(C \), denoted by \((C) \), is defined by

\[
$(C) = \sum_{k=1}^{r} a_k b_k .
\]

The minimum cost required among all chains to \(n \) is denoted by \(f(n) \).

(In the case of ordinary addition chains \((c) \) is just equal to \(r \); e.g., see [1].) A few small values of \(f(n) \) are given in Table 1.

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(n))</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>12</td>
<td>18</td>
<td>21</td>
<td>29</td>
<td>34</td>
</tr>
</tbody>
</table>

Table 1

The function \(f \) arises in connection with determining the optimal multiplication chain for computing the \(n \)-th power of a number by ordinary multiplication. If a number \(x \) has \(d \) digits, then computing \(x^{a_k} \) from \(x^{a_1} \) and \(x^{b_1} \) requires \((a_1 b_1) \cdot d^2 \) digitwise multiplications in general.

Let \(g \) be defined by

\[
\begin{align*}
g(1) &= 0, \\
g(2n) &= g(n) + n^2, \\
g(2n+1) &= g(n) + n^2 + 2n, \quad n \geq 1.
\end{align*}
\]

It was conjectured by D. P. McCarthy [2] that \(f(n) = g(n) \) for all \(n \).

In this note we prove his conjecture.
Two Properties of g.

We first establish several facts concerning the function g which will be used later.

Fact 1. For $m, t \geq 0$ with m odd we have

$$g(2^t m) - g(2^t m - 1) = t + m - 1.$$

Proof. For $t = 0$, (1) follows at once from the definition of g. Assume $t > 0$. Then

$$g(2^t m) = g(2^{t-1} m) + (2^{t-1} m)^2,$$
$$g(2^t m - 1) = g(2^{t-1} m - 1) + (2^{t-1} m - 1)^2 + 2(2^{t-1} m - 1).$$

Thus

$$g(2^t m) - g(2^t m - 1) = g(2^{t-1} m) - g(2^{t-1} m - 1) + 1$$

and consequently, (1) holds by induction on t.

Fact 2.

$$g(n) - g(x) \geq (n-x)^2 + 2x - n, \quad \text{for } x+2 \leq n \leq 2x+1.$$

Proof. Note that for $n = 2x$ and $2x+1$, this is just the definition of g. The validity of (2) for $x = 1, 2, 3$ is immediate. We assume by induction on x that (2) holds for all values less than some $x > 3$. The proof of (2) can be most easily accomplished by splitting it into 4 cases, depending on the parity of n and x.

Case 1. $n = 2N$, $x = 2X$.

By hypothesis

$$2X+2 \leq 2N < 4X+1$$

i.e.,

$$X+1 \leq N < 2X.$$
For \(N = X+1 \),
\[
g(2N) - g(2X) = g(X+1) + (X+1)^2 - g(X) - X^2
\]
\[
= g(X+1) - g(x) + 2X + 1
\]
\[
\geq 2x + 2 = (2x + 2 - 2x)^2 + 4x - 2(x+1).
\]

by Fact 1 and (2) is proved in this case. For \(N > X+2 \), the induction hypothesis applies and
\[
g(2N) - g(2X) = g(N) - g(X) + N^2 - x^2
\]
\[
\geq (N-X)^2 + 2X - N + N^2 - x^2
\]
and so (2) will hold in this case provided
\[
(N-X)^2 + N^2 - x^2 + 2X - N \geq (2N-2x)^2 + 4x - 2N.
\]

However, this equality can be rewritten as
\[
(2N - 2x - 1)(2X - N) \geq 0
\]
which certainly holds for \(X+2 < N < 2X \).

The other three cases are similar and will be omitted.

The Main Result.

Theorem. For all \(n \),
\[
f(n) \leq g(n).
\]

Proof. It is clear that \(f(n) \leq g(n) \) for all \(n \) since the definition of \(g(n) \) determines a unique chain to \(n \) with cost \(g(n) \). Hence, it will suffice to show that \(f(n) \geq g(n) \). In fact, it will be enough to establish the following analogue of (2) for \(f \):
\[
(2') \quad f(n) - f(x) \geq (n-x)^2 + 2x - n, \text{ for } x+2 \leq n \leq 2x+1.
\]

For this implies
\[
f(2x) - f(x) \geq x^2, \quad f(2X+1) - f(x) \geq x^2 + 2x,
\]
and so, by induction,
\[f(2x) \geq f(x) + x^2 \geq g(x) + x^2 = g(2x), \]
\[f(2x+1) \geq f(x) + x^2 + 2x \geq g(x) + x^2 + 2x = g(2x+1). \]

From Table 1, (2') certainly holds for \(x = 1, 2, 3 \). Assume that for some \(X > 3 \), (2') holds for all \(x < X \) and all \(n \) with \(x+2 < n < 2x+1 \).

In particular, this implies \(f(m) = g(m) \) for \(1 < m < 2X-1 \). Suppose \(N \) satisfies \(X+2 \leq N \leq 2X+1 \). If \(N < 2X-1 \) then in fact,

\[f(N) - f(X) \geq (N-X)^2 + 2X-N \]

holds by applying (2') with \(x = X-1 \). Hence, we are left with the two cases \(N = 2X \) and \(N = 2X+1 \).

(i) \(N = 2X \). Suppose the last step in some arbitrary chain \(C \) to \(N \) is \((a, b) \) with \(a+b = N \) and \(X < b < 2X \).

Thus,

\[S(C) \geq f(b) + ab = f(b) + b(2X-b) \geq f(X) + X^2 \]

since the last inequality is immediate for \(b = X \), and follows by induction from (1) and (2) for \(b \geq X+1 \). Since \(C \) was arbitrary then

\[f(2X) \geq f(X) + X^2 \]

which is the desired inequality.

(ii) \(N = 2X+1 \). Again, assume the last step in some chain \(C \) to \(N \) is \((a, b) \) with \(a+b = N \) and \(X+1 \leq b < 2X+1 \).

(a) If \(b > X+1 \) then

\[S(C) \geq f(b) + b(2X+1-b) \]

\[> f(X) + X^2 + 2x \]

since

\[f(b) - f(X) \geq (b-X)^2 + 2X-b \]

holds for \(X+2 \leq b \leq 2X-1 \) by induction and for \(b = 2X \) by the preceding case (i).
(b) If \(b = X + 1 \) then \(a = X \). Consider the step \((a',b')\) of \(C \) for which \(a' + b' = b \). We have

\[
\$ (C) > f(x) + a'b' + ab \\
= f(X) + b'(X + 1 - b') + X^2 + X \\
\geq f(X) + X^2 + 2x
\]

since for \(1 < b' < X-1 \),

\[b'(X + 1 - b') \geq X \cdot \]

Hence

\[f(2X + 1) \geq f(X) + X^2 + 2X. \]

This completes the induction step and the Theorem is proved. \(\square \)

Concluding Remarks.

We should note that the optimal chains to \(n \) are not unique. This is due to the fact that

\[f(2n+1) = f(n) + n^2 + 2n \]

can be realized in going from \(n \) to \(2n+1 \) by either

\((n,n),(2n,1)\) with additional cost \(n \cdot n + 2n \cdot 1 = n^2 + 2n \)

or

\((n,1),(n+1,n)\) with additional cost \(n \cdot 1 + (n+1) \cdot n = n^2 + 2n \).

One might consider generalizations of the problem in which the cost of a chain \(C = ((a_1,b_1),\ldots,(a_r,b_r)) \) is given by

\[
\$_\lambda (C) = \sum_{k=1}^{r} \lambda(a_k,b_k),
\]

where \(\lambda \) maps \(\mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{R} \). It would be interesting to know for which \(\lambda \) the "binary representation" chain to \(n \) is always optimal. This is the case for example for \(\lambda(x,y) = (x+1)(y+1) \), but it is not the case for \(\lambda(x,y) = x+y \).
References
