SETS GENERATED BY ITERATION OF A LINEAR OPERATION

BY

DAVID A. KLARNER

STAN-CS-72-275

MARCH 1972

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY
SETS GENERATED BY ITERATION OF A LINEAR OPERATION

David A. Klarner

Abstract

This note is a continuation of the paper "Arithmetic properties of certain recursively defined sets," written in collaboration with Richard Rado. Here the sets under consideration are those having the form
\[S = (m_1 x_1 + \ldots + m_r x_r; 1) \] where \(m_1, \ldots, m_r \) are given natural numbers with greatest common divisor 1. The set \(S \) is the smallest set of natural numbers which contains 1 and is closed under the operation \(m_1 x_1 + \ldots + m_r x_r \). Also, \(S \) can be constructed by iterating the operation \(m_1 x_1 + \ldots + m_r x_r \) over the set \(\{1\} \). For example,
\[(2x + 3y; 1) = \{1, 5, 13, 17, 25, \ldots\} = (1 + 12N) \cup (5 + 12N) \] where \(N = \{0,1,2,\ldots\} \). It is shown in this note that \(S \) contains an infinite arithmetic progression for all natural numbers \(r-1, m_1, \ldots, m_r \). Furthermore, if \((m_1, \ldots, m_r) = (m_1 \ldots m_r, m_1 + \ldots + m_r) = 1 \), then \(S \) is a per-set; that is, \(S \) is a finite union of infinite arithmetic progressions. In particular, this implies \((mx+ny; 1)\) is a per-set for all pairs \(\{m,n\} \) of relatively prime natural numbers. It is an open question whether \(S \) is a per-set when \((m_1, \ldots, m_r) = 1 \), but \((m_1 \ldots m_r, m_1 + \ldots + m_r) > 1 \).

This research was supported in part by the National Science Foundation under grant number GJ-992, and the Office of Naval Research under contract number N-00014-67-A-0112-0057 NR 044-402. Reproduction in whole or in part is permitted for any purpose of the United States Government.
1. **Introduction**

This note is a continuation of Section 3 of "Arithmetic properties of certain recursively defined sets," written in collaboration with Richard Rado. All of the special notation used in this note is defined there. Besides using the notation of [1], we shall require also several results proved there.

The significance of the present note in relation to [1] is as follows: Let \(r \in \mathbb{N}, m_1, \ldots, m_r \) denote natural numbers. There exists a smallest set \(S \) denoted \((m_1 x_1 + \ldots + m_r x_r : 1) \) which contains 1 and is closed under the operation \(p = m_1 x_1 + \ldots + m_r x_r \). The set \(S \) can be constructed by iterating \(p \) over the set \(\{1\} \); that is,
\[
S = \{1\} U p(\{1\}) U p(\{1\} U p(\{1\})) U \ldots \] . Among other things, it was shown in [1] that \(S \) is an affine transformation of the set \((m_1 x_1 + \ldots + m_r x_r + b : a) \), and \(S \) is closed under multiplication. We use these results in the present note to show that \(S \) contains an infinite arithmetic progression, thus resolving Conjecture 2 of [1] in the affirmative. Also, we show that if \((m_1, \ldots, m_r) = (m_1 \ldots m_r, m_1 + \ldots + m_r) \) \(= 1 \), then \(S \) is a per-set; that is, \(S \) is a finite union of infinite arithmetic progressions. This settles affirmatively infinitely many cases of Conjecture 1 in [1]. In particular, this completely settles the case \(r = 2 \) of Conjecture 1.

The main idea developed here is as follows. We show that \(S \) contains an affine transformation of a set \(T \) having the form \((mx_1 + \ldots + mx_k : 1) \) where \(k = r! \) and \(m = m_1 \ldots m_r \). Next, we show that \(T \) contains an infinite arithmetic progression \(A \). This implies \(S \) contains an affine transformation of \(A \), so \(S \) contains an infinite
arithmetic progression, \(a + dN \) say. We show that if
\((a, d) = (m_1, \ldots, m_r) = 1\), then \(S \) is a per-set. The condition
\((a, d) = 1\) is met when \((m_1 \ldots m_r, m_1 + \ldots + m_r) = 1\), and this is the
route to our main result.

2. Results

THEOREM 1: Suppose \(k, m \in \mathbb{P} \), and let

\[
(1) \quad s = \langle mx_1 + \ldots + mx_k + 1 : 0 \rangle ,
\]

\[
(2) \quad T = \{ c_0 + c_1 m + \ldots + c_h m^h : h \in \mathbb{N}, c_0 \in \{0, 1\}, c_i \leq \frac{k c}{i - 1}, i \in [1, h] \} .
\]

Then

\[
(3) \quad S = T.
\]

PROOF: First, we show that

\[
(4) \quad 1 + mT + \ldots + mT \subseteq T .
\]

To see this, suppose \(x^{(j)} \in T \) and let \(x^{(j)} = c_0^{(j)} + c_1^{(j)} m + \ldots \) for
\(j = 1, \ldots, k \), then by definition of \(T \)

\[
(5) \quad c_0^{(j)} \in \{0, 1\} , \quad c_i^{(j)} \leq c_i^{(j)} \quad (i \in \mathbb{P}, j = 1, \ldots, k) ;
\]

there exists a number \(t \) such that \(c_i^{(j)} = 0 \) for all \(i \geq t \) and
\(j = 1, \ldots, k \). Now let

\[
(6) \quad x = 1 + m \sum_{j=1}^k x^{(j)} = \sum_{i=0}^\infty c_i m^i
\]

where \(c_0 = 1 \), and

\[
(7) \quad c_i = \sum_{j=1}^k c_i^{(j)} \quad (i \in \mathbb{P}) .
\]
It follows from (5) that

\[(8) \quad c_i \leq kc_{i-1} \quad (i \in \mathcal{P}) ;\]

also, \(c_i = 0\) for all \(i \geq t+1\) since \(c_{i-1}^{(j)} = 0\) for all \(i-1 \geq t\) and \(j = 1, \ldots, k\). Hence, \(x \in \mathcal{T}\), and this proves (4).

Next, we show that

\[(9) \quad T \subseteq \{0\} \cup (1 + mT + \ldots + mT) .\]

Suppose the contrary, and let \(y\) denote the smallest number in \(T\) not contained in the set defined on the right in (9). We have

\[(10) \quad y = c_0 + c_m + \ldots + c_m^h .\]

where \(c_0 \in \{0, 1\}\) and \(c_i \leq kc_{i-1}\) for \(i = 1, \ldots, h\). Suppose \(c_j\) has the form

\[(11) \quad c_j = \sum_{i=1}^{k} c_j^{(i)}\]

with \(c_j^{(i)} \in \mathbb{N}\) for \(i = 1, \ldots, k\), then since \(c_{j+1} \leq kc_j\), there exist \(c_j^{(i)} \in \mathbb{N}\) with \(c_j^{(i)} \leq c_j^{(i-1)}\) for \(i = 1, \ldots, k\), such that

\[(12) \quad c_{j+1} = \sum_{i=1}^{k} c_j^{(i)} .\]

Hence, we can construct k-vectors \(\left(c_j^{(1)}, \ldots, c_j^{(k)}\right)\) recursively for \(j = 1, \ldots, h\) such that \(c_j^{(i)} \leq c_j^{(i-1)}\) and (11) holds for \(j = 1, \ldots, h-1\).

Also, since \(c_1 \leq k\), we can select \(c_j^{(1)} \in \{0, 1\}\) for \(i = 1, \ldots, k\).

It follows that \(c_j^{(i)} + c_j^{(i)} c_m + \ldots \in \mathcal{T}\) for \(i = 1, \ldots, k\). Also, (11) implies
Since 0 is an element of the set on the right in (9), and we are supposing \(y \) is not an element of this set, it follows that \(c_0 \neq 0 \).

Hence, \(c_0 = 1 \), and (13) implies

\[
y > y^{(i)} = c_0^{(i)} + c_1^{(i)} m^1 + \cdots + c_{h-1}^{(i)} m^{h-1} \quad (i = 1, \ldots, k).
\]

But this means \(y \) is an element of the set on the right in (9), a contradiction. So (9) is true.

Together (4) and (9) imply

\[
(15) \quad l + mT + \ldots + mT = T.
\]

Since \(l + mx_1 + \ldots + mx_k \) is an increasing operation, we can apply the Corollary of Theorem 3 proved in [1] to conclude from (15) that \(T = S \).

This completes the proof.

THEOREM 2: Suppose \(k \in \mathbb{P}, \) and let \(l \) be an integer satisfying \(k^l = k^{l-1} > m-1 \), then

\[
(16) \quad \frac{k^l m^{l-1}}{k^l - l} + l N c^l (m x_1 + \ldots + m x_k + l: 0) = s.
\]

PROOF: Suppose \(h e \mathbb{N}, \ d_i \in [0, k^l], \) and \(d_i < k^l d_i \) for \(i = 1, \ldots, h \), then it follows from Theorem 1 that \(l + km + \ldots + k^{l-1} m^{l-1} + d_0 m^l + \ldots + d_h m^{l+h} \) is an element of \(S \). That is,

\[
(17) \quad \frac{k^l m^{l-1}}{k^l - l} + m^l D \subseteq S.
\]
where

\[D = \{ d_0 + d_m m^+ \ldots + d_h m^h : h \in \mathbb{N}, d_0 \in [0, k^l], d_i \leq kd_i \text{ for } i = 1, \ldots, h \}. \]

We want to show \(D = \mathbb{N} \). Of course, \(D \subseteq \mathbb{N} \), so it has to be shown that \(\mathbb{N} \subseteq D \). Suppose the contrary, and let \(y \) denote the smallest non-negative integer not contained in \(D \). Note that

\[[0, k^l] \subseteq D, \]
\[[k^{l-1}, k^l] + m \mathbb{D} \subseteq D. \]

Since \(k^l - k^{l-1} \geq m - 1 \), there exists \(r \in [k^{a-1}, k^l] \) such that \(y = qr + r \). But (19) implies \(y > k^l \), so \(0 < q < y \). Because \(y \) was chosen minimal, it follows that \(q \in \mathbb{D} \), and (20) implies \(y = r^q m \in \mathbb{D} \), a contradiction. This completes the proof.

COROLLARY OF THEOREM 2:

\[k^a m^a + (km - 1)m^l n \subseteq (m^x_1 + \ldots + m^x_k : 1). \]

PROOF: This follows from (16) and Corollary 1 of Theorem 9 proved in [1].

THEOREM 3: Suppose \(r - 1, m_1, \ldots, m_r \in \mathbb{P} \), let \(k = r! \), let \(m = m_1 \ldots m_r \), and let \(S = \langle m_1 x_1 + \ldots + m_r x_r : 1 \rangle \),

\[T = \langle (m_1 + \ldots + m_r)^r - km + mx_1 + \ldots + mx_r : 1 \rangle \subseteq S. \]

PROOF: It was shown in [1] that \(S \) is closed under multiplication. Hence, since

\[m_1 S + \ldots + m_r S \subseteq S, \]

\[m_1 S + \ldots + m_r S \subseteq S. \]
we have

\[(24) \quad (m_1 S + \ldots + m_r S)^t \subseteq S \]

for all \(t \epsilon P \). In particular, (24) holds for \(t = r \). Writing \(t = r \) in (24), we have

\[(25) \quad \sum_{i=1}^{t} m_i \prod_{i=1}^{r} m_i S^t \subseteq S ; \]

but, since \(l \epsilon S \) and \(S^t \subseteq S \), (25) implies

\[(26) \quad (m_1 + \ldots + m_r)^r - r! m_1 \ldots m_r + \sum_{i=1}^{r} m_i \ldots m_r S \subseteq S . \]

Hence, \(S \) is closed under the operation \((m_1 + \ldots + m_r)^r - r! m_1 \ldots m_r \); also, \(l \epsilon S \). Now we use the fact that \(T \) is a subset of every set \(X \) closed under this operation provided \(l \epsilon X \). Since \(S \) satisfies these conditions, we have \(T \subset S \), and this completes the proof.

COROLLARY OF THEOREM 3: Suppose \(l \epsilon P \) satisfies \(k^t - k^t - 1 > m - 1 \). Then

\[(27) \quad 1 + ((m_1 + \ldots + m_r)^r - 1) \left(\frac{k^t - 1}{k^m - 1}\right) + ((m_1 + \ldots + m_r)^r - 1) m_{r}^{N} \subseteq S . \]

PROOF: The set \(T \) defined in (22) is an affine transformation of the set \(R = \langle mx_1 + \ldots + mx_k \rangle \). In fact, using Corollary 1 of Theorem 9 proved in [1], we have

\[(28) \quad T = \frac{((m_1 + \ldots + m_r)^r - 1) R - (m_1 + \ldots + m_r)^r + k m}{k m - 1} . \]

Furthermore, (21) asserts that \(R \) contains an arithmetic progression \(A \). Thus, \(T \) contains the set obtained by replacing \(R \) with \(A \) in the right number of (28), and this gives (27).
THEOREM 4: Suppose \(a, d, r-1, m_1, \ldots, m_r \in \mathbb{P} \), \((a, d) = (m_1, \ldots, m_r) = 1 \)
and let \(S = \langle m_1 x_1 + \ldots + m_r x_r : 1 \rangle \). If \(a + dN \subseteq S \), then \(S \) is a per-set.

PROOF: Let \(a_1, \ldots, a_h \in \mathbb{P} \) denote representatives of all the residue classes modulo \(d \) entered by \(S \). We suppose the \(a \)'s are ordered so that \(a_1 = 1 \pmod{d} \), and for each \(j \in [2, h] \) there exist elements \(b_1, \ldots, b_r \in \{ a_1, \ldots, a_{j-1} \} \) such that \(a_j \equiv m_1 b_1 + \ldots + m_r b_r \pmod{d} \). Now we show by induction on \(t \) that \(a a_t + dN \subseteq S \). Since \(a_1 = 1 \pmod{d} \), \(a a_1 \equiv a \pmod{d} \), and

\[
(29) \quad a_1 a + dN \subseteq a + dN \subseteq S.
\]

Suppose \(a_i a + dN \subseteq S \) for \(i = 1, \ldots, t \) where \(t > 1 \). We have

\[
a_{t+1} = m_1 b_1 + \ldots + m_r b_r \pmod{d}
\]

for certain elements \(b_1, \ldots, b_r \in \{ a_1, \ldots, a_t \} \); also, we have supposed \(b_i a + dN \subseteq S \) for \(i = 1, \ldots, r \). Using the fact that \(m_1 N + \ldots + m_r N \subseteq N \), and applying Lemma 5 of [1] we have

\[
(30) \quad a_{t+1} a + dN \subseteq \sum_{i=1}^{r} m_i (ab_i + dN) \subseteq S.
\]

It follows by induction that

\[
(31) \quad a_t a + dN \subseteq S
\]

for \(t = 1, \ldots, h \).

Recall that \(S \) is closed under multiplication. Hence, for each \(i \in \mathbb{P} \) there exists \(\ell_i \mid b_i \) such that \(a^\ell_i \equiv c_i \pmod{d} \). In particular, if \(u \) is the order of \(a \pmod{d} \), then \(a^{u-1} \equiv c_u \pmod{d} \) and \(c_{u-1} a \equiv 1 \pmod{d} \). But \(c_u a + dN \subseteq S \) by (31), and this implies \(1 + dN \subseteq S \).
The numbers \(a_1, \ldots, a_h \) were selected so that

\[
(32) \quad S \subseteq \bigcup_{i=1}^{h} (a_i + dN) .
\]

Furthermore, since \(l + dN \subseteq S \) we can write \(a = 1 \) in (31) and conclude that

\[
(33) \quad \bigcup_{i=1}^{h} (a_i + dN) \subseteq S .
\]

Together (32) and (33) imply

\[
(34) \quad \bigcup_{i=1}^{h} (a_i + dN) = S ,
\]

so \(S \) is equal to a per-set with a finite subset deleted from it. It follows from Lemma 2 of [1] that \(S \) is a per-set. This completes the proof.

THEOREM 5: Suppose \(r-1, m_1, \ldots, m_r \in \mathbb{P} \) with \((m_1, \ldots, m_r) = (m, m_1 + \cdots + m_r) = 1\) where \(m = m_1 \cdots m_r \). Then \(S = \langle m_1 x_1 + \cdots + m_r x_r : 1 \rangle \) is a per-set.

PROOF: Let \(a + dN \) denote the arithmetic progression given in (27), and note that \((m, m_1 + \cdots + m_r) = 1\) implies \((a, d) = 1\). This is easily checked by noting that \(a \equiv 1 \mod((m_1 + \cdots + m_r)r - 1) \), and \(a \equiv (m_1 + \cdots + m_r)(m) \) since \((k^{m_1 r\ell - 1})/\ell(m - 1) \equiv 1 \mod m\). Since \((m_1, \ldots, m_r) = 1\), we can apply Theorem 4 to conclude that \(S \) is a per-set. This completes the proof.

COROLLARY OF THEOREM 5: If \(m, n \in \mathbb{P} \) with \((m, n) = 1\), then \(\langle mx + ny : 1 \rangle \) is a per-set.
PROOF: If \((m, n) = 1 \), then
\[(m, m+n) = (n, m+n) = (mn, m+n) = 1 \]
and the result follows from Theorem 5.

There are infinitely many sets \(\langle m_1 x_1 + \ldots + m_r x_r : 1 \rangle \) with
\(r-1, m_1, \ldots, m_r \in \mathbb{P} \) and \((m_1, \ldots, m_r) = 1 \) whose status as a per-set or
non-per-set is left open by Theorem 5 or Theorem 10 of [1]. For
example, neither Theorem 5 nor Theorem 10 applies to sets
\(\langle m_1 x_1 + m_2 x_2 + m_3 x_3 : 1 \rangle \) where
\(m_1 = ab(ay+bz) \), \(m_2 = acy \), \(m_3 = bcz \)
with \(a, b, c, y, z \) natural numbers chosen so that
\((m_1, m_2, m_3) = 1 \).

Reference

recursively defined sets," to appear.