ALGOL. W
REFERENCE MANUAL

BY

RICHARD L. SITES

STAN-CS-71-230
FEBRUARY, 1972

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

ALGOL W
REFERENCE MANUAL

RICHARD L. SITES

FEBRUARY, 1972

This manual refers to the version of the Algol W
conmpi l er dated 1.6 January 1972.

"A Contribution to the Devel opment of ALGOL" by N klaus Wirth and

C. A R HoareXuas the basis for a conpi | er devel oped for the IBM 360 at

Stanford University. This report is a description of the inplenented

| anguage, ALGOL W Historical background and the goals of the |anguage

may be found in the Wirth and HoareNpaper.

H STORI CAL NOTE

This document is a mgjor revision of and supersedes CS 110. The revisions

were made in order to document a significantly inproved version of the ALGOL W

conpiler. This version was known as X ALGOL Wduring the spring and sumrer

of 1971. In addition to new debugging facilities documented under Conpiler

Options, the new version of the canpiler has slightly more neaningful error

messages docunented in the conpletely re-witten Error Messages section.

Various mnor corrections and changes have been made throughout the book,

and some exanples have been added. There is now an index, and a conplete

list of all words the conpiler treats in any special way. 'Below is a quick

summary of the changes in the ALGOL WI anguage:

1.

Reserved words:

There are three new reserved words: algol, assert, and fortran.

New statements and functions:

There is now an ASSERT statenent (cf. Section 7.5a).

Procedures can be declared with enpty bodies that instead specify that
a linkage t0 an externally-compiled algol or fortran procedure is needed
(cf. Section 53). A new standard function, TRACE, is added as part

of the debugging facility (cf. Section 7.8.6).

i/ Wrth, N klaus and Hoare, C. A R., "A Contribution to the Devel opnment

of ALGOL", Comm. ACM 9,6 (June 1966), pp. u413-431.

3. Conver si ons:

Conversions frominteger to real now go to Long real.

4. String conparisons:
In conparing strings of different lengths, the shorter is extended
wi th bl anks before the con'parison i s done.

5. String assignnments:
String assignnents are done in a single action, instead of character-
by-character left-to-right. This prevents erroneous answers when
assigning a string to a substring of itself.

6. Deleted facility:
The standard functions COMPLEXSQRT and LONGCOMPLEXSQRT are no

| onger in the ALGOL W library. (cf. Deck Setup and Conpil er

Options, Section 3,for use of the Fortran library.)

The present author w shes to thank all those who have gone before him
especial |y Ed Satterthwaite for his extraordinary care in building the

debugging facilities.

Tabl e of Contents

LANGUAGE DESCRI PTI ON

1. TERM NOLOGY, NOTATI ON AND BASI C DEFINITIONS 8
1.1 Notation"... 8
1.2 Definitions o 8
2. SETS OF BASI C SYMBOLS AND SYNTACTIC ENTITIES 11
2.1 Basic Synbols 11
2.2 Syntactic Entities 12
3. IDENTIFILERS o 13
4. VALUES AND TYPES «evvvesvnes N 1
4.1 NUMDEIS 17
4.Ztogi cal Values 18
4.3 Bit Sequences*........ e 18
44Strings ... 19
45References L siiiiiesiiiisiiiceiiessiieascess 20
5. DECLARATIONS e 20
5.1 Sinple Variable Declarations 20
5.2 Array Declarationsc i 22
53Procedure Declarations 23
5.4 Record Cass Declarations 28
6. EXPRESSIONS o 28
6.1Variables 30
6.2 Function Designatorsiiiiiiiiiiiiiii. 31
6.3 Arithmetic Expressionsccoiiiiniininninin.n. 32
6.4 Logical EXpressionso i 37
G Bit BXpressions e 98
0.6 String EXpressions 39

6.7 Reference EXpressions
6.8 Precedence of Operators,

STATEMENTS. o e

7.2Assignment Statements ...
73 Procedure Statements ... oo
74Goto Statements
751f Statenents ...
T.5a Assert Statenents i
7.6 Case Statementscoiiiiiiiiiii
771terative Statements oo
78 Standard Procedures
781 The Input/Qutput System*...............
782Read Statenents
783Wite Statenments ...
7.8.4 Control Statements,
7.8.5 Examples
7.8.6 Trace
STANDARD FUNCTI ONS AND PREDECLARED |DENTIFIERS
.8.1Standard Transfer Functions
8.2 Standard Functions of Analysis
83Time Function i
84 Predeclared Variables i
8.5 Exceptional Conditionso
APPENDI X
CHARACTER ENCODING ...

¢ ERROR MESSAGES

1. PASS ONE ERROR MESSAGES . .o .73
_ 2. PASS TWD ERROR MESSAGES ... i 75
¢ 3. PASS THREE ERROR MESSAGES''vvonnreeneaineanin., 80
4. LOADER ERROR MESSAGES e 82
5. RUNTIME ERROR MESSAGES. ..ttt 83
NUMBER REPRESENTATION ... o 88
DECK SETUP _AND COWPI LER OPTI ONS
¢ 1. DECKSETUP ...\ 103
2. COWILER OPTIONS ..o e 104
3. LI NKAGE TO SEPARATELY-COMPILED PROCEDURES 107
¢ 3.1 Conpiler Qrganizationccooiiiiiiiiinann.. 107
3.2 Control Cards for Using 0s/360 Loader 110
3.3 Calling External Procedures 110
- 4. COMPILER OUTPUT ..o 111
4.1 Introduction 111
h.1.1 Source Card Listing m
¢ L.1.2 Error Messages «ececcscsssssssaassssasaaacaaas 112
4.,1.3 Conpile Tinme and Anount of Code 112
L.1.4 Run-tine and Tracing Qutput 113
- 415Statement Counts 113
.1oG Post ~moTtem DUIMD «+vvvrvertrnsenennenenns. .. 113,
.2 Details of Lhe Tracing Oubpul eececeecseeereeioneaes 119
¢ 4.2.1 Basic Notationscviiiiiini... 119
4,2.2 Procedure Call Notations 120
4.3 Details of the Post-mortemDunp 125
. GRAMMATICAL DESCRIPTION OF ALGOL W .. 128
LNDEX o oo et 1ko
. WORDS W TH SPECIAL MEANINGS IN ALGOL W oo 141

6

6.1

ALGOL W

LANGUAGE DESCRIPTION

by
Henry Bauer
Sheldon Becker
Susan L. Graham
Edwin Satterthwaite
Richard L. Sites

T.1

1. TERM NOLOGY

1. TERMINOLOGY, NOTATI ON AND BASIC DEFINITIONS

The Reference Language is a phrase structure |anguage, defined by
a formal metal anguage. This metal anguage makes use of the notation and
definitions explained below The structure of the |anguage ALGOL W
i S determined by:

(1) v, the set of basic constituents of the language,
(2) u, the set of syntactic entities, and
(3) ©, the set of syntactic rules, or productions.

1.1. Notation
A syntactic entity is denoted by its name(asequence of letters)

enclosed in the brackets < and >. A syntactic rul e hasthe form
<A 1= X

where <A> is a nember of U, x is any possible sequence of basic con-
stituents and syntactic entities, sinply to be called a “sequence”.

The form
<A>::=x|y|...|z

15 used as an abbreviation for the set of syntactic rules

<K TI=X
<A =y
N

1.2. Definitions

L A sequence X 1s said t O directly produce a sequencey if and

1. TERMINOLOGY

only if there exist (possibly enpty) sequences u and w, so that
either (i) for some <A> in U, x = ww, y = uvw, and <A ::=
visarulein®;or (ii) x=uw, y =uvw and v is a "coment"

(see bel ow).

2. A sequence x is said to produce a sequence y if and only if

there exists an ordered set of sequences s[0], s{1], . . . , s[n],

so that x = s[0], s[n] =y, and s[i-1] directly produces s[i] for

all i =1, ..., n

3. A sequence x is said to be an ALGOL Wprogramif and only if

its constituents are nmenbers of the set ¥, and x can be produced

fromthe syntactic entity <program>.

The sets v and U are defined through enuneration of their menbers

in Section? of this Report (cf. also 4.4.). The syntactic rules are

gi ven throughout the sequel of the Report. To provide explanations
for the neaning of ALGOL W prograns, the letter sequences denoting

syntactic entities have been chosen to be English words describing

approximately the nature of that syntactic entity or construct. \here

words .which have appeared in this manner are used el sewhere in the

text, they ref'er to the corresponding syntactic definition. Al ong

with these letter sequences the synbol T may occur. It is understood

that this synbol must be replaced by any one of a finite set of English

words (or word pairs). Unless otherw se specified in the particular
section, all occurrences of the symbol T within one syntactic rule

nust be replaced consistently, and the replacing words are

1. TERMINOLOGY

i nt eger | ogi cal
real bi t

| ong real string
conpl ex _ reference
1ong conpl ex

For exanple, the production

< term> ::= < factor> (cf. 6.3.1.)

corresponds to

<integer factor>
<real factor>

<ong resl ternp Qong real factor>
<conpl ex ternp <conpl ex factor>
<long conplex ternp ::= <long camplex factor>

<integer ternp
<real ternp

The production

<T, primary>= | ong <7, prinary> (tcal:bl e6.?.olr._f_or£
6.3.2.7.)
corresponds to
<long real prinary> ;1= long<real primary>
<long real prinary> .1 = _long <integer pri mary>
<long conplex primary> ::=long <conplex prinmary>

It is recognized that typographical entities exist of |ower order
than basic synbols, called characters. The accepted characters are
those of the 1aM System 360 EBCDI C code.

The synbol comment fol | owed by any sequence of characters not
-containing semcolons, followed by a semicolon, is called a coment.
A comment has no effect on the nmeaning of a program and is ignored

during execution of the program An identifier (cf. 31)immediately

10

2. SYMBOLS

fol I owi ng the basic synbol end is also regarded as a coment.

The execution of a program can be considered as a sequence of
units of action. The sequence of these units of action is defined as
the evaluation of expressions and the execution of statements as
denoted by the program In the definition of the inplenented | anguage
the evaluation or execution of certain constructs is either (1) defined
by System 360 operations, e.g., real arithnetic, or (2) left undefined,
e.g., the order of evaluation of arithmetic primries in expressions,
or (3) said to be not valid or not defined.

2. SETS OF BASI C SYMBOLS AND SYNTACTIC ENTI TIES

2.1. Basic Synbols

AlBlciplelFlaelulzlolxlr]lMlin|o]|ep]
elrlslrolulviwlxlyl|z]|

ofxlelslulslelrlsalol

true | false | ™ | null | # | |

integer | real | conplex | logical | bits | string |

reference | long real | long conplex | array |

procedure | record |

> s s .1 C1)| beginlendl|if|then|else |
case | of | + | - | %1 /|*|div|rem]|shr |shl |is |
abs | long | short | and |or | b | =1]o="«<]
<=|>I>=|:: |

:= | got0 | goto | fur | step |until | do | while |
comment | val ue | result | assert | algol | fortran

Al'l underlined words, which we call "reserved words", are represented
by the same words in capital letters in an actual program with no

intervening blanks.

2. SYMBALS -

Adjacent reserved words, identifiers (cf. 3.1)and nunbers must include
no bl anks and nust be separated by at least one blank space. (xperwise
bl anks have no meaning and can be used freely to inprove the read-

ability of the program

2.2. Syntactic Entities

(with corresponding section nunbers)

<actual parameter |ist> 7.3 <formal type> 5.3
<actual parameter> 7.3 <go to statenent> 7.4
<bit factor> 6.5 | <hex digit> 4.3
<bit prima"ry> 6.5 <identifier list> 3.1
<bit secondary> 6.5 <identifier> 3.1
<bit sequence> 4.3 <if clause> 6

<bit term> 6.5 <if statenent> 7.5
<bl ock body> 7.1 <i magi nary nunber > 4.1
<block head> 7.1 § <increment> 7.7
<bl ock> 7.1 | <initial value> 7.7
<bound pair |ist> 5.2 § <iterative statenent> 7.7
<oound pai I > 5.2 | <label definition> 7.1
<case cl ause> 6 <l abel identifier> 3,1
<case statenent> 7.6 § <letter> 3.1
<control identifier> 3.1 4 <limt> 7.7
<decl arati on> 5 <l ogi cal element> 6.4
<digit> 3.1 § <logical factor> 6.4
<di mensi on specification> 5.3 <l ogi cal primry> 6.4
<enpt y> 7 <logical ternp 6.4
<equal ity operator> 6.4 § <logical value> 4.2
<expression list> 6.7 § <lower bound> 5.2
<field list> 5.4 <nul | reference> 4.5
<for clause> 7.7 } <procedure declaration> 5.3
<for list> 7.7 § <procedure headi ng> 5.3
<tormal array parameter> 5.3 <procedure identifier> 31
<formal paraneter |ist> 5.3 <procedure statenent> 7.3
<formal paranmeter segnent> 5.3 8 <program> 7

12

3. | DENTI FI ERS

<proper procedure body> 5, <subscript list> 6.1
. 2 1 > .
<proper procedur e <substring de5|gngtor 6.6
decluration> 5 <J array declaration> 5.2
| <7 array designator> 6.1
~<record class decleration> 5 i . e
_ o g <J array ident if ier> 3.1
<record class identifier> 3] . :
_ o <¥ assi gnnment statement> 7.2
<record class identifier ‘ . _
1ist> 5.1 <J expression list> 6
<record designator> 5.7 <T expressior> 6
<rel ation> s | < factor> 6.3
<relational Operator> 6., | < field designator> 6.1
<scale factors pal < field identifier> 3.1
<sir - 1| <7 function designator> 6.2
<simple L. expressic:> 65| < function identifier> 3.1
<simple lorical expression> A <I function procedure body> 5.3
- .
<simple reference <7 function p(ocedure
CHPTESE Lo 6.7 declaration> 5.3
<simple soatements 7 <T ieft parts 7.0
or
<slimple siring expressiom> 5.6 | < nunber > 4.1
<simple J expressiorn> 6.3 <J primary> 6.3
. .
<simple 7 variable> 6.1 | < subarray designator> 7.%
_ <T term> 6.
«simple type> 5.1 | < variable> 6.1
<siuple variable <J variabl e 1dentif ier> 3.1
eclaration> 5.1 | <unscaled real > b1
<statement list> 7.6 <upper bound> 5.2
<statcment> 7 <while clause> 7.7
<stelavrrimary> 6.6
<string> 4.4
<suvarray desifnator list> 7.3
<subscript> 5.1

3. IDENTIFIERS

7.1. Syntax
<identifier> ::= <letters | <identifier> <letter3 | <identifier? <digit>
<identifier> _
<Tvariable identifier> ::= <identifier>
13

3. IDENTIFIERS-

<T array identifier+ ::= <identifier>

<procedure identifier> ::= <identifier>

<J function identifier> ::: <identifier>

<record class identifier> ::= <identifier>

<T field identifier> ::= <identifier>

<l abel identifier> ::= <identifier>

<control identifier', ::= <identifier>

<letter> ::=A|B|Cc|D|E|F|lc|H|TI]|o]|K]|L | M |
Njolpla|R|s|T|u|v]w]|x|y]|z

<digit>::= o012]|3|u|5]|6]|7]8]9

<identifier list> :a= <identifier> | <identifier list;>, <identifier>

3.2. Senantiés
Vari abl es, arrays, procedures, record classes and record fields
are said to be quantities. Identifiers serve to identify quantities,
or they stand as labels, formal paraneters or control identifiers.
Identifiers have no inherent neaning, and can be chosen freely in the
reference language. In an actual programa reserved word cannot be
used as an identifier.
Every identifier used in a program nmust be defined. This is
achi eved through
(a) a declaration (cf. Section 5),if the identifier identifies a
quantity. It is then said to denote that quantity and to be a
T variable identifier, T array identifier, T procedure identifier,
T function identifier, record class identifier or T field iden-
ti rier, where the synbol 7 stands for the appropriate word re-
flecting the type of the declared quantity;

(b) a label def’inition (cf. 7.1.), if the identifier stands as a

14

S« | DENTI FI ERS

label. It is then said to be a label identifier

(c) its occurrence in a formal paraneter list (cf. 53).Itis then
said to be a formal paraneter;

(d) its occurrence follow ng the synbol for in a for clause (cf. 7.7.).
It is then said to be a contfbl identifier

(e) its inplicit declaration in the language. Standard procedures,
standard functions, and predefined variables (cf. 7.8and 8)nay be

considered to be declared in a block containing the program

The recognition of the definition of a given identifier is

determned by the follow ng rules

Step 1. B If the identifier is defined by a declaration of a

quantity or by its standing as a |abel within the smallest bl ock

(cf. 7.1)enbracing a given occurrence of that identifier, then

it denotes that quantity or label. A statement following a
procedure heading (cf. 53) or a for clause (cf. 7.7.) is considered

to be a bl ock.

Step 2. Qherwise, if that block is a procedure body and if +.c
given identifier is identical with a formal paraneter in the asso-

ciated procedure heading, then it stands as that formal parameter.

Step 3. Qherwise, if that block is preceded by a for clause
and the identifier is identical to the control identifier of

that for clause, then it stands as that control identifier.

Qtherwise, these rules are applied considering the smallest

bl ock enbracing the block which has previously been considered

15

4 . VAIUES and TYPES

If either step 1 or step 2 could lead to nore than one definition
then the identification is undefined.

The scope of a quantity, a label, a formal paraneter, or a
control identifier is the set of statenents in which occurrences of an
identifier may refer by the above ruleg to the definition of that

quantity, label, formal parameter or control identifier.

3.5. Exanpl es
I
PERSON
ELDERSI BLI NG
x15, x20, x25

4, VALUES AND TYPES

Constants and variables (cf. 6.1.)are said to possess a val ue.
The val ue of a constant is deternined by the denotation of the constant.
In the language, all constants (except references) have a
reference denotation (cf. 4.1. -4.4.). The value of a variable is the
one nost recently assigned to that variable. A value is (recursively)
defined as either a sinple value or a structured value (an ordered set
of one or nore values). Every value is said to be of a certain type.

The following types of sinple values are distinguished:

integer: the value is a 32 bit integer
real: the value is a 32 bit floating point nunber,

long real: the value is a 64bit floating point nunber,

conplex: the value is a conplex nunber conposed of two
nunbers of type real,

16

4. VAIUES and TYPES

long conplex: the value is a conplex nunber conposed of two
| ong real numnbers,

logical: the value is a logical value
bits: the value is a linear sequence of 32 bits,

string: the value is a linear sequence of at nobst 256
characters,

reference: the value is a reference to a record.

The following types of structured val ues are distinguished:

array: the value is an ordered set of values, all of
identical sinple type,

record: the value is an ordered set of sinple val ues.

! procedure may yield a value, in which case it is saidto be a
function procedure, or it may not yield a value, in which case it is
called a proper procedure. The value of a function procedure is

defined as the value which results from the execution of the procedure

body (cf. 6.2.2)).
Subsequently, the reference denotation of constants is defined.

The reference denotation of any constant consists of a sequence of

characters. This, however, does not inply that the value of the
denoted constant is a sequence of characters, nor that it has the

properties of a sequence of characters, except, of course, in the case

of strings,

4.1. Nunbers

4.1.1. syntax

<l ong conpl ex nunmber> ::= <conpl ex nunber>L
<conpl ex nunber> ::= <imaginary nunber>
<i magi nary nunber> ::= <real nunber >| l <i nt eger number>I

17

4. VAIUES and TYPES

<long real number> ::= <real number>L | <i nteger number>L
<real nunber> ::= <unscaled real > | <unscaled real> <scale factor> |
<integer nunber> <scale factor> | <scale factor>
<unscaled real > ::= <integer nunber> .<integer nunber> |
*<integer number> | <integer number>.

<scale factor> ::= '<integer number> | '<sign> <integer number>
<integer nunmber> ::= <digit> | <integer nunber> <digit>
<sign> ::= + | -

(NOte: a long conplex constant may have the | and L in either order

ina program but they nust be in the order IL on data cards.)

4.1.2. Semantics

Numbers. are interpreted according to the conventional decim
notation. A scale factor denotes an integral power of 10 which is
mul tiplied by the unscaled real or integer nunber preceding it. Each
nunber has a uniquely defined type. (Note that all <7 number>s are

unsi gned.)

4.1.3. Exanples

1 5 11
0100 1'3 0.671
3. 1416 6.024861+23 1IL

2.718281828459045235360287L 2.31-6

k.2, Logi cal Val ues

h.,2.1. Syntax

<logical value> ::= true | fal se

4.3. Bit Sequences

4.3.1. syntax

<vit sequence> ::= ¢ <hex digit> | <bit sequence> <hex digit>

18

4. VAIUES and TYPES

<hex digit>::=0 |1 |2 |3 s |5]|6|7|8]9]a]|B]|
clo|E|TF

Note that 2 |. . . | F corresponds to 2,, | ... |15, .

h.5.2. Semantics
The nunber of bits in a bit sequence is 32 or 8hex digits. The
bit sequence is always represented by a 32 bit word with the specified

bit sequence right justified in the word and zeros filled in on the left.

4.3.3. Exanpl es

#4F = 0000 0000 0000 0000 0000 0000 0100 1111
#9 = 0000 0000 0000 0000 0000 0000 0000 1001

LI Strings

4. 4.1 syntax

<string> ::.= "<sequence of characters>"

4.4.2. Semantics

Strings consist of any sequence of (at nost 256) characters
accepted by the System 360 enclosed by ", the string quote. If the
string quote appears in the sequence of characters it nust be inmediately
foll owed by a second string quote which is then ignored. The nunber of

characters in a string is said to bc the length of the string.

4.4.3. Exanples

IIJO_'NII
""" s the string of length 1 consisting of the string quote.

19

5. DECLARATIONS

4.5. References
43.1. Syntax
<nul | reference> ::- 1.

4.5.2. Semantics
The reference value null fails to designate a record; if a refer-

ence expression occurring in a field designator (cf. 6.1.) has this

value, then the field designator is undefined.

5. DECLARATIONS

Decl arations serve to associate identifiers with the quantities
used in the program to attribute certain permanent properties to
these quantities (e.r. type, structure), and to determine their scope.
The quantities declared by declarations are sinple variables, arrays,
procedures and record classes.

Upon exit froma block, all quantities declared or defined wthin

that block lose their value and significance (cf. 7.1.2. and 7.k.2.).

Synt ax:

<declaration> ::= <Sinple variable declaratior> | <J array
declaration> | <procedure declaration> |

<record cl ass deciaratiorn>

(3!
|—J

Sinple Variable Declarations

5.1.J1. Syntax

<sinple variable deciaratiom> : := <Sinple type> iidentifier list>
<sinple type> ::= integer. |real | long real | conplex | long

complex | logical | bits | bits (32) |

20

5. DICLARATIONS

string | string (<integer number>) | ref erence
(<record class identifier list>)

<record class identifier list> ::= <record cl ass identifer> |
<record class identifier list>
<record class identifier>

5.1.2. Semantics

Each identifier of the identifier list is associated with a
variabl e which is declared to be of the indicated type. A variable is
called a sinple variable, if its value is sinple (cf. Section 4).If
a variable is declared to be of a certain type, then this inplies that
only val ue; whi ch are assignment conpatible with this type (cf. 7.2.2.)
can be assigned to it. It is understood that the value of a variable
is equal to the value of the expression nost recently assigned to it.

A variable of type bits is always of length 32 whether or not
the declaration specification is included.

A variable of type string has a length equal to the unsigned
integer in the declaration specification. |f the sinple typeis
given only as string, the length of the variable is 16characters.

A variable of type reference may refer only to records of the
record classes whose identifiers appear in the record class identi-

fier list of the reference declaration specification.

5.1.3. Exanples

integer 1, J, K M N
real X, Y, Z

| ong conplex C

| ogical L

bits G H

21

5. DECLARATIONS

string (10) S, T
reference (PERSON) JACK, JILL

5.2. Array Declarations

5.2.1. Syntax

< array declaration> ::= <sinple type> array <identifier [ist>
(<ound pair |ist>)

<ound pair list> ::= <bound pair> | <oound pair list>,<bound pair>

<bound pair> ::= <lower bound> ::. <upper bound>

<lower bound> ::= <integer expression>

<upper bound> ::= <integer expression>

5.2.2. - Semanti cs

Each identifier of the identifier list of an array declaration is
associated with a variable which is declared to be of type #ray.
variable of type array is an ordered set of variables whose type is the
sinple type preceding the synbol array. The dinension of the array is
the nunber of entries in the bound pair |ist.

Every elenment of an array is identified by a list of indices. The
indices are the integers between and including the values of the |ower
bound and the upper bound. Every expression in the bound pair list is
eval uated exactly once upon entry to the block in which the declaration
_occurs. The bound pair expressions can depend only on variables and
procedures global to the block in which the declaration occurs. In order
to be valid, for every bound pair, the value of the upper bound nust not

be less than the value of the |ower bhound.

5.2.5. Exanples

integer array H(1l::100)

22

r.

e

DICLARATTONS

5.3.

real array A, B(1::M, 1::N)
string (12) array STREET, TOMW, CTY (J::K + 1)

Procedure Decl arations

5.3.1. Syntax

<procedure declaration> ::= <proper procedure declaration> |
<T function procedure declaration>
<proper procedure declaration> ::= procedure <procedure headi ng>;
<proper procedure body>
<7 function procedure declaration> ::= <sinple type> procedure

<procedure headi ng>;
<7 function procedure body>
<proper procedure body> ::= <statenent> | <external procedure>
<7 iunction procedure body> ::= <7 expression> | <block body>
<7 expression> end | <external procedure>
<procedure heading> ::= <identifier> | <identifier> (<formal
parameter |ist>)
<formal parameter list> ::= <formal paraneter segment> |
<formal paraneter list> ; <formnal
paraneter segment >

<formal paraneter segment> ::= <formal type> <identifier list> |
<formal array parameter>
<formal type> ::= <sinple type> | <sinple type> value | <sinple

type> result | <sinple type> value result |
<si npl e type> procedure | procedure
<formal array paraneter> ::= <sinple type> array <identifier
l'ist> (<dinmension specification>)

<di mensi on specification> ::= % | <di mension specification> *
<external procedure> ::= fortran <string> | algol <string>

5.3.2. Senmantics

A procedure declaration associates the procedure body with the

identifier imediately following the symbol procedure. The principal

23

5. DECLARATTONS

part of the procedure declaration is the procedure body. Qher parts
of the block in whose heading the procedure is declared can then cause
this procedure body to be executed or evaluated. A proper procedure
is activated by a procedure statenent (cf. 7.3.), a function procedure
by a function designator (cf. 6.2.). Associated with the procedure
body is a heading containing the procedure identifier and possibly a

list of formal parameters.

5.3.2.1. Type specification of formal paraneters. Al formal para-
meters of a formal parameter segnent are of the sane indicated type.
The type nust be such that the replacement of the formal paranmeter by
the actual parameter of this specified type |leads to correct ALGOL W

expressions and statements (cf. 7.3.2.).

5.3.2.2. The effect of the synbols value and result appearing in a
formal type is explained by the following rule, which is applied to
the procedure body before the procedure is invoked:
(1) The procedure body is enclosed by the symbols hegin and end
if it is not already enclosed by these synbols;
(2) For every formal paranmeter whose formal type contains the

synbol value or result (or both),

(a) a declaration followed by a semcolon is inserted after
the first begin of the procedure body, with a sinple
type as indicated in the formal type, and with an iden-
tifier different fromany identifier valid at the place
of the declaration.

(b) throughout the procedure body, every occurrence of the

2L

5. DECLARATIONS

formal paraneter identifier is replaced by the identifier

defined in step 2a;

(3) If the formal type contains the synbol value, an assignment

(4)

5.3.2.3.

statement (cf. 7.2.) followed by a senmicolon is inserted

after the declarations of the procedure body. Its left part
contains the identifier defined in step 2a, and its expression
consists of the formal paraneter identifier. The synbol

value is then deleted

If the formal type contains the symbol result, an assignnent
statenent preceded by a senmicolon is inserted before the synbo
end which termnates a proper procedure body. In the case

of a function procedure, an assignment statement preceded

by a semicolon is inserted after the final expression

of tne function procedure body. Its left part contains the
formaul paranmeter identifier, and its expression consists of
the identifier defined in step 2a. The synbol result is

t hen del et ed.

Specification of array dinensions. The nunber of "*"'s

appearing in the formal array specification is the dinension of the

array parameter.

5.3.2.kh.

External procedures. The body of a procedure can be just the construct

fortran <string>

or the construct

algol <string> .

25

5. DECLARATI ONS

In these cases, the actual body of the procedure is specified in a program

that is conpiled separately (externally). The <string> is a one-to-eight

character external name that is used in the separate conpilation. Thys the

exanpl e on page 27 could be used to refer to a FORTRAN program that begins:

(cf.

SUBROUTI NE PLOTSB(N) ...
Deck Setup and Conpiler Options, Section 3 for details).

5.2.5. Exanples

.procedure | NCREMENT; X := X+1

real procedure MAX (real value X Y);
if X< Ythen Y else X
procedure COPY (real array U V (¥,%); integer value A B);
for I :=1 until A do
for J :=1 until B do u(1,J) : = V(I,J)
real procedure HORNER (real array A (¥); integer value N
real value X);
begin real S S :=0;
for I :=0until Ndo S:=S* X+ A1),
S

end
long real procedure SUM (integer K, N, lLong real X);
begin Long real. Y; Y :=0; K:=N
while K > =1 do
begin Y := Y+ X K:=K-1
end;
Y
end

26

5. DECLARATI ONS

reference (PERSON) procedure YOUNGESTUNCLE (reference (PERSON)
begin reference (PERSON) P, M;
P := YOUNGESTOFFSPRING (FATHER (FATHER (R)));
while (P— = null) and (- MALE (P)) or
(P = FATHER (R)) do
P := EIDERSIBLING (P);
: = YOUNGESTOFFSPRI NG (MOTHER (MOTHER (R)));
ile M- =null) and (- MALE (M) do
M := ELDERSIBLING (M;
P=null then M else

M= null then P else

ACE(P) <AGE(M then P els

s =

ol ol I

M

[¢)

end

-

pr ocedur e PLOTSUBROUTINE (integer value |);_fortran "PLOTSB"

27

6 . EXPRESSIONS

5.4, Record dass Declarations

5.4.1. Syntax
<record class declaration> ::= record <identifier> (<field |ist>)
<field list> ::= <sinple variable declaration> | <field list> ;

<sinple variable declaration>

5.4, 2. Semantics

A record class declaration serves to define the structural pro-
perties of records belonging to the class. The principal constituent
of a record class declaration is a sequence of sinple variable declar-
ations which define the fields and their sinple types for the records
of this class and associate identifiers with the individual fields.
A record class identifier can be used in a record designator (cf. 6.7)

to construct a new record of the given class.

5.4.3. Exanples

record NODE (reference (NODE) LEFT, RIGHI)

record PERSON (string NAME, integer AGE, |ogical MNALE
reference (PERSON) FATHER, MOTHER, YOUNGESTOFFSPRING,

ELDERSI BLI NG

6. EXPRESSI ONS

Expressions are rules which specify how new val ues are conputed
from existing ones. These new values are obtained by performng the
operations indicated by the operators on the values of the operands.
The operands are either constants, variables or function designators,
or other expressions, enclosed by parentheses if necessary. The eval u-

ation Of operands other than constants may involve snaller units of

28

6. EXPRESSI ONS

action such as the evaluation of other expressions or the execution of
statenents. The val ue of an expression between parentheses is obtained

by evaluating that expression. [f an operator has two operands, then

t hese operands may be evaluated in any order with the exception of the

| ogi cal operators discussed in 6.&&L2. Several sinple types of

expressions are distinguished. Their structure is defined by the follow ng
rules, in which the synbol 7 has to be replaced consistently as described
in Section 1, and where the triplets Tor T10 To have to be either al
three replaced by the same one of the words

| ogi ca
bi t
string
reference

or by any conbination of words as indicated by the follow ng table,

which yields T, given T and T, :

0
j.'2
Tl integer real complex
i nt eger i nt eger real conpl ex
real real real conpl ex
conpl ex conpl ex conpl ex conpl ex

T has the quality "long" if either both Ty and 75 have t hat

~quality, or if one has that quality and the other is "integer".

Syntax:
<T expression> ::= <simple T expression> | <case clause>
(<T expression |ist>)
<T,expression> ::= <if clause> <7, expression> el se
<7, expression>
<7T expression |ist> ::= <Texpression>
<TO expression list> ::= <Tlexpression list> ,~<72expression>
<if clause> ::= if <logical expression> then
<case clause> ::= case <integer expression> of

29

6. EXPRESSI ONS

The construction
<if clause> <Tl expression> el se <7, expression>
causes the selection and eval uation of an expression on the basis of
the current value of the |ogical expression contained in the if clause.
If this value is true, the expression followng the if clause is selected;
if the value is false, the expression follow ng_else is selected. If

T, and T, are sinple type string, the shorter expression will be padded

1
on the right with blanks to make it the length of the longer one. The
construction

<case clause> (<7 expression |ist>)
causes the selection of the expression whose ordinal nunmber in the
expression list is equal to the current value of the integer expression
contained in the case clause. In order that the case expression be
defined, the current value of this expression nust be the ordinal nunber
of some expression in the expression list. If T is sinple type string,
the string expressions will be padded on the right with blanks to nake
all alternatives the length of the |ongest one.
Exanpl es of expressions

X -1 AB COLUW_rem 5 (X+Y)**3 | ong abs BALANCE
if X=3 then w37 el se z¥2.1

case | of (3.14, 2.78, 448.9)

case DECODE(C)-128 of ("A", "B, "c", "D", "E", "F")

6.1. Variables

6.1.1. syntax

<sinple T variabl e> ::= <Tvariable i dentifier> | <7 field designator> |
<T array designator>

<7Tvariable> ::= <sinple 7 variable>

<string variabl e> ::= <substring desi gnat or>

<7Tfield designator> ::= <Tfield identifier> (<reference expression>)
<Tarray designator> ::= <Tarray identifier> (<subscript [ist>)
<subscript list> ::= <subscript> | <subscript list> <subscript>
<subscript> ::= <integer expression>

AN

6. EXPRESSI ONS

6.1.2. Semantics

An array designator denotes the variable whose indices are the
current values of the expressions in-the subscript list. The value of
each subscript nust lie within the declared bounds for that subscript
position.

A field designator designates a field in the record referred to
by its reference expression. The sinple type of the field designator
is defined by the declaration of that field identifier in the record

class designated by the reference expression of the field designator

(cf. 54) -~

6.1.3. Exanples

X A(T) M(I+J, 1-7)
FATHER (JACK) MOTHER (FATHER(JILL))

6.2. Functi on Desi gnators

6.2.1. Syntax

<7 function designator> ::= <7 function identifier> | <7 function
identifier> (<actual parameter |ist>)

6.2.2. Senmantics

A function designator defines a value which can be obtained by a

process performed in the follow ng steps:

Step 1. A copy is made of the body of the function procedure
whose procedure identifier is given by the function designator

and of the actual paraneters of the latter

Steps 2, 3,4. As specified in 7.3.2.

31

6. EXPRESSI ONS

Step 5. The copy of the function procedure body, nodified as indicated
in steps 2-4, is executed. Execution of the expression which constitutes
or is part of the nodified procedure body consists of evaluation of that
expression, and the resulting value is the value of the function desig-
nator. The sinple type of the function designator is the sinple type

in the corresponding function procedure declaration.

6.2.3. Exanples

MAX (X ** 2, Y ** 2)

SUWM (1, 100, H(1))

SsuM (I, M, SuM (J, N, A(I,J)))
YOUNGESTUNCLE (JI LL)

SUM (1, 10, X(1) * Y(1))
HORNER (X, 10, 2.7)

6.3. Arithneti c Expressions

6.3.1. Syntax

In any of the following rules, every occurrence of the symbol T

must be systematically replaced by one of the follow ng words (or
word pairs):

I nt eger

rea

long rea
conpl ex

| ong conpl ex

The rul es governing the replacement of the synmbols TO, Tl and T2 are

given in 6.3.2.

<sinple T expression> ::= <Tterm> | + <Tterm> | - <T term>

32

"~ 6. EXPRESSI ONS

<sinpl e To expressi on> ::= <simple J’l expressi on>+ <3'2term>
<simple Tl expression> - <3'2term>

<Tterm> ::= <T factor>

<‘.ro term> = <:rlterm> * <3r2 factor>

<T,term> ::= <7, term> / <7, factor>

<integer ternmp ::= tinteger tern> div tinteger factor> |
<integer ternm> rem <integer factor>

<j‘o factor> ::= <7, primary> \ <7, factor> ** linteger pri mary>

<T,primary> ::= abs <7, primary>

<j’o primary> ::= |ong <3'lpr:lma.ry>

<:roprn'mary> ::= short <Tlpr:imary>

<Tprimary> ::= <Jvariable> | <Tfunction designator> |

(<T expression>) | <T number>
<integer primary> ::= <control identifier>

6.3.2. Senmantics
An arithnetic expression is a rule for conputing a nunber.
According to its sinple type it is called an integer expression,

real expression, long real expression, conplex expression, or |ong

conpl ex expression.

6.3.2.1. The operators +, -, ¥, and / have the conventional neanings
of addition, subtraction, nultiplication and division. In the relevant
syntactic rules of 6.3.1. the synbols To? '.rl and :rg have to be repl aced
by any conbination of words according to the following tabl e which

i ndi cat es T for any conbination of 7 and Toe (Al'so see page 134.)

6.3.2.2. The operator "-" standing as the first symbol of a sinple
expressi on denotes the nonadi ¢ operation of sign inversion. The type of
the result is the type of the operand. The operator "+" standing as the
first synbol of a sinple expression denotes the nmonadic operation of

i dentity.

33

6. EXPRESSI ONS

6.3.2.3. The operator div is mathematically defined (for B # 0) as
Adiv B=8SGN (A x B)xD(absA,abs B) (cf. 6.3.26)
A and B both must be integer expressions.

For the purpose of the definition above, SGN and D mean

i nteger procedure SGN (integer value A);
if A<Othen -1 else 1,

i nteger procedure D (integer value A B);
if A<B_then 0 else D(A-B, B)+1

6.3.2.4. The operator rem (remainder) is mathematically defined as
AremB=A-(Adiv B xB

A and B both rmust be integer eqressions.

6.3.2.5. The operator ** denotes exponentiation of the first operand
to the power of the second operand. In the relevant syntactic rule of
6.3.1.t he synbol s T Ty and T, are to be replaced by same combination
of words from the table below. [If the value of the exponent, N, is
positive, then the first operand is nultiplied by itself Ntimes; if N
is negative, the expression is evaluated as 1/(first operand**(-N));

if Nis zero, the result is always 1. If the first operand is zero and
the second operand is negative, then division by zero will result. Note
that -1**N is parsed as -(1**N); use (-1)**N instead. To force something

like 1#¥J (where | >0 and J > 0) to be an integer, use TRUNCATE(I**J).

6.3.2.6. The nonadic operator abs yields the absolute value or nmodul us
of the operand. In the relevant syntactic rule of 6.31 the synbols T

and 7 have to be replaced by the same types.

6.3.2.7. Precision of arithnetic. If the result of an arithnetic

operation is of sinple type real, conplex, long real, or |ong conplex

34

6. EXPRESSI ONS

then it is the mathematically understood result of the operation
performed on operands which may deviate from actual operands.

In the relevant syntactic rules of 6.3.1. the symbols Tor Ty and T,
must be replaced by any of the combinations of words (or word pairs)

in the tables bel ow

Qperators + | -
T

Ty S integer real long real complex | ong conpl ex

integer i nt eger real | ong real conpl ex |ong conpl ex

real real real real complex complex

long real --. | ong real real | ong real conpl ex |ong conpl ex

conpl ex canpl ex complex conpl ex conpl ex conpl ex

long conplex | 1ong conplex conplex |ong complex complex | ong conpl ex
Qperator *

o

j’l integer real complex

i nt eger i nt eger | ong real | ong complex

real | ong real | ong real | ong complex

conpl ex long conplex |ong complex |ong conplex

T, 0r T, having the quality "long" does not affect the type of the result.

- Operator /
Ts .
T I nt eger real | ong real complex |ong conpl ex
i nt eger | ong real real | ong real conpl ex Iong conpl ex
real real real real conpl ex complex
| ong real | ong real real | ong real conpl ex |ong conpl ex
conpl ex conpl ex conpl ex conpl ex complex conpl ex

| ong complex | | ong conpl ex complex | ong conpl ex complex | ong conpl ex

35

Tabl e of val ues for

div and rem operators

| J | div g | remJ
10 |2 > 0
1 2 5 1
10 -2 -5 0
1 | -2 -5 1
-10 2 -5 0
-11 2 -5 -1
-10 -2 5 0
-11 -2 5 -1
Qperator **
s ,

T I nt eger

i nt eger long rea

real | ong real

I ong real long rea
conpl ex | ong conpl ex
long conplex | |ong complex

Operator |ong
T

T

0] | 1
| ong real i nt eger
| ong real real
| ong real long rea
| ong complex | conpl ex
| ong conplex | long conplex
Qperator short
To 71
real i nt eger
real real
real | ong real
conpl ex complex
conpl ex | ong conpl ex
6.3.3. Exanpl es.

C+ A(l) * B(1)

EXP (-x/(2 * SIGVA)) / SQRT (2 * SIGMA)

36

EXPRESSIONS

- EXPRESSI ONS

6.4. Logi cal Expressions

6.4.1. Syntax
In the following rules for <relation>the symbols 7, and T, nust
either be identically replaced by any one of the follow ng words:
bi t
string
reference

or by any of the words from

conpl ex

| ong conpl ex
real

long rea

i nt eger

and the synbol s T, o 13 nust be identically replaced by string or

nust be replaced by any of real, |ong real. integer

<sinpl e | ogical expression> = <logical. element> | <relatior>
<l ogi cal element> ::= <logical term> | <logical element> or
<l ogi cal term>
<l ogi cal term> ::= <logical factor> | <l ogical term> and
<l ogical factor>
<logical factor> ::= <logical primary3 | = <logical primary>
<logical. primary> = <logical value> | <logical varisble> |

<l ogical function designator3 |
(<l ogi cal expression>)
<relatior> 1= <sinple T, expression> <equality operator>
‘ <sinple Tl expressior> I <logical element>
<equality operator-2 <l ogical elenment>

<sinple reference expression> is
<record class identifier> |
<sinple 7, expression> <relational operator>
<simple T, expression>
<relational operator> ::=<|<=|>=]|>
<equality operator> ::= = |==
6.4.2. Semantics

A logical expressionis a rule for conputing alogical value.

6. EXPRESSI ONS

6.4.2.1. The relational operators represent algebraic ordering for
arithmetic arguments and EBCDIC ordering for string arguments. |f two
strings of unequal length are conpared, the shorter string is first
extended to the right with blanks. The relational operators yield the
logical value true if the relation is satisfied for the values of the
two operands; false otherwise. Two references are equal if and only if
they are both null or both refer to the sane record. The operator |_s_
yields the logical value true if the reference expression designates a

record of the indicated record class; false otherwise. The reference

value null fails to designate a record of any record class.

6.4.2.2. The operators - (not), and, and or, operating on |ogical

values, are defined by the follow ng equival ences:

- X if X_then false else true
Xand Y if Xthen Y else false
XoryY if X_then true elsg Y

6.4.3. Exanples

Por Q

(X<Y) and (Y < 2)
YOUNGESTOFFSPRI NG (JACK) — = nul |
FATHER (JILL) is PERSON

6.5. Bit Expressions

6.5.1. Syntax

<sinple bit expression> ::= <bit term> | <sinple bit expression>
or <bit term>

<bit term> : := <bit factor> | <bit term> and <vit factor>

<bit ractor> ::= <bit secondary> | - <bit secondary>

<bit secondary> ::= <bit primary> | <bit secondary> shl_
<integer primary> | <bit secondary> shr_
<integer primry>

<bit primary> ::= <bit sequence> | <bit variable> | <bit

function designator> | (<bit expression>)
38

6. EXPRESSI ONS

6.5.2. Semantics
A bit expression is a rule for computing a bit sequence.
The operators and, or, and - produce. a result of type bits, every

bit being dependent on the corresponding bit(s) in the operand(s) as

foll ows:
X Y . — X Xifld_Y XP_Z_[‘-Y
i
0 0 1 0 0
0 1 1 0 1
1 0 0 0 1
1 1 0 1 1

The operators shl and shr denote the shifting operation to the
left and to the right respectively by the number of bit positions
indicated by the absolute value of the integer primary. Vacated bit

positions to the right or left respectively are assigned the bit

val ue 0.

6.5.3. Exanpl es

Gand Hor #38
Gand - (Hor § shr 8

6.6. String Expressions

- 6.6.1. Synt ax

<sinple string expression> ::= <string primry>
<string primary> ::= <string> | <string variable> | <string
function designator> | (<string expression>)
<substring designator> ::= <sinple string variabl e>
(<i nteger expressior># <integer nunber>)

(The § stands for the vertical bar character |)

39

6. EXPRESSI ONS

6.6.2. Semantics

A string expression is a rule for. conputing a string (sequence of

characters).

6.6.2.1. A substring designator denotes a sequence of characters of
the string designated by the string variable. The integer expression
preceding the W selects the starting character of the sequence. The
val ue of the expression indicates the position in the string variable.
The val ue nust be greater than or equal to 0 and | ess than the declared
length of the string variable. The first character of the string has
position 0. The integer nunber following the § indicates the |ength

of the selected sequence and is the length of the string expression.

The sum of the integer. expression and the integer nunber nust be |ess

than or equal to the declared length of the string variable.

6.6.3. Exanmple

string (10) S
s (4U3)
S (1+JW1l)

string (10) array T (l::m,2::n);
T (4,6) (38 5)

€.'7. Reference EXpressions

6.7.1. Syntax

-<sinpl e reference expression> ::= <null reference> | <reference
variabl e> | <reference function
desi gnat or > | <record desi gnator> |

(<reference expression>)

40

6. EXPRESSI ONS

<record designator> ::= <record class identifier> | <record
class identifier> (<expression |ist>)
<expression list> ::= < expression> | <expression |ist>

< expression>

6.7.2. Semantics

A reference expression is a rule for computing.-a reference to a
record.

The value of a record designator is the reference to a newy
created record belonging to the designated record class. If the
record designator contains an expression list, then the values of the
expressions are assigned to the fields of the new record. The entries

in the expression list are taken in the same order as the fields in

the record class declaration, and the sinple types of the expressions nust

be assignment conpatible with the sinple types of the record fields

(cf. 7.2.2).

6.7.3. Exanple

PERSON ("CARCL", 0, false, JACK, JILL, null, YOUNGESTOFFSPRI NG
(JACK))

6.8. Precedence of Operators

The syntax of 6.3.1.,6.4.1., and 651 inplies the follow ng
hi erarchy of operator precedences:

long, short, abs
shl, shr, **

-

*, /, div, rem and

*, = OT

<; <=, =, =, >=, >, is

41

T. STATEMENTS

Exanpl e
A=BandC is equivalent to A= (B and Q

7. STATEMENTS

A statenent denotes a unit of action. By the execution of a
statenment is nmeant the performance of this unit of action, which nay
consi st of smaller units of action such as the eval uation of expressions

or the execution of other statenents.

Syntax:
<program> ::= <statenent>. |
<proper procedure declaration>. |
<7 function procedure declaration>.
<statement> @@= <simple statenent> | <iterative statenent> |
tif statement> | <case statenent>
<simple Statement> ::= <block> | <T assigmment sStatenent> |

<enpty> | <procedure statenent> |
<goto st atenent >

(NOte: the terminating period is optional.)

7.1. Blocks

7.1.1. syntax

& ock> ::= & ock body> <statenent> end

<bl ock body> ::= <block head> | <%lock body> <statenent>; |
<block body> <label definition>

<block head> ::= He gl ock head> <declaration> ;

<label definition> ::= <identifier> :

7.1.2. Semantics
tvery bl ock introduces a new | evel of nonenclature. This is

real i zed by execution of the block in the fol I owi ng steps:

4o

7.

STATEMENTS

Step 1. If an identifier, say A defined in the block head or
in a label definition of the block body is already defined at
the place fromwhich the block is entered, then every occurrence
of that identifier, A wthin the block except for occurrence in
array bound expressions is systematically replaced by another
identifier, say APRIME, which is defined neither within the

bl ock nor at the place from which the block is entered.

Step 2. If the declarations of the block contain array bound

expressions, then these expressions are eval uated.

Step 3. Execution of the statenents contained in the block body
begins with the execution of the first statenent follow ng the
bl ock head.
After execution of the last statement of the block body (unless
it is a goto statenment) a block exit occurs, and the statement follow
ing the entire block is executed.

7.1.3. 'Exanple
begin real U

U:i=X; X:=Y: Y:=2z;, 2z :=uU
end

7.2. Assignnent Statenents

7.2.1. syntax
In the following rules the synbols To and Tl must be replaced by
words as indicated in Section 1, subject to the restriction that the

type Tl i's assignnent compatible With the type TO as defined in 7.2.2,

43

T« STATEMENTS

<, assi gnnent statement> ::= Ts left part> <, expressi on>
= left part> <, assi gnment
st at enent >

< left part> ::= < variable> :=

7.2.2. Semantics

The execution of a sinple assignment statement

I, assignment statement> ::= <J, left part> I, expressi on>
causes the assignment of the value of the expression to the variable.
If a shorter string is to be assigned to a longer one, the shorter
string is first extended to the right with blanks until the lengths are
equal. In a nmultiple assignnent statenent

(<TO assignment statement> ::= <TO left part> <Il assi gnnent
st at enent >)

the assignnents are perfornmed fromright to left. For each left part
variable, the sinple type of the expression or assignnment variable inmediately
to the right nust be assignment conpatible with the sinple type of that
vari abl e.
A sinple type T, is said to be assignnent conpatible with a sinple
type T, i f either
(1) the two types are identical (except that if 7y and T, are
string, the length of the T, variable nust be greater than
or equal to the length of the Tl expression or assignnent), or
(2) 7. 1is real or Jong real, and 7, is integer, real or long

0
real or

(3) Ty is conplex or long conplex, and T, is integer, real

long real, conplex or long conplex.

In the case of a reference, the reference to be assigned nmust refer
to a record of one of the classes specified by the record class identifiers

associated with the reference variable in its declaration
44

T. STATEMENTS

7.2.3. Exanples

Z := AGE(JACK) := 28
X :=Y + abs 2
C:=I+X+C
Pi=X—=Y

Procedure Statements

7.3.1. Syntax

<procedure statement> ::= <procedure identifier> | <procedure
identifier> (actual parameter [ist>)
<actual paraneter |ist> ::= <actual paraneter> | <actual
paranmeter list> , <actual paraneter>
<actual paranmeter> ::= <J expression> | <statement> | <T subarray
desi gnator> | <procedure identifier> |
< function identifier>
<T subarray designator> ::= < array identifier> | < array
identifier> (<subarray designator
list>)
<subarray designator |ist> ::= <subscript> | * | <subarray
desi gnat or 1list>,<subscript> |
<subarray designator |ist> *

7.3.2. Semantics

The execution of a procedure statenent is equivalent to a process

performed in the follow ng steps:

Step 1. A copy is made of the body of the proper procedure whose
procedure identifier is given by the procedure statement, and of
the actual paraneters of the latter. The procedure statement is

repl aced by the copy' of the procedure body.

Step 2. If the procedure body is a block, then a systematic

change of identifiers in its copy is perforned as specified by

45

T. STATEMENTS

step 1 of 7.1.2.

Step 3. The copies of the actual paraneters are treated in an
undefined order as follows: If the copy is an expression
different froma variable, then it is enclosed by a pair of
parentheses, or if it is a statenent it is enclosed by the synbols

begi n and end.

Step 4. In the copy of the procedure body every occurrence of an
identifier identifying a formal paraneter is replaced by the copy
of the corresponding actual paraneter (cf. 7.3.2.1.). In order
for the process to be defined, these replacements nust lead to

correct ALGOL W expressions and statenents

Step 5. The copy of the procedure body, nodified as indicated in

steps 2-4, is'executed.

7.3.2.1. Actual-formal correspondence. The correspondence between
the actual parameters and the formal paraneters is established as
follows: The actual parameter |ist of the procedure statenent (or
of the function designator) nust have the sanme nunber of entries as
the formal paraneter list of the procedure declaration heading. The

correspondence is obtained by taking the entries of these two lists

in the same order.

7.5.2.2. Formal specifications. If a formal parameter is specified by
value, then the sinple type of the actual paraneter nust be assignment
conpatible with the formal type. If it is specified as result, then the
formal type nust be assignnment conpatible with the sinple type of the

actual parameter. If it is specified by value result, both the above

46

T. STATEMENTS

conditions nust be satisfied. In all other cases, the types nust be
identical. If an actual parameter is a statenent, then the specification

of its corresponding formal paraneter nust be procedure.

7.3.2.3. Subarray designators. A conplete array may be passed to a
procedure by specifying the name of the array if the nunmber of subscripts
of the actual paraneter equals the nunber of subscripts of the
corresponding formal paraneter. If the actual array paraneter has
more subscripts than the corresponding formal paraneter, enough subscripts
must be specified by integer expressions so that the number of *'s appearing
in the subarray designator equals the nunber of subscripts of the
corresponding formal paraneter. The subscript positions of the formal
array designator are matched with the positions with *'s in the subarray
designator in the order they appear.

7.3.3. Exanples

INCREMENT
CoPY (A, BB M N
| NNERPRODUCT (I P, N, A(I,*), B(%,J))

7 . @ot0 Statnents

7.4.1. Syntax

<goto sStatement> :: goto <label identifier> | go to <iabel

identifier>

7.4.2. Semantics
An identifier is called a label identifier if it stands as a

| abel .

bt

T. STATEMENTS

A goto statement determines that execution of the text be continued
after the label definition of the label identifier. The identification

of that |abel definition is acconplished in the follow ng steps:

Step 1. If sone label definition within the nost recently activated
but not yet termnated bl ock contains the |abel identifier, then

this is the designated |abel definition. Qherw se,

Step 2. The execution of that block is considered as terninated

and Step 1 is taken as specified above.

75.1f Statenents

7.5.1. syntax

<if statement> ::= <if clause> <statenent> | <if cl ause>
<simple st atenent> el se <statement>
<if clause> ::= if <logical expression> then

7.5.2. Semantics
The execution of if statements causes certain statenents to be
executed or skipped depending on the val ues of specified |ogical

expressions. An if statenent of the form
<if clause> <statement> :
is executed in the follow ng steps:
Step 1. The logical expression in the if clause is evaluated.

Step 2. If the result of Step 1 is true, then the statenent
following the if clause is executed. Qherwise step 2 causes

no action to be taken at all.

48

7. STATEMENTS

An if statement of the form

<if clause> <sinple statenent> gl se <statenent>

is executed in the followng steps:
Step 1. The logical expressionin the if clause is evaluated.

Step 2. If the result of step 1is true, then the sinple statenent
followng the if clause is executed. Qtherw se the statement

following else is executed.

7.5.3. Exanples

if X =Y then goto L
if X <Ythen U .= Xelse if Yy <zthen U:=YelseV:=7z

7.5a Assert Statenments

7.5a.1 Syntax

<assert statenent> ::= assert <logical expr essi on>

7.5a.2 Semantics
The assert statement is equivalent to the if statenent:
if —(<logical expression>) then endexecution
where "endexecution" signifies a procedure which termnates the execution
-of an ALGOL Wprogram The assert statement can be used both as a

debuggi ng ai d (asserting conditions which should be true, but may not

be if a bug exists), and as a program docunentation aid.

k9

7.6.

Case Statenments

7.6.1. Syntax

<case statenent> ::
[ist> ::

<st at ement
<case cl ause> ::=

7.6.2. Semantics

T. STATEMENTS

<case clause> begin <statement |ist> end
<statement> | <statement |ist> ; <statement>
case <integer- expression> Of

The execution of a case statement proceeds in the follow ng steps:

Step 1.

Step 2.

Is equal to the value obtained in Step 1 is executed.

that the case statement be defined,

The st atenent whose ordi nal

The expression of the case clause is eval uated.

nunber in the statement |ist
[n order

the current value of the

expression in the case clause nust be the ordinal nunber of sone

statenent of the statenent

7.6.3. Exanples

case | of
begin X :=x +Y,

=Y + z;

N <
i

Z + X
end
case j of

begin H1) :=
begin H(I-1) :

begin HI-1) :=

begi n H(H(I-1)) : =

end

-H(T);

list.
=HI-1) + H1); | :=1-1 end;
H(1-1) *H(1); 1 oc= 1-1 end,
H1l); I :=1-2 end

50

7. STATEMENTS

7.7.

[terative Statenents

7.7.1. syntax

<iterative statement> ::= <for clause> <statenent> | <while
cl ause> <st at enent >

<for clause> ::= for <identifier> := <initial value>
step <increment> until <limit> do | for
<identifier> := tinitial value> until <limit>
do | for <identifier> := <for list> do

<for list> ::= <integer expression> | <for list> , <integer

expressi on>

<initial value> ::= <integer expression>

<increment> .= <integer expression>

<limit> ::= <integer expression>

<while clause> ::= while <logical expression> do

7.7.2. Semantics

The iterative statenent serves to express that a statenent be

Exanpl e FOR st at ement | Values | takes on
for I:=1 step 2 until 10 do 1, 32, 5,7, 9

for T:=1 step 2 until 1 da 1

for I:=1 step 2 until -10 do none

for I:=1 step -2 until 10 do none

for I:=1 step -2 until 1 do 1

for I:=1 step -2 until -10 do 1, -1, -3, -5, -7, -9

for I:=1 step O until 10 do 1L 11 1 1
for 1:=1 step O until 1 do 1 1,1 1 1
for T:=1 step O until -10 do none

Tabl e of results for various FOR statenents.

51

T+ STATEMENTS

execut ed repeatedly depending on certain conditions specified by a
for clause or a while clause. The statenent following the for clause
or the while clause always acts as a block, whether it has t form of
a block or not. The value of the control identifier (the id fier
folgoving for) cannot be changed by assignment within the cortrol | ed
stat ement .

(a) An iterative statenent of the form

for <identifier> := E step E2 until E3 do <statenent>

is exactly equivalent to the block

begin <statement-O>;, <statement-1>. . . ; <statement-I>;
., <statenent-N> end

inthe I statement every occurrence of the control identifier
is replaced by the value of the expression (E + | x E2).

The index N of the last statement is determ ned by
N < (E3-E1) / E2 < M1, If N< O, then it is understood that
the sequence is enpty. The expressions El, E2, and E3are
eval uated exactly once, nanely before execution of <statenent-O.

Therefore they can not depend on the control identifier.
(b) An iterative statenent of the form

for <identifier> := E until E3do <statenent>
is exactly equivalent to the iterative statenent

for <identifier> := E step 1 until E3 do <statement>

(c) An iterative statenent of the form
for <identifier>:=H, E2, . . ., EN do <statement>

is exactly equival ent to the block

52

STATEMENTS

begin <statement-D; <statement-2> . . . <statement-1> ;.
<statenent-N> end

when in the |t statement every occurrence of the control identifier

is replaced by the value of the expression El.

(d) An iterative statenent of the form
while E do <statement>

is exactly equivalent to
begi n
L: if E then
begin <statement> ; goto L end

end

-~

where it is understood that L represents an identifier which is not

defined at the place from which the while statement is entered.

7.7.3. Exanples

for V ;= 1 step 1 until N-1do 8 := S + A(U,V)

while (5 > 0) _and (ATY(J) —~= S) doJ:=)1

for 1 :=x, x +1, x + 3,x+7doP(I)

7.8. Standard Procedures

Standard procedures are provided in ALGOL Wfor the purpose of
communi cation with the input/output system These standard procedures
differ from explicitly declared procedures in that the number and type

of actual parameters need not be identical in every procedure statenent

in which the standard procedure identifier appears. |0 the follow ng

descriptions, each Ts is to be replaced by any one of

53

T. STATEMENTS

i nt eger string (<integer nunber>)
real | ogi cal

long real ‘ bits

complex

dlongnp | e x

7.8.1. The Input/CQutput System

ALIGOL Woprovides a single legible input streamand a single legible
output stream These streams are conceived as sequences of records, each
record consisting of a character sequence of fixed length. The input
stream has the |ogical properties of a sequence of cards in a card reader
records consist of 80characters. The output stream has the |ogica
properties of a sequence of lines on a line printer; records consi st
of 132 characters, and the records are grouped into |ogical pages
Each page consists of not |less than one nor nore than 601 i nes.

Input records may be transmitted as strings wthout analysis.
Alternatively, it is possible to invoke a procedure which will scan the
sequence of records for data items to be interpreted as numbers, bit
sequences, strings, or logical values. |f such analysis is specified
data itens may be reference denotations of the corresponding constants
(cf. Section 4). In addition, the following forms of arithmetic expressions
are acceptable data itens, and the corresponding sinple types are those

determned by the rules for expressions (cf. 6.3)

(1) <sign> < nunber>
where : T is one of integer, real, long real, conplex, long

conpl ex

54

STATEMENTS

(2) <, nunber> <sign> <7, nunber>

<si gn> s nunber > <si gn> <7, nunber >

where : 7o is one of integer, real, long real, and

7 is one of conplex, |ong conplex.

Data itenms are separated by one or nore blanks. Scanning for data itens
initially begins with the first character of the input stream after
the initial scan, it normally begins with the character follow ng the
one which terninated the nost recent previous scan. Leading blanks are
ignored. The scan is termnated by the first blank follow ng the data
item In the process, newrecords are fetched as necessary; character
position 800of one record is considered to be imediately followed by
character position 1 of the next record. There exist procedures to
cause the scanning process to begin with the first character of a record;
i f scanning would not otherwise start there, a new record is fetched.

Qutput itenms are assenbled into records by an editing procedure.

Itens are automatically converted to character sequences and pl aced

in fields according to the sinple type of each item as described bel ow

Sinple Type Field Description

I nt eger right justified in a field containing
t he nunmber of characters specified by
the current value of INTFIELDSIZE
(initialized to 14, cf. 85)and fol | owed
by 2 bl anks

real right justified in a field of 14 characters
and followed by 2 blanks

95

T STATEMENTS

long real right justified in a field of 22 characters
and followed by 2 blanks

conpl ex two adjacent real fields

| ong conpl ex two adjacent long real fields

| ogi cal right justified in a field of 6characters
followed by 2 blanks

string placed in a field exactly the length of
the string

bits sane as real

The first field transmtted begins the output stream thereafter, each
field is normally placed imediately following the nmost recent previously

transmtted field. |f, however, the field corresponding to an item

cannot be placed entirely within a non-enpty record, that itemis made the

first field of the next record. |n addition, there exist procedures to
cause the field corresponding to an itemto begin a new record. pacp

page group is automatically termnated after 60 records; procedures

are provided for causing earlier termnation.

7.8.2. Read Statenents

Inplicit declaration headings:

procedur e READ (Il resul t Xl" o1 T result Xn)3
procedur e READON (:l’l result X;5. . . ; T result X y;
—— n n ’
(where n > = 1)

Both READ and READON designate free field input procedures. | nput
records are scanned as described in 7.8.1. Values on input records are

read, matched with the variables of the actual parameter list in order

of appearance, and assigned to the corresponding variables. The s mpl e

56

7.

STATEMENTS

type of each data item nmust be assignnent conpatible with the sinple

type of the corresponding variable. For each READ statenent, scanning
for the first data itemis caused to begin with the first character of
a record;: for a READON statenent, Sscanni hg continues from the previous

point of termnation as determned by prior use of READ, READON, or

IOCONTROL (cf. 7.8.1.).

Inplicit declaration heading:

procedur e READCARD (string(80) result Xioooooo Xn);
(where n > = 1)

READCARD designates a procedure transmtting 80character input

records Wwithout an\al ysis. For each variable of the actual paraneter list,

the scanning process is set to begin at the first character of a record

(by fetching a new record if necessary), all 80characters of that record
are assigned to the corresponding string variable, and subsequent input

scanning is set to begin at the first character of the next sequential

record.
7.8.3. Wite Statenents

Inplicit declaration headings:

procedure WRI TE (:rl value X;5. . . ; T value Xn);
procedur e WRITEON (Tl value X3 . . . ; 7 value 'Xn);
(where n > = 1)

VWRI TE and WRITEON designate output procedures with automatic format
conversion. Values of expressions of the actual paraneter |ist are converted
to character fields which are assenbled into output records in order of
appearance (cf. 7.8.1). For each WRITE statenment, the field correspondi ng
to the first value is caused to begin an output record; for a WRITEON

statement, assenbly continues from the previous point of termnation.

57

7. STATEMENTS
7.8.4. Control Statenents.

Inplicit declaration heading:

procedure | OCONTRCL (integer val ue xl,...,x)

n

(where n > = 1)
| OCONTROL desi gnates a procedure which affects the state of the
i nput/output system Argunent val‘ues with defined effect are listed
bel ow, other values currently have no effect but are explicitly nade

avai l abl e for local use or future expansion.

Value Action (cf. 7.8.1)

1 Subsequent input scanning is set to begin with the first
character of a record. Does nothing if already
positioned at the first character of a record.

2 Subsequent output assembly is set to begin with the
first character of a record. Does nothing if already
positioned at the first character of a record.

3 Li ke IOCONTROL(2), except that the new record is al so
caused to begin a new output page. Does nothing if already
positioned at the first character at the top of a page.

4 Subsequent automatic page ejects on the printed output
are suppressed, thus allowi ng nore than 60 records on
a page. This suppresses only the automatic page eject
after 60 records; IOCONTROL(3) still works. (Note that
sone operating systems also have a feature to force
page ejects after 60 records.i/

5 Subsequent automatic page ejects on the printed output
are allowed; undoes IOCONTROL(L). While the autonmatic
page eject is suppressed, page and |line counts are still
mai nt ai ned based on €0 records per page, SO a program nmay
still be cut off for exceeding the page estimate. Al so,
after an IOCONTROL(5), the first automatic page eject may
occur after 1 to 60 nore records, unless the counters are
re-synchroni zed at that point via IOCONTROL(3).

72 Subsequent use of READ and READON are to use only the first
72 characters of a record; the last eight are ignored.
READCARD still reads all 80 characters.

80 Subsequent use of READ and READON are to use all 80

characters of a record.

Y At Stanford, a /‘* PRINT EJECT=NO card nust be included next to the

STATEMENTS

7.8.5. Exanples

READ (X, A(1))

READCARD (S, LINE(10|80))
WRI TE ("AVERACE =", SUMN)
WRITEON (X(1,J))
IOCONTROL (2)

7.8.6. TRACE standard procedure

The number of times each source statement is traced by the
debugging facilities (see $DEBUG in the Deck Setup section) can be
modi fied by the standard procedure TRACE.

Inplicit declaration heading:

procedure TRACE (integer value N);
comment changes the upper bound for statenent tracing:
if N> 0 then N becones the bound,
if N
if N

0 then tracing is suspended,
0 then the $DEBUG card value (m) becones the bound;

AN

TRACE has no effect unless the $DEBUG option digit nis 3 or 4.

X TRUNCATE(X) ENTIER(X) ROUND(X)
2.3 2 2 2
2.5 2 2 3
2.7 2 2 3

-2.3 -2 -3 -2
-2.5 -2 -3 -3
-2.7 -2 -3 -3

Tabl e of val ues for TRUNCATE, ENTIER, and ROUND

59

8. STANDARD FUNCTI ONS

8. STANDARD FUNCTI ONS AND PREDECLARED | DENTI FI ERS
The ALGOL W environnent includes declarations and initialization of

certain procedures and variabl es which supplenent the |anguage facilities

previously described. Such declarations and initialization are considered

to be included in a block which encloses each ALGOL Wprogram (with

termnating period elinmnated). The corresponding identifiers are said

to be predeclared.

8.1..Standard Transfer F unctions

Certain functions for conversion of values fromone sinple type
to another are provided. These functions are predeclared; the
corresponding inplicit declaration headings are |isted bel ow

i nteger procedure TRUNCATE (real value X);
comment the integer i such that
lip < =lxl<lil + land i*X > =0
I nteger procedure ENTIER (real value X);

comment the integer i such that
i <= X<i + 1
i nteger procedure ROUND (real value X);
coment the value of the integer expression
if X < O then TRUNCATE(X-0.5) el se TRUNCATE(X+0.5) ;
i nteger procedure EXPONENT (real value X);
coomment 0 if X = 0, otherwise the largest integer i such that
i< = 1og (IX]) + 1.
This function obtains the exponent used in the $/360
representation of the real nunber;
real procedure ROUNDTOREAL (long real value X);
comment the properly rounded val ue of X ;
real procedure REALPART (conplex val ue Z);
comment the real conponent of 2z ;
| ong real procedure LONGRFALPART (long conplex value z);
real procedure | MAGPART (conplex value Z);
comment the imaginary conponent of Z ;

long real procedure LONGIMAGPART (|ong conplex value 2);

€0

8. STANDARD FUNCTI ONS

conpl ex procedure IMAG (real value X);

conment the conplex nunber 0 + Xi ;

| ong conpl ex procedure LONG MAG (long real value X);

| ogi cal procedure ODD (integer value N);

conment the |ogical value

Nrem2 =1;

bits procedure BITSTRING (integer value N);

conment two's conplenent representation of N ;

i nteger procedure NUMBER (bits value X);

conmment integer with two's conplenment representation X ;

i nteger procedure DECCODE (string(l) value S);

conment nuneric code for the character S (cf. Appendix 1) ;

string(1) procedure CODE (integer value N);

comment character with nuneric code (cf. Appendix 1) given by

abs (N rem 256) ;

In the following comments, the significance of characters in the prototype

formats is as follows:

D

+ @ > m

u

decimal digit in a mantissa or integer
decimal digit in an exponent

hexadecimal digit in a mantissa or integer
hexadecimal digit in an exponent

sign (blank for positive mantissa or integer)
bl ank

. Each exponent is unbiased. Decinal exponents represent powers of 10;

hexadeci mal exponents represent powers of 16.Each mantissa (except 0)

represents a normalized fraction less than one. |eading zeroes are not

suppr essed.

61

<

8. STANDARD FUNCTI ONS

string(12) procedure BASE10 (real value X);
conment string encoding of X with format
+EE+DDDDDDD ;
string(12) procedure BASE16 (real value X);
comrent string encoding of X with format
o FBBHAAAAAA
string(20) procedure LONGBASELO (long real value X);
coment string encoding of X with fornat
s+ EE+DDDDDDDDDDDDDDD |
string(20) procedure IONGBASE16 (long real value X);
coment string encoding of X with fornat
P BBHAAAAAAAAAAAAAA
string(12) procedure INTBASELO (integer value N);
corment\string encoding of N with format
;FDDDDDDDDDD
string(12) procedure INTBASE16 (integer value N);
coment unsigned, two's conplenment string encoding of N with format

o AAAAAAAA 4

8.2. Standard Functions of Analysis

The followi ng functions of analysis are provided in the system
environnent. In some cases, they are partial functions; action for
arguments outside of the allowed domain is described in 85 These
functions are predeclared; the corresponding inplicit declaration headings

are |isted bel ow

real procedure SQRT (real value X);
conment the positive square root of X
domain : X > =0 ;
long real procedure LONGSQRT (long real value X);
conment the positive square root of X
domain : X > =0 ;

62

procedure EXP (real value X);

domain : X < 174.67 ;
real procedure LONGEXP (long real value X);

domain : X < 174.67 ;
procedure IN (real value X);

comrent |ogarithm of X to the base e,

real procedure LONGLN {long real value X);

conment |ogarithm of X to the base e,

procedure LOG (real value X);

comment logarithmof X to the base 10,

real Procedure LONGLOG (long real value X);

conment |ogarithm of X to the base 10,

procedure SIN (real value X);

conment sine of X (radians),
domain : -823550 < x < 823550 ;
real Procedure IONGSIN (long real value X);

conment sine of X (radians),
domain @ -3.537'+15 < X <3.537'+15 ;
procedure COS (real value X);

comrent cosine of X (radians)
domain : -823550 < x < 823550 ;

r eal
conment e ** X ,
low
comment e ** X ,
r eal
domain : X>0 ;
| ong
domain : X >0 ;
r eal
domain : X>0 ;
long
domain : X>0 ;
r eal
| ong
real
long

real procedure LONGCOS (long real value X);

conment cosine of X (radians),
domain : -3.537'+15 < X < 3.537'+15 ;

P

Py
L%y

8. STANDARD FUNCTI ONS

real procedure ARCTAN (real value X);
conment arc-tangent (radians) of X
range : -m/2 < ARCTAN(X) < n/2 ;
long real procedure LONGARCTAN (long real. value X);
comment arctangent (radians) of X,
range . -m/2 < LONGARCTAN(X)} <n/2 ;

8.3. FHumcti on

The AIGOL W environment includes a clock which measures el apsed
tine since the beginning of program execution. The resolution of that
clock is 1/60 second. A predeclared function is provided for reading
the clock.

i nteger procedure TIME (integer value N);

comment=" Argunent Result Units
- time of day
-1 seconds/ 60
- el apsed execution time -
minutes/100
1 seconds/ 60
2 seconds/ 38400

The result for any other argument is not defined;

8.4. Predecl ared Vari abl es

The following variables are to be considered declared and initialized
by assignment in the conceptual block enclosing the entire ALGOL W program
The values indicated for real and long real quantities are to be understood
as decimal approximtions to the actual machine-format values provided.

| nt eger INTFIELDSIZE;

comrent initialized to 1k ,
controls output field size for integers (cf. 7.8.1);
i nt eger MAXI NTEGER,

comment initialized to 2147483647 ,
the maxi num positive integer allowed by the inplenentation;

64

8. STANDARD FUNCTI ONS

real EPSILON\
comment initialized to 9.536743'-07 ,
the largest positive real nunber ¢ provided by the
i mpl enentation such t hat
l1+e=1;
long real LONGEPSILON
cooment initialized to 2.22044604925031"-16L
the largest positive long real nunber e provided by

the inplenmentation such that

l+e=13
| ong real MAXRFAL;
conment initialized to 7.23700557733226'+75L |
the largest positive long real nunber provided by the
i mpl enent ati on;
long real Pl;

comment initialized to 3.14159265358979L ;

8.5. Exceptional Conditions

The facilities described below are provided in AIGOL Wto all ow
detection and control of certain exceptional conditions arising in
the evaluation of arithnmetic expressions and standard functions.

Inplicit declarations:

record EXCEPTION (logical XCPNOTED, integer XCPLIMT, XCPACTION
| ogi cal XCPMARK; string(64) XCPVBG),
reference (EXCEPTION)
OVFL, UNFL, DI VZERQ
| NTOVFL, | NTDI VZERQ
SQRTERR, EXPERR, INIOGERR, SI NCOSERR ;

65

i

8. STANDARD FUNCTI ONS

Associ ated with each exceptional condition which can be processed
is a predeclared reference variable to which references to records of
the class EXCEPTION can be assigned. Fields of such records control the

processing of exceptions. The associ afi on between conditions and

reference variables is as follows:

Ref erence Variable Condi tions

OVFL real, long real, conplex, |ong
compl ex (exponent) overflow

UNFL real, long real, conplex, l|ong
conpl ex (exponent) underflow

Dl VZERO real, long real, conplex, l|ong

conpl ex division by zero

| NTOVFL i nteger overflow

| NTDI VZERO integer division by zero

SQRTERR negative argunent for SQRT, LONGSQRT

EXPERR argument of EXP, IONGEXP out of
domain (cf. 8.2.)

LNLOGERR argunent of LN, LOG LONGIN,
IONGLOG out of dommin (cf. 8.2.)

SI NCOSERR argunent of SIN, COS, LONGSIN,

LONGOOS out of domain (cf. 8.2.)

Wien one of the conditions |isted above is detected, the corresponding
reference variable is interrogated, and one of the alternatives described
below IS chosen.

[f' the value of the reference variable interrogated is null, the
condition IS ignored and execution of the AIGOL W program conti nues.

Insuch situations, a value of 0 is returned as the value of a standard

66

8. STANDARD FUNCTI ONS

function. For other conditions the result is that provided by the
underlying |BM Systent 360 hardwareg/. In determning such a result, it
is to be noted that in those cases i#t which the detection of exceptional
conditions can be inhibited at the hardware |evel, nanely integer overflow
and exponent underflow, detection is so inhibited when the corresponding
reference is NULL.

If the value of the reference variable interrogated is not NULL,
the fields of the record designated by that reference are interrogated,

and processing action is that described by the al gorithm given below in

the formof an'extended ALGoL Wprocedure. Identifiers in |ower case

represent quantities which transcend the AIGOL WIanguage; they are
expl ai ned subsequent!y.

procedur e PROCESSEXCEPTI ON (reference(EXCEPTION) val ue CONDI TI ON);
beai n
XCPNOTED(CONDI TION) @ = true;
XCPLIMIT(CONDITION) := XCPLIMT(CONDITION) - 1;
if (XCPLIMIT(CONDITION) < 0) or XCPMARK(CONDITION) then
WRITE(" %% ERROR NEAR COORDI NATE nnnn -");
. if XCPLIMIT(CONDITION) < O then endexecution el se
if integercondition then
default el se
i f XCPACTI ON(CONDI TI ON)
if XCPACTI ON(CONDI TI ON)
def aul t
end PROCESSEXCEPTI ON

resul t ant

1}

resul t ant

il

1 then adjustment else
2 then QL else

This procedure is invoked with the value of the reference variable
appropriate to the condition as actual paraneter. The significance of

the special identifiers used is as follows:

?/FBM System/360 Principles of Operation, |BM Systens Library, Form a22-6821

67

nnnn

endexecution

i ntegercondition

def aul t

resul t ant

adj ust ment

a. STANDARD FUNCTI ONS

approximate coordinate of the source code

whi ch was bei ng executed when the exceptiona
condition was detected

procedure to term nate execution of the ALGOL W
program

| ogi cal value which is true if, and only if,

the condition being processed is integer overflow
or integer division by zero

result of the operation or function provided

by the AIGOL Wsystem prior to invocation of

the exception processing procedure; this is
defined by the hardwareé/
operations and is the value 0 for standard

for arithmetic

functions

value to be returned as the result of the
arithmetic evaluation or standard function

i nvocation

adjusted result of the operation according to
the follow ng table

Condi tion Adj ust ment
exponent overflow, if default < 0 then
division by zero -MAXRFAL el se MAXREAL
exponent underflow oL

argument X out of domain for

SQRT, LONGSQRT SQRT (abs X), LONGSQRT(abs X)
EXP, LONGEXP MAXREAL

LN, IONGIN -MAXREAL

LOG LONGLOG -MAXREAL

SI'N, TONGSIN oL

CO5, LONGCCS OL

2/ | BM 8yst em/300 Principles of Operation, | BM Systems Library, Form A22-6321

68

8. STANDARD FUNCTI ONS

The reference variable UNFL is initialized by the systemto NULL.
Al'l other reference variables listed above are initialized to references
to a special record which is accessible only by the system Interrogation
of this record by the procedure described above has the effect of causing
the AIGOL Wprogramto be termnated with a message indicating the type
of exception. Any other attenpt to access any field of this record will

result in a reference error.

condi tion XCPACTION£L or 2 XCPACTION=1 XCPACTION=2 Ref er ence=NULL
OVFL _"exponent 128 + MAXREAL 0 exponent 128
too small too small
UNFL exponent 128 0 0 0
too |arge
Dl VZERO di vi dend + MAXREAL 0 di vi dend
INTOVFL true result true result true result true result
+ 2%x%32 + 2¥%32 + 2¥¥32 + 2%%32
| NTDI VZERO | di vi dend di vi dend di vi dend di vi dend
SQRTERR 0 sqrt(abs X) 0 0
EXPERR 0 MAXRFAL 0 0
LNLOGERR 0 -MAXREAL 0 0
SINCOSERR 0 0 0 0
Tabl e of Results for Exceptional Conditions

69

8. STANDARD FUNCTI ONS

Exanpl e:
It is desired to allow up to ten overflows, but to each time replace
the result with MAXREAL and to print a warning nessage.

The values needed for this are:

XCPNOTED FALSE this will be changed to TRUE if an overflow occurs.
XCPLIMT 10 allow up to ten overflows before being cut off.
XCPACTION 1 replace the result with +MAXREAL.

XCPMARK TRUE print a message each tine an overflow occurs.
XCPMSG "o nmessage to be printed.

The fol | ow ng assignnent statenent will establish the proper
envi ronnent :

OVFL : = EXCEPTION(FALSE, 10, 1, TRUE, "OVERFLOW FIXED UP");

70

CHARACTER CODES

APPENDI X 1 - CHARACTER ENCODI NGS

The follow ng table presents the correspondence between printable

string characters and their (EBCDIC) integer encodings.

Thi s encodi ng

establ i shes the ordering relation on characters and thus on strings.

Those characters in parentheses are not available on the line printer.

Integer codes not listed bel ow do not correspond to any established

char act er

64

74
75
76
17
78
79
80
90
91
92
93
9k
95
96
97

107

108

109

110

111,

122

123

124

125

126

127

(Also see CODE, DECCDE on page 139.)

Space 129
(£) 130

‘ 131

~ 132

133

13L

135

136

) 137
145

146

147

148

- 149
150
151
152
153
162
163
? 164
: 165
it 166
@ 167
' 168
= 169

'-R°——-+/\/\

we ~r XK €A

} = ~

V

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
(3)
(k)
(1)
(m)
(n)
(o)
(P)
(a)
(r)
(s)
(t)

193
194
195
196
197
198
199
200
201
209
210
211
212
213
214
215
216
217
226
227
228
229
230
23]
232
233

T1

— I @@ MM mogo o w >

<~ xXxs<cdwvwnmo ovozZz - X <

N

240
241
242
243
244
245
246
247
248
249

© oo N oo ol AW N = O

ALGOL W

ERROR MESSAGES

by

Richard L. Sites

T2

ERROR MESSAGES

72.1

ERROR MESSAGES

ALGOL W ERROR MESSAGES

The compiler is divided into three passes: pass 1 reads the program
lists it, and saves it in menory-in a conpressed (tokenized) form
pass 2 parses the program examning each statement to see if it is witten
properly; pass 3 generates the 360 nachine code for the program Each
pass is capable of detecting a different set of errors. (There is also
a fourth, loader, pass that on rare occasions may generate nessages.)
Errors may also occur while a conpiled programis executing; these are

called Run-Time errors.

Pass One Error Messages

A1l pass 1 error messages are of the form
ERROR | xxx NEAR COORDI NATE yyyy - nessage
yyyy corresponds to one of the coordinate numbers in the first colum on
the programlisting. |f you have nmany statenments on a card, only the
coordinate of the first one is on the programlisting. Some nessages are
only warnings, in which case the fixup action taken is indicated bel ow

The nmessages are:

1001 | NCORRECTLY FORMED DECLARATI ON
a) STRINGx) or BITS(x), where x is not a nunber.
b) STRING(O) or STRING(> 256). FIXUP: treated as STRINGI).
c) BITS (not 32).

1002 WARNI NG INCORRECT CONSTANT
a) More than 256 digits. FIXUP: treated as O.
b) A bad exponent. FIXUP: exponent treated as O.

1003 M SSI NG "END'
Final "." or /¥ card or % card encountered before an END matching
each BEGN. The coordinate indicated may be two or three nore than
the last coordinate on your listing. (Check the block nunbers in
the second col um of your programlisting.)

73

ERROR MESSAGES

1004

1005

1006

1007

1008

1009

1010

1011

1012

UNVATCHED "END' (DELETED)

An END encountered after what appeared to be the final END. Wen
possible, the innermost END is deleted. (Check the block nunmbers
in the second colum of your programlisting.)

WARNI NG M SSI NG ")
STRING(x or BITS(x with no closing ")". FIXUP: suppli ed.

WARNI NG ILLEGAL CHARACTER

A strange character accidently keypunched (or overpunched). It is
likely that the character will print as a blank, so look at your card.
The characters on a standard keypunch that are illegal except in
comments and strings are: ¢&! $ % ? @ . FIXUP: treated

as a bl ank.

WARNING M SSING FINAL "."
May occur if the programends with an un-termnated string constant
or an un-termnated conment.

WARNING | NVALI D STRING LENGTH

a) A string constant of length > 256. FIXJP. truncated to 256
characters. (You may have left out a quote.)

b) An enpty string constant (""). FIXUP: replaced with "e".

WARNING | NVALID BI TS LENGTH

a) "#" not followed by hex digits. FIXUP: replaced with #0.

b) "#" followed by nmore than 8 hex digits. FIXUP: repl aced
with #0.

MSSING " ("
REFERENCE not fol | owed by "(".

ERRORTABLE OVERFLOW
More than 50 error nessages from pass 1. The rest are |ost.

COWPI LER TABLE OVERFLOW

The programis too big to fit in nmenory during conpilation. The
following is a list of tables which could be full at this point.
[f you re-conpile with nore nenory, the starred tables will be
bi gger . ’

74

ERROR MESSAGES

* BCD PONTERS -- if all of your nanes are short (3, 4 letters)
this table may fill up before the id table.

BLOCK LIST -- 511 entries, one for each BEG N, PROCEDURE (except
for formal parameter specification), and FOR

BLOCKSTACK -- this has a fixed size of thirty entries. It wll
overflow if you have 31 BEGINs nested within each other. (The
bl ock nunmbers in the second col um of your programlisting show
how full this stack is.)

* JD TABLE -- place for the characters in your identifiers.

*

NAME TABLE -- table of attributes of all declared identifiers.

* PROGRAM TOKEN SPACE -- the internal text for the program This
is the nmost |ikely table to be full

*

REFERENCE LI ST -- information about each variable declared of
type REFERENCE

1013 WARNING | D LENGTH > 256
One of the names in your programis nuch too |ong. FIXUP: truncated
to 256 characters.

1014 WARNI NG UNEXPECTED "."
An apparently final "." not followed by 4 card or /* card, such as
in a constant with an inadvertant space: . 123 . FIXUP: treated
as a bl ank

1015 TOO MANY RECORD CLASSES
Only 15 are allowed.

1016 WARNING SEq FIELD OUT OF ORDER

a) The nuneric part of colums 73-80 was not greater than the
nurmeric part of the previous card.

b) The al phabetic part of colums 73-80 was not the same as the
al phabetic part on the previous card.

In either case, the offending card(s) is marked with #H# on the

listing. This message appears only once in any single conpilation

The coordinate specified is the coordinate on the first erroneous

card.

75

ERROR MESSAGES

1017 WARNING SEQ FI ELD CONTAINS TRASH

a) The first card of the deck did not contain a sequence nunber,
but colums 73-80 on this card are not all blank. (A statenent
may have accidently run past colum 72).

b) The first card of the deck has a non-blank sequence field
(colums 73-80), but there are no digits init.

In either case, the offending card(s) is narked with *x* on the

listing. Like 1016, this nessage appears at nost once, and the

coordinate refers to the first instance.

1018 WARNING ";" DELETED BEFORE "ELSE"
This is a comon mstake that the conpiler fixes up.

Pass Two Error Messages

AU pass 2 error nessages have the format:
ERROR 2xxx NEAR COORDI NATE yyyy - message
(FOUND NEAR "...")

yyyy corresponds to one of the coordinate nunbers in the first column
on the program listing. |f you have many statenents on a card, only the
coordinate of the first one is on the programlisting. "..."is the
program text being scanned at the time the error is detected (which nmay
be sonewhat after the actual point of error). If any pass one or pass
two error messages occur (other than warnings), then conpilation stops
at the end of pass two. Often many error nessages are generated for

what is essentially a single m stake.

5.1

ERROR MESSAGES

2001MORE THAN ONE DECLARATI ON OF "xxxx" IN TH S BLOCK
The vari abl e xxxx has been declared nore than once in the sane bl ock.

2002 "XXXX" IS UNDEFINED
The variable or |abel XXX has not been declared in the current bl ock
or in one containing it.

2003 SYNTAX ERROR
This is a "catch-all" nessage that is produced when the conpiler cannot
find anything nore neaningful to say. The current context wll point
to the part of the program being analyzed when the error was DETECTED,
but in general the real error may be nuch earlier in the program If
the current context is at or near a sem-colon and you cannot find
any errors there, try looking at the beginning of the statenment which

ends at that sem-colon. If the current context is at or near an
END, try-looking at the corresponding BEG N For exanple, if
ELSE BEGN . . . END, occurs, but not after an IF, the conpiler will
not detect the error until it reaches END

2004 | DENTI FI ER MUST BE RECORD CLASS |D
In a declaration REFERENCE(xyz) , Xyz is not the nane of a record
cl ass.

2005 M SVATCHED PARAMETER
A procedure call is passing an actual paraneter which is not of the
same type as the formal paranmeter in the procedure declaration.

2006 | NCORRECT NUMBER OF ACTUAL PARAMETERS
The number of actual parameters in a procedure call does not equal
the nunber of formal paraneters in the procedure declaration.

2007 | NCORRECT DI MENSI ON
a) The number of dinensions of an actual paraneter does not equal the
nunber of dinensions declared for the corresponding formal paraneter.
b) The wong nunber of subscripts have been used in an array el enent
ref erence.

2008 pATA AREA EXCEEDED
The data for each PROCEDURE or BEA N block with declarations is limted
to 4096 bytes. Read the suggestions for 3001.

76

ERROR MESSAGES

2009 | NCORRECT NUMBER OF FI ELDS
In creating a record, too many or too fewinitial values have been
speci fied.

2010 INCOMPATIBLE STRI NG LENGTHS
a) In STRINGL := STRIN®Z , STRIN® is longer than STRINGI.

b) In STRING3(x|y) , y is larger than the declared size of STRING3.

c) Along string has been passed to a shorter formal string paraneter.

2011 | NCOWPATI BLE REFERENCES
A reference variable refers to a wong record cl ass.

2012 BLOCKS NESTED TOO DEEPLY
Non-trivial blocks (i.e., BEG N blocks with declarations, or the
bl ocks associated with a PROCEDURE) are nested nore than ei ght deep
(including the BEGN at the start of the programj. The error is
detected early in the ninth block. Also, procedure calls nested too

deeply.
2013 WARNING: ";" SHOULD NOT FOLLOW EXPRESSI ON
In BEGN . . . expression ; END the senmi-colon is incorrect but ignored.

2014 REFERENCE MUST REFER TO RECORD CLASS
| N REFERENCE(xyz)..., Xyz is not a record class.

2015 EXPRESSION M SSI Ne | N PROCEDURE BODY
A function PROCEDURE must have its final value specified by an
expression standing alone imediately before the END.

2016 | MPROPER COVBI NATION OF TYPES
M xing inconpatible types as alternatives of a conditional or case
expressi on.

2017 RESULT PARAMETER MUST BE A VARI ABLE
In a procedure declaration, a formal paraneter is declared
RESULT xyz , but a call to that procedure has passed an expression
which is not a variable.

2018 PROPER PROCEDURE ENDS W TH AN EXPRESSI ON
A procedure which returns no val ue nonet hel ess ends with an expression.
(This sonetimes happens when a final assignnent statement has been
m s-punched A = B ,— instead of A := B.)

7

|
ERROR MESSAGES

2019 "xxxx" CANNOT FOLLOW "yyyy" HERE
There are no legal prograns in which XXXX and YYYY can be witten
together. This is nuch Iike 2003. (You may have left out a
sem -colon, a comma, or an operator.)

2020 ARRAY USED | NCORRECTLY
A sinple variable must be used here.

2021 TOO MANY CONSTANTS | N PROCEDURE
No nore than 256 different constants are allowed.

2022 | NCORRECT STRING LENGTH
In S(x|y) , Y is negative, zero, or greater than 256.

2023 COMPILER TABLE OVERFLOW
The programis too big to fit into nenory during conpilation -- there
is no more room for the parse trees that represent the program at
this p(;int. If you re-conpile with nore nenory, there will be nore
room available for the program

2024 TOO MANY PROCEDURES
Only 255 different procedures or BEG N bl ocks with declarations are
al lowed by the conpiler.

2025 CONSTANT QUT OF RANGE
a) The absolute value of an integer is greater than (2¥*31)-1
(o digits).
b) The absol ute value of the adjusted exponent in a real number is
greater than 75. The exponent witten is first adjusted to
include the nunber of digits witten in front of the decinmal point.

2026 | NDEX OF ARRAY OR STRING MUST BE | NTEGER
a) In s(xly) , X 1S not an integer expression.
b) In Arrayname(...x...) , X s not an integer expression.
(You may have accidently used a REAL variable.)

78

ERROR MESSAGES

2027

2028

| NCORRECT OPERAND TYPE(S) FOR XXX
XXX is a unary operator.
a) LONG is applied to sonething which is LOJd CAL, STRING, BI TS,
or REFERENCE.
b) SHORT is applied to something which is LOGQ CAL, STRING, BI TS,
or REFERENCE.
c) -~ (not) is applied to something which is neither LOd CAL nor BITS.
d) Prefix + or - is applied to something which is LOG CAL,
STRING BITS, or REFERENCE.
e) ABS is applied to sonething which is LOGd CAL, STRING BITS, or

REFERENCE.

f) In Recordvariable , x is not a REFERENCE.

g) In FOR 1:=x... , X 1s not an integer expression.

h) In various other contexts, an INTEGER or LOGd CAL operand is
required.

INCORRECT OPERAND TYPE(S) FOR XXX
XXXX is a binary operator. Even when the error is in the first
operand, the error is detected after both operands are inspected.
a) AND or OR is applied to expressions which are not both BITS or
both LOG CAL. This case often happens in an |F statement when
necessary parentheses are left out;
IFX<YORZ=3THN. . .
As witten, y is to be ORed with z before anything else is
calculated. Try instead:
IF(X<Y) OR(Z=3) THEN. . .
b) A relational operator (like >) is applied to sonething which
is COWLEX, LOG CAL, or REFERENCE.
c) SHL or SHRis applied to sonething which is not BITS, or the
shift amount is not |NIEGER
d) In x IS Recordclass , x is not a REFERENCE.
e) In x>y . x is LO@CAL, STRING BITS, or REFERENCE, or y is
not | NTEGER
f) In a FOR statenent, the UNTIL expression is not |NTEGER
g) In various other contexts, an INTEGER operand is required.

79

ERROR MESSAGES

2029 | NCORRECT PARENTHESIZATION OF EXPRESSI ON
This often occurs in conjunction with 2027 or 2028. Usually,
additional parentheses are required in the expression.

2030 ASSI GNVENT | NCOVPATI BI LI TY
An attenpt to assign an expression of one type to a variable of a
different type (or pass an actual parameter to a formal parameter
of a different type). The only automatic conversions allowed are
I NTEGER to REAL, | NTEGER to LONGREAL, REAL to/from LONGREAL,
INTEGER/REAL/LONGREAL t 0 COMPLEX/LONGCOMPLEX, COMPLEX t o/ from
LONGCOVPLEX. (You cannot assign REAL to | NTEGER without using
TRUNCATE, ENTIER, or ROUND.)

2031 WARNING: NAVE PARAMETER SPECI FI ED
In a PROCEDURE declaration, it is usually intended that each formal

parameter have VALUE specifi ed.

2032 S| MPLE VARIABLE USED INCORRECTLY
In " x(", xis asinple variable and not STRI NG

2033 75 ERRORS. COMPILATION TERM NATED
Sonething is drastically wong with your program To save time
and paper, the rest of the programis ignored.

2999 DEBUG TABLE OVERFLOW
I f $DEBUG,x 1is specified with x equal to 2, 3, or 4 then a table
is created with a fixed maxi num of 448 entries, where one entry is used for
each GROUP of statenments that all occur together with no |abels,
branches or conditional expressions. Al the statements in such a
group are guaranteed to be executed the same nunber of times. Al so,
this nmessage occurs if the conpressed formof the program occupies
nore than 65536 bytes of nenory (the conpressed formis used to
generate the pseudo-listing with the statenment counts).

Pass Three Error Messages

Pass 3 error nessages are of the form
ERROR 3xxx NEAR COORDI NATE yyyy - nmessage
yyyy corresponds to-one of the coordinate nunbers in the first colum on
the program listing. |f you have nany statenments on a card, only the

coordinate of the first one is on the program |isting.

80

ERROR MESSAGES

Al of the pass 3 errors are disastrous, so conpilation termnates

imediately. After any pass 3 error, a table is

listed of (coordinate nunber, byte offset, byte length) triples, indicating

how nuch code was generated for each statement in the current program

segment. The last entry of this table and the last two byte lengths are

usual Iy garbage.

3001

3002

3003

3004

PROGRAM SEGVENT OVERFLOW

This error message occurs because of a design constraint of the
conpiler: the total amount of machine code and constants for any
PROCEDURE or other BEG N block with declarations nust be |ess than
8192 bytes. Al of the constants for a block are allocated in front
of the first statenment. Therefore, if the byte offset of the first
statement is very large, constants are taking up too much space.

This sonetimes happens in prograns with'too many string constants
(ten 80-character string constants take up 800 bytes). The coordinate
indicated may or may not be very accurate. The only solutions are
to make your program smaller, or to add some artificial PROCEDUREs
or BEG N blocks with at |east one declaration, such that part of the
bl ock that was too big is forced into another segment.

COWPI LER STACK OVERFLOW

Wil e generating code for a statenent, the conpiler uses a push-down
stack to keep track of where it is in the statenent tree. |f you
are about to get a PROGRAM SEGVENT OVERFLOW (3001), you nay get this
message instead.

COWI LER LOG C ERRCR
Internal consistency checks perforned by the conpiler have failed.
Take your card deck, exactly as it is, to a consultant.

PROGRAM AREA OVERFLOW

Al though the words are simlar to 3001, this is entirely different.
This nessage neans that there is no nore roomin nenory to put the
machi ne code for your program (like 2023 and 1012). If you
re-conpile with nmore nenory, there will be nore room available for
the machi ne code.

K1

ERROR MESSAGES

3005 DATA SEGVENT OVERFLOW
The data for each PROCEDURE or BEGA N bl ock with declarations is

limted to 4096 bytes. Read the suggestions for 3001.

4006 COORDI NATE TABLE OVERFLOW
In order to supply the coordinate nunber in run-time error messages,
atable is built of (coordinate nunber, address in machine code)
pairs. If you re-conpile with nmore nenory, this table will be |arger.

'3007 TOO MANY PROCEDURE CALLS
References to only 3lprocedures are allowed within any single
procedure.

Loader Error Messages

Loader error messages are all of the form
**% LOADI NG ERRCR - nessage

Li ke pass 3 nessages, these are disastrous and terninate processing.

DUPLI CATE GLOBAL NAME - XXX Two procedures with the sanme name were
| oaded.

| NSUFFI CI ENT STORAGE Not enough roomto run the program
Re-run with nmore nenory.

| N\VALI D OBJECT RECORDS A bad object card was presented, often
an extra blank card.

NO EXECUTABLE STATEMENTS No main program was | oaded, only externa
procedur es.

TOO MAN-Y PROCEDURES Only 96 program segnents are allowed by
the | oader.

UNDEFI NED GLOBAL NAME - XXX An external procedure was declared, but
not | oaded.

82

ERROR MESSAGES

Run Tinme Error Messages

Al run error nessages are of the form
RUN ERROR NEAR COORDI NATE yyyy I N procedure nane - message

After a run error, a post—rmrtemdufrp of all of the programs variables is
given, unless it is explicitly turned off with a $pEBUG,0 card. To keep
the dunp reasonably small, at nost eight values are dunped from an array.
If the same identifier is declared in many blocks (note that the index
variable in a FOR loop is considered to be declared in a block around just
the FOR statenment), then that identifier will be listed many times.
Vari abl es whi ch have never been assigned any neani ngful value are printed

-

as """,

ACTUAL- FORVAL M SMATCH | N PROCEDURE CALL, PARAMETER #xx
The actual parameter passed is not assignment conpatible with the
formal paraneter.

ARRAY SUBSCRI PTI NG
An array subscript was not within the declared bounds.

ARRAY TOO LARGE
The first n-1 dinensions of an array declaration define too many
el enents. The product of the size of a single element tines the
first n-1 dinmension lengths (upper bound-|ower bound+ 1) nust
be strictly less than 32768. The elenment sizes are:

| ogi cal 1
integer, real, bits
reference
long real, conplex 8
| ong conpl ex 16
string length of a single string

83

ERROR MESBAGES

ASSERTI ON xxxxxxx FAILED
An assertion was not true. XXXXXXX is a running count of how

many assertions were true, to give a feel for how long the program
had run.

ASSI GNVENT TO NAME PARAMETER
Attenpt to assign to a name parameter whose actual argunent is not a

variable, but is instead an expression, a constant, or a control
i dentifier.

CASE SELECTI ON | NDEXI NG
Index in a case statement or case expression is less than 1 or
greater than the nunber of cases.

DATA AREA OVERFLOW
No nore storage is left for variables. This will happen if a program
gets in a loop calling itself recursively, or if there really is not
enough nenory.

Dl VI SION BY ZERO
May al so be caused by 0%%(-n) .

EXPERROR
The argunent to EXP must be less than 174.67 .

| NCOVPATI BLE FI ELD DESI GNATOR
An attenpt has been nade to access a field of a record, but the
reference does not designate a record of the corresponding class
(it mght be NULL or undefined).

| NCORRECT NUMBER OF PARAMETERS
The nunmber of actual paraneters in a procedure call is different
fromthe nunber of formal paraneters declared in the called procedure.

| NTEGER DI VI SION BY ZERO
An integer operation attenpted to divide by zero.

| NTEGER OVERFLOW
An integer operation produced a nunber whose absolute value is
bi gger than (2**31)-1 . The standard functions ROUND, TRUNCATE,
and ENTIER Wil| produce an integer overflow if presented with
arguments whose absol ute value is bigger than (2¥¥31)-1 .

84

ERROR MESSAGES

LENGTH OF STRING | NPUT
The string read was longer than the string variable has roomfor.
This sonetinmes happens if a string ends in exactly colum 80 of a
card, and another string begins in colum 1 of the next card, since
the two quote marks (col 80 and col 1) are part of the sanme string.
Put at |east one blank in between (or a whole blank card). Al so,
check for a mssing quote

| N LOG ERROR
An attenpt to take the logarithmof a negative or zero nunber.

LOG CAL | NPUT
The quantity read was not TRUE or FALSE

NULL ORUNDEFI NED REFERENCE
An attenpt has been made to access a record field using a null or
never initialized reference.

NUMERICAL INPUT
The number read was not assignnent conpatible with the variable in
the READON or READ statenent. This sometimes happens when running
from a termnal if the line nunbers on the data cards are accidently

read.

OVERFLOW
A real operation produced a nunber whose absolute val ue is bigger
then 7.2'+75 . This may occur when dividing by a very small nunber,

such as in 1'+50/1'-50 .

PAGE ESTI MATE EXCEEDED
The page estimate on the %$ALGOL card is exceeded. Note that any
traci ng ($DEBUG,3 or 4) output is included in this page limt.
(cf. Deck Setup and Conpiler Options, page 103.)

PROGRAM CHECK #M
The conpiler or the code it generated was wong. If this happens,
take your card deck, exactly as it is, to a consultant.

85

ERROR MESSAGES

READER ECF
No nore data cards. A 4% card or a /* card was read instead. This
is a normal way to termnate in nany prograns.

RECORD STORAGE AREA OVERFLOW
No nore storage exists for records.

REFERENCE | NPUT
Ref erences cannot be read.

SIN/COS ERROR
See the dommin restrictions in Section 8. 2.

SQRT ERROR
Attenpt to take the square root of a negative nunber.

STRING INPUT
A null string or a string greater than 256 characters was read. See

LENGTH OF STRI NG INPUT above.
4
SUBSTRI NG | NDEXI NG

Substring sel ected extends off one end of the string

TI ME ESTI MATE EXCEEDED
The tinme estimate on the 4AIGOL card is exceeded.

UNDERFLOW
A real operation produced a nunmber whose absolute value is |ess than
5.41-79 , but not exactly zero. This may occur when dividing by a

very large nunber, such as in 1'-50/1'+50 .

86

ERROR MESSAGES

ABEND Messages

You may occasionally get terse messages on the first page of your
output of the form
*t ABNORMAL JOB END *** SYSTEM CODE X XxX
or
COVPLETI ON CODE - SYSTEM = xxx

where xxx mght be:

222 You ran out of time or lines as specified on your
322 JOB card (not the limts on the %ALGOL card).
722 (cf. page 103.)

-

The conpiler probably made a m stake. After

ocL verifying that the deck or catalogued procedure
ock i ncl udes both a //syspriNT and //sysiw DD card,
oc6

take your deck, exactly as it is, to a consultant.

87

NOTES ON NUMBER REPRESENTATION

ON SYSTEM/360

AND RELATIONS TO ALGOL W

by

George E. Forsythe

88

NUMBER REPRESENTATI ON

88.1

NUMBER REPRESENTATI ON

The follow ng notes are intended to give the
student of Conputer Science 105 or 106 sonme orientation
into how numbers are represented in the |BM System/360
conputers. Because we are using A gol W, sone refer-
ences are nmade to that |anguage. However, very little
of what is said here depends on the peculiarities of
Algol W and this exposition is nostly applicable to
Fortran or Al gol 60 with slight changes in wording.

It will also do for the floating-point nunbers and
full -word integers of PL/1. Users of shorter or
| onger integers or decimal arithmetic in PL/1 will

need nore orientation.

89

NUMBER REPRESENTATI ON

89.1

NUMBER REPRESENTATI ON

On IBM's system 360, the followi ng units of information storage
are used:

a) the bit, asingle 0 or 1

b) the byte, a group of eight consecutive bits

c) the (short) word, a group of four consecutive bytes --
i.e., 32 consecutive bits

d) the Long word, a group of two consecutive short words --
i.e., eight bytes or 64 hits.

For number representation in Algol Wthe words and |long words are
the main units of interest.

| NTEGERS
Integers are stored in (short) words. O the 32 bits of a short
word, one is reserved for the sign (0 for + and 1 for -), leaving
%1 bits to represent the magnitude. A positive or zero integer is
stored in a binary (base 2) representation. Thus 21,5 (the subscri pt
means base 10) is stored as

0000 0000 0000 0000 0000 0000 0001 0101 .
t
sign bit

To confirmthis, note that

20=0x2P +. . . +0x25+1x2 +0x2 + 152 +0y2ta1y.

The largest integer that can be stored in a word is

20+ 29+ .+t e =g (21hTH836LT) | -

Any attenpt to create or store an integer larger than 22t 1 will
produce erroneous results, and (unfortunately) the user will not always
be warned of the error. (See below)

To save space in witing words on paper, each group of four bits
in awrd is frequently converted to a single base-16 (hexadecinal)
digit, according to the follow ng code:

NUMBER REPRESENTATI ON

base 2 base 16 base 2 base 16
0000 0 1000 8
0001 1 1001 9
0010 2 1010 A
0011 3 1011 B
0100 4 1100 c
0101 5 1101 D
0110 6 1110 E
0111 7 1111 F

Thus A, B, C, D E F are used as base-16 representations of the decina

nunbers 10, 11, 12, 13, 14, 15 respectively. Neverthel ess, integers are
stored as base-2 nunbers.

Usi ng hexadeci mal notation, the decinmal nunber 21 is represented by
00000015, ¢

Not e t hat 15,4 --is the base-16 representation Of 21, -

Negative integers are stored in what is called the "two's conpl enent

form'. For exanple, -1 is stored as
1111 1111 1111 1311 1111 12131 1111 1111
= FFFFFFFF, . .

Also, -21 is stored as
1111 1112 1111 1111 1111 1111 1110 1011
= FFFFFFEB16)

The representation for -21 is obtained fromthat for +21 by changing

every 0 to 1 and every 1 to 0, and then adding +1 in base-2 arithnetic

to the result. Simlarly for any negative integers. Every negative
integer has 1 as its sign bit. The smallest integer. storable in
System/360 is 221 = .2147483648 , and is represented by 8000000016'
Another way to think of the representation of negative nunbers is

to consider a 32-place binary accumulating register (the base-2 equivalent)
of the decimal accumulating register in a desk cal cul ati ng machine).

If one starts with all zeros in this register, one gets the representation
for -1 by subtracting 1. The process requires a "borrow' to propagate

to the left all the way across the register, leaving all ones, just as

on a decimal accumulator this would leave all nines. Continued
subtraction will give the representations for -2, -3

91

NUMBER REPRESENTATION

Fromthe point of view of an accumulator we can al so see what
happens when we create a positive nunber larger than 2t .1 For
exanple, if we add 1 to 231-1, the resulting carry will go all the
way into the sign bit, leaving a sign bit of 1 with all other digits
zero. But this is the representation of 221 Thus the attenpt to
produce positive nunbers in the range from 1 to approximately 232
will yield a negative sign bit. Consequently, positive integers that
"overflow' into this range are sensed as negative by System/360. The
mechani sns of AIGOL Wfor detecting integer overflow (not described in
this docunent) can be used to detect additions, subtractions, or
mul tiplications that produce integers outside the range from 21 to
211 (so-called integer overflow. Attenpts to divide an integer by 0
will yield an error nmessage and an irrelevant quotient and remainder.

The behavi or of Systemj60 on integer overflowis quite different
from the Burroughs B5500. In the latter machine, any integer that
overflows is replaced by a rounded floating-point nunber. There are
advantages to either approach to integer overflow, depending on the

application.

If the user suspects that integers in his programare getting
anywhere near 109‘ he should convert them to doubl e-precision floating-
poi nt nunbers by use of the Algol Woperator LONG Conversion to single-
precision floating-point nunbers may |ose some precision.

The nost inportant thing for a scientific user to remenber is that

2t o 21 are stored wthout any approximation.

integers in the range
Moreover, operations on integers (adding, subtracting, multiplying) are
done without any error, so long as all intermediate and final results
are integers between -25] and 2211, It is perhaps easier to renenber
as safe the interval from-2 x 109 to 2 x 109 , obtained from the

useful approxination 210 £ 100

92

NUMBER REPRESENTATI ON

The operations of division without remainder (called DIV in Algol W
and taking the remainder on division (called REMin Algol W always give

integer answers. |f the divisor is 0, an error nessage is given
In Algol Wtwo operations on integers give results that are not
stored as integers -- nanely / and *x .

FLOATI NG PO NT NUMBERS

Numbers in many scientific conputations will grow in magnitude
wel | beyond the range of integers described above. To provide for
this, System@and nost scientific conputers have a second way to
represent numbers -- the so-called floating-point representation.
The significance of the name "floating-point" is that the radix point
-- for example, the decimal point in base-10 nunbers -- is permtted to
float to the right or left, thus pernitting scaling of nunbers by
various powers of the radix. A though a decimal point that has floated
off to the left will produce a nunber witten like 0.001345 , the
nunbers are actually represented in a formcloser to what is often
called scientific notation, here 1.345x 10-3 ‘

I n System/360, floating-point nunbers are always represented in
base-16 notation; i.e., the radix or nunber base is 16. This pernits
us to wite nunmbers in abbreviated form (as we did with integers earlier)
More inportant, the use of base-16 conformswith the hardware arithnetic
processes in which shifting is done four bits at a tine to speed up the
operations. The speed-up is achieved at a slight cost in precision,
as is learned from detailed error analyses which we cannot go into here

W first consider the floating-point representation of numbers by
a single word of 32 bits. This is the so-called single-precision
or short real number, the nunber of type REAL in Algol W The 32 bits
of a word are nunmbered fromO to 31, fromleft to right, just to identify
them In floating-point representation the left-hand eight bits (bits 0
to 7, equivalent to two hexadecimal digits) are devoted to the sign of
the nunber and the exponent of 16 associated with the nunber. The right-
hand 24 bits (bits 8 to 31, equivalent to six hexadecimal digits)

93

NUMBER REPRESENTATI ON

represent six significant hexadecinmal digits (the significand) of the
nunber .

As with integers, the sign of the nunber is denoted by hit 0
with O representing + and 1 representing - .

Bits 1 to 7 give the binary (base-2) representation of a non-
negative integer in the range 0lO to 12745 i nclusive. This in-
teger is called the biased exponent, for reasons now to be explained.
If this integer were taken directly as the exponent, we woul d have no

negative exponents, and our range of floating-point nunbers could not
include such nunbers as 16722 . It is desirable to have an exponent
range that is approximately symmetric about zero. In System 360 one

obtains the true exponent of the floating-point nunber by subtracting

64 fromthe biased exponent represented by bits 1 to 7. As a result,
the actual exponents range from-64 to 63.

The 24 bits 8 to 31 of a number are regarded as six hexadeci mal
digits with a hexadecimal point at the left-hand end. |f the floating-
point number zero is being represented, all the hexadecimal digits are
zero, as are all the other bits. Qherwise, at |east one of the hexa-
decimal digits nust be nonzero. A floating-point nunber is said to be
nornalized if the | eft-hand hexadecimal digit (the most significant
digit) of the significand is nonzero. In System 360 the floating-point
nunbers are ordinarily normalized, and we will not consider any other
forms.

W now give the floating-point representations of some sanple
nunbers. As we said before, the nunber zero is represented by 32 zero
bits, i.e., by eight 0 hexadecimal digits. Thus zero is represented

- by the same words in floating-point or integer form No other nunber
has this property.

The number 1.0 is represented by the word

sign bit
L~—00,100 0001 0001 0000 0000 0000 0000 0000,
bi ased significand
exponent

oL

NuMBER REPRESENTATI ON

To check this, note that the sign is 0 (representing +). The biased
exponent is 1000001, or 6510 . Subtracting 61“10 yields 1 as the
true exponent. The hexadecimal significand is 100000, - fitting a
hexadeci mal point at the left end gives the hexadeci mal fraction

, Which equals 1/16. Thus the above word represents
+’l/1fgoot0|16rres 161, or 1.0 .

To save witing, the above word is ordinarily witten in the
hexadeci nal form 41100000 . Wile one gradually learns to recognize -
some floating-point nunbers in this form the author knows no easy way
to convert such a hexadecimal word into a real nunber. One just has
to take the right-hand six hexadecimal digits, and prefix a hexadeci mal
point. Then one exanines the |eft-hand two-hexadeci mal-digit nunber
(here 41). If this is less than 8016 , the floating-point nunber is
positive and one gets the true exponent by subtracting h016 = 64,

If the left-hand two-hexadeci mal-digit number is 8016 or larger, the
fl oating-point nunber is negative, and one gets the true exponent by
subt racti ng CO ¢ = 8016 + uol6 =192, and affixing a mnus sign.
Sone facility with hexadecinmal arithmetic is required, if one has to
deal with such nunbers.

In this presentation, we have considered the radical point to be
at the left of the six significant hexadecimal digits, and regarded
the exponent as biased high by 64, . As an alternative, the reader
may prefer to place the radix point just to the right of the nost
significant digit of the significand, and regard the exponent as biased
high by6510 . This brings the significand closer to usual scientific
notation but, of course, requires a trickier conversion to get the
true exponent. The fact that either interpretation (and many others)
are possible shows that really the radical point is just in the eye of
t he behol der, and not in the conputer!

Several exanples of floating-point nunbers are now given in hexa-
decimal notation, with the confirmation left to the reader.

95

NUMBER REPRESENTATION

deci nal f| oat i ng- poi nt
0.0 = 00000000
1.0 = 41100000
0. 0625 = 40100000
16.0 = 42100000
256.0 = . 43100000
-1.0 = C1100000
-16.0 = €2100000
3.5 = 41380000

The largest floating-point nunber is 7FFFFFFF , representing
FFFFFF x 16° or (1 - 160 x 162 2 7.23 x 107° . (Here 10 and 16
denote deci mal nunbers.)

The smallest positive normalized floating-point number is 00100000,
representing

% X 1674 = 5.40 x 10779

-

Negatives of these two nunbers can al so be represented, and are
the extremes in magnitude of representable negative nunbers.

Very few nunbers can be exactly represented with six significant
decimal digits. (Exercise: Wiich ones can?) For exanple, 1/3 :.3333331
only approxinmately. In the same way, very few nunbers can be exactly
represented with six significant hexadecinal digits. (Exercise
Wi ch ones can?) For exanple, 1/3 = -555555,¢ only approxi mately.

Moreover, sone nunbers that are exactly representable in decimal are
only approximtely representable in hexadecimal; for exanple
1/10 = +100000,, exactly; but

0

1/10 = +19999A,, only approxinately.

Thus round-off error enters into the representation of nost
Llont i ng—po i nt numbers on Sys tem/360, and the round of f differs from
that W ith decimal numbers . This can easily give rise to unexpected
results . For exanple, if the above nunber . 199994 (= O'llo) is
mul tiplied by the integer 100,, = 6&16 s one gets not A.OOOOO16 =
1o.olo , but instead AJOOOO516 , as a cunulative effect of the slightly
hi gh approxi mation to 0.1, - And A..ooooi16 rounds to 10.00002
on conversion to decinal.

The precision of a single-precision hexadeci mal nunber is roughly

-

107" . One can think of this as being crudely equivalent to seven

10

96

NUMBER REPRESENTATI ON

significant decimal digits

Not only do errors appear in the representation of nunbers inside
System/360 (or any conputer), but they arise fromarithnetic operations
perforned on nunbers. For exanple, the product of two floating-point
nunbers may have up to 12 significant hexadecimal digits. Wen the
product is stored as a single-precision floating-point nunber, it nust
be rounded to six hexadecimal digits. This introduces an error, even
though the factors mght have been exact.

The story of round off and its effect on arithmetic is a conplex
and interesting one. Only within the current decade have there begun
to appear even partly satisfactory nethods to anal yze round off, and
we cannot go into the matter now. Some idea.of this is obtained in
Conput er Sci ence 137.

Wien an Algol W program assigns deci mal nunbers or integer val ues
to variables of type REAL, these are imediately converted to hexadeci mal
floating-point nunbers, with (usually) a round-off error. Wen one
outputs nunbers from the conputer in Algol W they are converted to
decimal. Both conversions are done as well as possible, but introduce
changes in the nunbers that the programrer nust be aware of. And, of
course, all internediate operations introduce further round offs and
possible errors. It is unthinkable to do the analysis necessary to
counteract these errors and get the true answer to the problem If the
user w shes answers uncontam nated by round off, he shoul d use integers
and integer arithnetic, and be prepared to guard against overflow.

Fortunately nost users can accept an indeterm nate anount of
round off in their nunbers, provided they have some assurance that
round off is not growng out of control. It is the business of nunerical
analysts to provide algorithms whose round-off properties are reasonably
under control. This has been well acconplished in sone areas, and hardly
at all in others.

DOUBLE PRECI SI ON

The precision of single-precision floating-point nunbers seens

97

NUMBER REPRESENTATTION

very adequate for nost scientific and engineering purposes, being at the
| evel of seven decinals. However, a considerable number of conputations
require still nore precision in the mddl e sonewhere, just in order to
come out with ordinary accuracy at the end. As a result, System/360
has provided an easy nechanismfor getting a great deal nore precision
in the conputations. For this purpose a double word of 64 bits is used
to store a floating-point nunber of so-called double precision or |ong
precision. In this representation, the sign and biased exponent are
found in the first word of the double-word, with precisely the sane
interpretation as with single-precision floating-point nunbers. The
second word of the double-word consists of eight hexadecimal digits
imedi ately following the six found in the first word. There is no
sign or exponent in the second word. Thus a doubl e-word represents

a signed floating hexadeci mal number with 14 significant hexadeci nal
digits. Asjbef ore, nonzero nunbers are normalized so that the nost
significant digit of the 14 is nonzero.

Exanpl es:

| ong significand
41' 100000 00000000
40 199999 9999999- 11

There is a full set of arithnetic operations for both single
and doubl e-precision operations. Very crudely, for an exanple, single-
precision nultiplication of single-precision factors takes around % mcro-
seconds, while that for double-precision factors takes around 7 mcro-
seconds. For nodest problens the extra tine is conpletely lost in the
several seconds of tine lost to systens and conpilers, and the use of
doubl e-precision is strongly recommended for all scientific conputation.
Nornal 'y the only possible disadvantage of using long precision is the
doubling in the amount of storage needed. [f one has arrays with tens
of thousands of elenents, the extra storage may be very costly. QO her-
wise, it should not matter.

Si nce 16'14 = 10'17, t he doubl e-preci sion nunbers are crudely
equivalent in precision to 17 significant decimal digits.

for a machine with the speed of the 360/67, a number precision of

1.0L
O.]l,

98

NUMBER REPRESENTATI ON

six hexadecimal digits (roughly seven decimals) is considered very |ow,
while a precision of 14 hexadecinmal digits (roughly 17 decimals) is

very adequate. The floating-point arithmetic hardware of System/360
provi des the possibility of detecting when nunbers have gone outside
the exponent range stated above. The reader may think that a range
from roughly 1079 to 107 should cover all reasonable conput ations.
Wil e exponent overflow and exponent underflow are not very conmon, they
can be the cause of very elusive errors. The evaluation of a determ nant
is a commn conputation, and for a matrix of order 40 is quite rapidly
done (if you know how). If the matrix elenents are of the quite
reasonabl e magnitude 10'3 , the magnitude of the determinant will be
no larger than roughly 10~ (and probably nuch snmaller), well below
t-he range of representable floating-point nunbers. Such problens are

a frequent source of exponent underflow.

W shall not discuss here the mechanisns of Algol Wfor detecting
exponent overflow and underflow, for these should be witten up in
another place. Even without these, we see that floating-point nunbers
behave wel| for nunbers that are at |east 1066 tines as large as the
| argest integer in the system Hence use of floating-point nunbers

neets al most all the problens raised by integer overflow And, of
course, it permts the use of a large set of rational nunbers, which
do not even enter the integer system

ATGOL W REALS AND LONG REALS

The Algol Wnanual tells how to represent real variables and
nunbers to take advantage of both single-and double-precision. The
‘purpose Of this section is to bring this "information into rapport with
t hehar dwar erepresentation of numbers. If a variable X is declared
REAL, one word is set aside for its values, and it will be stored in
single-precision floating-point form |If a variable is declared to be
LONG REAL, a double-word is set aside to hold its values, and it wll
be stored in double-precision form

99

NUMBER REPRESENTATION

If a number is witten in one of the decimal forms without an L
at the end, it will be chopped to single-precision, no matter how many
digits are set down. Thus 3.1415926535897932 will be imediately
chopped to single-precision in the program and all the superfluous
digits are lost at once. Thus-the assignment statenent

XX := 3.1415926535897932

will result in the double-word XX receiving an approxinmation to m
inthe nmore significant half, and all zeros in the |ess significant
hal f! Thus one gets a precision of only approximately seven deci mal s
for the pain of witing 17, and this may well contamnate all the rest
of the conputation.

If one wants XX to be precise to approximately full double precision
one must wite the statement in the form

] XX 1= 3.1415926535897932L .
VWthmthe declaration REAL X, the statenent
X := 3.1415926535897932~

will result in X having a single-precision approximtion to m, as
the long representation of w 1S chopped upon assignment to X

The reader should now go back and exanine the specifications
of the types of various arithmetic expressions, as stated on pages 9, 10,
11 of the Algol W Notes, and in Section 6.3 of the Language Definition
Sone of the less expected effects are the follow ng: Suppose we have
decl arations

REAL X, Y, Z

LONG REAL XX, YY, ZZ

INTEGER |, J, K

Then xxy, 1**J, and I*X are all long real

The assignnent st atenent

XX = X 1= Y*Z
will result in XX having a single-precision chopped version of Y*Z in
the nore significant half, and zeros in the | ess significant word.
Moreover, I¥I is INTEGER but 1**2 is LONG REAL.

100

NUMBER REPRESENTATION

If the reader understands the |anguage Algol Wand the preceding
pages on number representation, he should have a good basis for
understanding the effects of mathematical algorithms. But he should
always remain wary of what a computer is actually doing to his nunbers?

101

DECK SETUP
AND
COMPILER OPTIONS

by

Richard L. Sites

102

1. DECK SETUP

102.1

1. DECK SETUP

ALGOL W Deck Setup and Conpiler Options

1. Si npl e Deck Setup

QU CK partition - BATCH partition
(Job and Keyword cards). (Job and Keyword cards)
/* SERVICE CLASS=Q
// EXEC ALGOLW // EXEC ALGOIW
//SYSIN DD * //SYSIN DD *
§{ %ALGOL §{ FALGOL
85 (program) 85 (program)
4DATA 4DATA
§{ (data) ; { (data)
- /* /*
§ Optional.
§¢ May be repeated -- second and fol | owi ng #AIGOL cards are
required.

For sinple cases, the above control cards are sufficient. Mre

conplicated cases are discussed later under 3. Linkage to Separately-

Conpi | ed Procedures.

1.1 Time and Page Limts

To avoid using too nuch conputer tine or paper when a program has
mstakes in it, both the operating systemand the ALGOL W system nonit or
the amount of time and pages used. The operating system keeps track of
the total time ysed for compiling one or nore prograns, executing them
printing any post-nortem dunps, |oading the conpiler into core, interpreting
the operating systemcontrol cards, etc. The operating system also keeps
track of the total anmount of printed output froma run -- control card

listing, compiler |isting, actual execution output, error nessages,

103

1.

DECKSETUP

post-mortem dunp, etc. The limts for these totals are specified on
the JOB card in tenths of mnutes and thousands of |ines; exceeding these
JOB card limts results in an ABEND 322 nmessage fromthe operating
system and no other infornation.

The ALGOL Wsystem monitors the anount of time and pages used by
each program just during its execution, not during its conpilation or
during any post-processing. |f these execution limts are exceeded,
ALGOL Ww Il print a run-time error message (TINME ESTI MATE EXCEEDED or
PAGE ESTI MATE EXCEEDED) with the coordinate of the program statenent
executing at the tinme. The subsequent post-nortem dunp and optional
program listing can be very helpful in determning what went wong.
To make sure that the ALGOL Wsystemis able to get out this information,
the JOB card limts always should be sufficiently bigger than the ALGOL W
limts.

The normal ALGOL Wexecution limts are 10 seconds and 9 pages
(60 lines/page). These may be changed by specifying different limts on
t he 4ALGOL card in colums 8-29:

JALGOL TIME=sss, PAGES=ppp

where sss is the maxi num execution tine in seconds; Ppp is the maxinum
nunber of pages of execution and tracing output. TIME may be abbreviated T ;

PAGES, P . Time and Pages may be given in either order.

Exanple: for 2 mnutes and 20 pages, use:

$ALGOL T=120,P=20
(Previous wersions of the compile» had slightly different control cards:
JE0F i nstead of 4DATA, and min:scc,pages instead of TIME= and PAGES= .

These ol der conventions are also accepted by the present compiler.)

103.1

l. DHCK BSELUP

1.2 ther ¢argor Card Paraneters

Two ot her execution environment options may appear on the $ALGOL
card. MARG N=72 specifies that READ and Reapon should only scan the
first 72 colums of data cards. MARGIN=80 specifies that READ and REapON
should scan all 80 colums of data cards. The default val ue i s MARGIN=80,
unl ess the program source cards are sequence nunbered; in that case, it
is assunmed that the data cards are also sequence nunmbered and MARG N=72
is the default. MARGIN mmy be abbreviated Mare. (cf. Section 7.8.k.
for dynamc control of this margin.) SIZE=xxxk specifies that the
maxi mum anount of dynam ¢ space requested by either the conpiler or the
execut i on library is xooi02k bytes. This directive is only used in
rare cases to prevent the compiler fromusing all of the core available
toit.

TIME, PAGES, MARG N, and SIZE may be specified in any order.

103.2

2. COWPILER OPTI ONS

2. Conpi | er

pt i ons

Any of the followi ng cards can appear in a deck between a %ALGOL

and the next 9card:

$NOLIST

$LIST

$TITLE,"..."

$SYNTAX

$STACK

$DUMP*ab, cc

$NOCHECK

$DEBUG, n(m)

S
®

Do not |ist subsequent source cards. The conpiler normally.,

lists all input cards
Li st subsequent source cards: this undoes a previous $NOLIST. -

Start the programlisting on the next page, and place
" .." (up to 30 characters) as a title in the mddle of ’
the heading |ine.

Anal yze the programfor syntax errors, but do not execute.

Dump the current parsing stack if a pass 2 syntax error shoul d
occur, with the nost recent syntactic element listed |ast.

Dump certain internal tables during a conpilation. This
option in general is used only by those maintaining the
conpiler, but is docunented here for the sake of completeness.
Since its use significantly increases the anmount of printed,
output for even small conpilations, random experinmenting is
discouraged. See the table at the end of this section.

Omt checking subscript ranges and reference conpatibility
and onit initialization of variables to
"undefined".

Activate the tracing, statenent counting, and post-nortem
dunp facilities of the ALGOL W system

The single digit n specifies:

0 nothing fancy (use this to mnimze the space used by
the systen).

1 a post-nortemdunp of all the programs variables if
execution termnates abnornally, else nothing

2 the above plus counts of how often each statenent was
execut ed.

104

C 2. COMPILER OPTI ONS

3 the above plus a statenent-by-statenent trace of each
val ue stored.
4 the above plus a trace of each val ue fetched.

If tracing is specified ($DEBUG,3 or $DEBUG,4) and the standard
procedure TRACE (cf. Section 7.8.6.) is not used, then

< each ALGOL statement will be traced in synbolic formthe
first mtines it is executed. Each time a statement is
traced, it produces at least two lines of output (included
inthe run-tine limt), so a 100 statement programwith

C $DEBUG,3(2) w |l produce at |east Loo |ines of output
(unless it dies an early death).

THE pEFAULT IS $DEBUG,1 -- post-nortem dunp, but no counts

« _ or traces.
The fol Il owing abbreviated control cards are acceptabl e:
|
~ $DEBUG for $DEBUG,L(2)
$DEBUG, X f or $DEBUG,x(2)
(no DEBUG card) for $DEBUG,1
' Al variables are initialized to a bit pattern considered
to represent an undefined value (printed in the traces and
post-nortem dunp as "o"). For sone data types, all bit
) patterns can be valid, so valid data can appear to be
« undef i ned.
See Section L4, page 111, for a detailed explanation of the debugging
facilities.
¢
N—
¢

105

2. COWPILER OPTIONS

$DUMP* opt i ons

The $pump* card specifies two things: what tables to be dunped, and

whi ch segnments in the programthe dunping applies to. 'For exanple, the
360 machi ne code for only one of many procedures can be dunped.

CGeneral format:

cC

$DUMP*ab, cc

is a single digit and is ignored.

is asingle digit and asks for sone conbination of 5 tables to be
dunped.

Is exactly two digits -- a nunber in the range O to 63, or two bl anks.
If cc is blank, then tables for all segnents will be dunped.

If cc is a nunber, then the nachine code for only that segment will
be dunped. Many $puMP* cards may be used to specify nore than one

segment. If the b digits are different, the last one is used.
tabl es dunped:
pass?2 pass?2 pass?2 pass? pass3
b digit | parse tree nametable editcode 360 code w/ some 360 code w/ nost
(hex) addresses missing addresses inserted
X
X X
X
X X
X X X
X X
X X X X
X X X X X
X X X X (sane as T)

106

3. SEPARATE COWPI LATI ONS

3. Linkage to Separately-Conpiled Procedures

AgoL, W provides a facility for pre-canpiling procedures and |inking
t hem back together again. For small programs, it is not worthwhile to
use this facility, since re-co?rpiling a procedure may be faster than
punching an object deck and reading it back in. A facility is provided

for generating standard 1aM |inkages for calling FORTRAN prograns.

3.1 Conpiler Organization

As shown in the diagram bel ow, there are actually two versions of the
ALGOL W compiler; both versions use exactly the same code for the various
phases of-the conpiler and for the run-tinme Iibrary, but the nonitor
phase is slightly different. The compile, | 0ad, and go incore version
is called Agomw; it can handle object decks only in a crude way, but
its in-core loader handles the debugging feature information. The
conpile only version is called ALGOLY, it produces standard 0s/360 object
decks, but cannot pass any debugging information (so $ERUG,0 i s forced).
The output from ALGOLY can be link-edited with other object decks or |oad
modul es, including those produced by Fortren G or H In order to be
executabl e, the object decks from AIGOLY nust be |ink-edited or |oaded
with the ALGoL library and with the ALGOL run-tinme nonitor (ALGOIX). TO
facilitate this, all object decks for ALGOL main prograns include
external references to the nonitor and to the library.

The restricted object deck facility for the campile, | 0ad and go
version only handl es:

1) object decks

2) of procedures (not main programs)

3) from ALGOL w

4) run with no debugging features ($DEBUG,0) .

107

3.

SEPARATE COVPI LATI ONS

If a procedure declaration is compiled and a //SYSPUNCH DD card is
supplied, then an 0s/360 object deck for that procedure is produced. This
deck can then be used with the link-editor or 0S/360 |oader as above, or
it can be read back into the conhile, | oad, and go system when the main
programis compiled. For this purpose, the deck setup is extended to:

[80 gazcor

$DEBUG,0 (nust be specified)
(main program

40OBJECT
(procedure object deck(s))

88

N

§

‘ﬁ{@ﬂA
/*

L (data)

§ Optional.
§¢ May be repeated -- second and follow ng %ALGoL cards

are required.

108

3.

SEPARATE COMPILATIONS

COWPI LE, LQOAD, and GO INCORE COMPILE and use 08/360
LOADER or LINKEDI TOR

Source

Source

COMPILER
(ALGOLW)

\
\

(OBJECT DECK)

INCORE OBJECT CODE
AND DEBUG INFO

COMPILER
(ALGOLY)

08/360
OBJECT DECK

ALGOLW OTHER ALGOLW FORTRAN
OBJECT DECKS OBJECT DECKS OBJECT DECKS
\\
\
\u ALGOLW
ALGOLW LI BRARY FORT
LIBRARY and MONI TOR LIB
v (ALGOLX)
i
| EXECUTION | os/36o LOADER
or LI NKEDI TCR
EXECUTION

109

3. SEPARATE COMVPI LATI ONS

3.2 Control Cards for Using OS/ 360 Loader

Three catalogued procedures are provided: ALGOICG, ALGOLC, and
ALGOLG, for compile and | oad, conpi‘le only, and |oad only respectively.
In all of them the object decks are passed in the same way t hat
Fortran 0bj ect decks are passed, so (for instance) Awcorc and FORTHC can
be intermxed and fol | owed by ALGorG. The stepnames are COWP and Go.
Paranmeters given on a $ALGoL card are not passed to the Go step; instead,

the mxgc card paraneter field is decoded the same way.

Exanpl e:
//STERA EXEC ALGOLCG, PARM.GO="MAP, EP=ALGOLX/TIME=5, PAGES=15 *

3.3 Calling External Procedures

In a program which calls an external procedure, a dumy procedure
declaration and body are used to establish the proper correspondence
(cf. Section 5.3.2.4). The synbols algol and fortran in that dumy body
indi cate the use of argor Wand standard IBM |inkages respectively; the
associated string is extended (with blanks) or truncated to eight characters
and is used as the entry point name of the external procedure. For a
FORTRAN external procedure, the entry point' nane is just the name of the
FORTRAN subroutine or function. For an independently conpiled Ao W
procedure, the entry point name is the procedure identifier extended

(with ™ # "s) or truncated to five characters and followed by "oo1" .

110

« 3. SEPARATE COVPI LATI ONS

C — Exanpl e:
" | NTEGER PROCEDURE MYFUNCTION(REAL VALUE X)|
. BEG N | NTEGER |;
first 4 . ‘
compilation
¢ I
. END
C BEG N
| NTECER KX,I,M;
REAL A,B;
| NTEGER PROCEDURE YOURFUNCTION(REAL VALUE VY);
second ALGCOL "MYFUNOO1";
< compilation < .
K : = YOURFUNCTION(A);
L ~.
- Em.
N

A FORTRAN subroutine or subprogram can be used as an ALGoL W procedure.

.
The type correspondence between ALGOL Wand FORTRAN is given by the
follow ng table:
o ALGOL W . |BM FORTRAN |V
i nt eger INTEGER*L
real REAT*4
forgg a | REAL*8
. complex COMPLEX*8
| ong conpl ex COMPLEX*16
| ogi cal LOGICAL¥*1
gtrimg) (LOGICAL¥n)
(@ bits LOGICAL*h
o reference - - -
110.1

3

SEPARATE COVPI LATI ONS

String functions are not i npl enented. The follow ng formal paraneter

types are allowed and are interpreted as indicated:

(1) (sinple T type)

The corresponding actual parameter is examned. |f that paraneter
is avariable, the address of that variable is conputed (once only)
and transmitted. QOtherw se, the expression which is the actual
parameter is evaluated, the value is assigned to an anonynous |ocal
variable, and the address of that variable is transnitted.

(2) (sinple T type) value , (sinple T type) result ,

(sinple T type) value result

As i ALGoL W procedures, a local variable unique to the call is
created, and the address of that variable is transnitted.

(sinple T type) array

The address of the actual array element with unit indices in each
subscript position is computed and transmitted, even if that elenent
lies outside the declared bounds of the aArgoL Warray. Arrays with
only one dimension and arrays with unit | ower subscript bounds will
have el ements with indices which are identical in ALGOL Wand
FORTRAN routines. Array cross-sections should not normally be

used as actual parameters of FORTRAN subprograns.

| f FORTRAN input/output or FORTRAN error handling facilities are to be

used, the subroutine package IBCOM, Oor a suitable substitute, is required

110.2

3. SEPARATE COWP| LATI ONS

Exanpl e;
~
BEGIN
COMPLEX Z§ ~
CoMPLEX PROCEDURE COMPLEXSQRT(COMPLEX VALUE A);
Algol W < FORTRAN "FAKEIT";
conpi l ation

Z .= COMPLEXSQRT(Z);

~ FUNCTI ON FAKETT(X)

COVPLEX FAKEIT,X

Fortran —

compilation < rakEIT = CSQRT(X)
RETURN

LEND

110.3

4. COWI LER oUTPUT

4, Conpi | er Qut put

11.1. Introduction

The printed output of the conpiler consists of five general

categories :

[N

Source card listing
Error nmessages

wWw N
~— ~— ~—

Run-time and tracing output
Statenent counts

o &
SN N

Post - nortem dunp

The anount of output in sone of these categories can be controlled
by various conpiler options (cf. Conpiler Options, page 104).
1) $NOLIST, $LIST, $TITLE.

2) No control.

3) $DEBUG,3 or $DEBUG,4 activates the tracing. The standard
procedure TRACE (cf. Section 7.8.6.) dynanically controls the
tracing output.

4) $DEBUG,2 , 3 ork activates the statement counts.

5) If a programternmnates with a run error and $DEBUG O was not
used, a post-nortemdunp is produced.

(In the explanation which follows, circled nunbers are keyed to the

circled numbers on the sanple output.)

~4.1.1. Source Card Listing

The source listing consists of four colums of output:

a) Coordinate nunber O
This statement count is increnmented once for each sem-colon
(except end-of-comment), BEG@N, or ELSE in the program If there
are many statenents on a card G , the coordinate listed refers
to the first statement on that card. Al error messages and
tracing information are keyed to the coordinate nunbers.

111

4. COMPILER OUTPUT

b) Bl ock nesting |evel 02
The nesting level counter is incremented by one for each BEG N
in the program and decrenented by one for each END. The counter
is printed only when it changes; then the first character in
this colum refers to the nesting level of the first BEG N on
the card, and the second character refers to the nesting |evel
of the last END on the card. |If you have the proper nunber of
BEG Ns and ENDs, the nesting level for the last card should
be 1 .

c) Card image05
Colums |-72 of each card are printed exactly as they were
read. $ option cards are not printed.

d) Sequence fi el doh
Col ums 73-80 of each card are printed here, with eight spaces
between colum 72 (card image) and colum 73 (sequence field) @

The source card listing is followed by a |ine giving the options
which will be in effect during the execution of the program@ . These
include the debugging option (specified by a $DEBUG card), the time linit
in seconds, the page limt, the word NOCHECK if that option has been
specified (cf. Section 2, Conpiler Options), and the words MARG N=72 i f
the initial right margin for READ and READON is set at column 72 instead
of 80. This last option is set if the source deck is sequence nunbered,
on the assunption that the data cards are also (cf. Section 7.8.4. for nore

details on margins).

h.1.2. Error Messages ()

These are printed i mediately after the source card listing and are

further explained in the Error Messages section of this manual .

4.1.3. Compile Tine and Amount of Code @

The last line of the conpilation gives the anount of time spent in
the compiler and either the phrase NO CODE GENERATED if fatal error
messages occurred, or the phrase (xxxxx, yyyyy) BYTES OF CODE GENERATED i f

112

4. COMPILER OUTPUT

conpi | ation was successful. Xxxxx is the nunber of bytes of /360
machi ne |anguage generated. yyyyy is the nunber of bytes of

information generated for the debugging facilities:

$DEBUG,n . . o
and above information included

0 (i.e., always) Tabl e relating coordinate numbers to program
addresses, for creating RUN ERROR messages.

1 Tabl e of nanes and types of each variable used, for
post-nortem dunp and tracing.

2 A conpressed version of the source code, for the
pseudo-|isting.

3,4 Additional editing markers in the conpressed source

- code, for breaking the tracing at the proper points,
and for nore closely correlating the nachine code
with the source code.

4.1.4, Run-time and Traci ng Qutput

This category inciudes an optional statenent-by-statenent trace of
the programas it executes O (explained in nmore detail below), any
output that the programitself produces in WRITE and WRITEON statenents @
. and perhaps a run error message saying why the program term nat ed@ .

If the tracing were turned off, the output would | ook Iike that on page

118.

4.1.5. Statenment Counts

This optional print-out consists of a pseudo-listing of the
program 12 with coordinate nunbers ot0 and counts of how nmany tines
each statenent was executed 41 To determ ne how many tines a particul ar

statenment was executed, follow the vertical bars straight up and to the

113

4. COWPI LER oUTPUT

left until a nunber is encountered. For exanple, the statement count

for the IF at coordinate 0012 is found by followi ng the bars up to
coordinate 0005 , then up and left to the 6. on the preceding |ine;

if this path goes through the statement where the programterm nated
prematurely P then subtract one from the count. Thus, the IF
statenent at coordinate 0012 was executed 5 tines (true 1 tine, false
4 times). The pseudo-listing has all the comments renoved and is
formatted to show the bl ock structure of the program You are encouraged

to nmake use of the statement counting facility in order to better under-

stand just where your programis spending its tine.

4.1.6. Post-Mrtem Dunp

This error analysis aid Olh shows the nanes and val ues of all
vari abl es which were active at the tine the program stopped. By Iooking
at the values of the variables used in the |ast statement executed 43 ,
it is easier to deternmine what (if anything) went wong. The exact

format of the dunp is discussed bel ow.

113.1

dang aeqnduo) aTdures

021V¥IN39 3003 40 SIIAY (9EE1D *82Su.) *NGILVIIGWDD NI SONDI3S »1+3ac ()
HSYME SNIVANGD G313 C3S :ONINIVM = €500 SLVNELAOOD 8VEN LT rurds3 @
z 39vd ¥6:1Z € 2061 AYVANYF 61 SYTLSNANOVIC NOTLVIIAWCD (ZLNYFOT) ™ 1097% GoldaNTLAS

6=S39vd SANJI3S (I=amll (19090630 3SNIILA0 NTILINDZTX2 @

Uiv3 1- elod
GN3 2- el *
1) 101N 301 S
SCINPDI/WNS e AYVEIAVR ANS e wNSu L LI % jNODu)Z 1T UM .e 2000
3573 (wdNCu9 Aldw3w)3alu® N3 4 (=04000 d1 - "
SON3 €= LIvC
(BWANING3L1UM ¢ BANN)INOCY Y == €M
t1 ¢ INIDD =% iNNGD -- BV
; tomIN ¢+ ANS =3 wNS == LW
! 1939 -t 9
U0 [==%talh = Inm ~-= GaCt
LIBWINDINO3L T S lannN)E2AVS S -— 9J)0
o =t INAGJ =2 WNS & -- €ovoc
w s223%€21008V @ {(rerrcmccncccccce e I3]3 4Z8ROAN 3INIFND3IS ¢ SVH CeVI SIHL L73mwl) -- tull
N19z¢ -i 2uiu
m LQNSYHXS INANT TILNN oC8) LNhaviwd D Lu afidl 301k - cuil
teali AN ALDIMWNS 53U 3 N -= luitb
- [¥r
m t1- 33alln 3L HLIM 31k - 17
(@) dNO¥9 HIVZ °SHIGWAN 40 SdANCEY 4C 3ICVI3IAT (Nia 01 av:dlac 1N3nRGD -- {JJC
O @ n1938 =1 Co
3
1 39vd ©6:IZ €7 2061 AwVANYE 61 —mb/qﬂ«:mﬂw AL b _@ u..qﬂ@m

4.

11k

COMPILER OUTPUT

L.

QOM

62

uexdoad Burpeodaad oug J0F ndqny uoTanoaxy

1S =: SWNN
1I~20718
(SWNNINDQV I
0 =: WNS 0 =% INNDD
9 =: INNCD =3 WNS
t3ndl = #
(3andL 37IHM)

(Z)10¥1NDJ01
t€ = INNOD !9 = WNS
JOVY3IAY

9
9 = WNS

e = INNOD

(LNNOJ/WNS *u 39VUIAVK *WNAS *w WNSw *INNDD *w INNODW) ILIZM

000000060000000°2
-
$¢ =3
H S
S |) v]

WNS 2 = GWNN

23S7vd = & f€ = INNDD
N3H1L 0 = INAOD dI

*cc f3NWL = % !€ = GWMN
(1= =~ GWON 3ITTHM)
€
f€ = GWON
(GWNNINO3ILTHM
tE =2 GWNN
(BWNAN)INDQV3 Y
$2 =: INNDD T = INNOD
T + INNOD =2 INNOD
T = WNS
AGHWNN + WNS =: WNS
$3NUL = x $2 = QWIN
(1= =~ GWNAN 3THM)
2
$C = GnNN
{GWNNINOSL T UM
£Z2 =: gWNN
(SWNNINOGVIY
£T =¢: INNOD 0 = LNNOD
T + INNOD =: INNODD

WES 1 = BWAN $0 = wWNS

GWNN + WNS =: WNS
£3NdL = %2 !T = SWON
00 T=- =- gWnNN 31

21 = GWON
(SWNNINDI LT UM
t1 =: 8ANN

(8WNNINO QY 3
$0 =2 WNS !0 =: INNOD
0 =: INNCI =: WNS

$3NHL = =

D3 3NyL 3TIHM

8 #Z 2¢ LlSe 30Q¥OI2¥ INdNI
|-=°2 2000

|~=°2 €0V
I 2000

j--*1)

WNS

ANNGJ
j-—-°1 . 1100

|-=°1 1100
S(NIVK) ONIDVAL <=

1--°1 N §e3s]
P== 502
I--1 8002
1--"1 IR
f-=*1 i El
I-=*z Uy

T- ¢ 2 1w 323030 idaNi

e
NG

b--*1 €90

"wec

115

panutjuod ndqn) uoTINodXy

COMPILFR OUTPUY

b,

NOT1NJ3X3 NI SANCDIAS ST1°000

o)

303 d3av3iy - (NIVW) NI %000 3ILVNICY00D ¥ViN ¥o¥d3d NOY
0C0000CU000C0S°S JovYIAY 22 WNS % INNGD
- L 9 1 ki

dNOYd AldW3

(wdNOY¥9 AldW3Iu) ILIY¥M 1--°1 1100

o wwcﬂm><

1L682%1.582491°62

SUNTVYW) ONIDVYL <=

0 Wns 2 INNGD
0 -2
ctc IANML = x
(IMdL IIHM) | 200¢
{2)710Y¥INCD0I |-~°2 €100

L = INNDD %02 = WNS

39Vv33AV
%02
502 = WNS
wns
f L
L = INNCH
INAD S
(INNOJ/KWNS *n 39VHIAVE “WNS ‘w KNS *INNOD *uw INNODW) IL1¥M I--°2 1100
$3S7vd = L = INNOD
N3HL O = INADD 41 |-=*2 1100
SINIVK) ONIDVHL <=
1 8 92 2¢
v t3INYL = & 111G = GWON
00 1- =- GWAN STIHM |-=-*2 Chlvis
L LS
tLS = GWNN

(SWMPNINOI LT 3™ | -="2

Ui
[a]
<
[

116

COMPILER OUTPUT

.

dimq woqrouw-4sod pur JulgsIr-opnosd

17

3S379VIAVA TVOO0T 40 SanivA

23RN IN2WO3S < =

(2)7104¥ INO D01

S(LNNODJ/WNS -lww<Pm><=oxDmul NNS, “LNNOD *ulNNOJu) 3L1dM
(udNIYD ALdkIe) I L IUM

(BWNNINOILI UM t{aWNN INCaVIY LAWAN + NNS

SUEANNINO3 LT M

L (8WNNINOQV3Y

$wNS ¥IOIUNI

@drzbm ®Cy

LAWNN ¢ INRDD

SINIW9IS IAILOV 4D 32»?@

£10vy
€137
£100
21¢.
il
1100
Jill
CRIaS
I5C:
S3lh

pAV IRV

{ [
SR C
NOTiNd3X 3=

F

COMPILER QJTPUF.,

L

o~

(T‘pogaag) Sutoesy ou UTA wesBoad BuTpecead Sus Jo jndang

T -=49nNN

4 0 3 4¥30v3y -~

00000300000005°¢
1 L

0

TLGGCVTLG6CVT 6¢C
1 88
Ooonooooccmooc.m

0 = INNOD
(NTVWINT
JOVHIAY 22
9
JOVHIAY O
i-
JOVYINY 402
%2
ERITET A

€

s

Z¢

(NIYW)

118

2 = Wwns

$S37AVIYVA 1v301 40 SIANTVA

‘INVYN LNINOFS <=

SLINIWD3IS FAILOV 40 3IVdi<l=

NOILNJO3I X3 NISINCI3SE0*00¢

$$000 3LVNIONGOD MYV3N

WNS %
wns 2
Nns 2
ACS €

30da3 Wiz

LISE-B)

ANRDD
Aldw:z
ANDCT
LNNO3

INNOD

L. COMPILER OUTFUT

4.2. Details of the Tracing Qutput

The tracing features of ALGOL Wallow the programrer to watch the
statenent - by- st atement execution of his program The tracing output
consists of four kinds of information for each statenent:

a) The coordinate of the statenent. @

b) The nunmber of times that statement has been execut ed. @

c) The source statenent itself.@

d) A description of the values used in the statenent. @

There are special notations for procedure calls, for iterations and for

showi ng data cards.

4.2.1. Basic Notations

For each val ue fetched during the execution of a statenent, the
fetch and store trace ($DEBUG,4) prints VARI ABLE NAME = VALUE @
The store trace only ($DEBUG,3) suppresses all of these fetch val ues.
For each value stored (assigned), the tracing prints
VARI ABLENAME : = VALUE @ . For each logical expressionin an IF or
VWH LE statenent the value of the expression is printed as * = TRUE @
or ¥ = FALSE @ . If tracing is suspended because the next statement
has al ready been executed m times (cf. Conpiler Options for details of
$DEBUG n(nm)) or because the TRACE function is used, then three dots are
printed @ . The second and subsequent times through a WH LE or
FOR | oop are indicated by the WHI LE or FOR statenent in parentheses @
Wienever a new card is needed by READ or READON, the conplete card inage
is printed as INPUT RECORD. " 80 characters " 62 . Note that in general

string values are printed with quotes on each end, but any quotes within

119

4. COWPILER QUTPUT

the string are not doubled. Reference values are printed as

Recordclass .# , where # is a unique nunber (in order of allocation).

4.2.2. Procedure Call Notations

- XYZ; Indicates a call to procedure XYZ &3 :
= TRACING XYZ; I ndicates that a new procedure is being
tracedO 14

(PARAMETER ASSIGNMENT) A dummy statement indicating whatever

cal cul ations nust be performed in binding
the actual paraneters to the fornal
parameters 45 .

((PARAVETER I N xxx AT yyyy: trace))
If the actual parameter is an expression, then
this notation gives the nane of the calling
routine, the coordinate of the call, and a
trace of the expression eval uationol6 @
Note that in the first exanple given, the
expressi on MAKELONG(I) is actually another
procedure call, whose tracing term nates about
25 lines later. There is a second exanple (2}
on the next page.

FPARM : - APARM I ndi cates the correspondence between the formnal
paranmeter and the actual paraneter a7

- FPARM' : = val ue In the case of VALUE and VALUE RESULT

paraneters, this indicates the value assigned
to the local copy of the formal paraneter 68 :
"The local copy is then used inside the
procedur e %9 .

Used as the nane of an expression which
ot herwi se has no narme &2 :

120

£l
Nt

4. COMPILER OUTPUT

— XYZ(..) = value I ndicates the value returned froma function
‘ procedur e &0 @ This notation is
preceded by a blank line to indicate a
return to tracing the calling procedure.

121

COMPILER OUTFUT

Y

L =
S = (EE*ICONY)IVA €E'IAONY =d £9€°30AONY =3 (LE*3ONNU)INNITD

SEE*IOCNY =3 d f€E°3ACNY = (Z€ “3CUNYIUNTT

‘S = (z€'3AONY)TVA

R

110N =:

®

d SN = (€E°IQONEINNTT

8€*3A0NGITIVA

£9E°TA0ONY =3 D

DU g 0 <
(rd)3CHIATY
= % 2 = 01 L7 = N7

MIHL 0> NI 4l

e {) HIORET f419NFT <~
(3)HieN3IY = O

$2 =3 £7 = (*C)HISI 3T teioNDY K-

(NIHLION ST =5 N
£9¢TIAOMY =t M PEETIODONY = 7M37

AR =2 (gt IA0N Ny) NI
(0 ¢37NN)3AINY

$0¥3Z <~
nd3z =3 0
LG IOUNG =2 WY 9E°ICONY = (**)AdDD
£QE°*JUONY = D
¥}
t3SY¥3ANIY <~
(D)3 HIAIY
$39I%3 = » 3NN = 4
(1IN =~ d 3714m)
teec3anty = d
(d)INIT =2 d
2 (1€°3CONE)TIVA
fog 3(GNNY = &
t(d) WA ‘T)300ONY =3¢ D
£3MM) = = t€¢ *300NY = d
(VIEN =% d 311HM)
tZe*3CONY = ¢
(a)¥WNITY =2 d
¥ 16 =2 (9FTJUINY)IVA
(Se*3CMNEINNTT

€°300NY =: D !¢

$ZECICONY = d 41NN = $1I0N =
AHV ((d)IWA *TIIGINY =5 D
$3NY¥L = % 12€ "J00NY = d
NG 1NN == d 3VIHM
NN = L
NN =z O
$Z€°300NY =i 4 f2€°300N8 = WNI A”V
1ZETIOONY =3 NI $2€°300MY = oh LN =t d(f

CINIWNCTSSY 0313aViVdd

o
ey
DN

T oo

n

44

f==1 nezo
j==*1 020
}=mc7 AY%20
j==-"1 X X!
[=="1 L2100
133837 ONIIVYL <=

fe=*1 L Y]
[=-*1 8890
|==*1 LBI)D
Amu €809

f=-=2 68290
I--"1 #8902
| 80D
J==*1 5820
[==*1 2229
J==*1 ey
[==°1 7809
[==*1 ¢ 1322z
l=-°1 D600

24437 ONTIVL <=

SR €873
PATIOMIT OMIDVEL <=

10 £3

29z L 44
EAS 7 7 -

27 (x4 4
1e 5& 21 +
cne 31 134 *
Cohe-t1 1002

122

L. COMPILER OUTRUT

penurjuod qudqno Sutowal

(WO18 w3 ZINI *37NAN)I30CNY =: ¥

£3nYL = 166 ZANT

00 0 =+ ZINI 3TIHM

166 =5 ZINI 0T = LOIG 666 = WINI
KOTG ATQ INT =: ZIN]

SEIAUNY =3 2¥ f€T30DONY = dIMSNV
g3IMSNY =3 2y

$€°300NY =2 YIMSNV 26 =: (€°3QONUITIVA 0T = WIIE 666 = «INI {Y1IAN =2 (£°300NY)INNTT
(WOI8 w3Y INI 47INM)I3ACNY =1 ¥3IMSNV

666 =% WAINI 666 = f -3 INT
<INIWNOISSV ¥3ILINVHV LD

SONOTIINYN <= :Z2€E0 1V (NIVW) NI ¥313wWVdvd >>
UCICONY =2 HIN $7°2CONY = # % -3 IN
mw << ST*3Q0ONY = (*°)ONDIVKW

$1°300NY = Y3IMSNY
d3MSNY
£3SIvd = x {0 = ZINI
{0 =+ ZINT 311HM)
. 0 =2 ZINI 01 = WOIY f6 = 2iINI
WOI9 AIQ ZINT =: ZINI
$2°300NY =: 24 $¢2°300NY = ¥
4 =3 2¥
€Z°300NY =3 (T°JOONYMDINIT $2°300NY = ¥ $1°300NY = 2
. ¥ =: (ZUIINIT
i ST1INN = (T°3CONY)ANIY $1°3Q0GNY = 29
TIAN = (ZYINNIT LY3ISSY
$2°3QONY =2 ¥ 6 =2 (2°ICONYITIVA CT = WIIg $6 = ZINI 11NN =: (2°3aNN3)IIMNIT
(WOTE8 WY ZANI *7INN)3AONY =: ¥
£3NYL = % 6 = 2INI
00 0 =« ZINI 31HHM
t6 =2 ZIN1 $OT = WOI9 $€6 = +INI
WOI9 AU NI =3 Z2INI
$T°3Q0NY =: Z¥ $T1°200NY = ¥3MSNY
: YIMSNY =: 2¥
ST°300ONY =: YAMSNY $6 =: (T°3GON¥)IIVA $0T = WOIE $66 = (INI 11NN =: (T*ICONY)INNI
fWOTH W34 AINI *IINN)300ONY =: YIMSNV
66 =5 JINI f66 = 1 1 -: UNIT
mmv CINIWNOISSY 3 1IWVHY LD

SONOIINWR <~ :Z€€0 LV (NIVW) NI ¥3L13hVdVd >>
! CINIWNOTISSY UIL1IHvYvde>

SAGWONLT <=~
CECIONGISHYIW ¢ {1)ONDTIINWVW)IAGNONDT =2
666 =2 156 =@

3
1
(C ¢1ImI0vIay

tardy =
e 2andi 31

|-=*2 0200
f==2 6109
-2 2100
|==*2 L100
|==*2 9100
4 #1072

FONOIDNVE ONTIIVYL <=

|==*1 9200

I 5100
J==°1 200
l==°1 €200
f--°1 2200
f=-°1 1200
f-=-°1 0200

f=-*1 6100

9100
f--"1 LT00

f=-"1 9102
@

f==1 100
TONDIINTR OMIIV4L <=

l=="1 261
TAARINDT SMIJVYL <=

@

[==°1 4334
E5E 5%u :T¥W0IIY 1NINIT
J==*1 TEEC
-3
PHY f==*1 JEED
7H
WH |--°1 52€0
§] I
1€ | EE AR 82¢0
LNT f=-="1 1002

(LIVA) ONIOVAL <=

123

COMPILER OUTRUT

b,

$E°300NY = D $6 = (T1°3AONUITIVA $1°30QONY = d 32120 1V ADWONCT N

<INIWNO

Hel
E)TIVAR L) IVAIMD
vV otg = (°°

T =3 J8WAN 218 =
<< e

ST1T120 LV AdWINOT N
<INSRNO

SE°3CONY = D %6 = (1°30CNYIIVA S1°300NY = d

tHO

CIT)IWAX(d) WWAIHII
$3NYL = x fe°3

00 1NN =+

t€°3G0OMY =2 O f€°*300

¢9°300NY =: ¥ $9°3CON¥ = 1VIL
aviidvdl

$3SIvd = » £9°3Q00MY = V1L

N3IHL TINN = TVIldvd

£3NY¥L = = ¢

i 09 NN
$3SIVE = 2 46 = (E°3JGONY)IIVA $€°3AQ0NY = 0 £6 = (1°3CONYIIVA

T ©il3wvivd >>
IGSV a31dwWwvdvd>

N7 <=

1T =7 4

JHATH @

8 216 = +HWNN

kST ALQ EwNM
Bote = DN
= (£°Z00NY)TIVA
T d4313WVEvd >>

1GSY E2LIAVHVA>
IH <-
H =: v J==°1

anNy = b
O 37IHK
Nd = W2ZN
AN =: 0
80 =:)
0 =: 9
Y dIHI TN
HOTY =3 ¥4
WV ALHYT Y
1HOTY 31
1"300Nd = d
=e g IVIHF
f1°300NY = d

N3HL (OIINN = (DDINIT) ONV (0 = {B)IVA)) ¥0 (NN = (dIXNIT) OGNV (0 = (d)IVA)) 31

6 SCONY =3 IVILIYVdIHSL1Y
.|
G°300CNY =: dIMSNY

$£9°300NY =t ¥ 0 =: (9°30ONW)IVA 1PN =:
to ¢
t€°30UNa =: D

LE°3CNNY =: 42N f€°3ICONY
<< 1€ °I00NY

tge

® -
(o

ZINDT 01 = v91¢
vTe MIC
t9°3C0MNs =i 2% ¢

.o

o
”
.

£4°30CNY =2 (E£°3QONJIWNIT :%°*300NY = ¢ t¢
]

EIION = tE°ICONEI LI €
1y = (2x)

$9°30CNd =3 34 6 =3 (9°300NY)IIVA 01 = w918 f66 = ZIND 21N =@ (9

$9°300NY = ¥
=% IVILAVIIHOTY
$9°J0O0NY = o

d =3 %IMSNY
19°30rNY IuNIT
TINN) 3GONY =3 ¥

S °IUONY = 42N
ey =2 D

SAZGUNY = B IN
IN =3 ¢

= x ty -1 QN

= (*°)2NOISYVNW

ICTNE = dIMSNY
42 SNy

=+ 6 = 2UINI
= ZAINT C 3TTHM)
tee = ZIM]

*3GTYY = 2V

(Ze)»m 10
iy = 239
AIY L»3ICSY
TACCNRYIINTY

)

f--°1 €400
$MDT ONTIVHYL <=

120
-—*1 G209
[==*1 G100

SHOTH ONIDVYL <=

1120

j==*1 0120
f=-=*1 6029
f==*1 8020
I-=--1 L020
[=-=°1 €020
j==c1 2020
j=-*1 2022

J=—"1 1020

j==*1 00290

{—"1 6612

J==*1 €61d

f=="1 L61D

|==*2 9200

TONDTIINVR ONTIOVAL <=

| 6102
j-—*2 ©ZC0
|--2 €702
i---2 7750
1---2 1220

124

4. COMPILER OUTPUT

4.3. Details of the Post-nortem Dunp

The post-nortem dunp begins with = TRACE OF ACTIVE SEGMENTS @)
then the conplete call chain is printed starting with the procedure which
. was active at the point of termnation and working back to its caller,
etc. For each procedure, the following information is printed:

a) The name Of the procedure@.._ The outernost procedure is
called "(MIN " and a sinple BEgIN bl ock is nanmed "(BLOCK)" .

b) The nanmes and values of the local variables in the procedure @ .
Uninitialized values print as "¢ @ . Local copies of
paraneters are named with primes@‘ Strings are printed with
a single quote added on each end, but quotes within the string
are--not doubled. At nost eight values are printed froman array,
usual Iy the first seven and |ast one @ Reference val ues
are printed as Recordclass .# , where # is a unique nunber
(in order of allocation). The control variables in FOR statenents
are all distinct even if they are spelled the same way. so if
| is used in many FOR statenents, it wll be dunmped nany timasOl.

C) The name Of the calling routine and the coordinate of the call @
For NAME parameters, a procedure may be re-entered (environnent
re-established) to evaluate the corresponding argunment @@

125

Wy ooy

L i i

"

COMFTLER OUTPUT

b

(E)A
(8)A *
(€A
(g)mM *
(EIM
(8)H *
(e)H
(8)0 *
(e)d

T S S S

-

Vsl Wi 4l Q= 4 50g

(2)A &= (DA o= LA
(3)A e = (s1A L= (9)A
= (2)A L= (1A ¢ = (0)A
(5)™ ¢ = (3)¥ o= (o
(Z)n ¢ = (DI &= (0w
= (vin &= (5 o= (Y- ©
= 12) L= (i = (0 q
= (9)t = (st i = (n)
= (2)Y L= (b @ ¢ =
gl = ok § = un @
1$370vidvA 1907 30 SINIVA
YLedinIT 23IWYN LNIWOIS <=
6920 ILVNIGH00T YVIN *90udNIT WUu4 GILVAILOV SVM 6y
¢ = zc ¢ =10
:5376v1 4vA W20 30 samva (§)
v :3IWVN AINIWOIS <= @
Z%20 FLVYNI Q¥OUD dv5N 49¥ WOUS GILVAILDY SVM 3SOdWIDIG
L=
2 =1 d = adlid 0 = WWOLLDH
$S3IMVI ¥YA V00T 4G S3INTVA
IS0GWOJ3G :3IWVN LINIWO3S <=
1800 JLVYNICYUOOD dV3IN 43S0dW0D 3T WOY3 GSLVAILIV SYM AIOSINL
e =1 ¢ = ALa3Iwd
d = 11 1- = 4313 T = »0l4

:S378vIiavA IvVI01 40 SINTVA

AT0ST4L S3IWVN IN3W93S <=

H#IL3WY JVd V SSIDIV OL *€€00 3UIUYNIJHOUD ¥viN *AI0SIZL wUdd I3¥IINIS5Y Svv gy A”v

€7 I3WVYN IN3IWI3S <=
¢%20 3LYNIQUOUD dVIN *€v Wudd (UILVAILOV SVYM LVWD
¢ = 412 & = ala
$£S379vI 4VA VI3 40 S3NVA
LVW9 :3WVYN INIWIZS <=
43L13IWTHYG ¥ SS2IIV Cia *2L00 JLVNIGHOLD ¥Y3IN S LIVWD WOY¥4 J5¥3INI3E SVM gy A”v
f

dV f3WVUN INIWDIS <=

S1v3k23S IALIIOV J0 3Dval <= A”V

Gh 3 i g£20

COD™ Sa 3NIYA w *CIINT %y X3Cwla)3a] v j==*2 8520

36 T - N2Z Lan 1T d31S D = 1 404 f==*2 85827

3572 (=43 fu 0N HTRTIu) ILIAM -=*3 6622

N3HL (=« dd3 41 | 85292

CNT 17 fm 8D 48 43 T 4+ NN SNNkZ YT 4+ NN)ISTedIT [Lels
CNS | 96c™

193a j==*t1 ieen

L] SUNMEZ)/T =)k SIo= Dt oA

COMPILER OUTHUT

L.

® e
* 8 =1

& = (0ZIN]

€ = (EINI]

¢ = (01N

o= (0)N

¢ = (o2to0t1)8
$993399°0 = (0%¢€)8

& = [02)1Sd
0000SLE*D = (€£)ISd

¢ = (02))
30~-e86L130°€” = (£)D
lo= (0Z2)M

36366562° = (EMM

¢ = (02)498

0 =-(t)88

8 = TWNN

¢ =1

LI=-4E9LIES"°6 = VI3
¢ =_11
¢ T
G = vi39
(8)04
(€10¥
& = (92)x1
€ = (€)XI
(8%8)d
¢ = (0%€)d

i = (5)A

~ W
"

o
n

permtquod dumg weqrow-3sod

1IX3 TVWYON 0L ¥0Iud

i1 =1 s L=F
. €- =1 el =1

9 = (91 = (NI

Z = (2] S = (1IN]

0000€5L°0 = (€N 0000005°0 = (210
0000052°0- = (1-)N _ 0000006*0- = (z-)N
0= (0'9)8 0 = (04S)8

$99999°2 = (04289 61999990 = (0¢1)8
9C000SL°d = (9)1Sd 00005290 = 5154
0600052°0 = (Z)1Sd 000052170 = ‘1)1sd
TLLST4L00°0 = (9)) $2959£6000°0~ ! (512
S0-48511S0°€ = (2)) 0= 4ny
$6565560°0 = (9)M §5665650°0 I (5)K
$6656550°0 = (Z)M 65556550°0 = [TIM

3 = (9)89 0 = (g)ed

) = (2)88 0 = (D&%

0 = wy3, v =i

L = NN e =N

1620 ILYN1QWOUD ¥Y3N

SL441S00LE2°L- = 7A3Yd GL+4SCOLEZ"L = ALINIANI
3= PR

1- = inl PR

é = VHelY L1 = N

9 = (G)U: S = (¢)03

2 = (2104 T = (1)0y

9 = (9IXI 5 = (5)X1

z = (2)XI 1= t1ix1

&= (S45)d L= (3 S)e

& = (04C)a ¢ = (2 D)de

¢ = (<C)A ¢ o= {212

— 4 J4 <4

Y3 IJTAN3AI 0¥LIN0D J0 INTIVA LSV =%

s 91 = |

: & =1

% = (2N

G = (2N

00230052°0 = (110
0090006L°0- = (e~-)N
0 = {0%)¢

00002C°1 = (0‘0)=
000CN0%°C = (%#)1Sd
3 = (0)I3a
G29459L6000°0 = (%)
0= (9)2

§GGGSGG0°C = (9)IM
§659G9C60°C = ()

0 = (%)ca

CQo020°T = (2)ed

¢ =T

[

$S3AVIAVA v ICT 4C $29

A

C‘&(Jq

~on

[JoR b B
(D422
to*lic
= (=)t

GRAMMATICAL DESCRIPTION OF ALGOL W

—

R. Floyd

128

128.1

GRAMMATICAL DESCRIPTION

In the gramatical description of ALGOL Won the fol |l owi ng pages,

Roman capital letters, such as A B C D, stand for themselves. A script
letter, possibly accented, stands for a defined infinite class of synbol
strings; f'or exanple, ¢ , as defined, stands for the class which includes
the symbols A B, C Z AA AB, ...,A9, BA,...,B9,...29, AAA, s ..,
799, AAAA, A Geek letter, such as A, stands for a given finite
set of characters.

The synbol | reans "or"; if @ is defined as B|C , this means that
a particular inscriptionisan Q@ if it is aBor if it is aC.

The notation a* , or equivalently m}* , neans any nunber (including
zero) of inscriptions, one after another, each of which is an @ . For
exanpl e, {AlB}* _“means A or B or AA or AB or BA or BB or AAA
oror A, where A neans no inscription at all.

The notation @ means any number (but at |east one) of inscriptions,
one after another, each of which is an @ . It abbreviates a” . For
exanpl e, {a|lB}" neans A or Bor AAor . . . or BB or AAA , etc.

The notation [@] means an optional occurrence of @ ; it abbreviates
fala} .

The notation% means @ or O8Q or @A |, etc; it abbreviates
ammay” .

The notation @ L& means @ and/or B ; it abbreviates ¢|g|05 .

The curly brackets { } are used sinply as parentheses to show the
scope of the above operators.

All other characters, such as /-, () / < etc., stand for thenselves,

including * and + when they are not raised.

129

GRAMMATICAL DESCRIPTION

g

(¢ u+mmmmpnmoomm_mpg<>wth

(0)ONINIS | TVOIDOT| TVR | YEDAINT

(@\=! 3, [:6| S} (¢ §INIDEE |2} X TINAAOOUL :wm b

N3 s, { %_mmw*n& N ©3d

S 0ad 2 TIINN 2=i¢ ¥od|g 3ST3 .S NEHI 3 JI|S NIHL 3 4I|.8
gl & 0L 09|[(,3) ¥ |a=3¢

(== l<l=<l=1=>1>} (-]} V1«3 [(3) | 8]0l e} 1-O

n
L

(52 ¥

wifu [0070,0

alonb a|gnop ay1 1dsoxa ‘youndAsy syl uo |oquhs Auy
*Q_é N

6lel* " -lefeltlo

z|x|x| " |2|ajolg]v

U0 171U 14aq

> =2 G

M TO9TY Jo 19sqns 9 |duiS e Jo Jauwuen ayl

we 160 .d

Bu 1peay o inpado.d

adAs

uo 11e Je |23p
130 [q

Juaua 1e1s
wauseils a|duis

uo Issa Jdxe

an [eA Uuo 11dun}
JUB 1SU0D

|oquAs

8 1}11usp |

116 1p

18119 |

dueN
aA 11d 110588

130

) oﬂ*ﬁo“:w TIINN [3 d3IS]} 3=%¢ HOA|S 0 3 TITHM|
. @3 £ g NTDFE () 2 ESVO|S 3STd S MEMI 3 JII|S NIHL 2 4If,S

‘9oeds © Jo ‘|e Je JaloeJeyd ou :luauslels Aidus syl
glvii(‘ 0)l¢|e oz 09]3 {=: A
:._TE:% Is|a

(£,3) 40 2 @svo|a 3STE 3 N3HL 3 4,3

GRAMMATICAL DESCRIPTION

¢ Sl 3 Bli=H<|=<|==>|>},3] 3

(0| - | +} {0V [1i@ | ATa] /| ¥} | THS [} { (@) |6]0] A}, {OHS [oNO'T| sV (-] (=|+]

(L)l

1IN (a2] (2] 2[Q]0]€] V] 9} #]
asTvd|angs| [(T)(TI{{, 0 (-+]:} Y { 9" 1(,9°],0}]
‘a1onb a|gnop ay1 1daoxs ‘youndAsay 8yl uo Js1oeeyd Auy
[(oR2)1{ ()| (3)ele)
RE RGN
68| --+|<|2T|0

Z|X|X|---|2]a|o|E|V

U0 1710 1Joq

M 0OV J0 Jaule n a8yl

/7]

T <

(91

3

Juaua je1s
Rqdwo

Juausels a|duis
Juaunf Je

uo 1SSa Idxa

uolje gl lo
uo 1ssaldxa o |duis

uo| ssaidxa a|duis

ah [eA Uuo []aun}

JUB 1SU0D
|OquAS

9 |qe I JeA
13 141jusp |
116 1p
18119 |

aueN
an 11d 119sag

11

GRAMMATI CAL DESCRI PTI ON

[(%) e Avaay | £, ¢ {ManaEdodd [L]

[*1{g]s}

(IInST]} [ANTVA] £})]e

¢ (D
ﬁtmvmozmmmmmm_ﬁ,) JONTYEIS| [

¢ €
(¢ & L)f QOOM

(2€) }SII€ | TVOIDOT | { XTIIWOD | TV } [DNOT] | UEDEINT

| {ang w*m"q_mmw*mmqw NIDIE |3} ‘X BHNAHIOHd [
S fAMNQId0Nd| (£, 3::3) ¢ AVaNY f] g L

. < € cel
i W*M.q_.mw L 176} NIDad

UoT31utIoq

Toquhs

wexdoad
Butpeay sanpsooad

adfa

UOT3RIRTO9P
%0014

“oueN
aaT3dIaossq

132

—AL DESCRTPTION-

*Teax SWOT 0] P9 }JaAU0D alJe siebalul ‘9| 1 = d ueyy ‘| = o
“1>S :SM0 |0} Se palaplo ase Kayl
] 1 1 T
N = "X usym ‘o Jo uoisioaid = °d

9 oY>o | :Smojjo} Se paleplo ase Aeyl
Xo|duos = o ¢
[eal =y ¢
ol = | T
taxe sugewop 9|
N = Hx UM o JO U lauop = Hc
dJUslajal =9 °¢
S11qg = € *4
Buiils = g °¢
eaibo| =1 2
driaunu =N T
:9Je BlEp JO Spuly 8yl
%3 uo Issaudxa 0] Bu Ipuodsaiiod ‘o Aq paiusselidal elep JO pu Iy = Ty
m 1 T
*"3 U0 |Ssaldxa Jo anjen = ‘©
T
‘uo I1ssaldxe \\ 1OV Aue = 3

Siulelisuo) adAL pue

sToquis Jo aM

sbu luegy

's]auiod J18Yyl M 10OV JO suol1ound pue sioleisd oyl

135

GRAMMATICAL DESCRIPIION

| +Hv pue |_u_._”m 919Yyn S « HQ [MOHS .ﬂ.@ « H@ MOHS | N < N IMOHS Ty Hw MOHS
=T 10 s=Md aso 7« T o01 (@ Te)xem « DT N <N ONDT To T3 N0
Ta « T gy (1Tp)uru « Tp sgy N« N Sav | ol 13 sav
°3 ATa 2
JO Japu auslJ ayl
TetHm T Cox@oara W) -0 %3 pmu T3
I<1IAIQTI Ama\aavmﬁogme 3 ata %3
Tg T4 Tp o« Tp. N N- T 1,
Td « Tuxtd (a<Tp)xew « Iyx'D N« Nl o 2 w3
0
T« %dye'd Co<Tp)xeu « Zpylp We N % N %o x o °3 %12
(Catayurm « %-la (%p<Tp)xew « “p-Tp NeN-N %0 - To % -T
CaTayum « 2asla o Tpyxeu — SpaTp NN+ 8 2o . To 25 15
S1|nsay pue siuaunb iy syinssy pue sjuaunb iy s]1|nsay pue 18U 104

J 1JaunN JO Uuo IS 199 .lid

9 1JaunN Jo Su nauog

saunbiy Jo Spuy

13k

GRAMMATTICAL DESCRIPTION

I 0 4+ %

o JOT-
< 2 ybno 1y 1
=" =" S « (N|N)S %o s1919B IRy Anw_mwva
saoe |d %o
| = % g < N ¥HS € Wb 11 paiyiys o %3 ams o
saoe |d %o
| = % g« N THS € el patiys o % ms T3
% sse |2 plodal
1<%y ay1 01 sBuoraq o % S1 T3
T<8< 8
Rue a3 % Tp TeN<N o < To 2< 3
TS <N
Aus g > % Te N =< N °0 2 o %2 =<Ty
T 8=>8§
Aue g5 % TN =>N 03 To %= I3
TS >8
Aue 135 % T Te N >N °0 > To % > I3
Lue Rue Amxn.ﬂx 9I9Yyn)] « qu_ H& %o + o Nw =t ﬁw
Kue Lue Amxu._nx 9IBYM)] « mx = .mx o= lp Nw = .Hw
gedg - - .
U © ION 3 -
de<dany g
Te T ANV 1 % y o %3 o '3
g« d¥0 d
TeTH0 1T Soate Sw
s)|nsay pue sjuaunBlry S1nsay pue sjuaunb iy s1|nsay pue Butuesy JeWIO]
d1JaunN Jo uoIs198.d J1JaunN Jo su rauog suaunf iy Jo spury
<) v v V) v) v

155

GhtAvA LI AL DESURLEL LUN

ACQn-'oaHQvCE —
u., ¢ L
("d¢er+€td) 30 T 3ESYD

Calayura «

%d 3513 'd NmHL T 4 |

AQURobokNUKHﬁVUﬁmE «—
u
("pee+ o Te) 0 71 ISV

Amvkawvxma —
% 3513 ' NaHL 1 41

¥z o= =Ta=y
alaym Y «

M) o ow s
A= o = % aleym
N < ™M 3ST M NIHL T 41

o O

0 - o
Evavda

-

“C 95 M9y 10

am.d zwﬂp.dd 11

u

£

A wAu-o n.ﬂwv %O Cw mwS

3 ‘3573 %2 NuHL 2 4|

33Insay pue sjuaunb iy
d1JaunN JO U0 IS 1991d

SATNSaY pue squsmIay
Jd1JaunN JO Su auog

's}nsay pue
sjuaunbly Jo spury

Uy

181 104

GRAMMATICAL DESCRIPTTON

*1INSa4 uo1s19a.d Buo| e sp|aIh aueu
uot3ouny 8y} 0 HNOT.sI9339T 8yl Buix1jaid 1ey) sueau 3 nsal-uois1oa.id 1Joys e uo XS 1Ialse uy t930N

(@3 o)
o5 - AUy 0 Tp M- N T-/ % P OWN |
To 30 qred Areutssur ay| IMVdOVIWI
S« A A~ N~ N

x Uy 9 To 70 qaed Teex 8y TEYaTVaY
g« 4- ¥ N~ N , .ﬁo_ TYIIOIANNOY

o= ™ 3T 0 0

T+ (|T])T8or 5 1
Ay I+« ¥ N~ N eyl yons | Jabaju1 1sable| aylL ININOJX3

r g/T + [0 > |1 > 2/t - _aﬁ

eyl yons ¢'o
ub1s aues ayj) yim ‘1 Jabat ayl aNnoy

Tost>1-%
Ruy Iy N« N » eyl yons 1 Jabau 1 syl AT INT

%) 3 7 > 1 - ||

eyl yons ‘o ce
| ubis aues syl yim ‘1 uebejut 8yl JLVONNAL
uo IS 198 Id Su lauog Spu 1y Bu ueay uo 11ound

‘A1Bu 1pJ102%e ‘1AUIO) Byl O] POUBILIAX] WO | [eYS °M
‘aleu uo13duny ayl S 4 daym .AH»E Jau o} ayl, aAey suollouny Bumo|jo) 8yl | N
)
4) v v - W) W))

157

GRAMMATICAL DESCRIPTION

‘S|lelsp 10J S |enuau o°99S

‘Aleu1q ul To sjuasalda
ge 1 yoiym si1ig jo 8auanbas ayl DONI¥LSIIE
Te T Jaqunu ppo uwe s1 ‘o ao
'pU023S 09/T JO S1Iun
ul asmiaylo ‘0 =% J1omuuw
I« I 00T/T JO Siiun ul ‘au) pasde|s =i
(/v ‘2/4 -)
abuel ay1 ul .Aﬁova-cﬁ NVLOGY
0s5¢eg > | m| o3 “(To)sod 500
-1 056¢e8 > ?o_ 10y “(‘o)uts NIS
(a2 p) .
«8 < Auy qe p N e N 0 < Yo 203 “(to) 9801 201
0 < Lo 10} Aﬁovmmoa NI
|
“ 9 +iT > o X0y ¢ = XA
g :
87> o) N ;
«S « Auy qe |p N« N i< maoy ‘Top 408
) ' sutuesapy uoT3oung

UCT sTo8dd SuU auog SPU iy

138

GRAMMATTICAL DESCRIPTION

*Id “TVIIXVH NO11Sd3 ‘HEDIINIXVN ‘TZISTIATIINI 10) 99-t9 sabed osTe 993
“OHINOOO | ‘NOZLT¥M ‘JL RM ‘GYVOQVR ‘NO@VI ‘Qvad 10} 66-9S sabed os|e 8sg

‘uo 11ejou juaus |dyos s .om) Buisn
‘|au 198pexay ul ‘o Buijuasaida

(@T)s«1I gL9sHeeTaqaq wrog ayl Jo Buliis vy 9TASVEINI
e [99p U | o bu 11ussaidal
(@1)s « | 068L95HEaT+a W0} Y} Jo Bulils v OTISVEINI
Auy 2> 'p (02)§ « N #C2TO6QLOSHEZTHZT+Aq 10} ‘BAOGE Sy OTASVEDNOT
" |au 199pexay
Ul ylog ‘uoiloel) e saull Usd XIS
_1 Jo Jamod e se To Bu 1uasa ida i
Kuy 4o (er)s « N 9GHEST+T+HA W IO 3y} Jo BulilsS v 973SV3
Auy aS (02)s « N GHCZTO68LOGHEZTH2T+A IO | '0A0QE SY OTASVEDNOT
*(soeds yue |q
e Ssjuasaidal @) cuolloRI) B Ssaul)
_ 1 usl jo Jawod e se To Bu 1uasa ida i
Auy 45 P (2T)s <N L9sheaT+eT+a wroy 8yl Jo Buliis v 0T3Svd
(*TL obed 8as) 'opod e se
(T)s <1 pasn S| To Yo Iyw 1o} Js1oeeyd ayl 3000
(‘1L obed a8g) D la1oeleys ayl Io}
| « (T)s 8p09 B SB pasn S| ydiyw Jsqunu ayl 3a003d
. ‘Aleulg ul
I<d Sjuasaidal "o yoyw Jabaul 8yl HIGANN
uo 1S 199 id Su rauod Spu . Bu uegn uo 13oun4
)
d d v ” Y 'y 'y 'Y

159

Abend nMessages
Actual paraneter
Arithnetic expression
Array declaration
ASSERT st at enent
Assignnent conpatibility .
Assi gnnent st at enent
Binding of identifiers
Bit expression
Bl ock
Bool ean expressi on
Built-in functions
Call, procedure
CASE expression
CASE st at enent
Character encodi ng
Coment
Conpi | er options
Condi tional expression ..
Constants . os..............
Constants for input
Control cards
Control, I/0
Conver si ons
Coor di nat es
Copy rule
Data types
Deck setup
Decl aration
Doubl e precision
representation
Error messages
Exceptional conditions
Expressi on
Fi el d designator
Fl oat i ng- poi nt
representation
FOR statenent
Fornmal paraneter
Fortran |inkage
Function decl aration
Function desi gnat or
GOTO st at ement
| dentifier
| F expression
| F statenent
I nconpatibility,
| nput / out put
I nteger representation ..
TOCONTROL

assign .

| ndex

[terative statements 51
Keywords 11
Label 42
Logi cal expression 37
Nane paraneter L5
~New line 58
New page 58
Normal i zation oL
NUMDEIS tevernnenocnnnoans 17
Nurmber representations 88
(bject decks 107£F
Qperators 11, 32, 133
Qperator precedence 41
Options, conpiler 104
Order of evaluation 41
Overflow 65, 92, 99
Page eject 58
Page limt 103
Paranmeter 45
Paraneters, conpiler 104
Precedence of operators Wi
Predeclared identifiers 6l
Procedure declaration 23
PROCEDURE statement 45
READ vovevecennennnaanonnns 56
READCARD «eveevenocancnnces 57
READON +ococececnonancncnnse 56
Record cl ass declaration . 28
Ref erence declaration 21
Ref erence expression 40
Reserved words 11
Round-of f error 96
Sinple variable 20
St andard functions 60
Standard procedures 53
Statement ... 42
String expression 39
SUbArTaY ... W7
Substring L0
Syntactic entities 12
Time limt ... 103
Transfer functions 60
Types of variables 16
Underflow 65, 99
Variables 16
WH LE statenent 53
WRITE eevenrnnnns cecessnees 57
WRITEON sevvevsns ceceenenes 57

140

Wrds with special meanings in ALGoL W

ABS ... 35
FALGOL 103
ALGOL 25
AND 38, 39
ARCTAN an
ARRAY 22
ASSERT kg
BASE10 62
BASE16 62
BEGN Ite)
BITSTRING 61
CASE 50
ODE 61
COWENT 10
COMPLEX 20
COS wvvvvnnnnn. 63
$DEBUG 104
DECODE . eee cose 61
DV 3L
DIVZERO 65
DO 52
$DUMP* 104
ELSE 48
END oevvvonanne 42
ENTIER 60
$EOF 103
EPSILON 65
EXCEPTION 65
EXP ..o, 63
EXPERR 65
EXPONENT 60
FALSE 18
FOR 52
FORTRAN 25
(¢ 0 I b7
QM ... L7
IF . 48
IMAG ... 61
| MAGPART 60
INTBASE1O 62
INTBASE1G 62
INTDIVZERO 65
INTEGER 20
| NTFI ELDSI ZE . . 6k
INTOVFL 65
| OCONTRCL 58
IS ... 38
$LIST 104

IN ..., 63
INLOGERR 65
LOG ... 63
LOGICAL 20
LONG « ciowons 36
MAXI NTEGER 6L
MAXREAL 65
$NOCHECK 104
$NOLIST 104
NULLoonnn 20
NUMBER 61
4OBJECT 108
oD ... 61
OF ..o, 50
R 38, 29
OVFL 65
PAGES= 103.
Pl 65
PROCEDURE 23, U7
REAL 20
REALPART 60
RECORD 28
READ 56
READCARD 57
READON 56
REFERENCE 21
REM 55
RESULT . 24, W6
ROUND 60
ROUNDTOREAL 60
SHL ...vvvvvnn. 39
SHORT 36
SHR ...oovnvnnn. 39
SIN ..ot 63
SINCOSERR 65
SIZE= 103
SQRT 62
SQRTERR 65
$STACK 104
STEP 52
STRING 21
$SYNTAX 104
THEN 48
$TITLE 104
TIME ...ttt 64
TIME= ... 103
TO it L7
TRACE 59

TRUNCATE 60
TRUE 18
UFL 65
UNTIL eevcocose 52
VAIUE eeese 2L, L6
WHILE 53
WRITE« 57
WRITEON 57
XCPACTION - 65
XCPLIMIT +eeess 65
XCPMARK 65
XCPMSG 65
XCPNOTED 65

