Work supported in part by U.S. Energy Research and Development
Administration under contract $\mathrm{E}(043) 515$
 evidence suggests that except for very small files, this algorithm tation to perform each search is proportional to logN. Empirical
 tional to kNIogN. The expected number of records examined in record. The computation required to organize the file is proporfor the m closest matches or nearest neighbors to a given query a file containing i records, each described by k real valued keys,
 Stanford University, Stanford, Ca. 94305 Raphael Ari Finkel
Department of Computer Science
Stanford University, Stanford, 94305

Chapel Hill, N.C. 27514 Department of Computer Science
University of North Carolina at Chapel Hill Department of Computer Science
 Jerome H. Friedman
Stanford Linear Accelerator Center IN LOGARITHMIC EXPECTED TIME

AN ALGORITHM FOR FINDING BEST MATCHES
Revised July 1976
Revised December 1975
SLAC-PUB-15-482
STAN-CS-75-482
February 1975
SLAC-PUB-1549 (Rev.)
STAN-CS-75-482
is large. costly in space and time, especially when the dimensionality of the space

 Structures Used for Associative Searching

closest town that has a post office might be chosen as the destination tude. If a letter is addressed to a town without a post office, the

 and a dissimilarity measure D, find the m closest records to a query

Unfortunately, these methods have not yet been generalized to higher

 presents two angorithms. One can search for pest matches in worst case two keys per record (two dimensions) and Euclidean distance measure. He searching the plane) to the best match problem for the special case of

- əวue7sṭ guṭumeh əu~ st pəṭtdde uoṭqounf əouełsṭp
deals with binary keys. That is, each key takes on only two values; the

the file with this method is proportional to $\mathrm{km}^{\frac{1}{k}} \mathrm{~N}^{1-\frac{1}{k}}$
 meesures and does not require that they satisfy the triangle inequality.

 of the records onto one or more keys, keeping a linear list on those solving the nearest neighbor problem. It involves forming a projection

eliminated from consideration.
these techniques permit a substantial fraction of the records to be pected performance are presented, simulation experiments indicate that
 gies use the triangle inequality to eliminate some of the records from cribe heuristic strategies based on clustering techniques. These strate-

Burkhard and Keller [1] and later Fukunaga and Narendra [2] des
sәрои xоssəoэns әsәи山 -

$\cdot \mathrm{N}^{3} \mathrm{O} \mathrm{T}$
quired to search for best matches with this method is proportional to
during the search ie proportional to $\log N$, so that the expected time redependent of the file size, N. The time spent in descending the tree number of record examinations required for the search is shown to be in-

measures and does not require $\mathrm{t}^{\text {hat }}$ they obey the triangle inequality. smell. This method can be applied with a wide variety of dissimilarity

 blem of finding best matches. This data structure is very effective in
 could be applied to the best match problem.
 different generalization of the same one-dimensional structure; it is

[^0]what is termed an optimized $k-d$ tree. pected cost of searching for nearest neightors. This process yields value for each subfile, as wel as the bucket size, t minimize the ex-

This paper deals with choosing both the discriminator and partition
random key values in each particular subfile.
is defined to be at level zero. The partition values are chosen to be
where D is the discriminating key number for level L and the root node
$\tau+$ भ рот $T=\mathbb{I}$
the keys in order. That is,
the tree; the बiscriminator for each level is obtained by cycling through [7] chooses the discriminator for each node on the basis of its level in number can range from 1 to k. The original k-d tree proposed by Bentley sented by a particular node in the tree; that is, the discriminating key -әлdəx әт!

In k dimensions, a record is represented by k keys. Any one of assigning records to the two subfiles.

 All records in a subfile with key values less than or equal to the parby a single key and a partition is defined by some value of that key.
 subsets of records are called buckets.
which collectively form a partition of the record space. These terminal

 geometric boundaries are determined by the partitions defined at the nodes
 boundaries delimiting the subfile represented by the node. The domain of abla as a global array is the domain of that node; that is, the geometric

 reducing the computation required to find the kest matches. examining only those records closest to the query record, thereby greatly
 The Search Algcrithm
discriminator, and to choose the median of the discriminator key values
 The prescription for optimizing the k-d tree, then, is to choose at

 sect the current m-nearest neighbor ball. That is, if the distance to -גəzu! zou səop uот7!
 tive of which key is chosen for the discriminator
tion at the median of the marginal distribution of key values, irrespecside of the partition. This criterion dictates that we locate the parti-
 a binary choice is maximal when the two alternatives were equally likely.

 optimization. Such an optimization is known to be NP-complete [8] and

 A second restriction is that the solution values for discriminating

7ou $\tau \tau T ฺ M$ zna suotznqȚx only uses information contained in the file records. Such a procedure seek a procedure that is independent of the distribution of queries and no knowledge of this distribution in advance of the queries. Thus, we distribution of query records in the record key space. Usually, one has The solution to the optimization will, in general, depend upon the
node, and the number of records contained in each terminal bucket.

 an algorithmic notation.
contains a detailed description of the complete search algorithm using and ball-within-bounds tests are described in Appendix 1. Appendix 2

 sidered and the procedure is called recursively for the node representing bounds do overlap the ball, then the records of that subtree must be conpartition can be among the m closest records to the query record. If the
 is referred to as the "bounds-overlap-ball" test. If the bounds-overlapto the dissimilarity to the mth closest record so far encountered. This records overlap the ball centered at the query record with radius equal

dissimilarity measure. find the m closest points to the query point in this space by the given sented as w point, $\overrightarrow{\mathrm{x}}_{\mathrm{q}}$, in this space. The best match problem is then to

 then the set of key values for a record represents a point in a coordinate in the file. If the value of each key is plotted along a coordinate axis, $\left[x_{1}(1), x_{1}(2), \ldots x_{i}(k)\right]$ represent the set of key values for the 1 th record It is most easily discussed in a geometric framework. Let $\overrightarrow{\mathrm{X}}_{\mathrm{i}}=$

The expected time performance of the search is not so easily derived. which is well-kncwn to have the solution $\left.T_{N}=O(k N l o g N).\right]$ kNlogN . [Here we are solving the recurrence relation $\mathrm{T}_{\mathrm{N}}=2 \mathrm{~T}_{\mathrm{N} / 2}+\mathrm{kN}$, logN, so the total computation to build the tree is proportional to This requires computation proportional to kN . The depth of the tree is At each level of the tree, the entire set of key values must be scanned.
 ingl bucket. terminal nodes is $\left|\frac{N}{\mathrm{~V}}\right|-1$ where b is the number of records in each termstored for each nonterminal node of the $k-d$ tree. ${ }^{(2)}$ The number of nonfile size, N. The discriminating key number and partition value must be

 prescription. presents an algorithm that builds an optimized k-d tree according to this is developed in the next section on analysis of performance. Appendix 3 as the partition. The optimum number of records for each terminal bucket

$E\left[u_{i n}\right]$

 tribution is (ir the dissimilarity measure, $\mathrm{D}(\overrightarrow{\mathrm{X}}, \overrightarrow{\mathrm{Y}})$. The expected valur of this dis-trikution is independently of the probability density function of the points, $p(\vec{x})$,
 follows a beta distribution, $B(m, N)$; that is, It can be shown [9] that the probability distribution of $\mathrm{a}_{\mathrm{ai}}\left(\overrightarrow{\mathrm{X}}_{\mathrm{q}}\right)$

$\stackrel{\infty}{\curvearrowleft}$ and the probability content of this region, $u_{m}\left(\vec{x}_{q}\right)$, is defined and the probebility content
as
 distribution $p(\vec{x})$ of the file records in the record key space.
 number of nearest neighbors sought, m, the number of records in the of records in the file, N , the dimensionality (number of keys), k , the

each containing very nearly the same number of records. From eqn 7 , we
have that the expected volume of such a bucket is

 space occupied by the bucket. The edges are parallel to the coordinate hypercubical with edge length equal to the kith root of the volume cf the reasonably compact In fact, the expected shape of these buckets is

mum bucket size. Choosing the key with the largest spread in values at that each bucket will contain very nearly b records, where b is the maxigrith wercribed in the previous section. Choosing the median insures Consider now the effect of the optimized k-d tree partitioning al$S_{m}\left(\vec{X}_{\mathrm{q}}\right)$. Note that it can never be zero. Here $\overline{\mathrm{p}}\left(\overrightarrow{\mathrm{X}}_{\mathrm{q}}\right)$ is the probability density averaged over the small region

$$
E\left[v_{m}\left(\vec{X}_{q}\right)\right] \quad \frac{m}{N+1} \frac{1}{\bar{p}\left(\vec{x}_{q}\right)}
$$

and from eqn 5 we can approximate eq 3 by $\mathrm{p}(\overrightarrow{\mathrm{X}})$ is approximately constant withes the region $\mathrm{S}_{\mathrm{m}}\left(\overrightarrow{\mathrm{X}}_{\mathrm{q}}\right)$. In this case,
 To proceed further, we assume that the file size, N, is large
has probability content $\mathrm{m} /(\mathrm{N}+1)$ on the average.
These results state that any compact volume enclosing exactly m points
that an upper bound on the average number of records examined, \bar{R}, is

 (IT) $\quad y\left\{T+{ }_{y}\left[(y): \frac{a}{\tilde{L}}\right]\right\}=\underline{I} 5 \underline{\gamma}$

 $c_{b}\left(\vec{x}_{\mathrm{q}}\right)$ is the edge length of the hypercubical buckets in the neighborHere, $e_{m}\left(\vec{X}_{q}\right)$ is the edge length of the hypercube containing $S_{m}\left(\vec{X}_{q}\right)$ and
 contains $\mathrm{S}_{\mathrm{m}}\left(\overrightarrow{\mathrm{X}}_{\mathrm{q}}\right)$. This average number is
 by the region $S_{m}\left(\vec{x}_{q}\right)$. This number will be bounded from above by the is necessary to calculate the average number of buckets, \bar{l}, overlapped the $k-d$ tree searching algorithm described above, it

$$
\frac{\left({ }^{b} \underset{x}{x}\right) d}{(x) D} \quad \frac{T+\mathbb{N}}{\mathrm{w}} \quad\left[\left({ }^{\mathrm{b}} \mathrm{x}\right)^{\mathrm{m}} \Lambda\right] \mathbb{Z}
$$

pus
pus

portionality constant, $G(k)$, depending on the dissimilarity measure and The volume of this hypercube $v_{m}\left(\vec{X}_{q}\right)$ is proportional to $v_{m}\left(\vec{X}_{q}\right)$, with pro.

where $\overrightarrow{\mathrm{X}}_{\mathrm{b}}$ is a point that locates the bucket in the coordinate space.

(OT)

 In order to alate the ${ }^{b}(x) d$
\left.${\underset{\sim}{x}}^{\underline{x}}\right)^{m} \wedge(x): \quad(\underline{x})$

 -
11 \leftarrow
volume contsining the m best matches shrink at exactly the same rate,
leaving the number of cverlepped buckets, ℓ, constant. file size or the lcol key density increases, the bucket volumes and the cal to that for the region $S_{m}\left(\vec{X}_{q}\right)$ ec ntoining the mbent matehes. An the
 shapes are reasonatly compact. As a result, the dependence of the buc-
 region, $S_{m}\left(\vec{X}_{q}\right)$, containing the m best matches. Namely, each contains record space so that each terminal bucket has the same properties as the for optimizing $k-d$ trees. This prescription partitions the k-dimensional and distribution of key values is $\boldsymbol{\theta}$ direct consequence of the prescription The independence cf the number of overlapped buckets to file size by making each bucket as small as possible. the partitioning should be as fine as possible. This is accomplished accumulated coverage of all the buckets overlapped by any region, then
 Although derived here in a somewhat obtuse fashion, these results tribution of the key values, $p(\bar{X})$, in the record key space. amined is independent of the file size, N, and the probability disThe second important result is that the expected number of records ex-
 buckets should each contain one record. With this provision, eqn 12 the (upper bcund on the) number of records examined, the terminal

they define the one-dimensional distance along each cccrdinate. Sins-e the The k functions, $\left\{f_{i}(x, y)\right\}_{i=1}^{k}$, are called the coordinate distance functions; \qquad

if $x>y$
εL
 are, however, some implicit assumptions that are now discussed. concerning the particular dissimilarity measure, $L(\vec{X}, \vec{Y})$, emplcyed. There The derivations of the preceding section make noplicit assumptions Dissimilarity Measures portional to $\log N$. search time for the m best matches to a prespecified query record is pro-

 legarithmic in the number of nodes, which is directly preportional to the the time required to descend from the root to the terminal buckets is logarithmic in file size. The k-d tree is a balanced binary tree. Thus,
 The constancy of the number of records examined as file size in-

A dissimilarity measure is said to be a metric distance if, in

 spread in coordinate values is defined to be the average distance from

$$
\dagger \mathrm{T}
$$

ball of constant volume decreases with increasing p, so the $p=c$ result
serves as a lower bound for ail vector space p norms.

$(6 \tau$
 number of records examined (instead of an upper bound on the exCa and 13) is unity, and the inequality of eqn 13 becomes an equality.

 Since the separate coordinate distance functions are identical for these

 (

tor space norm: $:$ The $:$ lid 1 Ine represent; eqn 19 which predict: ! the
expected number for the $p=\infty \operatorname{metric}\left(\bar{R}=2^{k}\right)$. record). Results are shown both fcr the $p=2$ (Euclidean) and the $p=\infty$ vecto find the best match $(m=1)$ varies with dimensionality (number of keys per
 two percent in the worst cases. statistical uncertainty (f these averages is quite small, heing, arumen to find the m best matches was averaged over these 2000 queries. The record keys was generated and the number cf record examinations required
distribution with unit dispersion matrix. A similar set of 2000 query lation, a file of 8192 sets of record keys was generated from a normal eqn 19. The results are presented in Figures 1 and 2. For each simumance of the algorithm and to compare it to the performance predicted by Several simulations were performed to gain insight into the perfors7tnsəy uotczetnuts - әวue7sṭp $G(k)=1$) and thus, eqn 19 represents a lower bound even for the $p=c o$ this inefficiency does exist, eqn 19 is overly optimistic (as it assumes leaving the general conclusions unchanged. However, to the extent that
 comes to this ideal. Since this inefficiency is purely geometrical, it query record. It is not clear how close the k-d tree search algorithm optimal order; that is, in order of increasing dissimilarity from the vious section. It is that the search algorithm examines the buckets in

 tuitively expect the increase to be linear since tho expected volume of number of best matches slightly more slowly than linearly. One would in(solid line). The average number of records examined rises with increasing Euclidean and $p=\infty$ norms is displayed along with the prediction of eqn 19

 a good choice.
tance is to be chosen mainly for rapid calculation, the $\mathrm{p}=\infty$ distance is
but becomes more pronounced for the higher dimensionalities. If a dis-
$p=\infty$. The increase in expected number of records examined is not severe,
performance of the algorithm for lower p-norms is not as good as for
The Eucl deand fatance refulta shown in Figure 1 confirm that the ran 10.
lation results for $p=(1)$ lie no more than 20 above that predicted by be big enough for the validity of the large file assumption, ${ }^{(4)}$ the simu-

This situation is most likely to occur near the bottom of the tree where simply be investigated and the bounds-overlap-ball calculation omitted. suggests that if a subfile is very likely to overlap the ball, it should test reccmes bi expensive as a full dissimilarity calculation. This

 few keys. If, on the other hand, the boundary is close to the lesit point, test point, the subfile can be excluded quickly on the basis of only a tances are compared one key at a time; if the boundary is far from the closest kundary of the subfile under consideration. The coordinate disit involves calculating the dissimilarity from the query record to the
 vverlap-call calculstiu. This calculation must be performed at each The overhead required to search the tree is dominated by the boundsshown as a function of the total number of records for several values of k 3 where the actual computation per record needed to build the tree is rNIcgN, as previously stated. This is illustrated empirically in Figure
 t. ret and the ovrerkesd ermpitation requiredtosearch the tree. These considerations include the computation requiredtobuildthek-d tc the number of records examined, there are other considerations as well. though the computational requirements of the algorithm are strongly related implementation and thecomputeruponwhich the a ligithm is executed. ALThishas the advantage that evaluation Is independent of the detail i lu of amine as the sole Criterion for performance evaluation of the algorithm. The above discussion has centered on the expected number of recordsex-

very small files, it is faster than the k-d tree algorithm. For larger $\log N$, the sorting algorithm introduces very little overhead so that for [3] to be proportional to $\mathrm{km}^{\mathrm{K}} \mathrm{N}^{1-\mathrm{K}}$. Although this is much worse than
 fluisdind infly
wenisionis, while for afith dimensionis that fraction is between three and preprocessing represents about 25% of the total computation for two diWhen the number of query records is the same as the number of file records, conputation spent on preprocessing decreases with incruasing dimenionality.
tation involved in building the tree is not excessive. The fraction of

except that for eight dimensions the increase is slightly faster. (6)
size increases is illustrated for the k-d tree algorithm in Figure 5,
The logarithmic behavior of the cverall computation as the file
faster than logarithmic.
in average number of records examined with file size is only slightly
for files of 16000 records. Even for this case, however, the increase
file sizes greeter than 2000. In eleht dimensions, the limst is not noar Infour dimensicns, the asymptotic linit appears reasonably close for near-asymptotic kehavior occurs even for files as small as 128 records.
sumption is valid. The results in Figure 5 show that in two dimensions
indicates how near it is to the asymptotic limit where the large file asnethad. The ratent increase of this average withlncresalnefllesize

Alsc shown is the average number of records examined under the k-d tree
tree algorithm (using buckets of sixteen records) for increasing file size
milliseconds per query) required by this sorting algorithm and the k-d
ordinate distances is less than the radius. The test succeeds if all compared to the radius, r. The test fails as soon as one of these cofrom the query record to the closer boundary along each key in in turn

The ball-within-bounds test is simpler. Here the coordinate distance
if so, failing. to testing whether any of the distances is greater than the radius and, the special case of the $p=\infty$ vector space norm, this technique reduces
as noon nothe partinl sum or coordinatedtatanen exceeds $\mathrm{F}^{-1}(\mathrm{r})$. In $\mathrm{F}^{-1}(\mathrm{r})$ (eqn 14), there is no overlap. The test can terminate with failure domain and the neighborhood. If the sum of coordinate distances exceeds than the radius of the neighborhood, then there is no overlap between the main in that coordinate. If any of these coordinate distances is greater ordinate distance f_{j} (eqns 14,15) by which the key falls outside the dothe jth partial distance is set to zero; otherwise it is set to the cois within the bounds for the jth coordinate of the geometric domain, then mal dissimilarity is determined as follows: if the query record's jth key than r, then the subfile can be eliminated from consideration. This minibounded region and the query record. If this dissimilarity is greater The technique employed is to find the smallest dissimilarity between the query record and \vec{X}_{m} is the mbest match so far encountered in the search.

ball-within-bounds tests discussed in the text.
This appendix describes algorithms for the bounds-overlap-ball and

in the next appendix.
Descriptions of these tests in an algorithmic notation are presented
This appendix presents the k-d tree search algorithm in an algorith-
of these coordinate distances are greater than the radius.

returns the median of the j th key values. MAKE TERMINAL and MAKE NONTERMINAL
the wh coordinate distance function The procedure MEDIAN (J, subfile)
value spread for the records in the subfile represented by the node, using
The procedure SPREADEST (j,subfile) returns the estimated jth key end; return $\underset{(\operatorname{RIGHTSUBFILE}(d, p, f i l e)}{\operatorname{MAK}}) ;$
若 end;
$d \leftarrow j ;$
maxspread $\leftarrow \operatorname{SPREADEST}(j$,file $)$; if $\operatorname{SPREADEST}(j$, file $)>$ maxspread

- duṭyoxezs
the procedure for constructing an optimized $k-d$ tree for best match file
This appendix presents a description in an algcrithmic notation of
1larity measure (eqn 14).
functions $F(x)$ and $f_{j}(x, y)$ that appear in the definition of the dissim-
The procedures DISSIM (x) and COORDINATE DISTANCE (j, x, y) are the APPENDIX 3 The procedures DIssin (x) and coordnat

28 Menlo Park, Ca., 1969, p 401.

 [9] Fukunaga, K., and Hosteler, L.D., Optimization of k-nearest neighbor - LT-ST '(9L6T $\mathrm{NeW}^{\mathrm{K}}$)

 retrieval on composite keys. Act Informatica $4(1)(1974)$, 1-9.

[6] Finkel, R.A. and Bentley, J.L. Quad trees - a data structure for -(SLEET ' L Kew)

Annual ACM Symposium of Theory of Computing, Albuquerque, N.M.,

 -9001-000t

Friedman, J.H., Banket, F., and Shustek, I...I. An alponstitim for 750-753.
computing k-nearest neighbors. IEEE Trans. Comput., C24 (1975),
Fukunaga, K., and Narendra, P.M. A Branch and bound algorithm for

Burkhard, W.A. and Keller, R.M. Some approaches to best match file

FIGURE
ヵ Benin
ε ฐมกอป.ม
figure 2

 function of terminal bucket size. Computation required for the best match search es a dimensionalities. taxanas dj arts at tiv trot jo notfoumj e se aux Computation per file record required to build the $k-d$ diction of eq n 19 for the $p=\infty$ metric.

 $(p=2)$ and $p=(x)$ metrics. The solid line is the prev-

AVERAGE NUMBER OF RECORDS EXAMINED

AVERAGE NUMBER OF RECORDS EXAMINED

AVERAGE NUMBER OF RECORDS EXAMINED

$\stackrel{\vdots}{\vdots}$ AVERAGE NUMBER OF RECORDS EXAMINED

[^0]: dimensionalities or more generel dissimilarity measures.

