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1. Introduction

The problem considered in this paper was suggested by Cristy Schade [7]

of the Department of Electrical Engineering at Stanford University. He is-.

designing a computer system to assist in the care of patients who have suf-

fered from cardiogenic shock. The treatment of such patients involves the

administration of a vasoconstrictor drug over a long period of time, and it

is rarely practical to always have a trained physician nearby adjusting the

flow rate of the drug. Schade envisions his computer system as controlling

the situation when a physician is unavailable. The computer would monitor

the patient's blood pressure (and perhaps other aspects of his condition),

update a mathematical model to correspond to the gathered information, and use

the new model to determine the flow rate of the drug to get a desired blood

pressure.

Schade has developed a system which treats a dog that has been injected

with a drug that disables his natural blood pressure regulating system. A

computer program has been written for the HF2116B computer which monitors

the dog's blood pressure and adjusts the apparatus administering the vaso-

constrictor drug to the dog. However, the algorithm employed to determine

the successive flow rates does not always determine the optimal set of flow

rates. By an optimal set we mean a set of flow rates over t intervals of

time which will produce a set of blood pressures cyj )J"=l which minimizes

&Y 2
j=l j

-r.) l

J

Here y.
J
is the blood pressure at time 7. and r. is the desired blood

J J

pressure at time T.
3

set by the operator of the system. This paper develops

an algorithm to determine the optimal set of flow rates.
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Schade's mathematical model is based on a transversal filter system that

weights the drug rates in the last n intervals of time to correspond to the
. .

patient's behavior. Symbolically, it is given by

where

Yj = iwx
kzl k j-k+1 + wO'

“j 3: drug rate at time
5)

yJ
= blood pressure at time T

J'

{wkJ::=l is a set of weights.

In matrix form the model can be written:

f 1,
! wo pn. l l . l �W1 -1
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Xj+2-n
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Xj+t+l-n\

In practice, t is some positive integral multiple of n.

Since at time 7
j+l

the values xj-n+2j**'Jxj are known, we can rewrite

this system as y = f x + h, whereU M u

and

wk+l "ci-k+4 + wO' JCn

r
ij = 0 for j > i

0 for i > n, j < i-n

wi+l-j elsewhere.



Thus, Z is in lower triangular form.
. .

Given this model, we can easily determine the future values of the

blood pressure, y, for a given set of drug rates. Conversely, if we want

the blood pressure to attain a certain level, using a back substitution
i.e., flow rate

process we can determine the required drug rate schedule/of the drug for

the next t intervals of time. However, we must take several facts into

consideration:

1. A negative amount of drug cannot be administered.
-=.

2. The apparatus does not allow a drug rate of more than 20 drops

a minute.

3* The patient will die if his blood

The last constraint is the one least often

the most important.

pressure exceeds certain bounds.

encountered but is, of course,

From this information one can formulate the following mathematical

problem: Given r, w, a, b, c, d, find x to
- -+- -

minimize ~ (Yi'
i.=l

ri)2,

where

ai < xi < bi,

and ri is the desired blood pressure at time 7..1 Usually the desired

blood pressure is set to some goal so that actually ri is the same for

all i-



The problem outlined above is a quadratic programming problem that may

be solved in several ways; however, when choosing a method we must observe

I.

the following criteria:

1) The method must be fast for systems whose number of variables is

greater than 20, and whose constraints are four times the number of variables.

2) This particular problem constitutes only a small part of the total

system. It is considered as a background job to which unused time cycles

are allotted. Thus, it is unknown whether the procedure will actually be

given sufficient time to complete the computation. Hence the m:thod-

--.
should be iterative, and all iterates should be feasible, i.e. they

should satisfy the constraints.
--_ -

) Since the procedure is needed only when constraints are active,I

when x must satisfy some equality constraint, the method should work

well in this situation.

The problem was approached in two ways, differing more in the actual

formulation of the problem than in the algorithms involved.

In the first case, a method proposed by Goldfarb [l] based on Davidon's

variable metric method for unconstrained optimization was applied to the problem

of finding x to minimize

where

f(x) = $ (ix + h-r)T(fs + h-r)u mu NN

a<x<bCI-#u-N



and

(A discussion

Section 3.)

However,

. .
c - h<ijx<d-h.lcI- SW--...a

of the algorithm and the computational experience appears in

it was discovered that a better approach was to set z = ix + h-r,N NN
1T

and consider the problem of determining zu to minimize 2 z-z, whereNN

r<z<d-rg- -- 0u-n4 H

and

a + i "(h-r) < 2 -lz < b + i "(h-r).N Nm - he--u CI CI

Section 4 contains a discussion of this approach. The method used is

similar to Goldfarb's, but less complex. In fact, the ideas motivating both

are the same, and it is these ideas which will be developed in the next chapter.
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2. Basis of the Algorithms

Assume that we want to minimize a convex function

f(x) T 1T=fO+ax+zx Gx,- M 0)

where x is of dimension t and must lie in the domain D defined by

nT x>aA-- i' i = 1,2,...,m,

where nTn 1,i 3 = l

Note that f is a convex function if G is a positive

definite matrix.

Assume-that prior calculations have indicated that the solution

actually lies in the hyperplanes defined by

Tn. x = a., i =-1 - 1

Let M denote the flat which

g = grad (f(x)), then by the

If we want f(Jci+l)to be the global minimum of f where x+1 is

12 ? l l l ? 9,
where 0 5 q < m.

is the intersection of these hyperplanes. If

mean value theorem, for any EC, zi+l,

= G(xi+l - Xi)* (2)

in M, then g( c-j+1 > must be orthogonal to M, i.e., !$( ?ti+l )must be a

linear combination of the unit normals to the hyperplanes whose intersection

'is M. Thus, if the columns of N are those normals, then

g(_Xi+l)  = N $9 (3)

and hence by substituting (3) into (2), we get



Since xA+1 - ",i is parallel to M, *ye must have

0 = N’(5i+l - Xi)

or, from (2),

0 = NTG-'(N o! - &cc)).

This implies

a = (NTfl~)-' (N~G-~ g(Xi))'

Substituting this back into (4) we get
--.
X
A.+1 = ffi + ( C+N( NAG%)-' NTC1 - c?) @;hi)

or

where

X . = x.
,1+1 -1

- i G-l g(x )- U.
1

LI- G-lN( NTG-lN) 'lNT.

(4)

(5)

Thus far we have assumed that the global minimum of f, where x isclr

constrained to D, corresponds to the minimum of f in M. However, we can

distinguish two instances where this is not so:

Case 1: There is no guarantee that the point JCC+~ does not violate

some other constraint of the problem. Hence, it would be preferable to write

X = xA+1 A - ’ Ei>

where
Si

= ; G-l g(_xi) and 0 < h < 1. If 7 is the minimum distance that- -cy

can be traveled in direction s before one of the inequality constraints becomesN

an equality constraint, then i = min(l,h). If A= 1, then the minimum of f

along zi has been found and hence the minimum in the corresponding hyperspace

has been located. If this- is not the case, then the barrier 'hit' must be added

as a new constraint, and a new direction must be determined.



The value of 5; can easily be calculated. Assume that the point zi

lies in the interior of a region

Tf3j xi > a.,
J

. .

j = q+l,...,m.

If ?i+l
is to lie in the closure of this domain, then

which implies

- T Ill 5i 2 1. - Ey 4i) J

J
= q+l,...,m,

--.
T r$ zi < I$ zi - A., j = q+l,...,m,

3

nTx 4 .
r<-J-i ;L, j

- nT
= q+l,...,m.

4 5i

If we set

then

nT x .-a.
h kT1 J .
j=

) J = q+l,...,m,

f3j Zi

L ;ni.n
q+ls j 2 m

(Xjlhj z O) '

Case 2: The global minimum for f where x f D actually lies in some

flat M' where MCM' and M f M', i.e., we have too many 'active' constraints.

To check whether this is the case, we consider

u = (NAN)-' ~-g,(l+~) . (6)

A necessary and sufficient condition that f(x+l) be a global minimum
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is that ll~-'g(Xi+l)li =O and u>Q.N-W

For a complete proof of this last statement see [l]. An intuitive idea
. .

of the proof is given below.

Obviously, if II&-lg(~i+l)ll = 0, then '(z-j+l> is the minimum of f

for x E M. If x+1 is not the global minimum, then we can proceed in the

direction -g(x+l) to find a point E in D such that f(y) < f(x
-i+l ).

Since g(Xi+l) = N a, we have

(~54)~~  NTg( xi+l) =  (  NT~)‘l ( N~N)CI
NM

= ,ar,--.
and thus u = a. Si,nce the unit normals to the hyperplanes which constrain

X point towards the interior of the region, a point 2 can be found such

that f(z) < f(xi+l ) if and only if at least one of thi components of ud CI

is negative.

Because of the above it is obvious that once x+l has been computed

we should check if u > 0. If this is not the case, the constraint cor-m -

responding totie most negative component of u should be dropped. Since there

are only a finite number of constraints, this process should terminate in a

finite number of steps. However, dropping constraints only after the minimum

of f in M has been found might not be the best strategy. It might be

preferable to drop a constraint whenever we find that u has a negative..4

.

component. In this case, if x+1 has been reached without adding any new

constraints, then f(x
-i+l ) must be the minimum value of f(x) for x E D.

Moreover, if r constraints are dropped before a move, it is likely that r-l

repetitions. of the algorithm have been saved. Thus, it seems that we should
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drop a hyperplane at the first opportunity. Unfortunately, there is a big

disadvantage to this strategy. Although the dropped constraint cannot be
. .

picked up immediately, it is possible that after another constraint has been

added, the dropped constraint might have to be reactivated. This is clear

from the following example:
\ ,

\ *NC."''./"
Nhonstraint 1

\

_____-- --._ - ..- constraint 2

s-constrained minimum

In the above illustration, if constraint 1 is not deactivated, the

minimum can be found in one step; otherwise two steps have to be taken.

Thus, we need a strategy guaranteeing that the function will be less

if the constraint is dropped than if it is not. There is a w&l-known

- estimate (see [a]) that if
*

II; G-l

‘where

p >II(N~N)-'II~ and ui = min ~uj luj < O\ >

(7)

then the ith hyperplane should be dropped.
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30 Goldfarb's Method

In our problem the function f, mentioned in section 2, is
. .

f(x) = ; @x + h-r)T (cx + h-r) .N1I N e

Since E is

convex. Its

lower triangular and til is positive, f(x) is certainly

gradient is. given by

and its inverse Hessian is G
-1 = i -l F -T. According to the theory developed

in section 2, if we are at a point zi and the columns of the matrix N are

the unit normals to the hyperplanes whose intersection defines a flat M,

then the minimum of f in M is found at

where

X. = x. -
a+1 .A ' G-'E(ri )t

h
P=I-G-' N(NT GolN)OIN.

In our case it is quite costly to actually compute -;G ,
-1 and it might be

a more practical to approximate it by some matrix H and set x+1= zi + Hug*N

Donald Goldfarb in [2] presents an algorithm incorporating this idea. For a

-quadratic  objective function in a system of dimension t, if the same q

constraints are active for t-q iterations, his H is equal to -P G
-1

.

His algorithm is analogous to Davidon's variable metric algorithm when no

constraints are active.

The heart of Goldfarb's algorithm is his method for updating H.

Let Hq represent the matrix H when q constraints are active. If we want

to eliminate the q
th constraint from H, then
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TP
H

pq-l:qEq q-1
q-1

=Hq+ T .,

“q P
q-1 %

(8)

stwhere Pq-l = I - N If we want. to add a q+l

constraint to the intersection, then

H
H = H _
q+l q

If the basis remains unchanged, then set Hq = Hq + A + B, where

where

Tu. cr.
*=+A

IEi Yi

(9)

( 0)1

and

Y. = g(zi+l) - g("i)*
-1

The chief features of (8) - (10) are:

(a) if Hq = - Pq G-l, then H
q+l

given by (9) is equal to -;, G-l;
q+l

(b) the term A in (10) insures that H = -Pq G-1 after t-q steps
q

if f(x) is quadratic;N

( >C the term B insures that mutually conjugate directions are searched, i.e.,

T
5i Gs. = 0, i f j, where pi = Hq$Q;

-3
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(d) The objective function will always be decreased at each iteration;

(e) H is a positive semi-definite matrix. Moreover, if v = NqCX,

Tthen v Hv = 0;

( >f if H
9

= iqG-', then Hq-1 given bY (8) is not necessarily equal

to -F
-1

q-lG l

3.1 Observations

When none of the blood pressure constraints is active, which is true most
-1

of the time, each row in NT has only one non-zero element and (NTN) = I.

--.
This means that the rows of H corresponding to active constraints on x arecv

zero. When the i
th constraint is dropped, the update of H according to

equation (8) requires only adding 1 to h(i,i). Further, when only drug

constraints are active, the vector u =
T(N N)-lNTg (refer to section 2) is

easy to obtain once g has been computed, and the quantity /3 in equation

(7) is just 1. Thus, we can use a strategy for dropping constraints which

assures us that we will not be deactivating a constraint which might have to

be reactivated in a short time.

If H = -i G
-1 and s = Hg(xi)> then the minimum of f along s is

u H

found at K+~ = zi + s. However, if H only approximates .i G-1 , then it
.

isnecessary to compute h such that x,c+~ = ;tfi + hs minimizes f along s.CI

Since

f(x+hs) = f(x) + hgTs + 2 T$- s Gs,N u H H

the minimum of f along s occurs when

-- u
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Since the computation of is is required anyway to determine if any of the

y constraints are active, the number of steps required to determine the

minimum of f along s is effectively negligible.

The main disadvantage of the algorithm is that whenever a y (blood

pressure) constraint is active, we must update

recursive relations for updating (NAN)-' which

operations every time a new column is added to

that N can be written as N = QR, where QTQ =

(NTN>
-1

. Goldfarb [l] gives

require approximately 2d q(q+t)

N. We can do better by noting

I and R is upper triangular

(see (4)). In this case, T(N N)
-1 = flfT . Adding a new column to R, as

will be described in section 4.2, requires approximately 8 (q+t) operations.

Even this estimate is high when we consider the fact that, when blood pressure

constraints are active, many of the other constraints will be drug rate

constraints. Admittedly, in our formulation where the model is linear, the

y constraint is rarely active, but when it is a patient's life is probably

in peril.
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3.2 The Matrix H

Probably the largest problems in the implementation of the whole method

are the initialization and form of H
9'

Several alternatives present them-

selves, none of which appears completely satisfactory.

Alternative 1: Since HO = f
-1 w -T H can be initialized by deter-

' q

mining the matrix w - 1 , forming the product w -l;-T
and applying eq- (9)

q times. Because of the form of y (i.e., triangular with elements the

same on the subdiagonals and diagonals), only steps are required to

form C -1
l However, another 3t /6 are needed to form the product. If we

--.
then add another qt2 steps to obtain Hq' using (9), we find that for a

20%20 system on the IBM 360/67 approximately l/3 second has elapsed before

the routine has even been entered. This is entirely impractical, considering

the application of the procedure.

Alternative 2: The matrix H can also be written as Hq = i
9

-?Mqi -T,

where MO = I and

Mi+l
'

(11)
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This last formula is derived from eq. (9).

To update the Hq matrix when the constraint matrix has not changed,

we use the formula

M
¶.+l

=Mq+3i+i5

where

and

where

-TSince the gradient g has the form g(x) = w v, where v = (wx + (h-r)),
e rcIcI CI H NN

the formula for x and 5 can be written even more succinctly as

L-
("qvi IT

9
Z.
-1

("qzi )("qEi IT
E=- -m >

where

and

Z. =v - v .
-1 A+1 -i
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To drop the q
th

constraint we set

M
Q-1

= Mq +
TP

.
nq q-l 739

(12)

This alternative is not as impractical as it might appear, for the

following reasons:

(a) The function of

flat. In the algorithm it is used only to determine the correct direction

S = Hg(x). Since we know

Ei.
= ; -lM .v --.

q -i' Although
0

the matrix H is to project g(x) into the correct
NN

that g(zi)has the form WOTVui, the 3vector is simply

we now need t% more operations to compute 39 we

have also saved tC/2 operations since we never need to compute g(xi)

explicitly. Moreover, since M v.
q-1

is computed here,to update the formula

for 7i: requires fewer steps.

(b) If only the x constraints are active, the vector P .
q-1;q lS aCI

unit vector which has a '1' '-1' in its qthor a component. Thus, no

work is required to form f Pq-133q* Further, because F is lower triang-

- ular, the first q-l elements of f Pq-lnq are zero. Therefore, to drop

a constraint requires (tm)2/2 operations , which admittedly is more than

in the previous alternative.

.
(c) If only the x constraints are active, the formula (11) for forming

.M
9

initially can also be simplified. Since 'ij -T is an upper triangular

matrix, if n. corresponds to constraining the i th component of x,, then
-1

Tthe last (t-i+l) components of the vectorF -. fi will be zero. If the

constraints on x are initially added so thatthe last nonzero element ofM
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the ith column of IVT is above the last nonzero element in the i+l column

T
of N, then after i+l applications of (11) Mi+l will have the form. .

. Mi+l = 1 1A:06' I '6

where A isa jxj symmetric matrix, and D is a diagonal matrix of

rank t-j and the i+l
th

constraint corresponds to constraining x,..
J

Accordingly, forming the M
q

matrix requires fewer steps than one might

have anticipated originally.

Calculating a vector a = w -lb is equivalent to finding the vector--.

a such that za = b. In our problem if t > n, where n is the dimensionM

of the filter system used to determine f, c
-I is a full lower triangular

matrix with the same elements on the subdiagonal. However, w has a triangle

of size t-n in its lower corner that is zero. If b has just one nonzero

component, which is sometimes true when eq. (11) is applied, then naturally

- -1
we should use W . In other cases we can do backsubstitution to find a

and save
(t-n)2

2 operations.

3 2
This formulation still suffers from the fact that approximately 6 qt

operations are required to form the original matrix H .
9

It might seem

- better to start with no constraints active and encounter them one at a time,

but computational experience shows that most of the first constraints

activated are later deactivated, and that it doesn't pay to compute s

and minimize f along s each time a constraint is made active.
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Although the form of H just presented is not that useful for our
. .

particular problem, the idea might be worth considering for other problems

whose object function has the form (Ax-b)T (Ax-b).NN w-
A

Alternative 3: If we set H =: P G
-1

, we have

H 3: [ I - i  -’ i oT(~T c 0% -TN)-1 NT] c 0% -T,

If A = w OTN, then this becomes

H=[I-W- 'lA(ATA) -' NT1 i -5 OT
--.

= i -+ - A(ATA)-1 AT] i -TO

If we start out with the exact H, and change H just by updating A, then
A

H will always be equal to -P G (barring roundoff). Thus the update formulas

for H when the constraints are not changed will never have to be used.

-T
Since g is of the form W v,, then s = Hog simplifies to

w u

S = Z -+-A(A*A)-1 A*]V  .u N

e This looks horrendous, but if we put H = QR, where QQT = I, then RTR = ATA

and computing (ATA)% 2requires only q operations. On the average the

calculation of s takes about 2t /2 + q(3/2t+q)  operations. The update of

A' involves only updating R and is not prohibitive. Actually, using'this

alternative is the same as using the method to be described in the next

section, except that fewer steps are required there.

Alternative 4: Begin with H = I and forget that the inverse Hessian

is known. Applying eq. (9) q times when only x constraints are active
u

results in the matrix E where
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Fi
ij

= 0 when i f j

0 where constraint on xi is active and i = j

1 otherwise.

Consequently, the initialization procedure requires no computation, and

movement toward the required minimum begins immediately. This approach

seems best when there are many constraints active, since H will equal

PC-l after t-q iterations. However, usually about t/3 constraints are

active and progress is slow; it takes twice as long to get to any point

as it does in the method described in the next section.
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4. The Algorithm in the Transformed System

As mentioned in section 2, the problem can be reformulated by setting

Z = wx + h-r. In this case we wantto minimized cI)rcI

f(z) = $ (ZTZ)-II

where

:<z<b
N-N-b

c < f- 1z<;?N-- N-N

( 3)1

(14)

Eq. (13) corresponds to the blood pressure constraints, and (14) corresponds

to the drug rate constraints.

In this situation the gradient of f is given by

and the inverse Hessian of f is given by

G-‘(z) = I,

where I is the identity matrix.

The matrix i described in section 2 is then given by

LI - N( NTN) -lNT

where the columns of N contain the unit normals to the hyperplanes which

constrain z to a flat M. Therefore, according to (5), the minimum of f(c)

'for z constrained to M is given by

Z = z-i+l -i - (I-N(N~N)-~N~)~~
( 5)1

If M is defined by the q relations

Tfiz = A., i = l,...,q1

(assuming q constraints 'active), where Ri is known for i = 1,. l *,q,
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eq- (15) can be rewritten as

Z Z
-i+l = A

- s.
"Ad1

where

= z -3. ,i N(NTN)-b.

If (NAN)-' can be computed easily, then a matrix H to approximate

-PC-l is unnecessary, Further, the minimum of f along s in M)which

is the minimum of f in M, can be determined immediately.

The main disadvantage to reformulating the problem is that now, when
--.

only the drug rate constraints are active, the matrix N is more 'full'

than in the previous situation. Also,
T -1

tN 9. is not the identity matrix

and we cannot easily obtain the upper bound on \I( NTN> II;' that eq. (7)

required for a good criterion for dropping a hyperplane. Because of this

we decided to drop a hyperplane whenever -g(ffi) pointed to the interior

of the region. This strategy had the disadvantage that constraints were

sometimes dropped and then reactivated.

4.1. Determining (NT~)-' 4.

Assume NT is q x t. Since N can be written as N = QR where

QTQ = QQT = I and R is a q x q upper triangular matrix, we can write

( NTN) = RTQTQR = RTR.

In our algorithm we must compute the vector u=(NTN)-li. This is-equivalent#WD

to determining u such that

(NTN)-u= a or RTRu=a.N
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Since R is an upper triangular matrix, u can be determined using two

backsolve operations; i.e.,

RTm = a,

and

Ru = m.

Because each backsolve requires about q2/2 steps, we spend almost as much

time multiplying 1 by T(N N) -1 to determine u as we do working with R.

So instead of determining T(N N) -1 , all we need to do is determine R. This

can be done by &forming q Householder transformations, which requires at

most (t-q/j)q'  steps, where t is the dimension of the system. In actual

practice we can order the columns of N in such a way that the last nk

elements of the kth column are zero, and % 2 %+1 for k = 1,2,...,q-1.

q
In this case, it is necessary to perform about 2( c "c (t-n.&)) operations.

k=l irk
In practice (t-nk-i) is small.

As shown in Gill and Murray [I], updating R when a new constraint is added

is not difficult. Let N represent the matrix whose columns are the unit
a

normals to the intersection of q-l hyperplanes in which z lies. Assume

that a new constraint must be added.

Let f = [NI_n9]. If N = QR, then

1 = .
.
l

*

.

TN n
-Q

';I
:q2q

.1 .
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lic\ibx  J LO deLer?n.inc E we riced t0 find r and d, whereCI
T T
R r = N "-s .,u

'l/2 l/2
and d,(nTn -rTr) = (l- rTr) .

H *-. - u NN

Because Q is orthogonal the above square root is real*

Sirce RT is a lower triangular matrix, the process requires one vector

multiplication to find
T

N nq and one backsolve to determine r , and LhusYd
2

takes about t-q + q /2 steps. In actual practice the nonzero elements of X

and n are known a priori and t+ would be a more accurate estimate
-9

;( s>
---.

of the number of operations required.

When a constraint is dropped the corresponding column must be deleted

from R. Tne matrix then looks like

If the ith column is eliminated-we have q-i elements below the diagonal

which must be annihilated. Using Given's rotation matrices as suggested

by Golub in [3] this can be done is 2(q-i) 2
operations.
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4.2 The algorithm in detail.

Using the results of the

the problem can be written as

1. Determine an initial

previous section, the whole algorithm to solve

follows:

guess 5. with q constraints active, and

- -1
set CO = w ;. + h-r. Compute W -

Determine the boun"ds"  k, i

if this has not been done previously.

=l >**.> 4t, for the transformed system.

2. Set up the constraint matrix N where T
q % satisfies f3i :. = Ri,

lliiq. Using Householder transformations, form the matrix R where
q

N =
Qs
Rq and QzQq= I.

and

3* Compute the vector u where

Rqy
=m

TRqm= ,!L

(Note that if step 3 is entered from steps 4 or 6, most of the elements of

m have already been computed.)

Let ui= min u..
l<JLsJ

4. If ui < 0, delete the ith column from N, using Given's rotation

matrices, update R, set q = q-l, and go to 3.

If ui > 0, then form 2=+zi - N*u.CI

5* Determine T
n.z. - .8.

h: = min h, = “J”; J
yo J

J = q+l,...,4t.
?j 3
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Here we are assuming that z is constrained to lie in the &main &fined byM

r$z > a., l<j < 4t.CI- J - -

T
Note that 2 2. is either one of the rows of f

-1or a vector with only
3

one nonzero component.

6. If hi< 1, add the corresponding column to N l form
q'

Rq+l= , where

T
"gT

= N*n
q-i
T

and .
--.

d=
T

sqrt( 1 - r. r);

set q = q+l, z ZA+1 = A - 'i zi> and return to 3*

.

7' ~=",i',"iSet z and x = 7 -IL- (5 + r-h).CI-

x is the required drug schedule.
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In our program we have ordered the constraints on z so that the firstH

2t constraints correspond to eq. (lb), and the last 2t constraints cor-. .

respond to eq. (13). If we write the constraints as

Tn.z > a.,
-J- - J

we notice that

nT ^T
-j = -w-j'

nT T
-j = 'Ej-2t'

-m.

T T
3 = -,"j-t '

hTHere w is the j
th

row of W -1
4

and

j = 1,2,..., 4t,

l<j<t,- -

2t+l < j 5 3t,

I

t+l 5 j < 2t
3t+l 5 j-5 4t l

is the unit vector in the j
t h

Ej

coordinate direction.

The fact that the matrix i -' is part of the constraint matrix and

enters into the transformation of variables simplifies the programming.

Step 5 in the algorithm just outlined'essentially requires' _

- -1the computation of W ,i and W
- -lz

Zi ' We know that
e

and

50
= ix4 + h-rNN

which means

and

z. = z
-1 4-l - x w~i-l> i > 0,

w -lz
-0

= x0 + i -'(h-r) (16)-4

w -lzA
= w -lz

A-1 - h ~ -'si-l' i > 0. (17)
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Since i -'(n-r) is needed to compute the bounds for eq. (lb), every
-u H-

-

quantity on the right-hand sides of (i6) and (17) are

- -1
Thus, the computation of W z in step 5 requires at

Similarly, recovering x in step 7 does not

plication. We are to set

known for i > 0.

most t multiplications.

involve a matrix multi-

x= ii -lZA.+1 - i "(h-r).- N

But this means that

- -1
x=w 5. - h i -hi - c -'(h-r).NN 08)

Since every quantity in (18) is known, x can be obtained immediately.c1
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5* Obtaining an Initial Guess

On the average the program can run about 10 times before any of the data

is changed. Each time the drug values move up 1 time interval, so that the

time represented by x. during the i
th

3
procedure call is the same time represented

bY xjwl on the (i+l)st procedure call. If neither ,r nor f has changed,

we may expect that the values Xp'**'Xt for the previous time interval might

be excellent guesses for xl,...,xtgl. In fact, if we allow the process suf-

ficient time to attain the minimum in D during the last time interval, then

during the next time interval only a few iterations should be required. An

initial estimate for Xt
can be obtained by looking at

n
e = w( c w.x

O-l'< i=2 i t-i+1 I/w1'

If e < 0, set x+, = 0. If e > 50, set xt = 50; otherwise set xi = e.

Usually when c is updated the changes in F are not that large.

If the drug rate schedule from the previous call are still feasible, which is

very likely, they may be used as initial guesses. However, when r is changed

- (which occurs much less often), it is wise to restart the process.

When res'tarting a process we have several options. We can set

. rj+l
xj+l = n 9 j = O,...,t. (19)

‘c Wk
k=l

- _-
This is the steady state solution which was Schade's original algorithm.

These values are always feasible, but can be far from optimal. If other

methods give answers violating the blood pressure constraints, the values given

by (19) seem to be the only way to start.
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Another way to start the process is to take advantage of the triangular
a

shape of w and set x. = (hi-ri- c W.X.
1

--j=2
J i-j+1 )Iw1J

where A = min(i-1,n)

and n is the dimension of the filter system used to determine the W's.

If xi is greater than 50, set xi = 50; if xi < 0, set xi = 0.

If at any time a constraint on the blood pressure is violated, then revert

to (16).

'The main problem with the method above is that too many constraints

are usually activated that later must be dropped. The initialization

procedure has been modified in several ways to help alleviate this problem.

(1) If xi = 0 and xi+1 = 50, set xi = 10 and recalculate Xi+10

(2) If xi = 50 and xi+1 = 0, set xi = 40 and recalculate Xi+l'

(3) If the f matrix has been updated and xi 1 = 50 or Xi-1 = 0,

and 0 < xi < 50, then the column corresponding to the constraint on x.1-l

is not included in the N matrix.

If the same constraint (upper and lower) holds for the first p components

of x, and the next t-p components are unconstrained, then there is no need

to call the function minimizing routine.
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5.1 Computational Experience

The algorithm described in section 4 has been implemented in Algol W on

the IBM 360/67. For a system of 20 variables and 80 constraints approx-

imately l/3 second is required to determine the correct drug rate schedule

initially. When the matrix zj: has not been updated and the results of

the previous time through the algorithm are used, the procedure requires

less than l/10 second. We think that the algorithm will be operationally

practical when it is integrated into the real time system already running

on an HP 2116~ machine.
--.

During the testing of the algorithm several facts were observed that

are worth mentioning:

When computing h.
T th

J
we must insure that vjs > 0. If the j hyperplane

has just been dropped, it is possible that because of roundoff error the

Tquantity n.z. - a.
-3-i J

will be slightly negative. . the quantity r$s is

tive, this constraint will be the first one encountered. Accordingly,

T
we must check the sign of 2js before computing h..

J

If the w matrix has not been updated and we use information from the

previous time interval, then zoiJ i = l,...,t-1, need not be recomputed.

However, it is still necessary to recompute R and the bounds on z. In

'fact, in this case more time may be spent computing R than in finding the

minimum.
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Our solutions supported the 'bang bang' principle of control

theory. Often they indicated that the drug should be administered at

50 drops per minute for a period of time, then at 0 drops per minute,

and finally back to 50 drops per minute. This is unfortunate from a

computational point of view because it means that many constraints are

active and more computer time is necessary per iteration. It is also

unfortunate from an operational point of view. In this situation dif-

ferences often arise between what actually occurs and what the model

thinks has occurred. If an interval of time is considered to be 20

seconds, then a schedule of 50-o-50 is effectively a schedule of 50-3-50.

Updating the model smoothes out some of the inconsistencies between the

model and reality.

Roundoff error does accumulate but not catastrophically. Given

the uncertainties in our data and the imprecision in our apparatus, we

are obtaining solutions as accurately as we deserve.

Our solutions also verify the control theory principle that solu-

tions of the problem in two distinct time intervals do not solve the

problem when these two intervals are merged into one large interval. Of

course, if this principle were not true, we could solve the problem once,

and for successive time intervals tack on a local solution.
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The active constraints can only be linearly dependent if the patient

is dead, or if the person running the program sets the desired blood pressure. .

outside the prescribed bounds. Therefore, linear dependence was not considered

in the implemented algorithm although it can easily be detected by checking

d when updating R.

When a blood pressure constraint is activated, only q2 steps are required

to update R as opposed to the formulation presented in section 3. Also,

adding this constraint does not require added attention or code. This makes

the whole program shorter and, hence, it can be more easily translated into
--.

HP assembly language so that it can be integrated into the system now running.

The procedure given in section 5 for determining to often activates too

many constraints which must be dropped. It was thought that if in the beginning

no constraints were activated, then the ones hit during the execution of the

main algorithm would still be active when the minimum of f(z) for z E D.-I

was found. This was not the case. Many times the constraints encountered

first were the ones later dropped. Furthermore, to construct R initially

takes fewer steps than to add one column at a time.

In the table below an idea of the number of multiplications required in

each phase of the program is given. In practice the quantity q is about

t/3. Calculations which involve O(t) operations have not been included.
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Operation Count

Let t = dimension of the system;

9= number of active constraints;
. .

n= dimension of the filter system or the number of nonzero diagonals of W.

1.

2.

39

4.

5-
e

Needed when c and r are updated:

4 initial guess of x

- -1
b) computing W

4 initial guess of z

Needed every time subroutine is called:

a) creating R
--.

b) bounds for z

Operations needed for first full iteration:

a) determining se

b) determining h

Dropping the i
th constraint:

4 updating R

b) recomputing s and h

Adding a constraint:

4 updating R for drug rate constraint

b) updating R for blood pressure constraint

4 recomputing s and h

(t2 - 2
n l/2

b2>/2

(t2-
2
n l/2

( t-d3 h2/2

t2/2

q2 +tq/2

bdt/2

2(q-i)2

(q-i j2/2 + q2/2

wl./s + q2/2

q2/2

q2/2 + t2/2
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