
STANFORD ARTIFICIAL INTELLIGENCE PROJECTSTANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMO AIM-138MEMO AIM-138
COMPUTER SCIENCEDEPARTMENTCOMPUTER SCIENCEDEPARTMENT

II
REPORT NO. STAN-CS-71-188REPORT NO. STAN-CS-71488

II

THETRANSLATIONOF'GOTO' PROGRAMS
TO'WHILE' PROGRAMS//

BY

EDWARDASHCROFT

AND

ZOHARMANNA

JANUARY1971

COMPUTER SCIENCE DEPARTMENT

I STANFORD UNIVERSITY

THE TRANSLATION OF 'GO TO' pROGR&IS

TO 'WHILE' PROGRAMS

bY

Edward Ashcroft

Zohar Manna

Abstract: In this paper we show that every flowchart program can be

written without go to statements by using while statements.

The main idea is to introduce new variables to preserve the

values of certain variables at particular points in the program;

or alternatively, to introduce special boolean variables to

keep information about the course of the computation.

The *while' programs produced yield the same final results

as the original flowchart program but need not perform computations

in exactly the same way. However, the new programs do preserve

the 'topology' of the original flowchart program, and are of the

same order of efficiency.

We also show that this cannot be done in general without

adding variables.

1

GENERAL DISCUSSION

1. Introduction

The first class of programs we consider are simple flowchart programs -

constructed from assignment statements (i.e., assigning terms to variables)

and test statements (i.e., testing quantifier-free formulas) operating on

a 'state vector' 2 . The flowchart program begins with a unique start

statement of the form

where 2
input

is a subvector of s , indicating the variables that have

to be given values at the beginning of the computation. It ends with a

unique halt statement of the form

where -xoutput is a subvector of i , indicating,the variables whose

values will be the desired result of the computation.

We make no assumptions about the domain of individuals, or about the

operations and predicates used in the statements. Thus our flowchart

programs are really flowchart schemas (see, for example, Luckham, Park

and Paterson [lyTO]) and all the results can be stated in terms of such

s c h e m a s .

Let Pl be any flowchart program of the form shown in Figure 1.

.Note that, for example, the statement 2 + e(z) stands for any sequence

- of assignment statements whose net effect is the replacement of vector 2

2

w

P.

rlXI

by a new vector e(;;> . Similarly, the test p(x) , for example,

stands for any quantifier-free formula with variables from 2 .

The flowchart program Pl will be used as an example throughout

the paper.

Flowchart programs are usually easy to understand, but if the

program is to be written in a conventional programming language, goto

statements are required. There has recently been much discussion (see,

for example, Dijkstra [1968]) about whether the use of goto statements makes

programs difficult to understand, and whether the use of while or for

statements is preferable. It is clearly relevant to this discussion to

consider whether the abolition of goto statements is really possible.

Therefore the second class of programs we consider are while programs,

i.e., Algal-like programs consisting only of while statements of the form

while (quantifier-free formula) do (statement) , in addition to conditional,

assignment and block*J statements. As before, each program starts with

a unique start statement, START(: 1input '
and ends with a unique halt

statement, HALT(H
>output l

Since both classes of programs use the same kind of start and halt

statements, we can define the equivalence of two programs independently

of the classes to which they belong. Two programs (with the same length

of input subvectors 2
input

and the same length of output subvectors

xoutput) are said to be equivalent if for each assignment of values to-

2
input

either both programs do not terminate or both terminate with the

same values in -xoutput l

f* A block statement is any sequence of statements enclosed by square

brackets.

-1

2. Translation to while programs by adding variables

(a) Extending the state vector 2 .

We first show that by allowing extra variables which keep crucial

past values of some of the variables in 2 , one can effectively translate

every flowchart program into an equivalent while program (ALGORITHM I).

The importance of this result is that the original 'topology' of the

program is preserved, and the new program is of the&me order of efficiency

as the original program. However, we shall not enter into any discussion

as to whether the new program is superior to the originalone or not.

This result, considered in terms of-schemas, can be contrasted with those

of Paterson and Hewitt [19701 (see also Strong [19701). They showed that

although it is not possible to translate all recursive schemas into

flowchart schemas, it is possible to do this for 'linear' recursive

schemas, by adding extra variables. However, as they point out, the

flowchart schemas produced are much less efficient than the original

recursive schemas.

As an example, ALGORITHM I will give the following while program

which is equivalent to the flowchart program P, (Figure 1):

START(:);

2 t a@);

q(z),then [H t b(z); while r(z) do 2 t d(x)]d

whileT7) As(% - - - -

[ii t cc;;);

- 1
Y +x;

[g + b(g); while r(g) do k +

else2 +p(;);

I&T(:).
-

If the test q(G) uses only a subvector of 2 , then the algorithm will

indicate that the vector of extra variables 7 need only be of the same

length as this subvector.

Note that on each cycle of the main while statement, the state

vector 2 is at point @ , while f holds the preceding values of ?

at point CX .

Note also that the two subprograms enclosed in broken lines are

identical. This is typical of the programs produced by the algorithm.

One might use this fact to make the programs more readable by using

%ubroutines r for the repeated subprograms.

(b) Adding boolean variables.

Inspection of the above example will suggest that we do not need

to introduce a whole vector f , but rather a single boolean variable t

which is assigned the value q(z) , as illustrated below. This while

program, which is still equivalent to the program Pl, will in practice be

more efficient than the preceding while program, since t requires only

one memory bit whereas y may be a very large vector.

START(%);

X + a(X);

_-

i&e(Z); .

t + 43 ;

if t then [i + b(x); while r(X)Y P
while t A s(G) do

[k ---* c(x);

while p(g) then g + e(?);

t +- da;

if t then [z- P +b(G); while r(G) do 2 + d(L)]];

if t then z- P - f(Z) else 2 + g(g);

HALT($.

6

The translation of flowchart programs into while programs by the

addition of boolean variables is not a new idea. B&m and Jacopini [1966],

Cooper [1967] and Bruno and Steiglitz [1970] have shown that every flowchart

program can be effectively translated into an equivalent while program

(with one while statement) by introducing new boolean variables into the
I
I

program, new predicates to test these variables, together with assignments

to set them true or false. The boolean variables essentially simulate a

program counter, and the while program simply interprets the original I

program. On each repetition of the while statement, the next operation

of the original program is performed, and the *program counter' is updated.

As noted by Cooper and Bruno and Steiglitz themselves, this transformation

is undesirable since it changes the 'topology' of the program, giving a

program that is less easy to understand. For example, if a while program

is written as a flowchart program and then transformed back to an

equivalent while program by their method, the resulting while program will

not resemble the original.

We give an algorithm (ALGORITHM II) for transforming flowchart programs

to equivalent while programs by adding extra boolean.variables, which is an .

improvement on the above methods. It preserves the 'topology' of the

original program and in particular it does not alter while-like structure

that may already exist in the original program.

For the flowchart program Pl, for example, ALGORITHM II will produce

the following while program.

7

START(z);

2 t a(2);

t ttrue;

while t doP -
[while p(G) do s t e(s);

if q(z) then [% +b(G);

while r(G) do 2 t d(z);

if s(g) then z t- c(z)

else [g * f(g); t + false]]

else [Z t g(2); t + false]];

HALT(;;).

Note that each repetition of the main while statement starts

from point y and proceeds either back to y orto 6 . In the latter

case, t is made false and we subsequently exit from the while

statement.

3. Translation to while programs without adding variables

It is natural at this point to consider whether every flowchart

program can be translated into an equivalent while program without adding

extra variables (i.e., using only the original state vector 2) . We

show that this cannot be done in general, and in fact there is a flowchart

program of the form of Figure lwhich is an appropriate counter-example.

A similar negative result has been demonstrated by Knuth and Floyd

[19703 and Bruno and Steiglitz [19703. However, the notion of equivalence

considered by those authors is more restrictive in that it requires

equivalence of computation sequences (i.e., the sequence of assignment

and test statements in order of execution) and not just the equivalence

8

of final results of computation as we do. Thus, since our notion of

equivalence is weaker, our negative result is stronger. _- I

Our counter-example is a program of the form of Figure 1 in which:
1

r identical to q , s identical to p , b and e identical

I
I

-
I
/

to g;and c and d identical to f . I

There is also another similar counter-example in which: ,

r identical to q , s identical to p , d and e identical I

to g) and b and c identical to f .

The fact that these restricted forms are counter-examples is especially

interesting since we have found while programs , with no extra variables,

which are equivalent (in our sense) to most of the programs of the form

of Figure 1. In particular, we can do this for any flowchart program of
_-

I

the form of Figure 1 with only two distinct tests and two distinct

operations in which

C is identical to e ,

or b is identical to d ,

or f is identical to g .

9

ALGORITHM I: TRANSLATION BY EXTENDING THE STATE VECTOR %

Our algorithm depends on the fact that every flowchart program can

be put effectively into a normal form (see Cooper [1970] and Engeler [1970]).

A flowchart program is in normal form if it is of the form

I block I
.

>t

where a block is defined recursively as follows:

1. A basic block is any tree-like, loop-free, one-entrance piece of

flowchart program (without start and halt statements). For example,

r -7 - w -

f5

- - -
I 2 t fl(Z)
I 4f
I P,(X)

I Ir ii t f,(Z) ? t f,(ii)

I I
‘

II
I

I
I

L

1
I
I
I

10

2. Composition

If
V

1

B'
‘

,a*

and
V

B"

l *e

are blocks, so is

3. Looping

If
I

is a block, so is

B'

*
l � l

r
I
L

-4-- 1
B'47- -

l .*

We shall consider only flowchart programs in normal form. By

induction on the structure of the blocks we show how to associate with

each block B(z) (with state vector z) a piece of while program

and with the i-th exit of the block a pair ((pi(',Y), 'i(x) > 9

where (p.$,y) is the *exit-conditiorP and ~(2) is the 'exit-term',

- *
f.: is a (possibly empty) vector of additional variables introduced by

the translation.

ll

such that B(z) comes out of the i-th exit with 5 if and only if

yp,Y) terminates with some c, s.t. cpi(Er,y) = T and g = $g*) .

Each cpi is a quantifier free formula constructed fram the

tests and operations in the flowchart. The (~~9 for a given block are

complete and mutually exclusive.

In each of the three cases we have to consider, the above relationship

between
73

and (Pi, 'i) is preserved.

1. B(G) is a basic block (i.e., tree-like, loop-free, one-entrance flowchart)

In this case %()ii is always null (the empty program), (pi(%) is

the condition that control will take exit i for input % , and $2)

is the result of performing the assignment statements on the corresponding

path. For example,

r -B--m -7
w B(z)1

I
ii - fl(?)

I I

where aB(Z) is null.

12

2. B(g) is constructed from B*(G) and B"(c) by composition

We consider two cases:

(a) B" is a basic block.

B’G) - Q& (G,j?)
531 n

. . .

and I

* C$,(Z) , i.e., null

then

r v - w - -
, - J ' - ,B(jt)I

13

.

(b) B" is a non-basic block.

If IBW -
. R1 n

. . .

and

then let GO be the subvector of jf which is used in exit

conditions cp ,...,q
1 n . Let fO be a new vector of the same

length as x0 l Then 7 = {j$&fO] and

r _1-- - - -
V * B(

I

B'(z)

I

I
V

B"(x)

3 1
I
I
I

-I

where %(%Y) is St (%iW;

i- -

Yo + "0;

if cp,(%,y') then [% + T,(Z) ;o+(~,$~)]

14

7

3. B(?) is constructed from B'(G) by looping.

then

- -
) - BOI

w

B'(s) , I

-I

where C$$GY) is Q& (%Y>;

while cp,(z,y) g [G + 21 c-1x ; aBt (%Y> 1

and. cp,, . . ., 62 are complete and mutually exclusive and

cPj(⌧YY) ~�Pj(⌧,y) Y 2 ,< j Ln l

Comment: To find {gj] _note that the algorithm ensures that each cp.J

is a conjunction of literals (i.e., atomic formulas and negations of atomic

formulas), and therefore we can represent [vj] by a binary tree; e.g.

CpA4AryPAqA--rypA--9y- p] is represented by tree (a).

15

PAqA r pAqA-r PAr PA-r

If we remove the node in the tree leading directly to the terminal node
.

representing 'pl , the new tree represents the desired conditions WCT 3
3 l

For example, if we remove p A -q from the above set of conditions, we

get the new tree (b) which represents the new set of exit conditions

h?Aq-, PA--r, -PI.

Conclusion: This covers all cases of blocks we need to consider. To find

the while program equivalent to a given flowchart program (in normal form)

I
m

A
1 . . . i . . . n

t \AI\

we find %(',f) md {(rpi('Y3r)Y'i('))} ' The desired while program is then

START(z)
input

qG> ;

c else if cp,(x,y) then g + T,(;;>- -

else . . . 2 c-z (2);
n.-

HALT(%
>

- output l

16

Example: Let us consider againthe flowchart Program Pl (Figurel). It is

already in normal form, and the blocks are indicated in Figure 2. The

exit conditions and exit terms for the exits of all blocks are also

indicated. The corresponding Ws are given below:

c$ (3is null.
1

~ (3is while p(g) do 2 + e(G) .
2

null.

a (3
B4 <

is while r(x) do 2 + d(z)

aB (%Y) is s (2); 7 + zO; g q(z) then [G + b(g); s4(x)]l

5 2

Note that x0 is the subvector of k occurring in the exit

conditions of B2 , i.e., in q(G) .

is. Q$ (&y); while q(f) A s(z) @, [H + c(z); O[B (G,f)] .

5 5

Thus the original flowchart program is equivalent to the following while

program;

START(%);

ii + a(Z);

while p(g) do 2 + e(z);

Y'x;0

-

if q(x) then [H + b(z); while r(x) do z + d(z)];

while q(f) A s(z) do

ci + c(X);

while p(g) do 2 + e(z);

Y+X0;

q(jt) then [: + b(z); while r(g)

if q(f) then 2 + f(s) else z + g(z);

HALT(z).

j 17

ii + a(%)
--~ e-v -. __ --_-- . . _ --.,^ -__. --.. - --- -- _.

I B6-- -- -_I .__ - --- . .-r - _--. I
B--.-.-.- IUM --- .- - - - - I--- --1

’ i

i i ,
i i

__-_. . _-. ..- - .I. - --

bl(3YbW >

- -... -_ _- -.- c- . ..---

I

-- - -* -

4
___- , P 1-1 --- -

(r(3 ;a3 > :

(--s(s) A s(&c(z))
e- I_.. .- mm-

(s(X),c(3>

Figure 2. The flowchart program Pl (for ALGOWLKM x).

18

Comment: In general the transformation of a program to normal form

results in qonential growth in the size of the program. This can

be reduced if we allow the following extra case in the definition of

blocks.

4. Merging (optional)

If I is a block, so is

B'* f7.a*
- -

r- u/ ,l

I
B'

L v

. I

-- -I
aa*

The algorithm can be easily modified to cover this case, but since

it would complicate our notation, we will not discuss it here.

19

.

ALGORITHM II: TRANSLATION BY ADDING BOOLEAN VARIABLES

The second algorithm, ALGORITHM II, translates flowchart programs

to equivalent while programs by adding boolean variables. It makes use

of the fact that every flowchart program (without the start and halt

statements) can be decomposed into blocks where a block is any piece of

flowchart program with only one exit (but possibly many entrances).-I
*

This is obvious since in particular the whole body of the given flowchart

program can be considered as such a block. The aim, whenever possible, is

to get blocks containing at most one top-level test statement (i.e.,

.

test statement not contained in inner blocks) since such blocks can be

represented as a piece of while program without adding boolean variables.

In particular, if a while program is expressed as a flowchart program,

this latter program can always be decomposed into such simple blocks,

and the algorithm will give us back the original while program.

For any given flowchart program we construct the equivalent while

program by induction on the structure of the blocks. Since the ideas

behind the construction are intuitively simpler, we shall not be as

formal as in the presentation of ALGORITHM I.

For each entrance bi to block B we consider that part Bi of

the block reachable fram bi . We then recursively construct an equivalent

piece of while program yB (G,z) jcjc-f as follows. There are two cases to
i

consider:

El Note that the blocks used here are not related in any way to those
used in ALGORITHM I.

9 5 is a (possibly empty) vector of additional boolean variables
introduced by the translation.

20

Case 1: Cal Bi contains at most one top-level test statement,

or (b) Bi contains no top-level loops.

In both cases yB (2,s) is the obvious piece of while program
i

requiring at most one top-level while statement (and no extra boolean

variables).

Case 2: Bi contains two or more.top-level test statements and at

least one loop.

In this case we choose a set of points on top-level arcs of Bi

(called 'cut-se-V points) such that each loop contains at least one such

point. One point on the exit arc of the block is also included in this

set. We shall translate Bi into a piece of while program yB (z,E) with
i

one top-level while statement in such a way that each iteration of the while

statement follows the execution of Bi from one cut-set point to the next.

In this case, yB (2,s) includes boolean variables introduced to keep track
i

.- .

of the current cut-set point. Note that n boolean variables tl,t2,...,tn

are sufficient to distinguish between k cut-set points, 2n-l <k<2n.

Example: We shall illustrate the method using again'the flowchart program

Pl (Figure 1). We decompose Pl into blocks' as shown in Figure 3. Blocks

Bl and B2 are of type 1 and can each be written as a single while

statement. Block B3 is of type 2 with a single top-level loop. Thus

it is sufficient to choose points a and /3 as the cut-set points. To

distinguish between a and 8 we need one boolean variable, t say.

Thus the following while program, using the boolean variable t , can be

generated and it is equivalent to the given flowchart program Pl.

21

r B3

ar-t - -, 1Bl
I

- I

'1

t - -
t T

B2
1

t

I

L - - - I

Figure 3. The flowchart program Pl(for ALGORITHM II).

22

START(%);

t * true;

while t do

[while p(G) do 2 + e(z);

if q(G) then [H + b(z);

while r(z) do 2 - d(z);

if s(z) then 2 + ~(2)

else [Z + f(2); t + false]]

else I3 + g(2); t + false]];

HALT(G) .

23

THE NEGATIVE RESULT

We consider the flowchart program P2 (Figure 4) which has the

structure of Figure 1. The domain D is the set of all pairs of strings

such that the first string, called 'head', is any finite string over

letters cm I and the second string, called 'tail', is any infinit
*
e-J

string over letters (a&y] with at most one occurrence of y .

During a computation of P2, the only changes in the value of the

program variable are deletion of leftmost letters from the tail and

adding letters f or g to the right of the head. The tests in the

program simply look at the tail, and-therefore the computation is determined

e ' by the tail of the initial value. Thus, since the program terminates if

and only if both tests a and B are false, it implies that P
2
terminates

if and only if the tail of the initial value contains y . Another important

feature of any computation of P2 is that whenever the leftmost letter of

the tail is cx , the next but one operation must be operation g . Similarly,

whenever the leftmost letter is @ , the next but one operation must be f .

Let us assume that we have a while program Pi equivalent to P2 which

also has one variable and the same domain D . Although the assignment
*

statements of P2 may use any terms obtained by compositions of the operations

f and g , we assume without loss of generality that each assignment

statement in Pi consists of a single operation f or g. The tests in

the conditional and while statements may only use quantifier-free formulas

obtained from tests a and 6 , and operations f and g . Since we use

3 Note that the domain is non-enumerable. However, we can in fact
restrict the tails to the enumerable dcanain of ultimately periodic
strings, i.e., infinite strings which eventually repeat some finite

. substring indefinitely.

24

g 65
4 .

c

Y

5
F

where test ~3 means "is letter W the lef'tmost letter in tail";

test @ means "is letter '@' the leftmost 3,etter in tail";

operation f means "erase the leftmost letter in tail and add

letter 'f' on the right of head"; and

operation g means "erase the leftmost letter in tail and add

letter 'g' on the right of head".

.-
i

Figure 4. The Flowchart Program P2 (for negative result)

25

l

1,

only one variable, it follows that every sequence of values'describing a

computation of PE is identical to the corresponding computation of P2.

Note also that since there is a bound on the depth of terms in the

quantifier-free formulas, there is a bound, M say, on the number of

leftmost letters in the tail that can affect the decision of any test

in Pl. Finally, without loss of generality we shall make the restriction

that there is no redundant while statement in Pi; i.e., there is no while

statement with a uniform bound on the number of its iterations.

Since Pg must contain some (non-redundant) while statement, let W

be any while statement in Pl which is not contained or followed by another
+ '

while statement. The point in P* .2 mediately after W we shall denote by A .

'. Lemma

i :
For all n (n > 0)- there exists strings a,c E {a&* and

dc (a,pSco (I Ic = n) *
-I such that for all strings b E kM3* the

computation starting with tail abcyd passes A with some tail

abcyd , where ab is some rightmost substring of ab (possibly empty).

From this Lemma we immediately obtain the following corollary.

Corollarv

For every n , n>O , there exists a finite computation of Pi

which passes through A with more than n operations still to be performed.

.

;

But this contradicts the fact that,, since there is no while statement

following A , the number of operations that Pl can perform after A is

bounded.

i.e., a and c are finite strings (possibly empty) over {a,@] ,
d is an infinite string over [a,@) and the length of c is n .

26

Proof of Lemma. By induction on n .

Base step. Choose any computation starting with tail ara"brydr

(a*,a'*,b* e {oI,p]*, d* E {o$B)co and Ia"1 = M) that enters W with

tail a'*b*yd* . (Such computation exists by non-redundancy of W .)

Since at most M leftmost letters of the tail can effect the

decision of any test, on entering 'W the main test can only look at a'* .

Therefore the test will be true for any tail starting with a" .

In particular, the computation starting with tail ara"bya'*dr ,

for any
36

b in {cx,@] 9 also enters W at the same point, i.e., with

tail a"bya"d* . It must subsequently pass point A , but (noting that

the test in W must be false when passing A) it cannot pass A with

tail a"d* .

Hence, with a = a*&" , d = aTtd* , for'all strings b in {a&* ,

the computation starting with abyd must pass A with some tail

abyd where 2 is some rightmost substring of ab .

Induction step. Assume we have strings a,c E (a,@]* and de {a,@}a ,

I IC =n, such that for all strings b in {CZ,@}* the ccnmputation

starting with tail abcyd passes A with some tail abcyd where ab

is some rightmost substring of ab .

We find a string c* E {a,@]* , lc*I = n+l , such that for all

strings b* in {a,@]* the camputation starting with tail ab*c*yd

passes A with some tail ab*c*yd where ab* is some rightmost substring

of ab* .

There are three cases to consider:

-

27

()i For all non-empty strings b , the corresponding substring g

is non-empty. In this case we take c* to be ac .*.f

For any string b* in {C$p]* the computation starting with

tail ab*acyd , passes A with tail ab'acyd , where abT

is a rightmost substring of ab* .

(ii) For some non-empty string b = b"a (b" E &PI*) , the substring

ab is empty, i.e., there exists computation S starting with

ab%!cyd that passes A with tail

to be gc .

By earlier remarks about P2 and

operation in S after passing A

cyd . In this case we take c*

*
p2J it follows that the next

must be g .
w

Now, for any string b* in @,@I. the computation starting

with tail ab*@cyd must pass A with some tail ab'pcyd where

ab*g is some rightmost substring of ab*p .

cannot be empty because this would mean that thisab*@

computation passes A with the same tail CYd as for S

but in this case the next operation to be performed is f .

This is impossible, since the course of computation from A must

be determined by the tail at this point. ,

Hence, the computation must pass A with some tail ab'@cyd

(or equivalently ab'c'yd) where ab* is a rightmost substring of abr .

(iii) For some non-empty string b = b"@ (b" e {&PI*) , the substring ab

is empty. In this case we take c* to be cxc .

We proceed as in case (ii) with a and @ interchanged and

f and g interchanged.

Q.E.D.

36
f We could equally well take c* to be PC and consider computations

starting with tail ab*Bcyd .

28

Acknowledgment

.

We are indebted to David Cooper for stimulating discussions and

mainly for his idea of using cut-set points which we have adopted in

AIXORITHM II.

References

C. B&M and G. JACOPINI [1966]
"Flow Diagrams, Turing Machines and Languages with only Two Formation

Rules". CACM, Vol. 9, No. 5, pp. 366-371 (May 1966).
'J. BRUNO and K. STEIGLITZ [1970]

"The Expression of Algorithms by Charts", unpublished memo.

4 / D. C. COOPER [lg67]
"B8hm and Jacopini's Reduction of Flow Charts". Letter to the

Editor. CACM, vol. lo, No. 8, pp. 436-4 (August 1967).
D. C. COOPER [1970]

"Programs for Mechanical Program Verification", in Machine Intelligence

5, Edinburgh University Press.

E. DIJKSTRA [lg68]

"GoTo Statement Considered Harmful", CACM, vol. 11, No. 3, pp. 147-148- -
(March 1968).

E. ENGELEB [lg70]

"Structure and Meaning of Elementary Programs", in Syrnposi~ on the

Semantics of Algorithmic Languages,

D. E. KNUTH and R. W. FLOYD [1970]

"Notes on Avoiding %O TO* Statements", CS 148, Computer Science

Department, Stanford University (January 1970).

D. C. LUCKEXAM, D. M. R. PARK and M. S. PATERSON [1970]

"On Formalized Computer Programs", Journal of Computer and System

Sciences (June 1970).

M. S. PATERSON and C. E. HEWITT [1970]

l "Comparative Schematology", Unpublished memo.
c

H. R. STRONG [1970]

"Translating Recursion Equations

- Computer and System Sciences (to

29

into Flowcharts", Journal of

appear).

