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1. Introduction

The probl em considered in this paper was suggested by Cristy Schade [7]
of the Department of Electrical Engineering at Stanford University. Heis
designing a conmputer systemto assist in the care of patients who have suf-
fered from cardi ogenic shock. The treatment of such patients involves the
adm ni stration of a vasoconstrictor drug over a long period of time, and it
is rarely practical to always have a trained physician nearby adjusting the
flow rate of the drug. Schade envisions his conmputer system as controlling
the situation when a physician is unavailable. The conputer would nonitor
the patient's blood pressure (and perhaps other aspects of his condition),
update a mathematical nodel to correspond to the gathered information, and use
the new nodel to determine the flowrate of the drug to get a desired bl ood
pressure

Schade has devel oped a systemwhich treats a dog that has been injected
with a drug that disables his natural blood pressure regulating system A
conmput er program has been witten for the HP2116B conputer which nonitors
the dog's blood pressure and adjusts the apparatus admnistering the vaso-
constrictor drug to the dog. However, the algorithm enployed to determne
the successive flow rates does not always determne the optimal set of flow
rates. By an optimal set we nean a set of flow rates over t intervals of

time which will produce a set of blood pressures {yj}§=l which minimzes

t
2
z (yJ-rJ)
J=1
Her e Y is the blood pressure at tine TJ and r,J is the desired bl ood

pressure at time T set by the operator of the system This paper devel ops

an algorithmto determne the optimal set of flow rates.



Schade's mat hematical nodel is based on a transversal

filter system that

wei ghts the drug rates in the last =n intervals of tine to correspond to the

patient's behavior. Synbolically, it is given by
n
Y] = kflwkxg-k+1 + Yo

wher e
X, = drug rate at time tJ,
Yy = bl ood pressure at time ‘I.'J,
n . .
{wk)k___l is a set of weights.

In matrix formthe model can he witten:

] r
i
yj+l tYy ngn. ,,,,, wl
~ .
= ! + N
y,j"'n x wo Wn-\ ..... Wl o
: AN
]
z o . 0
y tw ™
J+§" : 0 Wa.

In practice, t is sone positive integral nultiple of n.

Since at time =, the values x
J+l

this systemas y =W x + h, where

~

J-n+2"”’ J

n-1

T v X, +wo: 4 <n
n, = ooy k1 J-k+d

w

and 0 ’ t2n

;;ij = 0 for j >i

O for i >n,j <i-n

W, . el sewhere.

i+l-j

xj+2-n

X4

X, are known, we can rewite



Thus, W is in lower triangular form.

Gven this nodel, we can easiiy determne the future values of the
bl ood pressure, y, for a given set of drug rates. Conversely, if we want
the blood pressure to attain a certain level, using a back substitution

i.e., flowrate
process we can determine the required drug rate schedul e/of the drug for

the next t intervals of tine. However, we nust take several facts into
consi derati on:

1. A negative amount of drug cannot be adm nistered.

2. The apparatus does not allow a drug rate of nore than 50 drops
a mnute.

3. The patient will die if his blood pressure exceeds certain bounds.
The last constraint is the one least often encountered but is, of course,
the nost inportant.

Fromthis information one can fornmulate the follow ng mathenmati cal

c, d, find x to

~

problem: Gven r, W, a, b

3 2
mnimze T (y,-r.)5,
. 1 1
i=1
wher e
y=W +h ,
a, <x, <b,,
1 1 1
¢ £¥; =9y,
and ri is the desired blood pressure at tine T Usual Iy the desired

bl ood pressure is set to sone goal so that actually r Is the sane for

all 1.



The problemoutlined above is a quadratic progranmmng problemthat nay
be solved in several ways; however, When choosing a method we nust observe
the following criteria

1) The method nust be fast for systens whose nunber of variables is
greater than 20, and whose constraints are four times the nunber of variables.
2) This particular problemconstitutes only a small part of the tota
system It is considered as a background job to which unused tinme cycles
are allotted. Thus, it is unknown whether the procedure will actually be
given sufficient time to conplete the conputation. Hence the method
should be iterative, and all iterates should be feasible, i.e. they

shoul d satisfy the constraints.

3J Since the procedure is needed only when constraints are active,

i.e., when x nust satisfy sone equality constraint, the nmethod should work
well in this situation.

The problem was approached in two ways, differing nore in the actua
formul ation of the problem than in the algorithms involved.

In the first case, a nethod proposed by Goldfarb [1] based on Davidon's
variable metric method for unconstrained optinization was applied to the problem
of finding x to mnimze

f(0 = § (x + 0+ o)

wher e



and

C-h<Wx<d- h.

~

(A di scussion of the algorithm and the conputational experience appears in
Section 3.)
However, it was discovered that a better approach was to set z = Wx + h-r

T
Z-z, where

3
he R

and consider the problem of deternmining z to mnimze

c-rizid-r
and
a+w"(h-r) <W z<b+¥ "(hr).
Section 4 contains a discussion of this approach. The nmethod used is
simlar to Goldfarb's, but less conplex. In fact, the ideas notivating both

are the same, and it is these ideas which will be developed in the next chapter



2. Basis of the Al gorithnms

Assume that we want to minimze a convex function

f(x) = £, + alx + xTCM, (1)

|-

0

where x is of dinmensiont and nust lie in the domain D defined by

T .
n; x > zi, =1,2,...,n,

wher e nf n, = 1 Note that f is a convex function if Gis a positive

definite matrix.
Assume-that prior calculations have indicated that the solution
actually lies in the hyperplanes defined by

Di-l_-N,X:%:,I =l,2’_._)q, Vmereosq<m

Let M denote the flat which is the intersection of these hyperplanes. If

g =grad (f(x)), then by the nean value theorem for any X5 X,

i+l’?
8(xi,1) - 8lx) = 6lx ) - %) (2)
[f we want f(§i+l)ma be the global mnimumof f where X 08
in M then g( ﬁ+1) nust be orthogonal to M i.e., §(§Ba)mu5t be a

| inear combination of the unit normals to the hyperplanes whose intersection

"is M Thus, if the colums of N are those nornals, then

)=N(}, (3)

and hence by substituting (3) into (2), we get
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1_1 -
C(N o - g(x)) =% - X (%)

Si nce Xio1 "% 08 parallel to M we nust have

0 =m-(x,, - %)
or, from(2),
0= NG HN o - g(x,)).
This inplies
a = (NTG'lN)'l (NTG'l g(x,))-

Substituting this back into (4) we get

Xi = X+ ( a™In( NTc;'lN)'l NGt - G'l) gl :_51)
or ~ 1

Xj40 =% PG 9£X~1) (5)
wher e -

P=1-cn votn) “Iat.
Thus far we have assumed that the global mninumof f, where x is
constrained to D, corresponds to the minimumof f in M However, we can

di stinguish two instances where this is not so:

Case 1. There is no guarantee that the point X1 does not violate

some other constraint of the problem Hence, it would be preferable to wite

X. = x, = N s,
~i+41 ~i ~i’

where s, = p gt g(x;) and 0 <A < 1. |If X is the mininum distance that
can be traveled in direction s before one of the inequality constraints becones
an equality constraint, then x = min(1,x). |f A =1, then the mninum of f
al ong s has been found and hence the nmininmumin the correspondi ng hyperspace

has been located. |If this is not the case, then the barrier 'hit' nust be added

as a new constraint, and a new direction nmust be deterni ned.
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The value of X can easily be calculated. Assume that the point x,

lies in the interior of a region

T .
n, x. > 4 =q+,...,m
~J ~i 3’ J g
If X is tolie in the closure of this donmain, then
¥ (x, - Xs,) >4, j = a+l,...,m,
o, T s § i =7y
which inplies
- T T
- - = 1yeee
A Dy 8 Z% I.},j )fl’ J a+lt, s,
~ - T T
A Ej 8; < Ej X, - JZJ,J = q+l,...,m,
T
- By %4t
>\_<_—-%——J-, g=ot,...,m
n, s
~J ~1
[f we set
nT.X-L
K.=:"L‘%]_‘j', J = a+l, ,m,
J n, s,
~J ~1
t hen
X= min {(x P\JEO}
@l <m

Case 2: The global mninmumfor f where x ¢ D actually lies in some

flat M' where MCM and M £ M', i.e., we have too many 'active' constraints.

To check whether this is the case, we consider

T (-1
u = (N'N) N-§(1§i+l

). (6)

A necessary and sufficient condition that f(xi+l) be a gl obal m ninum



i s that \\PG'1§(§1+1)\\ =0 and u>o9.

For a conplete proof of this last statenment see [1]. An intuitive idea

of the proof is given below.

. . S a _ . .
Cbviously, if |pg §<§1+1)” =0, then f(x; ) is the minimmof f
for x e M. If X4 is not the global mnimum then we can proceed in the

direction -g(x, ,) to find a point X in D such that f£(x) < f(>g~_1+l).
Since §(§i+1) = N a, we have
(V) Ng(x, ) = (W) (NN
= 9‘

and thus u =\d. Since the unit normals to the hyperplanes which constrain

X point towards the interior of the region, a point I~can be found such

t hat f(SE) < f(fi+1) if and only if at |least one of the conponents of u

IS negative.

Because of the above it is obvious that once X1 has been conputed

we should check if (> o. If this is not the case, the constraint cor-
respondi ng tothe most negative conponent of u should be dropped. Since there
are only a finite nunber of constraints, this process should termnate in a
finite nunber of steps. However, dropping constraints only after the m nimm
of f in Mhas been found mght not be the best strategy. It mght be
preferable to drop a constraint whenever we find that u has a negative
component. In this case, if X has been reached without adding any new

constraints, then f(x, must be the nininum value of f(x) for x e D

1+l)
Moreover, if r constraints are dropped before a nove, it is likely that r-I

repetitions. of the algorithm have been saved. Thus, it seens that we should
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drop a hyperplane at the first opportunity. Unfortunately, there is a big
di sadvantage to this strategy. Al though the dropped constraint cannot be
pi cked up imediately, it is pc;ssi ble that after another constraint has been

added, the dropped constraint mght have to be reactivated. This is clear

N\
N\

from the follow ng exanple: -

NP
/Atzonstraint 1
X

%<,
. i
constrained

’ —— e constraint 2

// ’ \}fi-&-l

s-constrai ned mni nmum

In the above illustration, if constraint 1 is not deactivated, the
m ni num can be found in one step; otherwise two steps have to be taken.

Thus, we need a strategy guaranteeing that the function will be |ess
if the constraint is dropped than if it is not. There is a W& - known

estimate (see [6]) that if

+

1 -1/2
<—uis , (7)

" el, <3

P G~
‘where

g /™), and u, = min {u, [a, <0},

then the i®® hyper pl ane shoul d be dropped.
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3. @oldfarb's Method

In our problemthe function f, mentioned in section 2, is

f(x) = T

fix + h-r)” (Wx + h-r)

N

Since W is lower triangular and L is positive, f(x) is certainly

convex. Its gradient is. given by

and its inverse Hessian is G- =W * & L. Accordi ng to the theory devel oped

in section 2, if we are at a point X and the colums of the matrix N are

the unit normals to the hyperplanes whose intersection defines a flat M

then the mnimumof f in Mis found at

X

o1
Xi,q =% - PGe(x ),

wher e

P-1-c7t N ¢ tm)tn.

L . 2 -1 - :
In our case it is quite costly to actually compute =P G 7, and it mght be

nore practical to approximate it by sone matrix H and set Xa= x5t H'g(;gi)-

Donal d Goldfarb in [2] presents an algorithmincorporating this idea. For a
_quadratic objective function in a systemof dinension t, if the same (¢

constraints are active for t-q iterations, his His equal to -P G'l‘

Hs algorithmis anal ogous to Davidon's variable netric algorithm when no
constraints are active.

The heart of CGoldfarb's algorithmis his nethod for updating H
Let Hq represent the matrix H when g constraints are active. If we want

th

to elininate the g constraint from H  then
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T
P nn P
9-1~9~q g-1
H =H + (8)
q-1 @ T op n ’
~q gq-1 ~q
T -1 T st
wher e Pq-l _ - Nq_l(Nq_l Nq_l) Ny.p- If we want. to add a q+l
constraint to the intersection, then
T
o g Hymgan Sga1 By _ (9)
q+l ~ T

Boel Hg Bg41

If the basis remains unchanged, then set Hq = Hq + A + B, where

O'i O'jT
A= - (10)
9 I3
Hy. y? H
~1 ~
B =--%
H ¥y
wher e
R s WS |
and

y; = 8lxg,) - 8l

The chief features of (8)- (10) are:
. N | , - 2 -1,
(a) if Hy = - L t hen Hq+l given by (9) is equal to 'Pq+1 G

~

(b) the term A in (10) insures that I(—1|=-Pq G1 after t-q steps

if f(x) is quadratic;

~

(c) the term B insures that nutually conjugate directions are searched, i.e.,

T . _ .
S5 _%s. = 0,1i¢ j where s, = Hqg(fi),
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(d) The objective function will always be decreased at each iteration;

(e) His a positive sem-definite matrix. Mreover, if v =Nq<},
T

then v Hv = O;
. N . . .
= 8) is not necessarily equal
(f)y if Hq PqG , then Hq-l given by (8) y eq
A -1
to -B G

3.1 Gbservati ons

Wien none of the blood pressure constraints is active, which is true nost

-1
of the time, each row in x has only one non-zero el enent and (n') I

This neans that the rows of H corresponding to active constraints on x are

. th

zero. Wen the | constraint is dropped, the update of H according to

equation (8)requires only adding 1 to h(i,i). Further, when only drug

. . C =1 T . .
constraints are active, the vector u = (NTN) N'g (refer to section 2) is

easy to obtain once g has been conputed, and the quantity g in equation
(7) is just 1. Thus, we can use a strategy for dropping constraints which

assures us that we will not be deactivating a constraint which mght have to

be reactivated in a short tine.

1

| f H:-;’ G~ and s =Hg(xi), then the mninumof f along s is

~ Ad

1

, then it

found at X, =% *tS However, if Honly approximates ‘p G

I snecessary to conpute X such that Xiq =% tAs mnimzes f along s.

Since

2

f(x+As) = f(x) + A 5

twn

the mninmum of f along s occurs when

T T
g s g s

s7Gs ) (WS)T(V—JS)
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Since the conputation of Wsis required anyway to determine if any of the
y constraints are active, the nunber of steps required to determine the
mninmum of f along s is effectively negligible.

The main disadvantage of the algorithmis that whenever a y (bl ood
pressure) constraint is active, we nust update (NTN)'l‘ Gol dfarb [1] gives
recursive relations for updating (1\1111\1)'l whi ch require approximtely §-q(q+t)
operations every tinme a new colum is added to N W can do better by noting
that N can be witten as N = QR, where QTQ =| and R is upper triangular
(see (4)). In this case, (NTN)'1 -rRT Adding a new colum to R as
will be described in section 4.2, requires approxi mately % (g+t) operations.
Even this estimate is high when we consider the fact that, when blood pressure
constraints are active, many of the other constraints will be drug rate
constraints. Admttedly, in our formulation where the model is linear, the

y constraint is rarely active, but when it is a patient's life is probably

in peril.
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3.2 The Matrix H

Probably the largest problens in the inplenmentation of the whole nethod
are the initialization and form of Hq. Several alternatives present them-

selves, none of which appears conpletely satisfactory.

Alternative 1: Since Hj = vla T Hqcan be initialized by deter-
-1, forming the product W 19T ana applying eq. (9)

nning the matrix w
q times. Because of the formof W (i.e., triangular with elements the
same on the subdiagonal s and di agonals), only t2/2 steps are required to
formw '1.However, another t3/6 are needed to formthe product. If we

t hen add anot\her qt2 steps to obtain Hq, using (9), we find that for a
20 X 20 system on the |BM 360/67 approximately 1/3 second has el apsed before
the routine has even been entered. This is entirely inpractical, considering

the application of the procedure.
N
7 i ot

n

Al ternative 2: The matrix I;llcan also be witten as Hq

wher e MO=I and

_m T
=M - — 1+1)(M B4

= T

(w 1+l) M.L( 1+l)

(11)
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This last fornula is derived fromeqg. (9).

To update the Hq matri x when the constraint matrix has not changed,

we use the formula

ME+1 = Mq A+ B
wher e
=-T —-T T
A M .M
(MM g)(» MW "g)
- T
Mo Y
and
- - -T
_ qw y)(N{1 ¥y
- B = - 3
T H
Zi q Zi
wher e

y; = 8(x ) - alx).

Since the gradient g has the forn1gQ}) =’$ v, where v = (§x~+ (h-r)),

the formula for A and B can be witten even nore succinctly as

A(M vy )(M Vi)

= 1]

Ve n_ v,
~1 ~4q 1
wher e
vy = W x +(b-1))
and

Z. = V. - V,.
~1 ~141 ~1
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To drop the qth constraint we set

_ - T
P
v (we -1 q)(wa~q) (12)
-1 - Mt T
n P n
g-1 ~q

This alternative is not as inpractical as it nmight appear, for the

fol | owing reasons:

(a) The function of the matrix His to project g(x) into the correct

flat. In the algorithmit is used only to deternmine the correct direction
Hg(x ). Since we know that g(xi)has the form V\‘Tvi, t he 5; vector i s simply
i = W 'lM *v.. A though we now need t%z nmore operations to conpute s, , we

g ~i ~1
have al so saved t2/2 operations since we never need to conpute §(§i)
explicitly. Moreover, since M(i/~.l is conputed here,to update the fornula
for A requires fewer steps.

(b) If only the X constraints are active, the vector Pq-lilq is a
unit vector which has a '1' or a '-1' inits qth component.  Thus, no
work is required to formw Pq-lEq' Further, because W is |ower triang-
ular, the first g-1 elenments of W Pq-lfq are zero. Therefore, to drop
a constraint requires (t-q)2/2 operations, which admttedly is nmore than
in the previous alternative.

(c) If only the x constraints are active, the formula (11) for formng
My initially can also be sinplified. Since W "Tis an upper triangular

matrix, if n.. corresponds to constraining the ith conponent of x, then

-T

the last (t-i+l) conponents of the vectorW n, will be zero. [If the

constraints on x are initially added so that.the | ast nonzero el ement of
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T

t he ith colum of V' is above the |ast nonzero elenent in the i+l colum

of I\T then after i+l applications of (11) Mi+l wll have the form

M A0
s 31

where A isa jxJj symetric matrix, and D is a diagonal matrix of
rank t-j and the i+lth constraint corresponds to constraining X, -
Accordingly, formng the l\/}l matrix requires fewer steps than one night
have anticipated originally.

Calculating a vector a = 7 s equivalent to finding the vector
a such that il'a~= b. In our problemif t > n, where n is the dinension
of the filter systemused to determine W, W " is a full lower triangular
matrix with the sane elenents on the subdiagonal. However, W has a triangle
of size t-n in its lower corner that is zero. |f b has just one nonzero

conponent, which is sonetines true when eq. (11) is applied, then naturally

we shoul d use_VVl. In other cases we can do backsubstitution to find a
2
and save gt—érlL oper ations.
. . . : 3 2
This fornulation still suffers fromthe fact that approximately T 4t

operations are required to formthe original matrix Hq I't mght seem

- better to start with no constraints active and encounter themone at a tine,
but conputational experience shows that nost of the first constraints
activated are |later deactivated, and that it doesn't pay to conpute s

and mnimze f along s each tinme a constraint is made active.
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Although the formof Hjust presented is not that useful for our
particular problem the idea might be worth considering for other problens
T
whose object function has the form (A\A}’{:b") (AX-b).

-1
Alternative 3:1f we set H=P ¢ , W have

g [-i Tt W It ah W T

If A=W 'TN, then this becones

g1 -w ta@l)t v T

- - - — -
R TS Rl G - B

If we start out with the exac;{ H ~and change H just by updating A then
Hwll always be equal to -P G (barring roundoff). Thus the update formulas
for H when the constraints are not changed will never have to be used.
Since g is of the formWT v, then s = Heg sinplifies to

s= W “Hr-aaTa) ATy

This | ooks horrendous, but if we put H= QR where @l -1, then RR = AlA

and computing (aTa)™tv requires only g?operations. Qn the average the

cal cul ation of s takes about t2/2 + q(3/2t+q) operations.  The update of

A" involves only updating R and is not prohibitive. Actually, using this
alternative is the same as using the method to be described in the next

section, except that fewer steps are required there.

Alternative 40 Begin with H=1 and forget that the inverse Hessian

is known.  Applying eq. (9) g times when only x constraints are active

~

results in the matrix H where
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h,. = 0 when i #£ 3
0 where constraint on X, is active and i = |
1 ot herwise.
Consequently, the initialization procedure requires no conputation, and
movenent toward the required minimm begins immediately. This approach
seens best when there are many constraints active, since Hw Il equal
;G-l after t-q iterations. However, usually about t/3 constraints are

active and progress is slow it takes twice as long to get to any point

as it does in the method described in the next section.
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4. The Algorithmin the Transformed System

As mentioned in section 2, the problem can be refornulated by setting

z =wWx + h-r. In this case wWe want“to M ninize

~ ~

wher e
<o (13)

1ol o]
IN
| w

<Wz<a (1)
Eq. (13) corresponds to the blood pressure constraints, and (14) corresponds

to the drug rate constraints.

In this situation the gradient of f is given by
g(z) =z

and the inverse Hessian of f is given by

where | is the identity matrix.

The matrix P described in section 2 is then given by

P=I‘N( NT)'lNT

where the colums of N contain the unit normals to the hyperplanes which
constrain z toaflat M Therefore, according to (5), the m nimum of f(g)

"for z constrained to Mis given by

R, NS
2y =2y - (I-N(NN) TNT)z,

(15)

| f Mis defined by the g relations

nTz: Al’ i =1,...,q9

~L~
o *! q!

(assumng q constraints 'active), where 4 is known for i =1,.
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eq. (15)can be rewitten as
Zivl TEH TS

wher e

s, =z, - N(NTN)'lz.
~1 ~1

| f (NTN)'l can be conputed easily, then a matrix H to approximte
-Be"" is unnecessary, Further, the mininmumof f along s in M, which
is the mnimumof f in M can be determned inmmediately.

The main disadvantage to refornulating the problemis that now, when
only the drug rate constraints are active, the matrix Nis nore 'full'
than in the previous situation. Al so, (I\TTN)"1 is not the identity matrix
and we cannot easily obtain the upper bound on || N'N) ||;l that eq. (7)
required for a good criterion for dropping a hyperplane. Because of this
we decided to drop a hyperpl ane whenever -g(x,) pointed to the interior
of the region. This strategy had the disadvantage that constraints were

sonetimes dropped and then reactivated.

4.1. Deternining (w7t g,

Assume  NT s qxt. Since Ncan be witten as N = QR where
QTQ:QQT =1 and Ris a q x q upper triangular matrix, we can wite
(NTN) - R'QTaR = R'R.

In our algorithmwe nust conpute the vector u=(NTN)'l{- This is-equival ent

to determning u such that

(N'N)u = £ of RRu = £.
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Since Ris an upper triangular matrix, u can be determned using two

backsol ve operations; i.e.,
Rm = £,
and
Ru=m

Because each backsol ve requires about q2/2 steps, we spend al most as nmuch
time multiplying £ by (NTI\I)'1 to determne u as we do working with R
So instead of deternining (NTN)'l, all we need to do is determine R This
can be done by performing q Househol der transformations, which requires at
nmost (t-q/3)q2ﬁsteps, where t is the dinension of the system I|n actual
practice we can order the colums of N in such a way that the |ast .
el enents of the kth colum are zero, and >0, for kK =1,2,...,3-1.
In this case, it is necessary to performabout 2( % % (t-nk-i)) operations.
k=1 irk

In practice (t-nk-i) is small.

As shown in G Il and Miurray [1], updating R when a new constraint is added
is not difficult. Let N represent the matrix whose colums are the unit

nornmals to the intersection of g-1 hyperplanes in which z |jes. Assunme

that a new constraint nust be added.

Let N = [N:’nq]. If N= QR then

N'N.N R'R. Nan
nTN: nin nN * nin
~q ~Qq q ~q ~Q~qQ
If we set R = R ir], then
0: ad
NN = R*R = |RR. Rr
"R : rTr + d?



2=

Hence, Lo determine R we nced to find r and d, where

~

T T
Rr =N gq_
1/2 1/2
and d:.(INIT'IE. -r'fr) = (1- ETE)

Because Qi s orthogonal the above square root is real.

Since RY is a lower triangular matrix, the process requires one vector

mul tiplication to find Nan and one backsolve to determine [ . and thus
takes about t-q + q2/2 steps. In actual practice the nonzero el enments of &

are known a priori and -g-‘-(t+q) woul d be a nore accurate estinate

and n
~1

of the nunber of operations required.

Wien a constraint is dropped the corresponding column nust be del eted

fromR Tae matrix then |ooks |ike

e e e

If the 18 colum is elimnated-we have g-i elements bel ow the diagonal

which nust be annihilated. Using Gven's rotation matrices as suggested

by Golub in [3] this can be done is 2(q-i)2 oper at i ons.
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4.2 The algorithmin detail.

Using the results of the previous section, the whole algorithmto solve
the problem can be witten as foll ows:

1. Determne an initial guess x, wWith q constraints active, and

~0
set  z, = W Xy * h- r. Oorrpute'—V\/'l if this has not been done previously.
Det erm ne t he bounds zi, i =1,...,4t, for the transformed system

) . . L. T _
Set up the constraint matrix Nq wher e Z, satisfies D, 2z = zi,

1 <i<q. Using Househol der transformations, form the matrix Rq wher e
= Ta =
N= Qq3q and Qqu_ |,
3. Conpute the vector u where

Ru=m
q~

and

T
Rm= 4.
q ~

(Note that if step 3is entered fromsteps 4 or 6,nost of the elenments of
m have already been conputed.)

Let u = mn u..
l1<j<a”
hoof u, <0, delete the i®™ colum from N, usi ng Gven's rotation
matrices, update R, set g =¢g-1, and go to 3.

| f w > 0, then form§i=+Ei-N-1£.

5. Determne T
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Here we are assuming that z is constrained to lie in the &min &fined by
n,z > £,, 1<§ <bt.
o - -1 :
Not e t hat in; is either one of the rows of W ~or a vector with only

one nonzero conponent.

6.1f A < 1, add the corresponding colum to Nq,form

Ryi= FEEE]' wher e

0:d RII‘=NTD..
q~ q~1i
and _
d=sqgrt( 1 - r.Tr);
set g =atl, Z; 4 =2; - N 8, and return to 3.
= -1
7. Set z =2, - s, and x =W “(z + r-h)

X is the required drug schedul e.
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I'n our program we have ordered the constraints on z so that the first
2t constraints correspond to eq. (14), and the last 2t constraints cor-

respond to eq. (13). If we wite the constraints as

T

BJEZZJ, J = 1)2’--0,14‘1",
we notice that
T T .
n, = = . 1< <t
~J Y,J) SJdS U,
nT = =-e 2t+l < J < 3t
~J ~j-2t’ =1 =77
T_ T t4l < j < 2t
25 = hy-t 2 3t+l < § < 4t.
Herewg' isthejthrowof w1 and e, is the unit vector inthejth

coordinate direction.

1

The fact that the matrix W = is part of the constraint matrix and

enters into the transformation of variables sinplifies the programmi ng.

Step 5in the algorithm just outlined essentially requires

the conputation of -1,_. and \_N'lsi. W know t hat

~. ~]

z. = Wx. + h-r

~0 ~0 ~
and

Z5 = 1 -\ ng_l, I > 01
whi ch means

- -1 -1

W Tz o= x + W (Err) (16)
and

= -1 - -1 - -1 -

Wtz =Wtz m MW Ty g, 120 (17)
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Since W -'(n-r) is needed to conpute the bounds for eq. (1k4), every

~ o~

quantity on the right-hand sides of (i6) and (17) are known for i > 0.

1z in step S5requires at nost t nultiplications.

Thus, the conputation of W~
Simlarly, recovering x in step 7does not involve a matrix multi-

plication. W are to set
- W "(h-r).

But this means that

X =W -1Zi - W -lsi -W -1(9-2). (18)

Since every quantity in (18)is known, X can be obtained inmmediately.



-29-

5. Obtaining an Initial Quess

On the average the program can run about 10 times before any of the data

Is changed. Each time the drug values nove up 1 tine interval, so that the

th

tinme represented by X during the i procedure call is the same tinme represented

by X;_p ON t he (i+l)St procedure call. If neither r nor W has changed,

we may expect that the values x

5re for the previous tine interval m ght

..,Xt

be excellent guesses for x In fact, if we allow the process suf-

IEARREE T
ficient time to attain the nininumin D during the last tine interval, then

during the next tinme interval only a few iterations should be required. An

initial estimate for x_ can be obtained by |ooking at

t
n
e = Wy-r- ZWX, .. .)/w,.
0 "¢ iz 17t-141 1

If e <0, set xt=0.lf e >50, set x, =50; otherw se set x; = €.

t
Usual Iy when W is updated the changes in W are not that |arge.

If the drug rate schedule fromthe previous call are still feasible, which is

very likely, they may be used as initial guesses. However, when r is changed

< (which occurs nuch less often), it is wise to restart the process.

Wien restarting a process we have several options. W can set

x =t j =0....t. (19)

This is the steady state solution which was Schade's original algorithm
These values are always feasible, put can be far fromoptinal. If other
met hods give answers violating the bl ood pressure constraints, the values given

by (19) seemto be the only way to start.



and 0 < X <50,then the colum corresponding to the constraint on
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Another way to start the process is to take advantage of the triangular
a

shape of W and set x, = (hi-ri-..jingxi-J+l)/wl’ where £ = min(i-1,n)
and n is the dimension of the filter systemused to determne the w's.
| f X; is greater than 50, set x;, =50;if x, <0, set x, =0.
If at any tine a constraint on the blood pressure is violated, then revert
to (16).
"The main problemwth the method above is that too many constraints

are usually activated that later nust be dropped. 'he initialization

procedure has been nodified in several ways to help alleviate this problem
(1) If X, 0 and X =50, set X, = 10 and recalculate x; -
(2) If x,

1

]

50 and X1 = 0, set X, =40 and recalcul ate K

(3) If the Ww matrix has been updated and X, 4 =50orx , =0,

i-1

is not included in the N matrix.

of

If the sanme constraint (upper and |ower) holds for the first p conponents

X, and the next t-p conponents are unconstrained, then there is no need

to call the function mninmzing routine.
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5.1 Conmput ati onal Experience

The al gorithm described in section 4 has been inplenmented in Algol Won
the | BM 360/67. For a systemof 20 variables and 80 constraints approx-
imately 1/3 second is required to determine the correct drug rate schedul e
initially. Wen the matrix W has not been updated and the results of
the previous time through the algorithmare used, the procedure requires
| ess than 1/10 second. W think that the algorithmw |l be operationally
practical when it is integrated into the real tine systemalready running
on an HP 2116B machi ne.

During thé testing of the algorithmseveral facts were observed that
are worth nentioning:

When conputi ng xj we nust insure that EJ'TE >0 |If the ] th hyper pl ane
has just been dropped, it is possible that because of roundoff error the
quantity ffJT;Zl' - zj will be slightly negative. . the quantity r~1§§ is

tive, this constraint will be the first one encountered. Accordingly,
we must check the sign of ETJE bef ore conputi ng h.J.

If the W matrix has not been updated and we use information from the

previous time interval, then z 1,...,t-1, need not be reconputed.

i’ ! =
However, it is still necessary to reconpute R and the bounds on z. In
"fact, in this case nmore time nmay be spent computing R than in finding the

m ni mum



Qur solutions supported the 'bang bang' principle of contro
theory. Oten they indicated that the drug shoul d be adm nistered at
50 drops per minute for a period of time, then at O drops per mnute
and finally back to 50 drops per mnute. This is unfortunate from a
conput ational point of view because it neans that nmany constraints are
active and nore conputer time is necessary per iteration. It is also
unfortunate from an operational point of view In this situation dif-
ferences often arise between what actually occurs and what the nodel
thinks has occurred. If an interval of tinme is considered to be 20
seconds, then a schedule of 50-0-50 is effectively a schedule of 50-3-50.
Updating the nodel snoothes out some of the inconsistencies between the
nmodel and reality.

Roundoff error does accumul ate but not catastrophically. Gven
the uncertainties in our data and the inprecision in our apparatus, we
are obtaining solutions as accurately as we deserve

Qur solutions also verify the control theory principle that solu-
tions of the problemin two distinct tine intervals do not solve the
probl em when these two intervals are nerged into one large interval. O
course, if this principle were not true, we could solve the problem once,

and for successive tinme intervals tack on a local solution.
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The active constraints can only be linearly dependent if the patient
is dead, or if the person running the‘program sets the desired blood pressure
outside the prescribed bounds. Therefore, linear dependence was not considered
in the inplemented al gorithmalthough it can easily be detected by checking
d when updating R

Wien a bl ood pressure constraint is activated, only q? steps are required
to update R as opposed to the fornulation presented in section 3. Al so,
adding this constraint does not require added attention or code. This makes
the whole program shorter and, hence, it can be nore easily translated into
HP assenbly Iangdage so that it can be integrated into the system now running.

The procedure given in section 5for determning z often activates too
many constraints which nust be dropped. It was thought that if in the beginning
no constraints were activated, then the ones hit during the execution of the
main al gorithmwould still be active when the mnimumof f(z) for z ¢ D
was found. This was not the case. Mny times the constraints encountered
first were the ones later dropped. Furthermore, to construct Rinitially
takes fewer steps than to add one colum at a tine.

In the table bel ow an idea of the number of nultiplications required in

each phase of the programis given. |n practice the quantity g is about

t/3. Calculations which involve Q(t) operations have not been incl uded
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(Qperation Count

= dinmension of the system
q = nunber of active constraints
n = dinension of the filter system or the nunber

Needed when W and r are updated:
a) initial guess of x

b) conputing wl

c) initial guess of z

Needed every time subroutine is called:

a) creating R

b) bounds for z

Qperations needed for first full iteration

a) determning s

b) determning

Dropping the i th constraint:

a) updating R

b) reconmputing s and A
Adding a constraint:

a) updating R for drug rate constraint

b) updating R for blood pressure constraint

c) reconputing s and i

of nonzero diagonals of W

(t2 - n2)/2
(n°)/2
(t2- nz)/2

(t-q/3 )a°/2

t2/2

q2 + tg/2

(t-9)t/2

2(g-1)?

(q-i )P/2 + a°/2

2
ta/q + q°/2
2

qQ°/2

q2/2 + t2/2
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(4]

(5]
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