THE USE OF SENSORY FEEDBACK IN A PROGRAMMABLE ASSEMBLY SYSTEM

BY

Robert Bolles and Richard Paul

SUPPORTED BY

ADVANCED RESEARCH PROJECTS AGENCY

ARPA ORDER NO. 2494
PROJECT CODE NO. 3D30

COMPUTER SC IENCE DEPARTMENT Scnool of Humanities and Sciences STANFORD UNIVERSITY

COMPIJTERSCIENCE DEPARTMENT

REPORT NO. CS-396

THE USE OF SENSORY FEEDBACK IN A PROGRAMMABLE ASSEMBLY SYSTEM
by
Robert Bolles and Richard Paul

Abstract

This article describes an experimental, automated assembly system which uses sensory feedback to control an electro-mechanical arm and TV camera. Visual, tactile, and force feedback are used to improve positional information, guide manipulations, and perform inspections. The system has two phases: a 'planning' phase in which the computer is progranmed to assemble some object, and a 'working' phase in which the computer controls the arm and TV camera in actually performing the assembly. The working phase is designed to be run on a mini-computer.

The syst cm has been used to assemble a water pump, consisting of a base, gasket, top, and six screws. This example is used to explain how the sensory datais incorporated into the control system. A movie showing the pump assembly is available from the Stanford Artificial Intelligence Laboratory.

This rescarch was supported in part by the Advanced Research Projects Agency of the Office of Defense under Contract No. DAHC 15-73-C-0435,

The views and conclusions in this document are those of the authors and should not be int orpretedasnecossarilyrepresent ing the official policies, either expressed or implied, of the AdvancedResearchProjectsAgency or the U.S. Government.

Reproduced in the USA. Available from the National Technical Information Service, Springfield, Virginia 22151.

TABLE OF CONTENTS

Section Page
INTRODUCTION 1
WORK STATION AND TASK DESCRIPTIONS 2
CONTROL OF THE ARM 8
FORCE F FCIIISACK (WITH AN EXAMPLE ARIM PROGRAM) 11
VISUAI FFCDBACK 15
Touch srama 19
Concoluskn 23
BIELOGRAPHY 24

INTRODUCTION

Attis Stinford Artificial Intelligence Projëct we are developing a programmable automation system. Thes.ysticten consists of an electro-mechanical arm and a TV camera intorfacodo a computer. It is a part of a larger research program on perception, manipulat ic lan ad problem solving [McCarthy]. The automation system has two phases; a planning phas during which an operator teaches the computer the task it is to perform, undawoilingphase in which theresult of the planning phase (ie. the plan) is used by the comuter to contiol the arm and TV camera in performing the actual assembly. While performins, theasembly, the computer interacts with the task through visual, tactile, and fot $c e$ fee tbut The planing i s both manual and symbolic. That is, the operator can mandilly tiove thearm to \&fine positions (ie. programming by doing), but the force limits and vision a, defined in progtaminglanguases. The planning is done once per task. The rosult ing plan can be used repeat edly and is designed to be run on a mini-computer. Currently the visualprocessitugis handled by an independent, but cooperating task running on alarge computer [Fetdman].

M c chanicalarms have been used in industry for spot welding, pick-and-place opertions, ctc., but with little or no sensor, feedback. They have also been used in conjinition with T V cameras by research or manizations for manipulating idealized block structures. The systern described herereptenents one of the first successful attempts to incorporatesengy feedback into a systam which is designed to deal with realistic assumbly iaski[Dewar].

This article describes the automated ammbly of a model "T" Ford racing water pump as a demonstration of the system and it concept. The emphasis is on explaining how the various types of sensory feed ack atr accomplished. The assembly of the pump consists if locatime the pump base, mounting. the top with a gasket, bolting the top down with six: :crews, and testing to see that the rotor turns freely.

WORK STATION ANIDIASK DESCRIPTIONS

The workstation consists of a n elcomechanical arm, a TV camera, and a work spact:roni ining tools, dispensers, and parts (ouepicture I), The arm is shown in picture 2. It has an absolute positioning accuracy of approximately one tenth of an inch. Its wothin: arco andspecdare similar to those ota human [Scheinman]. The control of the arm willbodiscussed in thenextsection. The camera's pan, tilt, focus, and lens turret are compular conimolled (seepicture 3). The components of the work space are shown in pichire 4 andlabelled in the related diagram (see picture 5).

Theassemblystepsare listed below. They represent an ordered list of tasks that were accoriplighed and will be referenced in the following discussion as various sensing techniques ame discused.

	Visuallylocat, the pump base
II.	Determine the tinal grasping position by touch
III.	Place thepurip base in its standard position
IV.	Insertthe tivo aligning pins
V.	Put on the casket
VI.	Visually check the position of the gasket
VII.	Put on the top
VIII.	Screw in the first two screws
IX.	T\&e out the aligning pins
\times.	Screw in the last four screws
X	Check the force required to turn the rot or

The table below lists the approximatetimes associated with the different parts of the assembly task.

PLANNING PHASE	60 sec . (execution on PDP-10)
WORKING PHASE	5 min .32 sec . (total)
MANIPILATION	4 min.
LENS CHANGING 8 REFOCUSING 1 min. 30 sec.	
(apartof which can be overlapped with manipulation)	
VIGUAL PRUCESSING	2 sec. (execution on POP-10)
(for both location and gasket checking)	

Since this task (assembling the water pump) was the first of its kind, the tools, dispencer, and proat ammin systemwere developed as needed. This development colonded ovet four or fivernonthe.However, if the tools and dispensers already existed for a task of cipal complexity, programing the manipulations would only take a couple of days: I n addition, minor changes to suchan assembly program could be made quite easily. For example, adding anot her screw to the water pump assembly would only require a few minuteswork.

Pict ure 1.
General View of the Work Station

Picture 2.
Scheinman Arm

Picture 3.
Cohu Camera

Picture 4.
The Work Space
(see picture 5 for labels)

Picture 5.
A LabelledDiagramof the Work Space

CONTROL OF THE ARM

Thearm has ax joints (five rotary and one sliding) and it is possible to place the hand at anypositionand at any orientation. Each joint is powered by an electric motor which is undercomputercontrol. The joint positions are measured by potentiometers and areread into the computer via AID converters. Similarly, the joint velocities are readinto theinachine via AID converters from tachometer generators. A real-t ime program (the servoloop) directly controls the joints' forces and indirectly controls joint velocities and positions. Fery sixtieth of a second the servo reads the position and velocity information and determines the joint output torques from the difference between the observed and planned atur, There is a built-in safety teature which shuts off all drives and applies all brakesi f the computer fails to respond every sixtieth of a second. A more detailed descriptionof the servo loop can be found in reference [Paul].

There isa set of equationsbasedupon the kinematic structure of the arm which relatestheforce, position, and velocity of the hand to the combination of forces, positions and ve locities of the ix joints. These equations, involving sines, cosines, roots, etc. are solvableon the comput er even though they contain some degenerate sub-cases. The solution : outine is currently part of the planning section and is used to compute the forcspeghicdtocompensate for the weisht of the arm and any load it may be carrying. These complatio forcesarealwaysaplied when the arm is in motion. Thus, if all the brikesare tumedofftheatm will not fall; it will remain stationary, but will be free to be moved man ually in any direction.

If we want the hand to exert a force in some direction, the solution routine can be used to compute the required joint forces. When these forces are added to the normal compencatin, fores the arm will excrt the opecified force.

Normally, when we have the arm eval a force, we want the hand to be free to move in the direction of the force. Sometimes it is important to provide some additional freedom so that the arm can comply with exicrnal constraints. For example, if we want the am to slide an object across an essentially horizontal surface, we want to allow the atm to move up and down so that it can coniontin with the surface as it moves across it. This freedom is achieved by servoing all the juints except one joint which provides for a vertigal motion. This one unservoed joint is salled a "free" joint. Free joints can also provide the freedmin to spin about some axi. ha the purnp assembly, for example, after the pump, base lias been locoted and picked us, it has to be placed in a standard position. The stanian position is defined by a rectmar corner formed by a pair of aligning blocks. The firct step in this alignment invos positioning a straight edge of the pump base aton, a anfor of one of the blocks. His: is accomplished by pushing the base into the blocl and simmancously freeing the joint which allows the base to spin so that it can dilsn itself with the surface (see picture 6).

Pict ure 6.
Art-n Pushing the Pump Ease against the Aligning Hocks

To cummar ize, a motion of the arm consists of a trajectory, some compensating forces, anducsiblya force to exert and some joints to free, In addition the termination ofthemotionhas to be specified. It can be defined as a position to be reached, a force limit to beteached, an activation of a touch sensor, etc. Thus, the arm can be told to screwinascrew until acertain torque is reached, or it can be told to insert a shaft until a certain force limit is reached (indicating that the shaft has been seated). The next sectionwillexplain in detail how the arm is programmed to perform this type of feedback.

The poritoning of the pump bascrolative to the arm is not accurate enough to allow the :am io imest a pin in a number 10 corew hole roliably. Therefore, to increase the: reliatility, a piral search is used to lry allncarby locations if the initial insertion allconpl has i ilced. Picture 7 shows the arminserting a pin in a hole. The first insertion witcmpt fal: hecase the pinlands on the top of the base (see frame B in picture 7). The senond attem, ancoerds.

Thit: things an happ n when the arm is, trying to insert a pin: (1) the pin can go in the lom, (2) the pin can miss the hote and land on the lop of the base beside the hole, or (3) the fin can miss the hiole and also misas the lop of the base. To test for these three possibililises the insertion is broken inte lwo paris:
A. Tiy to mest the pin pirt way ... if it fails to go in part way, it mut have landed on top of the Whe beside the hole (case 2), so continue around in the apiral and iry another spot. If it went in pal way, go to step B.
B. Try to seat the pin in the hole (i: . move down a short distance an: 1 upect to the some cerisim. is the pin seats in the hole)
if no besinace is foll, the pin misi have missed the hole and
 resiatanc: is foll, the pin is promenty anted (case 1).

What follows is a hamd langlage prog in to carry out this algorithm. It is included , fons will a ridalled explanation of the vanas instructions in order to show the current loved of proerummine required by the systom.

The porition of the hand to pick up the pin is referred to as P. This position is definally moviry the hand 10 whore the pin is located and typing "HERE P." The program cous; thr"current position of the hand and stores it in P. Similarly the hand (holding the pin) is moved lo the position for insertion and "HERE T" is lyped. Manually moving the arm to defilus preitions and cricmitions is the cesest way of programming some assembly operation: Il is a form of "programming by doirs," or "learning by doing."

```
MOMP
OMEE 0.
MMFT
    SEAROH.D7
11: F,N:T
    STM100-501
    MHa|coicoo-110.6
    SkIrre.3
    A0.1.1
```

;GUTO THE PIN
;(i) TO THE t IOLE
; (O) -i-O THE HOLE
;TRY TO GO DOWN WITHOUT MEETING RESISTANCE

Fi guro 7,
Inserting a Pin inaScrew Hole
A. Pin Poised ncar Hole
E. Pin Sitting on the Base, beside the Hole
C. Pin Poised over the Hole
D.Pin Partially Inserted in the Hole
E. Pin Seated in the Hole

STOP100-50]
CHANE[00-1] 0.6
skil 23
$\therefore 0 \mathrm{Jt} 1$
SPEN !
ClOSE 0.1 OPINI

GhULD MEET SOME RESISTANCE
;AND CHECK THAT IT IS STILL THERE

The finct instruction senerates a trajectory from the current location of the hand to the wosition "p". The hand is then in pocition to grasp the pin. The next instruction, "ClOSE 0.", Gums the fin:-r's to close until they grasp something. Every time the hand shase ming, the mimmum thickness must $h=$ specified, and forms an implicit inspection cheol. If tha , ropp is mede and the check indicates that the opening is less than the minmma prafied, the arm will stop operition and indicate the error.

With the pin now in hand the ar moves to the insertion point at "T". The "SEARCH (1)/" imsh wion sets up counters to condinct a spiral search of .07 inch steps. We now t. nter the in , t tion loge athoell. 1 , amove is made to " T " and the hand is directed to nove down 0.6 inches by the Cl IANGLinstruction. The numbers within square bracket " 00 0-11" indic . le the directionand the calar " 0.6 ", the distance to move. The previous indration "sbly' $[00-150]^{\prime \prime}$ will cause the arm to stop if the force in the downwards ditextion , $\quad 1.50$ ozs. during the "CHANGE". Now the relationship between the per ition " 1 " and the hole is such thatif the pin is inserted in the hole it will meet no tesitance chnme, the 0.6 inch motion. If the pin is beside the hole and lands on the top of the purnp, he force will guickly 1 each 50 ozs. and the hand will stop. If the hand fails to st op on the forcelimit, indicating that the pinis either in the hole or has missed the hole and the top of the base, an "ERROR" state is generated. In this particular case, the error is error 23 . The inst uction following the "CHANGE," "SKIPE 23 " will cause the next instruction to be skippedifthe error occurred, indicating in this case that all is well.

If the pin has landed on the top of the pump, missing the hole, the force limit is remblad and the alm stops without sencrating an orror state. When the SKIPE 23 instruction i: , ahed no kip occurs and the MOJ L1 instruction is executed. AOJ is a mononotic: for "atd and jump." The adding that occurs is the addition of the search step to the current position. The jump is to the label, t.1, and the spiral search continues. The arm will tay in His; loop, cenching around "T" in 0.07 inch steps and trying to insert the pin in the holu mill the pin moves down without meeting resistance.

After the pin has successfully beeninserted partway, the stopping force is set to 6002 and the hand is driven down 0.6 inches. If the pin is in the hole, the hand will stop befor es gincs 0.6 inchas andnoerror will occur. The error test is a "SKIPN 23" instruction which calles, a k ip if error 23 does not occur. If the pin has missed everything, the "A()J" is cerculed andthe spi ral is continued.

The "SAVFH" instruct ion saves the position that the hand was in when it inserted the fin. Thir, incetirnlothitposition, the following instructions could be executed: MOVE T RESTORE H
The "RESTORT I I" modifies the position T by the saved difference H.
The last two instructions double-check the pin placement by making sure that the pin remainod in the hole after the hand released it. More is said about this type of checking in the section on touch sensing.

Digitized TV input represents a great possibility for visually locating, inspecting, and al \mathbf{i} gnins, parts. Unfortunately the systemization of visual techniques has progressed much mor slowly than orisinally expected. This general statement is also true with respect to the visual feedbackused in the pump assembly. The primitives are special purpoce tednicpres which work within a system containing detailed models of the expected cocones anda set of specific heuristics.

The F catn ra cont ins a standardvidicon which produces a 256×333 array of intensities. Cemintensity value is intherance of 0 to 15 . The camera's pan, tilt, focus, filterwh! I mallensturreterocompuler controlled. A major problem with such a system is the calibnationofthe carma with respect to the arm [Sobel] and [Gill].

The software primitives used include:
(1) "beam" which locatesthe first discontinuity (black to white, whit e to black, etc.) on a ray through the picture.
(2) a" b I o b locilization routine" which isolates a blob on a contrustingarekground by surrounding it with a box.
(3) a"ronvex blob characterizer" which determines the center, width, and height of aconvexblois by bouncing around inside it,

One wf the taks achirvedbyvisudfeedback was the location of the pump base in
 somed allocation (using the 25 min Iens, see picture 3) and (B) the specific location (using
 It consisted of the following facts:
(1) the pump bos wothd to a white blob on a black background (the white and black combiration is not necessary --- any contrast in color or intensily would be sufficient)
(2) the: purip base would appear within a certain portion of the toble (ie. on a part of the simulated conveyor belt).

Thrafore, in detomine the senord locition, the TV was aimed and focused so that it concrid the epecified portion of the simulated conveyor belt, the blob location mutibe va applicd within the appropmits part of the picture, and the support hypother, Wis usid to detirmine the powiton well enough to change lens and re-aim with ine SOmatens.

Picture 8.
General View of the Pump Base
on the Simulated Conveyor Belt (using 25mm Lens)

Pict ure 9.
Close-up View of the Pump Base (using 50mm Lens)

The "specific location" model was considerably more detailed. It consisted of a structured ef of features(convexholes), their relative sizes, positions, and contrasts. The followinc, steps were taken to locate the two large holes on top: beams were sent through i he blob at promising positions andangles, the blob characterizer was applied whenever adiscontinuitywas noticed, and the holes were classified according to their relative sizos (basedupon the senerallocation information and the size of the largest holeafter it h ad beenfound). Whentheivaigige holes on top had been located, the position andorieltat ion of the purip base could be dot ermined from the known 3-D maceurem nt of it. Pict ure 10 hows theline of centers and a line indicating the orientationfor the initial groping position ofthe hand. This location information was then sent $t 0$ the arm which used touch to determine the final grasping position. The touch sensing involved is discussed in the next section.

The eecond task accomplished by vionl feedback was the inspection of the pasket's position after it had been put on. Thelocation of the pump base with respect to thestandardposition was known and from this the position of the two large holes could bedetemined. T o check the positionin: of the gasket a picture was taken of the base just befor w the gaketwesput on and another picture was taken just after it was put on. Thesepictill- ci were"differenced." That is, anew picture was created by taking the abroutevalue of the difference between the intensities at all points. in theory only the rasket shouldapear in the differ ence. In practice other lower intensities arise because of shadows, :light image shifting, etc. Picture 11 shows the differenced picture with an overlayeddisplay. Notice that the difference picture could again be interpreted as a whiteblobcontaining convex holes. The same convex blob characterizer was applied at the expert edpositions for the twolargeholes. If the centers were not within a certain tolerancelor they could not be found atall) the machine signalled an operator that the sask was 1 ot on properly. In picture 1 lthe two crosshairs indicate the expected centers for the two large gacket holec. The solid dot indicates the observed center of the lat se st hole. In this case the observed cento differed sufficiently from the predicted centert 0 indicatethat the sasket was not on correctly.

Picturn 10.
The Pump Basewithon Overlay Showing the Computed Orientation

Picture 11.
The Differenced Picture of the Gasket with an Overlay Marking the Expected Hole Centers and the Actual Center of the Large Hole

TOUCH SENSING

The hand has two fingers which can beopened or closed together. There is a microswitchuntheinside of each Of the fingers. These switches are binary in that they regist er only touching or not touching. They do not register force -- ie. how hard sorm thing is treing srasped.

Event hought the onsing mechanismis fairly primitive it can be combined with other techniques to provide some usefulmanipulation and feedback primitives. For example, position polentiometors measure the distencobotween the fingers. This distance can be use din conjunction with a simplemodel to provide feedback on what is being held in the hand Typicalmodelsare"sorncthing Of agiven minimum thickness", "something whose thicknessis within agivenrange", a n d "anything between the fingers". In the pump asserminy, fot example, after the handinserts a pin in a screw hole, it opens and closes again to mako sure that the pin is stillthere(see picture 12). In this case it is using the model of "anythingbetwoenthe fingers" because presumably only the pin could be there, If, forsomerason, the pin foll into thelarge hole instead of seating in a screw hole, this' terlwouldhersufficiont to dotoct the mistake and the machine could notify an operator of theproblem.

Thosignals from the two touch sensors are independent, making it possible to determine : which touch sensor is being activated. This can be used, for example, to constructa"conter-the-hand-over-an-object" procedure as follows:
(1 j clore the hand until one touch sensor (say sensor A) touches something.
(2) conlinue to close the hand, but move the arm so that the finger contoming sensor A remains stationary --- stop when the second louch sonsor louches something.

Pictirn 13 showsthe hand contoring on One side of the pump base. Notice that the hand is initially off-cent cred and cnds up centered. Also notice that if the hand were simply told l o close, it would move the whole pump base so that it ended up centered betweenthefingers Thismay or may not be the desired result. This centering procedure wasoricinallywrition as a combination of rnany primitives in the arm's language, but consiantiss promptedtheimplement at ion of a primitive called CENTER.

Thit cire two other primitives, SAVE and RESTORE, which are related to touch ansing. The idea is that thearm can dynamically determine and save the difference belacen apredicted(orplanned)position and an actual position. For example if the arm is lod t nimestapin in a screw hole, it is given a specific, planned location for the hole. If the hole is stishtly 0 ut of position and the hand successfully finds it by searching (as dercribed in the force sensing section), the armcan SAVE the deviation of the hole from thrpedictedposition. Therefore, when the hand returns to that hole, to take out the pin or insertasclew, it can RESTORE the deviation and avoid a second search.

Picture 12.
Checking for the Presence of the Pin
A. Hand Poised around the Pin
B. Hand after Closing on the Pin
C. After Checking that there is Something between the fingers, the Hand Opens Again

Picture 13.
Cent wing on the Side of the Pump Base
A. Hand Poised over the Pump Base, Not Centered about the Side
C. Hand Now Centered after Moving to theleftso the Right Finger al so Touches the Side
B. Hand Still Not Centered, but the Fingers have Closed so that the Left Finger is Touching the Side

CENIER can be combined with SAVE and RESTORE to refine the positional information of anobject. A model of the object is setup containing a set of grasping points andtheirrelativeposition $(X, Y, 7)$ with respect to some reference point on the object. T o improve thelocation information for that object, the hand is asked to CENTER on one (or a serics) of theserclativegrasping points. For each point the displacement of the object tic. the displacementofthereference point of the object) is SAVED. Each CENTERoperat ion canonly detectthe displacement in one direction. Thus, two orthogonal CENTEF's canbe used to produce a 2-dimensional correction, etc. When a series of CENTER'sareused, a RESTORE before cach CENTER is used in order to make use of the latestinformationabout the position of thereference point.

Thistype of two-dimensional localization with respect to a reference point was usedt 0 delor mine t ha final grasping position of the pump base, Vision determined. its positionwithinone-third inch in X and one-fourth inch in Y. But this localization was not sufficiont for the hand to pick up the has. because of the base's irregular shape and the limitcdopening of the hand. Since the purnp base was glued to a base plate, it was known to be upright. Thus, the Z. component of the position was known quite accurately. The X and Y componentsneeded to be improved. To do this a model of the base was set up as follows:
(1) thereference point was the center of the large hole
(2) thereference orientation was along the line of centers between the two largeholes on top,
(3) two crasping, directions and points (points A and B) were determined at right angles to each other.

Therefore, to determine the displacement in A's direction the hand was CENTERED on point A and any discrepancy was SAVED. This discrepancy was RESTORED when the handCENTERF'Don point B. The combination of these displacements determines the pump base"s $X-Y$ displacement.

SAVE SandRESTORE shave been mentioned with respect to (1) remembering a specific point, suchas a screwholeand(2) localizing an object, such as the pump base. Theseideas can be combined in a straightfor ward way to provide dynamic position information for the pump base (with respect to its planned position). This is necessary becarsethebase may not have been placedoxactly in the aligning blocks or the hand may havermovedit whentrying topull the screwdriver out of a screw. All that is needed toobtain this dynamic information lis a model of the base which locates the screw holes with respect to the referencepoint. Each time a screw hole is found (inserting a pin, screwinga screw, etc.) therefined position can be SAVED. Thus finding one screw hole canhelpin finding all of the otherpartson the base.

CONCLIISION

Wehave taken the first, primitive step toward integrating different types of sensiory feedback into 8 general purpose, computer-cant rolled assembly system. We believe that this type of interaction, in some extended form, is necessary for performing sophisticated.rssembly tasks. The key factor in the applicability of this type of device is the ease with which it can be programmed. It will be important in the future to interact with design data bases in order to specify positions and motion const raint s automat ically. This will relieve the programmer from the task of defining the positions by "programming by doing," and will in effect generate a first cut at an assembly program.

We are currently designing a more powerful control language and are investigating tasks involving the coordination of two arms.
[Dewar] R.Dewar, N.R.Lewis, L.Rossol, J.T.Olczityn, "An Application of Computer Vision to Automatic Wheel Mounting," The First Intet national Joint Conference on Pattern Recosnition, Oct 1973.
[Feldman) J.A. Feldman, R.F. Sproul,"Syst em Support for the Stanford Hand-Eye Syst em," Second International Joint Conference on Artificial Intelligence, London,September 1971.
[Gill] A, Gill, "Visual Feedback and Related Froblems in Computer Controlled Hand-Eye Coordination," Stanford Artificial Intelligence Mitino 178, October 1972.
[McCarthy] John McCarthy, Arthur Samueland Artificial Intelligence Project staff, Edward Fercenbaumand Heuristic Programing Projectstaff, "Project Technical Report," Stanford Artificial Intelligence Memo 143,March 1971.
[Paul |R.P.C.Paul, "Modelling, 'Trajectory Calculation and Servoing of a Computer Controlled Arm," Stanford Artificial Intelligence Memo 177, March 1973.
[Schei nman] V. D. Scheinnan, "Design of a Comput er Manipulator", St anford Artificial Intelligence Memo 92, June 1969.
[Sobel] Irwin Sobel,"Camera Models and Machine Perception," Stanford Artificial Intelligence Memo 121, May 1970.

