STAN-CS-71-237 ~ SU-SEL-71-050

(3'

the Divide-Sort
Sorting ‘\ietworks

A Generalization of t
Merge Strategy for

by

David C. Van Voorhis

August 1971

Technical Report No. 16

This work was conducted while the author was a National Science Foundation
draduate fellow and was partially supported by the Joint Services Electronics
Program U.S.Army, U.S. Navy, and U.S. Air Force under Contract N-00014-
67-A-0112-0044 and by the National Science Foundation under Grant GJ1180.

DIGITAL SYSTEIMS LABORBTORY
STANFORD ELECTRONICS LREORRTORIES

STANFORD IIIII_UEHSI'I'V - STANFORD, CALIFORNIR

STAN-CS-71-237 SEL- 71-050

A GENERALIZATION OF THE DIVIDE-SORT-MERGE
STRATEGY FOR SORTING NETWORKS

by

David C. Van Voorhis

August 1971

Technical Report no. 16

DIGITAL SYSTEMS LABORATORY

Stanford Electroﬁics Laboratories Computer Science Department

Stanford University

Stanford, California

This work was conducted while the author was a National Science Foundation
graduate fellow and was partially supported by the Joint Services Electronics
Program U.S. Army, U.S. Navy, and U.S. Air Force under contract N-OOOlL-67-A-
0112-004k and by the National Science Foundation under grant GJ 1180.

A GENERALIZATION OF THE DIVIDE-SORT-MERGE

STRATEGY FOR SORTING NETWORKS

by

David C. Van Voorhis

ABSTRACT

With a few notable exceptions the beét sorting networks known havce
employed a "divide-sort-merge'' strategy. That is, the N inputs are
divided into 2 groups - - normally of size [3N] and |#N] -
that are sorted independently and then ''merged' together to form a single
sorted sequence. An N-sorter network that uses this strategy consists
of 2 smaller sorting networks followed by a merge network. The best
merge networks known are also constructed recursively, using 2 smaller
merge networks followed by a simple arrangement of [#N] - 1 comparators.

We consider a genefalization of the divide-sort-merge strategy in
which the N inputs are divided into g > 2 disjoint groups that are

sorted independently and then merged together. The merge network that

‘combines these g sorted groups uses d > 2 smaller merge networks as

an initial subnetwork. The two parameters g and d together define

what we call a " [g,d] " strategy.

* Here |x] denotes the smallest integer greater than or equal to x,
whereas |x| denotes the largest integer less than or equal to x.

ii

A [g,d] N-sorter network consists of g smaller sorting networks
followed by a [g,d] merge network. The initial portion of the [g,d]
merge network consists of d smaller merge networks; the final portion,
which we call the '"f-network," includes whatever additional comparators
are required to complete the merge. When g =d =2, the f-network is
a simple arrangement of [%N] - 1 comparators; however, for larger
g,d the structure of the (g,d] f-network becomes increasingly complicated.

In this paper we describe how to construct [g,d] f-networks for
arbitrary g,d. For N > 8 the resulting [g,d] N-sorter networks are
more economical than any previous networks that use the divide-sort-
merge strategy; for N > 34 the resulting netwbrks are more economical
than previous networks of any construction. The [4,4] N-sorter network
‘described in this paper requires % N(logaN)2 - % N(loggN) + O(N)
comparators, which represents an asymptotic improvement of %é N(loggN)
comparators over the best previous N-sorter. We indicate that special
constructions (not described in this papef) have been found for [2r,2r]
f-networks, which lead to an N-sorter network that requires only

.25 N(10g2N)2 - .372 N(log2N) + O(N) comparators.

TABLE OF CONTENTS

I. Introduction

II. The Divide-Sort-Merge Strategy

I11. The [3,3] Merge Strategy . . .

1v. [g,d] Sorting Networks .

V. Constructing Large [g,d] f-Networks .

VI. The Economy of [g,d] N-Sorter Networks

VIiIl. Conclusion

Appendix A: Proof of Theorem 3 .

Appendix B: A Lower Bound for f (N) . .
[g) d]

References . . + & ¢ ¢ « « o o &

page

13

19

33

L7

57

59

63

65

iii

iv

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Fiéure
Figure
Figure
Figure
Figure
Figure

Figure

Table 1

Table 2

=

O oo N O W

11:
12:
13:
14
15:

LIST OF FIGURES

L_Sorter Network

o 0

Which of These Is a L-Sorter Network? .

Testing Comparator Networks . .

(m4n)-Sorter Network T . . +» . .+ « . . .

Bose and Nelson's (m,n) Merge Network

Batcher's (m,n) Merge Network

Batcher's 8-Sorter Network . .

.

(3,3] (myn,p) Merge Network

[3,3] 12-Sorter Network

location of Zeros inV

Partial Ordering in V when g=3, d=lk,

Partial Ordering in Ve e e e e s e

[3,6] 18-Sorter Network
V for the [6,3] 18-Sorter . . .
[6,3] 18-Sorter Network

Best 18 Sorter Network Known .

LIST OF TABLES

Small f- NetworkS e & o o e o s o o o

Sg(N) for g =2, 3, and 4, and N<36

page

o o 1 W1 W

12
14
17
23
25
3L
36
4o
41

51

27 - 29
49 - 50

ACKNOWLEDGMENTS

The author is greatly indebted to Dr. Harold S. Stone for his promp:
and careful attention to several versions of this paper, and for his many
constructive suggestions that have been encorporated, The author also
wishes Lo thank Dr. Robert W, Floyd and Dr. Donald E, Knuth, who each

made several helpful suggestions.

I. Introduction

A comparator network with 4 inputs is illustrated in Fig. 1(a).

Each of the 5 comparators, labeled A, B, C, D, and E, compares its
two inputs and emits the smaller on its higher output lead and the larger
on its lower output lead. An abbreviated diagram for this comparator net-
work is given in Fig. 1(b), where each comparator is replaced by a vertical
line connecting the two comparands.

A comparator network with N input and output leads is called an

*
N-sorter network, or simply an N-sorter, if for any multiset of inputs

I = {11,12,...,1N}, the resulting outputs O = [ol,o?,...,oN} satisfy:
1) O is a permutation of I; and 2) o‘j <o, if j < k. The net-

work depicted in Fig. 1 is a L-sorter, since comparators A through D

move the smallest input to o and the largest input to o and then

1 42

E orders the remaining two inputs,

From an engineering viewpoint it may be desirable to use as few
comparators as possible when constructing a network to sort N inputs.
(An alternative design objective would be to minimize the delay required
to sort N items.) Let S(N) represent the minimum number of compara-
tors required by an N—softer network. R. W. Floyd and D. E, Knuth [2]
have determined S(N) for N < 8 by proving a lower bound for S(N)
that is precisely equal to the number of comparators actually contained
in the most economical N-sorter network known, However, for N > 8, the
value of S(N) and even the asymptotic behavior of the function remain

an open question. The strongest lower bound known for S(N), proved by

*+ A multiset is like a set except that it may contain repetitions of
elements. See D. E. Knuth [1].

i

A c
..-i-\ E
i, — SN
B | D
(a)

N o

[V
W

" Fig. 1.

(b)

4~-gorter network,

D. Van Voorhis [3], increases as N(logeN), whereas the strongest upper
bound known - - i.,e, the number of comparators actually required by the
most economical N-sorter known, designed by K. E. Batcher [4] and im-
proved by M. W. Green [5] - - increases as N(loggN)e.

Batcher's N-sorter network contains B(N) comparators, where

B(N) = %N(log2N)2 - %:N(logzN) + N + 0(1). (1)
Although Green has been able to improve upon Batcher's networks, the net
effect of Green's modification is simply to reduce the coefficient in the
linear term of Equation (1) from unity to ‘%%. In this paper we present
an extension of Batcher's constructions which reduces the coefficient of
N(loggN) in (1) from - & to - %. Our construction achieves an im-
provgment of ~n{§ N(log2N) over the best previous networks, although
the asymptotic growth is still %N(loggN)z. We indicate that a modifi-

cation of our construction, which is too complicated to include here,

reduces the coefficient of N(10g2N) in (1) to ~-.372.

II. The Divide-sort-merge Strategy

It is not always easy to determine whether a given comparator net-
work is an N-sorter. For example, it can be shown that the comparator
network in Fig. 2(b) is a l-sorter whereas that in Fig. 2(a) is not. One
way to check a network is to see whether it will sort all N permutations
of the numbers 1,2,...,N as inputs. However, the following important
theorgm reduces to 2N the number of input patterns required to test

the design of an N-sorter network, -

Theorem: (Zero-One Principle)
A comparator network with N inputs and N outputs is an N-sorter
if and only if it will sort all 2N combinations of N inputs for which

each input is either O or 1. (See[2, 5].)

Proof:*

The "only if" portion of the theorem is obvious; to prove the re-
mainder of the theorem we show that if a comparator network C is not
an N-sorter network, then there is at least one combination of O's and
1's as inputs that C fails to sort.

Suppose that C is not an N-sorter network, so that for some mul-

tiset of inputs I

I

{11,12,...,1N} it yields the incompletely ordered
outputs O(I) = {01,02,...,ON}. This means that, although O(I) is a

for some indices satisfying 1 < Jj < k < N.

permutation of I, o.j > oy

Now it is easily verified (by induction) that if f(x) is any non-

decreasing function (i.e. if x < y. implies that £(x) < £(y),) then

* This proof was suggested to the author by D. E. Knuth.

(a)

o, i Iﬁ
o, 12
o3 13
0y, i,

(b)

Fig. 2. Which of these is a 4-sorter network?
1 1 0 1 0 0
01 11 —-
0 0 1 0 1 0
2 2 -
1 1 0 1 0 1
. o3 13
1o o[o | 1] s
> O’# 1“’ _
(a)
*ig. 3. Testing Comparator Networks.
i X ——®]
17 - m-sorter } R
. network . (m,n)
i ‘ X
n mn merge
i y) .
m+ . n-sorter } network .
. network .
L — In — F— mn

Fig. 4,

(mtn)-sorter network T.

(o)

since max[f(x),f(y)] = f(max[x,y]),

O(tf(il),f(ig),---:f(iN)}) = {f(ol),f(oe),...,f(oN)}. (2)
Therefore, using
o, x <0
£f(x) = (3)
1, X > Ok’
we obtain the inputs I = {f(il)’f(ig)""’f(iN)}’ which is a combi-
nation of O's and 1's that C fails to sort, since f(oj) =1>
f(Ok) = 0.
Q.E.D.

The theorem is illustrated in Fig. 3. The inputs I = {1,0,1,0}
are applied to the 4 input leads of each network in Fig. 2. The first
network fails to arrange the inputs into non-decreasing order; therefore,
it is not a L-sorter network. The second network is a L-sorter since it
will order properly these inputs and also the other 15 combinations of
O's and 1's ;s inputs. V

Although 2N grows much more slowly than N!, it is not feasible to
test_large networks for 2N different combinations of inputs. Therefore,
if we desire 1arge>sorting networks, we must build them in such a way
that we can prove "by construction' that they will arrange all combina-
tions of inputs into non-decreasing order. The Zero-One Principle is

helpful in developing such proofs.

The most successful strategy for designing large sorting networks,

suggested by R. C. Bose and R. J. Nelson L 6], has been to build them

out of smallier sorting uts are divided into two group

n

that are sorted separately and then combined, or merged, to form a sin-

gle sorted multiset. This divide-sort-merge strategy is illustrated in

Fig. 4 by the N-sorter network T, which consists of:
i) an m-sorter network that operates on the inputs
{il,ie,...,im} to produce the sorted multiset X =
{xl:x2: ce ’xm} ; and .
ii) an n-sorter network, where n = N - m, that trans-
forms the inputs {i ,,1 m+2,..., N} into the sorted
multiset Y = {yl,y2,...,yn}; followed by

iii) an (m,n) merge network that combines X and Y into

the single sorted multiset O = {0,,0,,..., oy}

We can use the divide-sort merge strategy recursively to achieve
N-sorter networks for arbitrary N, brovided we can construct the
necessary merge networks. Bose and Nelson suggested building an (myn)
merge network out of three smaller merge netwérks arranged in a pattern
resembling the final three comparators of the 4-sorter in Fig. 1. For
example, when m and n are both even and m < n, Bose and Nelson's
(m,n) merge network consists of the following. (see Fig. 5.)

EN1: a (3m,3n) merge network that determines the smallest
im members of O, namely 01’02""’°%m; and
BN2: a (%m,2n) merge network that determines the largest

3m members of O; followed by

(4m,3n)
merge

network

o

(3m,4n)
merge

network

Fig.

(3n,3n)
merge

network

5, Bose and Nelson's (m,n) merge network.

($m,%n)
merge

network

(%m'%n)
merge

network

>

Fig. 6. Batcher's (m,n) merge network.

BN3: a (%n,3n) merge network that determines the remaining
n members of O.

K. E. Batcher [4 1 proposed a different merging strategy which is
more economical than Bose and Nelson's, and which has not been improved
upon, The general (m,n) merge network is defined recursively, beginning
with the (1,1) merge network, which is a single comparator. When m
and n are both even integers greater than one, Batcher's (m,n) merge
network consists of the following. (See Fig. 6.)

Bl: a (4m,3n) merge network that combines the odd members
X = {xl,x3,...,xm_1} and Y = {yl,y3,...,yn_1} to
form the odd members of an intermediate multiset v,
namely V_ = {vl,v3,...,vm+n_1}; and

B2: a (%m,%n) merge network that merges the even members
X, and Y to form V_ = {vg,vu,...,vm+n}; followed by

B3: the %(m+n)-1 comparators v 0 < k < $(m+n)-1,

ok+2 " 2k+3°

Since Batcher's (m,n) merge network is the simplest example of a more
general strategy described in the next two sections, it is instructive to
work through the proof that the network described above and depicted in
Fig. 6 leaves the outputs O = {01’02"°"0m+n} sorted.

Suppose that the network T depicted in Fig. L} consists of any
m-sorter network, any n-sorter network, and Batcher's (m,n) merge net-
work. Clearly the (m,n) merge network orders O iff t is an (mtn)-
sorter network, Therefore, the Zero-One Principle guarantees that the

(myn) merge network orders O iff T sorts all combinations of m+n

O's and 1l's as inputs.

10

For any combination of O's and 1l's as inputs to T, the m-
sorter sorts X while the n-sorter sorts Y. The sorted multiset X
consists of r O's followed by m-r 1's, and Y contains s O's
followed by n-s 1's, where for different combinations of inputs to
T, r and s assume all combinations of the values 0 < r < m;
0<s<n, Let n, represent the number of O's that go into Vs
that is, the number of O's in X plus the number in Y- Let n

represent the number of O's that go into Ve. Then
n <n <n_+ 2, (4)

since each of the two sorted multisets X and Y contributes either the
- same number of O's to Vo and Ve or else one more O to Vo'
After the odd and even members of X and Y have been merged to

form v, and Voo the following situation exists:

1) v, and V_ are each ordered.

2) The first 2ne elements of V are, therefore, all O.
3) The remaining m + n - 2ne elements are:
a) all 1 ifn =n; or
o e
b) O followed by 1's if n =n_+1; or

c) 010 followed by 1's if n=n, +2.

The elements of V. are sorted except in Case c) which requires an

additional comparator for the adjacent pair Vv For

on +2 * Von +3°
e e
different combinations of inputs to T, n_ and n, will assume all of

the values O,1,...,%(m+n). Case c) can occur for each of the possible

values of n, such that n =mn_+ 2 < $(m+n). Therefore, the comparators

11

listed in B3 above are both necessary and sufficient to complete the

merge.
Batcher's merge strategy is illustrated by the 8-sorter network in
Fig. 7. The 1
X and Y. (Note that each L4-sorter consists of two 2-sorters, i.e.
comparators, followed by a (2,2) merge network.) The three comparators
in Part B merge X = {xl,x3} and Y = {yl,y3} to form V_ = {vl,v3,
v5,v7}, while the three comparators in Part C comprise a (2,2) merge
network for Xe and Ye. The comparators in Part D are those called

for in B3, which combine Vo and V to form O.
e

12

Figt 70

Part B Part C

Batcher's 8-sorter network,

X V. (o]
T 1—T 1 1
JT T X2 1T V2 T 2
J 3 T 3 °3
y T Vi * oy
;I y1 — ¥ V5 > O5
r T Yo e Vg —p—— g
l‘ _ y3 < V7 h O7
1 Y, & vg og

Part A Part D

13

I1I1. The [3,3] Merge Strategy

An obvious extension of the divide-sort-merge strategy as described
above is to partition the N inputs into g > 2 groups that are sorted
separately and then merged together. An N-sorter network that uses this

g-way divide-sort-merge strategy consists of g sorting networks of size

Nl’N2""’Ng’ where 3% N = N, followed by an (Nl,N

i1 N ,...,Ng) merge

2
network. As an extension of Batcher's merge strategy, we can design
g-way merge networks that begin with d > 2 smaller g-way merge networks,
where d 1is a common divisor of Nl’N2""’Ng'

The two parameters g and d together define what we shall call

the [g,d] merge strategy. We say, then, that Batcher's networks described

in the last section use the [2,2] strategy.

A [g,d] (Nl,N ,...,Ng) merge network consists of d (N /d,...,Ng/d/

2

merge networks followed by whatever additional comparators are required

1

to complete the merge. We shall call the network comprising these final

additional comparators the [g,d] f-network. The [2,2] f-network, namely

the comparators listed in part B3 of Batcher's merge network, is par-
ticularly simple., In the remainder of this section we illustrate a
procedure for designing [g,d] f-networks for arbitrary g,d, by con-
sidering the case g =d = 3,

Suppose that we wish to design an (m,n,p) merge network that will

- combine the three sorted multisets X = {xl,xg,...,xm}, Y = {yl,yg,....yn}.

and Z = {zl,ze,...,zp} into the single sorted multiset O = {01,02,...,

°m+n+p}- If my n, and p are all multiples of 3, then the [,3] merge

network consists of the following. (See Fig. 8.

1L

Q+:+Eo —
1-d4uu
Z-dsusur, __|

g-dsuqur, __}

=du4u
G-dquqm

jI0M}8U
-3
£'c

*jaomjeu adaew (d'u‘w) [€'c] °g *dtd
— ..m.fﬁtzb
b 1-dauqur |
N..QEE> qJIOoM3BU
p—— mlg+:+&> « | e8asu
d
— T, |t
e G=dyuqu aaa
. . | Axomzau
. . adaou
. . Am.m.m,
aom
N
S, jJaoMj}aU
A . EYRE .
€a €6eC,
2 (d'om
IS/

4

15

M31l: an (m/3,n/3,p/3) merge network that combines X, =
{Xl’xh’°"’xm—2}’ Y, = {yl,yu,...,yn_g}, and Z_ =
{zl’zh""’zp—Q} to form V_ = {vl’vu""’vm+n+p—2};

M32: an (m/3,n/3,p/3) merge network that combines X =

{x2,X5)--';xm_1}: Yb = {yg’y5""’yn_1}’ and Zb =

{22,z5,...,zp_1} to form Vv, = {Vg’v5""’vm+n+p—l};

M33: an (m/3,n/3,p/3) merge network that combines X, =
{x3,x6,...,xm}, Yc =’{y3’y6""’yn}’ and Zc = {23:

z6,...,zp} to form V_ = {v3,v6,..., }; followed by

v
m+n+p
M34: the [3,3] f-network that we have yet to define.

Now the Zero-One Principle guarantees‘that, without loss of gener-
ality, we may assume that all members of X, Y, and Z are either 0
or 1. (To see that this is so, consider an (m+n+p)-sorter network that
consists of: an m-sorter that produces the sorted multiset X; an
n-sorter that produces Y; and a p-sorter that produces Z; followed

by an (m,n,p) merge network.) When all members of X, Y, and Z are

either O or 1, we find that the number of . O's in N Vs and

V satisfies
c
n <n <n <n, + 3. (5)

Therefore, after the three 3-way merges described by M31 through M33,
the following situation exists:

1) Vs V and V_ are each ordered.

b,
2) The first 3n_ elements of V are all O.

16

3) If n =N =n

a b c? then the remaining elements of V are

all 1; otherwise, the remaining elements exhibit one of

the following patterns followed by 1's,

a) O if‘ no=n +1=n +]1;
b) 00 if n =n =n_+1;
c) 0110 if n. =n_ +2=n_+ 2;
a b c
d) 0010 if n_ =n_+1=n_ +2;
a b c
e) 00100 if n =n =n + 2;
a b c
£) 0110110 if n =n +3=n_+3;
g) 0010110 if n =mn +2=n_+3;
n) 0010010 if n =n +1=n 4 3;
i) 00100100 if n =n =n_ +3.

It is readily verified that patterns c¢) through i) are all sorted

by the following sequence of comparators,

¥3n_+37"3n_+7
v v

3n +2° ' 3n_+4’
© ¢ (6)

¥3n_+3""3n_+5
v3nc+3:v3nc+l+’

where t = (m+n+p)/3. These comparators constitute the [3,3] f-network.
The [3,3] strategy is illustrated by the 1l2-sorter in Fig. 9. The
inputs are initially partitioned into the three multisets {il’i2’i3’ih’

~ 15,i6}, {17,18,19}, and {110’111’112} that are sorted separately.

[3,3] f-network

Fig. 9. [3.3] 12-sorter network.

18

The networks required to sort these three multisets are each abbreviated
by double vertical lines connecting the appropriate comparands. The
(6,3,3) merge network begins with three (2,1,1) merge networks that form

vV, V

and V . These merge networks, which are abbreviated by a
a’ b’ c ’

single vertical line, are simply h-sorters without the initial compara-
tor connecting the pair from X. The remaining 11 comparators constitute

the [3,3] f-network defined by (6).

(=]
\D

1v. [g,d] Sorting Networks

For every pair of integers g,d > 2 we can construct N-sorter
networks using g small sorting networks followed by a {g,d] merge
network which, by definition, begins with d small merge netwqus. A

sorting network that begins with g sorting networks and d merge net-

works will be called a [g,d] sorting network, even if the g sorting

networks and d merge networks do not employ the [g,d] strategy in-
ternally. For example, the l2-sorter in Fig. 9 is called a [3,3]
sorting network regardless of the construction of the initial f-sorter
and the small merge networks,
In order to facilitate the general discussion of [g,d] sorting net-
works, we adopt the following conventions.
1) The purpose of an N-sorter network is to accept as input the
unordered multiset I = {11,12,...,1N} and to produce as
output the sorted multiset O = {01,02,...,0N}, where O is

a permutation of I and oy <o,< ... <0 The Zero-One

- 2= N°
Principle allows us to assume, without loss of gemnerality,
that all members of I are either O or 1. We make this
assumption thrdgghout the remainder of this paper.

2) The g initial sorting networks, labeled 812805025, each
operate on an integral multiple of d members of I. The out-
puts of these g sorting networks together form a partially
ordered multiset X = {xl,xe,...,xN}, where x, is the smallest

output from s X, is the second smallest output from Sy5

1’

ee.y and x is the largest output from Sg'

N

20

th
The merge network 1 j
3) J rg rk, < J < d, operates on x(i—l)d+j’

1 < i < N/d to produce 1 <i<N/d.

V(i-1)a+j?
h) The [g,d] f-network operates on V to produce O.
The transformation from the unordered multiset I to the completely

ordered multiset (0 may be summarized by

g sorting d merge v f-network
networks networks

0.

The [g,d] f-network is defined informally to be any network that will
complete the ordering of the intermediate multiset V achieved in the
[g,d] N-sorter network, N = td. Before givihg a formal definition, let
us examine the partial ordering in V. It is convenient to consider V

"to be a t x d array, where

Vii,35) = Y(i-1)a+5° , (1)

The t rows and d columns of V are given by

Vi) = 1es5za (V@i TSTED (8)
V(x,3) 1<ic<t {V(i,j) ’ l<i=sd (9)

Note that the column V(* 3)? 1< j<d, 1is completely ordered since
2

.th
its t members are the t outputs of mj, the j merge network,

If the kth initial sorting network Sy accepts n O's as

inputs, then the uniform distribution of the elements of X among the

no
o

d merge networks guarantees that L(nk+d—j)/dj of these n, O's are

passed to merge network m.. Therefore, the total number of O's that

v

goes into mj, and into V(*,j)’ is given by
n,, .\ = z n +d-j)/d 1<j<d. ’ 0
) "1k <e L(mgra-s)za], 1< < (10)
We may use Equation (10) to show that
n < n .. <n < n + g (11
(#,a) S P(x,a1) S SR(61) S na) T E (1)

Equations -(4) and (5) are special cases of (11).
We have seen that the d columns V(¥ j) are each ordered. The
)

following theorem specifies the remaining partial ordering in V.

Theorem 1:

Consider the Boolean multiset V = {vl,ve,...,vN}, where N = td.
Suppose that the d columns V(*,j)’ given by (9), are each ordered.
Then

a) the t rows V(i,*)’ given by (8), are also each ordered

if- and only if the number of O's in V(* 3) satisfies
. 2

n <n vee < 1 H 12
(%,a) S B(x,a-1) S 000 S (1) (22)
and
b the relation n <n + implies that
) the (%,1) S B(x,a) T E P
v < V,. 1 <i<t-g. 1
(i:d) - (1+g,1)’ - - & (3>

[AV]
>

Proof:

The theorem is illustrated in Fig. 10. Since each column V, .,
\ yJ/

is ordered, the upper n(* 3) elements of V(* j) " " that is,
.4 /

\
V(i,j)’ 1<i< n(*,j) - - are all O and the remaining

t - n(*,j) elements are 1, If we draw a line from left to
right in V representing the step function h(j) =t - n(*,j),
then all elements of V above h are O, whereas all elements
below h are 1. Now the rows V(i,*) are all ordered iff
no 1 appears to the left of a O in any row. Clearly this is

the case iff the line h(j) separating O's from 1's is

non-decreasing, that is, iff

ERx,1) S FR(x,2) S 0r S F Ry q) (1)

(see Fig. 10(b).) Equation (14) is equivalent to Equation (12).

Since V 1is Boolean

Viseg,1) =1 = V(i,9) S V(atg,1) : (15)

Also, since V(is ordered,

*,3)

V(i%j) =0 <= n(x,§) > i. (16)

Therefore, if n(*,l) < n(*,d) + g, then

23

‘A UT SOJ82Z JO UOT3ED07]

*POIOpI) SuumTO) pue smoy (q)

‘01 "9Td

8,0

(Px),

8,7 s ¥ S 1
——)
R
8,0 540 0
(€ %)y | (%) | (T0%)y

8,0
(P*x)y

Av.*v>

(€'%), (2'%), (T's),

An.*v>

‘PaaspIp swumioy (®)

5,1 Sy 1 5,1
——
Posen—
8,0 8,0 5,0
(€ %)yl (@) (Vx)y

(€55, (2%), (T%),

2l

vV,. =0 => i+
(i+g,1) B(x,1) 2 178

= V(,0) S V(avg,1) a7)

Since the columns V(* 3) are ordered, and since n(* i) satisfies
J J

(11), Theorem 1 and the transitivity of the relation "less than or equal

to" imply the following corollary.

Corollary 1:

Let V = {vl’v2’°"’VN}’ N = td, be the intermediate multiset
achieved by the [g,d] N-sorter network T. Then for any multiset of
inputs to T V,, .\ <V if

’ (1,3) = "(z,s)
r>i and s > J; OR

a)
b) r > i+g.

v

The partial ordering in V is illustrated in Fig. 11, for the case

g=3, d=L4, t =6, with an arrow from V(i to V(r s) representing
)

»3)
*
the relation V(i j) < V(r s)' R. W. Floyd has pointed out that the
’ -)

partial ordering in V is exactly characterized by Corollary 1 and Fig. 1ll.

¥ Private communication,

Fig. 11.

Partial ordering in V

when g= 3, d=4,

t =6,

26

A
. . AA A
By this we mean that if V = {vl,v ..,VN} is any Boolean multiset that

2’
satisfies the partial ordering specified for V by Corollary 1, then

there is at least one combination of inputs to T that achieves V = C.

The sublety of this observation is best illustrated by a partial ordering
that is not exactly characterized. Consider the comparator network that
results from removing comparators D and E from the L4-sorter in Fig. 1.
The partial ordering in the multiset O does not include either °, <o

3

or o, < o), since o({o0,1,0,1}) = {0,1,0,1} and 0({1,1,0,0}) = {0,1,1,0}.

42
However, no combination of inputs will achieve O = {0,1,0,0}.

We have defined a [g,d] f-network informally as a network that will
complete the ordering of the intermediate multiset V achieved in the

[g,d] N-sorter network, N = td. The following is a more formal

definition.

Definition 1:

A sequence of comparators is called a [g,d] f-network for N = td

items if and only if it will complete the ordering of the multiset

vV = {vl’VE""’VN}’ when a) the columns V() of V, given by (9), are

*’J

each ordered and b) Bx,3) satisfies (11).

-)(-,J
We can construct [g,d] f-networks for arbitrary g,d by i) using
(11) to determine what unsorted patterns of O's and 1's remain in V;
and ii) finding a sequence of comparators that will order these
unsorted patterns. Following this procedure we have derived f-networks

for g,d < 4; the best f-networks obtained are tabulated in Table 1.

Strategy f-network for N-sorter, = td Q[g,d](N)
[2,2] V(i,2):v(i+1,1)’ S _<_ t-1 '%’N -1
V(1,2)V(141,1)’ it
23] Yw,3)Vm,ey TSES Y o3
',V PR
Y(1,3) V(1 PETS
\ V.. < i< t-1;

[2,1'-] (i,’-l—) (1+1,2)’ - . - N -3
Y(1,2)7(1,3)’ SiEn
v(i,ll-):v(i'l'l,l)’ S S t-1.

V. V. <i< t-1;

(3,2] (1,2)7 (2,07 =02 N -3
V(i,l):v(i,E)’ -S < t-2.

(1,3 V(ar2,1) TS ESEE
A v < i< t-1;
i 1) — = ’

[3,3] (1,2)7(1+1,1) . -5

V(1,3 V(a2 PSS EH
S i S t-1.

V(1,3)V(i41,1)?

Table 1,

Small f-networks

27

28

Strategy f-network for N-sorter, N = td Q (N)
[g,d]

Y(1,4)7V(3,1)}
Vit-2,4) V(t,1)}
Y(1,3)V(1,u)}
(3,17 (3,2)°

V(t-2,3) "V (t-2,4)}

[3,4] Vit,1) V(t,2) : oN-12, Nel2
V1,3V (1s2,1) 2S1St3 | avn, w2
Vi)V (i2,2)? 2<1<t-3;
V(i,2):v(i+1_,1)’ 1<i<t-2;
V(i,u)“’(i+1,3y 2<1i<t-1
V(1,3) V(141,1) 1<i<t-1;
Ve, h)Viae1, o) 1S 1St
V1,2)V(,3) 2SisEl
Vi) V(ie1,1)y 1SiStl

[4,2] V(i,2)’v(i+2,_1)’ 1< <t-2 .
Vii,2) V(41,1 PSS tL

Table 1. (cont) Small f-networks.

Strategy f-network for N-sorter, N = td f[g,d]
Y(1,3)"V (4,1)°
V(t-3,3) Y (t,1)}
Vii,2)V(is2,1)’ 2 <i<t-3;
Vi1,3) Y (142, 2)7 2 <i<t-3;

s Vi1,3) Y (142,1)’ 1<i<t-2; oN-12, N=12;
Vii,2) ¥ (i+1,1) 1<1i<t-2; 2N-11, N>12.
V(1,3) Y (i41,2)’ 2 <i<t-l;
Vii,3) V(141,1) 1<i< t-1;
Y(2,1)(2,2)}
Vit-1,2)"V(¢-1,3)"
Vii,3) V (142,1)’ 1<ic<t-2;
Vi)V (142, 2)? 1<1< -2
Vii,2) V(141,1)’ 1<i<t-1;

[4,h4] MCEDRMCE N R ON - 11.

Vis,3) V(141,1)’ 1<i<t1;
V(i,u)’v(i+1,2)’ 1<i<t-1;
Vii,2) Y (4,3)” 2 <i<t-1;
V(i,h-):v(i+l,1)’ 1 <1 <t-1
Table 1, (cont) Small f-networks.

30

Except for the [3,4] and [4,3] f-networks, each of the tabulated
f-networks is completely described by a sequence of templates of the form
V(i,a):v(i+y,5) -- where 1 < QP S d, Y > 0, and a<vyd+p --
followed by a range for i, which is specified in terms of t = N/d. The
[3,4] and [4,3] f-networks are described by several specific comparators,
in addition to templates. Note that when N = 12, half of these specific
comparators are redundant and may be eliminated. For example, the second

comparator listed for the [3,4] f-network, namely V(t o 4>;V(be-
e

t,1)’
comes V " , Wwhich is the same as the first comparator listed.
(1,%)7°(3,1)
Let f[g d:I(N) represent the minimum number of comparators required
b

by a [g,d] f-network for N items. (Note that this function is only de-
fined when N is a multiple of d.) Since we have not proved that the
‘tabulated f-networks are minimal, we have labeled the number of compar-

A
ators that they require f[g d](N)' For each of the tabulated f-networks,
4

except the [3,4] and [4,3] f-networks, we find that

A

e, ™ = g, T “e,ap (20)
where a[g,d] is (l/d) times the number of templates and b[g,d] is
constant. The tabulated [3,4] and [4,3] f-networks are also described by
(18) for N > 12,

For large g,d it becomes increasingly difficult to derive an eco-
nomical [g,d] f—nefwork, since the number of patterns of O's and 1's
allowed by (11) increases rapidly. Let P(g,d) represent the number of
patterns of O's and 1's consistent with (11), that is, the number of

different combinations of values that n(*’l), n(*’g), can

? P(x,d-1)

31

assume for each value of n . With n abbrevi
(%,d) (*,3) reviated by nj,

we observe that

P(g,d) = T £ .3 1. (19)

n <n S +, <n < .
S e S 2 | "a*Pa-1"a-2

We may obtain a recurrence relation for P(g,d) by noting that

P(g,d) = z ’ z .o PN 1
<n_< -
nd n nd+g 1 ndsnesn1 nd<nd_1 d-2
+ T X 1
sn2£nd+g nd<nd 1 d—2

= P(g-1,d) + P(g,d-1). (20)

The solution to (20), with the boundary conditions P(1,d) =d, P(g,1) =1,
is simply
+d-1
P(g,d) = (5517) (21)

Note that (21) yields P(2,2) =3 and P(3,3) = 10, which agrees with

our analysis of the [2,2] and [3,3] merge networks.

When N > gd, the problem of designing an f-network that will order
P(g,d) patterns of O's and 1's represents a considerable reduction of
the original problem of designing an N-sorter network that will order 2

different input patterns. However, for large g,d, Wwe find that P(g,d)

becomes too large to permit an exhaustive test of a proposed design for
a [g,d] f-network., Therefore, for large g,d we must build f-networks

such a way that we can prove by construction' that they complete the

=)

i
ordering of V. Suitable procedures for constructing large (eg,d]

f-networks are given in the next section.

33

V. Constructing Large [g,d] f-networks

Our approach to the problem of deriving large sorting networks and
large [g,d] merge networks is to build them out of smaller sorting net-
works and smaller merge networks. We use the same approach to the
problem of designing large [g,d] f-networks. We will present two
construction methods in the form of theorems, Theorem 2 below describes
a procedure for constructing a [g,sd] f-network using d small [g,s]
f-networks and one [g,d] f-network. Theorem 3 describes a similar
procedure for building an [sg,d] f-network out of s small [g,d] and
one [s,d] f-networks. We may use these constructions and the f-networks
given in Table 1 to achieve f-networks for arbitrarily large g,d.

Before giving the theorems, we will describe an example, Suppose
we desire to construct a [3,6] f-network for the [3,6] 18-sorter net-
work, The partial ordering in the intermediate multiset V is depicted
in Fig. 12(a). In Fig. 12(b) we have isolated the partial ordering ih
the even members of V. Clearly a [3,3] f-network will order Ve;
similarly, another [3,3] f-network will order V.

The partial ordering depicted in 12(a) guarantees (by Theorem 1)
that |

Bx,6) S P(x,5) S0 0 S B(x,1) S P(x,6) 3 (22

The number of O's in Vo and Ve are given by

(23)

B = Bx,1) T R(x,3) T OR(x,5)

Be T B(x,2) T P(x,u) T (x,6)

3k

(a) V for tj,é] 18-sorter.

(b)

Partial ordering in Ve'

Fig, 12,

35

so that

O = {5y = Bek,6)) * (B 3) = Bk n)) ¥ (B 1y = B o)

=n -mn < n(*,l) - n(*,6) < 3. - (24)

Therefore, a [3,2] f-network will complete the ordering of V, once Ve
gnd Vo have each been ordered.

Since the two small [3,3] and ome full-sized [3,2] f-network will
complete the ordering of V, they together constitute a [3,6] f-network,
The resulting [3,6] 18-sorter network is given in Fig. 13.

For Theorems 2 and 3 below it is convénient to consider the multiset

V = {vl’v2""’VN} s N=pgqr, tobea ©pXaqxr array, where

V(i,J,k) = V(i-1)qr+(j-1)r+k* (25)

Submultisets of V include the pq "rows,”" pr "columns,” and qr

"verticals" defined, respectively, by

V(i”j’*) B lfkfr V(i)j;k) ’ 151Sp, 1Sj-§q;

= i . 26
Yi,4k) = 1<d<a {V(,5k)(7 1SESP LSk (26)
V(*,j,k) T 1<i<p {V(i,j,k) » 1<3<q 1<k<r

Larger submultisets of V include the p q X r "planes", the q p X r planes,

and the r p x q planes defined by

*jzom3eu Je3r08-g1 [9°C] €1 *IWd

yIomeu-F [9°C]

JI0M}OU-F ° A JOF ° A JOF S}JIOoM}8U

81, [2€] Aromyeu-3 [€4¢] yzomysu-F [€ €] .om.uos §197108 o1,
Lo H t - 4 I
o -+ +—— 91,

St - , ‘1
#1 H T o ! ﬂﬁ
(o] A g ﬂ & .
€Ty v ——1—¢ t €1
AR H —¢ ﬂﬁ F —4 4 A%
125 H ¢ » T ﬂ«
% - a— 4 0T,
mo H —8 9 4 0.n
wo \ 2 ﬁ 9 w..n
o h * ﬁ 9>) by
% . F s 4 < 9
%o H 4 h S . -\ mw
+~O F - r' .J.w
m0 * . Py m.ﬂ
% H —— Py _ 2 .
.“o - —— rm

Yix,%,k) = \\‘1‘1{ \"?‘/ {V(i,J,k)}’ 1<k<r;
V(*,5,%) = \'{ A, V(i,j,k)}’ 1<i<a; (27)

\'
(1,‘*,*) = u v V(. . k)) 1 < i < P.
1<j<q 1<k<r| ‘¥ - -

IA

For example, if we consider the intermediate multiset V for the [3,6]

18-sorter (Fig. 12) to be a 3 x 3 x 2 array, then

v

V(1,2,1) 3’
Vix,2,1) = 35V Vis)s (28)
V(*:*:l) - VO'

We are now ready for Theorems 2 and 3.

Theorem 2: _
Let the multiset V = {vl,vg,...,vN}, where N = tsd, be considered

a t x sxd array. Then the following small f-networks together

- constitute a [g,sd] f-network for V.
i) d [g,s] f-networks for V(* *,k)’ 1 <k < d; followed by
2% - -

ii) one [g,d] f-network for V.

Proof:

According to Definition 1, the sequence of comparators represented
by i) and ii) is a [g,sd] f-network for V if and only if it will
complete the ordering of V given that: a) the planes V(*,j,k)’

1<j<s, 1<k<d, are ordered; and b) n,, 5.K) satisfies
! P A

n <n < .. <
(*}S:d) - (*,S,d—l) - = n(*:sy 1) = n(*,s'l)d) =

n <...<n <n + g, oy
(%,5-1,d-1) = *** S %(x,1,1) S P(x,5,a) * E (&)

Let us assume that the partial ordering in V satisfies con-

ditions a) and b). Then since the submultisets Vix,3,k) of Vik k)
rJ P A

are ordered and since n satisfies (29) a [g,s] f-network will

*,3,k)

order V Now the number of O's in V(* k) {both before
0

(*,%,k)°
and after the application of the [g,s] f-network) is given by

’ > B(*,3,k) (30)
*, % * ik
(’ ’k) 1 < j<s (5 J,)
For any two indices kl,k2 ~satisfying 1 < k1 < k2 < d, we may use
(29) to show that
0 < z n ; -n . n \ - n .
— 1 < J < s ((*}J}kl) (*’J’k2> (*,-)(-’kl) l\.*)*;l\{‘
=" - S8 (31)
- (*,1,1) (*%,8,d) =

Therefore, once the [g,s] f-networks have ordered the planes V(*,*,k"

(31) guarantees that a [g,d] f-network will complete the ordering of V.

39

We have seen that if the partial ordering in V satisfies con-
ditions a) and b), then the d [g,s] f-networks in i) followed
by the [g,d] f-network in ii) will complete the ordering of V.
Therefore, i) and 1i) together constitute a [g,sd] f-network.

Q.E.D.

~Theorem 3:
Let V be as in Theorem 2, Then the following small f-networks

together constitute an [sg,d] f-network for V.

%) 1 <3 <se followed by

i) s [g,d] f-networks for V(* i
 Jd

ii) one [s,d] f-network for V.

Proof:
The proof of Theorem 3 is similar to that for Theorem 2 and is

given in Appendix A.

The partial ordering in the intermediate multiset V for the [(3.2,3]
18-sorter is given in Fig. 1. - The construction method described by
Theorem 3 requires a [3,3] f-network connecting the three odd rows
of V (V(*,l,*)) and a [3,3] f-network for the even rows (V(*,g,*)),

" followed by a [2,3] f-network. The resulting [6,3] 18-sorter network
is given in Fig. 15.
We many count the comparators required by the f-networks constructed

according to Theorems 2 and 3 to obtain the following important corollary.

Lo

Fig. 14,

V for the [(6,3] 18=-sorter.

41

*JIONGOU JSQI0S=QT hm.w_ *'G1 *3Td

ya083eU-F [€°9]

A*.ﬁ.*vb 107 A*.N.*vb 203

yIomjsu-3 SHION}BU
reej yIomdu-3 [€] yIomyeu-g [€C] wwuwz SJ87.108
q +
+ '
| !
' r
1t
S F +—
iaﬂ
H s .
——%
.- . 4
H ﬁ — > T
Lﬁ Y *
HJL < +—— re
—e — I

81,
Lig
91,
maﬁ
d.rm
mﬁw
21,
1
o1,

42

Corollary 2:

flg,sa) (M) S & g, gV + 2rp 49 (N); (32)

frsg,aM) S 5 (g q(Ve) + £ 4y (N). (33)

The inequality is required in Corollary 2 since we have no guarantee
that an f-network constructed using Theorem 2 or Theorem 3 is minimal.
In fact, the [3,6] f-network exhibited by the 18-sorter in Fig. 13
is not the most economical [3,6] f-network known. We may use Theorem 2
with s = 2, d = 3, to build a [3,6] f-network out of three [3,2] and

one [3,3] f-networks. Using Table 1 we see that this f-network requires

/f\[3’6](N) =3 ?[3,2](N/3) + ?[3’3]0«) = % N - L | (34)
comparators, whereas the f-network in Fig. 13 requires % N-13 = 29
comparators. {(However, a slight modification of the [6,3] f-network
illustrated in Fig. 13 reduces the number of comparators to % N - 15.)

The number of comparators required by the best f-network that can
be constructed out of smaller f-networks using the construction of

Theorem 2 and/or Theorem 3 is neatly summarized by

A
f[d (N) = min min F(g,d,N,q,p)}, (35
g,d] 1<q<g 1<p<d
gmod q =0 2<q+p
' dmod p =0
where
? (W (a-p)) + T, (W)
d,N = p-f N, . + f N
F(g,d,N,q,p) = q°P [&/a,d/p] / (q-p la,P]
A A
+

g/a,m(Va) + P I q/p) (V) G8)

43

Note that ?[g,lj(N) = @[1,d](N) = 0, so that: a) if q = 1, then (36)
describes a construction that uses only Theorem 2; b) if p = 1 then
(36) describes the use of Theorem 3 alone; and c¢) if p,q > 1, then (36)
describes a network built using both theorems. The case p =q =1
is not allowed, since it would reduce (35) to an identity,

We may use the construction methods of Theorems 2 and 3, along
with the f-networks in Table 1, to achieve [g,d] f-networks for all
g;d of the form 213j.* When g and/or d have prime factors greater
than 3, we may construct a [g,d] f-network as follows: Using Batcher's
general method we obtain a [2,dj (2d)-sorter network. This (2d)-sorter
will, of course, exhibit all of the templates required by any [2,d]
network. We may use the [2,d] f-network and Theorem 3 to derive a
[2i,d] f-network, where g < 21. From Definition 1 it is clear that a
[2i,d] f-network is also a [g,d] f-network for all values of g < 21.
(This is because the unsorted patterns remaining in the intermediate
set V for the [g,d] sorter are a subset of those remaining in the
[Ei,d] network, if g < 21.) Therefore, we may construct [g,d] f-networks
for arbitrary g,d.

We will. conclude this section by calculating the number of compara-
tors required by the [gi,dj] f-network constructed using Theorems 2

and 3. From Equation (35) we obtain

% Note that these construction techniques are illustrated by networks
in Table 1: the [2,4] f-network illustrates Theorem 2, while the
[4,2] f-network illustrates Theorem 3.

L

A . r s
i 4. = nmin min F(g,d,N,g »d) . (37)
leh,a’) o0<r<i 0gs<3
O<r+s

A
Since f[g d](N) is linear in N for all of the tabulated f-networks,
)

we expect a solution to (37) of the form

A
£ . . (N)=a , . N-b . .. (38)
[et,a’) [g",a’] (g ,a]

Using (36) and (38) in (37) we obtain

a ;o4 = min min & jr j-s. "2 r s
(g ,a"] 0<r<i 0<s<J (e »d7] (g ,d]
O<r+ s
+ a + a . ; (39)
i-r s r _j-s
(e %,d% [g,d7]
b i i = max max grdsb ier di-s r s
leh,a)] o<r<i o0<s<y (e 5a’™®1 [g,07]
O<r+s
+gv . +db sl (40)
) [g :d] [g,d]

Equations (38)-(&0) describe the number of comparators required
by a<[g1,dJ] f-network built out of smaller f-networks using Theorem 2
and/or Theorem 3. Most of the best [gl,dJ] f-networks known exhibit

this construction and are, therefore, described by (38)-(L0O).

45

For many values of g,d, all of the best [gr,ds] f-networks known
(0<r<i, 0<s<j, O<r+s) are constructed from the [g,d]
f-network by repeated use of Theorems 2 and 3. In this case the solutions

to (39) and (40) are

a ;o5 0= i‘jea ; (k1)
[g",d7] {e,d]

N Ci 91 (vt S NP (12)

(g",a)] (g-1)(d-1) (g,d]

From Table 1 we observe that a[h,h] = 2, b[h,h] = 11, whereas from
Equations (41) and (42) (evaluated with g =d =1 =j = 2) we find that
the [4,4] f-network constructed from the [2,2] f-network according to
Theorems 2 and 3 requires a[h,h] = haE2,2] =2, b[h,h] = 9b[2,2] = 9.
The [4,4] f-network given in Table 1 is the smallest example of a
special procedure which has been discovered for constructing [2k,2k]
f-networks [7 7. The special procedure is too complicated to include
in this paper. Basically, it requires; a) determining the templates
required by the [2k,2k] f-network derived using Theorems 2 and 3; and
b) reordering these templétes in such a manner that, although the result-
ing network still orders V, some of the comparators have become

'redundant”" and may be removed. Since the special construction does not

reduce the number of templates, a k Kk is given by (41), evaluated with
[2527]

g=d=2 and i=J =k. However, the constant term is increased to

b =
k _k
[2,27]

wl+&E

W - 325 4+ % , (43)

L6

which represents a reduction (since b[g,d] in (38) is preceded by a
minus sign) of hw% hk comparators, When g =d =2 and i # j, the
best [21,2j] f-networks known use the special [2k,2k] f-networks as
building blocks for the construction methods described by Theorems 2

and 3. The coefficient b[21 2j] is obtained from (40).
H

b7

VI. The Economy of [g,d] N-sorter Networks

We have defined a [g,d] N-sorter network to consist of g sorting
networks of size Nl’N2"'°’Ng’ where Ni is an integral multiple of
d and Z?:l N, = N, followed by a (g,d] (Nl’NE""’Ng) merge network,
Since Ni is required to be a multiple of d, we cannot consfruct a
[g,d] N-sorter network unless N is a multiple of d. This limitation,
which was included since it greatly simplifies the description of [g,d]
merge networks and [g,d] f-networks, can be removed. In[3, 5] a
procedure is given for pruning ﬁn N—so;ter network, that is eliminating
one input lead, one output lead, and several comparators, to achieve an
(N-1)-sorter network. For arbitrary N we can use the [g,d] strategy
to achieve an N-sorter network by 1) deriving the [g,d] (d[N/d])-
sorter network and 2) pruning as necessary. If we extend the defi-
nition of a [g,d] N-sorter network to include the sorting networks
achieved by pruning a [g,d] sorting network, then for all values of N
except N = 10,13,14,15,16, or 18, the most economical N-sorter known
is a [g,d] sorting network,

We can also use pruning to achieve a [g,d] (Nl’N ,...,Ng) merge

2

network when not all of the Ni are integral multiples of d. Let

M[g d](Nl’N2’°"’Ng) represent the number of comparators contained in
2

the (Nl’N ,...,Ng) merge network achieved by pruning (if necessary) the

2 .
(g,d] (der/dT,diz/d],...,dig/d]) merge network. Then the minimum

number of comparators required by a (Nl’NE""’Ng> merge network con-

structed using any [g,d] strategy is given by

Mg(Nl,NQ,...,Ng) = m(iin M[g,d](Nl,Ng,...,Ng). (Lb)

48

It is instructive to ask which values of g and d yield the most
economical N-sorter networks. Let Sg(N) represent the number of com-
parators required by the most economical N-sorter that uses g sorting
networks followed by a [g,d] merge network. In order to permit a valid
comparison of networks achieved with different values of g, we will
require that each of the g initial sorting networks must itself use
the g-way divide-sort-merge strategy, so that Sg(N) satisfies the

recurrence relation

Sg(N) = min { Mg(Nl,...,Ng) +

N1+. .e +Ng=N

N. >1
1 -

DS ()

1<i<s

We have calculated Sg(N) for g =2,3, and 4 and N < 36; the
results are given in Table 2., The last column, labeled Q(N), gives
the number of comparators contained in the most economical N-sorter known
of any construction. An asterisk indicates those values of g(N) which
represent an improvement* over the most economical networks previously
reported [5].

From Table 2 we observe ﬁhat S3(N) is only occasionally smaller
than Batcher's result, B(N) = SE(N).' However, SM(N) < SE(N) for all
N > 8, and the [4,d] N-sorter networks are more economical than any

previous N-sorter, for N > 3k,

% The improved 18-sorter, which does not use a [g,d] strategy, is given
in Fig. 16, The improved 26-,27-,28-, and 34-sorters all use two
initial sort units, one of them the particularly efficient 16-sorter
designed by M. W. Green, followed by Batcher's [2,2] merge network.
The best 35-sorter is achieved by pruning one lead from the [%,9]
36-sorter; the best 36-sorter uses the [3,12] strategy.

no

O O N o v F W

10
11
12
13
14
15
16
17
18

12
16
19
26
31
37
41
48
53
59
63
Th
82

Table 2. Sg(N) for g<L4, N<36.

12

17

a1

25
32
37
L2
51
57
62
70
76
81

12
16
19
25
30
35
39
W7
52
57
61

73
80

12
16
19
25
29
35
39
46
51
56
60
73
T9*

k9o

= g =2 g = g =L S(N)
19 91 93 89 88
20 97 101 95 93
21 107 108 104 103
o2 114 117 110 110
23 122 125 118 118
2k. 127 131 123 123
25 138 141 ; 135 134
26 146 148 143 1h1x
27 155 154 151 150%
28 161 168 i57 156%
29 171 178 168 166
30 178 187 17k 172
31 186 197 182‘ 180
32 191 207 A 187 185
33 207 21k 203 203
34 219 226 21k 213%
35 232 23k 205 205
36 21 oan - 233 232%

Table 2 (cont.)
This value of Q(N) describes an N-sorter network that is more

economical than any N-sorter previously reported £ 57].

51

‘UMOWD| }JIOMIOU JI3X0S-Q] 3895 ‘9T ‘T4

1 - % ﬁ, | m
e e e s
i i 1 HE
. L ..h T— i m
T "
e e—— H-
*—& F m

We may discover the asymptotic growth of Sg(N) by considering the
case N = gk+1. For all values of g tried we have found that the
minimum in the right-hand-side of (45) occurs when N =N, =... =g,
so that

k+1
)

Kk k k Kk
Sg(g = g Sg(g) + Mg(g 38 seves8). (46)

k k k
We have also found that the most economical [g,d] (g ,g ,...,g) merge

network known is achieved using d = g, so that

k k k k
M cee = e
g(g) 8) M[g,g](g) ’8)

1

1

k+1
)

A N Cas MR 50

[g:g

The solutions to the recurrence relations given in (47) and (46),

A
with the boundary condition Sg(g) = Mg(l,l,...,l) = S(N), are

Mg(gk,...,gk) = (ok + o, +By) gt Cat A (48)

5,6 = (@ +»sgk fy) € - v (49)
where

% = %a[g,g]’ (50)

o, = & 8(e) - By gy - 8 (€))7 b (51)

53
vy, = (1) %0 . (52)
g (e,e] o<

The asymptotic growth of Sg(N) may be obtained from (49); it is

given by

Hi

2 \
s (N Q N(log N + N{log N; + N + 1
gl) N(1og,) BN (108N, Vg 0(1)

1

-2
ag(logzg) N(loggN)2 +
-1
pg(logg) ~ N(logN) + y N + 0(1). (53)

We may obtain the coefficients atg g and b[g g] from Table 1 and use
>)

them in Equations (49)-(53) to show that

SE(N) = % N(10g2N)2 - % N(1og2N) + N + 0(1);
S3(N) = .265 N(1og2N)2 - .315 N(1og2N) + 1.25N + 0(1); (54)
Sh(N) = % N(1og2N)2 - % N(loggN) + %; N + 0(1).

Since the leading coefficient for S3(N) exceeds that for both Se{N)

and SM(N)’ it is not surprising that S3(N) is generally larger than
the other two. Also, although the leading coefficient is % for both

SE(N) and SM(N)’ the coefficient for the term N(log2N) is smaller

for Sh(N)' This explains why Su(N) is smaller than SE(N) for

sufficiently large N, that is, for N > 8.

Sk

From (50) and (53) we observe that the coefficient for the term

N(logzN)2 in the expansion of Sg(N) is
-2 -2
a (1 = (1 . '
5 (10g.8) 3(logg) ~ap, g | (55)

When g = 2°, we may use (41) to show that (55) reduces to 1. However,

for all [g,g] f-networks known, a[g] > %(loggg)2 if g 1is not a

2
power of 2. Therefore, the leading coefficient in the expansion of Sg(N)
is minimized - - and its value is- %-- - if and only if g 1is a power of 2,

In view of the above observations we conclude that the most economical
N-sorter networks are achieved when g is a power of 2, Furthermore, we
might hope to achieve successive reductions in the asymptotic growth of
Sg(N) by choosing g = 2" (which maintains a leading coefficient of L),
for successively larger r. Therefore, we use (50)-(53), along with
a[8,8]’ b[8,8]’ a[16,16]’ and b[16,16] given by (41) and (43), and
with S(8) =19 and 5(16)

60 obtained from Table 2, to derive

% N(logzN)z % N(loggN) + 2N+ o(1).

S8(N) 7

(56)

816(N) = % N(1og2N)2 %(%%)'N(logeN) + g% N + o0(1).

Comparing these results with (5&) we observe that for sufficiently large
V r

i = ively larger
N, S8(N) > SH(N) > 816(N). And, trying g = 2 for successively g
values of r, we find that successive improvements occur only when r is
itself a power of 2, so that the first improvement over Sl6(N) occurs

8

when r = 23 2

=8, or g-=

= 256.

55

The most economical (22r)-sorter network known, when r = 25 > 4,

Ty, (see [7 1.)

) from the right-hand-

r . .r A 2r
uses the [27,2"] strategy, so that S(27) = 8 r(2

A
We may use this observation to eliminate S(22r

side of (51), evaluated with g = 22r, thereby obtaining

-2r 2r
B = 2% s (%) - ta
22r 2r [22r, 2r

2r -1
)

(= -1

_ 2—2r

using (41), (49), (50), (52), and some algebra we can reduce (57) to the

following recurrence relation for the coefficient g r
2

-2r r
= 2B + (1-2°) (@ -1)0b
BEEr 2r [Er’zr]

2r

- (2 -1)0b

[22F, 227 oo (58)

The solution to (58), with b , , given by (43) and with the boundary

(27,27]
71/48 obtained from (51), is

condition Bl6

8. = - @Glro) (59)
2
when r = ES and
£
o, = % P GO (60)
s 0 S»ﬁ < s

s

From (43) and (52) we obtain

Since o_ rapidly converges to .107 and since vy =~ (4 - 2_r)/3,
A 2
we may achieve a growth rate for S(N) of

A
S(N) = .250 N(loggN)g - .372 N(10g2N) + 1.333 N + 0O(1). (62)

Equation (62) represents an improvement of order N(logEN) over B(N) =
SE(N)’ which exhibits the smallest growth rate known previously. Further-
more, the minimum growth rate of (62) is nearly achieved by 816(N), since

the coefficient of N(logQN) in (56) is -.370.

\J
-~

VII. Conclusion
The strategy used by most of the best previous N-sorter networks

is to divide the N inputs into 2 groups, sort these groups separately,
and then merge the results. The best merge networks, suggested by
K. E. Batcher [4], partition each sorted multiset into 2 divisions, merge
each division of the first sorted multiset with one of the second, and
then use %N—l comparators to resolve the remaining ambiguities.

Our results demonstrate that greater economy can be achieved in
N-sorter networks by dividing the N inputs into g > 2 groups that
are sorted separately, and by partitioning each sorted multiset into d > 2
divisions to be combined by d merge networks. In particular, we have
shown that by using g = d = 4, we can achieve N-sorter networks that
are more economical than Batcher's for N > 8 and that are more ?conomi—
cal than any networks previously designed for N > 34. We have indicated
that even greater savings can be achieved by using g = d = Er, where

r

2s > 4; however, these comnstructions are only applicable for

N>g-d=4".

v

Our N-sorter networks require order N(logZN) fewer comparators
than the best previous nétworks. " However, we have not been able to im-
prove upon the asymptotic growth rate of %N(loggN)2 achieved with
Batcher's construction. As noted above, the coefficient for the term

N-(logzN)2 with our construction is given by
-2 p -2 \
1 = lo a . 6
a (logg) #(logg) ar, . (63)

Since g g is (1/g) times the number of templates required by the
'8

58

[g,g] f-network, we could reduce the coefficient of the term N(logQN)2
by constructing an improved [g,g] f-network that required fewer than

%(1og2g)2 templates., However, in Appendix B we show that

frg,a)™ > (1- al)N - (d-1), (6x)

so that a[g £] > 0 and ag > 0. Therefore, the [g,d] strategy must
2

require order N(logeN)z comparators.,

59

Appendix A: Proof of Theorem 3
The proof of Theorem 3 is facilitated by the following two lemmas.

Lemma 1:
If the rows V(i *) of an r x d array V are ordered, then the
3

columns V(i) are also ordered if and only if

*’J

ry%) S P(re1,x) S 00 SR (65)

Proof: lemma 1 follows from Theorem 1 by symmetry.

Lemma 2:
Suppose that the t x s planes V(* * k) of the t x s x d array
)
V are ordered. Then if we sort the t d planes V *)? the t x s
(%,3,%)

planes remain ordered.

Proof:

Assume that V is ordered, 1 < k < d. Then the columns

(*,%,k)

1< i‘S t, and the verticals V(* 1 S J S s, are also

V,. .
(1:*:k), :J’k)’

ordered, since they are all submultisets of V(* *, k)" Therefore, by
)2

Theorem 1,

< see &1 (66)

D(x,s,k) S P(x,s-1,k) = (*,1,k) °

Summing (66) for 1 < k < d we find that

n(*:s,*) S n(*:s'ly*) S s n(*Jlx*).

60

Now suppose we sort the t X d planes 1 <j<s. We

A" .
(*’J,*),

need to show that this operation leaves the planes ordered.

\
(*,%,k)
1 1 i ' ; .

Clearly sorting V(*,j,*) does not alter the number of O's in V(*,j,*)’

therefore, satisfies (67) after the t X d planes are sorted.

n .
(*JJ)*)

Also, once V(is sorted, the n(* O's are divided among the

*,3,%) 3Js¥)

rows according to

V,. .
(1’3’*)

0 if
S P %,3,%)

(i-1)a if By g, € [(1-1)8,1d]; (68)

€ [Oy(i‘l)d];

n,. . n . -
(1)3)*) (*}J)*)
if

a B(x,3,0) € Lidredl;

Equations (67) and (68) together imply that

IA

Bt,8,%) S P(t,s-1,%) S o0 S 0(e,1,%) S P(t-1,8,%) S

A

n .
(1,1,%)

Bg-1,8-1,%) = (6?)

We can consider V to be a ts x d array with ts '"rows" V(i j,%)?
P

t

1<i<t, 1<j<s, andwith d 'columns” V(*,*,k)’ 1<k<d

Sorting V(* orders phe "rows'" v(i,j,*)’ because they are all sub-

,3,%) _
ultisets of V . . If vV is initially ordered, then sorting
" (*:J:*) (*:*:k) ?
. 3 . by Lemma 1, if the "rows" V,, . are
V(*,J’*) leads to (69). Now by s (i,3,%)

ordered and Bei,3,%) satisfies (69), then the "columns" are
- IJa

\'s
(*’*:k)

also ordered. Therefore, if V is initially ordered, then sorting

(*,%,k)

A2 . leaves V ordered,
(*;J:*) (*;*,k)

[0)
[

We are now ready to prove Theorem 3.

Theorem 3:
Let the multiset V = {vl,v2,...,vN}, where N = tsd, be considered
a t X sXxd array. Then the following small f-networks together

constitute an [sg,d] f-network for V,

i) s [g,d] f-networks for V 1< j<s; followed by

(*,j}*)’

ii) one [s,d] f-network for V.

Proof:

According to Definition 1, the sequence of comparators represented
by i) and ii) is an [sg,d] f-network for V if and only if it
will complete the ordering of V given that: a) the d planes

1<k<d, are ordered; and b) satisfies

v
(*}*:k)’ - - n(*:*)k)

.e. <m + sg. (70)

n <n < <n
(*:*}d) - (*,*)d'l) - (*:*11) - (*:*Jd)

Let us assume that the partial ordering in V satisfies con-
ditions a) and b). Then, since V(* % k) is ordered, each of the
.) 0

1< j<s, is also ordered. In addition, the dis-

submultisets V .
(*:J,k)’
ibuti f th O's among the ticals V . satisfies
tribution o e n(*’*,k) g ver a (*,J,k)
n . = + -J .
(*,J,k) L(n(*’*’k) S J) / SJ (71)

We may use (70) and (71) to show that

P(%,3,d) S P(%,3,a-1) S 70 S R(x,5,1) S P(x,5,0) T E (72)

62

Since the d submultisets V(* j,k)’ l1<k<d, of V(* 3,%) are ordered,
1o - = ’Jds

and since n(* satisfies (72), a [g,d] f-network will order

»3,k)

v . .
(*,J;*)
Lemma 2 implies that the [g,d] f-networks that order the t x d

planes V(*,j,*) leave the t x s planes V(*’*’k) ordered. Furthermore,

once V(*,j,*) is ordered, the distribution of the n(*) 0's among

23s%

the verticals V . satisfies
(*:Jyk}
n,. . = n,. . +d-k)/ dJ .
(*,3,k) v (%,3,%)) (73)
Equation (73) implies that

n . <n . oo < n . < n .oy + 1. L
(*’J)d) - (*JJ:d'l) - - (*)J:l) - (*:J,d) (7)
Summing (74) for 1 < j < s we obtain

Blx,x,a) S 2(xx,ae1) S S R0 %1) S Pegxa) T (75)

Therefore, since the [g,d] f-networks for V(*,j,*) leave the planes
V(*,*,k) ordered, (75) guarantees that an [s,d] f-network will complete
the ordering of V.

We have seen that if the partial ordering in V satisfies con-
ditions a) and b), then the s (g,d] f-networks in i) followed
by the [s,d] f-nétwork in ii) will complete the ordering of V.
Therefore, i) and ii) together constitute an [sg,d] £f-network.

Q.E.D.

€3
Appendix B: A Lower Bound for f (N)
(g,d]"
In this appendix we calculate a lower bound for f[d]<N>’ the
g,
number of comparators required by the most efficient [g,d] f-network
for the set V = {v,,v,,...,v)}, where N = td, t > g > 2. Letr
and s be any two integers satisfyiﬁg l <r<t-1, 2<s <d. Then,
by definition, a [g,d] f-network will complete the ordering of V if
the columns V(* i) 1 < j <d, are ordered and if
2J 7/ - - . -
n = r+1'
1) ’
x5 © e<i=zsL (76)
n., ., = r-1 s <j-~7d
(*,3) ’ - -

From (76) we see that V is ordered except that the O at position
V(r+1’1) should be moved to v(r,s)' Since a [g,d] f-network will
complete the ordering of V, it must include a comparator or a sequence
of comparators that provide a path from v(r+1,1) to V(r,s)'
Now a comparator can only move a O in one position of V to a
position labeled by a smaller index. Therefore, a [g,d] f-network must
i i '
contain either the comparator Vkr,s) (r+1,1) or else the comparator
A 1V .\, where s < j < d and where the f-network includes a path
(r,8)7 (x,3) =

from V, to V .v+ Since r and s are arbitrary integers
tr (r+1’1) (r;J) y &

satisfying 1 < r < t-1, 2 < s < d, we have shown that

frg,ay(td) > (+-1)(d-1), g,d > 2 (77)

6l

or, using N = td,

fga™ 2 -9

For g > 2 and/or d > 2
for £ N); indeed, it is
le,a] ™ ’
However, (78) is sufficient to
that the number of comparators

as N(loggN)2.

1 .
) N - (d - 1)) g,d < 2. \78)

(78) does not provide a very tight bound
not at all the greatest lower bound known,
show that a >0 and & > 0, so

(s,s] g

required by a [g,d] N-sorter network grows

ERSS

A\

1

REFERENCES

D.E. Knuth [1969]: Seminumerical algorithms. The Art of Com-
puter Programming, 2, Addison-Wesley Publishing Company.

R.W. Floyd and D.E. Knuth [1970]: The Bose-Nelson sorting
problem, CS Report T0-177, Stanford University, Stanford,
California; November 1970,

D.C. Van Voorhis [[197C]: An improved lower bound for the
Bose-Nelson sorting problem. Technical Note No. 7, Digital
Systems Laboratory, Stanford University, Stanford, California;
February 1971. (Also Chapter 4 of this thesis.)

K.E. Batcher [1968]: Sorting networks and their applications.
Proc. AFIPS Spring Joint Comp., Conf. 32, 307-31kL.

W.A. Kautz, M.C. Pease, and M.W. Green [197C]: Cellular
logic-in-memory arrays. Final Report, Part 1, SRI Project
5509, Stanford Research Institute, Menlo Park, California;
lay 1970.

R.C. Bose and R.J. Nelson [1962]: A sorting problem. J. Assoc.
Comp. Mach. 9, 282-296.

D.C. Van Voorhis [1971]: Large [g,d] sorting networks. Technical
Report no. 18, Digital Systems Laboratory, Stanford University,
Stanford, California; August 1971. (Also Chapter 3 of this thesis.)

