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ABSTRACT:
M e t h o d s  f o r  v e r i f y i n g  p r o g r a m s  w r i t t e n  i n  a  h i g h e r  l e v e l  p r o g r a m m i n g  l a n g u a g e  a r e
dev i sed a n d i mp I emen  ted. T h e  s y s t e m  c a n  v e r i f y  p r o g r a m s  w r i t t e n  i n  a s u b s e t  o f
PASCAL, Glhich m a y  h a v e  d a t a  s t r u c t u r e s  a n d  c o n t r o l s t r u c t u r e s  s u c h  a s  W H I L E ,
REPEAT ,  FOR,  PROCEDURE,  FUNCTION and  COROUTINE .  The  p rocess  o f  c rea t i on  o f

s v e r i f i c a t i o n  c o n d i t i o n s  i s  a n  e x t e n s i o n  o f  t h e  w o r k  d o n e  b y  Igarashi, L o n d o n  a n d
Luckham Glhich i s  b a s e d  o n  t h e  d e d u c t i v e  t h e o r y  b y  Hoare. V e r i f i c a t i o n  c o n d i t i o n s
a r e  p r o v e d  u s i n g  s p e c i a l i z e d  s i m p l i f i c a t i o n  a n d  p r o o f  t e c h n i q u e s ,  w h i c h  c o n s i s t
of an ar i thmet ic simpl i f  i e r , equal i  ty replacement r u l e s , f a s t  a l g o r i t h m  f o r
s impl  i  fy ing f o r m u l a s  u s i n g  p r o p o s i t i o n a l  t r u t h  v a l u e  e v a l u a t i o n ,  a n d  a  d e p t h
f  i  r s  t  p roo f  sea rch  p rocess . T h e  b a s i s  o f  d e d u c t i o n  m e c h a n i s m  u s e d  i n  t h i s  p r o v e r

.  i s  G e n t z e n - t y p e  f o r m a l system. Severa I sort i ng programs i n c l u d i n g F l o y d ’ s
TREESORT  a n d  Hoare’s FIN0 a r e  v e r i f i e d . I t  i s  shoun  t h a t  t h e  r e s u l t i n g  a r r a y  i s
n o t  o n l y  I-Jell-ordered b u t  a l s o  a  p e r m u t a t i o n  o f  t h e nput array. .
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I . Introduction

Verifying that programs work faultlessly is a necessity. We can test whether they work or not

in several cases. But unless we prove the correctness of programs, it is impossible to claim that they

endure long lasting usage. Since proving by hand is cumbersome and not always free of errors,

mechanization of verification is strongly desired.

Some attempts have been made to verify programs mechanically 11l,~2l,~lOl,~  111, but there are

several problems which must be solved in order to make automatic verification of programs

practical.

First, we have to find a way to express assertions more easily. Most of the previous verifiers

require assertions to be written in first order predicate sentences with a fixed number of predefined

predicate symbols and function symbols. But this is in many cases inconvenient and infeasible. For

example, if we have to deal with the correctness of programs with complex data structures, we need

to express properties in higher order sentences. Thus, many complex programs have not been

verified because the assertions about programs have not been properly stated.

Second, we have to find a better way to prove verification conditions automatically. Proving

verification conditions using a general automatic theorem prover is in most of the cases

unsatisfactory. If we are verifying programs in specific domains, we can use special properties of

functions and predicates to construct fast special purpose provers. King[lOl  and Deutsch[2]  have

succeeded by using a built-in simplifier for integer arithmetic, but these programs still cannot cope

with o ther  domains .

In most verification systems the user must specify not only input and output conditions but

- also loop invariants. Although it is an undecidable problem to generate loop invariants, the system

should aid the programmer in constructing loop invariants. Also, programs with complex data

structures and complex control structures must be verified, including parallel programs.

In this paper we describe a fast simplification and theorem proving facility that is a new

component of the Stanford PASCAL Verification System described by Igarashi, London and
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Luckham  in [91. This system permits the programmer to formulate the semantics of his data

structures, procedures, and functions in simple, natural statements. These statements are used by the

system as simplification and special theorem-proving rules during verification. So programs

computing over any domain can be dealt with easily.

As an example, automatic verification of a sorting program is studied in detail. It is shown

that not only is the resulting array ordered but also it is a permutation of the input array. The

verification of Floyd’s TREESORT  program and Hoare’s FIND program are listed, both of which

are verified within a reasonable amount of computation time. Because these programs are complex,

and use data structures--in this case an array data structure, whose semantics has not been studied

well--they have been considered as one

method of verification is very promising

of the big challenges

for practical use.

for automatic verification. Thus our

c
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I I . Expressing Assertions by Structured Definitions.

1 w

i

I

-

Here, we make a few comments about  ’ how the user of the system might c o n s t r u c t

!- documentation in a way that aids the verification of his program. The main idea is to use defined

concepts that are close to the natural concepts employed in creating the program.
- As is discussed in the previous section, it is impossible to state all properties of programs in

first order sentences with fixed number of predefined function symbols and predicate symbols. As an

example let us examine the process of verifying sorting programs. Suppose a program S accepts an

array A and sorts it and output it as an array B. Then, the correctness of S is expressed in terms of

properties that elements of B are ordered in ascending(or descendingjorder  and B consists of all

c-
elements of A and of nothing else. The first property can be stated as

V I .  ~1~I~N-1>BIIl<BtI+1l~.

L

i

:

But one way to describe the second property is to state that there is a one-to-one mapping from

elements of A to elements of B. That is the sentence

3F. (VI. (~IIIN>~<F(I)<N)AVI,J.  (l<I<J<N>F(I)%F(J))  AVI. ~1~I~N~A~Il=BIF~I~l~~

expresses the second property.

But previous verifications of sorting programs, either manual or automatic, have dealt with

r only the first property. The detailed study of FIND by HoareL71  briefly explains that to prove the

L correctness  it is necessary to show that the second property holds, but does not formally verify it. He

B thought that the assertions were not obvious and the proof would be tedious. It is certainly

c disadvantageous to introduce second order sentences because they require complicated proof

proced  u rcs. But since it is essential for the automatic verification to prove the second properties

formally, we have to invent a way to verify them.

The way to avoid using second order sentences is to extend the language by introducing new

symbols. There is also another nice thing about introducing new symbols. To express that array B is

a permutat 1011  of array A, we have to employ a rather complex sentence. It might be as difficult to

understand what it means as to understand what the program does. Also it is very easy to introduce

3



F -. -
Assertions describing a program can be structured top-down by using new symbols. Their

meanings are refined succesively  until everything is well-defined. An analogous concept can be

found in programmmg.  We can enrich the language and clarify the meaning by introducing new

symbols (operations). These new operations  are defined either by macros or by procedures. Macros

define new operations by using already defined concepts. So they do not give more computation

power but clarify programs. Whereas, procedures can define new operations recursively, so that they

errors. But we can avoid complexicltes  by writing

Pernwtation(B,A).

In general there are two methods to introduce new symbols. The first method is to assume the

new symbol as a shorthand representation of a sentence represented by already defined symbols. The

second method is to define symbols by axioms stating the properties of these symbols. For e&ample,

after defining  axioms of propositional calculus consisting of symbols “3” and I’-“, we can introduce

“A” symbol as a shorthand notation for -(AD-B).  But also we can introduce it by axioms,

AnB>A,  AABIB  a n d  AD (B>Ar\B) .

give new power. ‘,

Following this analogy to programming, we can call the way we write predicate sentences with

newly defined symbols a structured way of expressing assertions. A detailed study of how to

introduce new symbols is in section V, and also is found in the work by von Henke and

LuckhamL51.

In the case of “Pernw ta t i on (8, A) “, we could define it as the shorthand representation of the

previous sentence. But instead we shall define it by a set of properties (specifications) including the

following axiom,

VA,I,J.Permutation(Exchange(A,I,J),A),

where Exchange  (A, I, J) is a function mapping an array A into an array resulting from

exchangrng  I-th  element and J-rh element of A. In addition, Permutation is an equivalence relation,

so we must include axioms for symmetric, reflexive and transitive properties.

We have replaced a second order statement by a relation which has arrays as individuals.

Now, arrays are a second sort of individuals.

c -
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Thus, we need to have a special semantic definition for array assignment, since

as array elements occur in assertions.

NOTATION <A,I,E>: A n  a r r a y  o b t a i n e d  front A  b y  p l a c i n g  E  i n  t h e  i - t h

p o s i t i o n .

as well

ARRAY ASSIGNMENT AXIOM

PkA,I,E>)  {AHIcE P(A).

c



III. Documentation Statements and Their Use,

Introduction of new symbols is essential to verification for ease of both representation and

unclerstandrng of assertions. We allow users to introduce new symbols by documentation in the form

of three simple kinds of statements. They are used by the prover as (i)rewriting  rules to expand new

symbols, {ii) reduction  strategies which state that some expressions are reduced to others under

speciflcd  conditions, and (lli)goal-subgoal  strategies which state that certain well-formed formulas are

true if certain  others are true. We found that they are convenient and powerful.

From the method of construction of verification conditions ~53,[6~,[7~,[9~,  all the verification

conditions are of the form

Al/\. , .AAN + Cl/\. . ./\CM.

Since  this form of representation is more natural for understanding than disjunctive  normal form,

we retain this form throughout the proof. The proof procedure IS based on Centzen’s formal system.

Thus, the validity of each CI is proved with the assumption ADA.. .AAN.

i
w.. We first explain a special pattern matching language, in which all the documentation

statements art2 written.

i 1.  Pat tern  Matching.

A pattern is a string of symbols which match a term or a well-formed formula. Patterns consist

c

- of pattern  constants and pattern variables. A pattern constant is an identifier and a pattern variable

is an identlfler  precedecl  by a symbol “G“. So eX stands for a pattern variable. Under the pattern

matching mechanism, a pattern constant matches only that symbol and an unbound pattern variable

* matches any term and is bound to that term thereupon. A bound pattern variable matches only the

corresponding term. .

Higher order pattern matching is undecidable in general. So, in this algorithm a term with

unbound pattern variables  is not matched to a term with unbound pattern variables. But still this

restricted matching algorithm is ambiguous. For example, if a pattern @P (@XI  is matched to

c-
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Q (F (A) 1, both @P=Cl,  @X=F (A) and @P=Q  (F ( 11, @X=A are permissible bindings. This ambiguity

is costly in computation and should be avoided if possible. Thus, in this system we employ an

incomplete but decidable procedure. The matching is done from the outer symbols, and from left to

right among parameters. So @P (@Xl matches to II (F (A) 1 and yields @P=Cl and eX=F (A).

The limited facility has not caused much inconvenience. Since higher order sentences can be

translated to first order sentences by introducing new symbols, all properties can be expressed in first

order sentences. We are going to see that the pattern matching does not cause much inconvenience

In the case’ of data structures either. Suppose A and B are both arrays. If we match @X [@Yl  to

A 18 [I I 3 , we get (gX=A and eY=B [I I by our matching algorithm. But we do not want the bindings

of @X=A IB [ 3 1 and @Y-I , since A [B 1 1 I is not meaningful.

2. Rewriting Rules.

We can use TEMPLATE statements to introduce new symbols as shorthand representations of.
already defined expressions.

TEMPLATE <pattern> w <expression>.

Then, a rewriting rule is created from this statement. The system replaces every occurrence of

<pattern> by <expression> according to the rule.

If we want to introducei

L Ordered (A, I, J)

. as a shorthand representation of

VX. (I<X<J > A[Xl<A[X+ll),e

c.-

then we can write

TEMPLATE Ordered(@A,@I,@J)  c) VX,  (I<X<J 3 A[Xl<A[X+ll).

3. Reductioil  Strntrgies.

i Also, we can introduce new symbols by a set of axioms. These axioms can be stated by

AXIOM  statements and COAL statements to produce reduction strategies and goal-subgoal

L strategies respectively.

We can specify reduction strategies to simplify terms or well-formed formulas. These strategies

7
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are of two kinds, one is an unconditional reduction and the other is a conditional reduction.

Unconditional reduction strategies can be fed into the system by statements of the form

AXIOM <pattern>  c) <expression>,

The effect of this strategy is to reduce any expression which matches the <pattern> to <expression>.

The <expression> may have identifiers which appear in the pattern as pattern variables. They are

bound to some forms by matching. For example, one can represent one of the axioms of list data

structures,

VX,Y.CAR(CONS(X,Y))=X,

as a simplification rule,

AXIOM CAR tCONS(@X,@Y)  )++X,

Then P (CAR (CONS (A,81 1 is reduced to P(A) since @X is bound to A. Only universally quantified

equality or equivalence relations can be represented by this method.

Conditional reduction strategies are specified to the system by statements of the form

AXIOM IF <pattern 1~ THEN <pattern> ++ <expression>,

The effect is to reduce expressions which match <pat  tern> to <expression>, if <pat tern 1> is

provable by the system. Some pattern variables of the <pat tern l> become bound when

<pat  tern> is matched. If the <pat tern l> does not include unbound pattern variables, the

validity of the sentence

ADA.., AAN + <pattern l>,

is checked by recursively activating the prover. If the <pat  tern 1~ includes unbound pattern

.
variables, it is tested whether it matches the antecedent part of the verification condition or not. If it

matches then we consider <pat tern l> to be provable and otherwise not provable.

For example,

. vx, Y (X<YAYiXDX=Y)

is a valid statement. We want to incorporate this fact into the system by conditional reduction, and

reduce YrX to X=Y If XrY holds. The statement  we should write IS

AXIOM IF XsY THEN GYI@X  ++ X=Y,

Then if we are to reduce the statement

AIBAB~AAP  (A) >P (B),

8



the pattern matches to AsI3 to get bindings eY=A and @X=6. Since there is no unbound pattern

variable, the system sets up a subgoal E&A,  and tries to prove

i B<AAP (A) DBsA,

!

which is valid. So the statement is reduced to

- B=AABFAAP (A) >P tB) ,

b which will be proved to be valid by equality substitution. As the previous example shows 9

universally quantified theorems can be represented by this statement. But also some existentially

quantified theorems can be represented,

L
For ex amlJ  k

VX(3Y.P(X,Y)>F(X)=G(X))

can be represented by a statement

AXIOM IF P(X,sY) THEN F(eX)  ,+ G(X),

4. Coal-Subgoal Strategies.
L

Reduction  strategies turn out to be important components of proof. It is a frequently used

I
L

proof step. However, we rely heavily on additional goal-subgoal strategies to complete many

verification  proofs. Verification conditions are of the form

1
I
L

Air\. . ,r\AN  -+ C~A.,  .ACM.

The problem is to prove each CI . If we can prove BIzCI  and Ah..  .r\AN+BI,  we can deduce

ADA.. . AAN-+CI  by modus ponens. Thus, if we have an axiom BI>CI  the subproblem we have to

solve is

A~A...AAN -) BI .

This  fact is the motivation  for employing goal-subgoal strategies.

L
Statements to specify strategies are of the form

GOAL <pattern>  SUB <pattern l>,...,<pattern  t-v.

I The strategy constructed from this statement works as follows. If <pat term matches to the

consequent CI, each <pat tern j> is tested successively  until one of them is provable. If <pat tern

j> has unbound pattern variables it is tested to determine whether it matches one of the conjuncts

of the antecedent. If <pat tern j> has no unbound pattern variables, a new subproblem



ADA..  .AAN + < p a t t e r n  j>

is tested by recursively activating the prover.

For example, the transitivity of “5” is defined by an axiom

vx, Y. (31.  o&i!AZ<Y)>X<Y)  ,

This is represented by a goal-subgoal strategy,

L GOAL @XseY  SUB x~@,zA(sz<Y- *

In order to fuove a sentence

using this goal, first sX<sY  is matched to AsO to obtain sX=A  and sY=D. Then, the antecedent is

searched whether AreZ matches one of the conjuncts.  In this case the search is successful and yields

L- @Z=B. Thus, the remaining subgoal is @ZrD,  which is now 8rD. So the new subproblem

/ AiB&M&rD+BrD

F- is set up. This can be proved by using the same goal one more time. These strategies can also

represent universally or existentially quantified theorems.

Everything which goal-subgoal strategies can express can be expressed by conditional

reduction  strategies, since we can express the statement

GOAL A SUB R,

L
by the statement

AXIOM IF 6 THEN AMTRUE.

However, the system uses these statements in different ways. Conditional reduction strategies are

used to reduce expressions in both the consequent and the antecedent of verification conditions. For
-

example, suppose we have a conditional reduction strategy specified by

IF Al THEN A2 ++ C.

then

Air\@ -) B

is reduced to

Al/\C + 6,

and

Al + AZ

10
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is reduced to

Goal-subgoal strategies are used only to make reduction in the consequent.

The reason why we have goal-subgoal strategies is that because they are more efficient than

conditional reduction strategies. Most of the time we are interested in proving the validity of a

statement of the form A + 6. Thus, we are interested in how B can be proved from A, Also the

antecedent A is usually more complex than the consequent B because the antecedent contains all the

information about data structures and control structures. So the goal-subgoal strategy gains efficiency

by limiting the reduction to the consequent part.



IV. Ilnplelllelltation.

Thus  verification  system is built upon the PASCAL verification condition  generator

VCGEN[S].  First, files of the user’s Axioms and Goal statements are input  to the system, and the

corresponding reduction rules and goal-subgoaling strategies are constructed. This yields a special

reduction and proof system for the data structures and functions described by these statements. The

system is extensible, since strategies can be added to handle larger domain of programs. Next, a file

containing the program with assertions is processed by VCCEN to produce verification conditions.

These are passed to the proving system. The proving system is divided into several functions. They

are (i)the arithmetic simplifier, (ii)the  equality substitution algorithm, (iii)the  truth value substitution

algorithm, (iv)the--unconditional  simplifier, (v)the conditional simplifier, (vi)the goal-subgoaler, and

(vii)the logic symbol elimination algorithm.

Gentzen-type inference rule notations are used to express the effects of functions.

t
NOTATION : A B

C

,where C is the goal and A and B are subgoals both of which

must be proved in order to prove C.

(i) The arithmetic simplifier transforms arithmetic expressions into standard representations, and

simpliflcs  them. The standard representation is a sum of products of simple factors. A simple factor

is an arithmetic expression which is neither  a sum nor a product. Then each product consists of a

coefficlent(if  not equal to 1) followed by simple factors which are ordered by system-defined

orderings, And the sum consists of the ordered products followed by a constant(if  not equal to 0).

(ii) The equality substitution algorithm handles verification conditions of the form

A/dcr=PhB  -+ C .

12
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CASE I. Suppose one of a or fl is a variable. Without loss of generality we can

suppose a to be a variable. If /3 IS a constant, a variable, or a11

expression with CL not appearing free, then all the occurrences of a In A, B

and C are replaced by 0.

CASE 2. Suppose one of a or p is a variable. Without loss of generality we suppose

a to be a variable. If Q is an expression containing a, then all the

occurrences of (3 in A, B and C are replaced by a.

CASE 3. If CI and p do not satisfy cases 1 or 2 then all the occurrences of a are‘a
replaced by (3.

(iii) The trutt I value substitutiou  algorithm evaluates logical sentences. The grand rule of the truth

value substitution is

T s u b s t  (A,a)AaATsubst  (B,a) + Tsubs t  (&a)

where both A and B may be null expressions and a is not a conjunction. Tsubst (A, a) is defined by

the followmg  see of functions,  which give the value of A assuming a is true.

TsubsttA,a)=if a  i s  o f  t h e  f o r m  -0 t h e n  Fsubst(A,P)  e l s e

i f a is of the form &IC then

Tsubst(Tsubst(A,/3),c)  e l s e

rep lace  a l  I  occu rences  o f  a  i n  A  by  “T rue ” .

Fsubst(A,P)=if  (I i s  o f  t h e  f o r m  -a t h e n  Tsubst(A,a) e l s e

i f 0 is of the form ax t h e n

Fsubst(Tsubst(A,a),t)  e l s e

i f p is of the form avc then

Fsubst (Fsubst  (A,a), c

rep lace  a l  I  occu rences  o f  fi

I e l s e

in  A  by  “Fa lse ” ,

13
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(iv) The 111 lconditiollal simplifier applies alt unconditional reduction strategies.

The atgorlthm  works from inside out. Thus if we want to simplify

R (Pl ,...,PN),

first all Pl , . . . , PN are simplified to IX,. . . ,QN respectively. Then R KU, . . . , QN) is simplified.

(v) The conditional simplifier applies all conditional reduction strategies. The treatment is different

accordmg  to the position of the expression--in the antecedent or consequent of the verification

condition. Suppose a conditional reduction strategy is given to the system by a statement

A X I O M  I F  < p a t t e r n  l> T H E N  < p a t t e r n >  I* < e x p r e s s i o n > ,

and the verification condition to be proved is

Al/\. , .//AM  + Cl/\. . ./\CN.

If <pat tern> matches a subexpression of CI, then

ADA.. . AAM + <pattern  1>

becomes the subproblem  to be solved.

Nest, suppose <pat  tern> matches a subexpression of the antecedent say AI. Then

‘\ ADA.. . AAI--~AAI+~A..  .AAM + < p a t t e r n  l>
-

becomes I he subp~ oblem  to be solved. If it is valid then the replacement takes place as before.

The validity  IS checked by recursively activating the prover. So this is a depth first search,

and  it might  go into a wrong direction infinitely. So the system allows the user to specify the search

depth. If thp <parch reaches this limit, it is backed up until the last decision point.

(vi) The goal-subgoaler  incorporates all goal-subgoal strategies. Suppose a goal-subgoal strategy is

given to the system by a statement

G O A L  <pattern>  S U B  < p a t t e r n  l>,.,.,<pattern N>,

and the verification condition to be proved is

ADA.,  .AAN -+ C~A..  .ACM,

If CI matches to <pat tern>, then

ADA, . .AAN --) <pat t e r n  1> , , , , , Al/\. , .AAN + < p a t t e r n  N>

are set up as a disJllnction  of subproblems successively, until one of them is proved to be “True”. If

14
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the proof is successful the problem is reduced to

A~A.,,AAN  -) C~A...ACI-~ACI+~A.,.ACM.

(vii) The logic synlbol  climinatioll algorithm works  on elimination of logic symbols  “v” and “D”

from the antecedent of the statement. Their functions are explained by inference rules as shown

below.

(v-e1 iruination)
AACXAB  + C AAPAB + C

AA(avfl)AB  -) C

I>-el iniination)
h-a& + C AAPAB  + C

These seven functions are applied serially. But the simplification may be applicable after

reduction by goal-subgoaling. So these functions are iterated several times. The user can specify the

number of iterations.

L- 15



T h e  overal I  s t r u c t u r e  o f  t h e  p r o v e r  i s  a s  f o l  IOGIS.
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I prover )

I
1 Goal-Subgoaler
I ( R e c u r s i v e l y  a c t i v a t e s  t h e
I prover 1
I

I
4

If v or
3 e x i s t s

JI
I EXIT
4

I
1 L o g i c /
1 Symbo  I I
I E l i m i n a t i o n  I
I Algorithm I
I I

I6
I I

Prover I
I I

/
I
4

EXIT

Depth  of recursive search
has  a  f i xed  bound  wh ich
c a n  b e  a l t e r e d  b e f o r e
runn ing  the  sys tem.

16



V . Applicatioll  to Sorting Programs

As the fmt example, ehe  verification of a simple  sorting program which successively finds the

largest element  among the unordered part of the array and puts it at the end of the ordered part is

considered. This program is the one considered by King[lOl.  The program with input and output

conditions and an assertions about loop invariants is shown below. This is the actual input form for

the system.

PASCAL

TYPE SARRAY=ARRAY [l: Ll OF INTEGER;

PROCEDURE EXCHANGESORT (VAR A: SARRAQL: INTEGER) ;
I N I T I A L  A=A0;
E N T R Y  1zL;
E X I T  I ssor teclsFrayof (A,A0);

VAR X:REAL;VAR K, I, J: INTEGER:

BEGIN
I - L ;
INVARIANT Pernlutation(A,A0)~Ordered(A,I+l,L)~Partitione~~A,I~~~I~l~
W H I L E  I>1 0 0

BEGIN
J4;X~A~ll;K+l;
INVARIANT Bissest(A,J-l,K)A(lsK)A(KrJ-l)A(J-l~I)n(X=A[Kl)
WHILE J<I DO

BEGIN
IF XLA [Jl T H E N  G O T 0  3 :

r

X+-A  [Jl :
K+J;

3: J+J+l
END:

A[Kl+-A[Il:
A[Il+X;  ’
I C I - 1
END;

E N D ; . ;

We are going to explain the intended interpretation of symbols and the set of axioms defining

them When we cqxm axioms, we have to be careful not to introduce an inconsistent set. Since a

consistent set of axlotns has a model, we can avoid introducing an mconsistent  set by defining a n

interpretrttron  and Justifymg  axioms  by showing validity relative to that in terpretat ion.

Inputs eo this program are an array A and an integer parameter L defining the upper bound
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of the array. Since we have an array with at least one element, the input condition is

Lzl.

The output conditron  is

Issortedarrayof(A,AB),

where A0 IS the initial value of A at the entrance to the procedure and I ssor tedarrayof (A, A01

means that A0 is sorted to become A.

1. Issortedarrayof(A,B).

In order A to be a sorted array of B, it must be ordered in ascending order and it must consist

of all the elements of B and nothing else. We describe the two facts by introducing additional

predicates. The axiom is,

2. Ckdercd(  A, J,L).

The interpretation of Ordered(A,  J,L) is that the subarray  A[J:Ll is ascendingly ordered.

Thus,

Ordered(A,J,L)  *+ V X .  (J<X<L-~~A[XIIAEX+~I),

where *t-r means that the left-hand side is the shorthand notation of the right-hand side.

Three axioms are necessary to specify the predicate. The first one specifies the boundary case

when J is equal to L+l. Then there is no element in the subarray  and an empty array is ordered. So

Ordered(A,L+l,L)

is true.

The next axiom is an induction axiom which state that if the property holds for a smaller

. suharray  rt holds for a larger subarray under certain conditions. It is

Ordered~A,J,L~r\Partitioned~A,J-l~~Orciered~A,J-l,L~.

This  aslom  enables the property to be extended to the whole array. The meaning of

Part i t i oned (A, J-l 1 is that the array A is partitioned between J-l and J such that all the

elements 111 the upper half are larger than or equal to all the elements in the lower half.

The last axiom states that changing elements outside of the concerned subarray will not
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change the property. The operation  on the array in this program is Exchange (A, I, J) , which is an

: 3. Partitioned(A,J).

i

array obtained by exchanging I-th and J-th element of A, thus

Ordered (A, J, L) A (I IJ) A (K<J)  APar t i t i oned (A, J)

>Ordered  (Exchange (A, I ,K1, J,L) .

T.he  meaning of this predicate has been stated before as

Part i t i oned (A, J) w VX, Y, (l<XsJ<Y<L>A  [Xl IA [VI 1.

There are also three axioms to specify this predicate with the same nature as those of

Ordered{ A, J,L).

When J is equal to L, there is no element in the upper half of the array, so the property

holds. Thus, the boundary property is
k- Part i t ioned(A,L).

The axiom about induction is

Partitioned(A,J)ABiggest(A,J,J)>Partitioned(A,J-l).

Since B i gc_lest  (A, J, J) means that A[J] is the biggest element among elements of the subarray

A[ 1: J], there is a separation between J- 1 and J.

Also if we exchange elements of the lower half of the array the property remains valid. So,

4. Biggest(  A,I, J).
e

The meaning of this predicate is that, A[Jl is the biggest element among the elements of the

subarray A[ ]:I].

The axlorn of the boundary case states when I IS equal to 1. Then, there is one element in the

subarray which IS the biggest element. Thus,

Biggest (A,l,l).

The axioms about the induction are
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Biggest(A,I,J)~~A[Itll~A~Jl~~Biggest(A,I+l,Itl~.

The next axiom states that if we move the biggest element by Exchange, then the place of the

biggest  clement changes. The objective of the program is to move the biggest element of subarray

A[i:I] to ALI]. Thus, the axiom

is sufficient.

5. Permutation(A,B).

The meaning is that the array A is a permutation of the array B.

If we exchange elements of an array, this is a permutation of the array.

Thus,

Pet-mu  ta t i on (Exchange (A, I , J) , A)

is an ax lot-n.  Also -per mu t a t i on (A, B) is an equivalence relation, so

Permutat ion(A,A),  and

Permutation(A,B)>Permutation(B,A),  and

Permutation(A,B)APernlutationtB,C)>Permutation(A,C),

are axioms. Since any permutation can be obtained by repeated operations of Exchange, these are

sufficient axioms to prove the property.

6. Exchange(A,I,J).

The axiom sufficient to represent that any N-place cycle is decomposable into N Exchanges is

Y=A[JlI<<A,I,Y>,J,X>=Exchange(<A,I,X>,I,J),
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The following listing is the goalfile  which is supplied to the system along with the program.

This shows how simplification  and goal-subgoaling rules are selected to represent axioms.

GOALFILE
G O A L  Issortedarrayof(@A,@B) SUB Permutation(A,B)AOrdered(A,l,L1;

AXIOM Ordered(A,L+l,L)~TRUE:
G O A L  Ordered(@A,@Pl,L)  SUB Ordered(A,Pltl,L)APartitioned(A,Pl);
GOAL Orciered(Exchange(@A,@Pl,@PZ),@P3,L)

S U B  (PllP3)A(P21P3lAOrdered(A,P3,LlAPartitione~(A,P3);

AXIOM Partitioned(A,L)~TRUE:
GOAL Partitioned(@A,ePl)  SUB Biggest(A,P1+1,Pl+l)#artitioned(A,Pl+l1;
GOAL Partitioned(Exchange(@A,&l,@P2),@P3)

SUB (PllP3)A(P2<P3)APartitioned(A,P3);

AXIOM Biggest(A,l,l)wTRUE:
GOAL BiggestfExchange(@A,ePl,@P2),@P2,@P2)  SUB Biggest(A,P2,Pl);
GOAL BigcJest(sA,@P 2,ePl) S U B  (AEP13>A[P2l)~Biggest(A,P2-l,Pl);
GOAL Biygest(eA,ePZ,eP2) SUB (A[P2lrA[Pll)ABiggest(A,P2-l,~Pl);

AXIOM Permutation(@I,@I)~TRUE:
AXIOM Pernwtation(Exchange(@11,@12,~13),~11~~TRUE;
GOAL Pernwtation(eA,eB)  SUB Pernwtation(A,&)APernwtation[&,B);

A X I O M  I F  Y=Pl[P31 T H E N
<<@Pl,eP2,@Y>,@P3,@P4>~Exchange(<Pl,P2,P4>,P2,P3);

G O A L  0  5 d'l+eP2 SUB (0<P1)A(0sP2);
GOAL &1<&'2  SUB(P15@P3)  A~?P~SP~);
A X I O M  ePl<@P2 c) Pl+l<P2;
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This is the output of computation which veri f ied the program in 19 seconds.

THERE ARE 4 VERIFICATION CONDITIONS

# 1
(l<L
4
Permutation(A,A)  &
Ordered(A,L+l,L)  &
Partitioned(A,L)  &
1rL &
(-l<I#l &
Permutation(A#l,A)  &
Orclered(A#l,I#l+l,L) &
Partitioned(A#l, I##11  8
lII#l

-+I ssortedarrayof(A#l,A)))

l ,

#2
(l<I b:
Permut~tion(A,AB)  &
Orderccl(A,I+l.L)  &
Partitioned(A,I)  &
151

+
Biggest(A,i'-l,l) &
151 &
152-3.  &
2-151  &
A [ll =A [ll &
(-J#311  &
Biggest(A,J#3-l,K#3)  6
lrKC13 &
K#3<J#3-1  &
J##3-151 &
X#3=A[K#31

+
Perrnutationt<<A,K#3,A[Il>,I,X#3>,A0)  &
0rclered(~~A,K#3,A[11~,1,X#3~,1-1+1,L)  &
Partitioned(<<A,K#3,A[Il>,I,X#3>,1-1)  &
151-l) 1e

#3
(-AIJlsX 8
,I<1 &
Biggest(A,J-1,K)  &

. l<K&
K r J - 1  &
J-121  &
X=A [Kl

3
Biggest(A,J+l-1,J)  &
l_<J B
J<J+l-1  6
J+l-111 &
A [Jl =A [Jl 1
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ik

L

i-

i

L.

#4
(AkJrX  B
J<I (2

KLJ-1  B
J-151  K
X=AW

3
Figggst(A,J+l-1,K)  &

s
KrJtl-1  &
Jtl-131 &
X=A[Kl)

AFTER SOME SIMPLIFICATION, YOU CAN GET

#l
TRUE

#2
TRUE

#3
TRUE

#4
TRUE

*****

TIME: 19 CPU SECS, 21 REAL SECS

778 STATE STACK CELLS USE0
136 TOKEN STACK CELLS USED

958 OECISION POINTS
1947 FAILURES
3 SECS GC TIME
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Here is another sorting program which has been verified. This is Floyd’s TREE SORT

program[41  with assertions and the goalfile. This is verified with 142 se!onds  of computation time.

Most of the previously defined predicates are used in the goalfile  with the same set of axioms. Thus

there is a possibility of forming a standard set of symbols and axioms.

PASCAL

PROCE
INITI
ENTRY
EXIT

OWE TREESORT (VAR A: TREEARRAY;L:  INTEGER) ;
AL A=AB;

L&Z;
I ssor tedarrayof (A,A0) ;

PROCEOIJRE  SIFTUPWAR  t’l:REAL  ;I,N:INTEGER);
I N I T I A L  1=10,M=M0;
ENTRY TreeorcleredtM,  Itl,N)A(I>l);
E X I T  Treeorderecl(M,  IB,N)~Permutation(M,M8)n

Unchangecf(M,M0,1,10-l)nUnchanged(M,MB,Ntl,l);

VAR COPY: REAL: J: INTEGER:

BEGIN
COPY + MlIl;

10: J + 2 * I;
IF J I N THEN

BEGIN
IF J < N THEN IF MIJtll > tWJ1  THEN J + J+l;
IF M [Jl ;,;$Y THEN

Ml11 +- M[JI;
ASSERT Treeordered(M,  IB,N)A(COPYIM[J  DIV 21 )A

PermutationkM,J,COPY>,U$)~
Unchanged(M,MB,l, 10-lh
Unchanged(M,MB,Ntl,L)A
(N>J)~(J~10)~(10~1);
I + J;
GO TO 10
END;

END;

ENO;
fUI1 +- COPY;

VAR WORK:REAL;  I: INTEGER:

BEGIN
I&L OIV 2 ;
INVARIANT TreeorderedlA,  Itl,L)~(I211~Permutation(A,A0)
WHILE 112 00

END; . ;

I&L:
BEGIN SIFTUP(A,I,L);  W-1 END:

INVARIANT Orclered~A,Itl,L1~Partitioned~A,I~~Treeordered~A,Z,I~
A(I>l)APermutation(A,AB)

MHILE  112 0 0
BEGIN
SIFTUP(A,l,I);
iiiOif(KiA(11;  A[13cAtIl;  A[Ilc-WORK;

EiO-
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GOALFILE
GOAL Issortedarrayofl@A,@B)  SUB Permutation(A,B)nOrdered(A,l,t):

AXIOM Pernwtation(~I,~I)++TRUE;
AXIOM Permutation(Exchan
GOAL Permutation(sA,~B) 8

e(~11,~12,oI3),eIl)~TRUE:
UB PermutationIA,eC)APermutation(&,B1;

AXIOM IF Y=Pl [P23
THEN <<~Pl,~P2,aY>,~P3,oP4>~Exchange(cPl,P2,P4>,P2,P3);

AXIOM Ordered(A,L+l,L)~TRUE:
GOAL Ordered(eA,@Pl,L)  SUB Ordered(A,Pl+l,L)APartitioned(A,Pl);
GOAL Ordered (Exchange (@A, cP1  ,@PZ) ,@P3,t)

SUB OrcJered(A,P3,L)A(Pl<P3)A(P2<P3)APart  i tioned(A,P3);
SUB Ordered(eY,P,L)AUnchanged(X,Y,@Q,L)A(~~P+l);
AXIOM Unchanged(@X,@X,@I,@J)HTRUE;
GOAL lJnchangecJ(~@X,@I ,@J>,@Y,&,eL)

SUB Unchanged(X,Y,K,L)AOutofrange(K,I,L);

GOAL Biggest(@A,eI,l)  SUB Treeordered(A,l,I);
GOAL BicJgest(Exchange(uA,@I,@J),@J,@JI  SUB Biggest(A,J,I);

GOAL Treeordered (eP1, @P2,@P3)
SUB Treeordered (Pl ,P2+1 ,P3)

ABiggerthanchildren(Pl,P3,P2,Pl[P21);
GOAL Treeordered(<~~M,~J,~K>,~I,~N)

SUB Treeordered(M,I,N)nOutofrange(I,J,N);
GOAL Treeordered (QM,  @I, e,N) SUB N<2*1;
GOAL TreeorcJercd(<eM,@J,eK>,~I,~N)

SUB Treeorc~erec~tM,I,N)~SmaIIerthanparentIM,I,J,K1~

GOAL
Biggerthanchi  Idren(M,N,J,K);

Treeordered (Exchange (@A, @I, @J) , @K, @L)
SUB Treeorclered(A,aM,aN)A(K=Itl)A(L=J-l)~(MIK)A(N~L);

G O A L  Outofrange(@I,@J,@N)  S U B  J<I , N<J;

GOAL Smal lerthanparent (@M,@I,@J,@K)
S U B  J<Z*I,  (KrM[J  OIV Zl),K=M[2*Jl,K=M[2*Jtll;

GOAL Biggerthanchi  Idren(@M,eN,@J,@K)
SUB N<2*J  , (N=Z*J)  A (KzM [NJ 1 , tKrM 12aJl)  A (KIM [&J-t1 I 1;

AX1  OM Par t i t i oned (A, L) eTRUE;
GOAL Partitianed(FA,FPl) SUB Partitioned(A,Pl+l)nBiggest(A,Pl+l,Pl+l);
GOAL Part i t ioned(Exchange(@A,@Pl,eP2)  ,oP3)

SUB Partitioned(A,P3)A(Pl<P3)A(P2sP3);
GOAL Part i t ioned(@X,eP)

SUB Parti tionedk?Y,P)AUnchangedo(,Y,@QL)&&P+l);

A X I O M  (@K*ccaL)DIV  @K ++ L ;
A X I O M  @K*bL DIV &I ++ L ;
A X I O M  I F  M+l<K  T H E N  I(oK*@L)t@M  )DIV @K e) L ;
G O A L  cap1 < ($2 OIV eP3 S U B  Pl*P3  < P 2 ;
G O A L  5  _<  ePlteP2  SUB (5rPl )A($~PZ)  ;
GOAL &l<@P2  SUB (Pl <@P3)  A (af’3Sf’2) ;
A X I O M  ePl<ePZ ++ PltlrP2;
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This is Hoar-e’s FIND program171 and goalfile. This program is verified with 53 seconds of

computation tfme.

PASCAL

PROCEDURE FIND(VAR  A:FARRAY;F,K:INTEGER):
I N I T I A L  A=A5;
E N T R Y  lrF&F<K:
E X I T  PARTITIONED(A,F)APERMUTATION(A,AB);

VAR M,K: 1NTEGER:VAR  R:REAL;

BEGIN
M+l; N+-K;
I N V A R I A N T  MINVARJANT(A,M)ANJNVARIANT  (A,N)APERMUTATION(A,AB)

/\(tl~F)  A (FrN)
WHILE M < N DO

BEGIN
RcATFl;  I+M; J - N ;
INVARIANT MINVARIANT(A,M)ANINVARIANT(A,N)AI INVARIANT(A,I,R)

AJINVA~?IANT(A,J,R)APERMUTATION(A,A~~~~~~~I~A~N~J~
W H I L E  IIJ D O

BEGIN
I N V A R I A N T  I INVARIANT(A,  I ,R)A(MII)
WHILE AHI < R DO I+ Itl;
INVARIANT JINVARIANT(A,J,R)A(N~J)
W H I L E  R  < AIJI D O  J  t J - l ;
IF I < J THEN

BEGIN
W+A[Il;  A[IltA[Jl: AEJLW;
I+I+l; JtJ-1
END

END:
I F  F <J T H E N  N+J E L S E  I F  IsF  T H E N  MtI  E L S E  G O  T O  1 0
END;

1 0 :
E N D : . :

e GOALFJLE
A X I O M  t-'ERtlUTATlON  (e1 ,@IbTRUE;
AXIOM PERMUTAT10N(EXCHANGE(@I1,@12,~13~,~11)oTRUE:
G O A L  PERtlUTATION(@A,~B) SUB PERMUTATION(A,~C)APERMUTATION(@C,B);

A X I O M  I F  Y=Pl[PZl
THEN <<~Pl,@P2,@Y>,@P3,@P4>~Exchange(<Pl,P2,P4>,P2,P3);

G O A L  PARTITIONED(eA,d)  SUB MINVARIANT(A,I)ANINVARIANT(A,I);
A X I O M  MJNVARIANT(oA,l)  ++ T R U E ;  4
G O A L  MINVARJANT(eA,&l)

S U B  IINVARIANT~A,~I,~X~AJINVARIANT~A,~J,~X~~~I~J+~~A~I~M~A~M~J~:
GOAL MINVARIANT(EXCHANGE(eA,oI,sJ),@M)  SUB MINVARIANT(A,M)n(I~M)~~Jd"l1;
A X I O M  NINVARIANTbA,K) H T R U E :
G O A L  NINVARIANTbA,@N)

S U B  IINVARIANT(A,~I,~X)~JINVARIANT(A,~J,~X)~(~~Jtl)~(~~N)~(N~J);
G O A L  NINVARIANT(EXCHANGE(eA,eI,@J),@N)  S U B  NINVARIANT(A,N)A(IIN~A~J~NI;
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G O A L  IINVARIANT(~A,eI,~A[@Jll  SUB MINVARIANT(A,I)A(J~I);
GOAL IINVARIANT(~~A,I&@J)  SUB IINVARIANT(A,~K,J)A(~KPI-~)A(J~A[~KI);
GOAL lINVARlANT(EXCHANGE(eA,~I,~J),el+l,~R)

S U B  IINVARIANT(A,I,R)A(I~J~A(R~A[JI);
G O A L  JINVARIANT(~A,~I,eA[@J1)  SUB NINVARIANT(A,I)A(J~I);
G O A L  JINVARIANTIeA,eI,@J) SUB JINVAAIANT(A,~K,J)A(~KII+~)A(J~A[~K~);
GOAL JINVARIANT (EXCHANGE (@A,@,@J) ,@J-1 ,&!I

S U B  JINVARIANT~A,J,R)A(I~J~A(R~A~II  1:

A X I O M  eAieB ++ Atl,<B;
G O A L  oPlreP2  SUB(P~<@P~)A(~P~~P~);
AXIOM IF PlsP2 THEN @PZsePl +, Pl-P2;

Von Henke and Luckham have verified other programs using this system. Also a detailed

study of the verification method has been performed.[5]
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