ESTIMATING THE EFFICIENCY OF BACKTRACK PROGRAMS

by

Donald E. Knuth

STAN-CS-74-442
AUGUST 1974

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY
Estimating the Efficiency of Backtrack Programs

by Donald E. Knuth

To Derrick H. Lehmer on his 70th birthday, February 23, 1975

Abstract

One of the chief difficulties associated with the so-called backtrackng technique for combinatorial problems has been our inability to predict the efficiency of a given algorithm, or to compare the efficiencies of different approaches, without actually writing and running the programs. This paper presents a simple method which produces reasonable estimates for most applications, requiring only a modest amount of hand calculation. The method should prove to be of considerable utility in connection with D. H. Lehmer's branch-and-bound approach to combinatorial optimization.

Keywords and phrases: backtrack, analysis of algorithms, Monte Carlo method, Instant Insanity, color cubes, knight's tours, tree functions, branch and bound.

AMS (MOS) subject classifications (1970): Primary 68A20, 05-04;
Secondary 05A15, 69C05, 90B99.

This research was supported in part by the Office of Naval Research under contract NR 044-402 and by the National Science Foundation under grant number GJ 36473X. Reproduction in whole or in part is permitted for any purpose of the United States Government.
Estimating the Efficiency of Backtrack Programs

The majority of all combinatorial computing applications can apparently be handled only by what amounts to an exhaustive search through all possibilities. Such searches can readily be performed by using a well-known "depth-first" procedure which R. J. Walker [21] has aptly called backtracking. (See Lehmer [16], Golomb and Baumert [6], and Wells [22] for general discussions of this technique, together with numerous interesting examples.)

Sometimes a backtrack program will run to completion in less than a second, while other applications seem to go on forever. The author once waited all night for the output from such a program, only to discover that the answers would not be forthcoming for about 10^6 centuries. A "slight increase" in one of the parameters in a backtrack routine might slow down the total running time by a factor of a thousand; conversely, a "minor improvement" to the algorithm might cause a hundredfold improvement in speed; and a sophisticated "major improvement" might actually make the program ten times slower. These great discrepancies in execution time are characteristic of backtrack programs, yet it is usually not obvious what will happen until the algorithm has been coded and run on a machine.

Faced with these uncertainties, the author worked out a simple estimation procedure in 1962, designed to predict backtrack behavior in any given situation. This procedure was mentioned briefly in a survey article a few years later [8]; and during subsequent years, extensive computer experimentation has confirmed its utility. Several improvements on the original idea have also been developed during the last decade.
The estimation procedure we shall discuss is completely unsophisticated, and it probably has been used without fanfare by many people. Yet the idea works surprisingly well in practice, and some of its properties are not immediately obvious, hence the present paper might prove to be useful.

Section 1 presents a simple example problem, and Section 2 formulates backtracking in general, developing a convenient notational framework; this treatment is essentially self-contained, assuming no prior knowledge of the backtrack literature. Section 3 presents the estimation procedure in its simplest form, together with some theorems that describe the virtues of the method. Section 4 takes the opposite approach, by pointing out a number of flaws and things that can go wrong. Refinements of the original method, intended to counteract these difficulties, are presented in Section 5. Some computational experiments are recorded in Section 6, and Section 7 summarizes the practical experience obtained with the method to date.

1. Introduction to backtrack.

It is convenient to introduce the ideas of this paper by looking first at a small example. The problem we shall study is actually a rather frivolous puzzle, so it doesn't display the economic benefits of backtracking; but it does have the virtue of simplicity, since the complete solution can be displayed in a small diagram. Furthermore the puzzle itself seems to have been tantalizing people for at least sixty years (see [19]); it became extremely popular in the U.S.A. about 1967 under the name Instant Insanity.
Figure 1 shows four cubes whose faces are colored red (R), white (W), green (G), or blue (B); colors on the hidden faces are shown at the sides. The problem is to arrange the cubes in such a way that each of the four colors appears exactly once on the four back faces, once on the top, once in the front, and once on the bottom. Thus Figure 1 is not a solution, since there is no blue on the top nor white on the bottom; but a solution is obtained by rotating each cube 90°.

![Cubes Diagram](image)

Figure 1. Instant Insanity Cubes.

We can assume that these four cubes retain their relative left-to-right order in all solutions. Each of the six faces of a given cube can be on the bottom, and there are four essentially different positions having a given bottom face, so each cube can be placed in $2^4 = 16$ different ways; therefore the "brute force" approach to this problem is to try all of the $24^4 = 331776$ possible configurations. If done by hand, the brute force procedure might indeed lead to insanity, although not instantly.

It is not difficult to improve on the brute force approach by considering the effects of symmetry. Any solution clearly leads to seven other solutions, by simultaneously rotating the cubes about a horizontal
axis parallel to the dotted line in Figure 1, and/or by rotating each
cube 180° about a vertical axis. Therefore we can assume without loss of
generality that Cube 1 is in one of three positions, instead of considering
all 24 possibilities. Furthermore it turns out that Cube 2 has only 16
essentially different placements, since it has two opposite red faces;
see Figure 2, which shows that two of its 24 positionings have the same
colors on the front, top, back, and bottom faces. The same observation
applies to Cube 3. Hence the total number of essentially different ways
to position the four cubes is only 3·16·16·24 = 13432; this is
substantially less than 331776, but it might still induce insanity.

Figure 2. Rotation by 180° in this case leaves the relevant
colors unchanged.

A natural way to reduce the number of cases still further now
suggests itself. Given one of the three placements for Cube 1, some
of the 16 positionings of Cube 2 are obviously foolhardy since they cannot
possibly lead to a solution. In Figure 1, for example, Cubes 1 and 2
both contain red on their bottom face, while a complete solution has no repeated colors on the bottom, nor on the front, top, or back; since this placement of Cube 2 is incompatible with the given position of Cube 1, we need not consider any of the $16 \cdot 24 = 384$ ways to place Cubes 3 and 4. Similarly, when Cubes 1 and 2 have been given a compatible placement, it makes sense to place Cube 3 so as to avoid duplicate colors on the relevant sides, before we even begin to consider Cube 4.

Such a sequential placement can be represented by a tree structure, as shown in Figure 3. The three nodes just below the root (top) of this tree stand for the three essentially different ways to place Cube 1. Below each such node are further nodes representing the possible placements of Cube 2 in a compatible position; and below the latter are the compatible placements of Cube 3 (if any), etc. Note that there is only one solution to the puzzle, represented by the single node on Level 4.

Figure 3. The Instant Insanity Tree.
This procedure cuts the number of cases examined to
\[3 + 3 \cdot 16 + 10 \cdot 16 + 13 \cdot 24 + 1 = 524 \]; for example, each of the 10 nodes
on Level 2 of the tree involves the consideration of 16 ways to place
Cube 3. It is reasonable to assume that a sane person can safely
remain *compos mentis* while examining 524 cases; thus, we may conclude
that systematic enumeration can cut the work by several orders of
magnitude even in simple problems like this one. (Actually a further
refinement, which may be called the technique of "homomorphism and
lifting", can be applied to the Instant Insanity problem, reducing the
total number of cases examined to about 50, as shown originally in [1];
see also [7] for further discussion and for a half-dozen recent
references. But such techniques are beyond the scope of the present
paper.)

The tree of Figure 3 can be explored in a systematic manner,
requiring comparatively little memory of what has gone before. The
idea is to start at the root and continually to move downward when
possible, taking the leftmost branch whenever a decision is necessary;
but if it is impossible to continue downward, "backtrack" by considering
the next alternative on the previous level. This is a special case of
the classical Trémaux procedure for exploring a maze [17, p. 47-50;
13, Chapter 3].
2. The general backtrack procedure.

Now that we understand the Instant Insanity example, let us consider backtracking in general. The problem we wish to solve can be expressed abstractly as the task of finding all sequences

\((x_1, x_2, \ldots, x_n)\) which satisfy some property \(P_n(x_1, x_2, \ldots, x_n)\). For example, in the case of Instant Insanity, \(n = 4\); the symbol \(x_k\) denotes a placement of the \(k\)-th cube; and \(P_r(x_1, x_2, x_3, x_4)\) is the property that the four cubes exhibit all four colors on all four relevant sides.

The general backtrack approach consists of inventing intermediate properties \(P_k(x_1, \ldots, x_k)\) such that

\[P_{k+1}(x_1, \ldots, x_k, x_{k+1}) \text{ implies } P_k(x_1, \ldots, x_k), \quad \text{for } 0 \leq k < n. \tag{1} \]

In other words, if \((x_1, \ldots, x_k)\) doesn't satisfy property \(P_k\), then no extended sequence \((x_1, \ldots, x_k, x_{k+1})\) can possibly satisfy \(P_{k+1}\); hence by induction, no extended sequence \((x_1, \ldots, x_k, \ldots, x_n)\) can solve the original condition \(P_n\). The backtrack procedure systematically enumerates all solutions \((x_1, \ldots, x_n)\) to the original problem by considering all partial solutions \((x_1, \ldots, x_k)\) that satisfy \(P_k\), using the following general algorithm:

- **Step B1.** [Initialize.] Set \(k\) to 0.

- **Step B2.** [Compute the successors.] (Now \(P_k(x_1, \ldots, x_k)\) holds, and \(0 \leq k < n\).) Set \(S_k\) to the set of all \(x_{k+1}\) such that \(P_{k+1}(x_1, \ldots, x_k, x_{k+1})\) is true.

- **Step B3.** [Have all successors been tried?] If \(S_k\) is empty, go to Step B6.

- **Step B4.** [Advance.] Choose any element of \(S_k\), call it \(x_{k+1}\), and delete it from \(S_k\). Increase \(k\) by 1.
Step B5. [Solution found?] (Now $P_k(x_1, \ldots, x_k)$ holds, and $0 < k \leq n$.) If $k < n$, return to Step B2. Otherwise output the solution (x_1, \ldots, x_n) and go on to Step B6.

Step B6. [Backtrack.] (All extensions of (x_1, \ldots, x_k) have now been explored.) Decrease k by 1. If $k \geq 0$, return to Step B3; otherwise the algorithm terminates.

Condition (1) doesn't uniquely define the intermediate properties P_k, so we often have considerable latitude when we choose them. For example, we could simply let P_k be true for all (x_1, \ldots, x_k), when $k < n$; this is the weakest possible property satisfying (1), and it corresponds to the brute force approach, where some 24^k possibilities would be examined in the cube problem. On the other hand the strongest property is obtained when $P_k(x_1, \ldots, x_k)$ is true if and only if there exist x_{k+1}, \ldots, x_n satisfying $P_n(x_1, \ldots, x_{k+1}, \ldots, x_n)$. In our example this strongest property would reduce the search to the examination of a trivial twig of a tree, but the decisions at each node would require considerable calculation. In general, stronger properties limit the search but require more computation, so we want to find a suitable trade-off. The solution adopted in our example (namely to use symmetry considerations when placing Cubes 1, 2, and 3, and to let $P_k(x_1, \ldots, x_k)$ mean that no colors are duplicated on the four relevant sides) is fairly obvious, but in other problems the choice of P_k is not always so self-evident.
3. A simple estimate of the running time.

For each \((x_1, \ldots, x_k) \) satisfying \(P_k \) with \(0 < k < n \), the algorithm of Section 2 will execute Steps B2, B4, B5, and B6 once, and Step B3 twice. (To see this, note that it is true for Steps B2, B5, and B6, and apply Kirchhoff's law as in [12].) Let us call the associated running time the cost \((x_1, \ldots, x_k) \). When \(k = n \), the corresponding cost amounts to one execution of Steps B3, B4, B5, and B6. If we also let \(c() \) be the cost for \(k = 0 \) (i.e., one execution of Steps B1, B2, B3, and B6), the total running time of the algorithm comes to exactly

\[
\sum_{k \geq 0} \sum_{P_k(x_1, \ldots, x_k)} c(x_1, \ldots, x_k).
\]

(2)

This formula essentially distributes the total cost among the various nodes of the tree. Since the time to execute Step 2 can vary from node to node, and since the time to execute Step 5 depends on whether or not \(k = n \), the running time is not simply proportional to the size of the tree except in simple cases.

Let \(T \) be the tree of all possibilities explored by the backtrack method; i.e., let

\[
T = \{ (x_1, \ldots, x_k) \mid k \geq 0 \text{ and } P_k(x_1, \ldots, x_k) \text{ holds} \}.
\]

(3)

Then we can rewrite (2) as

\[
\text{cost}(T) = \sum_{t \in T} c(t).
\]

(4)

Our goal is to find some way of estimating \(\text{cost}(T) \), without knowing a great deal about the properties \(P_k \), since the example of Section 1 indicates that these properties might be very complex.
A natural solution to this estimation problem is to try a Monte Carlo approach, based on a random exploration of the tree; for each partial solution \((x_1, \ldots, x_k)\) for \(0 \leq k < n\), we can choose \(x_{k+1}\) at random from among the set \(S_k\) of all continuations, as in the following algorithm. (A related procedure, but which is intrinsically different because it is oriented to different kinds of estimates, has been published by Hammersley and Morton [10], and it has been the subject of numerous papers in the literature of mathematical physics; see [5].)

Step E1. [Initialize.] Set \(k = 0\), \(D = 1\), and \(C = c()\).

(Here \(C\) will be an estimate of \((2)\), and \(D\) is an auxiliary variable used in the calculation of \(C\), namely the product of all "degrees" encountered in the tree. An arrow "\(--\)" denotes the assignment operation equivalent to Algol's "\(=\)"; and \(c()\) denotes the cost at the root of the tree, as in \((2)\) when \(k = 0\).)

Step E2. [Compute the successors.] Set \(S_k\) to the set of all \(x_{k+1}\) such that \(P_{k+1}(x_1, \ldots, x_k, x_{k+1})\) is true, and let \(d_k\) be the number of elements of \(S_k\). (If \(k = n\), then \(S_k\) is empty and \(d_k = 0\).)

Step E3. [Terminal position?] If \(d_k = 0\), the algorithm terminates, with \(C\) an estimate of \(\text{cost}(T)\).

Step E4. [Advance.] Choose an element \(x_{k+1} \in S_k\) at random, each element being equally likely. (Thus, each choice occurs with probability \(1/d_k\).) Set \(D = d_k D\), then set \(C = C + c(x_1, \ldots, x_{k+1}) D\). Increase \(k\) by 1 and return to Step E2.
This algorithm makes a random walk in the tree, without any backtracking, and computes the estimate

\[C = c() + d_0 c(x_1) + d_0 d_1 c(x_1, x_2) + d_0 d_1 d_2 c(x_1, x_2, x_3) + \ldots , \tag{5} \]

where \(d_k \) is a function of \((x_1, \ldots, x_k) \), namely the number of \(x_{k+1} \) satisfying \(p_{k+1}(x_1, \ldots, x_k, x_{k+1}) \). We may define \(d = 0 \) for all large \(k \), thereby regarding (5) as an infinite series although only finitely many terms are nonzero.

The validity of estimate (5) can be proved as follows.

Theorem 1. The expected value of \(C \), as computed by the above algorithm, is \(\text{cost}(T) \), as defined in (4).

Proof. We shall consider two proofs, at least one of which should be convincing. First we can observe that for every \(t = (x_1, \ldots, x_k) \in T \), the term

\[d_0 d_1 \ldots d_{k-1} c(x_1, \ldots, x_k) \tag{6} \]

occurs in (5) with probability \(1/d_0 d_1 \ldots d_{k-1} \), since this is the chance that the algorithm will consider the partial solution \((x_1, \ldots, x_k) \). Hence the sum of all terms (6) has the expected value (4).

The second proof is based on a recursive definition of \(\text{cost}(T) \), namely

\[\text{cost}(T) = c() + \text{cost}(T_1) + \ldots + \text{cost}(T_d) \tag{7} \]

where \(d = d_0 \) is the degree of the root of the tree and \(T_1, \ldots, T_d \) are the respective subtrees of the root, namely

\[T_j = \{ t = (x_1, \ldots, x_k) \in T \mid x_1 \text{ is the } j\text{-th element of } S_0 \} . \]
We also have

\[C = c() + d_0 C' \]

where \(C' = c(x_1) + d_1 c(x_1, x_2) + d_1 d_2 c(x_1, x_2, x_3) + \ldots \) has the form of (5) and is an estimate of one of the \(T_j \). Since each of the \(d = d_0 \) values of \(j \) is equally likely, the expected value of \(C \) is

\[E(C) = c() + d_0 E(C') = c() + d_0 (E(C_1) + \ldots + E(C_d))/d \]

where \(E(C_j) = \text{cost}(T_j) \) by induction on the size of the tree. Hence \(E(C) = \text{cost}(T) \).

This theorem demonstrates that \(C \) is indeed an appropriate statistic to compute, based on one random walk down the tree. As an example of the theorem, let us consider Figure 5 in Section 1, using the costs shown there (since they represent the time to perform Step B2, which dominates the calculation). We have \(\text{cost}(T) = 524 \), and if the estimation algorithm is applied to the tree it is not difficult to determine that the result will be \(C = 243 \), or 291, or 435, or 531, or 513, or 819, or 1107 with respective probabilities 1/6, 1/6, 1/6, 1/6, 1/12, 1/6, and 1/12. Thus, a fairly reasonable approximation will nearly always be obtained; and we know that the mean of repeated estimates will approach 524, by the law of large numbers.

Since the proof of Theorem 1 applies to all functions \(c(t) \) defined over trees, we can apply it to other functions in order to obtain further information:

Corollary 1. The expected value of \(D \) at the end of the above algorithm is the number of terminal nodes in the tree.
Proof. Let \(c(t) = 1 \) if \(t \) is terminal, and \(c(t) = 0 \) otherwise; then \(C = D \) at the end of the algorithm, hence \(E(D) = E(C) = \sum c(t) \) is the number of terminal nodes by Theorem 1.

Corollary 2. The expected value of the product \(d_0 d_1 \cdots d_{k-1} \) for fixed \(k \), when the \(d_j \)'s are computed by the above algorithm, is the number of nodes on level \(k \) of the tree.

Proof. Let \(c(t) = 1 \) for all nodes on level \(k \), and \(c(t) = 0 \) otherwise; then \(C = d_0 d_1 \cdots d_{k-1} \) at the end of the algorithm. (Note that \(d_0 d_1 \cdots d_{k-1} \) is zero if the algorithm terminates before reaching level \(k \).)

Corollary 2 gives some insight into the "meaning" of the individual terms of our estimate (5); the term \(d_0 d_1 \cdots d_{k-1} \cdot c(x_1, \ldots, x_k) \) represents the number of nodes on level \(k \) times the cost associated with a typical one of these nodes.

4. Some cautionary remarks.

The algorithm of Section 3 seems too simple to work, and there are many intuitive grounds for skepticism, since we are trying to predict the characteristics of an entire tree based on the knowledge of only one branch! The combinatorial realities of most backtrack applications make it clear that different partial solutions can have drastically different behavior patterns.
Just knowing that an experiment yields the right expected value is not much consolation in practice. For example, consider an experiment which produces a result of 1 with probability 0.999, while the result is 1,000,001 with probability 0.001; the expected value is 1001, but a limited sampling would almost always convince us that the true answer is 1.

There is reason to suspect that the estimation procedure of Section 3 will suffer from precisely this defect: It has the potential to produce huge values, but with very low probability, so that the expected value might be quite different from typical estimates.

Let \(N_k \) be the number of nodes on level \(k \) of the tree (cf. Corollary 2). In most backtrack applications, the vast majority of all nodes in the search tree are concentrated at only a few levels, so that in fact the logarithm of \(N_k \) (the number of digits in \(N_k \)) has a bell-shaped curve when plotted as a function of \(k \):

\[
\log N_k \quad k
\]

(8)

On the other hand our estimate (5) is composed of a series of estimates \(N_k' = d_0 d_1 \ldots d_{k-1} \) which are never bell-shaped; since the \(d \)'s are integers, the \(N_k' \) grow exponentially with \(k \), until finally dropping to zero.
Although these two graphs have completely different characteristics, we are getting estimates which in the long run produce (8) as an average of curves like (9).

Consider also Figure 3, where we have somewhat arbitrarily assigned a cost of 1 to the lone solution node on Level 4. Perhaps our output routine is so slow that the solution node should really have a cost of 10^6; this now becomes the dominant portion of the total cost, but it will be considered only $1/12$ of the time, and then it will be multiplied by 12.

There is clearly a danger that our estimates will almost always be low, except for rare occasions when they will be much too high.

5. **Refinements.**

Our estimation procedure can be modified in order to circumvent the difficulties sketched in Section 4. One idea is to introduce systematic bias into Step B4, so that the choice of x_{k+1} isn't completely random; we can try to investigate the more interesting or more difficult parts of the tree.

The algorithm can be generalized by using the following selection procedure in place of Step B4.

\[\log N'_k \]
Step E_k'. [Generalized advance.] Determine, in any arbitrary fashion, a sequence of \(d_k \) positive numbers \(p_k(1), p_k(2), \ldots, p_k(d_k) \) whose sum is unity. Then choose a random integer \(J_k \) in the range \(1 \leq J_k \leq d_k \) in such a way that \(J_k = j \) with probability \(p_k(j) \).

Let \(x_{k+1} \) be the \(J_k \)-th element of \(S_k \), and set \(D = D/p_k(J_k) \), \(C = C + c(x_1, \ldots, x_{k+1})D \). Increase \(k \) by 1 and return to Step E_k.

(Step E_k is the special case \(p_k(j) = 1/d_k \) for all \(j \).) Again we can prove that the expected value of \(C \) will be \(\text{cost}(T) \), no matter how strangely the probabilities \(p_k(j) \) are biased in Step E_k'. In fact, both proofs of Theorem 1 are readily extended to yield this result.

It is interesting to note that the calculation of \(D \) involves a posteriori probabilities, so that it grows only slightly after a highly probable choice has been made. The technique embodied in Step E_k' is generally known as importance sampling [9, pp. 57-59].

Some choices of the \(p_k(j) \) are much better than others, of course, and the most interesting fact is that one of the possible choices is actually perfect:

Theorem 2. If the probabilities \(p_k(j) \) in Step E_k' are chosen appropriately, the estimate \(C \) will always be exactly equal to \(\text{cost}(T) \).

Proof. For \(1 \leq j \leq d_k \), let \(p_k(j) \) be

\[
p_k^*(j) = \frac{\text{cost}(T(x_1, \ldots, x_k, x_{k+1}(j)))}{\text{cost}(T(x_1, \ldots, x_k)) - c(x_1, \ldots, x_k)}
\]

where \(T(x_1, \ldots, x_k) \) is the set of all \(t \in T \) having specified values \((x_1, \ldots, x_k) \) for the first \(k \) components, and where \(x_{k+1}(j) \) is the...
j-th element of S_k. Now we can prove that the relation

$$C + (\text{cost}(T(x_1, \ldots, x_k)) - c(x_1, \ldots, x_k))d = \text{cost}(T)$$

is invariant, in the sense that it always holds at the beginning and end of Step $E1'$. Since $\text{cost}(T(x_1, \ldots, x_k)) = c(x_1, \ldots, x_k)$ when $d_k = 0$, the algorithm terminates with $C = \text{cost}(T)$.

Alternatively, using the notation in the second proof of Theorem 1, we have

$$C = c() + \frac{\text{cost}(T) - c()}{\text{cost}(T_j)} C_j$$

for some j, and $C_j = \text{cost}(T_j)$ by induction, hence $C = \text{cost}(T)$.

Of course we generally need to know the exact values of these ideal probabilities $p_k^*(j)$, so we can't achieve zero variance in practice. But the form of the $p_k^*(j)$ shows what kind of bias is likely to reduce the variance; any information or hunches that we have about relative subtree costs will be helpful. (In the case of Instant Insanity there is no simple a priori reason to prefer one cube position over another, so this idea doesn't apply; perhaps Instant Insanity is a mind-boggling puzzle for precisely this reason, since intuition is usually much more valuable.)

Theorem 2 can be extended considerably, in fact we can derive a general formula for the variance. The generating function for C satisfies

$$C(z) = z^C() \sum_{1 \leq j < d} p_j C_j(z^{1/p_j})$$

and from this equation it follows by differentiation that
\[\text{var}(C) = C''(1) + C'(1) - C'(1)^2 \]
\[= \sum_{1 \leq j \leq d} \text{var}(C_j)/p_j + \sum_{1 < j \leq d} p_i p_j \left(\frac{\text{cost}(T_i)}{p_i} - \frac{\text{cost}(T_j)}{p_j} \right)^2. \tag{12} \]

Iterating this recurrence shows that the variance can be expressed as

\[\text{var}(C) = \sum_{t \in T} \frac{1}{P(t)} \sum_{1 \leq i < j \leq d(t)} p^t(i)p^t(j) \left(\frac{\text{cost}(T(t,i))}{p^t(i)} - \frac{\text{cost}(T(t,j))}{p^t(j)} \right)^2, \tag{13} \]

where \(P(t) \) is the probability that node \(t \) is encountered, \(d(t) \) is the degree of node \(t \), \(p^t(j) \) is the probability that we go from \(t \) to its \(j \)-th successor, and \(T(t,j) \) is the subtree rooted at that successor.

From this explicit formula we can get a bound on the variance, if the probabilities are reasonably good approximations to the relative subtree costs:

Theorem 3. If the probabilities \(p_k(j) \) in Step E4' satisfy

\[\frac{\text{cost}(T(x_1, \ldots, x_k, x_{k+1}(j)))}{p_k(j)} \leq \alpha \frac{\text{cost}(T(x_1, \ldots, x_k, x_{k+1}(i)))}{p_k(i)} \]

for all \(i, j \) and for some fixed constant \(\alpha \geq 1 \), the variance of \(C \) is at most

\[\left(\left(\frac{\alpha^2 + 2\alpha + 1}{4\alpha} \right)^n - 1 \right) \text{cost}(T)^2. \tag{14} \]

Proof. Let \(q_j = \frac{\text{cost}(T_j)}{p_j} \), and assume without loss of generality that \(q_1 \leq q_2 \leq \ldots \leq q_d \leq \alpha q_1 \). From elementary calculus we have, under the constraints \(\text{cost}(T_j) \geq 0 \) and \(\sum p_j = 1 \),
\[\sum_{1 \leq j \leq d} \frac{\text{cost}(T_j)^2}{p_j} \leq \beta^2 + \frac{2\alpha + 1}{4\alpha} \left(\sum_{1 \leq j \leq d} \frac{\text{cost}(T_j)^2}{p_j} \right)^2, \]

equality occurring when \(d = 2 \) and \(p_2 = \alpha q_1 \). Furthermore

\[\sum_{1 \leq i < j \leq d} p_i p_j (q_i - q_j)^2 = \sum_{1 \leq j \leq d} \frac{\text{cost}(T_j)^2}{p_j} - \left(\sum_{1 \leq j \leq d} \text{cost}(T_j) \right)^2. \]

Letting \(\beta = (\alpha^2 + 2\alpha + 1)/4\alpha \), we can prove (14) by induction since (12) now yields

\[\text{var}(C) \leq \sum_{1 \leq j \leq d} \text{var}(C_j)/p_j + (\beta - 1)\text{cost}(T)^2 \]

\[\leq \sum_{1 \leq j \leq d} (\beta^{n-1} - 1)\text{cost}(T_j)^2/p_j + (\beta - 1)\text{cost}(T)^2 \]

\[\leq (\beta^n - \beta)\text{cost}(T)^2 + (\beta - 1)\text{cost}(T)^2. \]

Theorem 3 implies Theorem 2 when \(\alpha = 1 \); for \(\alpha < 1 \) the bound in (14) isn't especially comforting, but it does indicate that a few runs of the algorithm will probably predict \(\text{cost}(T) \) with the right order of magnitude.

Another way to improve the estimates is to transform the tree into another one having the same total cost, and to apply the Monte Carlo procedure to the transformed tree. For example, the tree fragment
with costs C_1, \ldots, C_5 and subtrees α, \ldots, η can be replaced by

by identifying five nodes. Intermediate condensations such as

are also possible.

One application of this idea, if the estimates are being made by a computer program, is to eliminate all nodes on levels 1, 3, 5, 7, ... of the original tree, making the nodes formerly on levels $2k$ and $2k+1$ into a new level k. For example, Figure 4 shows the tree that results when this idea is applied to Figure 3. The estimates in this collapsed tree are $C = 211$, or 451, or 461, or 691, or 931, with respective probabilities .2, .3, .1, .3, .1, so we have a slightly better distribution than before.
Figure 4. Collapsed Instant Insanity Tree.

Another use of this idea is to eliminate all terminal nodes having nonterminal "brothers". Then we can ensure that the algorithm never moves directly to a configuration having \(d_x = 0 \) unless all possible moves are to such a terminal situation; in other words, "stupid" moves can be avoided.

Still another improvement to the general estimation procedure can be achieved by "stratified sampling" [9, p. ...]. We can reduce the variance of a series of estimates by insisting for example that each experiment chooses a different value of \(x_1 \).

6. Computational experience.

The method of Section 3 has been tested on dozens of applications; and despite the dire predictions made in Section 4 it has consistently performed amazingly well, even on problems which were intended to serve as bad examples. In virtually every case the right order of magnitude for the tree size was found after ten trials. Three or four of the ten trials would typically be gross underestimates, but they were generally counterbalanced by overestimates, in the right proportion.
We shall describe only the largest experiment here, since the method is of most critical importance on a large tree. Figure 5 illustrates the problem that was considered, the enumeration of uncrossed knight's tours; these are nonintersecting paths of a knight on the chessboard, where the object is to find the largest possible tour of this kind. T. R. Dawson first proposed the problem in 1930 [2], and he gave the two 35-move solutions of Figure 5, stating that "il est probablement impossible de dénombrer la quantité de ces tours ... vraisemblablement, on ne peut effectuer plus de 35 coups." Later [3, p. 20; 4, p. 35] he stated without proof that 35 is maximum.

![Figure 5. Uncrossed knight's tours.](image)

The backtrack method provides a way to test his assertion; we may begin the tour in any of 10 essentially different squares, then continue by making knight's moves that do not cross previous ones, until reaching an impasse. But backtrack trees that extend across 30 levels or more can be extremely large; even if we assume an average of only 3 consistent choices at every stage, out of at most 7 possible knight moves to new
squares, we are faced with a tree of about $3^{30} = 205,891,152,094,649$ nodes, and we'd never finish. Actually $3^{20} = 3,486,784,401$ is nearer the upper limit of feasibility, since it isn't at all simple to test whether or not one move crosses another. Therefore it is not clear \textit{a priori} that an exhaustive backtrack search is economically feasible.

The simple procedure of Section 3 was therefore used to estimate the number of nodes in the tree, using $c(t) = 1$ for all t. Here are the estimated tree sizes found in the first ten independent experiments:

\begin{align*}
1571717091 & \quad 209749511 \\
315291281 & \quad 58736818301 \\
8231 & \quad 311 \\
1793651 & \quad 259271 \\
59761491 & \quad 6071489081
\end{align*}

The mean value is 6,696,688,822. The next sequence of ten experiments gave the estimates

\begin{align*}
567911 & \quad 238413491 \\
111 & \quad 6697691 \\
569585831 & \quad 5848873631 \\
111 & \quad 161 \\
411 & \quad 140296511
\end{align*}

for an average of only 680,443,586, although the four extremely low estimates make this value look highly suspicious. (We could have avoided the "stupid moves" which lead to such low estimates, by using the technique explained at the end of Section 5, but the original method was being followed faithfully here.) After 100 experiments had been conducted, the observed mean value of the estimates was 1,653,634,783.8, with an observed standard deviation of about 6.7×10^9.

23
The first few experiments were done by hand, but then a computer program was written and it performed 1000 experiments in about 30 seconds. The results of these experiments were extremely encouraging, because they were able to predict the size of the tree quite accurately as well as its "shape" (i.e., the number N_k of nodes per level), even though the considerations of Section 4 seem to imply that N_k cannot be estimated well. Table 1 shows how these estimates compare to the exact values which were calculated later; there is surprisingly good agreement, although the experiment looked at less than 0.00001 of the nodes of the tree. Perhaps this was unusually good luck.

This knight's tour problem reflects the typical growth of backtrack trees; the same problem on a 7×7 board generates a tree with $10,874,674$ nodes and on a 6×6 board there are only $88,407$. On a 9×9 board we need another method; the longest known tour has 47 moves [18]. It can be shown that the longest reentrant tour on an $n \times n$ board has at least $n^2 - O(n)$ moves, see [11].

7. Use of the method in practice.

There are two principal ways to apply this estimation method, namely by hand and by machine.

Hand calculation is especially recommended as the first step when embarking on any backtrack computations. For one thing, the algorithm is great fun to apply, especially when decimal dice [20] are used to guide the decisions. The reader is urged to try constructing a few random uncrossed knight's tours, recording the statistics d_k as the
Table 1. Estimates after 1000 random walks.

<table>
<thead>
<tr>
<th>k</th>
<th>Estimate, N'_k</th>
<th>True value, N_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>10.0</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>42.8</td>
<td>42</td>
</tr>
<tr>
<td>3</td>
<td>255.0</td>
<td>251</td>
</tr>
<tr>
<td>4</td>
<td>991.4</td>
<td>968</td>
</tr>
<tr>
<td>5</td>
<td>4352.2</td>
<td>4215</td>
</tr>
<tr>
<td>6</td>
<td>16014.4</td>
<td>15646</td>
</tr>
<tr>
<td>7</td>
<td>59948.8</td>
<td>56435</td>
</tr>
<tr>
<td>8</td>
<td>190528.7</td>
<td>182520</td>
</tr>
<tr>
<td>9</td>
<td>580450.8</td>
<td>574555</td>
</tr>
<tr>
<td>10</td>
<td>1652568.7</td>
<td>1606422</td>
</tr>
<tr>
<td>11</td>
<td>4424403.9</td>
<td>4376153</td>
</tr>
<tr>
<td>12</td>
<td>9897781.4</td>
<td>10396490</td>
</tr>
<tr>
<td>13</td>
<td>22047261.5</td>
<td>23978592</td>
</tr>
<tr>
<td>14</td>
<td>44392865.5</td>
<td>47667686</td>
</tr>
<tr>
<td>15</td>
<td>92164977.5</td>
<td>91377773</td>
</tr>
<tr>
<td>16</td>
<td>145815116.2</td>
<td>150084206</td>
</tr>
<tr>
<td>17</td>
<td>238608697.6</td>
<td>235901901</td>
</tr>
<tr>
<td>18</td>
<td>253061952.9</td>
<td>315123658</td>
</tr>
<tr>
<td>19</td>
<td>355460520.9</td>
<td>299772215</td>
</tr>
<tr>
<td>20</td>
<td>548542887.6</td>
<td>427209856</td>
</tr>
<tr>
<td>21</td>
<td>328849873.9</td>
<td>429189112</td>
</tr>
<tr>
<td>22</td>
<td>310382520.1</td>
<td>358868304</td>
</tr>
<tr>
<td>23</td>
<td>429508177.9</td>
<td>278331518</td>
</tr>
<tr>
<td>24</td>
<td>318416025.6</td>
<td>177916192</td>
</tr>
<tr>
<td>25</td>
<td>38610432.0</td>
<td>103984519</td>
</tr>
<tr>
<td>26</td>
<td>75769344.0</td>
<td>49502574</td>
</tr>
<tr>
<td>27</td>
<td>74317824.0</td>
<td>21049968</td>
</tr>
<tr>
<td>28</td>
<td>0.0</td>
<td>7158880</td>
</tr>
<tr>
<td>29</td>
<td>0.0</td>
<td>2129212</td>
</tr>
<tr>
<td>30</td>
<td>0.0</td>
<td>522186</td>
</tr>
<tr>
<td>31</td>
<td>0.0</td>
<td>109254</td>
</tr>
<tr>
<td>32</td>
<td>0.0</td>
<td>18862</td>
</tr>
<tr>
<td>33</td>
<td>0.0</td>
<td>2710</td>
</tr>
<tr>
<td>34</td>
<td>0.0</td>
<td>546</td>
</tr>
<tr>
<td>35</td>
<td>0.0</td>
<td>50</td>
</tr>
<tr>
<td>36</td>
<td>0.0</td>
<td>8</td>
</tr>
</tbody>
</table>

Total 3123375511.1 3137317290
tours materialize; it is a captivating game that can lead to hours of enjoyment until the telephone rings.

Furthermore the game is worthwhile, because it gives insight into the behavior of the algorithm, and this insight is of great use later when the algorithm is eventually programmed; good ideas about data structures, and about various improvements in the backtracking strategy, usually suggest themselves. The assignment of nonuniform probabilities as suggested in Section 5 seems to improve the quality of the estimates, and adds interest to the game. Usually about three estimates are enough to give a feeling for the amount of work that will be involved in a full backtrack search.

For large-scale experiments, especially when considering the best procedure in some family of methods involving parameters that must be selected, the estimates can be done rapidly by machine. Experience indicates that most of the refinements suggested in Section 5 are unnecessary; for example, the idea of collapsing the tree into half as many levels does not improve the quality of the estimates sufficiently to justify the greatly increased computation. Only the partial collapsing technique which avoids "stupid moves" is worth the effort, and even this makes the program so much more complex that it should probably be used only when provided as a system subroutine. (A collection of system routines or programming language features, that allow both the estimation algorithm and full backtracking to be driven by the same source language program, is useful.)

Perhaps the most important application of backtracking nowadays is to combinatorial optimization problems, as first suggested by
D. H. Lehmer [15, pp. 168-169]. In this case the method is commonly called a branch-and-bound technique (see [14]). The estimation procedure of Section 3 does not apply directly to branch-and-bound algorithms; however, it is possible to estimate the amount of work needed to test any given bound for optimality. Thus we can get a good idea of the running time even in this case, provided that we can guess a reasonable bound. Again, hand calculations using a Monte Carlo approach are recommended as a first step in the approach to all branch-and-bound procedures, since the random experiments provide both insight and enjoyment.

Acknowledgments.

I wish to thank Robert W. Floyd and George W. Soules for several stimulating conversations relating to this research. The knight's tour calculations were performed as "background computation" during a period of several weeks, on the computer at I.A.C.R.D in Princeton, New Jersey.
References

