SETS GENERATED BY ITERATION OF A LINEAR OPERATION

BY

DAVID A. KLARNER

STAN-CS-72-275

MARCH 1972

COMPUTER SCIENCE DEPARTMENT School of Humanities and Sciences STANFORD UN IVERS ITY

David A. Klarner

Abstract

This note is a continuation of the paper "Arithmetic properties of certain recursively defined sets," written in collaboration with Richard Rado. Here the sets under consideration are those having the form $S=\left\langle m_{1} x_{1}+\ldots+m_{r} x_{r}: 1\right)$ where m_{1}, \ldots, m_{r} are given natural numbers with greatest common divisor 1 . The set S is the smallest set of natural numbers which contains 1 and is closed under the operation $m_{1} x_{1}+. \cdot+m_{r} x_{r}$. Also, S can be constructed by iterating the operation $m_{1} x_{1}+\ldots+m_{r}{ }^{x} r$ over the set $\{1\}$. For example, $(2 x+3 y: 1)=\{1,5,13,17,25, . .\}=.(1+12 N) \cup(5+12 N)$ where $\mathrm{N}=\{0,1,2, \ldots\}$. It is shown in this note that S contains an infinite arithmetic progression for all natural numbers $r-1, m_{1}$, , m_{r}. Furthermore, if $\left(m_{1}, \ldots, m_{r}\right)=\left(m_{1} \ldots m_{r}, m_{1}+\ldots+m_{r}\right)=1$, then S is a per-set; that is, S is a finite union of infinite arithmetic progressions. In particular, this implies (mx+ny: 1) is a per-set for all pairs $\{\mathrm{m}, \mathrm{n}\}$ of relatively prime natural numbers. It is an open question whether S is a per-set when $\left(m_{1}, \ldots, m_{r}\right)=1$, but $\left(m_{1} \ldots m_{r}, m_{1}+\ldots+m_{r}\right)>1$.

This research was supported in part by the National Science Foundation under grant number GJ-992, and the Office of Naval Research under contract number N-00014-67-A-0112-0057 NR 044-402. Reproduction in whole or in part is permitted for any purpose of the United States Government.

1. Introduction

This note is a continuation of Section 3 of "Arithmetic properties of certain recursively defined sets," written in collaboration with Richard Rado. All of the special notation used in this note is defined there. Besides using the notation of [1], we shall require also several results proved there.

The significance of the present note in relation to [I] is as follows: Let $r-1, m_{1}, \ldots, m_{r}$ denote natural numbers. There exists a smallest set S denoted $\left(m_{1} x_{1}+\ldots \ldots m_{r}\right.$: 1) which contains 1 and is closed under the operation $\rho=m_{1} x_{1}+\ldots+m_{r} x_{r}$. The set S can be constructed by iterating ρ over the set $\{I\}$; that is, $S=\{I\} \cup \rho\{I\} \cup(\{I\} \cup \rho\{I\} \cup \rho(\{I\} \cup \rho\{I\})) \cup . *$. . Among other things, it was shown in [1] that S is an affine transformation of the set $\left(m_{1} x_{1}^{+} \ldots+m_{r} x_{r}+b: a\right)$, and S is closed under multiplication. We use these results in the present note to show that S contains an infinite arithmetic progression, thus resolving Conjecture 2 of [1] in the affirmative. Also, we show that if $\left(m_{l}, \ldots, m_{r}\right)=\left(m_{l} \ldots m_{r}, m_{l}+\ldots+m_{r}\right)$ $=1$, then S is a per-set; that is, S is a finite union of infinite arithmetic progressions. This settles affirmatively infinitely many cases of Conjecture 1 in [I]. In particular, this completely settles the case $r=2$ of Conjecture 1.

The main idea developed here is as follows. We show that S contains an affine transformation of a set T having the form $\left\langle m x_{1}+\ldots+m x k: I\right\rangle$ where $k=r!$ and $m=m_{I} \ldots m_{r}$. Next, we show that T contains an infinite arithmetic progression A. This implies S contains an affine transformation of A, so S contains an infinite
arithmetic progression, $a+d N$ say. We show that if $(a, d)=\left(m_{1}, \ldots, m_{r}\right)=1$, then S is a per-set. The condition $(a, d)=1$ is met when $\left(m_{1} \ldots m_{r}, m_{1}+\ldots+m_{r}\right)=1$, and this is the route to our main result.

2. Results

THEOREM 1: Suppose $k, m \in \mathbf{P}$, and let

$$
\begin{align*}
& s=\left\langle m x_{1}+\ldots+m x_{k}+1: 0\right\rangle, \tag{1}\\
& T=\left\{c_{0}+c_{1} m+\ldots+c_{h} m^{h}: h \in N, c_{0} \in\{0,1\}, c_{1}<k c_{i-1} \quad i \in[1, h]\right\} .
\end{align*}
$$

Then

$$
\begin{equation*}
S=T . \tag{3}
\end{equation*}
$$

PROOF: First, we show that

$$
\begin{equation*}
I+m T+\ldots+m T _T \quad . \tag{4}
\end{equation*}
$$

To see this, suppose $x^{(j)} \in T$ and let $x^{(J)^{j}}=c_{0}^{(j)}+c_{1}^{(j)} m+\ldots$ for $j=1, \ldots, k$, then by definition of T

$$
\begin{equation*}
c_{0}^{(j)} \in\{0,1\} \quad, \quad c_{i}^{(j)} \leq c_{i-1}^{(j)} \quad(i \in P, j=1, \ldots, k) ; \tag{5}
\end{equation*}
$$

there exists a number t such that $c_{i}^{(J)}=0$ for all $i \geq t$ and j = l,...,k . Now let

$$
\begin{equation*}
x=1+m \sum_{j=1}^{k} x^{(j)}=\sum_{i=0}^{\infty} c_{i} m^{i} \tag{6}
\end{equation*}
$$

where $c_{0}=1$, and

$$
\begin{equation*}
c_{i}=\sum_{j=1}^{k} c_{i-1}^{(j)} \tag{7}
\end{equation*}
$$

It follows from (5) that

$$
\begin{equation*}
c_{i} \leq k c_{i-1} \quad(i \in P) ; \tag{8}
\end{equation*}
$$

also, $\quad c_{i}=0$ for all $i \geq t+1$ since $c_{i}^{(j)}=0$ for all $i-l \geq t$ and $j=1, \ldots, k$. Hence, $x \in \mathbb{T}$, and this proves (4).

Next, we show that

$$
\begin{equation*}
T \subseteq\{0\} \cup(1+m T+\ldots+m T) \tag{9}
\end{equation*}
$$

Suppose the contrary, and let y denote the smallest number in T not contained in the set defined on the right in (9). We have

$$
\begin{equation*}
y=c \quad \phi f^{m+} \ldots+c_{h} m^{h} \tag{10}
\end{equation*}
$$

where $c_{0} \in\{0, I\}$ and $c_{i} \leq k c_{i-I}$ for $i=1$, .., h. Suppose c_{j} has the form

$$
\begin{equation*}
c_{j}=\sum_{i=1}^{k} c_{j-1}^{(i)} \tag{11}
\end{equation*}
$$

with $C_{j-1}^{(i)} E N$ for $i=1, \ldots, k$, then since $c_{j+1} \leq k c_{j}$, there exist $c_{j}^{(i)}$ EN with $c_{j}^{(i)} \leq c_{j-1}^{(i)}$ for $i=1, \ldots, k$, such that

$$
\begin{equation*}
c_{j+1}=\sum_{i=1}^{k} c_{j}^{(i)} \tag{12}
\end{equation*}
$$

Hence, we can construct k-vectors $\left.(c)(1), \ldots, c_{j-1}^{(k)}\right)$ recursively for $j=1, \ldots$. h such that $c_{j}^{(i)} \leq c_{j-1}^{(i)}$ and (11) holds for $j=1, \ldots, h-1$.

It follows that $c_{0}^{(i)}+c_{I}^{(i)} m+\ldots$ eT for $i=1, \ldots, k$. Also, (11) implies

$$
\begin{equation*}
y=\sum_{j=0}^{h} c_{j} m^{j}=c_{0}+m \sum_{j=1}^{h} \sum_{i=1}^{k} c_{j-1}^{(i)} m^{j-1} \tag{13}
\end{equation*}
$$

Since 0 is an element of the set on the right in (9), and we are supposing y is not an element of this set, it follows that $c_{0} \neq 0$. Hence, $c_{0}=1$, and (13) implies

$$
\begin{equation*}
y>y^{(i)}=c_{0}^{(i)}+c_{1}^{(i)} m+i+c_{h-1}^{(i)} m^{h-1} \quad(i=1, \ldots, k) . \tag{14}
\end{equation*}
$$

The numbers $y^{(i)}$ have the proper form so that we can conclude $y^{(i)} \in \mathbb{T}$ for $i=1, \ldots, k$, and (13) shows that $y=1+m y^{(1)} . \ldots+m y(k)$ But this means y is an element of the set on the right in (9), a contradiction. So (9) is true.

Together (4) and (9) imply

$$
\begin{equation*}
1+m T+\ldots+m T=T . \tag{1}
\end{equation*}
$$

Since $1+m x_{1}+\ldots+m x_{k}$ is an increasing operation, we can apply the Corollary of Theorem 3 proved in [1] to conclude from (15) that $T=S$. This completes the proof.

THEOREM 2: Suppose $k-1, m \in P$, and let ℓ be an integer satisfying $k^{\ell}-k^{\ell-1} \geq m-1$, then

$$
\begin{equation*}
\frac{k^{\ell} m^{\ell}-1}{k m-1}+m^{\ell} N c\left\langle m x_{1}+\ldots .+m x_{k}+1: 0\right)=s . \tag{16}
\end{equation*}
$$

PROOF: Suppose $h \in \mathbb{N}, d_{0} \in\left[0, k^{\ell}\right]$, and $d_{i} \leq d_{i} 1$ for $i=1, \ldots, h$, then it follows from Theorem 1 that $1+k m+\ldots .+k^{\ell-1} m^{\ell-1}+\alpha_{0} m^{\ell}+\ldots+\alpha_{h} m^{\ell+h}$ is an element of S . That is,

$$
\begin{equation*}
\frac{k^{\ell} m^{\ell}-1}{k m-1}+m^{\ell} D \subseteq S \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
D=\left\{d_{0}+d m+\ldots+d_{h} m^{h}: h \in \mathbb{N}, d_{0} \in\left[0, k^{\ell}\right], d_{i} \leq k d_{i} l \text { for } i=1, \ldots, h\right\} . \tag{18}
\end{equation*}
$$

We want to show $D=N$. Of course, $D \subset N$, so it has to be shown that N C_D . Suppose the contrary, and let y denote the smallest non-negative integer not contained in D . Note that

$$
\begin{align*}
& {\left[0, k^{\ell}\right] \subseteq D} \tag{19}\\
& {\left[k^{\ell-1}, k^{\ell}\right]+m D \subseteq D .}
\end{align*}
$$

Since $k^{\ell}-k^{\ell-1}>\mathrm{m}^{-1}$, there exists $\mathrm{r} \in\left[\mathrm{k}^{a-1}, \mathrm{k}^{\ell}\right]$ such that $\mathrm{y}=\mathrm{qm}+\mathrm{r}$. But (19) implies $y>k^{\ell}$, so $0 \leq q<y$. Because y was chosen minimal, it follows that $q \in D$, and (20) implies $y=r+q m \in D, a$ contradiction. This completes the proof.

COROLLARY OF THEOREM 2:

$$
\begin{equation*}
k^{a} m^{a}+(k m-1) m^{\ell} N \subseteq\left\langle m x_{1}+\ldots+m x_{k}: 1\right) \tag{21}
\end{equation*}
$$

PROOF: This follows from (16) and Corollary 1 of Theorem 9 proved in [1].

THEOREM 3: Suppose $r-1, m_{1}, \ldots, m_{r} \in \mathbf{P}$, let $k=r$! , let $m=m_{1} \ldots m_{r}$, and let $S=\left\langle m_{1} x_{1}+\ldots+m_{r} x_{r}: I\right\rangle$,

$$
\begin{equation*}
\mathrm{T}=\left\langle\left(\mathrm{m}_{1}+\ldots+\mathrm{m}_{\mathrm{r}}\right)^{\mathrm{r}}-\mathrm{km}+\mathrm{mx} \mathrm{~m}_{1}+\ldots+\mathrm{mx}_{\mathrm{r}}: 1\right) \subseteq \mathrm{S} . \tag{22}
\end{equation*}
$$

PROOF: It was shown in [l] that S is closed under multiplication. Hence, since

$$
\begin{equation*}
m_{1} S+\ldots+m_{r} S \subseteq S \tag{23}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left(m_{1} S+\ldots+m_{r} S\right)^{t} \subseteq S \tag{24}
\end{equation*}
$$

for all t $\in \mathbf{P}$. In particular, (24) holds for $t=r$. Writing $t=r$ in (24), we have

$$
\begin{equation*}
\sum_{i_{-}=1} \sum_{i_{1}=1} m_{i_{1}} \cdots m_{i_{r}} S^{r} \subseteq S ; \tag{25}
\end{equation*}
$$

but, since $l \in S$ and $S^{r} \subseteq S$, (25) implies

$$
\begin{equation*}
\left(m_{1}+\ldots+m_{r}\right)^{r}-r!m_{1} \ldots m_{r}+\sum_{i=1}^{r!} m_{1} \ldots m_{r} s \subset S \tag{26}
\end{equation*}
$$

Hence, S is closed under the operation $\left(m_{1}+\ldots+m_{r}\right)^{r}-k m+m_{1} x_{1}+\ldots+m_{r} x_{r}$; also, $\quad l_{\epsilon} S$. Now we use the fact that T is a subset of every set X closed under this operation provided leX. Since S satisfies these conditions, we have $T \mathrm{C}$, and this completes the proof.

COROLLARY OF THEOREM 3: Suppose $\ell \in \mathbf{P}$ satisfies $k^{\ell}-k^{\ell-1}>m-1$. Then

$$
\begin{equation*}
1+\left(\left(m l+\ldots+m_{r}\right)^{r}-1\right)\left(\frac{k^{\ell} m^{\ell}-1}{k m-1}\right)+\left(\left(m_{1}+\ldots+m_{r}\right)^{r}-1\right) m^{\ell} N \subseteq S \tag{27}
\end{equation*}
$$

PROOF : The set T defined in (22) is an affine transformation of the set $R=\left\langle m x_{l}+\ldots \ldots+x_{k} ; I\right\rangle$. In fact, using Corollary 1 of Theorem 9 proved in [I], we have

$$
\begin{equation*}
\mathrm{T}=\frac{\left(\left(m_{1}+\ldots+m_{r}\right)^{r}-1\right) R-\left(m_{1}+\ldots+m_{r}\right)^{r}+k m}{k m-1} \tag{28}
\end{equation*}
$$

Furthermore, (21) asserts that R contains an arithmetic progression A. Thus, T contains the set obtained by replacing R with A in the right number of (28), and this gives (27).

THEOREM 4: Suppose $a, d, r-1, m_{1}, \ldots, m_{r} \in P, \quad(a, d)=\left(m_{1}, \ldots, m_{r}\right)^{r}=1$, and let $S=\left\langle m_{1} X_{1}+\ldots+m \underset{r}{x} \underset{r}{\dot{x}} 1\right\rangle$. If $a+d N \subseteq S$, then S is a per-set.

PROOF: Let $a_{1}, \ldots, a_{h} \in \mathbf{P}$ denote representatives of all the residue classes modulo d entered by S . We suppose the a's are ordered so that $a_{l} \equiv l(\bmod d)$, and for each. $j \in[2, h]$ there exist elements $b_{1}, 0$ 込 $\left\{a_{1}, \ldots, a_{j-1}\right\}$ such that $a_{j} \equiv m_{-1} p_{1}+\ldots+m_{r} b_{r}(\bmod d)$. Now we show by induction on t that $a a_{t}+d N \subset S . S i n c e a_{1} \equiv l(\bmod d)$, $a a_{1} \equiv a(\bmod d), \quad$ and

$$
\begin{equation*}
a_{1} a+d N \subseteq a+d N _\subset \mathbf{S} . \tag{29}
\end{equation*}
$$

Suppose $a_{i} a^{+} d N \subseteq S$ for $i=1, \ldots, t$ where $t>1$. We have $a_{t+1} \equiv m_{1} b_{1}+\ldots+m_{r} b_{r}(\bmod d) \quad$ for certain elements
$b_{1}, \ldots, b_{r} \in\left\{a_{1}, \ldots, a_{t}\right\}$; also, we have supposed $b_{i} a+d \mathbb{N} \subset S$ for $i=1, \ldots, r$. Using the fact that $m_{1} \mathbb{N}+\ldots+m_{r} \mathbb{N} \doteq N$, and applying Lemma 5 of [1] we have

$$
\begin{equation*}
a_{t+1} a+d N \doteq \sum_{i=1}^{r} m_{i}\left(a b_{i}+d N\right) \subseteq S \tag{30}
\end{equation*}
$$

It follows by induction that

$$
\begin{equation*}
a_{t} a+d N \subseteq S \tag{31}
\end{equation*}
$$

for $t=1, \ldots, h$.
Recall that S is closed under multiplication. Hence, for each $i \in P$ there exists $c_{i} \in\left\{a_{i} \mid\right.$ [0 100_{m}^{m} m such that $a^{2} \equiv c_{i}(\bmod d)$. In particular, if u is the order of $a(\bmod d)$, then $a^{u-1} \equiv c_{u 1}(\bmod d)$ and $c_{u-1}{ }^{a} \equiv l(\bmod d)$. But $c_{u} I^{a+} d N \subseteq S$ by (31), and this implies $I+d N \subseteq S$.

The numbers a_{1}, \ldots, ah were selected so that

$$
\begin{equation*}
S \subseteq \bigcup_{i=1}^{h}\left(a_{i}+d N\right) \tag{32}
\end{equation*}
$$

Furthermore, since $I+d N c S$ we can write $a=1$ in (31) and conclude that

$$
\mathbf{U}_{i=1}^{h}\left(a_{i}+d N\right) \Subset \mathbf{s}
$$

Together (32) and (33) imply

$$
\begin{align*}
& \text { h } \\
& \underset{i=1}{\mathbf{U}}\left(a_{i}+\partial N\right) \doteq S, \tag{34}
\end{align*}
$$

so S is equal to a per-set with a finite subset deleted from it. It follows from Lemma 2 of [1] that S is a per-set. This completes the proof.

THEOREM 5: Suppose $r-1, m_{1}$, . ., $m_{r} \in P$ with $\left(m_{1}, \ldots, m_{r}\right)=\left(m_{1}+\ldots \ldots+m_{r}\right)=I$ where $m=m_{1} \ldots m_{r}$. Then $S=\left\langle m_{1} x_{1}+\ldots+m_{r} x_{r}: 1\right\rangle$ is a per-set.

PROOF: Let a+ $d N$ denote the arithmetic progression given in (27), and note that $\left(m, m_{1}+\ldots+m \underset{r}{)}=1\right.$ implies $(a, d)=1$. This is easily checked by noting that $a \equiv 1 \bmod \left(\left(m_{1}+\ldots \ldots+m_{r}\right)^{r}-1\right)$, and $a \equiv\left(m_{1}+\ldots+m_{r}\right)^{r}(\bmod m) \quad$ since $\left(k_{m}^{\ell}-1\right) /(k m-1) \equiv I(\bmod m) \quad$. Since $\left(m_{1}, \ldots . m_{r}\right)=1$, we can apply Theorem 4 to conclude that S is a per-set. This completes the proof.

COROLLARY OF THEOREM 5: If $m, n \in \mathbf{P}$ with $(m, n)=1$, then $\langle m x+n y: 1\rangle$ is a per-set.

PROOF: If $(m, n)=1$, then $(m, m+n)=(n, m+n)=(m n, m+n)=1$, and the result follows from Theorem 5.

There are infinitely many sets $\left\langle m_{1} x_{1}+\ldots+m_{r} x_{r}: 1\right\rangle$ with $r-1, m_{1}, \ldots, m_{r} \in \mathbf{P}$ and $\left(m_{1}, \ldots m_{r}\right)=1$ whose status as a per-set or non-per-set is left open by Theorem 5 or Theorem 10 of [l]. For example, neither Theorem 5 nor Theorem 10 applies to sets $\left\langle m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}: 1\right)$ where $m_{1}=a b(a y+b z), m_{2}=a c y, m_{3}=b c z$ with a, b, c, y, z natural numbers chosen so that $\left(m_{1}, m_{2}, m_{3}\right)=1$.

Reference
[l] D. A. Klarner and R. Rado, "Arithmetic properties of certain recursively defined sets," to appear.

