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ABSTRACT

This reportsthe simulation of a parallel processing system based
on a directed graph representation of parallel computations. The
graph representation is based on the model developed by Duane Adams in
which programs are written as directed graphs whose nodes represent
operations and whose edges represent data flow. The first part of the
report describes a simulator which interprets these graph programs.
The second part describes the use of the simulator in a hypothetical
environment which has an unlimited number of processors and an unlimited
amount of memory. Three programs, a trapezoidal gquadrature, a sort and
a matrix multiplication, were used to study the effect of varying the
relative speed of primitive operations on computation time with problem
size. The system was able to achieve a high degree of parallelism. For
example, the simulator multiplied two n by n matrices in a simulated
time proportional to n. '
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INTRODUCTION

Many approaches have been taken to the problem of parallel computation.
One set of approaches, characterized by ILLIAC IV, allows only one instruc-
tion stream, but allows each instruction to be cérried out on many data
items simultaneously. This approach does not lead to serious problems of
sequencing, but it is suitable principally for problems using large arrays.
To take advantage of the fact that most problems require many operations
which are independent and can, therefore, be carried out simultaneously
requires one to use several independent instruction streams. This leads
to sequenciné problems, however, since concurrently executing sections of
code may refer to the same piece of data in an indeterminate order. One
apprcach to these problems has been to require the programmer to specify
where parallel execution may occur and to leave to him the problem of ma-
king sure that no conflict may occur between concurrently executing sections
of code. This approach is typified by the FORK and JOIN statements pro-
posed for ALGOL. A similar approach is to attempt to isolate the data
items which are referred to by more than one piece of concurrently exe-
cuting code and then to provide semi-automatic protection for these. This
is the approach taken by Dijkstra's semaphore system.

These approaches suffer from the fact that the burden of providing
parallel execution is on the programmer. The sequencing problem arising in
multiple instruction stream parallelism will thus become a source of pro-
gramming bugs since the programmer will not always use the interlocks
correctly. Furthermore, because of the additional programming required to

use interlocks etc., the programmer will not take full advantage of the



opportunities for parallelism inherent in an algorithm, particularly at a
very local (i.e., intrastatement) level.

An approach less prone to error is one which provides for multiple
instruction streams where the sequencing, and thus the degree of parallel-
ism, is specified implicitly rather than explicitly. This requires that
the program be written in a different representation than that provided by
conventional programming languages, since the sequencing implicit in these
does not distinguish between those cases in which one operation must logi-
éally follow another and those in which there is no such logical necessity.
In other words, it is desirable to have a representation in which operations
are implicitly simultaneous unless they are logically dependent on one another.
Directed graphs provide one such representation. In this representation,
the nodes of the graph represent operations performed on data stored on
edges directed into the node. A data item has no permanent location in
this representation, but rather "travels" along the edges of the graph to
the operations which are performed on it. An example of this approach is
the computation graph model of Duane Adams. Adams' model allows one to
program sophisticated algorithms, such as matrix inversion, in a way which
allows both the single instruction stream type of parallelism and multiple
instruction stream parallelism down to a very low level.

A program in Adams' model consists of a set of directed graphs called
graph procedures. Graph procedures consist of two types of nodes, primitive
nodes and procedure nodes. Primitive nodes represent the basic operations
performed by the system (addition, multiplication, etc.). Procedure nodes
cause invocation of another graph procedure, i.e., they specify that

the computation to be performed by that node is the one represented by the

ii



L
L
L

r—

r r— r— r— r— (-

—

named graph procedure. Edges specify the sequencing of the operations
performed by the nodes; if there 1s an edge directed from node i to node j,
then the result of the operation specified by node i is an input to the
operation specified by node j. The edges act as first-in first-out queues,
i.e, the data items are operated onxfy node j in the order in which they
were output by node i. There are two types of primitive nodes, p-nodes

and s-nodes. P-nodes can execute when there is at least one data item on
each edge directed into the node. If there is more than one data item on
each input edge, the operation may be performed simultaneously on each set
of input items. This allows the single instruction stream type of parallel-

ism to be performed within the model. In order to insure that multiple in-

stances of an operation terminate in the same order in which they initiated,
the model specifies that there be an initiation queue associated with each
node. An identifier is placed on the initiation queue for each instance of
the operation which is initiated, and that instance does not terminate until
its identifier is at the head of the initiation queue.

The other type of primitive node is the s-node. Associated with each
edge directed into an s-node is a status bit whih specifies that the edge
is either locked or unlocked. An s-node can initiate when there is at

least one data item on each unlocked input edge, regardless of whether or

~not there is data on any of the locked edges. The values of the edge sta-

- tus bits are reset at the end of the operation specified by the node. The

new values are a function of the old status values and of the data input to
the node from the unlocked edges. Since the conditions for the initiation
of an s~node depend on the results of the last operation performed by that

node, only one instance of the operation specified by an s-node can be

iii



carried out at a time.

Procedure nodes specify that the named directed graph is to be exe-
cuted using the values on the input edges to the procedure node. They are
initiated as p-nodes, so that more than one instance of a given graph pro-
cedure may be executed concurrently.' Aiso, the graph procedure named by a
procedure node may be the one in which the node is contained so that re-
cursive execution of graph procedures is possible.

This report describes a simulator which interprets Adams's graph
programs, carrying out the computations specified by a set of graph pro-
cedures and keeping statistics on the timing and resource usage, and it
describes experiments performed with the simulator. Simulations were run
on a number of sm;ll programs, including a matrix multiply program, a
quadrature program, and a sort program. The programs were run uéing varying
amounts of data, various speeds for the primitive operations, also with and
without allowing multiple instances of a p-node to execute simultaneously.
All of the simulations described here were run using the assumption that the
machine specified by the simulator had an unlimited number of processors to
carry out the operations specified by the primitive nodes and an unlimited
amount of memory. Of course, this is an unrealistic éssumption. These
simulations were run in an attempt to discover the "inherent" resource
usage characteristic of the programs and to discover the effect of vary-
iﬁg the relative speed of primitive operations independently of effects due
to different algorithms for allocating processors in an enviromment with a
finite number of processors. These effects can then be controlled during

simulations run in the more realistic enviromment of a finite machine.
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Experiments conducted to discover efficient algorithms for allocating
processors in a finite environment will be described in a subsequent re-

port.
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HE GRAPH

The simulator described here may be thought of as a parallel computer,

although it was not my intention to simulate any particular machine archi-

Storage for graph procedures
Storage for data (edges), initiation queues, and the status of
nodes and edges in an executing graph procedure
A pool of processors with input and output registers
Logic for performing the operations specified by the primitive
nodes
Control logic for determining which nodes are ready to execute,
assigning processors to those nodes, recognizing that a
processor is done, and putting the results on the output
edges in the order dictated by the initiation queue.
The first type of storage is static during the execution of a graph pro-
gram, while the second is dymamic. Besides the above components, the simu-
lator also has the code necessary to gather statistics on the simulgtion,
provide a trace, etc.

Two distinct machine models are possible for the simulator, one in
which each processor is a specialized functional unit, able to execute only
a single type of primitive node and one in which the processors are all
general processors so that each can execute all of the primitive nodes. I
will call the first the functional unit model and the second the multi-
processor model, In terms of an actual implementation, the functional
unit model has the advantage that it is not necessary to duplicate the

decoding and control circuitry required to decode operations in each



of proces~
sor allocation algorithms. In addition, if the mix of functional units
available on the machine does not closely match that required by a given

be idle much of the time. The

increased inefficiency. The distinction between the two models is not too
important in the unlimited resource enviromment, since it makes no sense
to ask what the optimum ratio of adders to multipliers is, for example, if
- one has an infinite supply of both. In the finite environment, however,
the simulator can be used to determine the cost in functional unit idle-
ness of the functional unit model, and these costs could then be weighed
against the costs of duplicating control circuitry.

Each processor in the simulator contains three input regiéters and
three output registers by means of which data is gated from and to the
edges. A gating bit is associated with each of the registers. For the
input registers, these indicate whether the corresponding edge was locked
or unloéked and, thus, whether there is data in the register. For the
output edges, the gate bits indicate whether or not the processor produced
output in that register so that the control circuitry will know whether to
gate the contents of the register onto the corresponding output edge. This
allows a processor to produce output conditionally. Each processor also
has a completion bit and a timer associated with it. The timer is a
simulator expedient which allows the processor to execute for a particular
number of cycles. A block diagram of a processor is shown in Figure la.
Figure 1lb shows how the processors would be arranged in the functional
unit model. The availability queues indicate whether a processor is free

or assigned to some node. -If it is assigned, they indicate to which node.

2
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Program storage can be divided into two parts: +that which is static
during execution of the program and that which is dynamic. The static
storage contains the graph procedure definition and the dynamic storage
contains the edges, initiation queues, and node and edge status flags.
For each graph procedure, three arrays are needed. Two are one dimen-
sional arrays with one entry for each node in the procedure. One gives
the type of each node (i.e. the operation code), and the other identifies
the graph procedure named by the node if it is a procedure node.

The graph itself is represented by a connection matrix whose i, jth

entry is non-zero only if there is an edge directed from node i to node j
in the graph<5rogram. If the entry in the connection matrix is non-zero
it is an integer which identifies the edge connecting the two nodes. The
static storage is shown in Figure 3.

The dynamic storage consists of node and edge status flags, pointers
to edges and initiation queues, the edges and initiation queues, and
storage for structured operands. These are shown in Figures 3, 4, and 5.
Only the status bits and edge initiation queue pointers (Figure 3) are
copied when a new procedure is initiated.

The status bits for a node indicate whether it is idle, ready to
initiate, or executing. P-nodes may be both executing and ready to ini-
tiate at the beginning of .the same simulator cycle, since more than one
copy of the node may execute on that cycle. The status bit associated
with an edge indicates whether it is locked or unlocked. If the edge
is directed into a p-node, its status is always unlocked.

The basic data structure of‘the graph model is the first-in first-

out queue. Queues are used as a basic ordering device to maintain the
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sequence of operations during a computation. Their use in the edges
provides implicitly the array structures which are specified explicitly
by indexing in conventional programs. The programming of the simulator is
thus facilitated by a programmiﬁg language which allows queues as a data
structure. The resulting simulator is also a‘better description of the
graph model since the ordering provided by queues is implicit as in the
model. Queues can be programmed in PL/I by using structures and compile
time macros.

Edge and initiation queues are represented by PL/I structures

having four parameters which determine the access to the queue and an array

which holds the values in the queue. The four parameters are: (1) the
index of the array element which holds the héad of the queue; (2) the
index of the element holding the tail; (3) the number of elements currently
stored in the queue; and (4) the maximum number of elements which the
‘queue can hold. A PL/I compile time procedure is used to define QUEUE
as a data type in the simulator, i.e., to produce the proper structure
declaraticn when a simulator variable is declared to be of type QUEUE.
Special access procedures are used for entering and deleting values |
which treat the array assoclated with the queue as a circular buffer.
These procedures, together with the compile time macros have the effect
of making QUEUE a basic data type within the simulator.

Edges are then represented as an array of queues as are initiation
queues. Both arrays have an associated allocation list whose entries
indicate whether the corresponding queue is allocated and if so, to which
node or edge. When the simulator wishes to allocate an edge, it searches

the allocation list until it finds an entry which is zero. The edge



number is then put in this entry, and the edge pointer is set to the
corresponding queue. The allocation list entry is reset to zero when
the edge is released. When no edge resources have been gllocated to an
edge, the pointer is zero. Initiatibn queues are allocated for all nodes
in a graph procedure when the procedure is called.

Representation of structured data in the simulator differs from that
in the Adams model in two respects. Iirst, structured elements are not
stored directly on the edges in the simulator. Instead, they are stored
in a separate array and pointers to the location of the structure within
the array are kept on the edges in their place. At most, one instance of
a given pointe} may be on the edges at one time so that the pointer
"represents"” the bracketed data structure on the edge. Second, rather
than use a special bracket symbol at the beginning and end of the structﬁre,
the starting location (denoted by the pointer value) and a count of the
number of items is used. Items may themselves be pointers, so the
structure is recursive Jjust as Adams bracket notation is. The format
of structures is: (length) (item)* where (length) is an integer and
the number of (item)s must be equal to the value of (length). It is
easy to show that the pointer-count representation allows exactly the

same structures as does the bracket notation (¥). However, having the
; length explicitly available simplifies storage allocation for the simulator
and also avoids the problems of setting aside a special value for the
bracket character and of examining each element in the structure to find
the closing bracket. Pointers are not explicitly distinguished from data
in the simulator. Rather it is assumed that each type of primitive node
knows what type of data to expect and that graph programs will use the

correct primitive nodes. " This requires different primitive node types

10
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for the same operation on scalar and structured data, but it has the
advantage that the edge access procedures do not have to examine each
item so that the same queue access procedures can be used for all queues
in the simulator. In a hardware implementation this advantage would be
outweighed by the flexibility gaiﬁed by using a single bit to distinguish
between pointers and datsa.

Simulations take place in three stages. First, machine character-
istics (number and speeds of processors, amount of storage, etc.) are
read in followed by the graph program definition and the simulator is
initiglized. Second, successive machine cycles are simulated until a
cycle occurs during which no node executes. This indicates the progrem
has terminated. Finglly, the memory and processor use is printed in bar
graph form together with some statistics on the simulation. Figures 6-10
show the simulator flowchart.

The simulation of a single machine cycle is done in three stages.

In the first stage all those nodes which are ready to initiate are marked.
This is done by examining all the non-zero entries in the row of the con~-
nection matrix which corresponds to the node in guestion, i.e., all the
input edges for that node. If any edge is both unlocked and empty then
the node is not ready to initiate. Otherwise, it is ready to initiate.

A p-node may be marked ready to initiate even though it is already execu-
ting if data has arrived which permits a second copy of the node to ini-
tiate.

Allocation of processors among those nodes which are ready to initiate
is done by a self-contained procedure so that the allocation algorithm
can be readily changed. This procedure puts the processor identifier in
the nodes initiation queue and changes the node status from ready to exe-

cuting. It is also resbonsible for determining whether multiple copies

11
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executing. It is also responsible for determining whether multiple copies
of the node should be initiated. Each processor has a unique number
assigned to it and entered into the availability queue when the simulator
is initialized. The size of each Queue determines the number of processors
which are available for the corresponding node type. When a unit is
assigned to o node vhe processor number is removed frum the proper pro-
cessor gvailable gqueue and put onto the initiation queue for that node.

One data item is then removed from each input edge and put into "input

‘registers" associated with the processor. If the node is a p~-node and

there is stil} data on each input edge, another processor is taken from
the available queue and put onto the initiation queue of the node.
This process is repeated until some input edge has no data. The process
provides the vcetor parallclism required by the graph prograz model.
Associated with each unit is a timer. When the unit is taken from
the unit pool this variable is set to zero. After the ready nodes have
been iniﬁiated, the timer of each executing processor is incremented and
compared against the time required for that type of node. When the two
are equal, i.e., when the node has executed the required number of time
steps, the simulator transfers to code which carries out the actual oper-
ation. The transfer is by means of a switch on the node type. If the
processor identifier is now first on the initiation queue of the node, the
results are put on the output edges and the processor identifier is re-
moved from the initation queue and placed on the proper unit pool queue.
If another processor is first on the initiation queue, this processor is
not terminated, but if that processor subsequently terminates in the same

time step, the simulator looks again at the initiation queue and

17



terminates this one without waiting for the next time step. Thus, the

order imposed by the initation queue is maintained, but the simulator

carries out as many terminations at a-time as it can.

defining graph. The nodes and edges in this copy must be renamed so as
to te distinguishable from cther copies cxecuting concurrently. In
addition, the initial data on the edges must be present each time the
' graph procedure is called. The creation of a copy is accomplished by
adding a new level of naming to the PL/I structures containing the edges
and the node date. Thus, the array of queue EDGES is actually the
fully qualified name copy (I,J) * EDGES. This is the B 011 or graph
procedure I. COPY (I,0) is the definiton of the graph procedure I,
while for J>0 COPY (I,J) is the copy which is actually execnted.
When procedure I is called its edges can then be initial
executing the structure assignment statement.
COPY (I,J) + EDGES = COPY (I,0) - EDGES

Initially, the simulator assigns COPY (1,0) and executes the graph
procedure consisting of COPY (1,1). When a procedure node is encountered,
I is reset to the name of the procedure and a copy of the node is exe-
?uted for one time step (i.e. each node in the procedure is executed one
iime step). If the procedure has not terminated at the end of the time
step, control returns to the calling procedure but the node remains in
execute status. When the node terminates, it is taken out of execute
status and this indicates to the simulator that control is not to be
passed to the node on subsequent time steps. The edge initialization

only takes place when the node is in the ready-to-initiate state.
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In simulating a given type of node the actual execution takes place

-

on the last of the n cycles specified for the execution time of that node.

The first n-1 cycles are simply delay cycles and no action takes place

operator whose argument is the name of the procedure to be invoked.
The procedure operator itself has an execution time of n cycles,
which represents the setup time (resetting pointers, alilocating
storage, etc.) necessary for that invocation of the graph procedure,
and the invoked procedure does not begin to execute until the last

of these cycles, so that the total time required for a procedure

node is the time required for the procedure call operator plus the
time required to execute the constituent nodes.
Although execution takes place only on the last cycle of the node's

execution, Gata is taken off the input edges prior to initiation and the

processor is allocated to the node throughout the execution period.

— e

Thus, the simulator acts externally as if the processor were executing for

L n cycles. When the node is initiated, a processor is assigned to it by
removing the processor number from the appropriate availability queue and

o ‘ placing it in the node's initiation queue. The data from each unlocked
input edge is transferred to the corresponding input register in the

- assigned prccessor and the gate bits of all input registers are set to

L reflect the edge-status bits. If the node is an s node, the processor
resets the gate bit at the end of execution. The gate bit is then used

- to reset the edge-status bit.

The execution of a node is carried out by two procedures, EXECUTE
and HARDWARE. EXECUTE determines which nodes are ready to initiate,

calls the processor allocation algorithm, transfers the data from edges

r—
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to registers and sets the gate bit. After a delay which represents the
execution time of the node, it calls HARDWARE to apply the functions
associated with the node. HARDWARE operates only on the registers of the
assigned processor; it does not know the edge connections of the node to
which the processor is assigned. When control is returned to it, EXE-
CUTE resets the edge status bits according to the processor gate bits,
and transfers data from the output registers to the output edges. In
some cases, the processor may return a null result in one or more out-
put registers so that the value in the register is undefined. The pro-
cessor flag RRF indicates to EXECUTE whether or not the corresponding
output register value is to be put onto an output edge.

EXECUTE also has the task of assuring that results are put onto the
output edges in the order dictated by the initiation queue. This is
accomplished by checking whether the first processor in the initiation
queue has completed. If not, no other processbrs in the queue are
checked on that cycle. Otherwise, the data from that processor is put
onto the cutput edges and the process is repeated for the next item in
the initilation queue. Completion is indicated by the processor flag
DONE. 1In this version of the simulator all nodes of a given type are
constrained to have the same execution time. The order of initiation
- and termination would thus remain constant even without the initiation
queue mechanism.

Allocation of edge resources is done by the procedure M-ALLOCATE.
This procedure is called by EXECUTE before it transfers output from
processor registers to an edge. It is also called by the procedure call

operator in order to allocate storage for initial values to be placed on

20
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the procedure's edges before initiation. The current version of
M-ALLOCATE allocates edge resources in fixed size blocks. In the
unlimited resources model 15 edge-resources are allocated for each
edge when M-ALLOCATE is called. This has proven ample for all of the

programs which have been simulated.
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SIMULATOR INPUT AND OUTPUT

The simulator first reads in a set of graph procedures defining the
program to be simulated. It then simulates each time step of the pro-
gram's execution until no nodeg are able to execute. Simulation of g
time step consist in first marking all the nodes in the graph which are
ready to initiate, then allocating processors to these nodes, and
finally, executing all the nodes which are able to execute on that time
step. The number of processors used during the time step is recorded
-for each node type, as well as the number of edge resources in use at
the beginning of the cycle. This information is printed at therend of
the simulation.

The input to a simulation consists of two parts, machine charac-
teristics and the graph program. The first part specifies three types
of parameters: (1) whether the execution is to have vector parallelism;
(2) the execution time for each primitive node type; and (3) the number
of processors for each primitive node type. Parallelism is specified by
a bit constant - '1'B for vector parallel mode, 'O'B for concurrency
only mode. In the latter mode only one copy of g p-node'can execute at
a time. This bit is followed by a list of pairs of integers giving the
time in cycles that each processor type requires to execute and the num-
ber of processors of that type.

The graph program is read in as a set of graph procedures. The format
for the input of the graph program is best described by a bnf syntax.

{graph program) :: =0
| {(graph procedure) (graph program)

(name) (procedure definition) (ini-
tial data)

(graph procedure)

22
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(name) = (positive integer)

(procedure definition) :: = (node count) (node list) {con-
nection matrix)

(node count) S (integer)

(node list)

[

(op list) (name list)

(op list) = {list of integers}
(name list) :: = {list of integers}
(connection matrix) i1 = {list of integers}
(initial data) it = 0
| (edge information) (initial
data)
{edge information) :: = (edge number) (status bit)

(data list)

(edge number) (positive integer)

(status bit) i = '1'B /*locked*/
I'O‘B /¥unlocked*/

(data list) : = (count) (data)

oo

{count) 11 = (non-negative integer)
(data) :: = {list of floating point numbers}
| (empty)

Zeros terminate both the data list and the set of graph procedures.

The integer (name) identifies the graph procedure being defined
while those in the (name list) identify those procedure nodes which are
constituents of that procedure. Procedures can be read in any order and
may contain nodes naming procedures not yet read in. The main procedure
must have the name 1, and execution begins with this procedure.

The number of entries in (op list) and (name list) must be equal

to (count), while the (connection matrix) must have (count)@ entries.



Only those edges specified by an edge number are initialized. If
an edge is initialized its initial status setting must be given. Edges
leading into p-nodes are set to unlocked. The status of all edges
which are not explicitly initializéd are set to unlocked before the sim-
ulation begins.

Simulator Storage Parameters

The following parameters can be varied to adjust the storage used
by the simulator in order to fit the requirements of the graph being
interpreted. M#T is the maximum number of time steps the computation
will run. Simulation results are stored in a M#T by NT#+1 array, where
NT# is the number of primitive node types. ERM is the maximum number of
edges and IQM the maximum number of initiation Queues which can be
allocated. IQM must be >= the number of procedures executing at one
time times the number of nodes in each. The arrays used are of size:
ERM by EGLNMX+4; IQM by EGLNMX+4; ERM; and IQM. EGLNMX is the maximum
number of data items which can be held on an edge at one time. EGMX
and NDMX refer to storage of graph procedure definitions. NDMX is the
maximum number of nodes in any one procedure (excluding copies), and
EGMX is the maximum number of edges in any one procedure. The major
arrays used are: 2 of size PROCM by NDMX; 1 of length PROCM by NDMX+1
by NDMX+1l; 1 of length PROCM by EGMX by EGLNMX+2; 2 of length GMAX by
EGMX, where PROCM is the number of graph procedures in the graph pro-
gram being simulated and GMAX is the maximum number of procedures which
can be active at one time, including multiple calls to the same proce-

dure. (Hence this parameter limits the depth of recursion).
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Certain of these parameters (M#T, PROCM, ERM, IQM, EGMX, GMAX,

and NDMX) are read in by the simulator at the start of each run. They
are read in DATA format, and so may be entered in any order. They are
the first data read in by the simuiator.

There are two types of output from the simulator, trace output
and resource use summary output. Trace output is printed during the
simulation and consists of identification of nodes in execution, pro-
cedures which have been invoked, input and output register contents,
etc. It is primarily useful in debugging graph programs. The resource
use summary is printed at the end of the simulation. For each type of
resource, in;iuding edge resources, the following information in prin-
ted: (1) A bar graph showing the number of resources of that type
used at each time step of the simulated computation; (2) The total
number of resource cycles used for that type of resource; (3) the
percent utilization of that type of resource; (4) the average number
of resources used per time step; and (5) the maximum number of resources
used at any time step. The same information is also summarized for all
processor resources. The total number of resource cycles provides a
measure of the "cost" of the computation, the percent utilization
measures the efficiency with which resources are being used, and the
average resources used per time step gives an estimate of the degree
of parallelism attained. |

Representation of structured data in the simulator differs from
that in the Adams model in two respects. First, structured elements
are not stored directly on the edges in the simulator. Instead, they

are stored in a separate array, and pointers to the location of the
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structure within the array are kept on the edges in their place. At
most, one instance of a given pointer may be on the edges at one time so
that the pointer "represents' the bracketed data structure on the edge.
Second, rather than use a special bracket symbol at the beginning and
end of the structure the starting location (denoted by the pointer
value) and a count of the number of items is uséd. Items may themselves
be pointers so the structure is recursive Jjust as Adams' bracket no-
tation is. The format of structures is: (length) {(item)* where |
(length) is an integer and the number of (item)s must be equal to the
value of (length). It is easy to show that the pointer-count repre-
sentation allows exactly the same structures as does the bracket nota-
tion. However, having the length explicitly available simplifies
storage allocation for the simulator and also avoids the problems of
setting aside a special value for the bracket character and_of exgrmining
each element in the structure to find the closing bracket. Pointers

are not explicitly distinguished from data in the simulstor. Rather

it ié assumed that each type of primitive node knows what type of data

to expect and that graph programs will use the correct primitive nodes.
This requires different primitive node types for the same operation on
scalar and structured data, but it has the advantage that the edge access
procedures do not have to examine egch item so that the same queue access
irocedures can be used for all gqueues in the simulator. In a hardware
implementation this advantage world be outweighted by the flexibility

gained by using a single bit to distinguish between pointers and data.
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PRIMITIVE NODES

The choice of which operations were to be implemented in the simul-
ator was somewhat arbitrary. Since no hardware constraints or cost
considerations were available as a guide, primitive nodes were chosen
primarily because they were convenient for writing the programs to be
simulated. Any hardware implementation of this model would include
primitive nodes similar to those implemented here, although they would
undoubtedly differ in some details.

The following table lists the twenty~eight primitive node types
in the simylator. The first column gives the operation code used by the
simulator, the second the name of the node type together with the symbol
used in drawing the graph procedures, the third and fourth the data types
of inputs and outputs, and fifth gives the functions which determine
edge status settings for s-nodes. Only two s-nodes were needed, but
these were used frequently. Loop control, type 11, selects its first
input on the first execution and the second on all subsequent execu-
tions of the same node. Select route, type 12, selects either its
second or its third input depending on the value of its first input,
which is boolean. If the first input is true, the second input is
selected, otherwise the third.

The arithmetic and boolean operations (zero test, negation, plus,
increment, decrement, multiply, subtract, divide, less than, GTEQ, AND,
OR) work in the obvious way. The equivalent of branchlng in a conven-
tional computer is provided by the conditional route and branch route
nodes. The conditional route node has two inputs, the first of which

is a boolean value. If the value of the boolean is true, the second
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CODE

10

11

13
1k
15
16
17
18.
19
20
21

22

25

NAME

Procedure Call
Zero Test
Negation

Plus

Increment
Decrement
Multiply

Two Copies
Conditional Route
Branch Route

Loop Control

Select Route

Subtract
Divide

Less Than
First

Rest

First - Rest
Null Test
Length
Unbracket
Split

GTEQ

TABLE 1 —~ PRIMITIVE NODES
INPUTS
Any

Float _
Boolean
Float, Float
Float

Float

Float, Float
(2)

(Cond)

Scalar
Bool, Float
(BR) Bool, Float

(c) Float, Float

(SR) Bool, Float.

Float

(-)

Float, Float
Float, Float
(<) Float, Float
Vector
Vector
Vector
Vector
Vector
Vector
Vector

Float, Float

QUTPUTS EDGE _STATUS
Any P-node
Boolean P-node
Boolean P-node
Float P-node
Float P-node
Float P-node
Float P-node
Scalar, Scalar P-node
Float © P-node
Float, Float P-node
Float U,I-L,U;

L,U-L,U
Float True, U,L,I—
UL, F,ULL LU
LUL - ULL, LLU-JLL
Float P-node
Float P-node
Boolean P-node
Float P-node
Vector P-node
Float, Vector P-node
Vector, Boélean P-node
Vector, Float P-node
Float P-node
Vector, Vector  P-node
Boolean P-node
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ol And (A) Boolean,Boolean  Boolean P-node
25 Or (V) Boolean,Boolean Boolean P-node
26 Insert Vector, Float Vector P-node
27 Two Copies-Vector (2) Vector Vector, Vector P-node
28 Identity D Any | Any P-node

input is placed on the output edge. Otherwise, there is not output.
Branch route has two inputs and two outputé. The first input is a
boolean. If it is true, the second input is placed on the first output
edge and nothing is placed on the second output edge. Otherwise theré is
no output on the first edge and the second input is placed on the second
input edge.

The TWO COPIES node takes one input and puts it onto the two output
edges. This is by far the most commonly occurring node in the graph programs
which I have written. Because the implementation of structured operands re-
quires that there be one and only one copy of a pointer to a vector, a special
node type is needed to copy vectors. The vector itself is copied to a new
location in structured operand storage, and a pointer to the new location is
output together with the pointer to the original location.

The UNBRACKET node causes a vector of length n to be split into its
éomponents. The n components are put onto the output edge. This is the
only primitive node which puts more than one item on a single output edge
so that it must be treated as a special case by the execution logiec. Rather
than putting the contents of the processor output register onto the output
edges, the register is used as a pointer and the contents of the structured

operand storage pointed at are put on the output edge.
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FIRST, REST, FIRST~REST, and SPLIT all operate on vectors. FIRST puts
out the first component of the vector. REST decrements the length field of
field to the position
ponent of the vector and outputs a pointer to the new vector thus created.
FIRST-REST combines these operations, outputting the first component and a
pointer to a vector containing the remaining components. SPLIT outputs
pointers to two vectors containing the first half and second half of the com-
ponents of’the input vector. If length of the input is odd, the first half is
one longer.

Length inputs a vector and outputs the original vector and its length.
NULL TEST inputs a vector and outputs the vector and a boolean whose value
is true if the vector is NULL (has a length field equal to zero) and false
otherwise. INSERT inputs a vector and a scalar and outputs a new vector of
length n+l which has the scalar as its last component.

The PROCEDURE CALL node requires the most complex logic of the primi-
tive nodes. It must allocate space for the named graph procedure, transfer
the contents of the processor input registers to the input edges of the
procedure, detect termination of the procedure and transfer the contents of
the output edges to its output registers, bracketing if necessary. Bracketing
is done by creating a new vector in structured operand storage and putting a
pointer to this vector in the output register. Finally, the space allocated

to the graph procedure must be freed.
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USE OF THE SIMULATOR

This section describes three graph programs which
were written for the simulator and the results of simulations
run using them. The programs are a trapezoidal rule quadrature,
a sort, and a matrix multiplication. The simulations show

how the computation time, processor use and degree of parallelism

vary with the amount of data, the effect of changing the relative
speed of primitive node types, and, in one case, the dependence
of computation time on data values. Each program, and the
simulations run with it, is described separately and the results

are summarized in the conclusion.
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TRAPEZOIDAL RULE QUADRATURE

In order to determine what processor speeds should be used for sim-
ulation, the time required for various.operations on several existing com-
puters were compared. The results are shown in the following table. In the
second half of the table the times are normalized so that integer addition
equals one. The time for floating point addition then ranges from 1.33 to
slightly over 2 and;ﬁhe time for floating point division from 5.0 to 17.1.

From the studies of varying processor speeds done on the sort and
trapezoidal quadrature program, it appears that the main effect of changing
processor speeds from a uniform execution time of one cycle to a vafied set
of times falling within the range of existing computers is to scale the time
required for the computation by an amount equal to the mean execution time of
the nodes in the program. Second order effects, caused by delays in the exe-
cution of nodes which depend on the output of slower nodes, are not signifi-
cant unless the variance in processor speeds is higher than that in existing
computers, e.g. unless one node is much slower than the others.

The trapezoidal quadrature program calculates the polynomial

(b-a)/n
h* %
i=0

f(a+ih) - (£(a) + £(b))/2). The values of h, a, and b are inputs
to the procedure, and the function to be integrated is specified by supplying
a;graph procedure which computes the value of that function. Successive
values of at+ih are generated by adding h to the previous value. This loop

is terminated when the value of a+ih equal to b has been generated. These
values are fed into the procedure node for f(x), and the output of that node

is fed into a summation loop. Generation of the last value of x causes the

value in the summuation loop to be fed into a subtract node which subtracts
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the value (f(a) + f(b) )/2, calculated from the initial values, from the sum.

The resulting difference is multiplied by h to give the value of the integral.
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TABLE 2

REPRESENTATIVE EXECUTION TIMES FOR SOME EXISTING COMPUTERS

EXECUTION TIMES

6600 PDP10 360/91 360/75 360/40 7600
FP + 40OOns  L4.46u 2cy .83 14.3 hey
FP - LOOns  4.64u 2cy .83 1.3 heye
I+ 300ns 2.53u ley .39 7.5 2cy
FP x 1000ns 10.29u 3cy 2.05 76.3 S5cy
FP + 2900ns 1lk.lu 9cy 3.80 128.1 20cy
A 300ns  2.35u 1 .59 7.5 2cye
- 300ns 1.5u 1 .39 7.5 2cyce
Br 1500ns  1.36 6+ 1.10 5.02 11
BC 1500ns  1.68u T+ .39+1.10 7.5c 11
Subrout.
Branch 2.21 .99 6.88 13
lecy=27.5ns
Ratios aad (integer)=1
F+ 1.33 1.76 2.00 2.13 1.91 2.00
F- 1.33 1.76 2.00 2.13 1.91 2.00
I+ 1.00 1.00 1.00 1.00 1.00 1.00
FPX 3.33 4.o7 3.00 5.26 10.2 2.50
" FP+ 9.67 5.58 9.00 9.75 17.1 5.00
A 1.00 0.93 1.00 1.51 1.00 1.00
- 1.00 0.5% 1.00 1.00 1.00 1.00
BR 5.00 0.54 6.00 2.82 5.50
BC 5.06 0.664 7.00 3.82 1.00 5.50
Sub- 2.52 6.50
routine
Branch
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Since the values of atih are generated by a sequential loop, the time
to perform the quadrature is at best proportional to the number of points
used. For functions which require little calculation, this loop will do-
minate the quadrature time. HoweVef, if f£(x) is sufficiently comple
time required to compute it will be much larger than the time required to
compute all the at+ih. The computation of f(a+ih) will then proceed approx-
imately in parallel for all values of 1. 1n this case, the computation time
still has the form kl n + ko, where n is the number of points, but ko will
be much larger than kl so that the kln term will not be significant except

for very large n.
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TRAPEZOIDAL RULE QUADRATURE
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Fig. 10
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SQUARE ROOT NEWTON'S METHOD

v, (23 - 5x° + 15x + 5)/16
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Square Root Procedure

This graph procedure calculates the square root of a positive floating
point number by Newton's method, The initial approximation is provided
from the polynomial (x3-5x2+15x+5)/16. This is derived from the L4 term
Taylor series expansion for (l+y)l/2 =1 + y/2 - y2/8 + y3/l6 by setting

Yy = x - 1. This polynomial is computed by nodes 1 through 17. The remain-

ing nodes compute the approximation Y +1 = (Yn + x/Yn)/2 to y = x and test
for an error below a specified limit. The iteration stops when Iyn = Y41 <e

where € 1s the constant placed on the edge between nodes 32 and 33, in this
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case 10_5. The test is computed by nodes 26, to 32-35, and the resultant

boolean is dis%ributed by nodes 36, 27, and 18 to the gating nodes which
either enable another iteration or halt the computation and gate the result
to the output edge of the procedure through node 39.

Fig. (15a) shows the processor resource usage for SQRT (2.0) under the
assumption that all processors executed in equal times. Fig. (15b) shows
the same computation with processor times which assume gating and similar
operations take 1 cycle, additon, subtraction, logical operations and
compares 2 cycles, multiplication 4 cycles, and division 6 cycles.

Newton's method is inherently sequential,  so there is little overlap

in the execution of this graph procedure. The maximum number of processors

; executing in any cycle was four. The time for execution was 133 cycles,

but the total of processor cycles used was 200 so that 67 cycles were over-
lapped or 1/3 of the total. To put it another way, with strictly sequential

execution the computation would have taken 1/3 longer.
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SQRT(2.0) - UNIFORM PRQOCESSOR SPEEDS
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SQRT (2.0) - Varied Processor Speeds
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AR
5t H#
Sl ahk
S52SHan
SV h##
5S¢ ¢ak
553 #H
56 ¥
S{:#
58 #
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LERE
[RE.Y.]
6l HinE
62 HBHH
63 4#
b4 #
65: #
663 a#
674
683 4
69:#
T4
71:4#
72: 4
7T3: 4
T4 #
15 #%
T6: 4
TI:#
T8:#
T19:#
BC #
31z #_
824
EERE ]
B4 4
85: 44
86 H#HK
3T: hith
O3S KEF
33 HR#
IV H#
Sl:k
G924
I3 4
G4 4
95 ##
5 HHKA
GT:wba#
S8 h#
99 #
100:#
101 s#¢#
10234
1034
104: %
106:#
176 #
107z 4#
1l #
1Ty #
1198
111z #
112 %
11324
114t s
115: %
llo:4
11724
118: #

W7



iiJs4%

12G: /K
121 nk¥
122 #i#
123 ikék
124 uki#
1252 4 #

124 4

1274

1282 4

129: #

130 4#

131:HukH

132: 4

133:#

134:

135:
TOUTAL RESUGURCE CYCLES USED = 200 4 UTILIZATION =
AVERAGE RESOURCES USED PER TIME STEP = 1 MAXIMUM =

48
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JUTAL PRUCESSUR RESUURCE LSAGE I Yx ax

Le#ui 1
S hhhNALRABAN
3:hhhhaBnn
Gifiahhhhhann
Scahbhhhfinnng
GLhAhNnRKEAR

Tihhhnhib#

QS haNi#

Dz hbhhhhiyn
LC:hwahddind
Llcabhhbbanagna
L2Shhhhnhinaing
L3anhnpuRBRAHR
Lashhaphrnnhhiansh
LOhanbunsbah
Loz Hihhnanaii
LTzhhhbnin
L3z sanbitnnn
19 hdhhahhaphan
20hhnnbbhnnhn
2L hhRNBRNBURHH
223 hhhhhhhbNbn
PERETEITEET T Y
L4t hhhuhaniuni
COCUNRNHARAARAA
2OSHARBRRARIAHN
LI Anhnbhhanha
20 Hhnnhtididng
29 hAhNRRBBAR
30 hahbhannnhnnni
BLkhnbBtbnining
B2: 4hhhRARBRIRHBHE
33chusbhhhhhhnnn
34z HHhhntnhlidninnn
A5z hhhnhthnhhnnd
3ohnhhhhanhhnant
BTIhhhnbhinihhithin
38:hARAhARRARRIA
3IYHuhRAnhRARHRE
QU ANKBIORRAAEAR
Gl hhhinannindhnbnng
G2SHUHNBRBABH IR Y
Q3 ahhANNBARRRRBAN
S hhhhhhihanhinhnd
G5 hhhaNaNanNnniE
QoI hAARRARRAARAERE
GTARURBABAABHAHARN
GUSARRBERBNARRAALRR
GO hkifihhhhhnnhnhnnunk
SCsHbhuhfhnniinne
Sleaahbhiharthhrnasy
SCHMUABDUNEBRARARARKRRED A
E3ChANNHARGRARRNEABRRRRH
SO tANMAARRBAAAARFHARANS
SSahhMRHbHBBERAHRBREBHBH
SOLHARNHRRRRERANFRANEN
STzhhhhhbhhhhanruunh
SBhuaMbuhRNBRAENRARRHNY
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SOTHUNNMBARRNARARRANAAN
GO HUANRAARGIRARRHU AR
L ASAARARNBARAAARNBERK

O HNANNBANANRABERABNRHENGS
O hAANNGARNSHANARRKIRANRREH
CLSABARRRABARAARNANNRHN
OOARNNHBRNARKNADAARRER
COHAANBNERHRARARNEH

T hRANNAANBHADNRHNES

OB HNBARREANRRBARENIRY

O hhAbBANNGHANARNINANSA AR
TOHNANANBRADGAIRRAA
TL:hhhhhARAARARGRENRE

CIAMRBHARAALIRNARE
TIRANBARUNBARNARA
T4 AARRARNAB NN RE

TS hhbhhAARANNAEH
TOhMhNMHSBUAARY

Tl hhhbihdbhnhbah

T hANARBRBANRAS
TOAMARARNANNRARBAH
BUSAMNMBANAANAARNANSN
SLIANNNBNANRRBRRAH
B RARRANDNONNERHAA
BIzhohhnhBnAAnNIl
CHzHNARBAHAADRRRS
ES:haARANRMNRAR
BOSHAAARREANANA N

BT huANRhAABNAR Y
BASENARARANABRZAN
BYShNNRRARARKRORNY
GO HAANANANSRARHNN RS
QL:huNANARARANGARANRY
Q2 HAANBHRAHARANA#
G3:aAdAAANRARRANRA
GazHRARNARARARNNN
SS5ckNANNRABRARHAR
Qo ASANAARNRROAS

QT NNARHARAARAHREH
QB ARANRNRARANR

I ANANBARNARNY
LOUHMANNRNANAIR
LOL: hANANBARGANBANA
LOZC:hAKNABARANRANGRY
LOBSANARNABRANNBARR
LOGz ABAANARAANNANRH
LOSHNANBRBARANRAHS
LOOGS AAARRARANSNBHAY
LUT:hARNEERRANNAR
LCBSABANABRAANNS
LO9:hnhAnibnhnd
LLOzaskhnnhahtia
LLL:abhbANRNENY
LI2:AAANBAHARNRANY
LLI3AMAUARNNRANNBRAHE
LL4z hAMNNSANNNEA DN BH
LIS hnhhhnnbAiNAn#é
Loz hunaAuNRNRAANN
LITzhhinahbanians
LLIBSHRAANBANARS
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LISz hhhhhnhhith
120z hbhhaknns
V2L hunfininis
L22: khhbhnhnfn
L23:ANDAARBBAND
1249w hhbfbbssnns
L25:nanbhhhhhidhyn
L2O A uRNELNHN
L2Iz UK RHEAAHS
L2z hhhhinnhiky
129z hhbhRAdt#
130z hnahhbnmn
LL:naNBaan
1324888444
133 hhhbuish
L34 ubitifas

L3S hARABRE
L3vzasundatini
137:4nRuBHRR
138 hbubinus
1392 nnhtiini
1402w Hrdnn#
lel:habhnk
la2:hd ki
la3:anhiy

lag: hunm#
L4541

lacs huhins

14T hbhabBhA
148z hanhng
laG:ahhnii
L50:nhkné

151z htink
1522884
193:u##

154 hirh
15%:4##

15644

157 #84%

158 #nkiti

159s ##

l60: ##

l61:4

l62: 4

163: 4

léauz #

165: #

lo6#

lo7: 4

l68: #

169 #

170 #

1714

172: #

173:#

174

1752

THESOOIL SUBSCRIPTRANGE I[N STATEMENT 00225 AT OFFSET +00812 FROM
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\ 2.0
TUTAL PROCESSOR RESOURCE USAGE S Jx ax
laa# 1
2HRRRARRAG NN
I:HARRNRKA
GIANNRAHRNRY
SIARNRHBK RHAY
OSHNRRINAAS
TNANAARN
Bihu#AH
GIANNRNRENA
1O hHRASHAN
LLHUNBANEREAA
L2 ANHAARNEAN
L13:ANNUNRENNNAY
LA HARAANBAKHANY
1S huNAARHNHH
16 hHHARHEY #H
L7 HAARHAR
LB HHRRHANN
1O HURURNAANANE
20HHHERBERBNY
2L HANSNESNEAAH
22 HANHABHAH A
23HHHRABRIHHY
24 HHHARRRNNAN
25 hAANAKRSHAANY
26HARRNBHNSRBH
2T hANHAHBNE NN
2R ANNBULAHRR
29 HANSARRMRHY
BOTANARNEPNERRAHA
L UNNANARNRRAAN
B2HARRURRRHARARAN
BIANNNNREANERNAS
B4 HARANRBNRHNRH
IS HRNHNRNNAREHY
BOHNRRHASNEARHHY
BT hARAAARNERRNNY
IBANARHRRNRANH
BOSHABUNHRNERNAN
LGOS HANANHBNIHAH
QLINARERNRRAAARAB NS
L2THANRNRINPANAAAH
L3THANNNARRERRARUS
GLHBRRNRR R RARBAH
QST ANANAAENRRBHARY
QO hANNNRRAHBHA AN
QTHNERBRRANRARARAR
LEHARRNERNEN AN AR
GOHANRARBAHAHBHBLY
SOHASANNRNERARAN
SLANRHARSAP HAALANY
S2:ANRANRBANSRRUANRRHARBN
SITHAFHAURNEARKARBUNARAH
SasHAUNNRNNHRHNRRSHAARAN
SSTAANENBDASRARARNRBHRAY
SOTHRNERAR L SN HARNRER .
ST UAUUNANNRBERHABHR
SBINNNRRRENHNARASHRAN S
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SO HARBAIH HH HHBBHGEHERH#
SO HARNNRANHARAHRRENERH

OLHAHAHART HUBHBABRBSHRH

B2 HHAR RS R B HARHRAHIHE REH
O HANHARANRRBHANBRAB R R Y
LI AAUBHBRRE AN HRHRRHHRHH
CSHURNNRANGAHERBHARY

O HNRIARUNE A HH AR AHH
CTHANUNBHRAHARNEBHAY
CBHHAANRRANAARARHRAGH

69 HARMAME RHRHRARRHARARAHH

TOTHRHSHRRAH AU BARHE R B
TLHHARAANB N AR HEH AR BERY

T2 HHABHEAREHRIARSRY

T3 HARBHBRARBHEHBHA
TasARHABESHEAHAH AAAHEY

TS HARBARRREHAAREHE Y
TOHRHRURHALAARERARAH
TT:HABHARH REBH AN HHH A

T hANRARR AR ARNHRAR MY
TOHHANRHNRHEHE B R A B
BOHHANRHRB AL HAARBUHRBRBHHUH
BL:UAAHNRI NE BRRARBH RN HRH

B HUNHRHAR N R A AR RERI S
BI:HAHRRRSRAHBHAN A RY
S4sHHNRKAKRERHABHAHYH
BSHHNNARRY A AR BALHUHH
BOTHARRHSHNHNARRBHRRHHA
BTHARRBUBHNENERGBRB Rt
BAHHEGHUH WS HARARANAH R
BO:AHARHHA RN RARKUARRH R
SOAARUARR AL BRANARRRARRRIAHY
SLIHHHRBUH AR GAABBHHBABEHHE R A
Q2 HNNANAEAB BARSHRAHBHBHRY
O3 AHMUHBHNEHRBRARE BB
QU HARRARRRHHAAARHRSHHH

QS HANBHBHARRBAHERE R4
SOSHUHANBHHEBEHANBY RIER#RH
STHENRHABAEARARBENARRARBHY
OB HANAHRBAAHR RHHBH A R RN HH
QO hHAHHAHNHHRAHARFHAHRRNY
LOOHASHAUNNHREHRRBUNAR YRS
IOL:AANKNRGEHASEAARABAAAHRRAA
LO2:HHHAHBHANKABHAHARHHRERIHBUAN
LOBARHARRENUBRHARNBHARHBRERNE
LO4: RHAAHNEABARHARURNAHRHRHIANR
ICSHHUMRHIN AN AAR AR RARH R H
106 h##AHNRAEBRBBRHERAAERHAH
LOTAUKAHSKAHHANAAAABBRARREHAH
LOBANNHHRR HERAKRARH HRABRHRH
LOOAHUHARUREAHARBHHRAN NN
LIOAARRUHE NN UK AR B HBRA RS HH
LLL=A##AH A R A ARRIH SR HHAY
V12 HAHAHAL NARR AR RS A H A RAR RS

LIB3:ANSHRGHHURABRA AR RASAHAAINHA R
LA RARAARE R RHRHARE AU SR A HEH HE

LIS: AMANARGARKRBHARKBRAGBAARNERY
LLO:##HHHBHARUHHRUAHA NG AN AR Y
LITARAARURRENRRRARE BRI ER Y
LIS ABARHRENOURUARBHBRUS AR RIS



VIO H#AKHKABREBHRARRERARBURA S Y
L20: HANARUARESBHINARHNHABHNHY

L21LAURHABE AR URRHHBRUNREHHRAA
L2222 HEKHREERE BHRUBHAREBHBBHRARRR
1232 HARRHBBRERBRBRBBEABHR IR RN
V24 HRERNEBBHNHRAAARBRHBHEGUNRRRRER Y
L2SSHARRUGERERRBARRERRGL BTN WY
1262 SHASNHNBRHHRRURERRAERRUUANY -
L2THARBUHH RE AU HHARHBRARRRL 4
L2BHARUARKNRARGHABUSHBRRBHY
129 ARELHAENHAHBNBERBH U
L3O HRARART NI RARBRERERRRGH
I3LANRRAHRNRRAABRERENSY

132 ARHUHARHEBUBARSHARR Y
133HRHHARRE KR ESRUBEABHEY

L34 HHRARHNERERERBARUR G
L3S HANBARRBERERIRERBERRRHH
L36KAHGHAE R NARREHRERRBRREH
V3T HHARAABHRENRRBA R BHAN Y
L3BHUSRUNRNHHHBHUBRAEHAH

L3O HRHHNRERUNERHHURE I
LAOHHERBREREHEHARBRUR
LALARUNNBHERERN HRHHRE
LA2:hANARBETHNHEHESH

Va3 RANRRUHRREERHRHH
L44zHENRARENARHRAREHE
LAS2HARRANH AN HHEERHUHBH

LAO HAHARHANENRRHRARARNY
LATHAHBRHA RN RERYHANGRISS

LaB b dBr R RERRERERRR

L4 ANBHRBRNURREARNHAY
L50:HHARNEANRNRERHRIRE

LSV HHUHHREK NG HERER

LS2: HHURANRANRIRHIA

IS KNNRAGRARNEHS

LS4z HARKRER NIERIIH

LSS HNRNARHNARRENRIS
LSOHARKMNRERNRERHA##
LSTHARRUAE N RERBRUHHE
LSB:HHNRRUB NG RERERHAHEH

LSS AARRAARNMGHERN#H
LOOAANARNREUERBRRHAY
LOLHANNHBRNE BRI
LO2:HANRAKANEHRAH
ICERE EEEY VTS TS )

1o4: hun##HNE#Y

LOS H#NNEntHE#Y

LOGHHSHUKR NGRS

LOT ANHHAUSNE SR RN

LB HRAHREN NG HANSHEH
LOGHAAHAUB RHRUBHURIHY
LT0HHANRREARABRURII#

LT 4R84RAR HERHBUHRE
LT2:HARRRE R4 dE B 44

LT3 RUAHAREHE ALY
LI4HANKAUHEREBHE

LTS5 44HH#H S H¥ #

VTOHALEGHRRKEH

LTIT it RAkEHE HY

LT7BHHKRHEH HEHRUR
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L79: A4 A4ARBHARREER
180z AnBARRAARREARIY

LBL:A#ua A NAHRRY A
LB2:ANANARKNRRANY
1B3:dflHNtN RUAHRHY
LBAzHAYHRAE R it B
L3Sz hhUANH#RH IR
LBO:A kA HHRANNRE
18T HANRAREREH
188 HHARARNNHY
LBOHARKRHAB ANE
LSO kA a4 it
LOL: HHARRHA NN U B #H
VG2 HARARHERE Rith il
193 #HhABAANNERRRY
1G4 HARANRBNANNNRS
LGS HRARRHRRERHHGA
196 A HARKAGRHHHRHA
LOT:HARRHERNHBHUH
LS8 UAHAHIR URHH
199 4HRARRAREH
200 HAHBHAERIE
2CLAHRANERURAY
202 HHUHARN AN BIHEH
203 HANHARKREHEBHHLH
2C4zHERNARHRENARNRHEY
205 HARHAER AURERRH
206 KHERARRNHAEHAH
20T HAHRREHRENRHH
2CRLPHSHURR LG
QO HAHNHRENN#
210 HRAHNKEHY
211 AHRHBRN B
212 hARAARHREH
QLIHHuAMAUH AN A
LLA4HRNARSH AR HAH
QL5 HANRARR Bh A RS
QLOHREHANRHHH
QLT HHRRNEHREH
QLB ARAARRY LY
219 H##H AR K #H
220 HH4HNREN
221 HHRHARY
222 H##AHAH
223 AnAHHH
224 HANRAE
225 BHHG K
226 hhHAASKEHEH
22T HAHASERH
C28HHERBAUH
2294 HHHHEY
230 hHRNRAHE
231848844
232 hkt A
233 4H4H 44
234 HEHEY
235:####
236 HHAHA
Q3T HAUHMREY
238HARAANS
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230 HARKRHS

240 4ANEH

241 HHRHH

242 CHHHH

243 HAH#

244 hill #

245 H N #

24644

24T HAN

4B HEHEN

2494 4

250k #

251: 4

2524

253: 4

2542 #

255: 4

256:#

257 #

2582 4

2594

26C2 #

2614 ~

262 #

263 4

264

2652 .
TOTAL RESOURCE CYCLES USED = 3340 X UTILIZATION = 7
AVERAGE RESOURCES USED PER TIME STEP = 14 MAXIMUM = 32
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Variation of Relative Processor Speeds

The trapezoidal quadrature program was run with all processors exe-
cuting in one cycle (Fig. 18) and with the times for different processors
varied from one cycle for simple gating nodes to 6 cycles for divide (Fig. 19)
19); with uniform times the computation took 70 cycles and with varied exe-
cution times it took 122 cycles. In order to compare the two cases meaning-
fully, the uniform execution run must be scaled so that the common processor
speed is equal to the mean of the speeds of the nodes in the graph program
under the varied execution case. Otherwise, the first case just represents

a run with faster hardware than the second. Not counting dummy nodes which do

do not execute, the 69 nodes in the graph program for f/kdx represent a to-
tal of 121 cycles using the timings of the varied processor speed simulation.
This gives a mean execution time of 121/69 = 1.75 cycles. Hence we have

the following:

|

Tvaried = 122 cycles

Tuniform TO*¥L.75 cycles = 122.5 cycles

In order to test the effect of slowing down a single processor type
to the point where it could cause significant delays, we re-ran the simu-
lation of varied processor times with the divide slowed down to 16 cycles
and other times the same (Fig. 20). This is a slower divide, relative to
other operations, than is found in current large scale computers. Norma-
lized to fixed point add, one finds divide times ranging from 5.00 (CDC 7600)
to 9.75 (IBM 360%/75).% The computation took 172 cycles with the slow divide.
The total number of cycles represented by the nodes in the graph program is

161 when divide = 16, so that the mean time for a node to execute is 2.33

cycles giving



Tuniform = 2.33 x 70 cycles = 163.1 cycles
Tslow divide = 172 cycles
Putting in a very slow divide unit thus results in a slower computa-

tion than increasing the mean processor execution time by a corresponding
amount. Thus there are probably significant delays when other nodes-are
idle waiting for the result of a divide. However, the increase in execu-
tion time is only 5.6 percent even in tals case where one node type is Iour
times slower than the next slowest node, the multiply. In the case where the
" divide time is more nearly comparable to other processor speeds, the difference
between varied processor speeds and a uniform execution time, which keeps

the mean processor execution time constant, is negligible.

~Trapezoidal Runs

The trapezoidal quadrature program was run using SQRT (x) and SIN (x)
as the functions to be integrated. These functions are complex enough so
that they will execute concurrently for several values of x. Further more,
the execution of SQRT(x) is data dependent since it is an iterative approx-
imation pfogram.whose initial approximation becomes worse as x moves away
from 7.0. This dependence is illustrated in figs. 2la-2le, which show the
processor usage for SQRT(x), x=2,3,4,5, and 10. The computation took from
133 to 308 cycles and from 200 to 470 processor cycles were used. None of
the other programs simulated is data dependent in the sense that the amount
of computation depends on the value of the data used.

As a result, the time required to compute J/xds is not simply a func-
tion of the number of points used in the quadrature. Rather, it has the
form t = f(n) + g(a,b), where n is the number of points used and (a, b) is

the interval over which /x is integrated.

*The IBM 360/L40, however, has a relative divide speed of 17.1.
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TOTAL PRCCESSCR RESDURCE USAGE [Vx ax

R X X
PR ESERY T LT ST
ERE -2 23723 27
ISEEETET I T
StEAREHSHEH
EEEEE T 3
TeHARAARERY
St aRNAttREHY
CHE TR
CiHHBHR LY
L1 hhdlihnteisndy
12:##4#Hkpas
13 HpAdRYERRY
IS N EEEEE SR Y
1ScHHAHABHAUR RN
16t hhthansasas
17 hhanufindnd
182 H#HHRGAE Y
ICES 2 IS F ST
MAGR EXEIITEEFEEST R
FAREEZ RS S YE
AR EREREE IR EER YRR
PERERYI I EYEIEEY YT
YOS ESEET RS ET S
ra IR SRR EEEEEEE
CHLIEHUBE BRI Y
CT2 REGUNEABHBHRBRGERY
ZuthBhdnneadadinandnn
QOKHUAHBHUIHBH Y
EMEREERERE XS N E]
L HHGHABEAN
32:hhbhAaAndNAY
ERERE SRR EEEEEERE R
G HEBB RN Y
AST hheYaHENY
ROELEEHYGEHYBY
AT HHHppE R4
AR AN AMAERRAEHHY
BQIHNABHHBEINH§
LUTHAGHPHHURE RS S Y
SR EEEEEEXEREEEE
G2 WHHBHREBHAIAYH
UEHEEERE N L
GLHIHHBAERHYHY
GETAHRAHSHAAEY
ISR EEEET S X
GTIHRURHNHYA
48 AhhhAHNULY
GO hARNANA R MY
SOT#HUuNEGEHA
S1shARuHHANRSE
SZTHANANRYH
PEEEE LT 22
Sa4: hhafgay
SStppyupnd
SETHhAnAtGHEA
ST hhdhhuynhng
SBrHppHband

Fig. 18
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all processors execute in
one cycle



S5 HANHARN

COsHHBAY

Cliftdund

2 HHNNARAN

63 HHENH

64 hAKH

6SHERRY

662 H#

6T #

68 :#

69: 4

TO s #

Tl

72
TOTAL RESQURCE CYCLES USED = 663 2 UTILIZATION = 920
AVERAGE RESQURCES USED FER TIME STEP = 9 MAXIMUM = 19
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TOTAL PROCESSOR RESOURCE USAGE

LH##

2340 hh0ABR44
RS2 EERR2 1]
GINARRRHREUSY
St hhidRsndnny
GHANBHHMEH
THENERAN

B HANNHHANY
QAN NRES

10z AAbhh#Nud
ISR EEEREEIRE Y]
L22HARRRERBARUY
132 AAtARANAANAAS
LazHUNNNHAUANEN
1S H#NNRNEAAN
Lo RAANRAAN
LT7zHEMnkRAANNUS

1RcdhidhddbbbdH

AvVeERTnT AT AN YTOOW

19 SANAHAANRNRAA
QCsHERUNRAREHEH
213 AAARARHRHHY
23HANNHAHANNLS

pEET T P TR TR E R Y]
o mw

SWET YW TR YT

43 AARANARNAHAY
2SHAMABUBAAHRN

26 ARARNAHARY
QTHAKNABARAAGAHN
2BHARKAABUHARANRA
29z AAhAAhANARANANEY
BOKAANARNAAHANY
BLzHAHRHHNRARHEH
VAR RRRRR R RS R

CBABHARHNRRANAAAAA

B4 HARANAAAANRY
3SchhkbAbAAARY
BOHANNGHNAAHR
3Tz hhtahhnunnd
BRHAKANARANAEY

O HRAAAENRERE
4GOS ANARRRAAAN
GLIARARNRHAE N
42TRARAALAANN

43 hANRAARAYN
AUIHHNBBRAB S
G5 AARKARAANY
GOSHAKNRERAUAHEY
GTITHARRRBEYURARRSY
4GB ANRAAARARAARAA
GOSHRKRUBRIAREMAA
S5O0:hhhaNnthhhning
LR EETEEERREL S
S2:HRAKAARBURA

S hithNanAARRY
SGIRARNURNHANRAA
SOHARURUBAGRAR
S6:hhiARAARAAANNAY
STHANUREBRAAANARANY
SBARLEANARAAAAY

Fig. 19
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SOIHNANNRENAAN
COSHANNNNNEN
SL1: hARRAANAN
C2HAANNRARUNEN
EB2ARLAAARNANAANN
S4sARAANARANN
OSHENENGEAAER
COShANMANAS
6T HANERY
B2 NHNHAN
69 ANAMAN
TO: Akn#Ns
TL:hAANNNAS
T2 hAéhRhtkhlinn
TIANANRRNNARS
Tas khAANNNRY
TSzHAURRAHN
TOHAURURS
TT:HANRHRS
T8:a#b#un
TS haAN#us
SO AhANUNEN
SLRANRENANY
B2: AAARAANNANS
BAsHAANRRNAURS
E4QHAUNNNNH
B85: hanndin
86 KHRN#A
BTz hhbdhune
BB HANRMY
SOHNNRAHK
QO AARAANNNN
QL:NHER4H
Q2 HUNUH
93: NAANH
QL HARANH
SShhhN#NN
QO AhnNHNN
STHARNNRSE
9B HAARARA
GO SHENREN
100z ###4H
101 Adan#
LO2:###MA
103zand4
104z hhhbng
1054 NNNRNAEN
1006 Ahhnnd
10T naNMig
1C8:Henuy
109: #4#
110:##
11144
1122 #%
113 %4
1142 444
L15#adAN
116:##
117244
118:#
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119: #

| 12C :#
121:4#
| 122 4
{ 123:
— 124:
| TOTAL RESOURCE CYCLES LSED = 1062 % UTILIZATION = 61
{ AVERAGE RESCURCES USED PER TIME STEP = 8 MAXIMUM = 17
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TOTAL PROCESSCOR RESOURCE USAGE SYx ax divide = 16 cycles
1 ik
CHAHRBARRNUY
BhhhHHAEHY
G HRHHARRENS
SSHENEHIBUYHH
6: HANAHRNES
TIHARURYH
BsHHURERRKRY®
AR RS S 233

LOsHRANRUE#A
IBEEXEEREEE TS 3
L2 thhhABNsnbpl
13HSNUHRURNRRALHR
L4z hAKNBARANARS
1S5 und#disng
LOHRRAHANH

VT2 HHRNBHRBABUERA
LB HERARRRAAN
LOHAndHRARANRN
2OSHMANBRARYAAY
CLHREMUNRYH AR
FVAREEEREE YT S
CRIHHNUHHSHAREHY
SHUIEBUEARHY S RHY
SO HAARSHNANAA
COCHANARRHANR

ST hALAKNEBHUNIAHY
SO HAANANRAUNAN A
COHHANNRURHANUI Y
BOTHARUBHAUHAUIH
BLHAAANNKGAHRAH
R2THUNHBUREARHNA
SRR EEREREEEZ 221
BGIHAUSANANAIRY
BASHAMUHHNLLS
BOTHNANAAANNRS
AT SHHMARIBRBRY
38 A ANBRHAEHY
AQHHARBEASUNNAY
GOSHURMNANARY
HYISHNHUBUHRIN
G2THHHREHRBUN

R RS EEA AR E

GG THAABARRRIR

TGS IHABARERNENY

GO HEEREAHRIHN
GTLhHRBHNUEA
LBERHRANHIHS
G hAKNNABHREY
SOCHANRNENSHY
S12HE#HARIAALHY
S2: HERAHRARKN &
S HHABBHIRRYR
SGT hhARBHESE SR
SO CHANRBRRIY
S6THGEHNGHAEHY
ST hAhNAHRAEN
LERE X2 EE TSRS
Fig. 20
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r— r— r

r—

e T S e

-1

S9: EAAHRHHAEH
CUSHHABURIRGA
CLIHABRABUHRATH

G2 hhAHHRAUHN

O3 HAHUHHUHAHA
CAsHhAHUHHRHRY
CSThHEANHEHHA
COTHHHUBEHIHY
ETHAABBHRRTH

6B AHAYHEBHLH

OV HAUBARREIH

TO: HHHAHKBERY
TLIHEHHERERHA

T2 b hHEBUEAY

T3 HHUHAERAHK
ToHURHBHRENY

TS: hhhhahaunyy
TOIHARHARRBEASS
TT:HBAAHBBRBUAERY
T8 ANAHAHAKBRUHAY
TOLHARNANKHANBANS
BOT AAANHANRNSERUR
ELzhAbANNEHHUAY
B2:HHANYHAHHNY
B3t hHARKHBHAAHAY
B4t HAKASRBHHURY
BSCHHARHH B UNHEN
BEI HARANHARRNHANY
ETHAKUEBKAANABANNAAY
CA:HNHUARBUHRSHY
BY: HhARUARRREE

QU cHHARHAHAY

GL: HAANEARUY
COTHUHHHRHAAANAY
SAHBHAHBYSHAHYAN
QLI hNGAHRYYILY

G5t UENNHERIESY

Qo hhhABAHY

ST HHNANS
GBHAHHAY

99: hhHHHE

LCC: #AAH#HE

IO TYITTEY

~lO2: kAt haRat ANy
TLU3THAKNHERARAYA
CADGHYHR MY

105 HANNNUEY
106 tHHSNAN#
LOT: AHAAHAY
1CH thHRALHN
109: B H#H#S
110z HANNSH
SRR I L]
L12:hhhhAnNYY
1132 AbhhHbaad
LL4:HHNURNE
115 haRdas
1162 HRARER
L1T7zHupe#EY

118: H444AE
65



LI1GsH HH#HH
120 HR##H#E
121 khiuun
L22:HEGH#H
1232 4Hniise
124 #HuRiRY
125 HuA##n#
126 #HRAHS
127 H#HBBHH
1282 #hh s
12C o RU#HNH
L300 HBEHAEEH
131 huhnuiusd
132 RUREHERH
133:tistpopid
134 HAuNERY
L3S H#A##Y
136 hhHHE#H
13T Hudubl
1381 #4H###
139 hhhtidn
IR FEET TR
141 hanhdd
142 anbhdas
143 sHuia#
144 hhnl#
145s#Hdgs4Y
L4bHUNRANY
14T RAHHAHN
1481y hns
1491 b pHbs
150 s 4444k
151 o444
15244844
153 #u#dH
1S4l uus#
155: 4444080 8ERH
IEY-RE 233232
1S T pudiyst
-1SES huupa Y
159 sH#d#
160: #i4
lol t#4s
Le2: ###
1632 #4
154 <848
165 hnuih
16664
167 :44#
168 #
169: #
1704
171: 4
172:#
173:
174:
TOTAL RESOURCE CYCL ES USED = 1492
AVEf AGE RESOURCES USED PER TIME STEP

66

% UTILIZATIOM =

8

MAXTIMUM

=

61
17



SQrT (21}
TUTAL PRUCESSUR
Lsunn#
2SH#
ERY'Y T
42 Hii
S
oL H#
T:4#
84
9 #
10 i#4
Llsad
12: ##
133 it#
lesi
154
Lo #
1724
18 #
L9y
20 #
21 #
22 #
23 H
24 #
252 #
26 i
PR
283k
FPEER.
30z 4
2] 2 &4
32: 8
3304
EITR X
3 it
EXXN
EXEE
38 %
394
4Q: #
4l #
sy
434
445 #
45T #
462
47: 4
488 #
49 1 4
50:46#
Sl nkm
S2: Hiti
S3hH#
SLIHRHE
553 d#
S0 #
57 4

VARTED PRUICESSUR TIMES

RESUURCE USAGLE

61



58: #
59t #
Qs d#
ol ivdun
62 HiR"
63:h#
64t
65: #
6L HR
6T #
o8 #
69 #
70: #
T1 4
T2: #
T3:#
T4 8
75: 4
716t #
1 #
78: 4
719 #
30: #
dl:a
824
g3:4
34 #
8o # #
. BO S HER
BTsnitw
B8 HiH
BY: iR
90 ##
9l:4
Yo
93: #
94 1 4
9o H#
Q6 p AN
QT s #Hu##¥
ECEEE Y
99: #
100: #
101 s#n
10238
103:#
104:#
105:%
106 #
107: 4
1084
109:#
110 #
11l 4
L12:#
113:#
llac#
Lloz#
1164
1174

68



L18s#

119:#

1202 4#

121: ##n

122: ###

123 s M

124 4##%

125: ##

126 #

1273 #

128:#

129: #

130 ##

131 snit#s

132: 4

133: #

134:

135: .
VUTAL RESOURCE CYCLES USED = 200,00 % UTILIZATION = 0.63
AVERAGE RESOURCES USED PER TIME STEP = 1l. 48 MAXIMUM = 4
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SWURT (3) VARITED PRUCESSUK TIMES
TOTAL PRUCESSOR KESUUKLE USAGE
1 ann ,
2w
3ia#n
43 # R
S5:HuH
O HH#
T:#
8 #
93 #
10 ##
ll:a#
12: ##4
L3:#n
l4:#
15:#
16: #
17: 4
184
19: &
20 #
21:4 -
22:#
23 #
24 #
25 %
26t #
PARE
283 #
29 #
30:4#
ERRE I}
32: 4
33:4
343
35: %
36k
37: 8
It
ERE
403 #
41 : 4
42 i
43 #.
443 4
4H: 4
46 R
47: 4
482 #
"URE
5044
SL: #u#
S2: nith
53 #it#
563 #it#
553 44 -
Yol #
ST w 70



r

rr— r— r—

r—

-

—

582 #
53 #
60:##
6l #ukd
62 #BuH
63:n#
b4: #
652 K
66 R#
67:#
68 #
69 #
70:n
T1:#
72: ¢
T3 #
T4: #
752 4
762 #
17: &%
78 : 4
719w
BO: #
slei
824
83w
348
35 ##
3G S REN
sT:riwn
88 #idH
89 kk#
90 : #+#
91 :4
92: #
93: 8
Y4 2
953 i#
I6: Hitng
QF : #inu
98 ##
99 #
100: #
101 ¢ 84%
102:#
103: #
104: 4
105: #
106:#
107: 4
108:#
109:#
110: #
1ll:2
112:%
11324
114: 4
115: 4
l116:4#
117:#

-~
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"
#

s

116
11+
120:4#

L21: whs
122: #u#
123 a#n
L24:hun
1258 ##
L26:#
127 #
128:#
129: 4
13Cs 4p
131 swnpid
132: nhn
13344
134: 4
13534
136244
137:#%
1344
139: #
14C: # -
1a4iz#
L42 1 #
l43: #
l44: #
145:#
l4o6:#
l47: #
LaB: #
14 #
150:#
151:#
152: #
153 :#»
lb4:%
1552 4#
16 w4
157 #dw
158 ubn
159 # ##
160: ##
161 :#
lo2:#
163: #
lo4:a
loS:#4
166 #iud
167:#
le8: #
169:
170: _
TOTAL KESOURCE CYCLLES USED = 254,00 2 UTILIZATION = Oe5%
AVERAGE RESOURCES USEU PER TIME STEP = 1.49 MAXIvVUM = 4

>
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SQRT(4) VARIED PRCCESSCR TIMES
TCTAL PROCESSOR RESOURCE USAGE
1:##u
2:44
3:HNH
4 I HHuK
SSHHHK
6 ##
T #
8 #
CRY
10:4#%
Ll:z4#
12 :H#4#4
13244
14:4#
15:#
16:4
173#%
18:#
19: #
20:#
21 % -
22 #
23:4
24 #4
25:#
26: 4
2T 4%
28:#
?29: 4%
304
31248
32:#
33: 4
34: 4
35 4
36 #
3T7: 4
38: 4
394
4O H#
41 4
42: 4
43: 4
LY
45: 4
L6 H#
4T #
48: 4
49: #
SO H#
S1:H##
S2 s H#HN
SIsHAH#
SGshi#
553H##
562 #
57:4
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58:#
59 #
60#N
6LIHNRH
G2 HNHN
63: 44
643 #
65:#
66 4#
67:#
68:#
69:#
TO #
Tl:#
T2:#
T3:#
T4z #
T75:4
T6: #
TT4
T8:4#
T9: ¥
80 #
8l :#
82:#4
83:#
B4 #
85: 44
BO MM
BT :dHk#
CERE T T
B
90z 4H4
91 :4
Q2 #
93: #
94z 4
95: 4 ¥
SRR T T 3
QTIHNMN
98 :4#W
99: #
100 :#
101:4#
102 :#
103: 4
104: 4
105:#
106: 4
107:4
108: #
1N9: #
110:#
111:#
112:4#
1134
114:#
115: #
116:#
117:#

-

7h



118:#
119:#
120 it#
121 444
122:44#%
123 :# ##
124444
12544
126 : #
127: 4
128 : #
129: #
130:44
131 :44ué
122:4H4%
13344
134:4
135: 4
136:4#
137:4
138:#
139:#
140 :#
141:#
142 :#
143:4
l44:#
145:#
146 #
147 #
148:#
149 : 4
150:#
1514
152: #
153: 4%
154:#
155:4#
156:#n
157 4 4#
158 :###
159: 4 4#
160 :4#
1614
162:#
163:4
164324
165:4#
166 :HikH#
16T H##k
168: 44
169:#
17024
171 s##
172:4
173:#
174 :#
175: 4
176:#
1774

75



17824
179: 4
180: 4
181:4
182:#
183: 4
184 #
185: 4
186z # -
187:#
188:#
189: #
19044
1914 4%
1G24 4#
193 s #u8
194 4i#
1G5 :##
196: 4
197 s #
198< #
199 : #
2004 #
201wk
2024
203 :# ‘
2N4 2

. 205

TOTAL RESOQURCE CYCLES USED = 308,00 % UTILIZATION = Deb4

AVERAGE RESOURCES USEC PER TIME STEP = 1.50 MAXIMUM = 4
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rﬁ;

r—-

SQRT(5) VARIFD PRCCESSCR TIMES
TOTAL PROCESSCR RESOURCE USAGE
1sHuN
2244
3sHNN
LHAH
StiNd
6:HH
T #
8:#
9 #
1044
11:44
12:44
13:44
14:#
15 #
16: #
174
18:#
19: %
204
21 # ~
22:#
23: 4
24 #
25:#
26 H
27z 4
28:#
29: #
3N #
ER RS T
32:4
33:4
343 4
35: 4
364
374
38: 4
39: 4
40 4
41 4
42 #
43: 4
442 H
453 4
46: 4
474
48 H#
493 #
50: 44
SlsaiE
S2:HKHK
S3:4h#
S4:hiH
5544
56 #
S57T:#4



SR #
59 #
60 4#
61siHiM
62 HANN
6344
64 #
65 #
662 HH
6T #
68:#
69 #
T0:#
Tl:#
T2: 4
T3 :#
T4 #
T5: 4
T6: #
TT:#%
T84
T79: #
CLEY |
8l:#
82:#
83: 4
844
85: 44
864 uH4
FRERT T
BR:A##
89 s 4 H#
QO HH
91: 4
Q2 H
CERS
Q43 ¥
95: 44
CLREET 33
STIHARN
98 : k#
99 : #
100 :#
101 :##
102 : 4
103: 4
1064 #
105:#
106: 4
1074
108:#
109:#
110:4#
111:4#
112:4
113:#
114:4%
115:#
116:#
117:#

78




r— r—

r:; r— r—

A r

-

r

® Ik

18
19
12N 44
121 s 484
122: 444
1234 4#
124448
125244
126 :#
1274
128 #
129:#
1304 K
131 s4##p
132444
13344
134:#

Sy

158 : 444
159 4 h#
160 :44
161:#

162 #
1634
l64: 4

165: 4 #
166 HHERR
16T HHk#H
168:4#
169:#
1704
171 44
1724
173:4#
174:4
175: #
1764
177 #

79



178:#
179:#

(W -V ]

LDl B
181:#
182:4#
183:#
184 :#
1865: 4
186:#
187:#
188:#
189 : #
190 :4#
191 :H#H
192 s 4 ##
193 : 444
1G4: 444
195 :##4

1962 #

a2 7S

197 : #

198 : 4

199 : #

200:4#% ~

2CLH¥HH

202: 4

203 ¥

204 :

205:
TOTAL RESQURCE CYCLES USED = 308,0C % UTILIZATION = 0. 64
AVERAGE RESOURCES USED PER TIME STEP = 1.5 MAXIMUM = 4

80

Loiiiind



r

r— r— r r“"_' r— I'"“‘ —

r

SGRT (10) VARIED PRUCESSUR TIMES
TOTAL PROCESSUR RESGURCE USAGE
L ###
23 4#
ERE T 33
G HRH
S5 HkH
6:H#¥
T:#
8: #
9 #
10 4%
ll:u#
12 ##
132 ##
l4:#
15 #
l6: #
17 #
18:#
19: #
20z #
21 :#
22:# -~
23: #
243 #
253 #
263 #
2T #
282 #
29 #
30:#
31 4#
32:#
33: 4
3434
35: #
36 #
374
384
39: #
40: #
IS
423
433 #
442 4
45 #
4o #
473 4
48 #
49 #
502 ##
SL:H#n
92 s H#t#
S3:iH#
S4: Hik
S5 h#
6 #
57:#

81



58: #
59 #
60 ##
61 KN
62 HNHN
63H4#H
04t #
65 #
66 A
6l #
63 #
69 #
70 #
TL: 4
12: #
713z #
T4 :#
75 #
76: #
174
782 #
19: 4
80: #
8l:# ~
823k
83: #
84 #
852 ##
36 ¥#n
R7zaka
383 #wM#
8IsHMR
90: W #
9l: #
Ql2: 8
93 #
94 #
PLEN X
Q6 HHkn
CYEE 331
CLEN T
99 #
100: #
S 10l:um
- 102: %
- 103:#
104 :#
105:#
1062 #
107:#
108:#
109: 4
110: #
1112 #
112:#
113: 4
114: 4
115: #
1l #
117z #



r

r—

r— r— r—

r—

-

118:4#
11924

1202 ##
L21: k#n
122 #a#
123 #un
124z kii
125: ##
12634
127:#
128: #
129: #
130 ##
131 :Hnann

SCinnik
133244
134:4
135:#
L36: ##
L37:#
1382 #
139:#
L40 &
l4l s # -
142:4#
L43: #
léss #
145: 4
l4os #
14724
l148: #
149: 4%
150:#
151: #
152: #
153:#
154 #
155 ##
1562 #4i
157 4#n
1582448
159: #hn
L60: #4
lol:4#
l62: 4
Lo3: 4
1643 #
L65:##
Loz #knw
LoT: ahuk
log: ##
L69:4#
170: #
171 44
172:4
173: #
17424
175:#
176:4# ’
L77:#

83



1784
179:»

180: #
181: #
182:#
183:#
184z #
185z #
186:#
187:#
188: #
189: #
190: ##
191 s #en
192: ###
L93: #d#
194 2 #it#
195:4#
196: #
197:#
198:#
199:#
200: ##
201 s H #iHn
202 BHAB
2033 ##
204 #
205: #
206 #i#
207: #
208 #
209: #
210: #
211:#
212: #
213:4#
214z 4
215: #
2l6:#
217:#
218: #
219: #
220 i
221 14
c22: R
223: #
224 #
225k #
2262 #ith
22T # i
228 #i#
229 # NN
2303 ##
231 #
232:4
2334
2343 %
2353 44
T 236 HERRK
23Ts##4H




r

r‘wﬂﬂ

rr r— ¢— r— r r— rrr

*®r R BR
*

®

260: ##
261: Kith -

262 CHRF

263 ###
264 nn#
265 k#
206: #
26T #
2683 #
269: #
2TO:##
Tl ik
2T72: ke
27334 #
2T74: 4
2T5: #
276 ##
27T #
278 #
2719 #
280z #
281 #

. 28214

283:#

- 284: 4

285:#
2862 #
2817z #
288 #
289 #
2902 #
291:#
292: #
293 :#
2943 #
295 1#
296 ###
29T hit#
85




298 ik
299: s kM
300:#4
301:»
302: #
303:#
304:#
305:##
306 #it##
307:#
308:#
309:

310:
FTUTAL RESUURCE CYCLES USEU = 470,00 2 UTILIZATION = 0.65

AVERAGE RESUURCES USED PEK TIME STEP = 1.52 MAX IMUM = “
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SORT PROGRAM
The SORT program was written by Duane Adams. The version used for
simulation differs from his in two respects. First, the primitive node gset
is different for certain vector (record) operations. For certain operations,

such as length or null, one almost always wants to use the operand later, as

well as the result of the operation. Thus, in Adams' program, length is pro-
ceeded by a two copies node, one output of which is fed into the length

node. Since making a copy of a vector or record is bound to be s time con-
suming operation, in this version the primitive node length outputs both the
length of the vector and the vector itself. Thus, there is no need to make

a second copy of the vector. The relevant primitive nodes are shown below:

vector
Vo= 1 v, = V)
vy = length (Vl) V.=V =g
then true else false
2 3. 2 3
vector integer vector boolean

The second respect in which my program differs from Adams' is that
the procedure ROUTE SELECT was rewritten to allow for more parallelism. In
Adams' version, shown in Figure 3a, comparison of the first element of the two

two records must wait until the determination of whether either record is

.null. In mine, it proceeds simultaneously with the null check, and the

conditional output nodes (4 and 5 in figure 3a) is moved to the bottom

of the graph. This has the disadvantage that the procedure may take the
first of a null record, which works in my implementation but gives a mean-
ingless result. The result of a meaningless comparison is never output,
however, and the procedure works much faster for the common case where

neither record is null (6 cycles vs. 11 cycles).
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PROCEDURE: ~ SORT

Fig. 22
88

PROGRAM SORT

LENGTH
TEST

\_—/l\)




[ 4

— e r-

r

r r— r—

PROCEDURE :

COPIES

PROGRAM: SORT

13 T
UNBRACK UNBRACK
U
U L .
10 14
L
L
15 16
BRANCH ) _
ROUTE | *¢
5 2
COPIES COPIES

Fig. 23
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PROCEDURE: ROUTE SELECT PROGRAM: SORT

1 NULL \ 2
( NT}EHS“I{ ) \ TEsT /
\\_//\ A

2 5 5
COPIES

COPIES 6

FIRST ¢

10

g )

Fig. 24
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PROCEDURE: ROUTE SELECT PROGRAM: SORT

ADAMS' VERSION
NULL
_ TEST

r—

E

- / N\ 7T
: 4;é\h \‘ ‘//ﬂﬂZ;;Y/ l
L_ ROUTE '

9
(<
1'II’ ‘Iil'n
QCIC)

r;L“

r— r— r r

r—

—

“ SELECT

ROUTE 18

Fic. ZE
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Since the only data type implemented in the simulator is floating
point, a record is identical to a vector. A file is Jjust a vector each
of whose elements is a record (vector). If a file contains m record;
each of length n, its representation is identical to that of an m by n

-]
matrix.

Variation of Ixecution Time with File Size

The processor usage for sorts of various length files are shown.

The sort program can be considered as having two parts, the first of
which recursively splits the file into subfiles, and the second of which
merges the subflies together again. The merge is not initiated until the

split has reached the lowest level. The number of stages required to split

the original file into subfiles of length 1 is equal to rloggnW, where n is
the number of records in the file. There will then be a similar number of
merge stages, at each of which the subfiles are merged pairwise. The time

and n., respec-

taken by the merge procedure to merge two files of length ny 5

tively will be proportional to n, + n_ since each comparison results in one

1 2

record being put on the output edge and there are ny + n2 records in the
output file. Since the merging of a subfile pair at any stage proceeds

in parallel with that of all other pairs at the same stage, the time for

each merge stage is determined by the length of the longest subfile pro-

duced by this stage. The total merge time is the sum of the times taken by
éach stage, and will thus be proportional to the sum of the lengths of the
iongest file produced at each stage. The last stage produces one file of
length n, the next-to-last stage produces the longest of the two inputs to the

the last stage, i.e. a file of length rn/21, the stage before that a file of

length [n/41 etc. The time to merge is thus proportional to

Tlog2n1 -1
n+ [n/2 +n/kl +...42 = I [n/2M]
. i=0
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If we then write time taken by the sort as T= const. + ts + tm
where ts is the time to split the file into subfiles and tm the time to

merge the subfiles, then we have

—

-1
flog2n1

_ i
(1) T =k, + klrlog2n1 *k, Lo [n/271

rv_. r—

When n is a power of 2, n = 2m, the series in the last term is equal to

i on-2, i.e.
f [1og,2™] -1 m-1

2 poi E i_oml o
. Zo . 2B/t = pem/2 =2 2=2n-2
L

Giving T = k_ + k, logyn + k2(2n-2)
| .
I Otherwise
| [log.n]
1 log. ni-1 .
- 2n-2 < .22 In/2%1 < on + [log,nl - 2
i=0 - 2
{
(-
The.right side follows from
g .
. floggnW—l i flog2n]—l i flog2n]—l i floggn]—l
< =
( 120 [n/27] < I, (n/27+1) Lo (/) + LI 1
{
—
flog2n1-l i
¢ = L (1/27) + flog2n]
-
% =n l—(l/z)rlogzn] + [log.nl
— 1-(1/2) &
f
% [log,.nl
{ 22 25 =2
~ =n + [log.nl
2flogen] 2
-
93



- (gloggn—flog2n1)(2.2r1082n]_2) + [log,nl
= peplO8o0 _ ,,,lo8on - [Llogpn! + [log2n1
- T
b peplogon _ 5 [log,nl since ptogzn Logpn] <1

°n - 2 + flog2n1

The sort program was run for files of length 3,4,5,A,7 with all processor
types executing in one cycle. The resulting elapsed times fit EQN 1 exactl&

with ko=5, k1=19, and k2=13.

TABLE 3
flogen]-l i

N [1log,n] i&p  m/27] T CALCULATED T OBSERVED
3 2 5 5+38+65=108 108

Y 2 6 5+38+78=121 121

5 3 10 5+57+130=192 192

6 3 11 5+5T7+143=205 205

7 3 13 5+57+169=231 231

9 4 19 5+75+247=328 328

The time taken by this sort is independent of the original order of the
records in the file since neither the number of subfiles produced nor the
number of comparisons required to merge two files depends on the contents of

the records.
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SORT - 3 Record File

TOTAL PRCCESSCR RESCURCE USAGE
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-
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AVERAGE RESQOURCES USFC PER TIME STEP
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SORT - U4 Record File

TOTAL PROCESSOR RESOURCE USAGE
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SORT - 6 Record File

TOTAL PROCESSOR RESOURCE USAGE
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It is interesting to compare the time required for a parallel sort
with time which world be required to run the same sort sequentially. At
the ith stage of the initial process of splitting the file into subfiles,
there are 2i-1 files to be split; waéver, some of these are already of
length 1 and thus are not split. To simplify, we consider the case where

n=2m. Then

log.n . logn-~1 .
igg ot 1. iég ot = 21082n 1. 2.1 = p-1 stages.

At any given merge stage the subfile pairs must be merged sequentially,
and the time taken for all these merges is proportional to the sum of the
lengths of the mgfged subfile pairs, i.e., to the length of the original
file. Since there are logen merge stages, the time taken merging is

proportional to nloggn, i.e.

Tsequential = 5} + ki (n-1) + k; n log,n

If we assume that the proportionality constants are the same for both

sequential and parallel operation we can compare times for files of

length 4, 8, and 16.

N Tpar Tseq
L 121 166
8 2LL 450
16 48Y 1122

It should be noted That the assumption that the proportionality
constants are equal for sequential and parallel cases implies either that
the sequential machine has a faster cycle time or that the sequential pro-
gram is coded more effeciently, since the constants ko’ kl’ and k2 themselves

represent considerable concurrent operation.
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Sort -~ Comparison of Relative Processor Speeds

When all processor speeds were equal the time to sort a four record
file was 121 cycles. 678 processprhcycles were used. When the relative
processor speeds were varied in a ratio reflecting the speeds of correspon-
ding operations on existing computers, the same computation took 159 cycles,
using a total of 897 processor cycles. In the first case the execution time
for all processors was one cycle. In the second, the fastest processor
operated at one cycle while others were slower. To obtain a true comparison
of the two cases, one ought to set the execution time in the first case to

the mean of all the execution times in the second computation. An approxi-

mation to this is obtained by averaging the execution times for each node in
the graph program (rather than for each node executed). The sverage will be
off by the degree to which the mean execution time of nodes executed repead-
edly weighted by number of repititions differs from the mean time for nodes
in the graph.

The mean execution time of nodes in the sort program (based on pro-
cessor speeds used in the second case) is 1.275 cycles. It is not necessary
to rerun the program with all processor speeds equal to 1.275, since the same
effect can be achieved by scaling.the case of all processor times = 1 cycle.
The equal processor speed case then gives a time of 121 x 1.275 = 154 cycles

and a total number of processor cycles used of 678 x 1.275 = 860 cycles.
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Summary

To understand the effects of relative processor speeds we must com-
pare cases where the relative speeds of different operations vary to cases
where they are all the same. For a precise comparison we should set the

processor execution time in the second case to the weighted mean of the

execution times in the first case

execution time of node ni

Z

Lo T where 7
nsG Tni * Tni ni

T =

z . times node n. is executed
nisGYni Yng T i

during the computation

To simplify we make the assumption that the above mean is well approximated

by the unweighted mean
z ™
n.eG i
Tl . R where N = number of nodes in graph program

Certain nodes are "dummy" nodes (i.e. they never execute)
always nodes with time = 1 we exclude them in calculating Tl . (in MERGE

nodes 1, 2, e.g) Then for the sort program

1_ 47
T = 37 T 1.297

Using this to scale a run where T, = 1 all nieG we have
i

Constant Speed Varied Speed
Time 121 x 1.297 = 157 cycles 159 cycles
Total Cycles 678 x 1.297 = 879 cycles 897 cycles

This indicates that relative processor speeds are not too important.
As a further experiment a new set of relative processor speeds ani)

was chosen so that the unweighted mean would be the same as for the first

set, i.e. such that
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z x o
n.eG Tn. = n.eG n.
1 1 1 1

However, the set on was such that the variance was slightly larger i.e.

i

11.81 for {o_ }

1

T.41 for {Tn }

i

This was done by reducing the time for A, length from two cycles to one and

increasing v - to three cycles to compensate for the possibility that v

and — (route select .7 and route select .11) were executed more often

than A and length, the change was reversed, i.e.,

As length

Vo

3

—_— =73

The variance is 11.81 for this case also.

For the first case the time was 156 cycles and the total processor

cycles used was 893.

In the second case the computation took 162 cycles using 901 processor cycles

TIME

157

159

156

162

162 - 156
183

183

183

183 - 156

TABLE 4
PROCESSOR CYCLES
879 Constant speed
897 Variable speed
893 Var. speed - higher var. I
901 Var. speed - higher var. II
6/159 = 3.77 percent 901 - 879 = 22/990 = 2.22 percent
992 Var = 49.60
992 Var = 49.60
992 Var = 49.60
27/169 = 17 percent 992 - 879 = 113/936 = 12.1 percent
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SORT - 4 Record File Variable Processor Speeds

TOTAL PKOCESSUR RESUURCE USAGE
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SORT - 4 Record File

TLTAL PROCESSUR RESOURCE USAGE

R

"8 s 4v ss ee e

O W N -
IR TR

TsHhul

BIHHHEH

QIHHAH

1N H#EEH#

SRS 1EXY

12:h k44

VL3S HEAAHERHRES
LA REHRNGHARN
15 #REndHAHRN
LOSHAHUKERKAY
LThUGHAERIESHBESY
1B ulsinubiY
19444 41#R
P2VIHHRHHHHR
FARE 2 XYY Y
22HHAHHAHNH
PIHAHRAAGE
2LSHARBUBUN
rERE 2 EI TS Y]
QRLHAHRIAHHRE
2T HAdHuntHEHALEH
2RIHHHAURARHERE
2O LHRBYHURHRENY
I HHARARENRH
Il uddyyrpig v iy
BPHAURKGHYERY
EREE IR T T Y
34 HHEAYY
IS HHRAHH
36 HARRERY Y
BT hiRARRHHINR
EREEETES T RD 5N
ERRE I TS E
GYSHARURREN
Hlshhnttal
L2IHBUHHRURHHER
LATHRASHHHNIH
QOUTHAGGHRHRBRRUEH
GO SHHHHRRRHEHRUY
GO HNHRRARERANRE
GTIHERGHUAN I H
LEBIHHHABBHTHUHY
QIS hUHHERBRURY
SO HBAHNERH
SLs R
SR2ihbtHFN
S3:HUnanuaH
Shthublieiahkpinay
SOTHHBEIEHRERRY
Bhidftnpitd i
ST:dddhnnt -
S5Q: 444444

Fig. 27b
12/

Variance I



SATHABARANNNN
6O HANARURANY
OLEHHANNARRUNNRHRAY
G2 RURRARANNEAN
OALHUNBHHANANINY
CLIHRUHHUBHNN
OS5HRNHSHRANAN
GHLEHRRRARRAE
OTHHHRRRUN
6B HHRRAR
69:HH#HH
TOs##k#
TL##
T2 HiR
T3 i
TG #iH
TS 4 iR
T6: #¥#
TTHhitkH
T8 HM##
TO: 4HiH#H
BOHUBHA
Bl HENNYE
82:Hiu4 ~
83 HHHH
BasHhin#
85 : ##H
86 H##
8T sHH
88:##H
ROsHAHNNY
Clo R g 3 T3 ¥
9l H#kH
Q2 ##t#
93144
QG HRHH
5 s H#N#
Q6 HHRHAR
OT:HH#EH
OB :#H#AN
LR TY
100 s #uk#
101 s##s#
102: 448
10344
'101' SHR
105: ###
106 #Mut#
107 :#4HH
108 #id#
109 ##4
110 ##
PR ER 3713
112: 4444
LI3:HNMENN
114 ¥4E#H
LIS ##i#R
11628 #4M
L1T7:#u4#
118 #N##




‘r__... —

—

—

—

—

r

r—

119 4#4
120 44
121244
122 2 h k4
12344444
1244 4iud
1253844
126444
12744
123 :nids
1292 ukin
13D dnH
131 s #Hd k4
1372 048 un
133 :nun¥
134 itHid 4
135 s pith s
136 H i
13744
133:44
139644
IRV E. X LN ¥
14l s 4444 -
147 4 H#k
143 4%
IR Y
1452 444 4
1464 H#i4
147 %6444
143 :Hug 94
1494ty 4
1524444
151 s hutn
1524444
15 44
154 HH
155 #
1504
157:
151
TCTAL RESOURCFE CYCLES

USED

R33

AVERAGE RESOURCES USFD PER TIME STEP

123

P

UTILIZATION

6 MAX [MUM



SORT = 4 Record File Variance II

107 PROCESSCR RESOURCF USAGE
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SORT - 4 Record File, Processor Speed Variance = L9

TuT PROCESSOR RESOURCE USAGE
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MATRIX MULTIPLICATION PROGRAM

The matrix multiply program consists of eight graph procedures. The
program is written as a procedure to be called from another graph program.
In the simulations which were run, a dummy procedure, whose only active node
was the matrix multiply procedure, represented the other program.

The basic algorithm used is to split off each row of the first matrix
and to take the scalar product of this row with each column of the second m
matrix. Thus, if we are multiplying a m by 1 matrix by a 1 by n matrix,
each row of the first matrix must enter into a scalar product with n co-
lumns of the second. Furthermore, each column enters into a scalar product
m times. The procedure was written to execute with the maximum amount of
parallelism at%the expense of storage for row and column vectors. Hence,
the row vectors are each copiled n times rather than being recycled after
each multiplication. The same is done for column vectors, they are copied
rather than looped around the graph.

The row vectors are split off the first matrix by the firsti.-rest node.

The null test and not nodes provide a boolean which causes a copy of the

second matrix to be made for each row except the last (since the rest of
the matrix is null for the last row). In order to provide m rather than
m-1 copies of the second matrix, the edge linking node 4 to node 9 is ini-
tialized to true. The value true thus appears m times on this edge. Each
copy of the second matrix is converted from row form to column form by the
procedure COLS. At the same time n copies of the corresponding row vector
are produced by the procedure N COPIES. Since the n rows and columns
appear on the input edges to the scalar product procedure at the same time,
the n x 1 multiplications of the scalar product can be done in parallel.

For n x n matrices then, the number of operations per step is proportional
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to n2, while the time to execute the procedure is proportional to n, or in
general, to the number of rows in the first matrix.

Since both COLS and N COPIES bracket their outputs, the inputs to
SCALAR PRODUCT are both matrices. &hese are unbracketed into their con-
stituent vectors by SCALAR PRODUCT which then uses two subprocedures to
compute the scalar product of each pair of vectors. SPA unbrackets each
vector and multiplies the elements of each pair together. The output is
bracketed to produce a vector whose elements are the products of the ele-

ments of the input vectors. The elements of this vector are summed by

SPB l.e., SPA produces the vector (ail’ blj’ a5 bgj’ ceees aigsz) and
" 3 b f hi t
SPB produces the scalar kgl aik k3 rom this vector.

SCALAR PRODUCT invokes n copies of SPA simultaneously, once for each
vector pair whose scalar product is to be computed. Each copy of SPA per-
forms its £ multiplications in parallel. Thus, for an n by n matrix, n2
multiplications are performed in parallel

The procedure COLS turns a matrix stored in row form into a matrix of
columns. The input is an m by n row matrix. The subprocedure COLS 1 un-
brackets the matrix to fo;m m row vectors. It then splits‘off the first

element of each row vector and puts it on the first output edge. The

© remainder of each vector is put on the second oufput edge. Bracketing of

the outputs produces a vector of length m on the first edge and a m by n-1
matrix on the second edge. The matrix is recycled through COLS1 by COLS
until the last element is taken from each row vector. This results in no
output on the second edge of COLS1l, and thus terminates COLS with n column
vectors of length m on its output edge. Bracketing of these vectors pro-

duces an n by m matrix of columns.
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MATRIX MULTIPLY CALLING PROCEDURE

2 >
COPTES . COPIES
NG
1 \ o/
M M,
3
Fig. 29

SCALAR PRODUCT PROCEDURE

Fig. 30
/34



r—

— o

=

r—

[

e

r—— r—

r—

PROCEDURE SPA (FIRST. HALF OF SCALAR PRODUCT)
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Fig. 3la
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PROCEDURE SPB (SCALAR PRODUCT SUMMATION)

Fig. 3Ib
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Since the first element can be split off each row vector in parallel,

the execution time for COLS depends only on the number of invocations of
COLS1l and thus proportional to m, the column length.

The procedure N COPIES produces n copies of a vector, where n is g
parameter to the procedure. The length of time taken for its execution
is directly proportional to n.

The procedure TWO COPIES MATRIX is necessary since use of the
primitive node for copying a vector on a matrix would simply produce two
copies of the pointef vector whose elements point to the row vector of the
matrix and wou}d not duplicate the rows themselves. Since the row vectors
are duplicated in parallel, the procedure takes a fixed time independent
of the size of the matrix. (Provided that the time to execute the primi-

tive node for two copies vector is independent of vector size).

Simulation Results

The matrix multiply program was run on n by n matrices ranging in
size from 2 by 2 to 6 by 6. There are - multiplications required, and
the program does n2 of them at a time. This can be seen very dramatically
in the figures 36-38 which show multiply processor usage for 2x2, 3%x3, and
Lxh matrices. Multiplication executes in one cycle so there are exactly n
cycles during which multiﬁlication occurs.,

: The total processor usage for the matrices on which the programn was
run is shown in figures 39-43. 1In these runs the execution time for all
processors is one cycle. As can be seen, the time required for the pro-
gram is proportional to n, while the amount of computation per cycle
increases approximately as n2. The results of these runs are shown in

Table 5. If t is the time required for the computation, then t=kln+k
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PROCEDURE: TWO COPIES OF A MATRIX
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PROCEDURE: N COPIES (OF A VECTOR)
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From the times required we have kl=l9,ko=lh, so that the time required to
multiply two n by n matrices is given by
(1) t = 19n + 1k cycles

The program was run on the same matrices with a four cycle multiplica-
tion time and all other processors executing in one cycle. The multiplier
and total processor use for the 3x3 matrix is shown in figures 44 and U45.
The effect of four cycle multiplication on all the matrix sizes is summa-
rized in Table 5. 1In this case, we can calculate the new kl and ko, and
we get

t = 19n + 17 cycles

The valug»of kl is unchanged because the n multiplication steps are
independent, i.e., the initiation of the second set of n2 multiplications
does not depend on the termination of the first set.

In an earlier version of the matrix multiplication program, TWO COPIES
MATRIX used a loop control node rather than an identity node. That version
of the procedure is shown in the following graph. Since loop control is an
s-node, only one copy of the node can execute at a time, so that the exe-
cution time for the procedure was proportional to the number of rows in the
matrix being copied. And since this procedure is in a loop whose execution

time is proportional to n, the execution time for the earlier version of

. the program was proportional to ng. The execution times were:

n % At A%t
2 5l

3 7 23

4 102 25 2
> 129 27 2
6 158 29 2

1hi



which give the equation
(2) t =n° + 19n + 1k

Both identity and loop control executed in one cycle; the only
difference was that the first node could execute in parallel. Equations
(1) and (2) illustrate the kind of major differences in program behavior

which are brought about by essentially trivial programming changes.
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PROCEDURE: TWO COPIES OF A MATRIX
(SEQUENTIALIZED VERSION)

Fig. 35
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AESCURCE USAGE OF TYPE MATRIX MULTTPLICATION
1: 2 X 2 MATRICES MULTIPLIER USAGE

46 36 s S0 S0 g

o6 4 &9

se 06 b

8 00 ¢6 o0 8 40

(1]

NN N o it o et et gt B e et ot
P UWNFOVOENOCVEAVWN OO NOUV S W

31:44u8 -

36 HHRN

46

47:

48:

49:

50:

51:

52 .

53¢

542
TOTAL RESCURCE CYCLES USEDL = 8 % UTILIZATION =
AVERAGE RESUURCES USED PER_TIME STEP = 0 MAXIMUM =

1kl
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RESUUKCE USACE CF TYPE
1:
23
33
42
b
[
732
g2
CH
10:
11:
123
13:
l4:
15:
lo:
17:
i8¢
192
203
2L

223 -
23:
24:
25:
262
21:
283
29:
50
31:
32:
33:
34:
35:
36
37:
38 uudAnAnAN
392
402
41:
423
4G33hhHRANBARK
442
453
4063
47:
48:
GITEBARREREH
50:
51:
52:
532
54:
55:
S50
572
582

MULTIPLY PROCESSOR USE
3 X 3 MATRIX MULTIPLY
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592
663
6l:
623
632
643
653
663
67:
643
69:
70:
71:
722
73:
TOTAL

RESOURCE CYCLES USED =

21

AVLRAGE RESUURCES USED PLR TIME STEP

146

3 UTILILATIUN =

0

MAX IMUM
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RESUURCE USAGE OF TYPE

12

PN~ DIODNT WY
"0 ap 8 0 o4 s

de %6 %0 4o ve S0 0

[l i e o A ]

r——
_qo\l.‘ﬂ
. o0

..

N =
Q0
£y )

.

NN
N
m

i ®

NN
Fa
.0 .

NN NN
oI N NNV |
.

543

50

AHARHEEHE AR S0V #

HEEARERRARRB AR

ﬁ####k#######ﬁ##

MULTIPLY PROCESSOR USE
4 X 4 MATRIX MULTIPLY

147



RARREY RAAEARAREH

[o 3K « A < 0K « N « K o J'e QG N ]
~NoOCUNIN = O
s 86 86 ve o6 e e ee

..

T6:2

17:

782

79:

80z

Rl:

82:

83:

84:

852

86:

27:

88:

89:

90

9l:

92:
TOTAL RESOUKCE CYCLES USED = 64 % UTILIZATION = 3
AVEKAGE RFSHOURCES USED PER TIME STEP = 1 MAX IMJM = l6
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TOTAL PROCESSUR RESUURCE USAGE

L:#u#
2444
3:HAvH
LIHHHRH
StH#nRH
62 Hi#
T ha##
BI##RRHANM
O HANNARH #H
LOSHAHURRE HURY
LLs#H#RRHAR R HA
IVANETF 333 8T
L3z HARHBED HEH
LasHun#HbE Hidu Y
LSS HAHGHRK A HH
IR ETIET ST TTE
LTI HERANHE RSB T RN
LB HARRERE HERHHH
19 hAbHERNHURRHIH
Q0 HHBYARKHBHE HY
YARE EYY 3131241
22 HnH SHHRARH
23 HARYHHN #H
24 hHHABHHH Y
2S5 HRE B Hu ##
20 HAHBARE U H
QT HAARAUH Y
28 HHRHH#H
29 HAt 4it#
30 #A#SHERNNY
3l hidnnnnting
B2 HHNHHH
EERE YT T
L HHUR UK HR
IS5t HARARER NP BB A
BOLHAHHARRNEAHHY
BTHHUNHRRHIHH
BBHHAERNHRHGHA
30 HAHRHERRNAY
LOHERGHESNEEHEH
LQ1HANnHHBn Antinad
L2 HHHSHBR NN IH AN
- ABIHARBARK AL AR HH
LA HARR AR HE Y
TGS HHHHHHBHY
LOTHHARAHRE M
LT HEHNBAH
4GB RAHBHHESH
LOTHEHEAS
S0z ###44
S1:##
52: 4
53:
541
TGTAL RESCURCE CYCLES USED
AVERAGE RESOURCES USED PEK

MATRIX MULTIPLICATION « 2 X 2 MATRICES

ALL PROCESSORS EXECUTE IN ONE CYCLE

= 466
TIME STEP =

1k9

%

UTILIZATION =

9

MAX IMUM

— N
n



Lawn#

2indH , ALL PROCESSORS EXECUTE IN ONE CYCLE

EY ¥ Y7 ¥ 1

GIhbRRHR

SIHARHAH

O hHH

T2hhbi

Bshuhndknm

CRERFYEEX YT
LOhhhnunbahinnn
LizAWABKRERNBANY
Leshahnhhnian

13z nnantintinsinin
lLashhhnhahashihnn

LS hntndnhnhbnnhn
LOSANRROBARANNANARRALSH

~ LT hhhhhbhhhANRKARAHNRES

LEBZABhnDARASARANAAREN

LIS hhhnABARANNANRANRY
QUSHARRBRAARANBELAANRARY
CLiththnitibiRARANRIA

Q2 BARAABRAKhANNLARNALA
CIshbhhuntnkhhhnhdhoaisng
CHSHAARBABRARARNANAARARNEH
COCHhARNBURNOARMARHANARAU IR
LOChBARAARAAANRONAAARABH
ZISHRURHBRUDRARNANARAH

2V hhhhhhhAIROARENA
CISHRARBARABARUANARHY
3UshaNnhnnnhhnnaians
SLERARNARNRARKRARAANR
J2:hhhnhunnhhbuRhhiAlS
S32hhhnnhhhhdnhanis
B34 nBAAARARANEN RN
B35 hhRRARRRANN

3O hhhnuutinhrhnb
ST HBMARUBAAANANANNAARA
3SchnhhAAKRARRIARRABAARNB AR
3Isahbhnanshbnnnni
GUIHAABAARANNRARHAR
GLbALANKARARANRAKIA
GL2IUBANRARANAARANNARBRIR SN
G huhHARRNBRANUBRANRRAHAAR
QUZHAANARRNRARNBHBAN
GE5RANRBHBUDRERRARAE
GOshhhhnnhhbhhnhnanni
LTUSHRARABBHANBRARRANAUAHER
GBIHAARNARAEANN AR RARARRIRARRAN
GO hAARARRARANBRAANBABRBRNARANRARHAY
SOHANARAARBAANRABANNANNEY
SLeuUabnhwbHhNNRAARKRRHE
SLIHARBARENBINANANRNGHHERN
SAHHANARRARNARIRAR R ARRHARE
SYIARhANRHARRRARAGARANLARINY
SS5HRANAANBHANBAANARNRANGARANRY
SOLANRRABRRANEARRBRNURRALNAH
ST huhbhhhhnhRNbahhnhsddn
SUHhARARRRAARBAARANAR
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r— r—

o

SYIHhhRhNOANRLEHNRRARRAEN N
QU HRABHARBHAAGNEA

CLEHANRRNRBRANRANLARHESRENH

Gl hhbhibaRRAMAIRY

O3HBtaRAHBNERA

CAs hhnuhkunk

6O HhhnainRhBY

SO hAnnAbnil

T hhbhhunhbinn

OB hhhRHRIA

SRR Y Y

TUS ##

T1:4#

123

73:
TCTAL RESCURCE CYCLES USED = 1114 3 UTILIZATIUN = 7
AVERAGE RESUURCES ULSED PER TIME STEP = 15 MAXIMUMA = 31
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TUTAL PHUCESSUR FESCURCE USAGE 4 X 4 MATRIX MULTIPLICATION
S ALL PROCESSORS EXECUTE IN ONE CYCLE
I
GrHudRdin
Strahdtdh
TR E2 1]

Tih b

BirAntH ih#

O HE#H HE AH _

L0t E4nsans dn AdAsH#

1L tnd HeknHu SRAOHR

125 4 4RAHRH BR B

L3:ati 6AnkHRRHIY

14z Hnnbd b GERE Y

15 dubdfaE o1 BH A RH
Lotarhisht 4l fh hERERAY 1

L7 Aa# S HAR B Mgl AR
i

1z snsdfripnntindduntosns

20T HUARBUG AN BRHARHEREAHA B
21t HURBEE S5 dh I A E RN
2AHARHARHE AR EERAH R R A
23 FARABRABEABHANAB AR n i id A
P Y
25T HHBRANBHE ARHARAEEREGE R SHREH
T
2T HARRENEBEEAHAENR A RHBHE U A
28T HHANHARREHEAEAHERERAE A

29 HAHAHARST AN ARARAHENE B AARRY
3OtARES AN AL AAHARR AL R AR AR ARRA A
ILIAHAR AN HARR AR RS AR AR ARBE A
e mnnnannny
BAHARRANKRRRUAAURE RERAE B8 o R RS

At hABANKH N AHRRBEEARA RN

35 AuRiHEL AT ARRAHOR RERARARE
JOtHARRAA R AL BEEEERERRARN A AR
3T:AAusHEF BE ARABREN AR AR AEBIRY

382 UANE Arn ke SARR A AL HREAE AR A
3O HARKARIBR AR A S AR e A

40 HALRAHY HE RREHREHRR B BET
GLHARNAEH AT AR AP R A

T
e T
GhtpAARES AL SHE AR AR AR AR RN
AOTHPBAPRHE SR AHBAAABHAF BUHBR R SRR AR HH AN
hot afr dH AL AE REFAR AR AN UR B R
R T
AUTHEREARER HEE PRI AHE A R
R I

DU HANU AR HD REEARHA R AR A HE R R SR E ARE AR RASH ¢
SLEAfunREs M HHEAA RS AR A AR AR Y
S2tHARAAR YL AR EHERH AR RN SR A
S3TAARRNEN AT BAHERARAL R In AHARSE
SazHRRERAERE ADHRHH BRI G A AARE A A

SS:ARMH AN AHAREASEA SRS RN AR AR A AR

R T
ST:drhdasnr R A KAy RS 44

SH:pHARN A AT HAAHERBAEERE 5 Ao i A
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—

-

—

—

r—

SO AHHRARE Rad i anntr e ARARH A4 H
COLHHARREAHUNBHRAAR BV HBHB SRR REREH AR RS H Y

OLSHESHEAURBRERHPRBARHE AR BAR R B ARB R RRARARB R H

O HunHHAE HREBAHBHURBEHBRRARRBBBABEGHBBBHHRHBHRRUBRBR GBI R Y

O3 HULEHHERRUEURHHRRHABEA U BB HBHBR R BRBRRE #H

O4HYHHBHR A AV REREHBHBHEHARAARR R BRBR R

OSIHBARY BB HERHHAGHB AP RERENARHARBARAB B Y

BOSHHARREER RN RARRRERHE U NHESBRARRAREBRURRAHAHRHBERE Y

CTHEABR N HEHFHHRPHHEBUBRLABRBAE SR B R A H

OB it REH R HHRBEABHHARBEARH AN RABU YRS RRHRRR BB RBRH

OO HHAHBHASRE HUHBHAHBBH BB R G REH AP H AR RUH BB HEH

TOSHABHRBEREHURBHABHRBAREURASAH AN AR U

TLLHHEBHE N BT HHAAREAAEBARRAABREBHATHH

TS HA4B FEHEBHRUBBRRFREREBE R BB HB BB A LB A HBHH

T H#pUHANR A HHBPR BB EH B BHHHH

Tat n4ptH 8 BE HEHRB AR HBRB R R R BAB A H BB H BB

TS H#GAHRBHIHBHARBRARRRRREG AR Y

To: d##nnt e dd nnddnddtidian

AR S TTIIINELT TS LT T

TELHHAGH IR A HBH AR BUHARBHURRRNHR

ISR RIS EET RIS ST ST

BOLHHARHBE AR HYNANAURBBERBEYPHA

Bl RHHRREARUANRANRRRRAE

B Hundg s A ity

B32HEARNEL W # Y

B4t hRudHRH Rt BRY

85 fhpit#iandnsy

BO: FHLHEERHFHHHRY

BT Hnpupnntlt fus

BB:HSHHEHH

89 4

Q02 #

9l:

92:
TOTAL RESCURCE CYCLES USED = 2196 Z UTILIZATICN = 1%
AVERAGE KRESOURCES USED PER TIME STEP = 24 MAXIMUM = 57
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TOTAL PROCESSUR RESUURCE USAGE , 5 X 5 MATRIX MULTIPLICATION
WMMM ALL PROCESSORS EXECUTE IN ONE n,«ohm
4444
Lrfidudgdnl
Y EEYEEY
6:¥ 44
Touitns
BLEANdIHENY
SRR EN'S FI0N T

1O r ittt HEHtL At s
V1l tun#rdnbt AagHdndy

L2880 ne Bl

13 4RunAtp N drin i

LasAdnadtftd nrdihs

1S5 AN HERER S B UH

Lo rthpab A dn e A B #E

L7 8 U HAABHE R ARG ERH B AR B

TRV HEUR R IR ity

Lot Hbnsiddn dnaihiv dufddnss

QO HHHUAHBHE R AN Fr bt Bl ke

QL RABRHES ANty

L2CARPHHAKAL BRI H R b Rt d g

LAHHLBALERY BARATRdda by i Y

Q4B ubr AN A pE AT AR R p Y

O nAsHA By A R BRI ARREY rud FR4 408 0

26 HHHASIHHHRHAHABGE LB PHBHHA Rt o

PAREFIS I I NI T I TS N Y ST EEY Y Y:

CBIBRERHBN AT AR NHA b BB A AR R R

O ABHSHH R SHH B AU BB S YR AR AR R

BOHAt 4R AB U HE RS FE RN Y SR bR d bt und

Bl v Hn N E AR AR AR NN R AR BB E BB B Y

B2:HAHBHAEHENE LRGN A RESHBR ARG H R B BB RS HB R HY

BATHYHART I AR BURNY SRRHH R AN ISR 4B AR H

BLHANHAHNHG REBRRATARBRHAERABRARRBEHBRY

A5 48P RURGHEHEBYUREACH RN IUNAR BB RH

BOFHEAHAE R AHHAR S BRH U RA BB HB B R SE H 8

ST REHdA R AN AR AR BV EU R R AR BB R BLEHB BB H

3B HHBYYBRRE B KA B AU ARt n Rl #

3G ARRUAR AN BHB AN R SR A BRH A HB A HBE U IH BB #

GO GG BRI HE R U R AR B EHHE BB R HHBH BB Y

SRR NN NIRRT Y YT Y E ]

Q2T HAsRAhr Hn BV AV B BRSO

A3 HHHAARL R HRRAR LA BUR B R R AR AR HE R R

GO AHBHRRE UL BHRURAREBHAHAH IR B R p B AR H

ASVEAREAR AN AR RURAHRKEERAHE AR BB BB

GO HHABHRERRIHNSH R BHH R AR B SR SR B

GTIRHRSHAE HE HBEH AR LN Sbd g

CER RN R NI YIS RV LT TR EEY

LGOLEHHBYHARIGENE S 45 HEAB U LH Y 4

SOt v Buti HntnatHintsvniatrid At d 48y

SLHHABHARSHEHBHAASRUNH A D G AE B YRH A HA S HAR U HAH B

S22 HubHARH AT RARUBARAUB AR AL RUSHBBUB PR B AHHBRE R HE BB ARV H ¢

S3:udAnKd K SR BHAAAEEAEAE Hpdaddfi d

SG: At ddn bRttt nddntridddradd BAUR B

SO HHEH BB H HHAH B RERI BB T AR HE R AR RE S Yy oo

SO AL AR HN R HH B RARNBHBBUE VBB IR BRI B RN AR AR AR AR S H

ST HRSHARBHNHAURBURARH R HA R SRS HBRHBH B AR R R # N B S p B R R Y

SBIt HHnHHE H HARARUL Sppd i dH B B HBE HHBA BB HEHE B

.o
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— r— r— r—

r— r— r— r— -

SO HARRHBESUBBRURBALBAHBHUA AR AR ARA SR BHUR R
OUL BANUYHRTAHBHEAIRRUBH ARG ARINGRHRRAR YA

OL HHBHAURAL HHABHRARRAAHATHARIHGH PR RHHBRABIH
C2THRKRUARHBN SR AR ARV BRHAHBGFHBAR AR B AR HAARERBA BB R B R
OCRLHUBHKBH AR HIHERAHRHEHNHBH ARG RAARBH B BURHBARBRTHUB AU BB R RGBSR R ¥
OGS HARBBURANHBHARARBURBHARRBHHRU BB BB IHRB AR
OSIHARABGHRHBERIRBHRBHE L AU SAA B L RURB UV U b dn ik #
OO HARRBH REHRN SRR BHBRRERSRABRRHBR BN BBRHHH
OTHHLRARE HR HBHARHUARAGHBH SN R RBHBRBU BB REAR AR AP R H
CBLHHHHBERHRERRBBAHBREBRHRBAAABRL ARBB BNV BRBHHBHABHB AR AT HR
OO THARARAE RE P BB AR BHURHEHAALNARARRRE AR RRAR BN RBA AR LR RN R R R
TO:HEHRHARAUE BABRARBARBHERE SR RERAABERBHRAAHUB AR #Y
TLIRAHAURANBRBHHBBH R BEREE A AR AR R RAHRERB AR B0
TR HRURHBHBHHRBUBARAHR AV EAAR LN R RHRBRHABRRRRRR ARG BB H
TRA2HBUBHHH N SR BERBH B BHHBAHBABHR R AR HRTHB AR AR R AARUABREE R R R AR RN
Tz HHHRARBBERHBEAABHBHBRARAUBAAR AR A BB B BHARU BRI RO HHRH B RHAA R RBIRG#
TOSIHARRBHB AN S HUHARBRBH B AR AN BB BBV H BT HRBE RN R R BRBRBRARBRERBUR L RER RN 4
TOHHBA NG R RERAHBIRBBRHA RHFRIAHRBRUHBBURBBRA AR AR R R B AW ARY
TT:EARARRE AR SH A BB RABERRUB AR B HRR BB AV U HHABHAR R E R R
TOHHRHAE BY P HAAA AR R RBP BRI BB RV R BBHA BB HB U R RR A AR
TOLBHAHRRERY RBRAENE AR B R AHASHBHRARRAB BB EHBARBRAAN BB BREB R BRI R BRAEBHAPR RN
BOSHHAAHABARBHAFAHHGRBBHR BB AR S ARRBHHU R RS BE AR BRI S U RHRH
BLIAHKRNBHBNNHHBAHRBEARNHRHARARABE AR RARBHBRRR AR R AR R R BB IHABHBHA B
BRI HAAARRHHALRUABHARAAUBHAHAA YRR BHA B BHR AR BB RAR R A A E R BB Y
BRI HERHARNHHBHHH AN AREHBRAP BB LB R AR HAHRAR BRI R RAA AR BB R tnn
B4z HHURHARB AN AU A HABHBE U Bt R BA U AU R B R AU RN R dad i # Y
BS2 HARAHAHRBARRHBARBURGHREHABHYABBE BB RARAHAR BB R an PR H AR BB R
BOTHARHRBERE AU R RRBARBRBUBARBUG L RARBY BRI RBRRE R Y
BTHERBAURBEHBHBHABRHAH B RRBARBH R BB HABABAUN R R RS RA WU B R i d b #
BB AREHRBL AL HBERBRRAAB B R R BB R RRH R R BB BB ¥
BOHHARNHA R BB BHBHBBERE A BHARGRBARYRHA RN
QO HARFARH B RHRHUHABHRBERHUBBRARBHRAN Y
QL ANHRHARHBBRH AR IR RE BB HIBARBB AR U RHB S HAHA PR BRGEHH
Q2 VARRIRH AV BERANARAHAA R RN RA R AR R B Y
SITHARNBHBEBHBBHRARHRRBBUHARABRA SHAB AR BB R R GHAH
QLIHRARHAT R BHRABHAABHRHBRHE I IUN AR H
CREF S EIXT RS VRN SIS IS T EY TSRS E
QO HHHNEHRAERRHIHNAR B R HNAY
T HHARSEH AU HHHRRAAA DR HR A RS IAE R
OB HHKARHREHE AN HARRRERBH AR
QO HHHAHAYR N AR HERT S HA R BA AR SH AR A SR Y
LOOHSHnu HBh AN HAHHH P HARE RO #
LOL:ARHBHAD BRUHRARAHHY
INVARYIESYIR T ST
LO3d4ridpunhtduiinne ¥
104 HHR S HaHRHARHY
105 fandndnhbitiinndit
106 H4# 40 un H¥
107 d #4580 HH
108:4#
109:4
110:
111:

TOTAL RESDURCE CYCLES USEDL = 3326 ¥ UTILIZATION = 11
AVERAGE RESUUKCES USED PER TIME STEP = 34 MAXIMUM = Q1
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TUTAL FKCCESSUR KESUGURCE LSAGL 6 X 6 MATRIX MULTIPLICATION
Linnw
2ihhHH
ERNZ3 3
GIRAKARRRRR
2IAANA

H
b b ds M
sAnH* .

o
Tinak#

BIhANE

FIHBAR

LOshhni

Llsahk

12:uht#h

L3thabrihné

la: hhhhbhhikhn

1SS unnithaRBBHAREBARARN
LOhhpnBREREBRIHE

LicuhunkRoRRaitura

LB HanhhnbhitRrARRY

L9 hhnuthnnh

SC hnkhdnnnn
FARETTEX Y X X
C2SRARBHBHNRNRER

CAHARAAANNRARREH
PUCHRARRABARRARKHARAER
COLHERRARFABBARARBRABERRH
COLRAEMHRBRARARRRARARAHIAHBRE

2T nbhhhRuRARRRKBHRABRS
COSHURHARKHRHARABRARRR
COSARBRABRABRARHARRIRAHRAHRAAR
BOLHARKHAANRARRABAGRIFH
BlitnbaRRuRAARKARRRERE

BL2L GABRANRAARHARRURERRAR
33LARnABABRIIRRIIRERS
BLIRBHRANRKRAURRRESRRR
BSLHANRBRBRRAPHARRRRERRBERE
BOLHANRRARRAARBROAABRIBRAGBREGRERR R H

AT HhARARRABANOARBRIBRRHERBRRRARAERER
3OSHAHRERARRARRORARABRRBBRINBRIA
BYLHARBHBRAVIRRARRRABRUARRABARRER
GO ARHHBKBHRHARRRARRADABRERIRARH
GLLAARRAANBRANRARBRIRBHHRR
Q2 RARRUBURHANRRARRATK A RA
ABCRARKBRARIRRBREBRRRRABHRRERARER
QLG RABRHRERRARBABANARHAAARKERY
GSRANRAARUBERBAHBRRARARBRHGRRR
GO HBRRABGRERRREGAREHARIRABARBAABAHY
GTI RAhWHERRHARRBRARHREHBARBREODHERRRRKER
QB AANRBRARBRARERRRRRBHRANRARRANKRARRIARGHR
LGOI hhhbkhhBRBURbnbuREHARBRRIHARBBHAMRR
SOCHRNRHHANHHURBHRABERAHANRR OB RAARRRARARRARR
CSlenwitARRBUHBHIHERRERBARARABHARRARRBRRARRKHARR
S hURRHKRHHUBHRBARARRARUBRRARUFEARRENH
S3SARBLARBNAHARNBEARARARRRRRUBBIRARBHR
CUIARRHHRKAARRUHRARBARHFHBHABRRP REHER
SO hhAHHNRRRAURRERAFEROERABRABRRANR

SO HARFRERUARRAANRATHBRRRHGHRREAB I A
STSRABRRKRHHARRARRRBANHARREHURAYARNENR
SO ARKHARBBHBRRBHARARANKHRRKAARKNHRAERRRRR
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SO ARHRRRBRBHRRRRRRGHEARRAT R ARG AAE ARARRARNA
GO HARRRRARHURRABHARNRRAGHRUNBHBERG HARRRRA

CL AARAARRNARNARBARRRBGAGHHANAARAREHRHARRRR

CL BERRARRRABRARARHNARRIRORGARIHFRRGHBUR AR R

CR ARKHRRHAARANARARTABIRARHRARRARRERABRARBRERARRRUBRRAR
CASRANNBARRRRRBRRAB U HRBARRRBRRA R ARRARRRHRHRRBRRRRRARARERARRRHARRANNERNE
ESCHRABBRARRRANRHGARRBRARREHERRI AN b bRREBBRAR

O hhhhARRARRARRBARERBIERRERARRBARARBARRRRRERERA

QT HARRAAHRAHURRHBAERRAG NI RRE R BURRRBARBARARRE

OB RARURBRRHARRABAARRINRARBFURAKFIRRADAARBLRARARRANRERREFNRR

I hAANRARREARRAREARIRAARB A RANRAERNARRBANRRRERE R

TO HRARHRRARBABFRRARRHIRIGARREHBRARRRRARRERERARNRERERURN

TL AKRBHARRARANRFRARBABARBARABAHRIBRAERHARBRARRNBRARR

T2 RARRARAABHRRANBARRRANURBABRNHAHRHBERERRRRARR R HARERRRRR

UBLSHKRH R RRIARHRARANRI AR RRABARHARRAREARRRRTSRRARRRNBRRRBNRBNARRAARE AR
TO: RABHHBRARRRARBARRRBHBRRGRRARHARARRARRRARARRARBREBRENHRARRRARRABRERRARE
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TURhKHANRRANBHASARRANBARRARURH GRRURBEGRNRAHRRETIARRANRRARRR
TOIAHRRREARRARRARNREABARKARHBRARARRARARARARNRRRUP AR AORRRURRN B RS

TG i RHANNERRERHRRBRARARHHRABARAAAARE AR GARRARRRBRHRRE RRRAHRR
BOLHAARARRABRRRIBARARAHGHBANR AR IARRRRURABARRANHERERRER I ARAAR RN RANBARS
BlinRRb ARRARARRABHNAIRRGARFANRRIHRARRRARRRRRBOBRGHRN R

EC I AhKARHRHHARRRABHARRARAGRHRBBNBARBARARRRANPRRRAREARRARARIRG

B3 hhHRARRRUBRRRRAANARRRARHARUNAURRRAGARARRAHARBR AR RRRRARRAR
EQIHRHRRRINRRAHARRBRABHARTHERARRIBHARRERRRARRRRBARRUREARUBARABRRREBANER
BOSARARNRNHAABRRHARBIRNBARBBRENL REAARRBRERAFRARRNRRRARRARARN HRARRRRRRRR
BEIHARRAARNARNERARAHAGAAARARARARHHARBHEDANBNNBHRARRRIBRIRARRBRRRANARAER D
CET NRhHRARRRRARARRAIRBEHARHRE AN AR HRBAR AR ERABBBRAHBRARBAERERRRERR R
BEL hAKNRRARRRARRRARNRNRRHRBARHABRAARREERABRRERERETAABRAARRANARRARRGRER
BIHBHIRAARARREARR AL RRARARBHRARERARARRARRRRARRRANTRERR UGN RRERENRERER

QU ARKHRRRRFIAANAHRAARRA G RFEFHRREAERRRNE R RRARFB AR RRRRABRRARRERRIREAR

QL A hrRARRRARREABRARHABRARHABR R EUHAHRHRABABRRRURRRERRRIRARRFRERRAR

GO LHARBRARREBARAE AR AR APRARRARHAH B RRRRAAARFRARKHRRRERARRBBANA BRARRRR AR AR
SIS HBRBARRARBAKARARRUENAURRARAREARREAHRRRATRRRRRARASNRARRE RN B

Fa hARRRERHBRRUNRHAANBR RO BN U A h HRRRHNRHHORRANARBARARRARLHANARBIRRERBRRR
CSOLARRRANARRRARRAARRRANRRRRAHRRRRU AR GRRRGRRRRNRARARRARARRRRRNLARRRARRRERN
JOLRABRHBBRHANRBRREARAFERR LR GRRRBRRBERRARBANRRRRBBARR AN HRRRARIRRRRARREREH
GULARKNBRRRRBRLARBERRARRABHAINRE R REHBHUHEARARRRRRAARABHRHBARRBORRRERABARS
CBIHRRRAARRABARKARHHEABHRARRAINRAF N SR TARARRBRRNANERARAURATERERORRNRRIRRR
SO hAARAHRARARRHAARRBRBRRNHABRANAARRBARRARIRARRARARHHARARRRIE R RRRRARR
LCO kb RRBARANBHUAARAA RPN RRARRBEAREBRARRAFRHARRRARRRARRINNRARRE REARURORRER
LOL: bhRUBRERRARBHARRARHGREANRANRRAAREANRARRURARRAARRRARRIRRERERAARRRRRAKS
LOZ: ABRARRRARRANKHBHP AL ARRINEHBENARRRRAB R BRARBRRARI RN HRRRRARRRRERR
LOBSHuBhAGKHABRAURIAAAHNERBHBRUARRARBIFAIRRARRRARRARAGHARI AR
LCH: AARNBUARAAARRARRABERRARERR AR BARH AR RBGRRARRRRRRAIFFRRF
LOS: RABHRARGARERARARBRERABRBHHARBAIRARIUGHAIARRARARBHPHRRRABIRR
LCO: HARRRARRARARARARRRAEANRRE U N RARGRGERARFARNRARAKRAUBIRAREPARRERRAARER
LOT  AARRURERAREDARBARERARRHGFHEGRERRREBARARRRBARRRAIFHAARABRERG RANB RN NN
LCU S URBRHERRERRHRARGEBHRAARARRRABIARARAARERRARRARREFRARREFARTFARARRAGERRS
LCIY I ANBHAEHRRRHRRNIRNNBABARARARARFARRAIRANRIGRARRRNBRARA BRI RNE RN RO R
L1O: HabRRRKRRARGAANBIABARRHANRRAAAARRBRESNRRERRRHARARKRARARREARRERR
LLL S trRRARRRERARARRGHUBREFERHFIGRARERRARUANHURRARRBNERARRRRERRRIER
LLC: hHRHHRERAARNAERAKEBRRARBARARRARPRAARARABARARIARRARIRRRRR
112 AnhBARRRHRFFRBARIHARRRRAAHAN R RHBRB AR ARRABRARAPRRARRARF

LLA: haRARHRRAHAARRIRAERBARBIRRABLIRANERRARARNRARRRRRS
LUt AKNBHRARRRRARRRARNREREDARERRAIBHARRORRRRRAFREINEAR
LIO:ARKABRNAGRARARRANRHARRANKANBRRFAIFHEHRHHARREHGRE
LLICARBURARRINARRAFRAFFIRAARFARHAN ERRERUARNFERBHARARBHRIRRUFARRABNBRARRS
LIS ANHRRHRARANHARRRRENARRABRU R ARKANERANERARRARARARRRRIRRAL BRFRARRERRR
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L2OL K hHARRBHBABKHBRABIRHRRRARBARFENRRHRBRARRRERARR RS
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LB hAnbARBRBRRBANRARANEERRRERHRBHAARRRABRRARRRBU R B

L2 AAKERREANRRINABHRHABRERRRBHBRENRBRRERNRRRERB BN
L3O:HARNNARRRIRRRUEBRERHNRARERANABVARNRABRARARRBHUNRRRERR RN RAR
L3ALSARRRBRANRARANRBREBIUEBGARARREIBHARRRBRINAERBERERY
L32hhtnhanbuARRHARBRABHARANBURARBRAARHBABHANRERRRAH

133 ARRARRBHRRENRRRUBHRRABHARBBERURRAGHOHE NI B

L34 hhHRHRRERRNRGARARABBARBHARRHBRRRANABARRRARE

L3S HURRARANREAHRBAARARHERRARANBAANKAS
LIAOHaRARRRURHRRIRRREAARURNBEREREIRIH
LATShORAABARHRRRRRABRUARRARBRABRAREIUR
L3BAHHRBAARABARNBARIAANARBRRRHY
LAGSHARRAUNREARRHBARRARAGHARRRNY
LACO:BRRANRRARKNRABRHRUHRBDERRARRRER AR IN

LAl AbnwiaAUURBARNHARRBARARFEAAIRRARRRR
LA2BAHNRRHARARARRBRARUGARRARNNARRRNRRARH

LA hAAKNHRHRNARRRBARHBUAUNARRARRBRANKS
las:nhbunhhREARRRARRABARAARERIRH

LaSsAhAnHARAARGHURARFE B

LAGC RARHAANNARRABARANAERH

la4T:huniRnuniinnis

laB:anhnrAbnhanannninhhnf

LA4S hhRhHndhnarhaR

LS50shAnMRbnbAERHAR

LSl huntnbnhannnng

LE2:hbkinnnndnninnnnnnnind

I1OB3AAbkinhaRuURRRIAR

LEQ:HannnnnAnvnarrrhAtd

LSS  whbRARRHURBEANKA

LYo hitihahun#
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TUTAL RESUURCE CYCLES LSED = 6178 % UTILIZATIOUON = 9
AVERAGE RESUURCES USED PER TIME STepP = 39 MAXIMUM = 104
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RESOURCE USAGE CF TYPE

1
2
3:
4
5t
62
T
83
9:
10:
11:
12:
13:
14
15:
16:
17:
18:

35:
36
37:
3B AYHHUHEEN
B9 HHERRAHEN
GO HANRKINHRY
GLIHANRANGES
42
Q3 HANHANHASY
GO HRANNKRRER
GSHANRRANR S
GO HNARNNHNEN
47:
482
QI HAKNAANAN
SOZHEARRHUAS
SLIHBHKNSRER
S22 HiARUNEUEH
53:
54
55:
56
57
582

3.X 3 MATRIX MULTIPLY
(MULTTPLY)
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59:
602
€l:
62:
63
642
652
662
67
68:
€9
70:
T1:
72:
73:
74:
75
762
TOTAL RESOURCE CYCLES USED = 108 %Z UTILIZATION =
AVERAGE RESCURCES USEL PER TIME STEP = 1 MAXIMUM =
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TGTAL PROCESSOR RESCUKRCE USAGE

12444

2 HHH

3uu4H

LGIHHRRRY

StHERHHY

6 HHAH

T:h844

B HABAARYHY

AR EEER S 233

LOHHURRERURHARAS
IOREFEEEEET N LYY X

12 #uBiainbnd

13:H4nd4bhdnnisy

las HERHARRBHKKYS

1St HAdnugdtfitntueg

Lo RARNKBHANGHBGAEHEH
LTHBRHRAANBREAANANEHEHRY

LB HUNHEARLRABRAA Y Y

1O BB HNERBYAHRB AR RY
COTHHBHHURRENRBY AR UUIHY

2L AHHRNHRERY ARG uy

VYR REETEEESTEE RS T T T
VERE SIS EZNE TSN RN T Y ¥

2A HAKBHHUA ARG RERG Y Y
POCHRRHANNBHYHURAYR Y Y4y
COTHBHHHAYRHABUENBARARRY
QT HAKRHABHRABEREAARENRY
QBT HHRHERSHAHRRARNY
2O HHSHHLR R RN YRR Y

LI EEEEIEEEEEST YT Y
JLHGHEHHBHRHBHandnY
VRS EET R FE TR ENEEEE NS T
EEREEEESEEEE RS TS T
B34 4HARHAL4RGHHHY

35 HaAbEHEYEHEH
BOTKHYHBEHHEAHENY

BT HHAHAARIHAAH ARG H 4
EYX RS RN ET RSN EEEEESYE LY
B9 HYGHYARMUNRBAYHB R HGEN R4
GOSHHAHKANRAARNRANBSHRRRHY
ALIBAARAARARN AR

G2 HURRAARYRSHESRARH
UK EESEEEE S SRR TS S Y
A4 HYBUHGHYABRHB AN NS SHHEHAY
GO HEHHHRBHARER GG B R u e
LGOS HRHHRHHYBYEHBHRAAHURAAnR N
GTEHYFAHERHE AR U R Y
GBI HRAAEHABBHBHANAHRHBHH Y
AL BHHEHHGHHSRHRRARHGHAANANR R Y
SO HHHRRAHRHASBARHGURURHHRNER N HENS
SLEBUHNERHAHGRYBHHANSHIH NGRS
SCIHARBBRUHARABHHBHRARHR AN B eI IHA
SI:HAHHHARBRUHUHRARAR 4R RRHH

DL HAYAHABABRANRD AN OH
SOIHBUARHHABLBE AR BB B HEHH
SO:HAUNNBUARAASAAAGHBHAHREHUIHY
ST HRURRUNEAGAHAIH AR GHH
SBLUHLAUAAHRERBHEHAHA R AR R Y
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SOz UAUUAUHENRHABENA B HHAR A
CCLHAHUBAHRARUERAARAHRAS S
CLIARAAAANERENRAAHRNRA

O2IHRUBHNRYBHBRARARANBURY
CRLHARRARRUAHHARASY

CA HAHAARAUAHUNARBNIRNYY
OO HAHAHUUNNBHHRRY

CLERES SRR 3T

L P e ki da MMMl
O - HHNBEHEFYN

6B UK HEHY
COTHHAHAHGH
TOLY4HHBBEHHSEHRE
Tl HHdHtRR R
T2: HHeH
T3 :44
T4 #
75:
76
~ TOTAL RESOURCE CYCLES USED = 1234 3 UTILIZATICN = 5
AVERAGE RESCQURCES USELC PER TIME STEP = 16 MAXIMUM = 31
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All processors execute in 1 cyélé except multiply processor

TABLE 5

MATRIX MULTIPLY PROGRAM RUN WITH N x N MATRICES

T mult Time Total Processor Cycles Average MAX
1 52 cycles 466 9 (8.97) 15
1 71 cycles 111k 15 (15.7) 31
1 90 cycles 2196 24 (2k.k) 57
1 109 3806 3L (35.05) 91
1 128 6178 39 104
=k, n+k  k =19 k= 1k
4 55 cy 511 9 15
L 74 ey 1234 16 31
L 93 cy 2451 26 57
i 112 cy L2ok 38 o1
I 131 cy 6895 52 133
k, =19 kg =17
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Total Resource Usage Calculation

Since n” multiplications are required to do a matrix multiplication,

the total number of processor resource cycles used is at least proportional

3

to . If we assume that the total processor cycles is given by

(l) Tot = p3+kn24.1‘.-n.a.v1‘,

|9 7.3- N ~~2a.a 4 ulu. v .n,O
then we can use the results of simulations for four different values of n

to find k§’ kg, kl, and ko by solving the linear system of equations

3 2 _
nl k5 + nl k2+nlkl + kO Totl
n 5k + nk. +tn.K. + k = Tot

25 3 o2 2Tl 0 2
n_ k f# nk + n k + = Tot

555 32 31 k 3
nhk5 + nukz + nhkl'+kb = Toth

derived by using the values found for total processor resource cycles for
the four values of n.

The values of the preceeding table for n=2,3,4,5 were used to
calculate the ko - kl for the case where multiply time = 4. The valves

of the constants were

ky =22, k, = 49, k; = 60, ky = 19

- These values also satisfy the fifth equation for the case n=c, i.e..

3 2
kK..6> + k2.6 + k1.6 + k

3 = 22:216 + 49.36 + 60.6 + 19 = 6895

0
Thus, the total processor cycles for multiplication of two = by n matrices

when multiply takes four cycles is given by

(2) Tot = 22n> + 49n° + 60n + 19
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Using the values of total processor cycles observed when multiplication

is one cycle gives

. =57, k. =16

k3 =19, k, = L6, kg o
So that in this case
3 2
(3) Tot = 19n~ + 46n° + 60n + 16
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FREQUENCY OF EXECUTION OF PRIMITIVE NODES

So far we have only discussed combined processor useage of all node
types. The simulator output also provides separate statistics for each
processor type. These statistics“can be used as a guide in setting up a
system with a finite number of processors to determine how many brocessors
of each type to provide. Table 6 shows the number of processor cycles
used by each primitive node type for the trapezoidal quadrature program.
Since each processor executed in one cycle on this run, the table also
represents the number of executions of each node type except the prdce—
dure node. The number of cycles entered for the procedure processor is
the number of cycles the invoked graph procedure requires to complete, so
the figure given in this case is only valid for a system in which the pro-
cedure processor is reserved throughout the computation of the invoked
procedure. For this reason the largest number of cycles is that used oy
the procedure processor. The second largest node type is the two copies
node.

The breakdown into individual node types shown in table & is not as
useful as a less detailed breakdown for three reasons: 1)Since only three
graph programs were investigated the statistics gathered from them are not
representative at that level of detail; 2) Since the primitive nodes im-
plemented in the simulator were chosen arbitrarily, they are not necessarily
representative of the primitive operations which might be implemented in an
actugl system; 3) A breakdown into individual operations is userul only Tfor
a pure "functional unit" model where separate processors are used for eac:
type of operation. In practice it is unlikely that different processors

would be used for addition and subtraction, for example. It is more likely
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TABLE 6

PRIMITIVE NODE EXECUTIONS IN TRAPEZOIDAL QUADRATURE PROGRAM

NODE NUMBER OF CYCLES PERCENTAGE OF TOTAL
1 270 40.7%
2 0 0.0%
3 12 1.8%
L 32 L.8%
5 0.0%
6 0.0%
T 33 5.0%
8 154 23.2%
9 L5 6.8%
10 - 9 1.4%
11 35 5.3%
12 18 2.7%
13 9 1.4%
1k 25 3.8%
15 21 3.2%
16 0 0.0%
17 0 0.0%
18 0 * 0.0%
19 0 0.0%
20 0 0.0%
2l 0 0.0%
22 0 0.0%
23 0 0.0%
ol 0 0.0%
25 0 0.0%
26 0 0.0%
27 0 0.0%
28 0 0.0%
TOTAL 663 99.4%
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that certain primitive operations would be grouped together to be executed
by an arithmetic unit, a data routing unit, etc.

For these reasons I have grouped the primitive nodes into six classes,
the procedure node, arithmetic and -“logical nodes, compare nodes, data rou-
ting nodes, vector manipulation nodes, and vector testing nodes. Table 7
gives the percentage of node executions falling into each class for the
trapezoidal quadrature program, a 2 by 2 matrix multirlication, a 6 by %
matrix multiplication and the sort program. It also gives the mean and

standard deviation in each class for the four programs. The results are

‘shown graphically in fig. L46. The largest number of processor cycles is

used by the procedure node for the reason given above. The procedure

ncde was put into its own class since the execution logic for a procedure
call is sufficiently more complicated than that for the other nodes to
Justify dedicating a special processor to procedures. Procedure processors
might also be used as control processors to direct the execution of nodes
in the invoked graph procedure.

Tﬁe second largest number of executions fall into the data routing
class, which accounts for more than 1/L of the executions on the average.
The arithmetic and logical nodes and the two classes of vector operations
taken together each account for about 11% of the executions, while the

comparison nodes are the least used class.
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TABLE T

PERCENTAGE OF EXECUTIONS IN SIX CLASSES OF PRIMITIVE NODES

TRAPEZOIDAL. 2 BY 2 6 BY 6

QUADRATURE MATRIX MATRIX SORT MEAN o}
Procedure (1) 40.7% 54.8 43.3 49.0 L6.95 5.7
Arithmetic, 16.8% 9.k4 15.4 5.1 11.675 k.7
Logical
(3,4,5,6,7,13,14,24,25)

" Compare (2,15,23) 3.2% 1.3 0.7 2.8 2.0 1.0
Route (8,9,10,11,12,28) 39.4% 20.6 23.3 29.7 28.25 T.2
Vector ~ 0.0% 9.5 10.3 8.9 7.175 1.9
Manipulation

(16,17,18,21,22,26,27)
Vector Testing (19,20) 0.0% 4.3 7.2 4.5 4.0 2.6
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CONCLUSIONS

The simulator and the graph programs described here show first of
all that Adams' graphs are a feasible representation in which parallel
algorithms can actually be programmed and that a CPU could be constructed
which uses such a representation. Writing down a graph program is rougnly
equivalent in difficulty to machine language programming for a conventional
computer, however, and the problem of designing a suitable higher level
language which can be translated into an efficient computation graph repre-
sentation is still open.

The simulations alsc show that the graph representation is able to
take advantag® of opportunities for parallelism at several levels without
conscious effort on the part of the programmer. The square root program
and the matrix multiply are instructive extremes in this regard. Newton's
method for finding the square root is inherently sequential, yet even for
this algorithm a small amount of overlapped execution is possible, and the
computation graph representation produces it. Matrix multiplication, on
the other hand, is capable of highly parallel execution, and straightforward
programming of this algorithm as a computation graph produces parallelism on
the order of n2, reducing computation time to the order of n. Besides the
three programs described here, a number of other programs were written for
the simulator including recursive and iterative factorial programs, SIN
and COS routines and a number of polynomial evagluations. All resulted in
some degree of parallel execution, although no special efforts were made
to produce parallel execution.

The actual speed which could be obtained on an implementation of

this model could depend very heavily on the amount of overhead or
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bookkeeping reguired for control of the system. Three sources of overhead
can be distinguished: 1) The computations required to keep track of the
status of nodes in the executing graph, to determine whether they are ready
to execute and to initiate and terminate their execution; 2) The overread
resulting from the organization of memory int
caused by the execution of algorithms to allocate shared resources such as
processors and memory. No attempt is made to refect these costs in the
output statistics of the simulator because they are very dependent on
specific hardware implementations. For example, the implementation of
queues used in the simulator requires two memory references to fetch a
data item, one to get the pointer to the head of the queue and one to get
the data itselft However, if the head and tail pointers were kept in
registers or in fast storage, the time could be reduced to one memor;
cycle.

The major portion of the execution time of the simulator itself is
spent checking each node to see whether it is ready to execute. If the
model were implemented with a single control processor, it would have to
be much faster than the primitive nocde processors to provide any degree
of parallelism. However, an implementation which used the procedure
processor to control execution of the nodes in the graph procedure wiich
it initiated could distribute the overhead considerably to allow a greater
;degree of parallelism. The overhead can also be reduced by an efficient
representation of the node edge connectivity of the graph. The connection
matrix representation used here is inefficient in this regard since it
requires the control logic to scan the matrix to find the edges directed

into a node before it can check whether those edges have data on them. An

edge list representation of the graph would be more efficient in this regard.
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Two main questions were studied in the three programs described in
this report: first the dependence on problem size of computation time and
amount of parallelism in execution, and second, the dependence of these
measures on relative processor speegs.

The Trapezoidal Quadrature program, the Sort program, and the Matrix
Multiplication program differ widely in the amount of parallelism which
they allow. The time required to execute the trapezoidal quadrature pro-
gram is proportional to the number of points used. However, the dependence
lies in the generation of the n points for which f(x) is calculated, not
in the calculation of f(x), so that increasing the complexity of the func-
tion being inEggrated does not increase the coefficient of n in the time
requirel for the quadrature. Rather, it increases the number of values
f(xi) which are being calculated concurrently. The square root procedure
used in the quadrature program is inherently sequential, and its computation
time depends on the value of x. The average number >f nodes in execution
during the square root calculation is 1.7. However, since the gquadrature
program calculated several values of the square root concurrently, it exe-
cuted from 8 to 1b nodes on the average.

The sort program executes in a time proportional to n, the number of
items in the file being sorted. Since the number of operations required is
proportional to n loggn, the average number of nodes in execution in this
program is on the order of log2n. The matrix multiplication program, on
the other hand, is highly parallel. Although n5 operations are required
to multiply two n by n matrices, the program executes in a time proportional
to n. Of course, the number of processors required to achieve this time is

on the order of n?, but the algorithm itself is inherently parallel, whereas
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ses sequentially faster than it increases its

the so ne
parallelism in the ratio n/loggn, and the trapezoldal quadrature is in-
herently sequential, though it allows overlap in the calculation of f(x).
One of the major questions which can be posed in an infinite resource
relative processor speeds
affect the computation. In a sequential computation, the time to execute
a pfogram.is just the sum of the times to perform each type of operation
weighted by the number of times that operation is executed by the program.
In a parallel program we might expect a secondary effect due to delays in
the initiation of a node which is waiting for output from one of its
predecessors. This effect did not show up in my simulations, however.
The effects of differént sets of varied processor speeds and of uniform
processor speeds equal to the mean of the varied speeds over the nodes in
the graph program are virtually identical. Moreover, tais held even though
the node execution times are not weighted by the number of times the node
is executed in calculating the mean.
This conclusion should be taken as very tentative, since the number
of programs investigated was small. In order to draw even the modest
conclusions that relative processof speeds are unimportant if the mean
execution time is constant for many (not most) programs, one should
investigate a large number of programs written by different programmers
under many different timings. Because of the strong dependence of
tprogram behavior on small variations of coding, even this investigation
would not be completely generalizable. Several people have exhibited
programs whose execution time is strongly dependent on small changes
in processor speed.(l)

If the results found here hold more generally, however, they suggest

a method for determining processor speeds in a hardware implementation.
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First, a large sample of actual programs should be collected and the
distribution of primitive node types in this sample should be determined.
Then, in balancing processor speed against the per unit cost of the logic
required, one should attempt to minimize the mean execution time over that

distribution.

(1) E.G. Paul Richards "Parallel Programming" Report No. TO-Bc0-27, Techni-
cal Operations Inc., Burlington, Mass. 1960
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