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"A Contribution to the Development of ALGOL" by Niklaus Wirth and

C. A. R. Hoare-f' was the basis for a compiler developed for the IBM 360 at

Stanford University. This report is a description of the implemented

language, ALGOL W. Historical background and the goals of the language
-.

may be found in the Wirth and Hoare paper.

HISTORICAL NOTE

This document

were made in order

is a major revision of and supersedes CS 110. The revisions

to document a significantly improved version of the ALGOL W

compiler. This version was known as X ALGOL W during the spring and summer

of 1971. In addition to new debugging facilities documented under Compiler

Options, the new version of the canpiler has slightly more meaningful error

messages documented in the completely re-written Error Messages section.

Various minor corrections and changes have been made throughout the book,

and some examples have been added. There is now an index, and a complete

list of all words the compiler treats in any special way. 'Below is a quick

summary of the changes in the ALGOL W language:

1. Reserved words:

There are three new reserved words: algal, assert, and fortran.

2. New statements and functions:

There is now an ASSERT statement (cf. Section 7.5a).

Procedures can be declared with empty bodies that instead specify that

a linkatge to an externally-compiled  algol or fortran procedure is needed

(cf. Section 5.3). A new standard function, TRACE, is added as part

of the debugging facility (cf. Section 7.8.6).

Al Wirth, Niklaus and Hoare, C. A. R., "A Contribution to the Development
of ALGOL", Corm. ACM 9, 6 (June 1966), pp. 413-431.
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3 . Conversions:

Conversions from integer to real now go to long real.- -

4. String comparisons:

In comparing strings of different lengths, the shorter is extended
. .

with blanks before the comparison is done.

5. String assignments:

String assignments are done in a single action, instead of character-

by-character left-to-right. This prevents erroneous answers when

assigning a string to a substring of itself.

6. Deleted facility:

The standard functions COMPLEXSQ,RT and LONGCOMPLEXSQRT are no
--.

longer in the ALGOL W library. (cf. Deck Setup and Compiler

Options, Section 3, for use of the Fortran library.)

The present author wishes to thank all those who have gone before him,

especially Ed Satterthwaite  for his extraordinary care in building the

debugging facilities.

3



Table of Contents

LANGUAGE DESCRIPTION

c

c

1. TERMINOLOGY, NOTATION AND BASIC DEFINDIONS . . . . . . . . . . . . . . . . 8

1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .."............... 8
-.

1.2 Definitions ........................................... 8

2. SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES ............... 11

2.1 Basic Symbols ......................................... 11

2.2 Syntactic Entities .................................... 12

3.

4.

IDENTIFIERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

VALUES AND TYPES . . . . . . . . . . . ..*.......a..................... 16

4.1 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
--.

4.2 Logical Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Bit Sequences . . ..*........*........................... 18

4.4 Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..*.......... 19

4.5 References . . . . . . . . . . . ..C.............................. 20

5. DECLARATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..*.*.............. 20

5.1 Simple Variable Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2 Array Declarations .................................... 22

5.3 Procedure Declarations ................................ 23

5.4 Record Class Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6. EXPRESSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..*................ 28

6.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2 Function Designators .................................. 31

6.3 Arithmetic Eqressions ................................ 32

6.4 Logical Expressions ................................... 37

0 . ‘) I3:it Kxpressiolls . . . . . . . . . . . . . . . . . ..L................... $3

0.0 Strinr; Fkpressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4



6.7 Reference Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.8 .Precedence of Operators ............................ 41.

7. STATEMENTS. .............................................. h-2

‘7 .l Blocks ............................................. 42
.  .

7.2 Assignment Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

. 7.3 Procedure Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.4 Got0 Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.5 If Statements ...................................... 48

7.5a Assert Statements .................................. 49

7.6, Case Statements .................................... 50

7.7 Iterative Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
--.

7.8 Standard Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.8.1 The Input/Output System . . . ..*............... 54

.

7.8.2 Read Statements ............................. 56

7.8.3 Write Statements ............................ 57.

7.8.4 Control Statements .......................... 58

7.8.5 Examples .................................... 59

7.8.6 Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

:8. STmARD FUNCTIONS AND PREDECIXRED  IDENTIFIERS . . . . . . . . . . 60

_ 8.1 Standard Transfer Functions . . . . . . . . . . . . . . . . . . . . . . . . 60

8.2 Standard Functions of Analysis ..................... 62

8.3 Time Function ...................................... 64

8.4 Predeclared Variables .............................. 64

8.5 Exceptional Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

APPENDIX

1. CHARACTER ENCODING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5



L

c

c

c

c

ot

ERROR MESSAGES

1. PASS ONE ERROR MESSAGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...*. 73

2 . PASS TWO ERROR MESSAGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3 . PASS THREE ERROR MESSAGES ............................... 80

4 . LOADER ERROR MESSAGES ................................... 82

5* RUN-TIME ERROR MESSAGES................................... 83

6 . ABEND MESSAGES l . . . . . ..m.................................
87 *

NUMBER REPRESENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

DECK SETUP AND COMPILER OPTIONS

1. DECKSETUP .............................................. 103

2. COMPILER OPTIONS ........................................ 104

3. LINKAGE TO SEPARATELY-COMPIIXD PROCEDURES ............... 107

.-.
3.1 Compiler Organization .............................. 107

3.2 Control Cards for Using OS/360 Loader .............. 110

3.3 Calling External Procedures ........................ 110

4. COMPILER OUTPUT ......................................... XL1

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ill

4.1.1 Source Card Listing . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.1.2 Error Messages .............................. 112

4.1.3 Compile Time and Amount of Code ............. 112

4.1.4 Run-time and Tracing Output ................. 113

4.1.5 Statement Counts ............................ 113

)C..1...6 Post -modem Dump . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113.1

)I .:’ I)rt-t;rxil:: of -l,l~c !hrtcing OutpuZ; ...................... 3.1(/l

4.2.1 Basic Notations ............................. l-l9

4.2.2 Procedure Call Notations .................... 120

4.3 Details of the Post-mortem Dump .................... I25

GRAMMA!IICAL  DESCRIPTION OF ALGOL W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

c

WORDS WITH SPECIAL MEANINGS IN ALGOL W . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6



6.1



L

c

c

ALGOL  W

LANGUAGE DESCRIPTION

--

bY

Henry Bauer

Sheldon Becker

Susan L. Graham

Edwin Satterthwaite

Richard  L. Sites

c

7



J

i



e
1. TERMINOLOGY

c

1. TERMl%OLOGY,  NOTATION AND EASIC~~DEFINITIONS

c

e

The Reference Language is a phrase structure language, defined by

a formal metalanguage. This metalanguage makes use of,the notation and

definitions explained below. The structure of the language AIGOL W

is dete-rmined by:

(1) Y, the set of basic constituents of the language,

(2) u, the set of syntactic entities, and

(3) p, the set of syntactic rules, or productiork

1.1. Notation

A syntactic entity is denoted by its name (a sequence of letters)

c Lr enclosed in the brackets < and >. A syntactic rule has the form

where <O is a member of u, x is any possible sequence of basic con-

stituents and syntactic entities, simply to be called a “sequence”.

e The form

c

c

9s used as an abbreviation for the set of syntactic rules

<b ::= x

<A> ::=y

. . . . e . . . .

<p2, ::= z

1.2. Definitions

1. A seq*Jence  x i&aid to directly produce a eequencs  y if and

c
8



1. TEIMINOLOGY

only if there exist (possibly empty) sequences u and w, so that

either (i) for some <D in U, x = u<pi>lw,  y = uvw, and w ::=

v is a rule in 6'; or (ii) x = uw, y = uvw and v is a "comment"

(see below).

3
L. A sequence x is said to produce a sequence y if and only if

there exists an ordered set of sequences s[O], s[l], . . . , s[n],

so that x = s[O], s[n] - y, and s[i-l] directly produces s[i] for

all i = 1, . . . , n.
--.

3. A sequence x is said to be an ALGOL W program if and only if

its constituents are members of the set V, and x can be produced

from 1-.he syntactic entity <program>.

The sets v and u are defined through enumeration of their members

in Set LiOil 2 of this Report (cf. also 4.4.). The syntactic r&as are

given throughout the sequel of the Report. To provide explanations

for the meaning of ALGOL W programs, the letter sequences denoting

syntactic entities have been chosen to be English words describing

approximately the nature of that syntactic entity or construct. Where

words.whlch have appeared in this manner are used elsewhere in the

text, they ref'er to the corresponding syntactic definition. Along

with these letter sequences the symbol 7 may occur. It is understood

that this symbol must be replaced by any one of a finite set of English

words (or word pairs). Unless otherwise specified in the particular

section, all occurrences of the symbol 7 within one syntactic rule

must be replaced consistently, and the replacing words are

9



1. TERMINOI;OGI .

-
c

integer

real

long real

complex

lmg complex

logical

bit

string

reference-.

For example, the production

CTterm> ::= a factor> (cf. 6.3.1.)

c
corresponds to

e

E

L

<integer term> ::= Cinteger factor>

seal term> ::= Creal factor>

song real term> ::= cl0ng real factor>

<complex term> ::= <complex factor>

<Long complex term> ::= song complex factor>

The production

<ITo primary> ::= long <Yl primary>

corresponds to

(cf. 6.3.1. and
table for lone
6.3.2.7.)

<long

song

song

It is

. than basic

real primary> ::= long<real primary>

real primary> ::= long<integer  primary>

complex primary> ::= long <complex primary>

recognized that typographical entities exist of lower order

symbols, called characters. The accepted characters are

those of the IEM System 360 EBCDIC code.

The symbol ccmment followed by any sequence of characters not

-containing semicolons, followed by a semicolon, is called a carmnent.

A comment has no effect on the meaning of a program, and is ignored

during execution of the program. An identifier (cf. 3.1.) immediately

10



2. SYMBOLS

. following the basic symbol end is also regarded as a comment.

The execution of a program can be considered as a sequence of

units of action. The sequence of these u.its of action is defined as

the evaluation of expressions and the execution of statements as

denoted by the program. In the definition of the implemented language

the evaluation or execution of certain constructs is either (1) defined

by System 360 operations, e.g., real arithmetic, or (2) left undefined,

e.g., the order of evaluation of arithmetic primaries in expressions,

or (3) said to be not valid or not defined.

2. SETS OF BASIC SYMBOLS AND SYN!I!ACTIC  ENTITIES

2.1. Basic Symbols

AbtClD
QlRlSlT

OllM3

true I false ” I null I # I t I

e
integer I real 1 complex 1 logical I bits / string 1

reference 1 long real I long complex 1 array I

procedure 1 record 1

-9 I ; I : I l I ( I
.
'case

abs

IofI+l-
long 1 short

> ( >= 1, ::

got0 1 go to- -

) 1 begin I end I if I then I else I- -
* I / 1 JCSC 1 div 1 rem I shr I shl I in

and I z Ill 1 / = II= 1 ;: j

l
I
I

I fr:,:t 1 step I until I k I while I-a&.x-.
c&nent ) value I result I assert 1 algol 1 fortran

All underlined words, which we call "reserved words", are represented

by the same words in capital letters in an actual program, with nos

intervening blanks.

ll



2. SYMBOLS -
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Adjacent reserved words, identifiers (cf. 3.1.) and numbers must include
I

no blanks and must be separated by at least one blank space. Otherwise

blanks have no meaning and canbe’used  freely to improve the reak

ability of the program.

2.2. Syntactic Entities

(with corresponding section numbers)

<actual parameter list>

<actual paPameter>

<bit factor>

<bit primary>
--.

<bit secondary>

<bit sequence>

<bit term>

<block body>

CDlock head>

<block>

Cbound pair list>

Coound pair>

<case clause>

<case statement>

<control identifier>

<declaration>

<digit>

<dimension specification>

<empty>

<equality operator>

<expression list>

<field list>

<for clause>

<for list>
c

<formal array parameter>

<formal parameter list>

<formal parameter segment>

L

T3

7.3

6.5

6.5

6.5

4.3

6.5

71

7.1

7.1

5.2

5.2
6

7 . 6

3.1

5

3.1

5.3

7
6.4

6.7
5.4

7*7

L?

5.3

5.3

5.3

I2

<formal type>

Cgo to statement>

<hex digit>

<identifier list>

<identifier>

<if clause>

<if statement>

<imaginary number>

<increment>

<initial value>

<iterative statement>

<label definition>

<label identifier>

<letter>

<limit>

<logical element>

<logical factor>

<logical primary>

<Logical term>

<logical value>

Uower bound>

<null reference>

<procedure declaration>

<procedure heading>

<procedure identifier>

<procedure statement>

Cprogram>

563

7 . 4

4.3

3 .1

3.1
6

7*5
4.1

7.7

7*7

7*7

7.1

3.1

3 .1

7*7
6.4

6.4

6.4

6.4

4.2

542

4.5

5*3

5.3

3 .1

7 .3

7



3. IDENTIFIERS

<proper procedure body7

<proper procedure
decLratior3

’ <record class declaratiom

<record class identifier>

<record class identifier
1is-D

<record designatcr>

<relation>

<relationai  operator>

<seal-f.. f'ac?.or>

7
6.6

4.4

703
5.1

<

<

<upper

<while

<subscript listi
<substring designator>
CT array declaration>
<f array designator>

4’ array ident if ier>

<I assignment statemene

4 expression list2

4 expressi

<T factor>

4 field designator>

<T field identifier>

CT f'unction designator>

<T function identifier>

<T function procedure bodp

<7 function procedure
declaratiom

4 ieft parts

<T number>

<T primarp

0 subarray designator>
G terr0
< variable,
3’ variable ldentif ier>

<unscaled real>

bound> 5 .2
clause>

5.1
6.6
5.2
6.1

3-l

7-2

5

6

693
6.1

3.1
6.2

3-l

5*3

5-3

7.2

4 . 1

6*3

2;.
6.1
3.1
4.1

7-7

I <identifier> ::= <letteA* ] <identifier> <letter3 1 <identifier? <digi't> 1

<identifier> _

<Tvariable identifier> ::= <identifier> .



-

c

<T array identifier+ : := <identifier>

<procedure identifier> : := <identifier>

c

c

L
i

f

L

<7' f'unction identifier> : : I; <identifier>

<record class identifier> ::= <identifier>

<J field identifier> :;= <identifier>

<label identifier> ::= <identifier7

<control identifier‘, ::= <identifier>

<letter> ::= AlBlClDlElFlGlHlIlJl~lLlMl

~l~l~l~l~l~l~l~lvlwlxlYl~
<digit> ::-= 01~12131~1516l7181~

<identifier lis0 : a = <identifier> 1 <identifier list;> , <identifier>

-=.

3 . 2 . Semantics

Variables, arrays, procedures, record classes and record fields

are said to be quantities. Identifiers serve to identify quantities,

or they stand as labels, formal parameters or control identifiers.

Identifiers have no inherent meaning, and can be chosen freely in the

reference language. In an actual program a reserved word cannot be

used as an identifier.

Every identifier used in a program must be defined. This is

achieved through

M a declaration (cf. Section 5), if the identifier identifies a

quantity. It is then said to denote that quantity and to be a

7' variable identifier, 7e array identifier, 7’ procedure identifier,

T function identifier, record class identifier or 3' field iden-

ti f’ier, where the symbol IT stands for the appropriate word re-

flecting the type of the declared quantity;

<b) a label def’inition (cf. 7.1.1, if the identifier stands as a

1
14



3. IDENTIFIERS

lsbcl. It is then said to be a label identifier;

( >C its occurrence in a formal parameter list (cf. 5.3.). It is then

said to be a formal parameter;

(d) its occurrence following the symbol for in a for clause (cf. 7.7.).
. .

It is then said to be a control identifier;

( >e its implicit declaration in the language. Standard procedures,

standard functions, and predefined variables (cf. 7.8 and 8) may be

considered to be declared in a block containing the program.

The recognition of the definition of a given identifier is

determined by the following rules:

--.
Step 1. If the identifier is defined by a declaration of a

quantity or by its standing as a label within the smallest block

(cf. 7.1.) embracing a given occurrence of that identifier, then

it denotes that quantity or label. A statement following a

procedure heading (cf. 5.3.) or a for clause (cf. 7.7 .) is considered

to be a block.

Step 2. Otherwise, if that block is a procedure body and if ',:.(:'

given identifier is identical with a formal parameter in the asso-

ciated procedure heading, then it stands as that formal parameter.

Step 3. Otherwise, if that block is preceded by a for clause

and the identifier is identical to the control identifier of

that for clause, then it stands as that control identifier.

Otherwise, these rules are applied considering the smallest

block embracing the block which has previously been considered.



c

4 .  V'ES and!LYPES

-
i

L

L

If either step 1 or step 2 could lead to more than one definition,

then the identification is undefined.

The scope of a quantity, a label, a formal parameter, or a .

control identifier is the set of statements in which occurrences of an
-.

identifier may refer by the above rules to the definition of that

quantity, label, formal parameter or control identifier.

3.39 Examples

I

PERSON

ELDERSIBLING

x15, x20, x25

c

4. VALUES AND TYPES

c
*-

e

L

Constants and variables (cf. 6.1.) are said to possess a value.

The value of a constant is determined by the denotation of the constant.

In the language, all constants (except references) have a

reference denotation (cf. 4.1. -4.4.). The value of a variable is the

one most recently assigned to that variable. A value is (recursively)

e
defined as either a simple value or a structured value (an ordered set

of one or more values). Every value is said to be of a certain type.

The following types of simple values are distinguished:

integer: the value is a 32 bit integer,

c real: the value is a 32 bit floating point number,

long real: the value is a 64 bit floating point number,

complex: the value is a complex
numbers of type real,

number composed of two

c

c

16



4. VAIUES and TYPES

long complex: the value is a complex number composed of two
long real numbers,PP

logical: the value is a logical value,

bits: the value is a linear sequence of 32 bits,

string: the value is a linear sequence of at most 256
characters,

reference: the value is a reference to a record.

The following types of structured values are distinguished:

array: the value is an ordered set of values, all of
identical simple type,

record: the value is an ordered set of simple values.

F procedure may yield a value, in which case it is said to be a

function procedure, or it may not yield a value, in which case it is
--.

called a proper procedure. The value of a function procedure is

defined as the value which results fram the execution of the procedure

body (cf. 6.2.2.).

Subsequently, the reference denotation of constants is defined.

The reference denotation of any constant consists of a sequence of

characters. This, however, does not imply that the value of the

denoted constant is a sequence of characters, nor that it has the

e properties of a sequence of characters, except, of course, in the case

of strings,

- 4.1. Numbers

4 . 1 . 1 . syntax

<long complex number> ::= <complex number>L

<complex number> ::= 4maginary number>

<imaginary number> ::= Qeal number>I 1 <integer number>1



L . 4. VALUES andTYPES

L

e

c

c
-

L

c

CLong real number> ::= eeal number>L 1 <integer numberXG

seal number> ::= -scaled real> 1 -scaled real> <scale factor> 1

<integer number> <scale factor> 1 <scale factor>

-scaled real> ::= <integer number> l enteger number> 1

*<integer number> I anteger number>.

<scale factor> ::= '<integer number> I '<sign> anteger number>

<integer number> ::= digit> I ateger number> <digit>

<sign> ::= + I -

(N t0 e: a long complex constant may have the I and L in either order

in a program, but they must be in the order IL on data cards.)

4.1.2. Semantics

Numbersare interpreted according to the conventional decimal

notation. A scale factor denotes an integral power of 10 which is

multiplied by the unscaled real or integer number preceding it. Each

number has a uniquely defined type. (Note that all <r number>s are

unsigned.)

4.1.3. Examples

1 05 11

0100 1'3 0.671

3.1416 6.02486'+23 1IL

2.718281828459045235360287L 2.3'-6

. 4.2. Logical Values

4.2.1. syntax

Cl.ogical value> ::= true 1 false

4.3. Bit Sequences

4.3.1. syntax

<bit sequence> ::L # Hex digit> 1 <bit sequence> Chex digit>

18



4. VALUES and TYPES

&ex digit> ::=oI1I2I314151617(819jAIBI

c ID lE IF
Note that 2 1 . . . I F corresponds to 210 1 ..* 1 15, .

4.32. Semantics . .

The number of bits in a bit sequence is 32 or 8 hex digits. The

bit sequence is always represented by a 32 bit word with the specified

bit sequence right justified in the word and zeros filled in on the left.

4.3.3. Examples

#4F = 0000 0000 0000 0000 0000 0000 0100 1111

#9 = 0000 0000 0000 0000 0000 0000 0000 1001

--.

1-I .I I . Strings

4 . 4 . 1. syntax

<string> ::= "<sequence of characters>"

4 . 4 . 2 . Semantics

Strings consist of any sequence of (at most 256) characters

accepted by the System 360 enclosed by ", the string quote. If the

string quote appears in the sequence of characters it must be immediatelye

followed by a second string quote which is then ignored. The number of

characters in a string is said to bc the length of the string.

4 . 4 . 3 . Examples

"JOHN"
?f 1111 Tf is the string of length 1 consisting of the string quote.
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c-

4.5. References

43.1. Syntax

e

L

<null reference> ::= I ; II 1. .-- m-v-

4.5.2. Semantics

The reference value null falis to designate a record; if a refer-

ence expression occurring in a field designator (ef. 6.1.) has this

value, then the field designator is undefined.

5. DECLAMTIOmS

Declarations serve to associate identifiers with the quantities

used in the program, to attribute certain permanent properties to

these quantities (e.i:. type, structure), and to determine their scope.

The quantities declared by declarations are simple variables, arrays,

procedures and record classes.

Upon exit from a block, all quantities declared or defined within

that block lose their value and significance (cf. 7.1.2. and 7.4.2.).
e

Syntax:

CderlaratiorP ;t= <simple VJariable declaratioo 1 <? array

5.1. Simple Variable

5 ' 1..I. Syntax

<simple variable

declaration> I <procedure declaratiofi 1

<record class deciaration>

Declarations

declaratiori>  : := <simple type iidentifier list>

<simple type> : : = integer. 1 real 1 long real 1 complex I long

Tomplex 1 log.ical 1 bits I bits (32) I

20
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string 1 string (<integer'number>) 1 reference

(<record class identifier list>)

<record class identifier list> ::= <record class identifer> 1
. . <record class identifier list> ,

<record class identifier>

5.1 .2 . Semantics

Each identifier of the identifier list is associated with a

variable which is declared to be of the indicated type. A variable is

called a simple variable, if its value is simple (cf. Section 4). If

a variable is declared to be of a certain type, then this implies that
--.

only value s which are assignment compatible with this type (cf. 7.2.2.)

can be assigned to it. It is understood that the value of a variable

is equal to the value of the expression most recently assigned to it.

A variable of Qy-pe bits is always of length 32 whether or not

the declaration specification is included.

A variable of type string has a length equal to the unsigned

integer in the declaration specification. If the simple type is

given only as string, the length of the variable is 16 characters.

A variable of type reference may refer only to records of the

record classes whose identifiers appear in the record class identi-

fier list of the reference declaration specification.

5.1 .3 . Examples

integer I, J, K, M, N

real X, Y, Z

long complex C

logical L

bits G, H,
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1,

L

string (10) S, T

reference (PERSON) JACK, JILL

5.2. Array Declarations

5 . 2 . 1 . syntax

fl array declaration> ::= <simple type> array <identifier list>

(Cbound pair list>)

<bound pair list> ::= <bound pair> 1 6ound pair list>,<bound pair>

<bound pair> ::= Glower bound> :: Cupper bound>

dower bound> ::= <integer expression>

Cupper bound> ::= <integer expression>

5.2.2. -Semantics

Each identifier of the identifier list of an array declaration is

associated with a variable which is declared to be of type array.A

variable of type array is an ordered set of variables whose type is the

simple type preceding the symbol array. The dimension of the array is

the number of entries in the bound pair list.

c Every element of an array is identified by a list of indices. The

indices are the integers between and including the values of the lower

e bound and the upper bound. Every expression in the bound pair list is

L evaluated exactly once upon entry to the block in which the declaration

_ occurs. The bound pair expressions can depend only on variables and

c

c

procedures globalto  the block in which the declaration occurs. In order

to be valid, for every bound pair, the value of the upper bound must not

be less than the value of the lower bound.

5.2.3. Examples

integer array H(l::lOO)

c
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real array- - A, B(l::M, 1::N)

string (12) array STREET, TOWN, CITY (~3 + 1)

5*3* Procedure Declarations

5.3 .1 . syntax . .

<procedure declaration> ::= Cproper procedure declaration> I

<r function procedure declaration>

Qroper procedure declaration> ::=

<7 function procedure declaration>

procedure Qrocedure  heading>;

Cproper procedure body>

::= <simple type> procedure

<procedure heading>;

<gf"unction procedure body>

Qroper procedure body> ::= <statement> 1 <external procedure>

<7Function  procedure body> ::= <gexpression>  1 alock body>

<7'expression> end \ <external procedure>

Cprocedure  heading> ::= <identifier> \ <identifier> (<formal

parameter list>)

<formal parameter list> ::= -3ormal parameter segment> I

aormal parameter list> ; <formal

parameter segment>

<formal parameter sement> ::= <orma type> <identifier list> 1

aormal array parameter>

<'formal type> ::= <simple type> I <simple type> value I <simple

type> result I <simple type> value result \

<simple type> procedure 1 procedure

<formal array parameter> ::= <simple type> array <identifier

list> (<dimension specification>)

<dimension specification> ::= * 1 <dimension specification>, *

<external procedure> ::= fortran <string> \ algol <string>

5.3 .2 . Semantics

A procedure declaration associates the procedure body with the

identifier immediately following the symbol procedure. The principal
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c-

e

c

e

c
L

L

L

L

part of the procedure declaration is the procedure body. Other parts

of the block in whose heading the procedure is declared can then cause

this procedure body to be executed or evaluated. A proper procedure

is activated by a procedure statement (cf. 7.3.), a function procedure

by a function designator (cf. 6.2.). Associated with the procedure

body is a heading containing the procedure identifier and possibly a

list of formal parameters.

5.3.2.1. Type specification of formal parameters. All formal para-

meters of a formal parameter segment are of the same indicated type.

The type must be such that the replacement of the formal parameter by

the actual parameter of this specified type leads to correct ALGOL W

expressions and statements (cf. 7.3.2.).

‘j .3.2.2. The effect of the symbols value and result appearing in a

formal type is explained by the following rule, which is applied to

the procedure body before the procedure is invoked:

(1) The procedure body is enclosed by the symbols begin and end

if it is not already enclosed by these symbols;

(2) For every formal parameter whose formal type contains the

symbol value or result (or both),

( >a a declaration followed by a semicolon is inserted after

the first begin of the procedure body, with a simple

type as indicated in the formal type, and with an iden-

tifier different from any identifier valid at the place

of the declaration.

(b) throughotit the procedure body, every occurrence of the

c
24



5. DEiCLARATIONS

formal parameter identifier is replaced by the identifier

defined in step 2a;

(3) If the formal type contains the symbol value, an assignment. .

statement (cf. 7.2.) followed by a semicolon is inserted

after the declarations of the procedure body. Its left part

contains the identifier defined in step 2a, and its expression

consists of the formal parameter identifier. The symbol

value is then deleted;

(4) If the formal type contains the symbol result, an assignment

statement pre_ceded by a semicolon is inserted before the symbol

end which terminates a proper procedure body. In the case

of a function procedure, an assignment statement preceded

by a semicolon is inserted after the final expression

of the function procedure body. Its left part contains the

formal parameter identifier, and its expression consists of

?he identifier defined in step 2a. The symbol result is

then deleted.

e

5.3.2.3. Specification of array dimensions. The number of 'w" s

appearing in the formal array specification is the dimension of the

array srameter.

5.3.2.4. External procedures. The body of a procedure can be just the construct

fortran C&ring>

or the construct

algol <string> .
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In these cases, the actual body of the procedure is specified in a program

that is compiled separately (externally). The <string> is a one-to-eight

character external name that is used in the separate compilation. Thus, the. .

example on page 27 could be used to refer to a FORTRAN program that begins:

SUBROUTINE PLOTSB(N) .a.

(cf. Deck Setup and Compiler Options, Section 3 for details).

5.3.3. Examples

,procedure  INCREMENT; X := X+1

real procedure MAX (real value X, Y);PP
if X < Y then Y else X- -=. - P

procedure COPY (real array U, V (*,*); integer value A, B);

for I := 1 until A doP -
for J := 1 until B do U(I,J) := V(I,J)

real procedure HORNER (real array A (*); integer value N;..-
real value X);- -
begin real S; S := 0;PP

for I := 0 until N do S := S * X + A(1);

S

end

long real procedure SUM (integer K, N; long real X);- - - -
begin long real Y; Y := 0; K := N;- -

while K > = 1 do

begin Y := Y + X; K := K - 1

end;

Y

end
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59 DECLARATIONS

reference (PERSON) procedure YauNGESTUNCLE  (reference (PERSON) R);

begin reference (PERSON) P, M;

P := YCU~JGE~TOFF~PRING (FATHER (FATHER (R)));

while (P7 = null) and (-, MALE (P)) or

(P = FATHER(R))

P := EIDERSIBLING (P);

M := YOUNGESTOFFSPRING (MOTHER (MOTHER (R)));

while (M7 = null) and (1 MALE (M)) do

M := ELDERSIBLING (M);

if P= null then M else- -
if M = null then P else- -
if AGE(P) <AGE(M) then P else M

end
-L.

procedure PLOTSUBROUTINE (integer value I); fortran VLOTSB~~

27
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5.4. Record Class Declarations

5.4 .1 . Syntax

b

c

c

L

‘L

<record class declaration> ::= record <identifier> (<field list>)

<field list> ::= <simple variable declaration> 1 <field list> ;

<simple variable declaration>

5.4.2. Semantics

A record class declaration serves to define the structural pro-

perties of records belonging to the class. The principal constituent

of a record-Glass  declaration is a sequence of simple variable declar-

ations which define the fields and their simple types for the records

of this class and associate identifiers with the individual fields.

A record class identifier can be used in a record designator (cf. 6.7.)

to construct a new record of the given class.

5.4 .3 .

record

record

Examples

NODE (reference (NODE) LEFT, RIGHT)

PERSON (string NAME; integer AGE; logical MALE;

reference (P E RSON) FAYI~-~R, MOTHER, YOU~~GESTOFFSPRING,

ELDERSIBLING)

6. EXPRESSIONS

Expressions are rules which specify how new values are computed

from existing ones. These new values are obtained by performing the

operations indicated by the operators on the values of the operands.

The operands are either constants, variables or function designators,

or other expressions, enclosed by parentheses if necessary. The evalu-

ation of operands other than constants may involve smaller units of

28



6. EXPRESSIONS

action such as the evaluation of other expressions or the execution of

statements. The value of an expression'between  parentheses is obtained

by evaluating that egression. If an operator has two operands, then

these operands may be evaluated in any order with the exception of the
. .

logical operators discussed in 6.4.2.2. Several simple types of

expressions are distinguished. Their structure is defined by the following

rules, in which the symbol r has to be replaced consistently as described

in Section 1, and

three replaced by

logical

bit

string

where the triplets Y',, TT1, Y, have to be either all

the same one of the words

reference

or by any combination of words as indicated by the following table,

which yields TO given Yl and 7, :

integer

real

complex

integer

real

complex

real complex

real complex

complex complex

To has the quality "long" if either both rl and 7, have that

_ quality, or if one has that quality and the other is "integer".

syntax:

<Y expression> ::= <simple a expression> 1 <case clause>

(<7 expression list>)

<YOeqression> ::= <if clause> <rlexpression>  else

<r2 expression>

<Texpression list> ::= <rexpressiorD

<To expression list> ::= <Qexpression list> , <T2expression>

<if clause> ::= if logical expression>then

<case clause> ::= case <integer expression> of
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The construction

<if clause> <rlexpression>  else <r2expression>

causes the selection and evaluation of an qression on the basis of

the current value of the logical expression contained in the if clause.

If this value is true, the expression following the if clause is selected;

if the value is false, the expression following else is selected. If

5 and I, are simple type string, the shorter expression will be padded

on the right with blanks to make it the length of the longer one. The

construction

<case clause> (<rexpression list>)

causes the selection of the egression whose ordinal number in the

expression list is equal to the current value of the integer expression

contained in the case clause. In order that the case expression be

defined, the current value of this expression must be the ordinal number

of some expression in the expression list. If r is simple type string,

the string expressions will be padded on the right with blanks to make

all alternatives the length of the longest one.

Examples of expressions

X -1 A*B COLUMN rem 5 (X+Y)w3 long abs BALANCE- -

if X=3 then Y+37 else Z*2.1

&se I of (3.14, 2.78, 448.9)

case  DE~oDE(c)-~~~  of ("A", "B", "C", "D", "E", "F")

6.1. Variables

6.1.1. syntax

<simple r variable> ::= <yvariable identifier>

<Tarray designator>

<rvariable> ::= <simple T variable>

<string variable> ::= <substring designator>

1 <Afield designator>

<rfield designator> ::= <?'field identifier> (Qeference expression>)

<Tarray designator> ::= <Tarray identifier> (<subscript list>)

<subscript list> ::= <subscript> 1 <subscript list>, <subscript>

<subscript> ::= <integer expression>



6. EXPRESSIONS

6.1 .2 . Semantics

An array designator denotes the variable whose indices are the

current values of the expressions in-the subscript list. The value of

each subscript must lie within the declared bounds for that subscript

position.

A field designator designates a field in the record referred to

by its reference expression. The simple type of the field designator

is defined by the declaration of that field identifier in the record

class designated by the reference expression of the field designator

(cf. 5.4.). =.

6.1 .3 . Examples

X A(I) M(I+J, I-J)

FATHER (JACK) MOTHER(FATKER(JILL))

6.2. Function Designators

6 . 2 . 1 . syntax

<4 function designator> ::= <y function identifier> 1 <7 function

identifier> (<actual parameter list>)

6.2 .2 . Semantics

A function designator defines a value which can be obtained by a

process performed in the following steps:

Step 1. A copy is made of the body of the function procedure

whose procedure identifier is given by the function designator

and of the actual parameters of the latter.

Steps 2, 3, 4. As specified in 7.3.2.
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Step 5. The copy of the function procedure body, modified as indicated

in steps 2-4, is executed. Execution of the expression which constitutes

or is part of the modified procedure body consists of evaluation of that

expression, and the resulting value is the value of the function desig-
c

nator. The simple type of the function designator is the simple type

in the corresponding function procedure declaration.

c

L must be systematically replaced by one of the following words (or

6.2.3. Examples

MAX (x ** 2, Y H 2)

SUM (I, 100, H(1))

SUM (I, M, SUM (J, N, A&J)))
YOUNGESTUNCLE (JILL)

SUM (I, 10, X(1) * Y(1))

HORNER (X, 10, 2.7)

6.3. Arithmetic Expressions

6.3,1. Syntax

In any of the following rules, every occurrence of the symbol T

word pairs):

integer

real

long real
. complex

long complex

The rules governing the replacement of the symbols To, Jl and T2 are

c

given in 6.3.2.

<simple 3 expression> ::= <3term> 1 + <Jterm> 1 - <T term>
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<simple To expression> ::= <simple Tl expression>+ <'12term> 1

<simple Yl expression> - <r2term>

<r-term> ::= <Yfactor>

<Toterm> ::= <7lten> * <-T2 factor>

<rOten> ::= <rlterm> / G2 factor>

Cinteger term> ::= tinteger term> tinteger factor> 1

<integer term> rem Cinteger factor>

<TO factor> ::= <~oprimary> 1 <Qfactor> * Cinteger primary>

<ITOprisnary>  ::= abs <iflprimary>

<rOprimary> ::= long <Qprimary>

<70primary>  ::= short <rlprimary>

<Tprimary> ::= <~variable> 1 <~Y'~~~ction designator> I

(<Teqression>)  I <TAXUII~~~>
--.

anteger primary> ::= <control identifier>

6.3.2. Semantics

An arithmetic expression is a rule for computing a number.

According to its simple type it is called an integer expression,

real expression, long real expression, complex expression, or long

complex expression.

6.3.2.1. The operators +, -> *, and / have the conventional meanings

of addition, subtraction, multiplication and division. In the relevant

syntactic rules of 6.3.1. the symbols To, J', and IT2 have to be replaced

by any combination of words according to the following table which

indicates To for any combination of 7, and 7,. (Also see page 134.)

6.3.2.2. The operator ff-ff standing as the first symbol of a simple

expression denotes the monadic operation of sign inversion. The type of

the result is the type of the operand. The operator "+" standing as the

first symbol of a simple expression denotes the monadic operation of

identity.
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6 . 3 . 2 . 3 . The operator div is mathematically defined (for B # 0) as

L

c

c

c

c L-

L

c

c

L

A div B = SGN (A x B) x D (abs A, 0s B) (cf. 6.3.2.6.)

A and B both must be integer expressions.

For the purpose of the definition above, SGN and D mean

integer procedure SGN (integer value A);

if A < 0 then -1 else 1;

integer procedure D (integer value A, B);

if A < B then 0 else D(A-B, B)+l

6 . 3 . 2 . 4 . The operator rem (remainder) is mathematically defined as

AremB = A - (A div B) xB

A and% both must be integer eqressions.

6 . 3 . 2 . 5 . The operator +M denotes exponentiation  of the first operand

to the power of the second operand. In the relevant syntactic rule of

6.3.1. the symbols To, yl, and T, are to be replaced by same combination

of words fram the table below. If the value of the exponent, N, is

positive, then the first operand is multiplied by itself N times; if N

is negative, the expression is evaluated as l/(first operandM(-N));

if N is zero, the result is always 1. If the first operand is zero and

the second operand is negative, then division by zero will result. Note

that -l**N is parsed as -(l**N); use (-l)**N instead. To force samething

like I**J (where I 2 0 and J > 0) to be an integer, use TRUNCATE(I~J).-

6 . 3 . 2 . 6 . The monadic operator abs yields the absolute value or modulus

of the operand. In the relevant syntactic rule of 6.3.1. the symbols ?'.

and rl have to be replaced by the same types.

6 . 3 . 2 . 7 . Precision pf arithmetic. If the result of an arithmetic

operation is of simple type real, complex, long real, or long complex
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then it is the mathematically understood result of the operation

performed on operands which may deviate from actual operands.

In the relevant syntactic rules of 6.3.~ the symbols yo, ~~~ and r,

must be replaced by any of the cmbinations of words (or word pairs)

in the tables below.

Operators + I -

complex long complex

integ.er integer real long real complex long complex

real real real real cclmplex complex

long real --. long real real long real complex long complex

complex canplex ccmplex complex complex complex

long complex long complex complex long complex complex long complex

Operator *

integer integer long real long complex

real long real long real long complex

complex long complex long complex long complex

T1 or J', having the quality "long" does not affect the type of the result.

: Operator /

integer

real

long real

complex

long complex I

integer real long real cc4nplex  long complex

long real real long real complex long complex

real real real complex ccmplex

long real real long real complex long complex

complex complex complex complex complex

long complex complex long complex complex long complex
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Table of values for div and rem operators

I

10
ll
10
11

-10
-11
-10
-ll

J

2
2
-2
-2
2
2

-2
-2

Operator ++
T

I div J I remJ

5
5

-5
-5
-5
-5

5
5 I

I integer

0
1
0
1
6
-1
0
-1

integer long real

real long real

long real long real--.
complex long complex

long complex long complex

Operator long

rO I 5

long real integer

long real real

long real long real

long complex complex

long complex long complex

Operator short

*0 I 5

E

real

real

real

complex

complex

integer

real

long real

cctnplex

long complex

6.3.3. Examples.

6. ExPFws1oNs

C + A(1) * B(1)

E~P (-x/(2 * SIGMA)) / SQRT (2 * SIGM)
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6.4. Logical Expressions

6.4.~ syntax

In the following rules for dcelation>the  symbols To a.nd Ti must

either be identically replaced by any one of the following words:

bit
. .

stringm
reference

or by any of the words from:

complex

long complex

real

long real

integer

and the symbols T2 or ?
3
must be identically replaced by string or

must be replaced by any of real, long real? integer.

<simple logical expressiorD :: = <logical. elemenD 1 <relatiorl>

<logical elementi ::= <logical terxD 1 <logical elementi o;r

<logical term

<logical ter* : := <logical factor> 1 <logical terx0 and

<logical factor>

<logical factor> : := <logical primary3 1 7 <logical primar*

<logical. primarp :: = <logical value> 1 <logical variable+  1
e

<logical function designator3 1

(<logical expressioo)

<relatiorD ::= <simple To expressiorD  <equality operatc&
.

<simple T1 expressi 1 <logical elementD
<equality operator-2 <logical element> 1

<simple reference expression> 2

<record class identifier> 1

<simple 7, expression> <relational operator>

<simple JL
3
expressioG

<relational operator> ::= < 1 C = 1 > =I 1 >

CeyuaJAty operator> ::p = 1 I =

6.4.2. Semantics

A logical expression is a rule for computing a logical vahe.*
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6.4.2.1. The relational operators represent algebraic ordering for

L arithmetic arguments and EBCDIC ordering for string arguments. If two
L.

strings of unequal length are compared, the shorter string is first

extended to the right with blanks. The relational operators yield the

logical value true if the relation is satisfied for the values of thg

two operands; false otherwise. Two references are equal if and only if

they are both null or both refer to the same record. The operator is

yields the logical value true if the reference expression designates a
c

record of the indicated record class; false otherwise. The reference

c
‘b

ct

c

value null fails to designate a record of any record class.

6 . 4 . 2 . 2 . The operators 1 (not), and, and or, operating on logical

values, are defined by the following equivalences:

-lx if X then false else truev - - - -
X and Y if X then Y else false- -
X or Y if X then true else Yv - - -

6.4 .3 . Examples

P or Q

(X < Y) and (Y < Z)

YOUNGESTOFFSPRING (JACK) 1 = null

FATHER (JILL) is PERSON

6;5. Bit Expressions

6.5 .1 . Syntax

<simple bit expression> ::= <bit. temn> I <simple bit expression>

or <bit term>

Cbil, t,trrO : := <bit factor> I <bit term> and <bit factor>

<bit l'actor> ::= <bit secondary> 1 I <bit secondary>

<bit secondary> ::= <bit primary> I <bit secondary> shl

<integer primary> 1 CDit secondary> shr

<integer primary>

<bit primary> ::= <bit sequence> I <bit variable> I <bit

function designator> 1 (<bit expression>)
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6.5 .2 . Semantics

A bit expression is a rule for computing a bit sequence.

The operators and, or, and 1 produce. a result of type bits, every

bit being dependent on the corresponding bit(s) in the operand(s) as

follows: .

X Y 1
IX X and Y XEY

0 0 1 0 0

0 1 1 0 1

1 0 0 0 1

1 1 0 1 1
-=.

The operators shl and shr denote the shifting operation to the

left and to the right respectively by the number of bit positions

indicated by the absolute value of the integer primary. Vacated bit

positions to the right or left respectively are assigned the bit

value 0.

6.5 .3 . Examples

G and H or #38
- -

e

G and 1 (H or G) shr 8

6 .6 . String Expressions

: 6.6.1. Syntax

<simple string expression> ::= <string primary>

<string primary> ::= <string> 1 <string variable> 1 <string

function designator> 1 (<string expression>)

<substring designator> ::= <simple string variable>

(<integer expressiorB# <integer number>)

(The 1 stands for the vertical bar character I ).*
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6.6 .2 . Semantics

e

e

e

A string expression is a rule for. computing a string (sequence of

characters).

6”6.2.1. A substring designator denotes a sequence of characters of

the string designated by the string variable. The integer expression

preceding the a selects the starting character of the sequence. The

value of the expression indicates the position in the string variable.

The value must be greater than or equal to 0 and less than the declared

length of the string variable. The first character of the string has

position 0. The integer number following the a indicates the length

of the selected sequence and is the length of the string expression.

The sum of the integer. expression and the integer number must be less

than or equal to the declared length of the string variable.

6.6 .3 . Example

strinq (10) S;

s !483)
S (I+JUl)

c string (10) array T (l:tm,2::n);

T i4,6) (3W 5).

e

c

CJ. He:ference Expressions

6.701. Syntax

-<simple reference expressior9  ::= <nulZ. reference> 1 <reference

variable> 1 <reference function

designator> 1 <record designator> 1

(<reference expressioti)
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<record designator> ::= <record class identifier> I <record

class identifier> (<expression list>)

<expression list> ::= Q expression> 1 <expression list>,

CT expression>

6.7 .2 . Semantics

A reference expression is a rule for c0mputing.a  reference to a

record.

The value of a record designator is the reference to a newly

created record belonging to the designated record class. If the

record designator contains an expression list, then the values of the

expressions are assigned to the fields of the new record. The entries

in the expression list are taken in the same order as the fields in

the record class declaration, and the simple types of the expressions must

be assignment compatible with the simple types of the record fields

(cf. 7.2.2.). l

.-

6.7 .3 . Example .

PERSON ("CAROL", 0, false, JACK, JILL, null, YOUNGESTOFFSPRING

(JACK > 1

6.8. Precedence of Operators

The syntax of 6.3.1.,  6.4.1., and 6.5.1. implies the following

hierarchy of operator precedences:

-v3, short, abs

shl, shr, *- -
1

*, I,
div, rem, and-ee

+, -Y z
<; <=, => I=>
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c.

\

L

Example

A = B a n d C is equivalent to A = (B and C)

70 STATENEWTS
. .

A statement denotes a unit of action. By the execution of a

statement is meant the performance of this unit of action, which may

consist of smaller units of action such as the evaluation of expressions

or the execution of other statements.c

syntax:

c

c

Cprogram> ::= <statement>. 1

--. qroper procedure declaration>. I

<~function procedure declaration>.

Cstatement> ::= <simple statement> I <iterative statement> 1

tif statement> I <case statement>

Csimple statement> ::= <block> I <7assignment statement> 1

<empty> 1 fprocedure statement> 1

<got0 statement>

(N t0 e: the terminating period is optional.)

c

e 7 . 1 . Blocks

c

c

7 .l.l. syntax

&lock> ::= &lock body> <statement> end

<block body> ::= <block head> \ <block body> <statement>; I

<block body> aabel definition>

&lock head> ::= be in\ <block head> <declaration> ;g

aabel definition> ::= <identifier> :

'7.1.2. Semantics
c

15very block introduces a new level of nomenclature. This is

c

realized by execution of the block in the following steps:
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Step 1. If an identifier, say A, defined in the block head or

in a label definition of the block body is already defined at

the place from which the block is entered, then every occurrence

of that identifier, A, within the block except for occurrence in

array bound expressions is systematically replaced by another

identifier, say APRIME, which is defined neither within the

block nor at the place from which the block is entered.

Step 2. If the declarations of the block contain array bound

expressions, then these expressions are evaluated.

Step 3. Execution of the statements contained in the block body

begins with the execution of the first statement following the

block head.

After execution of the last statement of the block body (unless

it is a goto statement) a block exit occurs, and the statement follow-

ing the entire block is executed.

7.1.3. 'Example

begin real U;

u := x; x := Y; Y := z; z := u

end

7.2. Assignment Statements

7.2.1. syntax

In the following rules the symbols To and rl must be replaced by

words as indicated in Section 1, subject to the restriction that the

type 71 is assignment compatible with the type To as defined in 7.2.2.
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B. assignment statement> ::= Q. left part> a1 expression> I

Go left part> Ql assignment

statement>

CI' left part> ::= CT variable> :=

c
7.2.2. Semantics

The execution of a simple assignment statement

a0 assignment statement> ::= <r, left part> <71 expression>

e
causes the assignment of the value of the expression to the variable.

If a shorter string is to be assigned to a longer one, the shorter

string is first extended to the right with blanks until the lengths are

equal. In a multiple assignment statement

( 9<O assignment statement> ::= a0 left part> a1 assignment

statement>)

the assignments are performed from right to left. For each left part

variable, the simple type of the expression or assignment variable immediately

to the right must be assignment compatible with the simple type of that

variable.

A simple type Tl is said to be assignment compatible with a simple

e me 70 if either

e
( >1 the two types are identical (except that if Jo and Tl are

string, the length of the Jo variable must be greater than
.

or equal to the length of the T1 expression or assignment), or

(2) Q) is real or long real, and Jl is integer, real or long- -

real or

L

(3) J() is complex or long complex, and Zrl is integer, real,

long real, complex or long complex.- -

In the case of a reference, the reference to be assigned must refers

to a record of one of the classes specified by the record class identifiers

associated with the reference variable in its declaration.
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7.2.3. Examples

z := AGE(JACK) := 28

X := Y + abs Z

C :=I+X+C

P := X1=Y

7*3* Procedure Statements I

7 . 3 . 1 . Syntax

<procedure statement> ::= <procedure identifier> I <procedure

identifier> (actual parameter list>)

<actual parameter list> ::= <actual parameter> 1 <actual

parameter list> , <actual parameter>
--.

<actual parameter> ::= CT expression> I <statement> I <7 subarray

designator> 1 <procedure identifier> I

CT function identifier>

CT subarray designator> ::= 0 array identifier> I G array

identifier> (<subarray designator

list>)

<subarray designator list> ::= <subscript> 1 * 1 <subarray

designator list>,<subscript>  I

Csubarray designator list>,*

7.3.2. Semantics

The execution of a procedure statement is equivalent to a process

performed in the following steps:

Step 1. A copy is made of the body of the proper procedure whose

procedure identifier is given by the procedure statement, and of

the actual parameters of the latter. The procedure statement is

replaced by the copy'of the procedure body.

Step 2. If the procedure body is a block, then a systematic

change of identifiers in its copy is performed as specified by
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step 1 of 7.1.2.

c
Step 3. The copies of the actual parameters are treated in an

undefined order as follows: If the copy is an expression. .

e

e

different from a variable, then it is enclosed by a pair of

parentheses, or if it is a statement it is enclosed by the symbols

begin and end.

Step 4. In the copy of the procedure body every occurrence of an

identifier identifying a formal parameter is replaced by the copy

of the corresponding actual parameter (cf. 7.3.z.l.). In order

for the process to be defined, these replacements must lead to

correct ALGOL W expressions and statements.

Step 5. The copy of the procedure body, modified as indicated in

steps 2-4, is'executed.

c

L

7.3.2.1. Actual-formal correspondence. The correspondence between

the actual parameters and the formal parameters is established as

follows: The actual parameter list of the procedure statement (or

of the function designator) must have the same number of entries as

the formal parameter list of the procedure declaration heading. The

correspondence is obtained by taking the entries of these two lists

ih the same order.

'7.3.2.2. Formal specifications. If a formal parameter is specified by

value, then the simple type of the actual parameter must be assignment

compatible with the formal type. If it is specified as result, then the

formal type must be assignment compatible with the simple type of the

actual parameter. If it is- specified by value result, both the above
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conditions must be satisfied. In all other cases, the types must be

identical. If an actual parameter is a statement, then the specification

of its corresponding formal parameter must be Focedure.

7.3.2.3. Subarray designators. A complete array may be passed to a

procedure by specifying the name of the array if the number of subscripts

of the actual parameter equals the number of subscripts of the

corresponding formal parameter. If the actual array parameter has

more subscripts than the corresponding formal parameter, enough subscripts

must be specified by integer expressions so that the number of *Is appearing

in the subarray designator equals the number of subscripts of the

corresponding formal parameter. The subscript positions of the formal

array designator are matched with the positions with *'s in the subarray

designator in the order they appear.

7*3*3* Examples

INCREMENT

COPY (A, B, M, N)

INNERPRODUCT (IP, N, A(I,*), B(*,J))

7 . 4 .Got0 Statments

7 . 4 . 1 . Syntax

<goto statement> ::= goto <label identifier>

identifier>

7.4.2. Semantics

I go to <label- -

An identifier is called a label identifier if it stands as a

label.
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c after the label definition of the label identifier. The identification

c

c

e

L

A goto statement determines that execution of the text be continued

of that label definition is accomplished in the following steps:

. .
Step 1. If some label definition within the most recently activated

but not yet terminated block contains the label identifier, then

this is the designated label definition. Otherwise,

Step 2. The execution

and Step 1 is taken as

of that block is considered as terminated

specified above.

7.5. If Statements
-=.

7 . 5 . 1 . syntax

<if statement> ::= <if clause> <statement> 1 Ci.f clause>

<simple statement> else Cstatement>

<if clause> ::= if logical eqression>then

7.5.2. Semantics

The execution of if statements causes certain statements to be

executed or skipped depending on the values of specified logical

expressions. An if statement of the form
e

c
<if clause> <statement>

is executed in the following steps:

Step 1. The logical expression in the if clause is evaluated.

c Step 2. If the result of Step 1 is true, then the statement

following the if clause is executed. Otherwise step 2 causes

no action to be taken at all.

c

c
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An if statement of the form

Cif clause> <simple statement> else <statement>

is executed in the following steps:

Step 1. The logical expression in the if clause is evaluated.. .

Step 2. If the result of step 1 is true, then the simple statement

following the if clause is executed. Otherwise the statement

following else is executed.

7*5.3* Examples

if X = Y then goto L

X<YthenU := X else if Y < Z then U := Y else V := Z- -

7.5a Assert Statements

7.5a.l Syntax

<assert statement> ::= assert Clogical expression>

7.5a.2 Semantics

I The assert statement is equivalent to the if statement:
. I

a if -,(<logical expression>) then endexecution

where "endexecution" signifies a procedure which terminates the execution

-of an ALGOL W program. The assert statement can be used both as a
.

debugging aid (asserting conditions which should be true, but may not

be if a bug exists), and as a program documentation aid.
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7.6. Case Statements

7 . 6 . 1 . syntax
-.

<case statement> ::= <case clause>begin  <statement list> end
<statement list> ::= <statement> I <statement list> ; <staZent>
<case clause> ::= case &rteger-expression>  of

7 . 6 . 2 . Semantics

The execution of a case statement proceeds in the following steps:

c

c

L

c

Step 1. The expression of the case clause is evaluated.

Step 2.= The statement whose ordinal number in the statement list

is equal to the value obtained in Step 1 is executed. In order

that the case statement be defined, the current value of the

expression in the case clause must be the ordinal number of some

statement of the statement list.

7.6.3. Examples

case I ofP -
begin X := x + Y;

Y := Y + z;

Z := z + x

end

. case j of- -
begin H(1) := -H(I);

betsin H(.I-1) := H(I-1) + H(1); I := I-l end;

begin H(I-1) := H(I-1) *H(I); I := I-l end;

begin H(H(I-1)) := H(1); I := I-2 end -

end
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?*?- Iterative Statements

7 . 7 . 1 . syntax
-.

<iterative statement> ::= <for clause> <statement> 1 Cwhile

clause> <statement>

<for clause> ::= for <identifier> := <initial value>

step <increment> until aimit> do 1 for

<identifier> := tinitial value> until aimit>

do 1 for <identifier> := <for list> do

<for list> ::= <integer eqression> 1 ear list> , <integer

expression>

<initial value> ::= <integer expression>

4.ncremen-0 ::= <integer,expression>

aimit> ::= <integer expression>

Kwhile clause> ::= while logical expression> do

7.7.2. Semantics

The iterative statement serves to express that a statement be

Example FOR statement I Values I takes on

for I:=1 step 2 until 10 do 1, 3, 5 ,  7, 9
for I:=1 2 until 1 do 1step e- -

for I:=1 ste2 2 until -10 do none

for I:=1 step -2 until 10 do none

for I:=1 step -2 until 1 do 1

for I:=1 step -2 until -10 do 1, -1, -3, -5, -7, -9

for I:=1 step 0 until 10 do

for I:=1 step 0 until 1 do

for I:=1 step 0 until -10 do

1, 1, 1, 1, 1, 1, . . .

1, 1, 1, 1, 1, 1, . . .

none

Table of results for various FOR statements.
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c

c

c 1

L
N 5 (E3-El) / E2 < N+l. If N < 0, then it is understood that

the sequence is empty. The expressions El, E2, and E3 are

evaluated exactly once, namely before execution of <statement-O>.e

c '
Therefore they can not depend on the control identifier.

'1 (b) An iterative statement of the form

executed repeat:dly  depending on certain conditions specified by a

for clause or a while clause. The statement following the for clause

or the while clause always acts as a block, whether.it has t form of

a,block or not. The value of the control identifier (the

a

id fier
_(

fouowing for) cannot be changed by a&ignment within the controlled

statement.

(a) An iterative statement of the form

for <identifier> := El step E2 _Unti~l 39 do <statement>

is exactly equivalent to the block
-=.

begin <statement-O>; <statement-l> . . . ; <statement-I>;-.
. . . ; <statement-N> end

in the Ith statement every occurrence of the control identifier

is replaced by the value of the expression (El + I x E2).

The index N of the last statement is determined by

L

L

for <identifier> := El until E3 do <statement>

is exactly equivalent to the iterative statement

for <identifier> := El step 1 until E3 do <statement>

(c) An iterative statement of the form '

for <identifier> := El, E2, . . . , EN do <statement>

is exactly equivalent to the block
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.

begin <statement-D; <statement-2> . . . <statement-I> ; . . .

<statement-N> end

when in the I
th

statement every occurrence of the control identifier

is replaced by the value of the expression EI.

(d) An iterative statement of the form

while E do <statement>P w

is exactly equivalent to

begin

L: if E then- -
begin <statement> ; goto L end

end
--.

where it is understood that L represents an identifier which is not

defined at the place from which the while statement is entered.

7.7*3* Examples

for V := 1 step 1 until N-l% S := S + A(U,V)

while (J > 0) and (CITY(J) 1= S) do J := J-1

for I := x, x + 1, x + 3, x + 7 do P(I)

7 . 8 . Standard Procedures
m

Standard procedures are provided in AIGOL W for the purpose of

communication with the input/output system. These standard procedures

differ from explicitly declared procedures in that the number and type

of actual parameters need not be identical in every procedure statement

in which the standard procedure identifier appears. In the following

descriptions, each T i is to be replaced by any one of
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c-

c

e

c of 132 characters, and the records are grouped into logical pages.
L

integer

real

long real- -
comDlex

string (<integer number>)

logical

. . bits

c o m p l e xlong

7 . 8 . 1 . The Input/Output System

AIGOL W provides a single legible input stream and a single legible

output stream. These streams are conceived as sequences of records, each

record consisting of a character sequence of fixed length. The input

stream has the logical properties of a sequence of cards in a card reader;

records consist of 80 characters. The output stream has the logical

properties of a sequence of lines on a line printer; records consist

Each page consists of not less than one nor more than 60 lines.

Input records may be transmitted as strings without analysis.

Alternatively, it is possible to invoke a procedure which will scan the

sequence of records for data items to be interpreted as numbers, bit

e sequences, strings, or logical values. If such analysis is specified,

c .
data items may be reference denotations of the corresponding constants

(cf. Section 4). In addition, the following forms of arithmetic expressions

c

L

are acceptable data items, and the corresponding simple types are those

determined by the rules for expressions (cf. 6.3.):

(1) <sign> G number>

where : T is one of integer, real, long real, complex, long

complex;

L
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(2) g* number> <sign> <rl number>

<sign> Go number> <sign> <rl number>

where : To is one of integer, real, long real, and

Sl is one of complex, long complex.

Data items are separated by one or more blanks. Scanning for data items

initially begins with the first character of the input stream; after

the initial scan, it normally begins with the character following the

one which terminated the most recent previous scan. Leading blanks are

ignored. The scan is terminated by the first blank following the data

item. In the process, new records are fetched as necessary; character--

position 80 of one record is considered to be immediately followed by

character position 1 of the next record. There exist procedures to

cause the scanning process to begin with the first character of a record;

if scanning would not otherwise start there, a new record is fetched.

Output items are assembled into records by an editing procedure.

Items are automatically converted to character sequences and placed

in fields according to the simple type of each item, as described below:

Simple Type

integer

real

Field Description

right justified in a field containing

the number of characters specified by

the current value of INTFIELDSIZE

(initialized to 14, cf. 8.5.) and followed

by 2 blanks

right justified in a field of 14 characters

and followed by 2 blanks
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L

t

L

e

L

c

c .

e

long real right justified in a field of 22 characters

and followed by 2 blanks

complex two adjacent-real fields

long complex two adjacent long real fields

logical right justified in a field of 6 characters

followed by 2 blanks

string placed in a field exactly the length of

the string

bits same as real

The first field transmitted begins the output stream; thereafter, each

field is normally placed immediately following the most recent previously

transmitted field. If, however, the field corresponding to an item

cannot be placed entirely within a non-empty record, that item is made the

first field of the next record. In addition, there exist procedures to

cause the field corresponding to an item to begin a new record. Each

page group is automatically terminated after 60 records; procedures

are provided for causing earlier termination.

7 . 8 . 2 . Read Statements

Implicit declaration headings:

procedure READ (Tl result X l

1' . . . ; Tn result X,);

procedure READON (T1 result Xl; . . . ; ?n result X )*
n'

(where n > = 1)

Both READ and RFADON designate free field input procedures. Input

records are scanned as described in 7.8.1. Values on input records are

read, matched with the variables of the actual parameter list in order

of appearance, and assigned to the corresponding variables. The simples
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type of each data item must be assignment compatible with the simple

type of the corresponding variable. For each READ statement, scanning

for the first data item is caused to begin with the first character of
. .

a record; for a READON statement, scanning continues from the previous

point of termination as determined by prior use of READ, READON, or

IOCONTROL (cf. 7.8.1.).

Implicit declaration heading:

procedure READCARD (string(8O) result Xl, . . . . X,);

(where n > = 1)

READCARD designates a procedure transmitting 80 character input
--+.

records without analysis. For each variable of the actual parameter list,

the scanning process is set to begin at the first character of a record

(by fetching a new record if necessary), all 80 characters of that record

are assigned to the corresponding string variable, and subsequent input

scanning is set to begin at the first character of the next sequential

record.

7 . 8 . 3 . Write Statements

Implicit declaration headings:

procedure WRITE (Yl value Xl; . . . ; Tn value Xn);

procedure WRITEON (yl value Xl; . . . ; Yn value .X,);

(where n > = 1)

WRITE and WRITEON designate output procedures with automatic format

conversion. Values of expressions of the actual parameter list are converted

to character fields which are assembled into output records in order of

appearance (cf. 7.8.1.). For each WRITE statement, the field corresponding

to the first value is caused to begin an output record; for a WRITEON

statemen%,  assembly continues from the previous point of termination.
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7 . 8 . 4 . Control Statements.

Implicit declaration heading:

c

c

procedure IOCONTROL (integer value Xl,...,Xn);

(hw ere n > = 1)

IOCONTROL designates a procedure which affects the state of the
. .

input/output system. Argument values with defined effect are listed

below; other values currently have no effect but are explicitly made

available for local use or future expansion.

Value Action (cf. 7.8.1.)

1 Subsequent input scanning is set to begin with the first

character of a record. Does nothing if already

positioned at the first character of a record.

2 Subsequent output assembly is set to begin with the
-=.

first character of a record. Does nothing if already

positioned at the first character of a record.

3 Like IOCONTROL(2), except that the new record is also

caused to begin a new output page. Does nothing if already

positioned at the first character at the top of a page.

4 Subsequent automatic page ejects on the printed output

are suppressed, thus allowing more than 60 records on

a page. This suppresses only the automatic page eject

after 60 records; IOCONTROL(3) still works. (Note that

some operating systems also have a feature to force

page ejects after 60 records.*J

5 Subsequent automatic page ejects on the printed output

are allowed; undoes IOCONTROL(~).  While the automatic

page eject is suppressed, page and line counts are stiU.

maintained based on 60 records per page, so a program may

still be cut off for exceeding the page estimate. Also,

after an IOCONTROL(5), the first automatic page eject may

occur after l-to 60 more records, unless the counters are

re-synchronized at that point via IOCOUTROL(3).

72 Subsequent use of READ and READON are to use only the first

72 characters of a record; the last eight are ignored.

RRADCARD still reads ali 80 characters.

80 Subsequent use of READ and READON are to use all 80

characters of a record.

-I* At Stanford, a /* PRINT EJECT=NO card must be included next to the
I., --c-,-u- -l I-R
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7 . 8 . 5 . Examples

READCARD ( S, LINE(l0 180) ) . .
WRITE ( "AVERAGE =", SUM/N )

WRITEON ( X(l,J) )

IOCONTROL (2)

7 . 8 . 6 . TRACE standard procedure

The number of times each source statement is traced by the

debugging facilities (see $DEBUG in the Deck Setup section) can be

modified by the standard procedure TRACE.

Implicit declaration heading:

procedure TRACE (integer value N);

comment changes the upper bound for statement tracing:

if N > 0 then N becomes the bound,

if N = 0 then tracing is suspended,

if N < 0 then the $DEBUG card value (m) becomes the bound;

TRACE has no effect unless the $DEBUG option digit n is 3 or 4.

X TRUNCATE(X) ENTIER ROUND(X)

2.3 2 2 2

2.5 2 2 3

2.7 2 2 3

-2.3 -2 -3 -2

-2 .5 -2 -3 -3

-2.7 -2 -3 -3

Table of values for TRUNCATE, ENTIER, and ROTJND
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8. STANDARD FUNCTIONS AND PREDECIAEUZD IDENTIFIERS

c1

P

L

c L

The ALGOL W environment includes declarations and initialization of

certain procedures and variables which supplement the language facilities

previously described. Such declarations and initialization are considered
. .

to be included in a block which encloses each ALGOL W program (with

terminating period eliminated). The corresponding identifiers are said

to be predeclared.

8.1.. Standard Transfer F'unctions

Certain functions for conversion of values from one simple type

to another are provided. These functions are predeclared; the

corresponding implicit declaration headings are listed below:--.

integer procedure TRUNCA!TE (real value X);- -
comment the integer i such that

I Ii < = 1x1 < Iii + land i*X > = 0

integer procedure ENTIER (real value X);- -
comment the integer i such that

i < = X < i +

integer procedure ROUND

comment the value

1 .

(real value X);- -
of the integer expression

TRUNCATE(X-0.5) else TRUNCATE(X+O.5) ;

integer procedure EXPONENT (real value X);PP

Qt

real

L

real

c

long

real

comment 0 if X = 0, otherwise the largest integer i such that

i < = log16(JxI) + 1 .

This function obtains the exponent used in the S/360

representation of the real number;

procedure ROUNDTOREAL  (long real value X);-7
comment the properly rounded value of X ;

procedure REALPART (complex value 2);

comment t1ic real component of 2 ;

real procedure IA3NGREALPAR'~ (long complex value 2);

procedure IMAGPART (complex value 2);

comment the imaginary component of Z ;

long real procedure LONGIMAGPART (long complex value Z);
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complex procedure IMAG (real value X);PP
comment the complex number 0 + Xi ;

long complex procedure LONGIMAG (long real value X);. . - -
logical procedure ODD (integer value N);

comment the logical value

N rem 2 = 1 ; . .

bits ProcedurBITSTRING  (integer value N);

comment two's complement representation of N ;

integer procedure NUMBER (bits value X);PP
comment integer with two's complement representation X ;

integer procedure DECODE (string(l) value S);

comment numeric code for the character S (cf. Appendix 1) ;

string(l)'procedure  CODE (integer value N);

comment character with numeric code (cf. Appendix 1) given by

abs (N rem 256) ;

In the following comments, the significance of characters in the prototype

formats is as follows:

D decimal digit in a mantissa or integer

E decimal digit in an exponent

A hexadecimal digit in a mantissa or integer

B hexadecimal digit in an exponent

+ sign (blank for positive mantissa or integer)

U blank

I Each exponent is unbiased. Decimal exponents represent powers of 10;

hexadecimal exponents represent powers of 16. Each mantissa (except 0)

represents a normalized fraction less than one. Leading zeroes are not

suppressed.
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t

I,

i

c

c

string(Z) procedure BASE10 (real

comment string encoding of X

,+EE+DDDDDDD ;- -
string(12) procedure BASE16 (real

comment string encoding of X

value X);

with format

value X);

with format

string(20) procedure LONGBASE (long real value X);P-P
comment string encoding of X with format

,+EE+DDDDDDDDDDDDDDD ;- -
string(20) procedure LONGBASE (long real value X);P-P

comment string encoding of X with format

,+BB+- ;- -
string(12) procedure INTBASElO (integer value N);

--.
comment string encoding of N with format

U+DDDDDDDDDD ;

string(12) procedure INTBASE16 (integer value N);

comment unsigned, two's complement string encoding of N with format

,,.;

8.2 . Standard Functions of Analysis

The following functions of analysis are provided in the system

environment. In some cases, they are partial functions; action for
a

c

arguments outside of the allowed domain is described in 8.5. These

functions are predeclared; the corresponding implicit declaration headings

are listed below:

c

c

real procedure SQRT (real value X);- -
comment the positive square root of X,

domain : X > = 0 ;

long real procedure LONGSQRT (long real value X);- - --P
comment the positive square root of X,

domain : X > = 0 ;
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real procedure Exp (real value X);- -

l o w

real

long

real

lowi3

real

long

real

low

comment e 93 X

domain : X <

real procedure

comment e * X

domain : X <

. .>

174.67 ;

LONGEXP (long real value X);- - -

9

174.67  ;

procedure LN (real value X);- -
comment logarithm of X to the base e,

domain : X>O ;

real procedure LONGLY (long real value X);- -
comment logarithm of X to the base e,

domain : X > 0 ;

procedure LOG (real value X);- -
comment logarithm of X to the base 10,

domain : X>O ;

real Procedure LONGLOG (long real value X);- - -

comment logarithm of X to the base 10,

domain : X>O ;

procedure SIN (real value X);- -
comment sine of X (radians),

domain : -823550 < x < 823550 ;

real Procedure LONGSIN (long real value X);- - -
comment sine of X (radians),

domain : -3.537’+15 < x < 3*537’+L5 ;

procedure COS (real value X);- -
comment cosine of X (radians)

domain : -823550 < x < 823550 ;

real procedure IDNGCOS (long real value X);- - -
comment cosine of X (radians),

domain : -3.537'+15  < x < 3.537'+15  ;
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,-
c

real

10%

procedure ARCTAN (real value X);- -
comment arc-tangent (radians) of X,

range : 42 < ARCTAN < 42 ;

real procedure LONGARCTAN (long real value X);- -
comment arctangent (radians) of X,

range : 42 < LONGARCTAN(X) <n/2 ;

8.3 . F u n c t i o nTime

The AIGOL W environment includes a clock which measures elapsed

time since the beginning of program execution. The resolution of that

clock is l/60 second. A predeclared function is provided for reading

the clock.

integer procedure TIME (integer value N);

comment=' Argument Result Units

- time of day
-1 seconds/60

- elapsed execution time -
0 minutes/l00
1 seconds/60
2 seconds/38400

The result for any other argument is not defined;

8.4. Predeclared Variables

The following variables are to be considered declared and initialized

c

m by assignment in the conceptual block enclosing the entire ALGOL W program.

The values indicated for real and long real quantities are to be understood

as decimal approximations to the actual machine-format values provided.

c

integer IRTFIELDSIZE;

comment initialized to 14 ,

controls output field size for integers (cf. 7.8.1.);

integer MAXINTEGER;

comment initialized to 2147483647 ,

the maximum positive integer allowed by the implementation;

c
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real EPSILON;

comment initialized to 9.536743'.07 ,

the largest positive real number E provided by the
a.

lOw3 real LONGEPSILON;

long

low

implementation such that

l+e=l;

comment initialized to 2.22044604925031'-16L  ,

the largest positive long real number E provided by

the implementation such that

l+e=l;

real MAXREAL;

comment initialized to 7.23700557733226'+75~  ,

the largest positive long real number provided by the

implementation;

real PI;

comment initialized to 3.14159265358979L  ;

8.5 . Exceptional Conditions

The facilities described below are provided in AIGOL W to allow

detection and control of certain exceptional conditions arising in

the evaluation of arithmetic expressions and standard functions.

Implicit declarations: .

record EXCEPTION (logical XCPNOTED; integer XCPLIMIT, XCPACTION;

logical XCPMARK; string(64) XCPMSG);

reference(EX~~PI10N)

OVFL, UNFL, DIVZERO,

INTOVFL, INTDIVZERO,

SQRTERR, EXPERR, LNLOGERR,  SINCOSERR ;
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c1
Associated with each exceptional condition which can be processed

is a predeclared reference variable to which references to records of

the class EXCEPTION can be assigned. Fields of such records control the
. .

processing of exceptions. The association between conditions and
L

reference variables is as follows:

Reference Variable Conditions

c
L

OVFL

UNFL

DIVZERO

real, long real, complex, long

complex (exponent) overflow

real, long real, complex, long

complex (exponent) underflow

real, long real, complex, long

complex division by zero

INTOVFL

INTDIVZERO

SQRTERR

EXPERR

LNLOGERR

SINCOSERR

integer overflow

integer division by zero

negative argument for SQ,RT, LONGSQ,RT

argument of EXP, LONGEXP out of

domain (cf. 8.2.)

argument of LN, LOG, LONGL$J,

LONGLOG out of domain (cf. 8.2.)

argument of SIN, COS, LONGSIN,

LONGCOS out of domain (cf. 8.2.)

c
When one of the conditions listed above is detected, the corresponding

reference variable is interrogated, and one of the alternatives described

b'clow is chosen.

If' the: v;tlue of tile reference variable interrogated is null, the

rlondition  is ik:nored  and execution of the AEOL W program continues.

In such situations, a value of 0 is returned as the value of a standard
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function. For other conditions the result is that provided by the

underlying IBM System/360 hardware-I
2

. In determining such a result, it

is to be noted that in those cases in which the detection of exceptional

conditions can be inhibited at the hardware level, namely integer overflow

and exponent underflow, detection is so inhibited when the corresponding

reference is NULL.

If the value of the reference variable interrogated is not NULL,

the fields of the record designated by that reference are interrogated,

and processing action is that described by the algorithm given below in

the form of an'extended AIGOL W procedure. Identifiers in lower case

represent quantities which transcend the AIGOL W language; they are

explained subsequently.

procedure PROCESSEXCEPTION (reference(EXCEPTION) value CONDITION);

beain

XCPNOTED(CONDITION) := true;

XCPLIMIT(CONDITI~W) := XCPLIMIT(CONDITION) - 1;

if (XCPLIMIT(CONDITI~N)  < 0) or XCPMA.RK(CoNDITION)  then

WRITE( "+-H-H ERROR NEAR COORDINATE nnnn -");

if XCPLIMIT(CONDITION)  < 0 then endexecution else

if integercondition then

resultant := default else

resultant := if XCPACTION(CONDITION) = 1 then adjustment else

if XCPACTION(CONDITION) = 2 then OL else

default

end PROCESSEXCEPTION

This procedure is invoked with the value of the reference variable

appropriate to the condition as actual parameter. The significance of

the special identifiers used is as follows:

I--2
IBM System/360  Principles of Operation, IBM Systems Library, Form ~22-6821
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nnnn

i

L

endexecution procedure to terminate execution of the ALGOL W

program -

integercondition logical value which

the condition being

or integer division

is true if, and only if,

processed is integer overflow

by zero

default

c

c

i

i

-=.

resultant

adjustment

approximate coordinate of the source code

which was being executed when the exceptional

condition was detected

result of the operation or function provided

by the AIGOL W system prior to invocation of

the exception processing procedure; this is

defined by the hardware2/ for arithmetic

operations and is the value 0 for standard

functions

value to be returned as the result of the

arithmetic evaluation or standard function

invocation

adjusted result of the operation according to

the following table

Condition Adjustment

exponent overflow,

division by zero

if default < 0 then

-MAXREAL else MAXREAL

exponent underflow OL

i
argument X out of domain for :

i

SQRT, LONGSQRT

EXP, LONGEXP

LN, I,ONGLN

LOG, LONGLOG

SIN, LONGSIN

COS, LONGCOS

SQJT(abs X), LONGSQRT(a'bs  X)

MAXRl3AL

-MAXRFAL

-MAxIsEAL

OL

OL

c

a IBM 3,s: q/s;60 Principles of Optlration, IBM Systems Library, Form ~22-6321

c
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The reference variable UNFL is initialized by the system to NULL.

All other reference variables listed above are initialized to references

to a special record which is accessible only by the system. Interrogation

of this record by the procedure described above has the effect of causing

the AIGOL W program to be terminated with a message indicating the type

of exception. Any other attempt to access any field of this record will

result in a reference error.

condition XCPACTION@ or 2 XCPACTION=l XCPACTION=2 Reference=NULL

OVFL

UNFL

DIVZERO

INTOWL

INTDIVZERO

SQRTERR

LNLOGERR

SINCOSERR

--.
exponent ~8
too small

exponent 128
too large

dividend

true result true result
+ 2~32 + 2~32- -

dividend dividend

0 sqrt(abs x)

0

0

0

+-

0

--

0

0

0

0

true result
+ 29-32

dividend

0

0

0

0

Table of Results for Exceptional Conditions

exponent 1.28
too small

0

dividend

true result
+ 2~32-

dividend



c 8. STANDARD FUNCTIONS

c

c

Example:

It is desired to allow up to ten overflows, but to each time replace

the result with MAXREAL and to print a warning message.
-.

The values needed for this are:

XCPNOTED FALSE this will be changed to TRUE if an overflow occurs.

XCPLIMIT 10 allow up to ten overflows before being cut off.

XCPACTION 1 replace the result with +MAXREAL.-

XCPMARK TRUE print a message each time an overflow occurs.

XCFMSG ?f 11. . . message to be printed.

--.
The following assignment statement will establish the proper

environment:

OVFL := EXCEPTION(FALSE, 10, 1, TRUE, "OVERFLOW FIXED UP");

e

c

c
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CHARACTER CODES

APPENDIX 1 - CHARACTER ENCODINGS

The following table presents the correspondence between printable

string characters and their (EBCDIC) integer encodings. This encoding
. .

establishes the ordering relation on characters and thus on strings.

Those characters in parentheses are not available on the line printer.

Integer codes not listed below do not correspond to any established

I character. (Also see CODE, DECODE on page 13%)
I

64

74

75

76

77

78

79
80

90

91

92

93

94
m 95

96

97

- 107
108

109
110

111.

122

123

124

125
126

127

space

w
.

<

(

+

1
&

I( >

s:
*

1

;

1

129 ( >a 193 A 240

130 (b) 194 B 241

131 ( )C 195 C 242

.. 132 id) 1% D 243

133 ( )e 197 E 244

134 (f) 1% F 245

135 (e> 199 G 246

136 04 200 H 247

137 ( >i 201 I 248

145
.

(J) 209 J 249

146 04 210 K

147 (1) 211 L

148 ( >m 212 M

149 ( >n 213 N

150 ( 10 214 0

151 (P) 215 P

152 (9) 216 Q

153 ( >r 217 R

162 ( >S 226 S

163 ( >t 227 T

164 ( )U 228 U

165 ( 1V 229 V

166 ( 1W 230 W

167 ( >X 231~ X

168 *(Y> 232 Y

169 ( >Z 233 z

71
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i

ALGOL W ERROR MESSAGES

The compiler is divided into three passes: pass 1 reads the program,

lists it, and saves it in memory-in a compressed (tokenized) form;

pass 2 parses the program, examining each statement to see if it is written

properly; pass 3 generates the 360 machine code for the program. Each

pass is capable of detecting a different set of errors. (There is also

a fourth, loader, pass that on rare occasions may generate messages.)

Errors may also occur while a compiled program is executing; these are

called Run-Time errors.

-=.

Pass One Error Messages

AU pass 1 error messages are of the form:

ERROR lxxx NEAR COORDINATE m - message

yyyy corresponds to one of the coordinate numbers in the first column on

the program listing. If you have many statements on a card, only the

coordinate of the first one is on the program listing. Some messages are

OflY

1001

1002

1003

warnings, in which case the fixup action taken is indicated below.

The messages are:

INCORRECTLY FORMED DECLARATION

a) STRING(x) or BITS(x), where x is not a number.

b) STRING(O) or STRING(> 256). FIXJP: treated as STRING(l).

c) BITS (not 32).

WARNING: INCORREZT  CONSTANT

a) More than 256 digits. FJXJP: treated as 0.

b) A bad exponent. FIXUP: exponent treated as 0.

MISSING "END"

Final " .I* or /* card or $ card encountered before an END matching

each BEGIN. The coordinate indicated may be two or three more than

the last coordinate on your listing. (Check the block numbers in

the second column of your program listing.)
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1004

1005

1006

1007

1008

1009

1 0 1 0

loll

1012

UNMATCHED "END" (DELETED)

An END encountered after what appeared to be the final END. When

possible, the innermost END is deleted. (Check the block numbers

in the second column of your program listing.)

WARNING: MISSING ")"

STRING(x or BITS(x with no closing ")'I. FIXJP: supplied.

WARNING: ILLEGALCHARACTER

A strange character accidently keypunched (or overpunched). It is

likely that the character will print as a blank, so look at your card.

The characters on a standard keypunch that are illegal except in

comments and strings are: # & ! $ % ? @. FIXUP: treated

as a blank.

WARNING: MISSING FINAL "."

May occur if the program ends with an un-terminated string constant

or an un-terminated comment.

WARNING: INVALID STRING LENGTH

a) A string constant of length > 256. FIXJP: truncated to 256

characters. (You may have left out a quote.)

b) An empty string constant (""). FIXUP: replaced with "?".

WARNING: INVALID BITS LENGTH

4 "#" not followed by hex digits. FIXUP: replaced with #O.

b) "#" followed by more than 8 hex digits. FIXUP: replaced

with 40.

MISSING " ( "

REFERENCE not followed by "(".

ERRORTABLE OVERFLOW

More than 50 error messages from pass 1. The rest are lost.

COMPILER TABLE OVERFLOW

The program is too big to fit in memory during compilation. The

following is a list of tables which could be full at this point.

If you re-compile with more memory, the starred tables will be
*

bigger.
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c

a.

t

L

1013

1014

1015

1016

BCD POINTERS -- if all of your names are short (3, 4 letters)

this table may fill up before the id table.

BLOCK LIST -- 511 entries, one for each BEGIN, PROCEDURE (except

for formal parameter specification), and FOR.

BLOCKSTACK -- this has a fixed size of thirty entries. It will

overflow if you have 31 BEGINS nested within each other. (The

block numbers in the second column of your program listing show

how full this stack is.)

IDTABLE -- place for the characters in your identifiers.

NAME TABLE -- table of attributes of all declared identifiers.

PROGRAM TOKEN SPACE -- the internal text for the program. This

is the most likely table to be full.

REFERENCE LIST -- information abcIut each variable declared of

type REFERENCE.

WARNING: ID LENGTH > 256

One of the names in your program is much too long. FIXUP: truncated

to 256 characters.

WARNING: UNEXPETED "."

An apparently final "." not followed by $ card or /* card, such as

in a constant with an inadvertant  space: . 123 . FIXUP: treated

as a blank.

TOO MANY RECORD CLASSES

Only 15 are allowed.

WARNING: SE& FIELD OUT OF ORDER

a) The numeric part of columns 73-80 was not greater than the

numeric part of the previous card.

b) The alphabetic part of columns 73-80 was not the same as the

alphabetic part on the previous card.

In either case, the offending card(s) is marked with #### on the

listing. This message appears only once in any single compilation.

The coordinate specified is the coordinate on the first erroneous

card.
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1017 WARNING: SEQ FIELD CONTAINS TRASH

a) The first card of the deck did not contain a sequence number,

but columns 73-80 on this card are not all blank. (A statement

may have accidently run past column 72).

b) The first card of the deck has a non-blank sequence field

(columns 73.8O), but there are no digits in it.

In either case, the offending card(s) is marked with *m on the

listing. Like 1016, this message appears at most once, and the

coordinate refers to the first instance.

1018 WARNING: ";" DELETED BEFORE "ELSE"

This is a common mistake that the compiler fixes up.

--e.

Pass Two Error Messages

AU pass 2 error messages have the format:

ERROR 2xxx NEAR COORDINATE yyyy - message

(FOUND NEAR "...'I)

yyyy corresponds to one of the coordinate numbers in the first column

on the program listing. If you have many statements on a card, only the

coordinate of the first one is on the program listing. "..." is the

program text being scanned at the time the error is detected (which may

be somewhat after the actual point of error). If any pass one or pass

. two error messages occur (other than warnings), then compilation stops

at the end of pass two. Often many error messages are generated for

what is essentially a single mistake.
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2001MORE THAN ONE DECLARATION OF "XxXx" IN THIS BLOCK

The variable XxXx has been declared more than once in the same block.
e

2002 "XXXX" IS UNDEFINED

The variable or label XXX has not been declared in the current block

or in one containing it.
. .

c

c

L

2003 SYNTAX ERROR

This is a "catch-all" message that is produced when the compiler cannot

find anything more meaningful to say. The current context will point

to the part of the program being analyzed when the error was DETECTED,

but in general the real error may be much earlier in the program. If

the current context is at or near a semi-colon and you cannot find

any errors there, try looking at the beginning of the statement which

ends at that semi-colon. If the current context is at or near an

END, try-looking at the corresponding BEGIN. For example, if

ELSE BEGIN . . . END; occurs, but not after an IF, the compiler will

not detect the error until it reaches END; .

2004 IDENTIFIER MUST BE RECORD CLASS ID

In a declaration REFERENCE(xyz)  , xyz is not the name of a record

class.

2005 MISMATCHED PARAMETER

A procedure call is passing an actual parameter which is not of the

same type as the formal parameter in the procedure declaration.

2006 INCORRECT NUMBER OF ACTUAL PARAMETERSm
The number of actual parameters in a procedure call does not equal

the number of formal parameters in the procedure declaration.

I ,2007 INCORRECT DIMENSION

4 The number of dimensions of an actual parameter does not equal the

number of dimensions declared for the corresponding formal parameter.

b) The wrong number of subscripts have been used in an array element

reference.

2008 DATA AREA EXCEEDED

The data for each PROCEDURE or BEGIN block with declarations is limited

to 4096 bytes. Read the suggestions for 3001.
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2009 INCORRECT NUMBER OF FIELDS

In creating a record, too many or too few initial values have been

specified.

2010 INCOMPATIBLF,  STRING LENGTHS

a) In STRING1 := STRING2 , STRING2 is longer than STRINGl.

b) In STRING3(x\y) , y is larger than the declared size of STRING3.

c) A long string has been passed to a shorter formal string parameter.

2011 INCOMPATIBLE REFERENCES

A reference variable refers to a wrong record class.

2012 BLOCKS NESTED TOO DEEPLY

Non-trivial blocks (i.e., BEGIN blocks with declarations, or the

blocks associated with a PROCEDURE) are nested more than eight deep

(including the BEGIN at the start of the program). The error is

detected early in the ninth block. Also, procedure calls nested too

deeply.

2013 wAIwm~: ";" SHOULD NOT FOLLOW EXPRESSION

In BEGIN . . . expression ; END the semi-colon is incorrect but ignored.
/
I
1

2014 REFERENCE MUST REFER TO RECORD CLASS

In REFERENCE(xyz)...  , xyz is not a record class.

2015 ExpREss10~  MISSING IN PROCEDURE  BODY
I

A function PROCEDURE must have its final value specified by an i
expression standing alone immediately before the END. i

a
2016 IMPROPER COMBINATION OF TYPES

1
i

Mixing incompatible types as alternatives of a conditional or case )

expression.

2017 RESULT PARAMETER MUST BE A VARIABLE

In a procedure declaration, a formal parameter is declared

. . . RESULT xyz > but a call to that procedure has passed an expression

which is not a variable.

2018 PROPER PROCEDURE ENDS WITH AN EXPRESSION

A procedure which returns no value nonetheless ends with an expression.

(This sometimes happens when a final assignment statement has been*
mis-punched A = B , instead of A := B .)
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,

c

L
L

c

2019 "XXX? CANNOT FOLLOW "YYYY" HERE

There are no legal programs in which XXXX and YYYY can be written

together. This is much like 2003. (You may have left out a

semi-colon, a comma, or an operator.)

2020 ARRAY USED INCORRECTLY .

A simple variable must be used here.

2021 TOO MANY CONSTANTS IN PROCEDURE

2022

No more than 256 different constants are allowed.

INCORRECT STRING LENGTH

In S(XlY) 9 Y is negative, zero, or greater than 256.

2023 COMPILERTABLE OVERFLOW

The program is too big to fit into memory during compilation -- there

is no more room for the parse trees that represent the program at
--.

this point. If you re-compile with more memory, there will be more

room available for the program.

2024 TOO MANY PROCEDURES

Only 255 different procedures or BEGIN blocks with declarations are

allowed by the compiler.

2025 CONSTANT OUT OF RANGE

a) The absolute value of an integer is greater than (2w31)-1

(9 digits).

b) The absolute value of the adjusted exponent in a real number is

greater than 75. The exponent written is first adjusted to

include the number of digits written in front of the decimal point.

2026 INDEX OF ARRAY OR STRING MUST BE INTEGER

4 In S(XJY) 9 x is not an integer expression.

b) In Arrayname(...x...)  , x is not an integer expression.

(You may have accidently  used a REAL variable.)
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2027 INCORRECT OPERAND TYPE(S) FOR XXXX

XXXX is a unary operator.

a) LONG is applied to something which is LOGICAL, STRING,, BITS,

or REFERENCE.

b) SHORT is applied to something%hich  is LOGICAL, STRU\JG,  BITS,

or REFERENCE.

c) 1 (not) is applied to something which is neither LOGICAL nor BITS.

d) Prefix + or - is applied to something which is LOGICAL,

STRING, BITS, or REFERENCE.

e) ABS is applied to something which is LOGICAL, STRING, BITS, or

REFERENCE.

f) In Recordvariable , x is not a REFERENCE.

g) In FOR 1:=x... , x is not an integer expression.

h) In various other contexts, an INTEGER or LOGICAL operand is

required.

2028 INCORRECT OPERAND TYPE(~) FOR XxXx

XxXx is a binary operator. Even when the error is in the first

operand, the error is detected after both operands are inspected.

a) AND or OR is applied to expressions which are not both BITS or

both LOGICAL. This case often happens in an IF statement when

necessary parentheses are left out;

IF X < Y OR Z = 3 THEN . . .

As written, y is to be ORed with z before anything else is

calculated. Try instead:

IF (X < Y) OR (Z = 3) THEN . . .

b) A relational operator (like > ) is applied to something which

is COMPLEX, LOGICAL, or REFERENCE.

4 SHL or SHR is applied to something which is not BITS, or the

shift amount is not INTEGER.

d) In x IS Recordclass , x is not a REFERENCE.

4 In x**y , x is LOGICAL, STRING, BITS, or REFERENCE, or y is

not INTEGER.

f) In a FOR statement, the UNTIL expression is not INTEGER.

g) In various other contexts, an INTEGER operand is required.
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c

2029 INCORRECT PARENTHESI!&ATION  OF EXPRESSION

L

c

This often occurs in conjunction with 2027 or 2028. Usually,

additional parentheses are required in the expression.

2030 ASSIGNMENT

An attempt

INCOMPATIBILITY

to assign an expression of one type to a variable of a

different type (or pass an actual parameter to a formal parameter

of a different type). The only automatic conversions allowed are

INTEGER to REAL, INTEGER to LONGREAL, REAL to/from LONGREAL,

INTEGER/REAL/LONGREAL to COMPLEX/LONGCOMPLE& COMPLEX to/from

LONGCOMPLEX. (You cannot assign REAL to INTEGER without using

TRUNCATE, ENTIER, or ROUND.)

2031WARNING: NAME PARAMETER SPECIFIED

In a PROCEDURE declaration, it is usually intended that each formal

parameter have VALUE specified.
--.

2032 SIMPLE VARIABIE USED INCORRXTLY

In " x( '1, x is a simple variable and not STRING.

L

c

2033 75 ERRORS. COME'ILATION  TERMINATED

Something is drastically wrong with your program. To save time

and paper, the rest of the program is ignored.

2999 DEBUG TABLE OVERFLOW

If $DEBUG,X is specified with x equal to 2, 3, or 4, then a table

is created with a fixed maximum of 448 entries, where one entry is used for

each GROUP of statements that all occur together with no labels,

branches or conditional expressions. All the statements in such a

group are guaranteed to be executed the same number of times. Also,

this message occurs if the compressed form of the program occupies

more than 65536 bytes of memory (the compressed form is used to

generate the pseudo-listing with the statement counts).

Pass Three Error Messages

Pass 3 error messages are of the form:

ERROR %xx NEAR COORDINATE yyyy - message

yyyy corresponds to-one of the coordinate numbers in the first column on

the program listing. If you have many statements on a card, only the

coordinate of the first one is on the program listing.
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All of the pass 3 errors are disastrous, so compilation terminates

immediately. After any pass 3 error, a table is

listed of (coordinate number, byte offset, byte length) triples, indicating

how much code was generated for each statement in the current program

segment. The last entry of this table and the last two byte lengths are

usually garbage.

3001

3002

. 3003

3004

PROGRAM SEGMENT CUERE'LOW

This error message occurs because of a design constraint of the

compiler: the total amount of machine code and constants for any

PROCEDURE or other BEGIN block with declarations must be less than

8192 bytes. All of the constants for a block are allocated in front

of the first statement. Therefore, if the byte offset of the first

statement is very large, constants are taking up too much space.

This sometimes happens in programs with'too many string constants

(ten 80-character  string constants take up 800 bytes). The coordinate

indicated may or may not be very accurate. The only solutions are

to make your program smaller, or to add some artificial PROCEDURE S

or BEGIN blocks with at least one declaration, such that part of the

block that was too big is forced into another segment.

COMPILER STACK OVERFLOW

While generating code for a statement, the compiler

stack to keep track of where it is in the statement

are about to get a PROGRAM SEGMENT OVERFLOW (3OOl),

message instead.
I

COMPILER LOGIC ERROR

uses a push-down

tree. If you

you may get this

Internal consistency checks performed by the compiler have failed.

Take your card deck, exactly as it is, to a consultant.

PROGRAMABBAOVERFLOW

Although the words are similar to 3001, this is entirely different.

This message means that there is no more room in memory to put the

machine code for your program (like 2023 and 1012). If you

re-compile with more memory, there will be more room available for

the machine code.
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3005 DATA SEGMENT OVERFLOW

The data for each PROCEDURE or BEGIN block with declarations is

limited to 4096 bytes. Read the suggestions for 3001.

4006 COORDINATE TABLE OVERFLOW

In order to supply the coordinate number in run-time error messages,

a table is built of (coordinate number, address in machine code)

pairs. If you re-compile with more memory, this table will be larger.

'3007 TOO MANY PROCEDURE CALLS

References to only 31procedures are allowed within any single

. procedure.

Loader Error Messages
--.

Loader error messages are all of the form:

*+* LOADING ERROR - message

Like pass 3 messages, these are disastrous and terminate processing.

c

DUPLICATE GLOBAL NAME - XXX Two procedures with the same name were

loaded.

INSUFFICIENT STORAGE Not enough room to run the program.

Re-run with more memory.

INVALID OBJECT RECORDS A bad object card was presented, often

an extra blank card.

NO EXECUTABLE STATEMENTS No main program was loaded, only external

procedures.

TOO MAN-Y PROCEDURES Only 96 program segments are allowed by

the loader.

UNDEFINED GLOBAL NAME - XXX An external procedure was declared, but

not loaded.
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Run Time Error Messages

All run error messages are of the form:

RUN ERROR NEAR COORDINATE yyyy IN procedure name - message
. .

After a run error, a post-mortem dump of all of the program's variables is

given, unless it is explicitly turned off with a $DEBUG,O card. To keep

the dump reasonably small, at most eight values are dumped from an array.

If the same identifier is declared in many blocks (note that the index

variable in a FOR loop is considered to be declared in a block around just

the FOR statement), then that identifier will be listed many times.

Variables which have never been assigned any meaningful value are printed

as . .I' ?'I

ACTUAL-FORMAL MISMATCH IN PROCEDURE CALL, PARAMETER #xx

The actual parameter passed is not assignment compatible with the

formal parameter.

ARRAY SUBSCRIPTING

An array subscript was not within the declared bounds.

ARRAYTOOLARGE

The first n-l dimensions of an array declaration define too many

elements. The product of the size of a single element times the

first n-l dimension lengbhs (upper bound-lower bound+l) must

be strictly less than 32768. The element sizes are:

logical 1

integer, real, bits,

reference 4

long real, complex 8

long complex 16

string length of a single string
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ASSERTION xxxxxxxFAILED

An assertion was not true. xxxxxxx is a running count of how

many assertions were true, to give a feel for how long the program

had run.
. .

ASSIGNMENT TO NAME PARAMETER

CASE SELECTION INDEXING

Index in a case statement or case expression is less than 1 or

greater than the number of cases.

DATA AREA OVERFLOW

Attempt to assign to a name parameter whose actual argument is not a

variable, but is instead an expression, a constant, or a control

identifier.

No more storage is left for variables. This will happen if a

gets in a loop calling itself recursively, or if there really

enough memory.

program

is not

DIVISION BY ZERO

May also be caused by Ow(-n) .

EXPERROR

The argument to EXP must

INCOMPATIBLE FIELD DESIGNATOR

An attempt has been made

be less than 174.67 .

to access a field of a record, but the

reference does not designate a record of the corresponding class

(it might be NULL or undefined).

INCORRECT NUMBER OF PARAMETERS

. The number of actual parameters in a procedure call is different

from the number of formal parameters declared in the called procedure.

INTEGER DIVISION BY ZERO

An integer operation attempted to divide by zero.

INTEGER OVERFLOW

An integer operation produced a number whose absolute value is

bigger than (2=31)-l . The standard functions ROUND, TRUNCATE,

and ENTIER will produce an integer overflow if presented with

arguments whose absolute value is bigger than (2**3l)-1 .
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LENGTH OF STRING INPUT

The string read was longer than the string variable has room for.

This sometimes happens if a string ends in exactly column 80 of a

card, and another string begins in column 1 of the next card, since

the two quote marks (co1 80 and ~011) are part of the same string.

Put at least one blank in between (or a whole blank card). Also,

check for a missing quote.

IN/LOG ERROR

An attempt to take the logarithm of a negative or zero number.

LOGICAL INPUT

The quantity read was not TRUE or FALSE.

NULL ORUNDEFINED REFERENCE

An attempt has been made to access a record field using a null or

never initialized reference.

NUMFR1cAL1NPUT

The number read was not assignment compatible with the variable in

the REXDON or READ statement. This sometimes happens when running

fram a terminal if the line numbers on the data cards are accidently

read.

OVERFLOW

A real operation produced a number whose absolute value is bigger

then 7.2'+75 . This may occur when dividing by a very small number,

such as in 1'+50/1'-50  .

PAGE ESTIMATE EXCEEDED

The page estimate on the $ALGOL card is exceeded. Note that any

tracing ($DEBUG,3 or 4) output is included in this page limit.

(cf. Deck Setup and Compiler Options, page 103.)

PROGRAMCHECK #M

The compiler or the code it generated was wrong. If this happens,

take your card deck, exactly as it is, to a consultant.-em
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READER EOF

No more data cards. A $ card or a /* card was

is a normal way to terminate in many programs.

read instead. This

. .
RECORD STORAGE AREA OVERFLOW

No more storage exists for records.

REFERENCE INPUT

References cannot be read.

SIN/OS ER.%R

See the domain restrictions in Section 8.2.

SQRT ERROR

Attempt to take the square root of a negative number.
--.

STRING INRUT

A null string or a string greater than 256 characters was read. See

LENGTH OF STRING INKJT above.

SUBSTRING INDEXING

Substring selected extends off one end of the string
1

TIME ESTIMATE EXCEEDED
I

The time estimate on the $AIGOL card is exceeded.

UNDERFLOW

A real operation produced a number whose absolute value is less than

5.4'.79 , but not exactly zero. This may occur when dividing by a

very large number, such as in 1'.50/11+50 .
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ABENTI Messages

You may occasionally get terse messages on the first page of your

output of the form:

** ABNORMAL JOB END jcJt);' SYSTEM CODE X xxx

or

COMPLETION CODE - SYSTEM = xxx

where xxx might be:

222

322

722

OCl

oc4

oc6

You ran out of time or lines as specified on your

JOB card (not the limits on the $ALGOL card).

G. page 103.)

The compiler probably made a mistake. After

verifying that the deck or catalogued procedure

includes both a //SYSPRINT and //SYSIN DD card,

take your deck, exactly as it is, to a consultant.- - -
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The following notes are intended to give the

student of Computer Science 105 or 106 some orientation

into how numbers are represented in the IBM System/360

computers. Because we are using Algol W, some refer-
--.

ences are made to that language. However, very little

of what is said here depends on the peculiarities of

Algol W, and this exposition is mostly applicable to

Fortran or Algol 60 with slight changes in wording.

It will also do for the floating-point numbers and

full-word integers of PL/l. Users of shorter or

longer integers or decimal arithmetic in PL/l will

need more orientation.

c-

c.

c
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On IBM%

are used:

4 the

b) the

4 the

system 360, the following units of information storage

bit, a single 0 or 1

byte, a group of eight consecutive bits

(short) word, a group of four consecutive bytes --

i.e., 32 consecutive bits

4 the long word, a group of two consecutive short words --- -
i.e., eight bytes or 64 bits.

For number representation in Algol W the words and long words are

the main units of interest.

INTEGERS

--.

Integers are stored in (short) words. Of the 32 bits of a short

word, one is reserved for the sign (0 for + and 1 for -), leaving

31 bits to represent the magnitude. A positive or zero integer is

stored in a binary (base 2) representation. Thus 2110 (the subscript

means base 10) is Aored as

0000 0000 0000 0000 0000 0000 0001 0101 .

t
signbit

To confirm this, note that

21 = 0 x 230 + . . . + 0 x 25 + 1 x 24 + 0 x 23 + 1 x z2 + 0 )( 21. 1 )( 20 .

The largest integer that can be stored in a word is

230 + 22g + . . . + 2l + 2' = 231 - 1 = (W+7483647)lo  .

Any attempt to create or store an integer larger than 231 -1 will

produce erroneous results, and (unfortunately) the user will not always

be warned of the error. (See below.)

To save space in writing words on paper, each group of four bits

in a word is frequently converted to a single base-16 (hexadecimal)

digit, according to the following code:



NUMBER REPRESENTATION

base 2 base 16 base 2 base 16

0000 0 1000 8
0001 1 1001 9
0010 1010 A
0011 : 1011 B
0100 4 ‘ii00 C
0101 5 1101 D
0110 6 1110 E
0111 7 1111 F

Thus A, B, C, D, E, F are used as base-16 representations of the decimal

numbers 10, 11, 12, 13, 14, 15 respectively. Nevertheless, integers are

stored as base-2 numbers.

Using hexadecimal notation, the decimal number 21 is represented by

Note that 15,6 --is the base-16 represen";ation  of
2110 '

Negative integers are stored in what is called the "twofs complement

form". For example, -1 is stored as

1111 1111 1111 llll 1111 llll 1111 1111 ,

= FFFFFFFF16 .

Also, -21 is stored as

1111 llll 1111 1111 1111 1111 1110 1011

= FFFFFFEB16 .

The representation for -21 is obtained from that for +21 by changing

every 0 to 1 and every 1 to 0, and then adding +l in base-2 arithmetic
e

to the result. Similarly for any negative integers. Every negative

integer has 1 as its sign bit. The smallest integer storable in

System/36C is -231 = -2147483648 , and is represented by 8000000016 .

Another way to think of the representation of negative numbers is

to consider a 32.place binary accumulating register (the base-2 equivalent)

of the decimal accumulating register in a desk calculating machine).

If one starts with all zeros in this register, one gets the representation

for -1 by subtracting 1. The process requires a "borrow" to propagate

to the left all the way across the register, leaving all ones, just as

on a decimal accumulator this would leave all nines. Continued

subtraction will give the representations for -2, -3, . . . .*
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From the point of view of an accumulator we can also see what

happens when we create a positive number larger than 251 -1 . For

example, if we add 1 to 231-1, the resulting carry will go all the

way into the sign bit, leaving a sign bit of 1 with all other digits

But this is the representation of -231zero. . Thus the attempt to. .
produce positive numbers in the range from 91 to approximately 232

will yield a negative sign bit. Consequently, positive integers that

I

L.

>

c

L

L

L

c

"overflow" into this range are sensed as negative by System/360.  The

mechanisms of AIGOL W for detecting integer overflow (not described in

this document) can be used to detect additions, subtractions, or

multiplications that produce integers outside the range from -23l to

231-1 (so-called integer overflow). Attempts to divide an integer by 0

will yield an error message and an irrelevant quotient and remainder.

The behavior of System/j60 on integer overflow is quite different
--.

from the Burroughs B5500. In the latter machine, any integer that

overflows is replaced by a rounded floating-point number. There are

advantages to either approach to integer overflow, depending on the

application.

If the user suspects that integers in his program are getting

anywhere near 109 , he should convert them to double-precision floating-

point numbers by use of the Algol W operator LONG. Conversion to single-

precision floating-point numbers may lose some precision.

The most important thing for a scientific user to remember is that

integers in the range -231 to 231-1 are stored without any approximation.

Moreover, operations on integers (adding, subtracting, multiplying) are

done without any error, so long as all intermediate and final results
7

are integers between -9’ and 231-l. It is perhaps easier to remember

as safe the interval from -2 x 109 toi2 X 109 , obtained from the

useful approximation 21° k lo3 .
l

c
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The operations of division without remainder (called DIV in Algol W)

and taking the remainder on division (called REM in Algol W) always give

integer answers. If the divisor is 0, an error message is given.

In Algol W two operations on integers give results that are not

stored as integers -- namely / and ** .

FLOATING-POINT NUMBERS

Numbers in many scientific computations will grow in magnitude

well beyond the range of integers described above. To provide for

this, System@ and most scientific computers have a second way to

represent numbers -- the so-called floating-point representation.

The significance of the name "floating-point" is that the radix point

-- for example, the decimal point in base-10 numbers -- is permitted to

float to the right or left, thus permitting scaling of numbers by

various powers of the radix. Although a decimal point that has floated

off to the left will produce a number written like 0.001345 , the

numbers are actually represented in a form closer to what is often

called scientific notation, here 1.345~ 10 -3 .

In System/360, floating-point numbers are always represented in

base-16 notation; i.e., the radix or number base is 16. This permits

us to write numbers in abbreviated form (as we did with integers earlier).

More important, the use of base-16 conformswith the hardware arithmetic

processes in which shifting is done four bits at a time to speed up the

operations. The speed-up is achieved at a slight cost in precision,

as is learned from detailed error analyses which we cannot go into here.

We first consider the floating-point representation of numbers by

a single word of 32 bits. This is the so-called single-precision

or short real number, the number of type REAL in Algol W. The 32 bits

of a word are numbered from 0 to 31, from left to right, just to identify

them. In floating-point representation the left-hand eight bits (bits 0

to 7, equivalent to two hexadecimal digits) are devoted to the sign of

the number and the exponent of 16 associated with the number. The right-

hand 24 bits (bits 8 to 31, equivalent to six hexadecimal digits)
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represent six significant hexadecimal digits (the significand) of the

number.

As with integers, the sign of the number is denoted by bit 0,

with 0 representing + and 1 representing - .

Bits 1 to 7 give the binary (base-2) representation of a non-

negative integer in the range 01o to 127, , inclusive. This in-

teger is called the biased exponent, for reasons now to be explained.

If this integer were taken directly as the exponent, we would have no

negative exponents, and our range of floating-point numbers could not

include such numbers as 16-25 . It is desirable to have an exponent

range that is approximately symmetric about zero. In System/360 one

obtains the true exponent of the floating-point number by subtracting

64 from the biased exponent represented by bits 1 to 7. As a result,
--.

the actual exponen<s range from -64 to 63.

The 21+ bits 8 to 31 of a number are regarded as six hexadecimal

digits with a hexadecimal point at the left-hand end. If the floating-

point number zero is being represented, all the hexadecimal digits are

zero, as are all the other bits. Otherwise, at least one of the hexa-

decimal digits must be nonzero. A floating-point number is said to be

normalized if the left-hand hexadecimal digit (the most significant

digit) of the significand is nonzero. In System/360 the floating-point

numbers are ordinarily normalized, and we will not consider any other

forms.

e

e We now give the floating-point representations of some sample

numbers. As we said before, the number zero is represented by 32 zero

bits, i.e., by eight 0 hexadecimal digits. Thus zero is represented

I by the same words in floating-point or integer form. No other number

has this property.

c
The number 1.0 is represented by the word

sign bit

L-9 0,100 0001 ,000l 0000 0000 0000 0000 0000, .

biased significand
exponent
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TO check this, note that the sign is 0 (representing +). The biased

exponent is 10000012 or 65,, . Subtracting 64io yields 1 as the

true exponent. The hexadecimal significand is 10000016 . fitting a

hexadecimal point at the left end gives the hexadecimal fraction

l 1ooooo16 '
which equals l/16. Thus the above word represents

1
+ l/16 times 16 , or 1.0 .

To save writing, the above word is ordinarily written in the

hexadecimal form 41100000 . While one gradually learns to recognize '

some floating-point numbers in this form, the author knows no easy way

to convert such a hexadecimal word into a real number. One just has

to take the right-hand six hexadecimal digits, and prefix a hexadecimal

point. Then one examines the left-hand two-hexadecimal-digit number

(here 41). If this is less than 80,6 , the floating-point number is
-=.

positive and one gets the true exponent by subtracting 4o16 = 64, .

If the left-hand two-hexadecimal-digit number is 8016 or larger, the

floating-point number is negative, and one gets the true exponent by

subtracting cO16 = 8o16 + ti16 = 19210 and affixing a minus sign.

Some facility with hexadecimal arithmetic is required, if one has to

deal with such numbers.

In this presentation, we have considered the radical point to be

at the left of the six significant hexadecimal digits, and regarded

the exponent as biased high by 64, . As an alternative, the reader

may prefer to place the radix point just to the right of the most

significant digit of the significand, and regard the exponent as biased

hiti by 65, . This brings the significand closer to usual scientific

notation but, of course, requires a trickier conversion to get the

true exponent. The fact that either interpretation (and many others)

are possible shows that really the radical point is just in the eye of

the beholder, and not in the computer!

Several examples of floating-point numbers are now given in hexa-

decimal notation, with the confirmation left to the reader.
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0.0
1.0
0.0625
16.0

256.0
-1.0

-16.0
3*5

floating-point

00000000
41100000
40100000
kaooooo

-. 43100000
c1100000
c2100000
41380000

The largest floating-point number is 7FFFFFFF , representing

.FFFFFF x 163F or (1 - 1606) x 1.6~~ f 7.23 x lO75 . (Here 10 and 16

denote decimal numbers.)

The smallest positive normalized floating-point number is 00100000,

representing

& x 16-64 + 5.40 x lo-79
=. I ”

Negatives of these two numbers can also be represented, and are

the extremes in magnitude of representable negative numbers.

Very few numbers can be exactly represented with six significant

decimal digits. (Exercise: Which ,ones can?) For example, l/3 = .333333
10

only approximately. In the same way, very few numbers can be exactly

represented with six significant hexadecimal digits. (Exercise:

Which ones can?) For example, l/3 = .555555,6  only approximately.

Moreover, some numbers that are exactly representable in decimal are

only approximately representable in hexadecimal; for example,

l/10 = .lOOOOOlo  exactly; but

l/10 = .19999A16 only approximately.

Thus round-off error cntcrs into the representation of most- - -
.I’1 o:t.f, i tl,:-po i tit-. nurtit~c.~r:;  071 :;y\/:: t;ctti/eO,iCd, and the round off dtf'fers from

tl~ilt, w i-l,11 ttcci.~~L nlutlbers . This can easily give rise to unexpected

results . For example, if the above number
l 1999YA~~

( 4 O.llo) is

multiplied by the integer lOOlO = 6416 ' one gets not A.0000016 =
10'010 9 but instead A.OOOO316 , as a cumulative effect of the slightly

high approximation to O.llo . And A.0000316 rounds to 10.00002
10

on conversion to decimal.

c

The precision of a single-precision hexadecimal number is roughly

loo7 .
s

One can think of this as being crudely equivalent to seven
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significant decimal digits.

Not only do errors appear in the representation of numbers inside

system/360 ( or any computer), but they arise from arithmetic operations

performed on numbers. For example, the product of two floating-point

numbers may have up to 12 significant hexadecimal digits. When the

product is stored

be rounded to six

though the factors

The story of

as a single-precision floating-point number, it must

hexadecimal digits. This introduces an error, even

might have been exact.

round off and its effect on arithmetic is a complex

and interesting one. Only within the current decade have there begun

to appear even partly satisfactory methods to analyze round off, and

we cannot go into the matter now. Some idea.of this is obtained in

Computer Science 137*

When an Algol W program assigns decimal numbers or integer values

to variables of type REAL, these are immediately converted to hexadecimal

floating-point numbers, with (usually) a round-off error. When one

outputs numbers from the computer in Algol W, they are converted to

decimal. Both conversions are done as well as possible, but introduce

changes in the numbers that the programmer must be aware of. And, of

course, all intermediate operations introduce further round offs and

possible errors. It is unthinkable to do the analysis necessary to

counteract these errors and get the true answer to the problem. If the

user wishes answers uncontaminated by round off, he should use integers

and integer arithmetic, and be prepared to guard against overflow.

Fortunately most users can accept an indeterminate amount of

round off in their numbers , provided they have some assurance that

round off is not growing out of control. It is the business of numerical

analysts to provide algorithms whose round-off properties are reasonably

under control. This has been well accomplished in some areas, and hardly

at all in others.

DOUBLE PRECISION

The precision of single-precision floating-point numbers seems
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L For a machine with the speed of e/he 360/c;?, a number precision of

very adequate for most scientific and engineering purposes, being at the

level of seven decimals. However, a considerable number of computations

require still more precision in the middle somewhere, just in order to

come out with ordinary accuracy at the end. As a result, System/3&

has provided an easy mechanism for getting a great deal more precision

in the computations. For this purpose a double word of 64 bits is used

to store a floating-point number of so-called double precision or long

precision. In this representation, the sign and biased exponent are

found in the first word of the double-word, with precisely the same

interpretation as with single-precision floating-point numbers. The

second word of the double-word consists of eight hexadecimal digits

immediately following the six found in the first word. There is no

sign or exponent in the second word. Thus a double-word represents

a signed floating hexadecimal number with 14 significant hexadecimal
--.

digits. AS before, nonzero numbers are normalized so that the most

significant digit of the 14 is nonzero.

Examples:

long significand

l.OL

o.lL

= 41'100000 00000000'

= 40 199999 9999999-11

There is a full set of arithmetic operations for both single

and double-precision operations. Very crudely, for an example, single-

precision multiplication of single-precision factors takes around 4 micro-

seconds, while that for double-precision factors takes around 7 micro-

seconds. For modest problems the extra time is completely lost in the

several seconds of time lost to systems and compilers, and the use of

double-precision is strongly recommended for all scientific computation.

Normally the only possible disadvantage of using long precision is the

doubling in the amount of storage needed. If one has arrays with tens

of thousands of elements, the extra storage may be very costly. Other- '

wise, it should not matter.

Since 16-14 -17{lo , the double-precision numbers are crudely

equivalent in precision to 17 significant decimal digits.

c
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six hexadecimal digits (roughly seven decimals) is considered very low,

while a precision of 14 hexadecimal digits (roughly 17 decimals) is

very adequate. The floating-point arithmetic hardware of System/360

provides the possibility of detecting when numbers have gone outside

the exponent range stated above. The reader may think that a range

from roughly 10 -7y to lo75 should cover all reasonable computations.

While exponent overflow and eqonent underflow are not very common, they

can be the cause of very elusive errors. The evaluation of a determinant

is a common computation, and for a matrix of order 4.0 is quite rapidly

done (if you know how). If the matrix elements are of the quite

reasonable magnitude 10 -3 , the magnitude of the determiriant will be

no larger than roughly 10 OYO (and probably much smaller), well below

t-he range of representable floating-point numbers. Such problems are

a frequent source of exponent underflow.--.
We shall not discuss here the mechanisms of Algol W for detecting

exponent overflow and underflow, for these should be written up in

another place. Even without these, we see that floating-point numbers

behave well for numbers that are at least 10
66

times as large as the

largest integer in the system! Hence use of floating-point numbers

meets almost all the problems raised by integer overflow. And, of

course, it permits the use of a large set of rational numbers, which

do not even enter the integer system.

AIGOL W REKLS AND LONG REALS

The Algol W manual tells how to represent real variables and

numbers to take advantage of both single-and double-precision. The

ipurpose of this section is to bring this 'information into rapport with

thehardwarerepresentation of numbers. If a variable X is declared

REAL, one word is set aside for its values, and it will be stored in

single-precision floating-point form. If a variable is declared to be

LONG REAL, a double-word is set aside to hold its values, and it will.
be stored in double-precision form.
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c

c

c
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c

c

If a number is written in one of the decimal forms without an L

at the end, it will be chopped to single-precision, no matter how many

digits are set down. Thus 3.1415926535897932 will be immediately

chopped to single-precision in the program, and all the superfluous

digits are lost G once. Thus-the assignment statement

xx := 3.1415926535897932

will result in the double-word Xx receiving an approximation to n

in the more significant half, and all zeros in the less significant

half! Thus one gets a precision of only approximately seven decimals

for the pain of writing 17, and this may well contaminate all the rest

of the computation.

If one wants XX to be precise to approximately full double precision,

one must write the statement in the form

xx := 3.1415926535897932L .--e.
With the declaration REAL X, the statement

X := 3.1415926535897932~

will result in X having a single-precision approximation to 7~, as

the long representation of '1~ is chopped upon assignment to X.

The reader should now go back and examine the specifications

of the types of various arithmetic expressions, as stated on pages 9, 10,

11 of the Algol W Notes, and in Section 6.3 of the Language Definition.

Some of the less expected effects are the following: Suppose we have

declarations

REAL X, Y, Z;

LONG REAL XX, YY, ZZ;

INTEGER I, J, K;

Then X*Y, I**J, and 1*X are all long real.

The assignment statement

xx := x := y*z

will result in Xx having a single-precision chopped version of Y*Z in

the more significant half, and zeros in the less significant word.

Moreover, I-&I is INTEGER, but I**2 is LONG REAL.

c
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If the reader understands the language Algol W and the preceding

pages on number representation, he should have a good basis for

understanding the effects of mathematical algorithms. But he should

always remain wary of what a compute-r is actually doing to his numbers?
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i

c

c

c

c

c

ALGOL W Deck Setup and Compiler Options

1. Simple Deck Setup

i

01

06

0
{
--.

QUICK partition .. BATCH partition

(Job and Keyword cards). _

/* SEZRVICECLASS=Q

/I EXE! ALCOLW

I/SYSIN DD *

WL

(Job and Keyword cards)

(PrwW

@MA
(data)

I*

// EXEC ALGOLW

//SYSIN DD *-

ol WL

§§
(program)

(data)

I*

0 Optional.

$0 May be repeated -- second and following $AIGOL cards are

required.

For simple cases, the above control cards are sufficient. More

complicated cases are discussed later under 3. Linkage to Separately-

Compiled Procedures.

1.1 Time and Page Limits

To avoid using too much computer time or paper when a program has

mistakes in it, both the operating system and the ALGOL W system monitor

the amount of time and pages used. The operating system keeps track of

the total time used for carlpiling one or more programs, executing them,

piinting any post-mortem dumps, loading the compiler into core, interpreting

the operating system control cards, etc. The operating system also keeps

track of the total amount of printed output from a run -- control card

listing, compiler listing, actual execution output, error messages,
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post-mortem dump, etc. The limits for these totals are specified on

the JOB card in tenths of minutes and thousands of lines; exceeding these

JOB card limits results in an ABEND 322 message from the operating

system and no other information.

The ALGOL W system monitors the amount of time and pages used by

each program just during its execution, not during its compilation or

during any post-processing. If these execution limits are exceeded,

ALGOL W will print a run-time error message (TIME ESTIMATE EXCEEDED or

PAGE ESTIMATE EXCEEDED) with the coordinate of the program statement

executing at the time. The subsequent post-mortem dump and optional

program listing can be very helpful in determining what went wrong.

To make sure that the ALGOL W system is able to get out this information,

the JOB card limits always should be sufficiently bigger than the ALGOL W

limits.

The normal ALGOL W execution limits are 10 seconds and 9 pages

(60 lines/page). These may be changed by specifying different limits on

the ??&LGCL card in columns 8-29:

$ALGOL TIME=sss,PAGES=ppp

where sss is the maximum execution time in seconds; ppp is the maximum

number of pages of execution and tracing output. TIME may be abbreviated

PAGES, P . Time and Pages may be given in either order.

Example: for 2 minutes and 20 pages, use:

$ALGOL T=120,P=20

(Previous erosions of the co'rlP.il~  had slightly different control cards:

%&QF instead of @ATA, and min:src,pages instead of TIME= and PAGES= .

These older conventions are also accepted by the present compiler.)

103.1



c

c

c

c

1,2 Other @LGOL Card Parameters

Two other execution environment options may appear on the $ALGOL

card. MARGIN=72 specifies that READ and READON should only scan the

first 72 columns of data cards. MARGIN=80 specifies that READ and FUUDON

should scan all 80 columns of data cards. The defa;ult value is MARGIN=80,

unless the program source cards are sequence numbered; in that case, it

is assumed that the data cards are also sequence numbered and MARGIN=72

is the default. MARGZ'? may be abbreviated MARG. (cf. Section 7.8.4.

for dynamic control of this margin.) SIZE=xxxK specifies that the

maximum amount of dynamic space requested by either the compiler or the
---.

execution library is -1024 bytes. This directive is only used in

rare cases to prevent the capiler from using all of the core available

to it.

TIME, PAGES, MARGIN, and SIZE may be specified in any order.

103.2



2. COMPILER OPTIONS

2. Compiler Options

Any of the following cards can appear in a deck between a %ALGOL .

and the next $kard:
.

$NOLIST

$LIST

$TITIz,Y

$sYNTAx

$STACK

$DU?Fab,cc

$N~C~ECK

*
. . & :

Do not list subsequent source cards. The compiler normally.,>
lists all input cards. i ,.

List subsequent source cards: this undoes a previous $NOLI$T. U *,
9

'Start the program listing on the next page, and place
?? . ..I' (up to 30 characters) as a title in the middle of F

the heading line.

Analyze the program for syntax errors, but do not execute.

Dump the current parsing stack if a pass 2 syntax error should

occur, with the most recent syntactic element listed last. '

Dump certain internal tables during a compilation. This

option in general is used only by those maintaining the

compiler, but is documented here for the sake of completeness.

Since its use significantly increases the amount of printed,

output for even small compilations, random experimenting is

discouraged. See the table at the end of this section.

Omit checking subscript ranges and reference compatibility

and omit initialization of variables to

"undefined".

Activate the tracing, statement counting, and post-mortem

dump facilities of the ALGOL W system.

The single digit

0 nothing fancy

the system).

1 a post-mortem

n specifies:

(use this to minimize the space used by

dump of all the program's variables if

execution terminates abnormally, else nothing.

2 the above plus counts of how often each statement was

executed.
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0

3

4

If

the above plus a statement-by-statement trace of each

value stored.

the above plus a trace of each value fetched.

tracing is specified ($DEBUGJ  or $DEBUG,k) and the standard

procedure TRACE (cf. Section 7.8.6.) is not used, then

each ALGOL statement will be traced in symbolic form the

first m times it is executed. Each time a statement is

traced, it produces at least two lines of output (included

in the run-time limit), so a 100 statement program with

$DEBUG,~(~) will produce at least 400 lines of output

(unless it dies an early death).

THE DEFAULT IS $DEBUG,~ -- post-mortem dump, but no counts

or traces.--. . I

The following abbreviated control cards are acceptable:

$DEP;ITG for $DEBUG,~(~)

$DE~G, x for $DEBUG,X(~)

(no DEBUG card) for $DEBUG,l

All variables are initialized to a bit pattern considered

to represent an undefined value (printed in the traces and

post-mortem dump as "?" ). For some data types, all bit

patterns can be valid, so valid data can appear to be

undefined.

See Section 4, page ill, for a detailed explanation of the debugging

facilities.
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$DUMW options

The $Dm card specifies two things: what tables to be dumped, and

which segments in the program the dumping applies to. 'For example, the

360 machine code for only one of many procedures can be dumped.
. .

General format:

$DuMpnab,cc

a is a single digit and is ignored.

b is a single digit and asks for some combination of 5 tables to be

dumped.

cc is exactly two digits -- a number in the range 0 to 63, or two blanks.

If cc is blank, then tables for all segments will be dumped.

If cc is a number, then the machine code for only that segment will

be dumped. Many $DUMP cards may be used to specify more than one

segment. If the b digits are different, the last one is used.

tables dumped:

pass2 pass2 pass2 pass3 pass3
b digit parse tree nametable editcode 360 code w/ some 360 code w/ most

04 addresses missing addresses inserted

5 X X X I

6 X X

7 X X X X

8 X X X X X

9
I

X X X X (sane as 7)
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3. SEPARATE COMPILATIONS

3. Linkage to Separately-Compiled Procedures

AUOL W provides a facility for pre-canpiling procedures and linking

them back together again. For small programs, it is not worthwhile to
-.

use this facility, since re-compiling a procedure may be faster than

punching an object deck and reading it back in. A facility is provided

for generating standard IRM linkages for calling FORTRAN programs.

3.1 Compiler Organization

As shown in the diagram below, there are actually two versions of the

ALGOL W compiler; both versions use exactly the same code for the various

phases of-the compiler and for the run-time library, but the monitor

phase is slightly different. The compile, load, and go incore version

is called ALGOLW; it can handle object decks only in a crude way, but

its in-core loader handles the debugging feature information. The

compile only version is called ALGOLY; it produces standard OS/36C object

decks, but cannot pass any debugging information (so $DERUG,O is forced).

The output from ALGOLY can be link-edited with other object decks or load

modules, including those produced by Fortran G or H. In order to be

executable, the object decks fram AUOLY must be link-edited or loaded

with the ALGOL'library and with the ALGOL run-time monitor (ALGOIX). To

facilitate this, all object decks for ALGOL main programs include

external references to the monitor and to the library.

The restricted object deck facility for the compile, load and go

version only handles:

13 object decks

2 ) of procedures (not main programs)

3) from ALGOL w

c

4) run with no debugging features
($DE=☺w)  l
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3. SEPARATE COMPILATIONS

If a procedure declaration is compiled and a //SYSRJNCH DD card is

supplied, then an OS/36C object deck for that procedure is produced. This

deck can then be used with the link-editor or OS/360 loader as above, or
. .

it can be read back into the compile, load, and go system when the main

program is cQnpiled. For this purpose, the deck setup is extended to:

I

01

40

3

C

0x.

{

WIJ
$DEBUG,O (must be specified)

(main program)

mJ=T
(procedure object deck(s))

@NA
(data)

I*

0 Optional.

$0 May be repeated -- second and following $ALGOL cards

are required.
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c
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c

c

c

COMPILE, LOAD, and GO INCORE

Source7 -.

\
\
\
\

INCORE OBJXXlT CODE

ANDDEBUGINFO

COMELE and use OS/360

LOADER or LINKEDITOR

Source*7

OBJECTDECK

ALGOLW

LIBRARY

and MONITOR

(ALGOIW

I

( OS/360 LOADER

or LINKEDITOR b

CLIZXEWTION

c

c 109



3. SEPARATE COMPILATIONS

3.2 Control Cards for Using OS/360 Loader

Three catalogued procedures are provided: ALGOXG, AI&OX, and

ALGCLG, for cmpile and load, compile only, and load only respectively.. .

In all of them, the object decks are passed in the same way that

Fortran object decks are passed, so (for instance) ALGCIX: and FORTHC can

be intermixed and followed by ALGCIG. The stepnames are COMP and Go.

Parameters given on a @.LGOL card are not passed to the GC step; instead,

the EXX card parameter field is decoded the same way.

Example:

//STEIN  EXEC AIGOICG, PARM.GO=WAP,  EP=AUOLX/TIME=5, PAGES=15 *

3.3 Calling External Procedures

In a program which calls an external procedure, a dummy procedure

declaration and body are used to establish the proper correspondence

(cf. Section 5.3.2.4). The symbols algol and fortran in that dummy body

indicate the use of ALGOL W and standard IBM linkages respectively; the

associated string is extended (with blanks) or truncated to eight characters

and is used as the entry point name of the external procedure. For a

FORTRAN external procedure, the entry point, name is just the name of the

FORTRAN subroutine or function. For an independently compiled ALGOL W

procedure, the entry point name is the procedure identifier extended

(with ' # "s) or truncated to five characters and followed by "001" .

u-0
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Example:

first
compilation

I

second
ccsnpilation
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l.

3. SEPARATE COMPILATIONS

p INTEGER PROCEDURE MYRJNCTION(REAL VAUJE X);

BEGIN INTEGER I;. .
.
.
.

I

L END.

c

BEGIN

INTEGER K,L,M;

REAL A,B;

INTEGER PEXCEDURE YOURFUNCTION(REAL  VALUE Y);

ALGOL "MYEuNOO1"; \
.
.
.

K := YCURZUNCTION(A);

.

.

.

Em. .
b

A FORTRAN subroutine or subprogram can be used as an AIGOL W procedure.

The type correspondence between ALGOL W and FORTRAN is given by the

following table:

c

c

c

L-

ALGOLW I IBM FORTRAN IV

integer

real

r e a llong

ccxnplex

long complex

logical

( n )string

bits

reference

I
INTEGER*4

RExI*

REALTY

ccwm*8

COMPLEXITY

LOGICAL*1 '

(LOGICALti)

LOGICALLY
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String functions are not implemented. The following

types are allowed and are interpreted as indicated:

formal parameter

. .
(1) (simple T type)

The corresponding actual parameter is examined. If that parameter

is a variable, the address of that variable is computed (once only)

and transmitted. Otherwise, the expression which is the actual

parameter is evaluated, the value is assigned to an anonymous local

variable, and the address of that variable is transmitted.

(2) (simple T type) value , (simple T

(simple T type) value result

type) result ,

As in"ALCOL W procedures, a local variable unique to the call is

created, and the address of that variable is transmitted.

(3) (simple T type) array .

The address of the actual array element with unit indices in each

subscript position is ccxnputed and transmitted, even if that element

lies outside the declared bounds of the ALGOL W array. Arrays with

only one dimension and arrays with,unit lower subscript bounds will

have elements with indices which are identical in ALGOL W and

FORTRAN routines. Array cross-sections should not normally be

used as actual parameters of FORTRAN subprograms.

If FORTRAN input/output or FORTRAN error handling facilities are to be

used, the subroutine package IRCOM, or a suitable substitute, is required.
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3. SEPARKPE COMPILATIONS i

Cm PROCEDURE COmLEXSQRT(COMPLEX  VALUE A);

FOI "FAKEIT";

z := COMmEXSQ,RT(Z);
.
.
.

FUNCTION FAKEIT

COMPLEX FAKEIT,X

FAKEIT = CSQRT(X)

c

e

\
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4. COMPILER OUTFUT

4. Compiler Output

11.1. Introduction

The printed output of the compiler consists of five general
. .

categories :

1) Source card listing

2) Error messages

3) Run-time and tracing output

4) Statement counts

5) Post-mortem dump

The amount of output in some of these categories can be controlled

by various compiler options (cf. Compiler Options, page 104).

1) $NOLIST, $LIST, $TIT~.

2) No control.

3) $DEBUG,3 or $DEBUG,4 activates the tracing. The standard

procedure TRACE (cf. Section 7.8.6.) dynamically controls the

tracing output.

4) $DE~G,~ , 3 or 4 activates the statement counts.

5) If a program terminates with a run error and $DEBUG,O was not

used, a post-mortem dump is produced.

(In the explanation which follows, circled numbers are keyed to the

circled numbers on the sample output.)

I 4.1.1. Source Card Listing

The source listing consists of four columns of output:

a) Coordinate number 10
This statement count is incremented once for each semi-colon

(except end-of-comment), BEGIN, or ELSE in the program. If there

are many statements on a card 05 , the coordinate listed refers

to the first statement on that card. All error messages and

tracing information are keyed to the coordinate numbers.

u-1
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\-

c

c

b) Block nesting level 20
The nesting level counter is incremented by one for

in the program and decremented by one for each END.

each BEGIN

The counter

is printed only when it changes; then the first character in

this column refers to the nesting level of the first BEGIN on

the card, and the second character refers to the nesting level

of the last END on the card. If you have the proper number of

BEGINS and ENDS, the nesting level for the last card should

be 1 .

c) Card image 3
0

Columns l-72 of each card are printed exactly as they were

read. $ option cards are not printed.

d) Sequence field 40
Columns 73-80 of each card are printed here, with eight spaces

between column 72 (card image) and column 73 (sequence field) @.

The source card listing is followed by a line giving the options

which will be in effect during the execution of the program 6a .0 These

include the debugging option (specified by a $DEBUG card), the time limit

in seconds, the page limit, the word NOCHIXK if that option has been

specified (cf. Section 2, Compiler Options), and the words MARGIN=72 if

the initial right margin for READ and READON is set at column 72 instead

of 80. This last option is set if the source deck is sequence numbered,

on the assumption that the data cards are also (cf. Section 7.8.4. for more

details on margins).

4.1.2. Error Messages 6b0
These are printed immediately after the source card listing and are

further explained in the Error Messages section of this manual.

4.13. Comx>ile Time and Amount of Code c-36c

The last line of the compilation gives the amount of time spent in

the c::ompilcr and either the phrase NO CODE GENERATED if fatal error

mttss;\.;Ses  occurred, or the phrase (xxxxx, yyyyy) BYTES OF CODE GENERATED if
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compilation was successful. xxxxx is the number of bytes of 1360

machine language generated. yyyyy is the number of bytes of

information generated for the debugging facilities:

$DEWG,~
. .

and above information included

0 (i.e., always) Table relating coordinate numbers to program

addresses, for creating RUN ERROR messages.

1 Table of names and types of each variable used, for

post-mortem dump and tracing.

2 A compressed version of the source code, for the

pseudo-listing.

3,4. Additional editing markers in the compressed source

-v. code, for breaking the tracing at the proper points,

and for more closely correlating the machine code

with the source code.

4.1.4. Run-time and Tracing Output

This category inciudes an optional statement-by-statement trace of

the program as it executes 07 (explained in more detail below), any
output that the program itself produces in WRITE and WRITEON statements 80 ,

a and perhaps a run error message saying why the program terminated 9 .0
If the tracing were turned off, the output would look like that on page

118.

4.1.5. Statement Counts

This optional print-out consists of a pseudo-listing of the

program 12 with coordinate numbers0 010 and counts of how many times

each statement was executed 11 .0
To determine how many times a particular

statement was executed, follow the vertical bars straight up and to the
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1

e

L

c format of the dump is discussed below.

c

left until a number is encountered. For example, the statement count

for the IF at coordinate 0012 is found by following the bars up to

coordinate 0005 , then up and left to the 6. on the preceding line;

if this path goes through the statement where the program terminated

prematurely 13 ,0
then subtract one fram the count. Thus, the IF

statement at coordinate OOl2 was executed 5 times (true 1 time, false

4 times). The pseudo-listing has all the comments removed and is

formatted to show the block structure of the program. You are encouraged

to make use of the statement counting facility in order to better under-

stand just where your program is spending its time.

4.1.6. Post-Mortem Dump

This error analysis aid 014 shows the names and values of all

variables which were active at the time the program stopped. By looking

at the values of the variables used in the last statement executed 13 ,0

it is easier to determine what (if anything) went wrong. The exact

c
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4.2. Details of the Tracing Output
L

b

L

c
‘-

c

c

The tracing features of ALGOL W allow the programmer to watch the

statement-by-statement execution of his program. The tracing output

consists of four kinds of information for each statement:

a) The coordinate of the statement. 20
b) The number of times that statement has been executed. 03
c) The source statement itself. 40
d) A description of the values used in the statement. 05

There are special notations for procedure calls, for iterations and for

showing data cards.

4.2.1. Basic Notations

For each value fetched during the execution of a statement, the

fetch and store trace ($DEBUG&) prints VARIABLE NAME = VALUE 8.

The store trace only ($DEBUGJ) suppresses all of these fetch values.

For each value stored (assigned), the tracing prints

VARIABLENAME := VALUE 0. For each logical expression in an IF or

WHILE statement the value of the expression is printed as * = TRUE 010
or * =FALSE 11 .0 If tracing is suspended because the next statement

has already been executed m times (cf. Compiler Options for details of

c

c

$DEBUG,n(m) ) or because the TRACE function is used, then three dots are

printed @ 0. The second and subsequent times through a WHILE or

FOR loop are indicated by the WHILE or FOR statement in parentheses @x9*

Whenever a new card is needed by READ or READON, the complete card image

is printed as INPUT RECORD: " 80 characters It 12 .
0

Note that in general

string values are printed with quotes on each end, but any quotes within
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the string are not doubled. Reference values are printed as

Recordclass .# , where # is a unique number (in order of allocation).

4.2.2. Procedure Call Notations ..

-+ XIYZ; Indicates a call to procedure XYZ 13 .
0

ti TRACING XYZ; Indicates that a new procedure is being

traced 14 . '
0

(PARAMETER AssI~mmc) A dummy statement indicating whatever

calculations must be performed in binding
. the actual parameters to the formal

parameters 15 .0

((PARAMETER IN xxx AT yyyy: trace))

If the actual parameter is an expression, then

this notation gives the name of the calling

routine, the coordinate of the call, and a

trace of the expression evaluation 16
0 a*

Note that in the first example given, the

expression MAKELONG(1) is actually another

procedure call, whose tracing terminates about

25 lines later. There is a second example 024
on the next page.

e

FPARM :- APARM

- FPARM* := value

#

Indicates the correspondence between the formal

parameter and the actual parameter 17 .
0

In the case of VALUE and VALUE RESULT

parameters, this indicates the value assigned

to the local copy of the formal parameter 18 .0
'The local copy is then used inside the

procedure 19 .
0

Used as the name of an expression which

otherwise has no name 22 .
0

120
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XYZ(..) = value Indicates the value returned from a function

procedure 20
0 o*

This notation is

preceded by a blank line to indicate a

return to tracing the calling procedure.. .
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*.

c

c

4.3. Details of the Post-mortem Dump

The post-mortem dump begins with * TRACE OF ACTIVE SEGmS @ ,

then the complete call chain is printed starting with the procedure which

. was active at the point of termination and working back to its caller,

etc. For each procedure, the following information is printed:

a) The name of the procedure 4 .,0, The outermost procedure is

called " (MAIN) " and a simple BEGm block is named fr(BLOCK)*f .

b) The names and values of the local variables in the procedure 05 .

Uninitialized values print as "?" 07 l Local copies of

parameters are named with primes 60. Strings are printed with

a single quote added on each end, but quotes within the string

are--not doubled. At most eight values are printed from an array,

usually the first seven and last one @ @. Reference values

are printed as Recordclass .# , where # is a unique number

(in order of allocation). The control variables in FOR statements

are all distinct even if they are spelled the same way. so if

I is used in many FOR statements, it will be dumped many times ll g0
c) The name of the calling routine and the coordinate of the call 10 .0 ' ',

For NAME parameters, a procedure may be re-entered (environment

re-established) to evaluate the corresponding argument

c



01
=>

 
T

f’
4C

E
 

O
F 

4
C

T
IV

:
 

S
E

G
Y

E
”:

TS

=>
 

SE
Eb

?E
N

T
 

N
P

H
E

: 
Ap

0
!

2
4
6

 
hA

S
 

Q
E

E
N

TE
R

C
C

 
FR

G
M

 
i;

M
4T

,
N

E
A

R
 

C
X

’G
D

I’U
A

T
E

 
0
0
7
2
, 

Tc
I 

A
C

C
E

S
S

 
A 

D
A

R
A

M
ET

EG

=>
 

S
E

G
M

E
N

T
 

N
A

M
E

:
W

A
T

V
A

Lb
E

S
 

O
F 

LC
C

A
L

 
V

A
k 

14
E

L
E

S
:

R
I’

 
t 

?
2
1
’ 

= 
?

G
%

A
T 

W
AS

 
A

C
T

IV
A

T
E

ll
 

FR
f’f

l 
4
3
, 

N
E

A
R

 
C

C
C

R
D

IN
A

T
E

 
0
2
4
2

=>
 

S
E

G
M

E
N

T
 

N
A

H
F

:
A

ti

03
ha

 
nA

S
 

R
E

E
N

TC
R

E
C

 
FR

O
M

 
T

P
IS

D
L

V
,

‘v
?A

R
 

C
C

’D
R

D
IN

A
TE

 
0
0
3
3
,

TO
 

A
C

C
E

S
S

 
A 

PA
F 

4M
E

TE
E

=>
 

S
FG

Y
E

N
T

 
N

4H
E

:
TK

 I
 S

O
LV

V
A

Lb
P

S
 

O
F 

LO
C

A
L

 
V

S
R

I4
E

L
E

S
:

F
IG

’ 
t 

1
F

IE
’ 

= 
-1

TT
 

= 
?

C
kE

R
T

V
 

= 
?

I 
= 

?
T

R
IS

O
L

V
 

W
AS

 
A

C
T

IV
A

T
fD

 
FR

O
M

 
C

E
C

C
)‘.

IP
O

S
E

,
N

EA
R

 
C

O
O

R
D

IN
A

TE
 

O
d

81

=
>

 
S

E
G

P
E

N
T

 
N

A
M

E
:

D
E

C
O

M
”O

5E

v
A

;;
;;

o
;;

 
LO

C
A

L
 

V
cR

 
IA

H
L

E
S

:
= 

0
T!

J?
’ 

= 
C

I 
= 

c
.J

= 
7’

W
C

C
Y

P
O

S
E

 
W

AS
 

A
C

T
IV

A
T

E
D

 
FR

f)M
 

A
P

,
h

54
P

 
C

flO
R

D
 

IN
A

T
E

 
0
2
4
2

04
=

>
 

S
E

G
M

E
N

T
 

N
A

M
E

: 
A

U

05
v4

L
U

E
S

 
O

F 
LO

C
A

L
 

VA
R

 
IO

’I.
L

E
S

:
D

l 
= 

7
AR

 
k
lS

 
4C

T
IV

A
T

E
D

 
FR

nM
 

L
IN

P
R

O
G

,
 

‘d
E

A
:%

O
:D

IN
A

T
E

 
0
2
4
9

=>
 

S
E

G
M

E
N

T
 

hJ
A

H
E:

L
I’!

P
?

 l
r,

0
V

A
LL

E
S

 
O

F 
LO

C
A

L
 

V
;1

F
!A

cL
E

S
:

6
He 

= 
g

0
“I ’

= I
.!?

QIG
J

=?
 

7
2(l

) 
= 

7
Q

(4
) 

=
 

?

!i

J
(5

)
 

=
 

?
k

(r
))

 
=

 
?

1
r1

1
 

=
 

?
L

(4
)

 
= 

?
J
(E

)
 

= 
?

q
(C

) 
=

 
?

d
(‘

_
l 

= 
?

h
(4

)
 

= 
?

d
(F

)
 

= 
?

Y
(G

)
 

=
 

7
Y

(l
)

 
= 

?
Y

(4
)

 
=

 
3

Y
(5

)
 

= 
?

V
(3

)
 

= 
?

v
(:

J
 

=
 

3

P
V

 
= 

?!

J
=

?

0
Q

(3
)

 
=

 
7

8
. . 

. Q
(P) 

= 7
-

H
(3

)
 

=
 

?
. 

. 
. 

t-
i(

8
)

 
=

 
7

h
(3

)
 

=
 

?
. 

. 
. 

W
(R

)
 

=
 

?
Y

(3
)

 
= 

?
. 

. 
. 

Y
(8

)
 

= 
?

V
(3

)
 

= 
?



mmat--r-t-  II 4
-wwxxooui t+c
>GG-rd&n~~ul

. . . .

. . . .

. . . .

0cn

(4Y -a 0 G II (c
0 *em+ II e-m

aJ II 0 I II Hz0 II
II II II - #II *

4. coMPImouTm

m

lnln
muI

OdQ.0  23
0 . . .

00 l 00000~
oo*e 0 I l 4cn

c 0 0 I II II II  II 0
II II II II II * *

II II II II - - - - II
n- ctmoo- --r-l-v4ln-----w. L -Iv-ccln



,



L-

GRAMMATICAL  DESCRIPTION  OF ALGOL W

L -

-
bY

R. Floyd

-

c

e-

e



128.1



GRAMMATICAL  DESCRIPTIOlV

L

c

In the grammatical description of AJXOL W on the following pages,

Roman capital letters, such as A B C D, stand for themselves. A script

lettc!r, poss ibly acccntcd, stands Yor a dcf'inf:d infinite class of symbol

strings; f'or example, 3 , as defined, stands for the class which includes

the symbols A, B, C, . . . . Z, AA, AB, .:‘.,Ag, BA,...,Bg,...Zg,  Pica, l .*,

zgg, il.&u, . . . . A Greek letter, such as h , stands for a given finite

set of characters.

c

The symbol 1 means "or"; if a is defined as BlC , this means that

a particular inscription is an a if it is a B or if it is a C .

The notation a* , or equivalently {a)* , means any number (including

e

zero) of inscriptions, one after another, each of which is an a . For

example, [A\B)* -'means A or B or AA or AB or BA or BB or AAA

or . . . . or A , where A means no inscription at all.

The notation a+ means any number (but at least one) of inscriptions,

one after another, each of which is an a . It abbreviates CM* . For

example, (AIB)
+

means A or B or AA or . . . or BB or AAA , etc.

c
The notation [a] means an optional occurrence of (2 ; it abbreviates

Fa(n) .
I

The notation a'n means a or m or m , etc; it abbreviates

arm]* .

The notation (2 An means 0 and/or R ; it abbreviates a\nlm .

The curly brackets ( 1 are used simply as parentheses to show the

scope of the above operators.

-411 other characters, such as / - , () / < etc., stand for themselves,

including * and + when they are not raised.

L

L *
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