
cn
c+

t-t
0

Z

A

x

c-t
0

Z
0’

m
Z

2Y P.
rn

P
I-J.
0)

P
c-t

rt

a

m

m
rn

2
rD

ern m

::
I-J.
9 mr+

0)

a

.rllxI

a
LJ.
‘in
rn
P
E
CI.

r+
0

c-i

B

8
rt

Y

m
m

Y
I-J.
0

consider
that

subfile
only

if
the

geometric
boundaries

delimiting
those

records
overlap

the
ball

centered
at

the
query

record
with

radius
equal

to
the

dissimilarity
to

the
mth

closest
record

so
far

encountered.
This

is
referred

to
as

the
"bounds-overlap-ball"

test.
I
f

t
h
e

bounds-overlap-

A second restriction is that the solution values for discriminating

key number and partition value at any particular node depend only on the

subfile
represented

by
that

node.
This

restriction
is

necessary
so

that

ball
test

fails,
then

none
of

the
records

on
the

opposite
side

of
the

the
k-d

tree
can

be
defined

recursively,
avoiding

a
general

binary
tree

optimization.
Such

an
optimization

is
known

to
be

NP-complete
[S

]
and

partition
can

be
among

the
m

closest
records

to
the

query
record.

If
the

bounds
do

overlap
the

ball,
then

the
records

of
that

subtree
must

be
con-

sidered
and

the
procedure

is
called

recursively
for

the
node

representing

thus,
very

likely
of

non-polynomial
time

complexity.

t
h
a
t

subfile.

A "ball-within-bounds" test is made before returning to

determine
if

it
is

necessary
to

continue
the

search.
This

test
deter-

mines
whether

the
ball

is
entirely

within
the

geometric
domain

of
the

Under
these

two
restrictions,

we can provide a prescription for

choosing the discriminating key and partition value at each nonterminal

node.
The

information
provided

to
the

search
algorithm

by
the

partition-

ing
is

the
location

of
the

partition
and

the
identities

of
those

records

that
lie

on
either

side.
It is well known that information provided to

node.
If so, the current list of m best matches is correct for the

en-
a

binary
choice

is
maximal

when
the

two
alternatives

were
equally

likely.

tire
file

and
no

more
records

need
be

examined.
The

bounds-overlap-ball
Thus, each record should have had equal probability of being on either

and
ball-within-bounds

tests
are

described
in

Appendix
1.

Appendix 2
side

of
the

partition.
This

criterion
dictates

that
we

locate
the

parti-

contains
a

detailed
description

of
the

complete
search

algorithm
using

tion
at

the
median

of
the

marginal
distribution

of
key

values,
irrespec-

an
algorithmic

notation.
tive

of
which

key
is

chosen
for

the
discriminator.

The
Optimized

k-d
Tree

The goal of the optimization is to minimize the expected number of
The

search
algorithm

can
exclude

searching
the

subfile
on

the
opposite

side
of

the
partition

to
the

query
record

if
the

partition
does

not
inter-

records
examined

with
the

search
algorithm.

The
parameters

to
be

adjusted

are the discriminating key number and partition value at each non-terminal

node,
and

the
number

of
records

contained
in

each
terminal

bucket.

The
solution

to
the

optimization
will,

in
general,

depend
upon

the

distribution
of

query
records

in
the

record
key

space.
Usually,

one
has

no
knowledge

of
this

distribution
in

advance
of

the
queries.

Thus,
we

sect
the

current
m-nearest

neighbor
ball.

That is,
if

the
distance

to

the
partition

is
greater

than
the

radius
of

the
ball.

By
definition,

the

radius
is

the
same

along
all

key
coordinates.

Thus,
the

probability
of

the
partition

intersecting
the

ball
is

least
(averaged

over
all

possible

query locations) for that key which exhibited the greatest spread or

range
in

values
before

the
partitioning.

seek
a

procedure
that

is
independent

of
the

distribution
of

queries
and

only
uses

information
contained

in
the

file
records.

Such
a

procedure

will be seen to be good for all possible query distributions but will not

be
optimal

for
any

particular
one.

The
prescription

for
optimizing

the
k-d

tree,
then,

is
to

choose
at

every nonterminal node the key with the largest spread in values as the

discriminator,
and

to
choose

the
median

of
the

discriminator
key

values

-
6

-
-
7
-

?
z

3

-1

-o+ ak
-I- clIa TX

c?

2

-2
-
-2

!-
- 01‘ ul

m0

-cJ+
TX 4-I
Ia c

.d

T-i
-o- TX
2L-2w

1”
1%

f
=

0,
..c
+

c
3-i

-lJ
V
al

i?
V

3 2 0 c,crl
L
V
:?
cl’
3

v-l
k

Gl

fn
al

i?

ul

R
m

1

ii
5

b:L
=

b{[

;
G(k)]

5;
k

+

l]
.

Two
important

results
follow

from
this

expression.
F

irst,

minimizing
it

with
respect

to
b

yields
the

result
b=l; tc

minimize

the
(upper

bcund
cn

the)
number

of
reccrds

examined,
the

terminal

b
u
c
k
e
t
s

s
h
o
u
l
d

e
a
c
h

c
o
n
t
a
i
n

one
recc>rd.

W
i
t
h

t
h
i
s

p
r
o
v
i
s
i
o
n
,

eqn

1
2

\vc*,
vnc:;

0
2
)

1

fi
I

I[

mG(k)]
ii
+

ljk.

The
constancy

of
the

number
of

records
examined

as
file

size
in-

creases implies that the time required to search for best matches is

logarithmic
in

file
size.

The
k-d

tree
is

a
balanced

binary
tree.

Thus,

the time required to descend from the root to the terminal buckets is

logarithmic

i
n

t
h
e

n
u
m
b
e
r

of

nc,des,which

i
s

d
i
r
e
c
t
l
y

prc,pr,rtional

tc
t
h
e

The
second

important
result

is
that

the
expected

number
of

records
ex-

amined
is independent of the file size,

N,
and

the
probability

dis-

tribution of the key values,
p
(
3
,

in
the

record
key

space.

Although
derived

here
in

a
somewhat

obtuse
fashion,

these
results

can
be

easily
understood

intuitively.
If the goal is to minimize the

accumulated
coverage

of
all

the
buckets

overlapped
by

any
region,

then

the
partitioning

should
be

as
fine

as
possible.

This
is

accomplished

by
making

each
bucket

as
small

as
possible.

The
independence

cf
the

number
of

overlapped
buckets

to
file

size

and
distribution

of
key

values
is

.a
direct

consequence
of

the
prescription

f
o
r

cptimizing

k
-
d

t
r
e
e
s
.

This
prescription

partitions
the

k-dimensional

record
space

so
that

each
terminal

bucket
has

the
same

properties
as

the

r
e
g
i
o
n
,

Sm(Tq),

c
o
n
t
a
i
n
i
n
g

t
h
e

m

b
e
s
t

m
a
t
c
h
e
s
.

N
a
m
e
l
y
,

e
a
c
h

c
o
n
t
a
i
n
s

a fixed number of records (b and m,
respectively)

and
their

geometrical

0
3
)

s
h
a
p
e
s

a
r
e

reascnably

c
o
m
p
a
c
t
.

As
a

result,
the

dependence
of

the
buc-

ket
volumes

on
total

file
size

and
distribution

of
key

values
is

identi-

c
a
l

t
o

t
h
a
t

fur

t
h
e

regir,n

Sm(";h)
CC

ntalnlng

t
h
e

m
 kcot

matohcs
.

A
n

the

file
size

cr
the

lccal
key

density
increases,

the
bucket

vclumes

and

the

volume
ccntaining

the

m
best

matches
shrink

at
exactly

the
same

rate,

leaving
the

number
cf

cverlepped
buckets,

4,
constant.

-
1
2

-

s
e
a
r
c
h

tirnfl
for

the
m
best

matches
to

a
prespecified

query

record
is

pro-

p
o
r
t
i
o
n
a
l

t
o

1ogN.

Dissimilarity
Measures

The derivations
of

t
h
e

p
r
e
c
e
d
i
n
g

s
e
c
t
i
o
n

m
a
k
e

no

explicit a
s
s
u
m
p
t
i
o
n
s

concerning the particular dissimilarity measure,
IX?,?).

emplcyed.
There

are,
however,

s
o
m
e

i
m
p
l
i
c
i
t

a
s
s
u
m
p
t
i
o
n
s

that

a
r
e

n
o
w

discllzsed.

A
dissimilnrity

measure
is

defined
as

D(?,?)

z

F
fi[X(i),

Y(i)1

,
(14)

where
the

k
+

1
arbitrary

functions
F

and
{fi}FZl,

are required to satisfy

the
basic

properties
of

symmetry

f&
X

’Y
)

=
f&

Y
,4

1.5
i 5

k

(138)

and
B

F(x)

1

F(Y)

i
f
x
>
y

0
5
u

Z
,
y
l

x

1

f
,
(
d

1

f
,
(
w
)

i
f

i'r
(
l
S
l
<
I
*

.
(l:,(S)

x
l
y
?

Z
J

T
h
e

k

f
u
n
c
t
i
o
n
s
,

{fi(x,y)jtZ1,

a
re

 ca
lle

d
 th

e
 ccord

in
a
te

d

ista
n

ce
 fu

n
cticn

s;

they define
the

one-dimensional
distance

along
each

cccrdinate.
Sins-e

the

-
13

-

There
is

an
assumption

that
is

implicit
in

the
results

of
the

pre-

vious
section.

It
is

that
the

search
algorithm

examines
the

buckets
in

optimal
order;

that
is,

in
order

of
increasing

dissimilarity
from

the

query
record.

It
is

not
clear

how
close

the
k-d

tree
search

algorithm

comes
to

this
ideal..

Since
this

inefficiency
is

purely
geometrical,

it

cnrl
Iv

nhnc~rlvtl

1111
0

tlw
flc'clrnc\t

rt(*
 (-o

ti::tn
~

lt
 , (:(I(),

1
n

f'(1ll:l
1;'

1111~1

1
3,

l
e
a
v
i
n
g

t
h
e

general

c
o
n
c
l
u
s
i
o
n
s

u
n
c
h
a
n
g
e
d
.

Rowevcr,

t
o

the

e
x
t
e
n
t

tllat

this
inefficiency

does
exist,

eqn
19

is
overly

optimistic
(as

it
assumes

G(k)
=

1)
and

thus,
eqn 19

represents
a

lower
bound

even
for

the
p

=
co

distance.

Simulation Results

Several
simulations

were
performed

to
gain

insight
into

the
perfor-

mance
of

the
algorithm

and
to

compare
it

to
the

performance
predicted

by

e
q
n

19.

The
results

a
r
e

precented

i
n

F
i
g
u
r
e
s

1

a
n
d

2
.

F
o
r

e
a
c
h

s
i
m
u
-

lation, a file of 8192
sets of record keys was generated from a normal

distribution
with

unit
dispersion

matrix.
A similar

set
of

2000

query

record
keys

was
generated

and
the

number
cf

record
examinations

required

to
find

the
m

best
matche

s
was

averaged
over

these
2000

queries.
The

statistical
uncertainty

c
f

thrsc
averages

is
quite

small,
being

 arolnld

two
percent

in
the

worst
cases.

Figure
1

shows
how

the
average

number
of

record
examinations

required

to
find

the
best

match
(m=l)

varies
with

dimensionality
(number

of
keys

per

record).
Results

are
shown

both
fcr

the
p=2

(Euclidean)
and

the
p=co

vec-

t
o
r

s
p
a
c
e

n
o
r
m
:
:
.

T
h
e

:!r
l
i
d

1
1
~

r~~presentc

eqn I() which p

r
e
d
i
c
t
:
!

t
h
e

e
x
p
e
c
t
e
d

n
u
m
b
e
r

f
o
r

t
h
e

p

=

LO

m
e
t
r
i
c

(R

=

2k).

in
the

previous
section.

For
low

dimensionality
(k

i
6),

the
p=cc

results

T
h
e

behavic,r

o
f

t
h
e

algcrithm
corresponds

closely
to

that
discussed

strongly
exhibit

the
2k

dependence.
These

simulation
results

indicate

that,
at

least
for

m=l,
the

k-d
tree

search
algorithm

is
not

far
fran

optimal.
For

those
dimensionalities

(k
5

6)
where

N
= 8192

appears
to

be big enough for the validity of the large file assumption,
(4)

the
simu-

lation
results

for
p

=
o)

lie
no

more
than

2D$ above
that

predicted
by

rqt1
10.'171e

Eucl
Ldcari

d
lritarice

rcr:ul.trl
s
h
o
w
n

i
n

F
i
g
u
r
e

1

c
o
n
f
i
r
m

t
h
a
t

t
h
e

performance
of

the
algorithm

for
lower

p-norms
is

not
as

good
aa

for

p=co.
The

increase
in

expected
number

of
records

examined
is

not
severe,

but
becomes

more
pronounced

for
the

higher
dimensionalities.

If a dis-

tance
is

to
be

chosen
mainly

for
rapid

calculation,
the

p="o
distance

is

a
good

choice.

Figure 2 shows how the number of records examined depends on the num-

ber
of

best
matches

sought.
The

average
number

of
record

exeminations

re-

quired to find the corresponding number of best matches fcr both the

Euclidean
and

p=co
norms

is
displayed

along
with

the
prediction

of
eqn

19

(solid
line).

The average number of records examined rises with increasing

number of best matches slightly more slowly than linearly.
One

would
in-

tuitively
expect

the

increase
to

be
linear

since
tho expected

volume
of

the
m-nearest

neighbor

ball

grows
linearly

with
m.

The
average

number
of

overlapped cells, therefore, should increase similarly.
This

is
approxi-

mately borne
out

by
the

results
shown.

Figure
2

also
shows

that
the

effect

of the non-optimality of the search algorithm becomes more pronounced for

a
larger

number
of

best
matches.

I
f

i
t

l
o

a
s
s
u
m
e
d

t
h
a
t
 81~2

records

is

l
a
r
g
e

enclugh

 so that the l
a
r
g
e

f
i
l
e

a
s
s
u
m
p
t
i
o
n

i
s

v
a
l
i
d

e
v
e
n

f
o
r

m--2',

i
n

four
dimensions,

then
Figure

2a
shows

that
the

inefficiency
is

18%
for

m=l
a
n
d
 5C%

f
o
r

m=25.

-
1
6

-

-
1
7

-

Implementation

T
h
e

a
b
o
v
e

d
i
s
c
u
s
s
i
o
n

h
a
s

c
e
n
t
e
r
e
d

o
n

t
h
e
 expected

 nulber of records ex-

amined

a
s

t
h
e

scle
Criterion

for
performance

evaluation
of

the
algorithm.

‘i’h
is h

S
 th

e advan
tage t

h
a
t

evaluation

I
s

irJdepcndcJJt

(,f

the
dftta

L
1~

(,f

implcm~ntati~~JJ

a
n
d

tiJ
aL C

cA
ll~

)ll t
c
r

 U
p

u
tl W

ilic
h

 th
e a

tyc

it'1
thrn

Is
e
x
e
c
u
t
e
d

.

A L-

though
the

computational
requirements

of
the

algorithm
are

strongly
related

tc
the

number
ci reccrds

examined,
there are other considerations as well.

T
h
e
s
e

considerations

i
n
c
l
u
d
e

t
h
e

c
o
m
p
u
t
a
t
i
o
n

required
 to

 build
 the k-d

tree

end

thf
c~V"r'h~ad

~!~.~JI)~~.atiorJ

requLrc?d

L

o

s

e
a

r
c

h

tk

te

t
r
e
e
.

T
h
e

computatir,rJ

r
e
q
u
i
r
e
d

t
o

b
u
i
l
d

t
h
e

k
-
d

t
r
e
e

i
s

prc,portionaL

to

kNlcgIJ,
a
s

previously

s
t
a
t
e
d
.

This
is

illustrated
empirically

in
Figure

3
where

the
actual

computation
(5)

per
record

needed
to

build
the

tree
is

shown as a function of the total number of records for several values of k.

The
overhead

required
to

search
the

tree
is

dominated
by

the
bounds-

~~verlap-ball
calculati~

I
I
.

T
h
i
s

c
a
l
c
u
l
a
t
i
o
n

m
u
s
t

b
e

pcrf~rmcd

a
t

each

ncn-terminal
ncde

visited
in

the
search.

As
described

in
Appendix

1,

it
involves

calculating
the

dissimilarity
from

the
query

record
to

the

c
l
o
s
e
s
t

b:cundary

of
t
h
e

subfile

under

consideration.
The

coordinate
dis-

tances are compared one key at a time; if the boundary is far from the

test
point,

the
subfile

can
be

excluded
quickly

on
the

basis
of

only
a

few keys.
I
f
,

o
n

t
h
e

otherhand,the

b
o
u
n
d
a
r
y

i
s

c
l
o
s
e

t
(J
t
h
e

test

p
o
i
n
t
,

t
h
f
2
r
l

i
t

.
 ~
1
3
1

t,(:

I
J
r
:
f
:
~
l
;
,
;
;
~
r
y

t,ri

c:/::Jrrli~~c:

IIIII,;~

rlt‘

:J

I

I
 -
I
'

I
tit:

k
,
,
y
;
i
.

II'

IllI*

L
J
C
A
J
~
J
~
:
,

(11,

III

l
l
l
f
~
l

I
,
v
~
J
,
'
I
I
I
~
,

I~J(:

I,/1
1
1
,

ttla

II
(1

1
1

I!c
*J

j.i

111'4'

~
J
l
~
'
~
l
l
t
~
~
~
l
~

lItIll

1
IIt'

t
e
s
t

tecLmes

ah
expensive

as
a f'ull

dissimilarity
calculation.

This

suggests
that

if
a

subfile
is

very
likely

to
overlap

the
ball,

it
should

simply be investigated and the bounds-overlap-ball calculation omitted.

This situation is most likely to occur near the bottom of the tree where

- la
-

the
file

records
are

closest
to

the
query

record.
Therefore,

it
may

be

profitable
to

increase
the

bucket
sizes

even
at

the
expense

of
increasing

the
number

of
record

comparisons.

W

Li
h

(
A
J
C

I
W
c
:
c
~
r
d

I
J
C
I
'

blJPk(:
t,

a

tc,uridli-c,vc~rlap-~a11.

c
a
l
c
u
l
a
t
i
o
n

m
u
s
t

be
made

for
each

file
record

close
to

the
query

record
near

the
bottom

of

the
tree.

With
several

records
per

bucket,
a

bounds-overlap-ball
calcu-

lation
need

only
be

performed
once

for
each

bucket.
Since

the
records

in

a
bucket

are
relatively

close
together,

it is very likely that if one of

IJICIII
passes

the
test,

most
or

all
will

pass.
I
t

i
s

th
en

 m
ore com

p
u

tation
-

ally
efficient

to
have

larger
bucket

sizes
even

though
this

increases

the
number

of
records

examined.

This
speculation

is
confirmed

in
Figure

4.
Here

the
computation

re-

quired
for

finding
best

matches
is

shown
for

various
bucket

sizes.
In-

creasing
the

bucket
size

from
one

record
per

bucket
considerably improves

the
performance

of the
search.

T
h
i
s

i
m
p
r
o
v
e
m
e
n
t

i
s

a
p
p
r
o
x
i
m
a
t
e
l
y

constant

for
bucket

sizes
from

4
to

32.

Although
Figure

4
shows

results
for

only
a

few
situations,

other

simulations
(not

s
h
o
w
n
)

v
e
r
i
f
y

t
h
a
t

t
h
i
s

b
e
h
a
v
i
o
r

i
s

cunpletely

lndepen-

dent
of

dimensionality,
k,

number
of

best
matches,

m,
and

number
of

file

records,
N.

Comparis(n

t
o

O
t
h
e
r

M
e
t
h
o
d
s

'1'1 II I
(I

I
 I,v 111’C’V

 I (‘\I::
Ilh

’I
III

x
l

w

1
I

II
V

l!
I

I I
’

1
1
*tl

t
:
x
p

:
c
.I

t
.\l

p
u

t-1

1
~

tltJ
tltlC

C

1
’L

)t

V
II I

’
 I

 t ‘1
l.i

(I
ill1~'ll:;

i

,

IIIU I i I it’s

,
IlllJllbt!

I
‘

111'

t
)
C
:
;

t

ItJU

t
(
:
t
l
t
'
S
,

&
l
I
J
d

IlllJJJt~t't'

O
t
'

t
'
l
l
t
!

records
is

the
sorting

algorithm

of
Friedman,

Baskett
and

Shustek
[3].

This
algorithm

has
been

shown
to

yield
a

cGnsiderable

improvment

over

the
brute

force
method

(linear
search

over
all

the
records

in
the

file)

for
a

wide
variety

of
situations.

Figure
5

shows

the
computation

(CRJ

-
19

-

m
i
l
l
i
s
e
c
o
n
d
s

p
e
r

q
u
e
r
y
)

r
e
q
u
i
r
e
d

b
y

t
h
i
s

s
o
r
t
i
n
g

elgclrithm

 and the k-d

tree algcrithm
(
u
s
i
n
g

b
u
c
k
e
t
s

o
f

s
i
x
t
e
e
n

r
e
c
o
r
d
s
)

f
o
r

i
n
c
r
e
a
s
i
n
g

f
i
l
e

Size.

A~SC
shown

is
the

average
number

of
records

examined
under

the
k-d

tree

IlK
’1

 llc d

.
T

h
e

 ra tta of
in

c*rea:;e
of

th
is

a
v

e
r

a
g

e
 w

it11 Inc:rca:;t~~g
 file

 u
lzc

indicates
hew near

it
is

to
the

asymptotic
limit

where
the

large
file

as-

sumption
is

valid.
The

results
in

Figure
5
show

that
in

two
dimensions

near-asymptotic
beilavior Occurs

even
for

files
as

small
as

128
records.

In four
dimensicns,

the
asymptotic

limit appears
reasonably

close
for

f1l.e
size0

g
r
e
e
t
e
r

t.il83n
2000.

Irl
elgl~t.

dlmerluIonu,
tlie

l.lmjt
1~

not.
nc:ar

for
files

cf 16000
records.

E
v
e
n

f
o
r

t
h
i
s

case, how
ever, t

h
e

i
n
c
r
e
a
s
e

in
average

number
of

reccrds
examined

with
file

size
is

only
slightly

faster
than

logarithmic.

T
h
e

lcgarithrnic

b
e
h
a
v
i
o
r

o
f

t
h
e

cverall

c
o
m
p
u
t
a
t
i
o
n

a
s

t
h
e

f
i
l
e

size
increases

is
illustrated

fL)r
the

k-d
tree

algorithm
in

Figure
5,

except
that

for
eight

dimensions
the

increase
is

slightly
faster.

u
v

C
o
m
p
a
r
i
s
o
n

o
f

F
i
g
u
r
e

3 to
Figure

5
shows

that
the

preprocessing
compu-

tation involved in building the tree is not excessive.
The

fraction
of

When the number of query records is the same as the number of file records,

preprccessing

r
e
p
r
e
s
e
n
t
s

a
b
o
u
t

25%

o
f

the

t
o
t
a
l

cGmputatiGn

f
o
r

t
w
o

di-

files,
however,

the
k-d

tree
algorithm

is
seen

to
have a clear

computational

advantage,
especially

for
higher

dimensions.
(7

)

Implementation
on

Secondary
Storage

E:ff'lcitlnt

opcretion

ot

ft11.
k
-
d

t
r
e
e

alg',rithIII

dc,eio

 n
c
J
t
r
e
q
u
i
r
e

t
h
a
t

all
of

the
terminal

buckets
reside

in
fast

memory.
During the preproc-

essing,
these

data
can

be
arranged

on
an

external
storage

device
so

that

records
in

the
same

bucket
are

stored
together.

Buckets
close

together

in
the

tree
can

be
stored

similarly.
Since

the
search

algorithm
examines

a
LXIIU

I1
I~LIIII~~I'

cut'
buckets

 (III
tile

a
v
e
r
a
g
e
,

there

w
i
l
l

b
e

few accesses tc)

the
external

storage
for

each
query.

(
W

F
G

r
e
x
t
r
e
m
e
l
y

l
a
r
g
e

files,

i
t

is
not

even
necessary

that
the

entire
k-d

tree
reside

in
fast

memory.

Only
the

top
levels

of
the

tree
need

to
be

in
fast

memory;
the

lower

levels
can

be
stored

on
an

external
device

under
an

arrangement
that

keeps
non-terminal

nodes
close

to
their

sons.

,

ACKNOW
LEDGM

ENT

Helpful
discussions

with
F.

Baskett,
M.G.N.

Hine,
C.T.

Zahn,

and
J.E.

Zolnowsky
are

gratefully
acknowledged.

log!?,
the

sorting
algorithm

introduces
very

little
overhead

so
that

for

very
small

files,
i
t

i
s

f
a
s
t
e
r

t
h
a
n

t
h
e

k
-
d

t
r
e
e

a
l
g
o
r
i
t
h
m
.

F
or larger

-
20

-
-
2
1

-

of these coordinate distances are greater than the radius.
A
P
P
E
N
D
I
X
1

This
appendix

describes
algorithms

for
the

bounds-overlap-ball
and

ball-within-bounds
tests

discussed
in

the
text.

The
purpose

of
the

bounds-overlap-ball
test

is
to

determine
if

the

geometric
boundaries

delimiting
a

subfile
of

records
overlap

a
ball

cen-

t
c
r
c
d

n

t

t
h
e

q
\
1
c
r
y

1
’C

C
~
v
d

w

1

111

n
-Id

illfl

?-

r?
“{ll”

1
t
o

ttw

d

i
n

n
i
m

i
l
n

r
l
t
y

tr1

ttw

r
r
lttl

c
lc

w
r
r
,t

W

l‘O
1
’(1

:?I)

l’?
\l’

c~
llcI~

~
1
1
lt

Pt-cld
.

‘I’trrl
I.

I
:1

)
1’

1=
I)(

x
’J

$
)

w

tlc
’l’t‘

i
’

III
I

IlP
(1

query
record

and
?m

is
the

m
th best

match
so

far
encountered

in
the

search.

The
technique

employed
is

to
find

the
smallest

dissimilarity
between

the

bounded
region

and
the

query
record.

If
this

dissimilarity
is

greater

t
h
a
n

r
,

t
h
e
n

t
h
e

subfile

c
a
n

b
e

e
l
i
m
i
n
a
t
e
d

f
r
o
m

connidcration.

T
h
i
s

m
i
n
i
-

mal
dissimilarity

is
determined

as
follows:

if
the

query
record's

jth
key

is
within

the
bounds

for
the

jth
coordinate

of
the

geometric
domain,

then

the
jth

partial
distance

is
set

to
zero;

otherwise
it

is
set

to
the

co-

ordinate
distance

f
j

(eqns
14,

1
5
)

by

which
the

key
falls

outside
the

do-

main
in

that
coordinate.

If
any

of
these

coordinate
distances

is
greater

than
the

radius
of

the
neighborhood,

then
there

is
no

overlap
between

the

domain
and

the
neighborhood.

If
the

sum
of

coordinate
distances

exceeds

F-'(r)

(
e
q
n

lb),

t
h
e
r
e

i
s

n
o

o
v
e
r
l
a
p
.

The
test

can
terminate

with
failure

8s n
o

o
n

 n
o

 t.llc p
n

rti~
l nttm

 of (1oortlin
ot.e tlin

tn
n

cen
 cxceed

a
F
-l(r

).
In

the
special

case
of

the
p=oo

vector
space

norm,
this

technique
reduces

to testing whether any of the distances is greater than the radius and,

if
so,

failing.

The
ball-within-bounds

test
is

simpler.
Here

the
coordirrrte

distance

f
r
o
m

t1E

q
u
e
r
y

rc3cvrd

t
o

t
h
e

c
l
o
s
e
r

b
o
u
n
d
a
r
y

a
l
o
n
g

e
a
c
h

k
e
y

in

In
t
u
r
n

canpared

to

the
radius,

r.
The

test
fails

as
soon

as
one

of
these

co-

ordinate distances is less than the radius.
The

test
succeeds

if
all

Descriptions of these tests in an algorithmic notation are presented

in
the

next
appendix.

A
PIX

N
D

IX

2

This
appendix

presents
the

k-d
tree

search
algorithm

in
an alg

o
rlth

-

mlc
n

o
tn

tio
n

.

X&l

:kl,

"key
values

of'
the

query
record"

R
D

rl:m
l,

"priority
queue

of
the

m
closest-

distances
en

countered
at.

any
phase

of
the

search.
m
c
 13

is the distance to the mth nearest neighbor so

far
encountered."

R
J$l:m

l,
"priority

queue
of

the
record

numbers
of

the

corresponding m best matches encountered at

any phase of the search"

B
+

b:kl,
ncoordinate

u
p
p
e
r

b
o
u
n
d
s
"

B
-
b
c
l
,

"coordinate
lower

bounds"

d
i
s
c
r
i
m
i
n
a
t
o
r

[l:I],

"discriminator
at

each
k-d

tree
node"

p
a
r
t
i
t
i
o
n

[l:I);

"partition
value

at
each

k-d
tree

node"

"I
is

the
number

of
internal

nodes"

"
i
n
i
t
i
a
l
i
z
e
"

IQD[l:m]

t

co;

B+[l:k]

t

co;

B

[l:k

] t
 -

co;

“.sC
nrch”

SFJR
C

H
(root.) ;

p
r
o
c
e
d
u
r
e

SF.ARCH(node);

b
e
g
i
n

local
p,d,

temp;

if
node

is
terminal

-

_
b
e
e

then

(
e
x
a
m
i
n
e

r
e
c
o
r
d
s

i
n

bucket(node),

u
p
d
a
t
i
n
g
 PQD,

R
@
;

if
BALL

WITHIN
BOUNCE

then

done
else

return
-

P
V

-
-

-
22

-

end*
-
'

d

tdiscriminator[node];

p

tpartition[node];

"recursive
call

on
closer

son"

i
f

Xq[dJ

22

p

b
e
g
i
n

then

temp
+-B+[dl;

B+[dl

+-P;

SEARCH(leftson(node));

B+[d]

t
t
e
m
p
;

end

else

bcfl{n

tem
p

t-

B
-C

d
l;

B
-C

d
l

+

P
;

SEARCH(rlghtson(node));

B-Cd]

t-temp;

end'
-
'

"recursive call on farther son, if necessary"

if

X
&
d
]

5

P

then
b
e
g
i
n

“see

temp
+
B
-
[
d
l
;

B-Cdl

+-P;

if
B
O
W

OVERLAP

BALL

then
SEARCH(rightson(node));

B

[d]

@-temp;

end

begin

temp

+
B
+
C
d
]
;

B+Cd]

+

 P
;

i
f

ROUNIE

OVERIA'P
AALL

t
h
e
n

SFARCH(

leftson(ncdc!)

)

;

B+[d]
t
-
t
e
m
p
;

end'
-
'

if we should return or terminate"

if
BALL

WITEIl3 BOUIK6

then

done
else

return'
-
v
-
-
'

end*
-
'

logical
procedure

BALL
WITHIN

BOUNDS;

begin

local
d;

for d t- 1 step 1 until k do
-

-

i
f

C
O
O
R
D
I
N
A
T
E

D
I
S
T
A
N
C
E

(
d
,

Xq[d],

B-Cd])

5

FQ,D[l]

-“
r

 C
0O

llIK
I N

A
’IT

 I)T~‘I’A
N

I:I;:

(
(1, X

cI[(1)
,

l{+r 41)?
 W

r

I]

tlwr~
n-t

urrl(
f'f3

Inc);
-

-
-

return(truc);

end-
-

'

logical
procedure

BOUNDS
OVERLAP

BALL;

begin

local
sum,

d;

s
u
m

t
o
;

for
d t

1

step
1
until

k
do

-
-

i
f

x
&
d
]

<

B-[d]

then
begin

'lower
than

low
bcundary'

s
u
m

t

s
u
m

+

C
O
O
R
D
I
N
A
T
E

D
I
S
T
A
N
C
E

(d,Xq[d],

B-Cd]);

i
f

DISSIM(sum)

>
P&D[l]

t
h
e
n

r
e
t
u
r
n

(
t
r
u
e
)
;

-
-

end

e
ln

c

then

if
Xcl[dl

'
~
,
b
d

-begin
"higher

than
high

boundary"

s
u
m

t
s
u
m

+

C
O
O
R
D
I
N
A
T
E

D
I
S
T
A
N
C
E

(d,Xq[d],

B+[d]);

i
f

DISSIM(sum)

>
IQD[l]

t
h
e
n

r
e
t
u
r
n

(
t
r
u
e
)
;

-
-

end'
-
'

return
(false);

end*
-
'

-
24

-
-

23
-

x

l-4
V

B

L7

2
4

2
c,
m

m
m
k"

:
4

9-l 74
5
c
m

5
0”
0

k”c
+
4
3

0
c,

- 5
a QX

CD
m

Q
2
E7
-P
EI

F: c

c,

VI

c
Q
3

0

0.-L
z>
8
II
Q

cl

2
0

0

150

100

5
00

I
I

I
I

I
F

our K
eys per R

ecord
8192 R

ecords

0 E
uclidean M

etric
a p

=
a

M

e
tric

00

I
I

I
I

I
5

IO

I5
20

25

N
U

M
B

E
R

 O
F

 B
E

S
T

 M
A

T
C

H
E

S
2
6
6
8
A

)

F
i
g
u
r
e

2
b

I
I

I
I

S
ix K

eys per R
ecord

A

8192 R
ecords

0
E

uclidean
M

etric
q

p
=

a
 M

etric

5
IO

I5

20
25

N
U

M
B

E
R

O

F

B
E

S
T

M

A
T

C
H

E
S

16
6

0
4

4

F
i
g
u
r
e

2C

I .4

@
1.2

023cr
1
0

W-I
L

08
.

crk
0.6

g
0.4

E$!
0

.2
?2

0

11
I

I
I
I
I
I
I
I
~

I
I
I

lllll~

1

E
uclidean

M

e
tric

-
2

Tw
o

K
eys

per

R
ecord

4

Four
K

eys
per

R
ecord

-
8

E
ight

K
eys

per
R

ecord
8

8
-

8
8

8
4

a
-

4
’

4
-

4
4

2
2

-
7

2
2

842

2
2

L
II

I
I

I
I
I
I
I
I
I

I
I

I
l
r
i
l
l
l

I

102
IO

3
IO

4

T
O

T
A

L

N
U

M
B

E
R

O

F

R
E

C
O

R
D

S

IN

F
ILE7660A?

7
0

6
0

&$
5
0

0Kw
4
0

CL

z
j

3
0

0ti#
2
0

3r

IO0

I
I I

1
I

I
I
I
I
I
I
I

I
I

I

E
uclidean

M

e
tric

a
2

T
w

o
K

eys
per

R
ecord

 (X

IO
)

v
8

E
ig

h
t

K
eys

per
R

ecord

8

8
8

8
8

2
2

2
2

2
2I

I
5

IO
5
0

N
U

M
B

E
R

 O
F

 R
E

C
O

R
D

S
 P

E
R

 B
U

C
K

E
T

2668A5

Ill
1

I
I

r
l
l
l
r
l

1
1

I

F
i
g
u
r
e

3
F
i
g
u
r
e

4

a

0
In-g-

IIIII

0.-
_ L

‘E
>

-c
- E
-u.-
-0
A.2

t

Att3f-D Kid SClNOEiSllllW

AU330 t13d SClN033SllllW

.

a3Nlwx3 satfoz3ki JO t1338WflN 39w3lw2

0008

AClf-lO t13d SClN033SIllWJ

