
STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMO AIM-210

STAN-CS-73-352

AXIOMATIC APPROACH TOTOTAC

CORRECTNESS OF PROGRAMS

BY

I Zohar Manna and Amir Pnuell

SUPPORTED BY

ADVANCED RESEARCH PROJECTS AGENCY

ARPA ORDER NO. 457

July 1973

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMO AIM-210

COMPUTER SCIENCE DEPARTMENT
REPORT cs-382

Abstract:

AXIOMATIC APPROACH TO TOTAL CORRECTNESS OF PROGRAMS

bY

Zohar Manna and Amir Pnueli

JULY 1973

We present here an axiomatic approach which enables one to
prove by formal methods that his program is "totally correct"

(i.e., it terminates and is logically correct -- does what it
is supposed to do). The approach is similar to Hoare's
approach for proving that a program is "partially correct"

(i.e., that whenever it terminates it produces correct results
Our extension to Hoare's method lies in the possibility of
proving correctness and termination at once, and in the en-
larged scope of propzies that can be proved by it.

This research was supported in part by the Advanced Research Projects
Agency of the Office of the Secretary of Defense under Contract No.
DAHC 15-73-C-0435.

The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced Research
Projects Agency or the U.S. Government.

Reproduced in the USA. Available from the National Technical Information
Service, Springfield, Virginia 22151.

> .

ZOHAR MANNA and AMIR PNUELI

Applied Mathematics Department

The Weizmann Institute of Science

Rehovot, Israel.
L

1 I. Introduction

I

bL

1
i

We present here an axiomatic approach which enables

one to prove by formal methods that his program is “totally

c o r r e c t ” (i . e . , it terminates and is logically correct --

does what it is supposed to do). The approach is similar

to Hoare*s.approach [1969] for proving that a program is

“partially correct” (i .e. , that whenever it terminates it
L

produces correct results). Our extension to Hoare’s method

lies in the possibility of proving correctness and termina-
’ 8

tion at once, and in the enlarged scope of properties that

can be proved by it. l

The class of programs we treat in this paper is the

class of while programs which are written in an Algol-like

language allowing assignment statements, conditional state-

ments, compound statements and while statements. Go to

statements and procedure calls are explicitly excluded, but

this restriction does not seem essential and can be removed

by appropriate extension of the results presented here.

2.

L

‘c

To review Hoare’s notation, he uses assertions of

the form

(where p , 9 are predicates, and B is a program segment)

to mean that for every x , i f p(z) h o l d s p r i o r t o execu-

tion of B and the execution of B terminates, then the

resulting values after execution will satisfy ‘q(Z) . His

system consists of several basic assertions -- axioms-- de-

scribing the transformation on program variables effected

by simple statements, and inference rules by which asser-

tions for small segments can be combined into one assertion

for a larger segment. Among those are a composition rule,

a conditional rule, and a while rule. If starting from

the axioms about the simple statements of a program P , and

employing inference rules one is able to deduce ’

then one has shown in fact the partial correctness of P

with respect to @ and Q , i.e., that for every y satis-

fy ing 4(F) for which the execution of P terminates,

q(x) holds for the resulting variables’ values.

The assertion we will be using in our method is of the

form

3.

c

c
rr

L

t o m e a n t h a t f o r e v e r y z , if p(z) holds prior to execu-

tion of B , then the execution of B terminates and, de-

noting the set of resulting values by F’) q(x,F’> holds.

An immediate advantage of this notation is the ability to

express relations between values of variables before and

after the execution. In the rest of the paper we develop

the inference rules for our system which will also ensure

that termination is hereditary from constituents to larger

program segments.

Since we restrict ourselves to while programs, the

only element endangering termination is the while statement.

We attack the termination problem of the while statement by

requiring the existence of a function from the program

L

.
L

c

varj ables’ domain to a well-founded set, such that on sub-

sequent executions of the while body its value decreases.

This function serves as a counter that can decrease only a

finite number of times, It is this need to compare values

of the counter function before and after execution of the

k

while body which motivated us to extend the notation to

relations between two sets of program variables.

If using our inference rules one is able to deduce

L then one has shown in fact that P i s to ta l ly correc t

c
.L..

4.

with respect to 0 and + , i .c. , that for every y

satisfying Gl , the execution of P terminates and

$(X,W holds between the initial values x and the

resulting values X’ . If one is only interested in

proving termination over 0 i t i s su f f i c i ent to show

< 4(x’ t P 1 T ’ ,

where T is the identically true predicate.

We should remark in passing that although our rules

are sufficient to show total correctness, they are by no

means unique or even the best possible. Many variations

and improvements probably exist.

II . The Inference Rules

All the inference rules will be described by a set

of antecedents (conditions under which the rule is ap-

plicable) followed by a consequent which is the assertion

deduced. Each of the antecedents is either an assertion

(which should have been previously established) or a logi-

cal claim. All the logical claims are considered to be

closed by universally quantifying each of their free

variables on the same line.

We present first the straightforward rules dealing

with assignment, conditionals and compositions and leave

the while rule, which is the most complicated, to the end.

(1a Assignment Rule .

p(F) A Xl’=f(F) 3 q(F,Xl)

< p(X) 1 Yr + f(x) 1 q&X’))

This rule is essentially an axiom since it uses only logi-

cal claims to create an assert.ion. S i n c e f . i s c o n -

sidered a basic function (not a user-defined procedure),

termination is as obvious as correctness.

W Conditional Rules

(b,) If-then-else -- - -

< p(z), A -t(z) 1 B, 1 q&x’) >

t(s;) then B, else B 2
1 q&X’) > .

The rule should read as follows: If under p(x’> we suc-

ceeded in showing separately that whether we proceed with

tm true to execute B, o r w i t h t(F) false to execute

B
2 ’ q(x,?) holds in both cases, then clearly if we

cross the combined conditional statement with p(z) ini -

ti.ally true, we come out with q(x,jT’) .

1,

L

i
1.

1
i

6.

Since the antecedents claim that both B, a n d B,

when executed under the proper conditions terminate, the

termination of the conditional statement under p(z) f o l -
lows.

(b2) If - do

< p($ A t(F) 1 B 1 q(‘j;,?))

p(z) A -t(Z) =, q(X,Z)

(p($ 1 if t(z) & B 1 q&Z’) > .

This is the one clause (empty else) conditional statement.

Note that if we do not execute B we have to verify that

q(Gl holds.

The following four rules are composition rules. Some
of them facilitate composition of segments while the others allow

composition of pr’edicates.

(cl Concatenation Rule

< P&3 I B, I q,(G’) ’

* P2 (3 I B2 I q2(%X’) ’

@La 2 P,G’)

q,(x,X’) A q , (? ,z”) 3 q&F”)

< P,(% I B$3, I q(x,x’) ’ l

(1)

(21

(3)

(41

t

L

L

7.

Condition (3) ensures that the state after executiw,

of B, satisfies p, -- the needed precondition for B, .

Condit ion (4) characterizes q&x”) as a transfer

relation between F before execution and z” after exe-

c u t i o n o f B, ;B, . It requires an intermediate ? which

temporarily appears after execution of B
1 and before

e x e c u t i o n o f B, .

Note that by our convention (4) is universally

quani t i f i ed over F 8 ? and ?’ .

(4 Consequence Rules

(dl) * r(q 1 B 1 q&F’) *

p(Y). 3 r(F)
- -

<P(5F) 1 B ’) 9(X,X’) ’

(d2) * ~(3 1 B 1 s(:,?) s

s (X,X’) 3 q(X,X’)

< PC% I B I qCK,w >

The validity of the rules is obvious when we consider

the meaning of the assertion.

t- 8.

w Or !?ule

(PrC3 I B I q(G’I >

< p,(z) 1 B 1 q(~,?l. >

< P1 (x, ” P,(‘;;) I B I q(x,~‘I ’

This rule creates the possibility for proof by case
e

analysis.

b.

L

w And Rule

< P(X) I R I 9, (G’) >

(PC3 I R I q,(G’) ’
-c .-- - .

< PC3 I B l 4, CL;‘) A q, (F,P) >

This rule enables one to generate incremental proofs,

by proving separately two independent properties, and then

combining them by the and rule.

c

ca

Note that it is sufficient to prove termination for only one

of the antecedents ’ conditions of the and rule, so that in prin-

ciple we could have a stronger rule:
-

< P(X) 1 R 1 q$x,?‘) >

< P(X) t B 1 q,(~,x’) * q,(X’I ’

where we reserve the notation I) to ‘partialcorrectness

assertion’.

c

i..

i

i

t

9.

(id While Rule _

< ~(3 A t(z) 1 B 1 q&x’) A [-t(?) v u(F) :- u(S)] >- (1)

’ q(X,X’) A t(P) 3 p(S) (2)

q&X’) A q(X’,S’) =) q(X,Z”) (3)

F(z) A -t(it) 3 q&F) 3)

< p(z) 1 wh’l1 e t(?‘) d o B I q&X’) A -t(x’) >

where (WA is a well-founded set and u:X * W .

The above seemingly complicated rule is devised to

overcome several difficulties caused by the need to prove

termination. Termination of a looping while statement is

essentially ensured here by Floyd’s technique [1967], namely,

producing a function u whose values keep strictly decreasing

in subsequent executions of B.

Condition (1) requires establishing a well-founded set

(WA with a partial order 3 satisfying the descending

chain condition, Le., there is no infinite chain of elements’ .
f r o m W, a , + , a ,) , . . . Also required is a partial .function

U mapping some elements of our data domain X into elements

of w , If we were able to prove that after each execution

of B , u(F) $ u(x’) (where by writing this inequality we

also mean that UC3 a n d u(x’) are both defined), then

clearly B cannot repeatedly execute an infinite number of

times or we would violate the descending chain condition.

The demand for the existence of a descending counter

- which is defined for all executions of the while body B ,

L

L

L

L

I
t

10.

can be relaxed for the case of the last execution of B .

T h u s if W C dre positive that this is the last execution of

B B we may allow the counter function to become undefined

or stop decreasing. Accordingly, we require in (1) the al-

ternatives of either -t(x) true , implying immediate ter-

mination, or the existence of the counter function which will

also ultimately ensure termination.

Condition (2) requires that having executed B at

least once, and having t(x’) correct at this instance ,

logically establishes PW) l P(F) is exactly the condition

we need to use (1) bnce more and thus propagate the validity

of q for all subsequent executions.

Condition (3) ensures that q(x,x’) is transit ive.

There fore, once we showed in (1) that it holds over one exe-

cution of B , it follows that it will hold over any number of

repeated executions of B . Consequently, it will hold over

the repeating while statement.

Condition (4) deals with the case of the initially

vacant while statement, where B did not execute even once.

There also we wish to establish the final outcome q&x’) .

Note that (1) establishes the termination of B itself.

In the proofs appearing in the following examples we

often make use of the consequence rule within while rule deri-

v~t-inll 5 pi thout explicit indi cat ion. Thus, for example, we

i‘vqwn t ly use the condi t ion :

11.

< p(X) A t(F) 1 B 1 q(:,?) A [u(z) > u(K’)] >

which impl.ies condition (1) above by the consequence rule.

Similarly we use the consequent:

< p(z) 1 w h i l e t(ii’) do B 1 q(x,?) >

omitting the conjunct -t(2) .

12.

III . Illustration of the Method

We present below two examples for which we can prove

total correctness by our method. Because of the amount of

detail involved we will concentrate on proving termiration,

with only general indication of the modifications required

to add correctness.

Example 1

The following while program over the integers is

supposed to compute the greatest common divisor of two

p o s i t i v e i n t e g e r s x1 a n d xa -gcd(x& -- leaving

the result in x, . To refer to program segments we

use ordinary Algol labels.

P: START

f: while x1 # xp &

e: begin

b: while x1 > x2 a: x1 f x, - xp ;

d: while xp > x1 c: x2 f x2 - x1

end

HALT .

We would like to prove that the propram P is totally

correct with respect to

$(x1,x,) g x1 > 0 A x2) 0

and

13.

q,(xl ‘x2 ,x;,x;, s x; = gcd(x, ,x2) .

We prove in detail termination only. The well-founded

set we use is the domain of no&negative integers with

” the ordinary < relation. A S the! termination function
. for al l while statements we take u(xI,x2) z x1 + x2 .

Our proof of termination distinguishes between two

cases according to whether x1 > x 2 or x1 < x2 upon

. entrance to the compound statement e . I n the f i r s t

case, statement a is executed at least once (x1 t x2

c decreasing) , while statement c is executed 0 or more

t i m e s . (x1 + x2 remaining the same or decreasing). In
I_ ‘1

the second case statement a is never executed (x1 + x2

unchanged of course), while statement c is executed at

l e a s t o n c e (x1 + x, decreasing). We will therefore

analyze in our proof these two cases separately and then

combine their results using the Or rule.

In all the predicates of the Allowing assertions the

conjunction X,>OhX >o
2

is omitted.

Lemma al, (Assignment Rule)

Since X1>X2 A X;=XI-X2 A X;=X2 3 Xl+X2,X;+X’
2

ii
! . we get

t
<x1 > x 1 a 1 x1+x2> xI+xi 9

2

!.
I’
/

; by the assignment rule,

‘,
ir .

14.

Lemma bl (While Rule)

We use the while rule with the following Predicates:

P(X) : t(z) z x1 > x2 ,

q(K,X’) 5 x1+x2 > x : + x ; .

Condition (1) of the while rule is justified by Lemnbtl al.

We obtain

< x 1 > x2 1 b 1 x1+x2 > x:+x; > .

Note that condition (4) of the while rule is trivially satis-

fied because

p(z) A 9(x’) : F .

Lemma cl- - (Assignment Rule)

Since

X2>Xl A X:=X1 A X’2=x2 -x1 3 x1+x2>xi+x’ ,
2

we get by the assignment rule

i x2 > x1 1 c 1 x1 + x2 > x’ + x’ > .
1 2

Le.mma dl (While R u l e)

A s s u m e the following substitution:

p(z) : T , t(z) : x2 > x1 , and

q&X’) 2 x1 + x2 >, x; + x; .

Condition (1) of the while- rule is justified by Lemma cl.

We obtain

< T 1 d 1 x1 + x2 >, x; + x; > .

N o t e t h a t c o n d i t i o n (4) i s s a t i s f i e d s i n c e x1 + x2 >, x, + x2 .

Lemma el (Concatenation Rule)

Combine Lemmas bl and dl and use

x1+x2>x;+x; A X;+X;zX;+X; 3 X1+X2>X;+X;

-

15.

t o oht ain

<x >x1 2 1 e 1 x1 + x2 ’ x; + x; > .

We now treat the case of x1 < x, upon entrance to e :

Lemma a2 (Assignment Rule)

Since

F A x; = x -x A x;=x, 3 F
1 2

we have

<FlalF>.

Lemmd b2 (While Rule)

Take

t(Z) *z x1 > x2 , p(z) E x1 < x2 , and

q(X,X’) f xi < x; A (x1 + x
2 = x; + x;, .

By using a consequence of Lemma a2 we obtain

< x 1 < x2 1 b 1 x; < x; A (x1 + x2 = x; + x’) >
2 l

Condition (1) is satisfied here since by the consequence

rules <FlalF> implies

< p(Z) A t(Z) 1 a I q(;;T,?) A -t(S)) .

Note that under the init ial condit ion x, < x2 the while

statement b never executes.

Lemma c2 (Assignment Rule)

By assignment rule

< Xl < x, 1 c 1 x
2 + x

2
> x’ + x’ >

1 2 l

Lemma- d2 (While Rule)

Take

p(x) 5 t(X) z x1 < x2 , and

q(X,X’) f x1 + x2 > x; + x; ,

5

t
P --

‘e,
L

-“-

16.

cn <Y1 2 1 d 1 x1 + x2 9 “: + x’ > :
2

I.4 * IlllIla e 2--. -a- (Concatenation Rule)

By c.ombining Lemmas h2 and d2 we obtain

<x <xI 2 1 e 1 x1 + x2 > xi + xi > .

Ix t\\IIl;‘L e--_---. -e (I0r Rule j

From Lemmas el and e2 combined we get

< x 1 # .i2 1 e 1 x1 + x2 > “1’ + x; > .

Idma f-.- ..- _ - ---cIL (While itulc)

Take

t(Fj: x1 # x2 , p(z) I x1 > 0 A x2 > 0 , and

q&i?) = X1 > 0 A X2 > 0 .

NotcA that Xl > 0 A X2 > 0 was implicitly assumed in all

p rev i 0~s preconditions. Using Lemma e in condition (1)

4: get-:

< x 1 > 0 A X2 > 0 1 Y 1 “: = X’ > .
2

e

4

17

We have thus shown termination with the additional

information that on exit ~1’ = x’ .
2

On trying to extend this result to prove correctness

as well as termination, we run into the notion of

incremental proofs, i .e., having proved some properties of

the program including termination, how do we prove addi -

tional properties without repeating the whole proof process.

For this particular example, this can be solved by the

following argument:

Assume that instead of any q(x,x’) appearing in the

assertions we used the predicate

q&x’) A $cd(x,,x,) = gcd(x;,x;)] .

It is not difficult to ascertain that all the lemmas

remain valid. Consequently , we are able to prove for the

complete program:

< x ’1 0 A x2 ’ 0 1 p 1 x’ = x ’ =
- 1 2

A gcd(x],x
2

) gcd(x;,x’)>
2 ’

i . e . ,

< x1 ’ 0 A x2 > 0 1 p 1 x; = gcd(x,,x,) > .

18..

Generalizing the above argument, we may consider any

transitive relation s (X,X’) with the following properties :

vqs (X,x)] a n d VG,??,?l [s (X,X’) A s (3 ,x”) =) s (F,X”)] .

It is possible then to verify the following metatheorem:

Metatheorem. Suppose that a z < +(a 1 P 1 $(x,x’) >

had been proved. L e t s&x’) be a t rans i t ive re la t ion

such that for any lemma of the form (P(j22 I B 1 s(%X’))

used in proving . a , where B is an assignment statement

of P , i t i s p o s s i b l e t o p r o v e < p(z)1 B I q(X,K’) A s(‘j;‘,??) > o

Then the assertion a+ 5 < 4(z) 1 P I q(x,jT’) A s(x,x’) >

is also true for the complete program.

Thus it is sufficient to treat assignment statements in

incrementing our claims. In the previous example, the only

Rcsignment statements one has to consider are

t
x2 + xp - x1’ and

which obviously preserve the gcd function.

In order to prove the metatheorem, one has to inspect

all the non-assignment rules and verify tha’t if s was

preserved in the conctituents it will be preserved in the

bigger s;“gment.

19.

Example 2: P a r t i t i o n (Hoare [1961])

The purpose of the program given below is to rearrange

the elements of an array A of n+l n 3 2s s real numbers

NOI 9’ l l dunI and to find two integers i and j , such

that

c’
and for the rearranged array

VaVbW f a < i A j < b 6 n) 3 A[a] 6 A[b]] .

In other words , we would like to rearrange the elements of A

into two non-empty partitions such that those in the lower

p a r t i t i o n A[01 ,. . . ,A[i-1] are less than or equal to those

in the upper partition AU+11 ,... ,A[n] , where 0 6 j < i c n .

c P: START ;

. s : r + A[n+2l; (i , j) + (0,n);

m: while isj d o

R: begin

e: begin b? while A[i] < r do a: i+i+l;

d: w h i l e r < A[J] c: j+j-1

end ;

g : (i,j) f (i + l , j - i)

end

end &;

HALT.

20.

We will prove in detail termination only. Our proof

follows the ideas presented in Hoare’s [1971] informal proof

of termination. We int reduce the following abbreviations :

a (i) Z 3p[i s p c n A r s A[pl]

SW z 3q[o 6 q i j A A[q] s r] .

‘L

1

Ii

L

Thes.e invariants are used to ensure that while i is stepped

upand j is stepped down they do not exceed the bounds of

n and 0 respect ive ly ,

Lemma a (Assignment Rule)

<a(i) A B(j) A A[i] < r

I a: i+i+ll

a(P) h f3(jt) A [i’ * jr V j-i 3 jt-it] A n-i > n-if > .

C l e a r l y B (j) v a l i d i t y i s i n v a r i a n t s i n c e j i s n o t

modified by this statement. From a(i) correctness we infer

the existence of p which s ince . A[p] >, r must be p > i s so

that we might take the same p t o e s t a b l i s h a (i + l) = a(P) .

The statement about n - i decreasing will be used for termina-

tion of- the while statement b , while the function j - i wil l

be used for proving termination of m . Roth are over t h e

domain of non -nept i vf‘ integers. The altemkves presented

;1 I”’ t-hat (‘rttIc1’ ?IlL I~UIIC~ i OH is dcireasing (non- increas ing)

op j' < i’ which will imply that this must be the last

21.

-- e x e c u t i o n o f R . Note that if the second holds true, then

l 1J - it is not defined.

Lemma b (While Rule)

Using Lemma a with

p(z) 5 a(i) A SW

q(G') E ali') A fS(j*) A [it > jr v j - i 2 j* - it]

u(Z) 2 n - i ,

L we get

1 b: while A[i] < r do a: i + i + 1 1

S(j*) A [i* > j’ v j - i 2 j’ - i’] A A’[i’J >, r > .

Note that we do not need a(Y) any more, but will use instead

the conclusion of the while’s termination A’[i’] >, r which

also implies i’ 6 n.

Lemma c (Assignment Rule)

< A[il >, r A s(j) A A[j] > r

I c:jcj-11

W ‘I A A[i’] 3 r A [i’ > j* v j - i >, jt -, i’] h j > jr>.

The function *ensuring termination for the inner while d is j .

Lemma d (While Rule)

From Lemma c with

P(X) z AD] >, r A S(j)

q(X,X') Z @(j') A A’[i’l 2 r A [i’ > jf v j - i 2 j’ _ if]

U(F) Z j ,

we get

1 cl: while r c A[j] do c: j f j - 1 1

A'ii'] >, r A [it > jl v j - i 2 jt - i'] A A*[j’] < T >,, .

22.

%

t

L

L’

I

L L.

L

b.

Lemma e (Concatenation

Combining Lemmas b

< a (i) A S(j)

Rule)

and d we get

I e : begin b; d end 1

A’[j*] $ r c A’[i’] A [it $ j* v j

Lemma f (Assignment Rule)

< A[j] $ r S A[i] A i 6 j

1 f: A[i] ++ A[j] 1

A’[i’] $ r 6 A* [j *] A j- - i = j * -

- i 2 j* - in]>.

The condi t i on i 6 j is added since it is known to be true if

we enter statement h . Clearly, after exchanging WI and

A[j] the previous inequalities are reversed.

Lemma g (Assignment Rule)

< i < j A A[i] C r < A[j]

I g : (i , j) + (i + l , j - 1) I

it > j* v [j - i > jc - it h a(P) h S(j’)] > .

This result i.s obtained by case analysis: Either

i + l C j - 1 , in which case we have i <it < jt < j and

we can take p = j t o e s t a b l i s h a(P) and q = i to

establish fW*) . The other case is i+l>j - 1 o r , i n

other words, it > j* .

i

i

/ c

I

Le m-m h-- -p (Ccbllcatenation Rule)

Hy combining Lemmas f and g we get

23.

< i 5 j A A[j] S r S A[i]

I h: begin f; g end I

1** > j* v [j - i > j’ - it h a(i*) h B(j’)] > .

L e m m a k (If - d o R u l e)

By Lemma h we get

< A[j] : r < A[i]

Ik -: i f i<j

it > j* v [j - i > j* - it h a(i*) h B(j’)] > .

Note that in the case where the do clause is skipped

i > j , so that the conclusion is still correct.

Lemma R (Concatenation Rule)

Combining Lemmas e and k we obtain:

I a: begin e; k end I

it > j* v [j - i > j* - it h a(P) h @(j’)] > .

L Note that by the consequence rule this can be rewritten as

< a(i) A S(j)

L 1 R: begin e; k end I

4, [(it< j’) 2 a(F) A f3(j’)] A [it > j* v j - i > j* - it] >

which is in a form more useful for the next step.

i
Now we are ready to prove termination of the encompassing

while-statement. We have shown, in fact, that after one execution

c-

L.

o f R start ing with a(i) s f3(j) both valid, we either have

if > j* which ensures no more repetitions of Q‘ or have

a(i’ 1 s @(j*) true again and a termination function j - i

24'.

strictly decreasing.

Lemma m (While Rule)

From lemma e with

P(';;) z a(i) A fUj>

q(X,Z') E it ,(j* = [aW> A W*>l s

we get

< a(i) A B(j) I m: while i $ j QI T>.

Lemma s (Assignment + Concatenation Rules)

Establishes the initial conditions:

c n 2 2 I s:, r + A[n+2]; (i,j) + (0,n) I a(V) A S(j*) > .

Lemma P (Concatenation Rule)

Concatmation of lewms m and s yields

L.

<nL21PIT>,

which shows termination of P .

2s.

References

FLOYD [1967]. R. W. Floyd, "Assigning Meanings to

Programs", Proc. Symp. Appl. Math. 19, American

Math. Sot. (1967), pp. 19-32.

HOARE [1961]. C. A. R. Hoarc, "Algorithm 65 - Find",

CACM, Vol. 4, No. 7 (July 1971), p. 321.

HOARE [1969]. C. A. R. Hoare, "An Axiomatic Basis of

Computer Programming", CACM, Vol. 12, No. 10

(October 1969), pp. 576-580, 583.

HOARE [1971]. C. A. R. Hoare, "Proof of a Program: FIND",

CACM, Vol. 14, No. 1 (January 1971), pp. 39-45.

