~ v "'/"

SLAC-PUB-1549 (Rev.)
STAN-CS-75-L82
February 1975

Revised December 1975
Revised July 1976

AN ALGORITHM FOR FINDING BEST MATCHES
IN LOGARITHMIC EXPECTED TIME

Jerome H. Friedman
Stanford Linear Accelerator Center
Stanford University, Stanford, Ca. 94305

Jon Louis Bentley
Department of Computer Science
University of North Carolina at Chapel Hill
Chapel Hill, N.C. 2751k

Raphael Ari Finkel
Department of Computer Science
Stanford University, Stanford, Ca. 94305

ABSTRACT
An algorithm and data structure are presented for searching

a file containing N records, each descrited by k resl valued keys,
for the m closest matches or nearest neighbtors to a given query
record. The computation required to orgsnize the file is propor-
tional to kNlogN. The expected number of records examined in

each search is independent of the file size. The expected compu-~
tation to perforu each search is proportionsl to logN. Empirical

evidence suggests that except for very small files, this algorithm

is consideratly faster than other methods.

(Sutmitted to ACM Transsctions on Mathemstical mOwasmwmv

Work supported in part by U.S. Energy Research and Development
Administration under contract E(043)515

The Best Match or Nearest Neighbor Problem

The btest match or nearest neighbor problem applies to data files
that store reccrds with several real valued keys or attributes. The pro-
tlem is tc find those records in the file most similar to a query record
according to some dissimilarity or distance measure. Formally, given a
file of N records (each of which is described by k real valued attritutes)
snd a dissimilarity measure D, find the m closest records to & query
record (possibly not in the file) with specified attribute values.

A data file, for example, might contain informastion on all cities
with post offices. Associated with each city is its longitude and lati-
dpgm. If a letter is addressed to a8 town without a post office, the
closest town that has a post office might be chosen as the destinetion.

The solution to this prcblem is of use in meny applicstions. Infor-
mation retrieval might involve searching a catalog for those items most
similar to a given query item; each item in the file would be cataloged
by numericsl attributes thet describe its characteristics. Classification
decisions csn te made by selecting prototype features from each category
and finding which of these prototypes is closest to the record to be
classified. Multivariate density estimstion can be performed by cslcu-
lating the vclume atout a given point ccntaining the closest m neighbors.

Structures Used for Associative Searching

One straightforward technique for sclving the best match or nearest

neightor prctlem is the cell method. The k-dimensional key space is di-

vided into small, identically sized cells. A spiral search of the cells
from any query record will find the test matches of that reccrd. Although
this procedure minimizes the numter of records examined, it is extremely
ccestly in space and time, especially when the dimensionality of the space

is large.

Burkhard and Keller [1] and later Fukunaga snd Narendra [2] des-
cribe heuristic strategies based on clustering techniques. These strate-
gies use the triangle inequality to eliminate some of the records from
consideration while searching the file. Although no calculations of ex-
pected performance are presented, simulation experiments indicate that
these techniques permit a substantial fraction of the records to be
eliminated from consideration.

Friedman, Bsskett, and Shustek [3] describe another strategy for
solving the nearest neighbor problem. It involves forming a projection
of the records onto one or more keys, keeping a linear list on those
keys, and searching only those records that match closely enough on one
of the keys. The method is applicable to s wide variety of mHmmMEMHmWMﬁ%
measures and does not require that they satisfy the triangle inequality.

They were able to show that the expected computation required to search

1
= 1
the file with this method is proportional. to km® §-°K .

Rivest [4] shows the optimality of an slgorithm due to Elias which
deals with binary keys. That is, each key tskes on only two values; the
distance function applied is the Hsmming distance.

Shamos ﬁmu employs the Voroni disgrem (a general structure for
searching the plane) to the best mestch problem for the specisl case of
two keys per record (two dimensions) and Euclidesn distance measure. He
precents two algorithms. One can search for best matches in worst case
oﬁAHomzvmu time, after a file orgenization that requires storage propor-
tional to N and computation proportional to NlogN The other algorithm
can perform the search in worst case O[logN] time, after a file organi-
zation that requires both storage and computation proporticnal to zm.

Unfortunately, these methods have not yet been generalized to higher

. -2 -

dimensionalities or more genersl dissimilarity measures.

Finkel and Bentley [6] describe a tree structure, called the quad

—Lree, for the storage of composite keys. It is a generalization of the

tinary tree for sitoring data on single keys. Bentley [7] develops a
different generalization of the same one-dimensional structure; it is

termed the k=d tree. In BiS mwﬁwowmu Bentley suggests that k-d trees

could be applied to the best match problem.

This paper introduces an optimized k-d tree algorithm for the pro-
blem of finding best matches. This data structure is very effective in
partitioning the records in the file so that the average number of record
mxmnmsmﬁwo:mmwv involved in searching the file for best matches is quite
small. This method can be applied with a wide variety of dissimilarity
measures and does not require that they obey the triangle inequality.
The storage required for file organization is proportional to N, while
computation is proportional to kNlogN. For large files, the expected
number of record examinations required for the search is shown to be in-
dependent of the file size, N. The time spent in descending the tree
during the search 1t proportional to logN, so that the expected time re-
quired to search fOT best matches with this method is proportional to
logN.

Definition of the k-d Tree

The k-d tree is a generalization of the simple binary tree used for
sorting and searching. The k-d tree is a binary tree in which each node
represents a subfile of the records in the file and a partitioning of

that subfile. The root of the tree represents the entire file. Each

nonterminal node lnas two sons or successor nodes. These successor nodes

-3 -

represent the two subfiles defined by the partitioning. The terminal
nodes represent mutually exclusive smell subsets of the data records,
which collectively form a partition of the record space. These terminal

subsets of records are called buckets.

In the case of one-dimensional searching, & record is represented
by a single key and & partition is defined by some value of thet key.
All records in a subfile with key values less than or equal to the par-
tition value belong to the left son, while those with a larger value be-
long to the right son. The key variable thus ktecomes a siscriminstor for

assigning records to the two subfiles.

In k dimensions, a record is represented by k keys. Any one of
these can serve as the discriminator for partitioning the subfile repre-
sented by a particular node in the tree; that is, the discriminating key
number can range from 1 to k. The original k-d tree proposed by Bentley
mqu chooses the discriminator for each node on the basis of its level in
the tree; the «iscriminator for each level is obtained by cycling through
the keys in order. That is,

D=Lmod k +1
where D is the discriminating key number for level L and the root node
is defined to be at level zero. The partition values are chosen to be
random key values in each particular subfile.

This paper deals with choosing both the discriminator and partition
value for each subfile, ss wel as the bucket size, t minimize the ex-
pected cost of searching for nesrest neightors. This process yields

what is termed an optimized k-d tree.

The Search Algorithm

The k-3 tree data structure provides an efficient mechanism for
examining only those records closest to the query record, thereby greatly
reducing the computation required tc find the test matches.

The search algorithm is most easily described as a recursive pro-
cedure. The argument to the procedure is the node under investigation.
The first invocation passes the root of the tree as this argument. Aveil-
able as & global array is the domain of that node; that is, the geometric
boundaries delimiting the subfile represented by the node. The domein of
the root node is defined to be plus and minus infinity on all keys. These
geometric boundaries are determined by the partitions defined at the nodes
above it in the tree. At each node, the partition not only divides the
current subfile, but it also defines a lower or upper limit on the value
of the discriminator key for each record in the two new subfiles. The
accrual of these limits in the ancestors of any node defines 2 cell in
the multidimensional record-key space containing its subfile. The volume
of this cell is smaller for subfiles defined by nodes deeper in the tree.
If the node under investigation is terminal, then 21l the records in the
bucket are examined. A list of the m closest records so far encountered
and their cissimilarity to the query record is always maintained as s
priority queue during the search. Whenever & record is examined and
found tc be closer than the most distant member of this list, the list
is updated. If the node under investigation is not terminal, the recur-
sive procedure 1is celled for the node representing the subfile on the
same side of the partitiocn as the query record. When control returns, a
test is made to determine if it is necessary to consider the records on

the side of the partition opposite the query record. It is necessary to

consider that subfile only if the geonetric boundaries delinmting those
records overlap the ball centered at the query record with radius equal
to the dissimlarity to the nth closest record so far encountered. This
is referred to as the "bounds-overlap-ball" test. |f the bounds-overlap-
bal| test fails, then none of the records on the opposite side of the
partition can be anong the mclosest records to the query record. If the
bounds do overlap the ball, then the records of that subtree nust be con-
sidered and the procedure is called recursively for the node representing
that subfile. A "ball-within-bounds" test is made before returning to
determine if it is necessary to continue the search. This test deter-
mnes whether the ball is entirely within the geonetric domain of the
node. If so, the current list of mbest matches is correct for the en-
tire file and no more records need be exanined. The bounds-overl ap-ball
and bal | -within-bounds tests are described in Appendix 1. Appendix 2
contains a detailed description of the conplete search algorithm using
an algorithmc notation.

The Optinized k-d Tree

The goal of the optinization is to mnimze the expected nunber of
records examned with the search algorithm The parameters to be adjusted
are the discrimnating key nunber and partition value at each non-terninal
node, and the nunber of records contained in each termnal bucket.

The solution to the optimzation will, in general, depend upon the
distribution of query records in the record key space. Usually, one has
no know edge of this distribution in advance of the queries. Thus, we
seek a procedure that is independent of the distribution of queries and
only uses information contained in the file records. Such a procedure
will be seen to be good for all possible query distributions but will not
be optimal for any particular one.

-6 -

-_— /eI

A second restriction is that the solution values for discrininating
key nunber and partition value at any particul ar node depend only on the
subfile represented by that node. This restriction is necessary so that
the k-d tree can be defined recursively, avoiding a general binary tree
optimzation. Such an optimzation is known to be NP-conplete [8] and
thus, very likely of non-polynomal tine conplexity.

Under these two restrictions, we can provide a prescription for
choosing the discrininating key and partition value at each nonterm nal
node. The information provided to the search algorithm by the partition-
ing is the location of the partition and the identities of those records
that lie on either side. It is well known that information provided to
a binary choice is maximal when the two alternatives were equally likely.
Thus, each record shoul d have had equal probability of being on either
side of the partition. This criterion dictates that we |ocate the parti-
tion at the nedian of the marginal distribution of key values, irrespec-
tive of which key is chosen for the discrimnator.

The search al gorithm can exclude searching the subfile on the opposite
side of the partition to the query record if the partition does not inter-
sect the current mnearest neighbor ball. That is, if the distance to
the partition is greater than the radius of the ball. By definition, the
radius is the same along all key coordinates. Thus, the probability of
the partition intersecting the ball is least (averaged over all possible
query locations) for that key which exhibited the greatest spread or
range in values before the partitioning.

The prescription for optinmizing the k-d tree, then, is to choose at
every nonterminal node the key with the largest spread in values as the

discrimnator, and to choose the median of the discrininator key values

-7 -

as the partition. The optimum numter of records for each terminal bucket
is developed in the next section on analysis of performance. Appendix 3
presents an algorithm that builds sn optimized k-d tree according to this
prescription.

Analysis of the Performance

The atorage required ror rfle pantentfon o proportfonnl Lo the

file size, N. The discriminating key number and partition value must be

(2)

stored for each nonterminal node of the k-d tree. The number of non-

terminal nodes is W - 1 where b is the number of records in each term-

insl bucket.

The computation required to build the k-d tree is easily derived.
At each level of the tree, the entire set of key values must be scanned.
This requires computstion proportional to kN. The depth of the tree is
logN, so the total computation to build the tree is proportionsl to
kNlogN. [Here we are solving the recurrence relastion Hz = NHZ\M + kN,
which is well-known to have the solution Ty = O(kNlogN).]

The expected time performance of the sesrch is not so easily derived.
It is most easily discussed in a geometric framework. Let ww =
ﬁxwﬁwvw xHAmv“...xHﬁwvg represent the set of key values for the ith record
in the file. If the value of esch key is plotted slong s coordinste sxis,
then the set of key values for s record represents a point in s coordinate
space of k dimensions. The entire file is & collection of such points in
k-dimensional coordinate space. The query reccrd can similarly te repre-
sented 85 «» polnt, www in this spuce. The best match problem is then to

find the m closest points to the query point in this spsce bty the given

dissimilarity measure.

The performance of the algorithm may depend upon the total number
of records in the file, N, the dimensionality (number of keys), k, the
number of nesrest neighbors sought, m, the number of records in the
terminal buckets, b, the dissimilarity messure Uﬁmﬂmd~ employed, and the
distribution @nwu of the file records in the record key space.

rmﬁ meﬁmwv woﬁ:nmSmyHmmncaeyM:ﬁ:mcOOﬂm»::mmmvmooomSamﬁma
nt T thnt exnetly contning Lhe m eloreal polnte Lo mw That In,
q

ms%pv m%_ Qmm_v m c%a.ma: E

mth nearest neighbor to ¥ . The volume

where T is the
m q

<BAMWV of this region is
(®) - % i, (2)
maA&av

and the probability content of this region, CEAMWV‘ is defined

o

m

ca%@v p(X) af , with 0 < :s?pv <1 (3)

-
X
msﬁ av
It can be shown [9] that the protstility distribution of :scﬂv

follows a bets distribution, B(m,N); thet is,

p(a) * iy Pl D) (1)

independently of the probasbility density function of the points, vAMuy
—

or the dlssimilarity meascure, ij.mJ. The cxpected valur~ of this dis-

tritution is

1

[- o
; :5 vmssg QCE Wl p
0

n

mﬁcsu

These results state thst any compact volume enclosing exactly m points
has protatility content E\nz+wv on the average.

To proceed further, we assume that the file size, N, is large
enough so that mBAMWv is small and thus the probatility distribution
@AMJ is approximately constant withia the region mBAMWV. In this case,

we can approximate egn 3 by

and from egn 5

m?sﬁvmvu mmw - H|¢ T
d p (%)

Here m Amwv is the probstility density averaged over the smell region

mEAMWv. Note that it cen never te zero.

Consider now the effect of the optimized k-d tree partitioning sl-
g rithm weseribed io the previous section. Choosing the medisn Insures
that each bucket will contain very nearly b records, where b 1s the maxi-
mum tucket size. Choosing the key with the largest spread in vslues at
each node insures that the geometric shape of these buckets will be
rezsonatly compact In fact, the expected shape of these buckets is
hypercubical with edge length equal to the kth root of the volume cf the
space occupied by the bucket. The edges are parallel to the coordinate
axes The effect of the optimized k-d tree partitioning, then, is to
divide the coordinate space into spproximstely hypercubical subregions,
esch conteining very nesrly the ssme number of records. From eqn 7, we

have thst the expected volume of such a tucket is

—

E[v(B)] ~ (8)

T
—~
>

10

where MW is a8 point that locates the tucket in the coordinste space.

Consider now the smallest k dimensionsl hypercube with edges para-

-
1lel to the coordinaste axes that completely contains the region msANnv.

> Y
The volume of this hypercube <BAMWV is proporticnal to v_(X Y, with pro

m g
portionality constant, G(k), depending on the dissimilarity measure snd
the dimenstonatlty (107, That s,

- brid
. X ¢
Vu(Xg) G(k) vy (X (92)
and
Gk
BV (X)) 54 (k) (9v)
4 - p(X)

q

In order to calculate the average number of buckets examined by
the k-d tree searching algorithm descrited above, it
is necessary to calculste the average number of tuckets, Nc overlapped
by the region maﬁmwv. This number will be bounded from stove by the

average number of buckets, L, overlapped by the smallest hypercube thst

contains msﬁmwv. This aversge number 1is
= mehmwv k
L = mmww.mq +1]° . (10)

Here, mEAMWV is the edge length of the hypercube contsining mBAMNV and
ocAMWV is the edge length of the hypercubical buckets in the nelghbor-
hood. The edge length of a hypercube is the kth root of its volume;

from egns 10, 9, and 8, we have
1
P<i=q2om1®+) (11)

as an upper bound on the aversge number of buckets overlapped by the con

stant radius bell maﬁmwv. The number of records in each bucket is t, sc

that an upper bound on the average number of records exsmined, R, is

11 -

U [REN

L
qulk o+ af (12)

ot
A
o
=

= o[

o'|B

Two inportant results follow fromthis expression. First,
nmninizing it with respect to b yields the result b=l; tc mnimze
the (upper bcund cn the) number of reccrds examined, the terninal
buckets shoul d each contain one reccrd. Wth this provision, egqn 12

Beeo mes

Eal Rl

R < ([wG(k)]" + 1k, (13)

The second inportant result is that the expected nunber of records ex-
amined is independent of the file size, N and the probability dis-
tribution of the key val ues, p(X), in the record key space.

Al though derived here in a somewhat obtuse fashion, these results
can be easily understood intuitively. If the goal is to mininize the
accunul ated coverage of all the buckets overlapped by any region, then
the partitioning should be as fine as possible. This is acconplished
by making each bucket as small as possible.

The independence cf the nunber of overlapped buckets to file size
and distribution of key values is s direct consequence of the prescription
for cptimizing k-d trees. This prescription partitions the k-di mensional
record space so that each terninal bucket has the same properties as the

region, S C.m,), containing the m best matches. Nanely, each contains

o q
a fixed nunber of records (b and m respectively) and their geometrical
shapes are resscnstly conpact. As a result, the dependence of the buc-

is identi-

ket volumes on total file size and distribution of key val ues
cal to that for the region msﬁw..pv ¢ ntaining the mtest matches . An the
file size cr the lccal key density increases, the bucket vclumes and the
vol ume ccntesining the m best matches shrink at exactly the sane rate,

| eaving the nunber of cverlepped buckets, 4, constant.

- 12 -

The constancy of the nunber of records exanined as file size in-
creases inplies that the time required to search for best matches is
logarithmic in file size. The k-d tree is a balanced binary tree. Thus,
the tinme required to descend fromthe root to the terninal buckets is

lcgarithmic in the nunber of ncdes,which is directly prepertionsl to the

e alze, Ho The amount of backtracking in the tree o proportienal to

*.. which we itrated Lo be tndependent of N. o ‘Thug, the expected

search time for the m best matches to0 a prespecified query record is pro-
portional to logl.

Dissimlarity Masures

The derivations of the preceding section nake no explicit assunptions
concerning the particular dissimlarity measure, Exylv. emplcyed. There
are, however, sone inplicit assunptions that are now discussed.

A dissinilnrity measure is defined as

kK
#l) e, x(0), ¥(1)] (14)
i=1

where the k + 1 arbitrary functions F and ?LM"% are required to satisfy

=y

>4

3
"

the basic properties of symretry
£,00,y) = £,(y,x) 15 1< k (198)

and monctonicity
F(x) > Fly) if x>y (15t)

=y > x)

ﬁ?i > S,C:.i i f or 1l €i<k . (15¢)

k
i=1’

they define the one-dinensional distance along each cccrdinate. Sins-e the

are called the ccordinate distance functicns;

The k functions, {f (x,y)}

- 13 -

spread in coordinate values is defined to be the average distance from
the center, the ith coordinate distance function should be used to
estimate the spread in the ith key values during the construction of the
optimized k-d tree. (These coordinate distance functions also appear in
the bounds-overlap-bell and ball-within-bounds tests described in Appen-
dix 1.) To this extent, the construction of the k-d tree depends upon
the particular dissimilarity measure employed. It is not necessary that
exactly these functions be used in building the k-d tree. The purpose
of the spread estimastion is to order the key numbers. Any set of func-
tiong thst ylelds the ssme ordering vs the coordinate distence functions
will serve Just es well. For example, if the coordinate distance func-
ticns are all identical, that is, MMAxakv = f(x,y) for 1 < i <k, then
the linear function P(x,y) = _x-%~ can be used to estimate the spread in
key values.

The properties of the dissimilarity measure enter into this algorithm
directly through the bounds-overlap-ball and ball-within-bounds tests (see
Appendix 1). These tests require only two properties of a dissimilarity
measure. First, the dissimilarity between two points, GAMHK , must be
nondecreasing with increasing linear distance, [X(1)-Y(1)|, along any co-
ordinate. Second, a partial dissimilarity besed on any subset of the co-
ordinates must be less than or equal to the actual dissimilarity based
on the full coordinate set. The form required for a dissimilarity measure
by eqn 14, together with the restrictions of eqn 19, ure sultlclent to
gusrantee both of these properties.

A dissimilarity measure 1s =ald to be a metric distance if, in

addition to symmetry and monotonicity (eqns 14-15¢), it obeys the tri-

angle inequality

D(X,Y) + D(Y,2) = D(X,Z). (16)

- 14 -

The most common metric distances are the vector spece p-norms

1
r
Kk p
] .
(0T = L @) - v (17)
[1=1
Of these, the most commonly uscd are:
p = 1: taxicab or city block distance
p = 2 Fuclidean dlstance
p = oo: maximuu coordinate distance
That is,
AT = wax[X(1) - Y(4)] . (18)
1<ic<k

Since the separate coordinate distance functions are identicsl for these

distances, the linear distsnce function, F(x,y) = [x-y|, can be used tc

(3)

estimate the key spreads for building the k-d tree. For the special
case of the p = co distance (eqn 18), the geometric constant G(k) (eqns
98 and 13) is unity, snd the inequality of eqn 13 becomes an equality.
For this psrticular distence, we cen therefore calculate the expected
number of records exsmined (instead of an upper bound on the ex-

pected number) as a function of the number of best matches, m, and numter

of keys, k¢

|
m_CAshrv = AEx + _vr . (19)
k
Note that for m=1, wQuAH‘wv = 2 . The numter of buckets cverlapped by a
ball of constant volume decreases with increasing p, so the p = w result

serves as a lower bound for all vector space p norms.

- 15 -

There is an assunption that is inplicit in the results of the pre-
vious section. It is that the search al gorithm exanines the buckets in
optimal order; that is, in order of increasing dissinilarity fromthe

query record. It is not clear how close the k-d tree search al gorithm

comes to this ideal. Since this inefficiency is purely geonetrical,

cean e abaorbed int o the geomet 17,'.,3_:,;.::.;“2;4 In eqna 10and 13,
| eaving the general conclusions unchanged. However, tO the extent that
this inefficiency does exist, eqn 19 is overly optinistic (as it assunes
k) = 1) and thus, eqn 19 represents a |lower bound even for the p = co

di stance.

Sinul ation Results

Several simulations were performed to gain insight into the perfor-
mance of the algorithmand to conpare it to the performance predicted by
eqn 19. The results are presented in Figures 1 and 2. For each simu-
lation, a file of 8192 sets of record keys was generated froma nor nal
distribution with unit dispersion matrix. Asimlar set of 2000 query
record keys was generated and the number cf record exaninations required
to find the m best mstches was averaged over these 2000 queries. The
statistical wuncertainty «f these averages is quite small, being srcund
two percent in the worst cases.

Figure 1 shows how the average nunber of record exaninations required
to find the best match (m=1) varies with dinensionality (nunber of keys per
record). Results are shown both fcr the p=2 (Euclidean) and the p=wc vec-
tor space norm:. The sc lid line repregents eqn L9 which predict:! the
expected nunber for the p = w metric (R = mJ.

The behsvior of the slgerithm corresponds closely to that discussed

in the previous section. For low dinmensionality (k < 6), the p=cc results

- 16 -

strongly exhibit the ok dependence. These simulation results indicate
that, at least for m=1, the k-d tree search algorithmis not far from
optimal. For those dinensionalities (k < 6) where N = 8192 appears to

be big enough for the validity of the large file assunption, (1)

the sinu-
lation results for p = m lie no nore than 20% above that predicted by

cqn 10.

The Eucl ldean d Istance results shown in Figure 1 confirmthat the

performance of the algorithmfor |ower p-norms is not as good as for

p=oo. The increase in expected nunmber of records exanined is not severe,
but becomes nore pronounced for the higher dinensionalities. [|f a dis-
tance is to be chosen mainly for rapid calculation, the p=m distance is
a good choi ce.

Figure 2 shows how the nunber of records exanined depends on the num
ber of best matches sought. The average nunber of record exeminstions re-
quired to find the corresponding nunber of best matches fcr both the
Euclidean and p=co norms is displayed along with the prediction of egn 19
(solid line). The average number of records examined rises with increasing
nunber of best matches slightly nore slowy than linearly. (ne would in-
tuitively expect the increase to be linear since tho expected vol ume of
the mnearest neightor ball grows linearly with m The average nunber of
overlapped cells, therefore, should increase sinilarly. This is approxi-
mately borne out by the results shown. Figure 2 also shows that the effect
of the non-optimality of the search al gorithm becomes nore pronounced for
a larger nunber of best matches. If it lo assunmed that 8192 records s
| arge encugh so that the large file assunption is valid even for mw=25 in
four dimensions, then Figure 2a shows that the inefficiency is 18% for

m=1 and 50% for m=25.

- 17 -

[mpl enent at i on

The above di scussion has centered on the expectednumber of records ex-
awined as the scle Criterion for performance eval uation of the algorithm
Thisbss the advantage t hat evsluation |S independent of the detas | 1y of
implementation and thccumputeruponwhlich mea lg« vl thm is executed . A
though the conputational requirements of the algorithm are strongly related
tc the nunmber cf reccrds exanined, there are other considerations as well.
These ccnsidersticns include the conputation requiredtobuildthek-d
tree 8nd the overhesd computation requliredtoscarchthetree.

The cowputetion required to build the k-d tree is proportional to
¥Nlcgl, as previcusly stated. This is illustrated enpirically in Figure

(5)

3 where the actual conputation per record needed to build the tree is
shown as a function of the total number of records for several values of k.
The overhead required to search the tree is donmnated by the bounds-
overlsp-tall calculaticn. This calculation nust be performed at cach
ncn-terninal ncde visited in the search. As described in Appendix 1,
it invol ves calculating the dissinilarity fromthe query record to the
cl osest tcundsry of the subfile under consideration. The coordinate dis-
tances are conpared one key at a tine; if the boundary is far fromthe

test point, the sutfile can be excluded quickly on the basis of only a

few keys. If, on the other hand,the boundary is close to the test point,

then i« . way be neeessary Lo czomine most or g oo 0 of Fhe keys . o the

d 1 he

bounds do fn foet overdsp the bo 1y the oo Dhkeys are Tneluded o
test tecowes su expensive as a frull dissimilarity calculation. This
suggests that if a sutfile is very likely to overlap the ball, it should
sinmply be investigated and the bounds-overlap-ball cal cul ation omtted.

This situation is most likely to occur near the bottomof the tree where

- 18 -

the file records are closest to the query record. Therefore, it may be
profitable to increase the bucket sizes even at the expense of increasing
the nunber of record conparisons.

W it honerecordper bucke t, @ boundu-overlap-tell cal cul ation nust
be made for each file record close to the query record near the bottom of
the tree. Wth several records per bucket, a bounds-overlap-ball calcu-
lation need only be performed once for each bucket. Since the records in
a bucket are relatively close together, it is very likely that if one of
them passes the test, nost or all will pass. It is then morecouputation-
ally efficient to have larger bucket sizes even though this increases
the nunber of records exam ned.

This speculation is confirmed in Figure 4. Here the conputation re-
quired for finding best matches is shown for various bucket sizes. In-
creasing the bucket size fromone record per bucket considerably inproves
the performance of the search. This inprovement is approxinmately constant
for bucket sizes fromk4 to 32.

Al though Figure 4 shows results for only a few situations, other
simulations (not shown) verify that this behavior is cwupletely indepen-
dent of dinmensionality, k, nunber of best matches, m and nunber of file
records, N

Compariscn to Ot her Met hods

vious

Iy

d v Hthverb Jledexpected pert crmancee tot

Vi i I onelitdes, nwmbe - of bes « wa tehes, and nuwber of file
records is the sorting algorithm of Friedman, Baskett and Shustek [3].
This algorithm has been shown to yield a considerable inprovment over
the brute force nethod (linear search over all the records in the file)
for a wide variety of situations. Figure 5 shows the conputation (CPU

.19 -

mlliseconds per query) required by this sorting slgorithmand the k-d
tree slgorithm (using buckets of sixteen records) for increasing file size.
Alsc shown is the average numter of records exam ned under the k-d tree

nethed . The rateof increase of this average withinereasing file size
indicates how nesr it is to the asynptotic limt where the large file as-
sunption is valid. The results in Figure 5 show that in two dimensions
near-asynptotic tehavior occurs even for files as small as 128 records.
Infour dimensicns, the asynptotic limit appears reasonably close for
file sizes greeter then 2000. In elght dimensions, the limit ls not necar
for files of 16000 records. Even for this case, however, the increase
in average number of reccrds examined with file size is only slightly
faster than |ogarithnic.

The logarithmic behavi or of the cverall conputation as the file
size increases is illustrated for the k-d tree algorithmin Figure 5,
except that for eight dinensions the increase is slightly faster. (6)
Conparison of Figure 3to Figure 5 shows that the preprocessing conmpu-
tation involved in building the tree is not excessive. The fraction of
cunputation spent on preprocessing decresses wlth increesing dimensionslity.
VWen the nunmber of query records is the same as the nunber of file records,
preprccessing represents about 254 of the total computation for two di-
mensions, while for eight dimensions thet fraction ls between three snd
five pereent .

The conputution requlred by the sorting ulporithn hag been shown

.

_..wu to bte properticnal to ngu\w. Although this is much worse than

logh, the sorting algorithm introduces very little overhead so that for

very small files, it is faster than the k-d tree algorithm For larger

files, however, the k-d tree algorithmis seen to haveaclear conputational

advantage, especially for higher dinensions. (1
| npl ementation on Secondary Storage
Efficient operstion of the K-d tree algorithm doesnot require that

all of the terninal buckets reside in fast memory. During the preproc-
essing, these data can be arranged on an external storage device so that
records in the same bucket are stored together. Buckets close together
inthe tree can be stored sinilarly. Since the search al gorithm exam nes
a sma 1] nunber of bucketson the average, there Will be few accesses to

(8)

the external storage for each query. For extrenely large files, it
is not even necessary that the entire k-d tree reside in fast nenory.
Only the top levels of the tree need to be in fast nenory; the | ower
| evel s can be stored on an external device under an arrangenent that

keeps non-terninal nodes close to their sons.

ACKNOWLEDGMENT
Hel pful discussions with F. Baskett, M GN. Hine, C.T. Zahn,

and J.E. Zol nowsky are gratefully acknow edged.

- 21 -

APPENDIX 1

This appendi x describes algorithms for the bounds-overlap-ball and
bal | -wi t hi n-bounds tests discussed in the text.

The purpose of the bounds-overlap-ball test is to determne if the

geonetric boundaries delinmting a subfile of records overlap a ball cen-

t ered ntthe query record w {thradifusrequa 1 to the disnimilarity Lo the

.Mvv whore m. o1 he
q q

»
¢ logest record so tar encount ered . That oo, = D(xE

query record and X is the mthbest match so far encountered in the search.

m

The technique enployed is to find the smallest dissimlarity between the
bounded region and the query record. |If this dissimlarity is greater

than r, then the subfile can be elimnated from consideration. This mni -

mal dissimlarity is determined as follows: if the query record's jth key

is within the bounds for the jth coordinate of the geonetric domain, then
the jth partial distance is set to zero; otherwise it is set to the co-

ordinate distance J (egns 14, 15) by which the key falls outside the do-
main in that coordinate. |f any of these coordinate distances is greater
than the radius of the neighborhood, then there is no overlap between the

domain and the neighborhood. If the sum of coordinate distances exceeds

wL?v (eqgn 14), there is no overlap. The test can terminate with failure

Yoy,

asnoon nothe partial sum of coordinate distancen exceeds F~
the special case of the p=co vector space norm this technique reduces
to testing whether any of the distances is greater than the radius and,

if so, failing.

The ball-within-bounds test is sinpler. Here the coordimte distance

fromthe query record to the closer boundary along each key 1a in turn
compsred to the radius, r. The test fails as soon as one of these co-

ordinate distances is less than the radius. The test succeeds if all

of these coordinate distances are greater than the radius.
Descriptions of these tests in an algorithnic notation are presented
in the next appendix.

APPENDIX 2
This appendix presents the k-d tree search algorithmin analgorith-

mic notation.

vl
xa? k], "key values Of' the query record"

QD[1:m], "priority queue of the m closest- distances en
countered at. any phase of the search. pgp[1)
is the distance to the nth nearest neighbor so
far encountered."

PR[1:m], "priority queue of the record nunbers of the
correspondi ng m best matches encountered at
any phase of the search"

w+:"5v "coordinate upper bounds"
B [1:x], "coordinate |ower bounds"
discrimnator [1:IJ, "discrimnator at each k-d tree node"

partition [1:I]; "partition value at each k-d tree node"
"I is the nunber of internal nodes"
"initialize" PD[1:m] « ; w+:;& « w; B1l:ik]e- o

"search" SEARCH(root.) ;
procedure SEARCH(node);
begin
Local p,d, tenp;
if node is terninal
bbgtn
(exanine records in bucket(node), updating PRD, FQR);
Lf BALL WTH N BOUNDS then done else return
ends,
d ¢ discriminstor[node]; P ¢ pertition[node];

- 27 -

"recursive call on closer son"
if x [4) =
pﬁ l<p
bheng i n
temp « B [d]; B (4] « p;
SEARCH(leftson(node)); w%& ttenp;
end

else begin

temp ?‘w-mmuw m|ﬁau < p;
SEARCH(rightson(node)); B_[d] « temp;
"recursive call on farther son, if necessary"
ir xah& <p
then begin
temp « B_[d]; B_[4) « p;
i f BOUNDS OVERLAP BALL then SEARCH(rightson(node));
B [4d] « temp;
end

else begin
temp f.m+mmum w+hmu “«p;

i f BOUNDS OVERIAP BALL then SEARCH(leftson(node)) ;
m%& t-tenp;
“see if we should return or termnate"

if BALL WITHIN BOUNIS then..dopg_else return.,

end;

—

- 24 -

| ogical procedure BALL WTH N BOUNDS;
begin
local g;
for d « 1 step 1 until k do

if COORDINATE DI STANCE (d, xag‘ B [4]) < Pap[1]
wr COORDI NATE DISTANCE (4, x;ﬁ a) :...ﬁ d)) ponl 1)

then vot urn(fa lae);

return(true);

end-

| ogical pr

ocedure BOUNDS OVERLAP BALL;

begin

| ocal sum d;

sum to;

for d « 1 step 1 until k do

retur

end’,

i f xpE < B_[a]

then begin 'lower than |ow beundary"
sum « sum + COORDI NATE DI STANCE vapﬁ&, B [d]);
i f DISSIM(sum) > PQD[1] then return_(true);
end

elnc 1f x;ﬁmg > :+h;g

then begin "higher than high boundary"
sum « sum + COORDI NATE DI STANCE nypﬁ&* m%&r
i f DISSIM(sum) > BQD[1] then return_. (true);
end,

n (false);

- 25 -

The procedures DISSIM (x) snd COORDINATE DISTANCE (Jj,x,y) are the
functions F(x) and WQAxuwv thet appear in the definition of the dissim- (1)
ilarity messure (eqn 14).

APPENDIX 3

This appendix presents a description in an algcrithmic notation of

the procedure for constructing an optimized k-d tree for best match file

searching.
root ¢ BUILD TREE (enttire (1le):
node procedure BUILD TREE (file);
tegin
locsel j,d, mexspread, p;

(%)

1f SIZE(subfile) < t then return(MAKE TERMINAL(file));

mexspread « O;

for j « 1 step 1 until k do "find ccordinate with greatest spread”
if SPREADEST(j,file) > maxspread

then begin
maxspread « SPREADEST(J,file);

(6)

d « j;
(7)

end;
end;

p « MEDIAN(d, 'ile);

return MAKE NONTERMINAL(d,p,BUILDTREE(LEFT SUBFILE(d,p,file)),BUILDTREE
(RIGHTSUBFILE(d,p,file));

end;
The procedure SPREADEST (j,sutfile) returns the estimated jth key

(8)

velue spread for the records in the sutfile represented by the node, using
the wth coordinste distance function The procedure MEDIAN (J,subfile)
returns the median of the jth key velues. MAKE TERMINAL and MAKE NONTERMINAL
are procedures that store their parasmeters =s values of a node in the k-d

tree and return s pointer to that node.

- 26 -

FOOTNOTES

A record involves fetching the record keys from memory,
calculating the dissimilarity to the query record, comparing it

to the dissimilerity to the mth closest record so fsr encounter-
ed, snd if necessary, updating the list of m <losest records.

Since the k-d tree 1s a complete binesry tree, it is not necessary
to store pointers to the sons of each nonterminal node [11].

The nprend o valuen nlong ench ey enn be eotilmnted by enl-
culating the trimmed varisnce of the key velues. The trimming in-
sures that the estlimsate is robust agsinst extreme outliers.
Asymptotic behavior can be determined empirically by observ-

ing the rate of increase of the average number of reccrds examined
»ith ®ncregsing file size. This is illustrated in Figure 5.

All simulations were performed on an ngngO\HQw computer. All
programs were coded in FORTRAN IV and compiled with the IBM FORTRAN
x (extended) compiler with optimization level two.

The behavior for eight dimensions will, of course, become logarith-
mic for large enough file sizes.

The comparison in Filgure 5 is for the best match (m=1) since this is
the most noswos appl.ication. The increasse in computation for lasrger
m grows as EM for the norting algorithm, while for k-d tree nlgor-
Ithm, It grows nesarly linearly with m. Thus, for large numbers of
best matches, the crossover file size st which the performance of
the two algorithms is comparable will increase.

Inspection of Figure 5 shows that for bucket size of 16 records,the
average number of buckets accessed is 1.96, 6.2% and 75.0 for two,
four, and eight dimensions, respectively, for totsl file size of
16000 records. Increasing the bucket size t: 32 records (not shcwn) re-

duces the average numter of accesses for eight dimensions to 44.0 while

increasing the total computation required for the search ty only 84.

27

(1]

(2]

(3]

(4]

;5]

(6]

(7]

(8]

(5]

(10]

(11]

REFERENCES

Burkhard, W.A. and Keller, R.M. Some approaches to best match file

searching. Com. of ACM, Vol. 16 (April 1973), 230-236.
Fukunaga, K., and Narendra, P.M. A Branch and bound algorithm for FIGURE
computing k-nearest neighbors. IEEE Trans. Comput., C24 (1975),
750-753.
Friedman, J.H., Baskett, F., and Shustek, IL..J. An anlgorithm for
finding nearest neighbors. IFEE Trans. Comput., C-24(197))
1000-1006 . riauRe 2
Rivest, R. On the coptimality of Elias' algorithm for performing
best match searches. Proceedings IFIP Congress 74, Stockholm,
Sweden (August 1974), 678-081.
Shamos, M.I. Computational Geometry. Conference record of Seventh
Annual ACM Symposium of Theory of Computing, Albuquerque, N.M., FIGURE 3
(Msy 7, 1975).
Finkel, R.A. and Bentley, J.L. Quad trees - a data structure far
retrieval on composite keys. Acta Informatica 4(1)(1974),1-9. FIGURE
Bentley, J.L. Multidimensional binary search trees used for associ-
FIGURE

ative searching. Com. of ACM, Vol.18 (Sept.1975), 509-517.

Hysfil, L., and Rivest, R.L., Constructing optimal binary decision

trees is NP-complete. Information Proceasing letters, Vol. ',

(May 1976), 15-17.
Fukunaga, K., end Hostetler, b.u.u Optimization of k-nearest neighbor

density estimates. IEEE Trans. Info. Theory, IT-19 (1973), 320-326.

Pizer, S.M., Numerics)l Computing and Msthematical Analysis, Gelence

Research Associates, Palo Alto, Ca., 1975, pp 88, eqn 87.
Knuth, D.E., The Art of Computer Programming, Vol. 1, Addison-Wesley,

Menlo Perk, Cs., 1969, p LOL.

28

FIGURE CAPTIONS

Variation of the average number of records exsmined
with dimensionality (number of keys per record) for
constant file size.
(p=2) and p=w wmetrics. The solld llne 1s the pre-
dletton of eqn 19 for the pra metrle.

Variation of the average number of records exsmined
with number of best matches sought for several dimen-
sionslities. Results are shown for the Euclidean
(p=2) and p=m metrics. The solid lines are the pre-
dictions of egn 19 for the p=oo metric.

Computation per file record required to tuild the k-d
tree as a function of total file size for several
dimensionalities.

Computation required for the best match search as a
function of terminal bucket size.

Computation required for best match searching as s
function of total file size for both the sorting and
k-d Lree nlporithme at several dlmensionalitien.
Also shown 1s the variation of the average numter of
records examined with toctal wme size. Terminal

buckets of 16 records were used with the k-d tree

algorithm.

29

Results are shown for the Euclidean

AVERAGE NUMBER OF RECORDS EXAMINED

TT T 7 T 11T

|

TTTTI]

—

I |
8192 Records

< Euclidean Metric

ERET

O p=o0 Metric

]

o)
Ll

Ll

_ _ _ |

2 4 6 8 10
NUMBER OF KEYS (dimensionality)

26684)

Fifure

AVERAGE NUMBER OF RECORDS EXAMINED

60

50

40

30

20

b—

b

Two Keys per Record
8192 Records

O Euclidean Metric
0O p=® Metric

]] | | |

5 10} 15 20 25
NUMBER OF BEST MATCHES

266842

2u

AVERAGE NUMBER OF RECORDS EXAMINED

200

150

10]0)

50

_ [[I _
Four Keys per Record
8192 Records 0

o0 Euclidean Metric
Oop=® Metric

o o\
O e

5 10 15 20 25
NUMBER OF BEST MATCHES

2668A)

Figure 2b

AVERAGE NUMBER OF RECORDS EXAMINED

600

400

200

[[[[[
Six Keys per Record
8192 Records

O Euclidean Metric
Q p=® Metric
o)

can

5 10 15 20 25
NUMBER OF BEST MATCHES

266844

Figure 2c

MILLISECONDS PER FIL= RECeRD

08 .
0.6

0.4

0.

2

1 | ________ T 1]__:_ 1
Euclidean Metric
2 Two Keys per Record
4 Four Keys per Record 8
— 8 Eight Keys per Record 8
_ 8
8
B 8
8 g
4 4
4 5 2 2
_ 4 4 2 °
9 2
1l Lol Lo el |
102 103 104

TOTAL NUMBER OF RECORDS IN FILE

2668A7

Figure 3

Ml SECSNDS PER QUERY

70

60

S50

40

30

20

T T T T T1TTTT] T T
Euclidean Metric
5 2 Two Keys per Record (x |0) B
- 8 Eight Keys per Record —
p— m —
8 8
| 8 8]
2 2 2 2 2
i I L 111l 1 L1
| 5 1O 50

NUMBER OF RECORDS PER BUCKET

Figure 4

266843

MILLISECONDS PER QUERY

a_ 1 T TTT ____ T T 1TT7 d___]
Euclidean Metric

Two Keys per Record
O Sorting Algorithm
0O k—=d Tree Algorithm
® Ave. Records Examined

1l Lol Lt 110l]

50

40

30

20

102 103 104
TOTAL NUMBER OF RECORDS IN FILE

Figure 5a

266848

£E®
e
—

AVERAGE NUMBER OF RECORDS EXAMIN

MILLISECONDS PER QUERY

30

25

20

L I B B T {
Euclidean Metric

— Four Keys per Record —1 250

o Sorting Algorithm

300

L O k-d Tree Algorithm - 200
e Ave. Records Examined

| — 15°

L — 100

— — 50

oo ot L1t rraatd g

500 1000 5000 10000
TOTAL NUMBER OF RECORDS IN FILE

Flgure 5b

: AVERAGE NUMBER OF RECORDS EXAMINED

MILLISECONDS PER QUERY

300

N
a
@

200

150

100

|
o

0

‘,lq| T T T _______

Euclidean Metric

Eight Keys per Record
O Sorting Algorithm

® Ave. Records Examined

[1 L1 gl]

— O k-d Tree Algorithm]

500 1000 5000 10000
TOTAL. NUMBER OF RECORDS IN FILE

Figure Yo

3000

2500

2000

1500

1000

500

AVERAGE NUMBER OF RECORDS EXAMINED

200 0a9

