P q—-—wu\«

STANFORD ARTIFICIAL INTELLIGENCE PROJECT

MEMO AIM-138
COMPUTER SCIENCE DEPARTMENT

REPORT NO. STAN-CS-71-188

THE TRANSLATION OF 'GO TO" PROGRAMS
TO 'WHILE' PROGRAMS

BY

EDWARD ASHCROFT
AND
ZOHAR MANNA

JANUARY 1971

COMPUTER SCIENCE DEPARTMENT
STANFORD UNIVERSITY

E
1

Abstract:

THE TRANSLATION OF 'GO TO PROGRAMS
TO 'WH LE PROGRAMS

by
Edwar d Asheroft

Zohar Manna

In this paper we show that every flowchart program can be
witten without go to statenents by using while statenents
The main idea is to introduce new variables to preserve the
values of certain variables at particular points in the program
or alternatively, to introduce special boolean variables to
keep information about the course of the conputation

The 'while' prograns produced yield the same final results
as the original flowhart program but need not perform conputations
in exactly the same way. However, the new programs do preserve
the "topology' of the original flowhart program and are of the
same order of efficiency.

V¥ also show that this cannot be done in general wthout

addi ng vari abl es.

RN CTIN

GENERAL DI SCUSSI ON

1. [ntroduction

The first class of prograns we consider are sinple flowhart prograns

constructed from assignnent statements (i.e., assigning terms to variables)
and test statenents (i.e., testing quantifier-free fornulas) operating on
a 'state vector' x . The flowhart program begins with a unique start

statenent of the form

wher e >'<i nput is a subvector of x, indicating the variables that have

to be given values at the beginning of the conputation. It ends with a

unique halt statement of the form

wher e ioutput is a subvector of x, indicating the variabl es whose
values will be the desired result of the conputation.

V¢ nake no assunptions about the domain of individuals, or about the
operations and predicates used in the statements. Thus our flowchart
prograns are really flowhart schemas (see, for exanple, ILuckham, Park
and Paterson [1970]) and all the results can be stated in terms of such
schemas.

Let Py be any flowchart program of the form shown in Figure 1.
Note that, for exanple, the statenent x « e(x) stands for any sequence

of assignnent statenents whose net effect is the replacenent of vector x

Figure 1. The Flowchart Program m“_..

by a new vector e(x). Similarly, the test p(x), for exanple
stands for any quantifier-free fornula with variables fromzx .
The flowchart program P will be used as an exanpl e throughout
the paper

Fl owchart programs are usually easy to understand, but if the
programis to be witten in a conventional programmng |anguage, goto
statenments are required. There has recently been nuch discussion (see

for exanple, Dijkstra [1968]) about whether the use of goto statenents makes

prograns difficult to understand, and whether the use of while or for

statenments is preferable. It is clearly relevant to this discussion to
consi der whether the abolition of goto statements is really possible.

Therefore the second class of programs we consider are while prograns,

i.e., Algol-like programs consisting only of while statenments of the form

while (quantifier-free formula) do (statenment) , in addition to conditional,

assi gnment and bIockf/ statements. As before, each program starts with

a unique start statenment, START(x) , and ends with a unique halt

i nput
st at ement, Iﬂum(ioutpu?.

Since both classes of programs use the same kind of start and halt
statements, we can define the equivalence of two prograns independently
of the classes to which they belong. Two programs (with the same |ength

of input subvectors x and the sane length of output subvectors

I nput
Xoutput) are said to be equivalent if for each assignnent of values to
iinput either both prograns do not termnate or both termnate with the
same values in x

output .

* .
X/ A block statenment is any sequence of statenments enclosed bysquare
bracket s.

2. Transl ation to while prograns by adding variabl es

(a) Extending the state vector x .

W first show that by allowi ng extra variables which keep crucial
past val ues of sone of the variables in x, one can effectively translate
every flowchart programinto an equivalent while program (ALGORITHM I).

The inmportance of this result is that the original 'topology' of the
program is preserved, and the new programis of the same order of efficiency
as the original program However, we shall not enter into any discussion
as to whether the new programis superior to the originalone or not.

This result, considered in terms of schemas, can be contrasted with those
of Paterson and Hewitt [1970] (see also Strong [1970]). They showed t hat
although it is not possible to translate all recursive schemas into
flowchart schemas, it is possible to do this for 'linear' recursive
schemas, by adding extra variables. However, as they point out, the
fl owchart schenmas produced are much | ess efficient than the original
recursive schenss.

As an exanple, ALGORITHM | will give the follow ng while program
which is equivalent to the flowchart programPl(Fi gure 1):

START(:);

lrwﬁle_p(xTaS—i ce®;
|
J

£ q(x) then [X « b(x); while r(x) do x « a(x)]_J
while q(y) A s(x) do

7% l

[Xx « c(x);
l-whlle p(x) ﬁ x « e(x); |
Y < x;
L_lf q(x) then [x « (x) Whl | e r() do x - d(xl_l
if a(y) then X « £(x) else X « g(x) 5
HALT (x).

If the test q(x) uses only a subvector of x , then the algorithmwill
indicate that the vector of extra variables y need only be of the same

length as this subvector.

Note that on each cycle of the main while statement, the state
vector x is at point g, while ¥y holds the preceding values of x

at point o .

Note also that the two subprograns enclosed in broken lines are
identical. This is typical of the programs produced by the algorithm
One mght use this fact to make the programs nore readable by using

*subroutines' for the repeated subprograns.

(b) Addi ng bool ean vari abl es.

I nspection of the above exanmple will suggest that we do not need
to introduce a whole vector y, but rather a single boolean variable t
which is assigned the value q(x) , as illustrated below. This while

program which is still equivalent to the progran1}1,vd|| in practice be

more efficient than the preceding while program since t requires only

one nenory bit whereas y may be a very large vector.

START(% ;
X - a(Xx);
while p(x) do x « e(X);
t e a(x);
if tthen [x « b(x); while r(x) do x « d(k)];
while t A s(%) do
[x < c(x)s-
while p(x) then x - e(x);
t — a(x);
if tthen [x «b(x); while r(x) do z « d(x)]];
if tthen x ~ £(x) el se x ~ g(g);
HALT(X) .

The translation of flowhart prograns into while prograns by the
addi tion of boolean variables is not a new idea. Bohm and Jacopini [1966],
Cooper [1967] and Bruno and Steiglitz [1970] have shown that every flowchart
program can be effectively translated into an equivalent while program
(with one while statenent) by introducing new bool ean variables into the
program new predicates to test these variables, together wth assignnents

to set themtrue or false. The boolean variables essentially similate a

program counter, and the while program sinply interprets the original
program On each repetition of the while statement, the next operation
of the original programis performed, and the ‘program counter' is updated.
As noted by Cooper and Bruno and Steiglitz themselves, this transformation
is undesirable since it changes the 'topology' of the program giving a
programthat is less easy to understand. For exanple, if a while program
is witten as a flowhart program and then transforned back to an
equival ent while program by their method, the resulting while program will
not resenble the original.

W give an algorithm (ALGORITHM I1) for transformng flowhart prograns
to equivalent while prograns by adding extra boolean.variables, which is an .
i mprovement on the above nethods. It preserves the 'topology! of the
original program and in particular it does not alter while-like structure
that may already exist in the original program

For the flowchart program P for exanple, ALGORITHM || will produce

the following while program

START (x) ;
x « a(x);
t ttrue;
while t do
[while p(x) do % « e(%);
if q(x) then [x «b(x);
while r(x) do X « d(x);
if s(X) then % « c(%)
else [x « £(x); t - false]]

else [x « g(x); t « false]];

HAILT(x) .

Note that each repetition of the main while statement starts
frompoint y and proceeds either back toy or to & . |In the latter

case, t 1is nmade false and we subsequently exit fromthe while

statenent .

3. Translation to while programs wthout adding variables

It is natural at this point to consider whether every flowhart
program can be translated into an equivalent while program wthout adding
extra variables (i.e., using only the original state vector x) . W
show that this cannot be done in general, and in fact there is a flowhart
program of the formof Figure 1 which i S an appropriate counter-exanple.

A sinmilar negative result has been denonstrated by knuth and Fl oyd
[1970] and Bruno and Steiglitz [1970]. However, the notion of equivalence
consi dered by those authors is more restrictive in that it requires
equi val ence of conputation sequences (i.e., the sequence of assignment

and test statements in order of execution) and not just the equival ence

of final results of conputation as we do. Thus, since our notion of
equi val ence is weaker, our negative result is stronger.

Qur counter-exanple is a program of the form of Figure 1 in which:

r identical to q, s identical top, b and e identical

to g, and ¢ and d identical to f

There is also another sinmlar counter-exanple in which:

r identical to g, s identical top, d and e identical

tog,and b and ¢ identical to f

The fact that these restricted forns are counter-exanples is especially
interesting since we have found while programs, with no extra variabl es,
which are equivalent (in our sense) to nost of the prograns of the form
of Figure 1. In particular, we can do this for any flowhart program of
the formof Figure 1 with only two distinct tests and two distinct

operations in which

c is identical to e,
or bis identical to d,

or f is identical to g .

ALGORITHM |: TRANSLATI ON BY EXTENDI NG THE STATE VECTOR x

Qur al gorithm depends on the fact that every flowchart program can
be put effectively into a normal form (see Cooper [1970] and Engel er [1970]).

A flowchart programis in normal formif it is of the form

START (Xin_pu)

where a block is defined recursively as follows:

L A basic block is any tree-like, |oop-free, one-entrance piece of

fl owchart program (without start and halt statements). For exanpl e,

r—— - =l- - 8
ff

(%)

| X

7

| f l and J are blocks, so is

Bl

| f is a block, sois

Bf

L1

(]

W shal |l consider only flowhart prograns in normal form By
induction on the structure of the blocks we show how to associate with
each block B(x) (with state vector x) a piece of while program
aB(i,j'r) ,f/ and with the i-th exit of the block a pair (cpi(:'c,{r), ri(i) Y,

wher e cpi(i,:}) is the 'exit-condition' and Ti(}-() is the "exit-term,

) f/.;} is a (possibly enpty) vector of additional variables introduced by
the translation.

11

such that B(x) comes out of the i-th exit with £if and only if

ozB(:'c,:}) termnates with sone E' s.t. cpi('g",;}) =T and = -:i(g') .
Each ®; is a quantifier free formula constructed from the
tests and operations in the flowhart. The 9,'s for a given block are
conpl ete and nutual Iy exclusive.

In each of the three cases we have to consider, the above relationship

bet ween oy and (cpi, Ti> i's preserved.

1. B(x) is a basic block (i.e., tree-like, |oop-free, one-entrance flowchart)

In this case aB(i) is always null (the enpty progranj, cpi(i) is
the condition that control will take exit i for input x, and Ti({c)
is the result of performng the assignment statements on the corresponding

path. For exanpl e,

r_—_]_r___-ﬁ)—_l

|

|

| r v
I

X - fg()_c) X - f5(i)

|
|[£ - 1, (%) % - £ (%)

(~py (£ (0)) A (55 (R))) 5 £, (£5(£,()))

(~py (£ (X)) A ~py(£5(£1 (%)) 5 £5(£5(£(x))))

wher e oaB(;‘c) is null.
12

2. B(x)_is constructed from B'(x) and B"(X) by conposition

W consider two cases:

(a) B" _is a basic block.

if i
B' (%) |€=— (%7")

7N

<cPl(;{:'§'):Tl(i)> <¢n(i,§'):7n(;§)>

and L
B"(X) | €= 0(X) , i.e., null

7 X .

¥y (%), 6, (%)) ¥, (%),6, (%))

t hen

il |

B"(i))
| 1/ m _

@1(;{’&') A Wm(Tl(i)) 2 6m(Tl(i)) >

where OcB(fc,fr') is aB'(i,S'r') .

13

(b) B" is a non-basic block.

| f \
2

BU(R) | €= o (57

7N

@ &F)EY (@ (R, (R)

and I

R | e o, (5§

7N

<\l{l(i, 37") 2 61 (}-C) > <¢m(}-{"§‘") 2 6m(}-{') >

t hen | et ;‘o be the subvector of x which is used in exit

condi ti ons Pyseees® Let 370 be a new vector of the same

.
length as x,.Then y = {§',3",7,} and

Y o _l_B(i)_]

B! (x)

|) l/ 2 n

‘ B" (}-C) '
T :
<(Pl(,3.’o:3_f') A Wl(i’ .';'"')) 51(5&) > \ (@2(370;5")s Te(;{j > <(Pn(37o:3-f')s Tn(i) >

<¢'l(§-o’§r')/\Wm(i’ ir") 2 am(i) >

wher e ozB(i,ir) is a (X,3');

i 0y(%,") then [% « (%) 505, (%7")]

1k

%, B(x) is constructed fromB'(x) by | ooping.

If JL

B' (%) 22— o, (57)

VAR

(@l(i:ﬁ),Tl(}E)) (@n(i:s’):'fn(i)>

t hen

=g
/i

<‘52 (i’ '.S-f) LD (;() > <$n(;c: 5’) p) Tn(;{) >

where op(x,y) is o, (X,3);

and 52,. : .,5n are conplete and mutual |y exclusive and

CPJ-(X:V) 35j(X:Y) »2<J<n

Comment : To find {5jpote that the algorithm ensures that each 0y

is a conjunction of literals (i.e., atomc formulas and negations of atomic

formias), and therefore we can represent {;} by a binary tree; e.g.

fPAQAT , PAQA~T , DPA~d, ~D}is represented by tree (a).

15

(b)

If we remove the node in the tree leading directly to the termnal node

representing ¢, , the new tree represents the desired conditions (g 3
3.
For exanple, if we remove p A ~q fromthe above set of conditions, we

get the new tree (b) which represents the new set of exit conditions

{pAa, pA~T, ~D} .

Concl usi on: This covers all cases of blocks we need to consider. To find

the while program equivalent to a given flowhart program (in normal form

START (x

)

input

\ "4
B(x) l

we find og(x,y) and {(@;(%¥),7;(X))} - The desired while programis then

START(xi nput)
aB(;{:.')-f) >
if cpl(}-c,:\-() then x « Tl(}-c)
else if q>2(§<,§r) then x « 12(52)
else . . . x *-'h(x);

HALT(xout pu? .

16

Exanpl e: Let us consider againthe flowchart Program P, (Figure 1). It is
already in normal form and the blocks are indicated in Figure 2. The
exit conditions and exit terms for the exits of all blocks are also

indicated. The corresponding a's are given bel ow

% is nu*
1
OLBZ is whi(% p(x) do x « e(x) .
x) i I,
%3” s null.
o is whi(® r(x) do % « 4(x)
N

&7 is a (D37 - & if o(F) then [% « b(E); o (0)]
OtB5 h's O(Bzx N XO q(x X X OLBllr

Not e t hat ;‘o is the subvector of x occurring in the exit

conditions of B, , i.e., in q(x) .
0136(:?,57) s o (%) _while a(¥s(® dolxe-c(¥);e, (%3))
5 5
Thus the original flowhart programis equivalent to the follow ng while

program

START(% ;

while p(x) do x « e(%);
y‘-xos
if q(X) then [% - b(X); while r(k) do X « d(x)]1;

if a(y) then x « £(x) el se x « g(x);

HATT(x) .

17

o :i x - g(¥) BEEE

B Ap(i)f\ﬂq(i);g(i» (= p(x) Aq(x),b(x) I

..... . [T, e T m— i

(—a(x),8(x)) (a(x),b(x))

'@ a(y)> g(;{)>

(@A s @) £@) m,_\<ﬂr.<i> pe@oe@ |

e N
{a(37) A s(x),c(x)) . u

£(x))

Figure 2. The flowchart program ?; (for ALGORITHM I).

18

Comment : In general the transformation of a programto normal form

results in exponential growth in the size of the program 1S can

be reduced if we allow the following extra case in the definition of

bl ocks.

4. Merging (optional)

| f \ is a block, sois
)

B'

-

r T
|
l
1

The algorithm can be easily modified to cover this case, but since

it would conplicate our notation, “We Will not discuss it here.

19

ALGORITHM 1 TRANSLATION BY ADDI NG BOOLEAN VARI ABLES

The second algorithm ALGORITHM II, translates flowchart prograns
to equivalent while prograns by adding bool ean variables. It makes use
of the fact that every flowchart program (without the start and halt
statenments) can be deconposed into blocks where a block is any piece of
flowchart program with only one exit (but possibly many entrances).f/
This is obvious since in particular the whole body of the given flowchart
program can be considered as such a block. The aim whenever possible, is
to get blocks containing at nost one top-level test statement (i.e.,
test statenment not contained in inner blocks) since such blocks can be
represented as a pi ece of while programw thout addi ng bool ean vari abl es.
In particular, if a while programis expressed as a flowchart program
this latter program can always be deconposed into such sinple blocks
and the algorithmw |l give us back the original while program

For any given flowhart program we construct the equivalent while
program by induction on the structure of the blocks. Since the ideas
behind the construction are intuitively sinpler, we shall not be as
formal as in the presentation of ALGORI THM I.

For each entrance b, to bl ock B we consider that part B, of
t he bl ock reachabl e from b, . Ve then recursively construct an equival ent
pi ece of while program 7B.(i,E) *¥/ as follows. There are two cases to

[
consi der

%/ Note that the blocks used here are not related in any way to those
used i n ALGORITHM | .

»/ tis a (possibly enpty) vector of additional boolean variables
introduced by the translation.

20

Case 1. (a) B, contains at nost one top-level test statenent,

or (b) B, contains no top-level |oops.

In both cases (x,t) is the obvious piece of while program

7B.
|
requiring at nost one top-level while statement (and no extra bool ean

vari abl es).

Case 2: B; contains two or nore.top-level test statements and at

| east one | oop.

In this case we choose a set of points on top-level arcs of B,
(called *cut-set' points) such that each |oop contains at |east one such
point. One point on the exit arc of the block is also included in this

set. W shall translate B, into a piece of while program 75 (x,£) with

|
one top-level while statement in such a way that each iteration of the while

statement follows the execution of Bi from one cut-set point to the next.

In this case, 75 (x,%) includes bool ean variables introduced to keep track
i

of the current cut-set point. Note that n bool ean variables t_ ,t.,...,t
1’72 ’"n

are sufficient to distinguish between k cut-set points, 2n-| <k <2 .
Exanple: W shall illustrate the method using again'the flowhart program

P, (Figure 1). W deconpose P, into blocks' as shown in Figure 3. Bl ocks

1

By and B, are of type 1 and can each be witten as a single while

statenent. Bl ock B3 is of type 2 with a single top-level |oop. Thus
it is sufficient to choose points « and g as the cut-set points. To
di stinguish between o and B we need one bool ean variable, t say.
Thus the followi ng while program using the boolean variable t, can be

generated and it is equivalent to the given flowhart program P,.

21

Figure 3.

The flowchart progran1Pl(

22

for ALGCORITHM I1).

START(% ;
x ~a(x);
t - true;
while t do
[while p(x) do x - e(x);
if q(x) then [x « b(x);
while r(x) do x « d(x);
ifs(X) then x « c(¥)
else [- 2(0); t ~ false]]
else [x « g(x); t « false]];

HAIT (x) .

23

THE NEGATI VE RESULT

W consider the flowchart program , (Figure %) which has the
structure of Figure 1. The domain D is the set of all pairs of strings
such that the first string, called thead', is any finite string over
letters {f,g} , and the second string, called 'tail', is any infinitef/

string over letters {a,B,7} with at nost one occurrence of vy .

During a conputation of P, the only changes in the value of the
program variable are deletion of leftnost letters fromthe tail and
adding letters f or g to the right of the head. The tests in the
program sinply look at the tail, and-therefore the conputation is determned
by the tail of the initial value. Thus, since the program terninates if
and only if both tests o and g are false, it inplies that P term nat es
if and only if the tail of the initial value contains y . Another inportant
feature of any conputation of P, is that whenever the leftnmost letter of

the tail is @, the next but one operation nust be operation g . Simlarly,

whenever the leftnost letter is B, the next but one operation nust be f

Let us assune that we have a while program PZ equi valent to P, whi ch
al so has one variable and the same domain D . Athough the assignnent
statenments of PZ may use any terms obtained by conpositions of the operations
f and g , we assume without loss of generality that each assignment
statement in PZ consists of a single operation f or g. The tests in
the conditional and while statements may only use quantifier-free formulas

obtained fromtests @ and g, and operations f and g . Since we use

/

% Note that the dommin is non-enumerabl e. However, we can in fact
restrict the tails to the enunerabl e domain of ultimately periodic
strings, i.e., infinite strings which eventually repeat some finite
substring indefinitely.

2L

N
F T
F T
g g
F T
£ —

where test @ neans "is letter 'a' the leftmost letter in tail";
test B means "is letter 'B* the leftnost letter in tail";
operation f means “erase the leftnost letter in tail and add
letter 'f* on the right of head"; and
operation g means ‘"erase the leftnost letter in tail and add

letter *g' on the right of head".

Figure 4. The Flowchart Program P, (for negative result)

25

only one variable, it follows that every sequence of values'describing a
conput ation of PZ is identical to the corresponding conputation of P,.
Note also that since there is a bound on the depth of terms in the
quantifier-free fornulas, there is a bound, M say, on the nunber of
leftmost letters in the tail that can affect the decision of any test

in PZ. Finally, without |oss of generality we shall make the restriction
that there is no redundant while statement in P;; i.e., there is no while

statenent with a uniform bound on the nunber of its iterations.

Since P; must contain some (non-redundant) while statement, |et W

be any while statement in PZ which is not contained or followed by another

while statement. The point in P inmediately after Wwe shall denote by A .

Lenma

For all n (n > 0) there exists strings a,c ¢ {a,s}* and
de {a,p)" (lq = n) ¥ such that for all strings b e {oz,fs}* t he
conputation starting with tail abcyd passes A with some tail

abcyd , where ab is some rightnost substring of ab (possibly enpty).

From this Lemma we immediately obtain the follow ng corollary.

Corol larv
For every n, n >0, there exists a finite conmputation of B,
whi ch passes through Awith nmore than n operations still to be perforned.

But this contradicts the fact that,, since there is no while statenent
following A, the nunber of operations that P; can perform after A is

bounded.

7 i.e., a and c are finite strings (possibly enpty) over {a,g},
dis an infinite string over {a,g} and the length of ¢ is n .

26

Proof of Lemma. By induction on n .

Base step. Choose any conputation starting with tail ata"'yd!
(at,a",b! ¢ {a,a}*, a' ¢ {o,B}" and [a"| = M that enters Wwith
tail a"bt'yd* . (Such conputation exists by non-redundancy of W.)
Since at nost Mleftrmost letters of the tail can effect the
decision of any test, on entering ‘W the main test can only |look at a" .
Therefore the test will be true for any tail starting with a".
In particular, the conmputation starting with tail a'a"wya"d',

for any b in {g,s}*, also enters Wat the same point, i.e., wth

tail a"bya"d' . It must subsequently pass point A, but (noting that
the test in Wnust be fal se when passing A) it cannot pass A with
tail a"dar .

Hence, with a = a*a", 4 = a"d' , for'all strings b in {oz,s}* ,
the conputation starting with abyd nust pass A with sone tail

abyd where ab is sone rightnost substring of ab .

I nduction step. Assune we have strings a,c e {a,s}* and de {o,p)" ,

|c| =n, such that for all strings b in {a,a}* t he computation
starting with tail abcyd passes A with some tail abcyd where ab
is some rightmost substring of ab .

Ve find a string c' e {op} ., |e'| = n+1 , such that for all
strings b' in {oz,a}* t he computation starting with tail ab'c'yd
passes A with some tail _ab'c'yd where ab' is sone rightnost substring
of ab' .

There are three cases to consider:

27

(i) For all non-enpty strings b , the corresponding substring ab

s non-enpty. In this case we take c¢' to be ac "ﬂ

For any string b' in {oz,e}* the conputation starting with
tail ab'acyd , passes Awith tail ab'acyd , where ab'

IS a rightnost substring of ab!.

(i) For sone non-enpty string b = b"a (b" ¢ {a,s}*) , the substring

ab is enpty, i.e., there exists conmputation S starting with

ab"acyd that passes A with tail cyd. |In this case we take c!
to be ge .
: *
By earlier remarks about P, and P,, it follows that the next

operation in S after passing A nust be g .

Now, for any string b'in {oz,a}"éfhe conput ation starting

Wth tail ab'geyd must pass A with sone tail ab'Bcyd where
ab'g is sone rightnost substring of ab'g .

ab'got be enpty because this would nean that this
conputation passes A with the same tail cyd as for S
but in this case the next operation to be performed is f
This is inpossible, since the course of conputation from A nust
be determned by the tail at this point.

Hence, the conmputation nust pass A with some tail ab'eyd

(or equivalently ab'c'yd) where ab' is a rightnost substring of ab'.

(iii) For some non-enpty string b = bv"g (b" ¢ {oz,s}*) , the substring ab

is enpty. In this case we take c'to be ac .

We proceed as in case (ii) wth o and g interchanged and
f and g interchanged.

QE D

*
Y Ve could equally well take c' to be ge and consider computations
starting with tail ab'geyd .

28

Acknow edgnent

W are indebted to David Cooper for stinulating discussions and
mainly for his idea of using cut-set points which we have adopted in

ATGORTTHM | | .

Ref er ences

C. BOMM and G JACCPINI [1966]
"Flow Diagrams, Turing Mchines and Languages with only Two Formation
Rules". CACM Vol. 9, No. 5, pp. 366-371 (May 1966).

"J. BRUNO and K. STEIGLITZ [1970]
"The Expression of Algorithns by Charts", unpublished meno.

. D. C. COOPER [1967]

"B8hm and Jacopini's Reduction of Flow Charts". Letter to the
Editor. CACM, vol. 10, No. 8, pp. b436-L (August 1967).

D. C. COOPER [1970]
"Progranms for Mechanical Program Verification", in Mchine Intelligence

6, Edi nburgh University Press.

E. DI JKSTRA [1968]
"GoTo Statenent Considered Harnful", CACM, vol. 11, No. 3, pp. 147-148
(March 1968).

E. ENGELER [1970]
"Structure and Meaning of Elenentary Programs”, in Symposiumonthe
Semantics of Al gorithnic Languages,

D. E KNUTH and R W FLOYD [1970]
"Notes on Avoiding 'Go To* Statenents", CS 148, Conputer Science
Departnent, Stanford University (January 1970).

D. C ILuCkHAM, D. M R PARK and M S. PATERSON [1970]
"On Fornalized Conputer Prograns", Journal of Conmputer and System
Sci ences (June 1970).

M S. PATERSON and C. E. HEWTT [1970]
"Conparative Schematology", Unpublished meno.

H R STRONG [1970]
"Transl ating Recursion Equations into Flowharts", Journal of
Conputer and System Sciences (to appear).

29

