STAN-CS-70-173 SU-SEL-70-058

The Mutual Exclusion Problem

by
T. H. Bredt

August 1970

Technical Report No. 9

This work was supported in part by the Joint Services
Electronic Programs U.S. Army, U.S. Navy, and U.S.
Air Force under Contract N-00014-67-A-0112-0044
and by the National Aeronautics and Space-Adminis-
tration under Grant 05-020-377.,

DIGITAL SYSTEMS LABORATORY
STANFORD ELECTRONICS LABORATORIES

STRANFORD UNIVERSITY - STANFORD, CALIFORNIA

STAN- CS- 70- 173 SEL- 70- 058

THE MJUTUAL EXCLUSI ON PROBLEM

by

T. H Bredt

August 1970

Techni cal Report No. 9

DI G TAL SYSTEMS LABORATORY
Stanford Electronics Laboratories Conmput er Science Depart nent

Stanford University
Stanford, California

This work was supported in part by the Joint Services Electronic
Programs U S. Arny, US. Navy, and US. Ar Force under Contract
N-00014-67-A-0112-0044 and by the National Aeronautics and Space
Adnmi ni stration under G ant 05-020-337.

STANFORD UNI VERS| TY
Digital Systenms Laboratory
Stanford Electronics Laboratories Conput er Sci ence Depart ment

Techni cal Report Nunber 9
August, 1970

THE MJTUAL EXCLUSI ON PROBLEM

by

T. H Bredt

ABSTRACT

This paper discusses how n conponents, which may be prograns or
circuits, in a conputer system can be controlled so that (1) at nost
one conponent may performa designated “"critical" operation at any
instant and (2) if one conponent wants to performits critical opera-
tion, it is eventually allowed to do so. This control problemis
known as the nutual exclusion or interlock problem A summary of the
flow table nodel * for computer systems is given. In this nodel, a
control algorithmis represented by a flow table. The nunber of internal
states in the control flow table is used as a measure of the conplexity
of control algorithms. A [ower bound of n + 1 internal states is shown
to be necessary if the mutual exclusion problemis to be solved.

Procedures to generate control flow tables for the mutual exclusion

* Bredt, T.H and McOuskey, E.J. A nodel for parallel conputer
systens. Technical Report No. 5, SEL Digital Systems Laboratory,
Stanford University, Stanford, California (April 1970).

probl em which require the mnimum nunber of internal states are
described and it is proved that these procedures give correct contro
solutions. CQther so-called "unbiased" algorithns are described
which require 2.n! internal states but break ties in the case of
multiple requests in favor of the conponent that |east recently
executed its critical operation. The paper concludes with a discus-

sion of the tradeoffs between central and distributed control algorithns.

TABLECFCONTENTS

ABSTRACT . ¢ + o ¢ ¢ ¢ o ¢ o o o o o

TABLE OFCONTENTS
LIST OF TABLES
LI ST OFFI GURES

| NTRODUCTI ON.

THE FLOMABLEMODEL FOR PARALLEL SYSTEMS

A PARALLEL SYSTEM FOR THE MUTUAL EXCLUSI ON PROBLEM .

CONTROL FLOW TABLES.
Bi ased Control Flow Tables
Unbi ased Contr ol
CENTRAL VERSUS DI STRI BUTED CONTROL .
Li near Control
H erarchical Control
CONCLUSI ONS

REFERENCES

12

20

39

49

51

60

10.

11.

12.

LI ST OF TABLES

CGeneral Form of.a Flow Table .
Interpretation of Variable Values for Fig. 2.

Sequential Programs for Conponent ¢, and a
Two- Component Control Mechani sm .

A Possible Control Flow Table for n =2 .

Bi ased Control Flow Tables From Procedure B .

Possible Entries in Row O for n =3 ",

Nunmber of Distinguishable, Correct Flow Tables
Wth n + 1 Internal States . Coe e

Flow Table Set-up for n =3 .

Tag for Next Row Gven 2,1,3,4 as Present
Tag in a Row with all zZ, Equal to O .

Tags for Next Row Gven 2,1,3,4 as Present
Tag and Z, Equal to 1 for the Present Row.

Unbi ased Control Flow Table From Procedure U, n =

Unbi ased Control Flow Table From Procedure U, n

|
n>

1]
w

11

13

15

22

. 29

37

42

43

45

47

48

LI ST OF FIGURES

Parall el system for the two-conponent mutual
excl usi on problem.

Parall el system for the n-component mutual
excl usi on problem.

Chains which deternine which conponent
to enable for n = 3.

Rel ative chain positions of i, j, and k .

Incorrect flow table due to the violation
of the chain rule (n =3). . .

A linear distributed control for the nutual
excl usi on problem.

General form of a control conponent for Fig. 6 .
General organization for a linear distributed control

A binary tree hierarchical control structure .

10

31

34

35

52

53

57

| NTRODUCTI ON

In recent years, there has been a great deal of interest in the

mut ual exclusion or interlock problemin nultiprocessor and multi-

programed systens [&,5,6,7,8,9,10,15,16 |. This probl em occurs in
an environment where several system conponents (programs or circuits)
are operated concurrently. The conponents are assuned to contain
critical operations or instructions (critical sections), whose sinmul-
taneous execution nust be avoided. Typically, critical sections
represent references to a conmmon menory location or possibly the
modi fication of a commn system table. A nore detailed statement of

the mutual exclusion problem is given bel ow

The Mutual Exclusion Problem*

Gven two or nore conponents in a parallel computer system
which are operated concurrently and contain critical sections, control
these conponents so that the following two restrictions are always

satisfied.

Restriction 1:

A nost one conponent is in a critical section at any instant.

Restriction 2:
If a conponent desires to enter a critical section, it is

eventually allowed to do so.

* Dijkstra [8,9,10 has solved a slightly different version of this
problem He did not require that a given program nust enter its
critical section but rather that the decision as to which program enter
its critical section next not be postponed indefinitely.

For conponents which are prograns, this problemis often solved
by defining special hardware instructions and assumng the exclusive

execution of these instructions | 7,9,10,15,16 J.I1n [4] a nodel

for parallel conputer systens was proposed in which fundamental -node

flow tables are used to describe the operation of each conponent.
The purpose of this mdel is to study control problens such as the
nutual exclusion problem In | 5], we have shown how flow tables
can be used for the analysis and synthesis of sequential prograns.
The application of flow tables in the design of sequential circuits
is well known [24]. As a result, flow tables and the flow table
model provide a basis for the study of both hardware and software
solutions to the mutual exclusion problem A flow table solution
for the nutual exclusion problemin the case where two conponents
are controlled is given in [4 7. This solution was shown to be correct
in[6]using a general analysis nethod based on the construction
of a directed graph representing the state transitions undergone by
the entire system This type of analysis is not feasible as the
nunber of system conponents becones large. The notion of correct
operation we use is the following. Gven a problem such as the nutua
exclusion problem which is‘stated in terns of restrictions on system
operation, we say that a parallel systemis correct with respect to
the given problemif the problemrestrictions are always satisfied
during system operation.

In this paper, the solution of the nutual exclusion problem when
arbitrary numbers of processes must be controlled is considered

Several different types of control structures are discussed and

various solutions or control algorithnms given and proved to be correct.
These control algorithns are optimal in the sense that they require the
m ni mum nunber of internal states in a fundamental -node flow table.

In the next section, a short sumary of the flow table nodel is
given. This is followed by the specification of a parallel systemfor the
mut ual exclusion problem and the characterization of different contro

nmechani sns.
THE FLOW TABLE MODEL FOR PARALLEL SYSTEMS

A detailed description of this nodel is given el sewhere [4,67.
The essential features are described here. The definition of a parallel

systemin the flow table mdel is given bel ow.

Definition 1:

A parallel systemis a finite collection of conponents

e = {cl,cg,...,cn}

and a finite collection of |ines

e = {%1,&2,...,%}

Each conponent C, has a set of input variables called the

i nput set

and a set of output variables called the output set

0, = {x 3X. e X, }
1 1 o
1 2 *m

1<ijsMj=1...,m

Each line {3 = (xj,xj) connects a conponent output variable

Xj\M th a conponent input variable X]j The lines carry

| evel values and val ue changes propagate from conponent output
to conmponent input. Each output variable must be connected by
a line to exactly one input variable and each input variable
must be connected by a line to exactly one output variable.

The operation of each conponent is described by a conpletely
specified fundamental -node flow table with a designated initia
internal state. The initial value for each line is the value

specified for the output variable associated with the line

The general formof a fundamental -node flow table is shown in Table 1.

Each row in the flow table represents an internal state of the conpo-

nent whose operation the flow table describes. The present val ues of
the conponent input and output variables define the conponent input

state and output state, respectively. The total state of a conponent

is defined by its present internal state and input state. The tota

system state or systemstate is defined by the N-tuple consisting of

the present total state of each of the conponents. The parallel system
designed in [4] to solve the nutual exclusion problemfor two prograns
is shown in Fig. 1. The initial system state for this parallel system
is witten (1-0,1-0,1-00). The interpretation of the line values is

given in the next section. The initial total state of conponent C3

Table 1. General Form of a Flow Tabl e

[nput State

X, X, . . X

2. n Qutput State
00...1 11...1 7.7 L

| nt er nal
State

S (next state)

1
e ={c), ¢y C5f c
L—- . —/53——1 1l
€= {{1, {2, L., {u} 3 {h
/&1 = (Xl,x’l)’ '{)/2 = (X2JX2) r C2
4
‘&3 = (Zl’zl)’ {u =(22)Z2) 2
°, ={X1}’ I = {7}
O = ot Ip =lza
0, = {zl, ZE},I3 = {x;, X}
% %o
0 1 X, 0 1 Xy
1 2

¢ o
*1%2
00 ; 01 |, 11 , 10 Z,2,
(c2 last) 1 @ 2 |3 3 00
(02 gets) 2 1 C::) (::) 3 01
(€, gets) 3 | &4 2 (::) <::> 10
(A last) &4 2 3 00

C3 (control)

Figure 1. Parallel systemfor the two-conponent mnutual

excl usion problem

in Fig. 1is witten |-00. |If the present internal state is the same
as the next-state entry deternmined by the conponent total state, the
conmponent is said to be stable; otherwise, it is unstable. For a flow
table, we require that each unstable entry specifies a stable entry,

a table which does not satisfy this condition is called a state table.

The assunptions about delays in a parallel system are as follows

Assunption 1:
The tine for a value change to propagate from a conponent

output to a conponent input-(line delay) is finite and unbounded.

Assunption 2:

Wthin a conponent, delays are finite and bounded.

Li ne del ays need not represent "pure" delays and each conponent is
assuned to have no know edge of the duration of delays in any other
conponent .

The use of flow tables rather than functions to describe conponent
operation distinguishes this nodel from others [1,2,3,12,13,14,17,18,
19,20,21,22,23,25,26,27 J. Flow tables provide a direct, fornal
correspondence between the model and the inplenentation of the nodel
whet her the inplenentation is a programor a circuit. CQur nodel
resenbl es the nodel of Miuller [257 for speed independent circuits.

He restricts conponents to have single outputs and assunes |ine delays
are zero and conmponent delays are unbounded. In other nodels conponents

conmmuni cate by sharing nenory cells rather than by wred connections.

These nodel s also assune that |ine delays are zero. The consideration

of line delays is particularly inportant in the mutual exclusion
problem as is the possibility that two or nore conponents may neke

simul taneous requests. That is, nmultiple-input changes may occur at

a component. In [4 7, a node of operation is defined such that each
conmponent input change results in a unique internal-state transition.
This nmode of operation proceeds in tw phases which can be described
as follows. Wien a conponent enters a stable total state, it deter-
mnes the present input state by recording in a rank of flip-flops the
current input state. This is done using an internal clock signal

The present input state determ nes whether the conponent remnains
stable or undergoes an unstable transition to a new stable interna
state. During unstable transitions, conputations such as the execution
of a critical section may be carried out. This response to the present
input state is the second phase of conponent operation. During this
second phase, all input transitions are isolated from the conponent

by the input rank of flip-flops. This two-phase operation defines

the basic cycle of operation for a conponent. W say that a conponent
has recogni zed an input-variable transition, if the new input value is
recorded in an input flip-flop. Because of our line delay assunption
it can be guaranteed that when a component produces an output variable
transition, the new value propagates to the input at the other end

of the line and is recognized if and only if either the conponent

never changes the output value again or before the output value is
changed, the component nust recognize an input change produced in
recognition of the propagation of its output value to a conponent

input. A further discussion of these considerations is givenin [67.

A PARALLEL SYSTEM FOR THE MJUTUAL EXCLUSI ON PROBLEM

In the n-process or n-conponent mutual exclusion problem there
are n conponents which contain critical sections. Each conponent is
assumed to enter, |leave and then re-enter its critical section in an
infinite loop. We first consider solutions to the mutual exclusion
problem with a single control conmponent or control mechanism The
compl ete specification of a parallel system wth the exception of
the control flow table, for the n-process mutual exclusion problemis
shown in Fig. 2. To clarify the description of the operation of the
system we have deviated slightly fromthe form specified for a parallel
systemin Definition 1 in labelling the lines. The interpretation of
the variable values for this parallel systemis given in Table 2. The
operation of each conponent C;» 1<i <«n,is as follows. Unless
specifically stated otherwi se, the conponent is initially in total state
1-O0 and i s unstable. In this state, the conponent does not want to
enter its critical section and is not in its critical section. Eventu-
ally, the component enters total state 2-O where X is set to 1. The
conmponent now wants to enter its critical section and will remain in
this total state until it recognizes the enabling val ue z, = 1. In
total state 2-1 the conponent enters and |leaves its critical section
(exactly once). After it has left, the conponent enters total state
-1 where X is set to 0. This value propagates to the control
component which presunably acknow edges the arrival of the 0 value for

Xy by setting z; to o When z; becomes 0, the cycle begins again.

oo oo
1t |

=]
1l

Figure 2.

oo
« | (control)
x
n
(Xi’xi)’ 1= 1) PRY
(Zi’zi)’ i =mn+l,...,2n
{Xi}, i=1,...,n
{zi}, i=1, ,n
= :{:1,z2,. .
= {xl,xa,. ,Xn[
- Z
|
0 1 X

Fl ow Table for Cy» 1<i <n

Paral l el system for the n-conponent nutua

probl em wi t hout the contro

flow table.

10

excl usi on

Tabl e 2.

Interpretation of Variable Values for Fig. 2

(1<i<n)

0 Ci is not inits critical section and does not

want to enter its critical section

1 c isinits critical section or C, wants to

enter its critical section

0 Ci may not enter its critical section

1 c;, may enter its critical section

11

12

For two conponents with critical sections, a control flow table is
given in Fig. 1.

In [57, it is shown how to obtain a sequential program from
a flow table and how for a certain class of prograns, it is always
possible to construct a flow table. Program inplenentations of the
flow tables for C and a two-process control program are given in
Table 3. The assignnent statements change val ues on interconnecting
lines. The wait statements are used to test the conponent input state
and to transfer to the appropriate next statenent when an input
transition occurs. Each pair, e.g. (0,3), specifies an input state
and the nunmber of the next statenment to be executed if the input state
is recognized. There are no restrictions on the exclusiveexecution

of any statenments in these prograns.

CONTROL FLOW TABLES

In this section, the phrase control flow table refers to a flow

table for the control conponent (cn+1) in Fig. 2. A control flow table
is said to be correct if the parallel systemof Fig. 2, with that flow
table for the control conponent, is correct with respect to the nutual
exclusion problem W say that a conponent Ci (1 <i <n) is enabled
to enter its critical section when z; has the value 1.

The foll owing definitions serve to partition the class of correct

control flow tables.

Tabl e 3.

10:

(b)

Sequential Programs for Conponent C and a Two- Conponent

Control Mechani sm

| NPUT ZI ;

QUTPUT XI; (initially X = 0)

DUMWY; (conputation outside critical section)
VWAI T (0,3);

X.: = 1

WAIT (1,5);

DUMWY; (critical section)

X.: = 0;

GO TO 1.

Program for Conponent ¢,

INUT Xl,Xz;

QUTPUT. Zy12; (initially Z1 =2, = 0)

Z2:=O;

WAIT (01,4), (11,7), (10,7);

Zl:=0;

ZZ:=1;
WAI T (00,1), (10,6);

Z,: =0;

VWAIT (00,9), (01,3);
Z1:=O;
WAl T (01,4), (11,4), (10,7).

Control Program for Two Conponents

13

14

Definition 2:

A correct control flowtable is said to be unbiased it
conponents are enabled in the order in which their requests
are first recognized and if, when multiple requests are recog-
nized sinultaneously for the first time, conponents are enabled
in the reverse of the order determned by their nost recent access

to their critical sections.

The control flow table in Fig. 1 is unbiased. |f a correct control

flow table is not unbiased, it is said to be biased.

Restriction 2 of the nutual exclusion problem states that if a
conponent C, (1 ~i <n) wants to enter its critical section, it is
eventual ly allowed to do so. W will consider this restriction to
be violated if it is possible for one or nore components to halt
outside their critical sections (with Xi equal to 0) such that some
other conponent , say C.J, is prevented from entering its critical
section when presumably it wants to do so. For exanple, the control
flow table shown in Table 4 will correctly control two conponents
o and C, in the parallel systemof Fig. 2 as long as both C; and c,
run forever. The initial system state with this control flow table
is (I-1, 1-0, 1-00). Conponent o is assunmed to have just left its
critical section and will not be permitted to enter again until after
C, is enabled. If C, shoul d halt, o wi |l never be enabled again.

Dijkstra [8,9,10} al so does not allow control solutions which fail

if one or nore prograns halt.

Tabl e 4. A Possible Control Flow Table for n =2

16

The following theorens establish necessary conditions for correct

control flow tables.

Theorem 1.
If a control flow table is correct, there nust be at |east
one internal state with an output state for which z has the
1

value 1, i =1,...,n,

Pr oof :

If there is no output state for which z, has the value 1,
t hen Zy, the input to conponent C'1’ will never equal 1. fThere-
fore conponent C. will never enter its critical section violating

Restriction 2 of the rmutual exclusion problem

Theorem 2:

The output state for the initial total state of a correct

control flow table nust have zi equal to O for all i, i =1,...,n.

Proof :

Suppose there exists a correct control flow table with Z
equal to 1 for sone i in the initial total state. [|nitially,
lines are assumed to be stable and conponents c, are assuned to
be in internal state 1. Thus conponent C, is in the stable
total state I-1. Conponent c, may not request to enter its
critical section until z. beconmes 0. The control should be

|
stable initially since all X; are 0. The control will not

17

leave its stable initial state until a different input state
is recognized. Since Xy cannot become 1, sone other conponent
must request access to a critical section before Zi can be

changed to 0. This is not allowed in a correct control flow table.

Theorem 3:
If a control flowtable is correct, Z, is changed from

Otolonlyif xiis 1.

Pr oof : (By contradiction)

Suppose z; is changed fromO0 to 1 when X, is 0. The output
variabl e Xi of conponent Ci may be 0 or 1. If X, is 0, conponent
C could be trapped in total state |-1 and either never rel eased
or released only after a transition for another control input.
Nei ther case is allowed for a correct control flow table. If
X, is 1, c, isininternal state 2. As soon as z, becones 1,

c, may enter its critical section. It is possible that before
the input variable X, becones 1, a different input, say X.y
becomes 1. If the control does not set ZJ. to 1 until after X,
becomes 1 then the enabling of C.J depends on the operation of c,
which is not allowed. If~zJ. is set to 1 before Xy becones 1,
bot h ci and cj may enter their critical sections simultaneously

which violates Restriction 1 and the control flow table is not

correct.

18

Theorem 4
If a control flow table is correct, it nust never enter a
total state for which the output state has nmore than one output

variable with the value 1.

Proof :

Suppose such a total state is entered and z, and Z.J have
the value 1. By Theorem 3, X, and xj must be equal to 1. It is
possi bl e that X, and X.J are also 1 since X, and xj are not set to
0 until the inputs z, and z.J have the value 1 and |ine delays
cannot be controlled. Therefore c; and CS may both be in interna
state 2 and may sinultaneously enter their critical sections. This
violates Restriction 1 and the control flow table cannot be

correct.

Theorens | -4 enable us to prove the followi ng theorem which establish-
es a lower bound on the nunber of internal states required for a correct

control flow table.

Theorem 5:

For a given n, every correct control flow table nust have

at least n + 1 internal states.

Proof :

By Theorem 2, the output state for the initial internal state
must have Zi equal to O for all i, i =1,...,n. By Theorens 1
and 4, there nmust be at |east one internal state for which Z; has

the value 1 and zj has the value 0, j #i for each i, i =1,...n.

19

The nunber of internal states required by a correct contro
flow table provides a neasure of the conplexity or cost of the contro
function or algorithm for the nutual exclusion problem which is in-
dependent of whether the algorithmis inplemented as a program or as
acircuit.

The follow ng theorem establishes another necessary condition for
a correct control flow table. This condition is not required to
deternmine the |ower bound on the nunber of internal states but will be

used later.

Theorem 6:
If a control flowtable is correct, output variable z,

is changed from1 to O only if X, is 0.

Proof :

Suppose zZ, is changed from1 to O when X, is 1. By Theorens
2 and 4 either the output state for the next internal state has
no Zj equal to 1 or exactly one Zj equal to 1. Suppose no Zj is
equal to 1. Now if sone X, beconmes 1, it nust be recognized
ina finite tine (Assunption 2) and the control flow table must
enter a stable state for which Zk is 1l If it does not, the
enabl i ng of Ck depends on the activity of some other conponent,
which is forbidden. The enabling of Cr al | ows ck to enter its
critical section. During this interval, fromthe noment the state

for which zi is 1is left until ck enters its critical section,

the 1 val ue produced on z, may be propagating to the input of

20

conponent C'l' It is possible that C, will recognize this 1

value and enter its critical section. PBoth C|and Ck woul d be
in critical sections simultaneously violating Restriction 1 and the
control flow table is incorrect.

Suppose that when the control flow table left the state
for which z, was 1, it went directly to a state for which ZJ is 1.
If X, is 0, the flow table is incorrect by Theorem 3, 1f X, is 1,
then an argunent similar to one given for conponent C above
shows t hat C and CJ, can be in critical sections sinultaneously
and the solution is again incorrect.

Thus in both cases, when we |eave an internal state for which

Zi is 1 when X, is 0, the control flow table is incorrect.

Bi ased Control Flow Tabl es

For a given value of n, the follow ng procedure constructs a
bi ased control flow table with the nininmm nunber of internal states.
Procedure B
(Biased Control Flow Table Wth n + 1 Internal States)

1. Define a flowtable with 2" colums, one colum for each
possible input state, and n + 1 internal states (rows),
which are nunbered 0, 1, 2,n.

2. Let the initial internal state be state 0 with output state
such that Z; has the value 0 for all i.

3. Let z, have the value 1 and Z.Jthe value 0 (j #1i) in the

output state for rowi.

21

4. Define the table entries as follows.

a InrowoO
In each colum, the entry is the same as the |east
subscript of an input variable with the value 1. The
entry is 0 if all X, are 0.

bh. Inrowi (1 <i<n)
In each colum, if X, has the value 1, the entry is@,
JIE x, has the value 0, the entry is the least j such that
j > i and X, has the value 1 or, if no such j exists,
the least j such that XJ_ has the value 1. If all input

variables are 0, the entry is 0.

The flow tabl es generated by Procedure B for n =2 and n = 3 are
shown in Table 5. These flow tables are biased because, in the case
of a particular multiple request, in each row the same conponent is

enabl ed regardl ess of which conmponent |ast executed a critical section.
Theorem 7:
For each n, the flow table obtained from Procedure B

is correct.

The proof of Theorem 7 will be a direct consequence of a later theorem

Table 5

Bi ased Contr ol

Fl ow Tabl es From Procedure B

X X

2
00 01 11 10 7Z.7
0 (3{) 2 | 1] 1 302
1 o | 2 (:) <E> 10
2 | o C%) (E) 1 01
(a) n=2
*1¥9%3
000 001 011 010 110 111 101 100
0@3221111
1 322@.56)\1,
A RCICICIOIEAE
3,0 <:> (:) 2 (:) (:) 1

22

Z129%3

000

100

010

001

e3

Wth the control algorithm defined by the control flow table, a com
ponent must wait for at nost n-I other conponents to execute critical
sections before it executes its own critical section.

We will now consider the general class of biased control flow

tables which are correct and use the mninmum nunber of internal states.

Definition 3:

Two flow tables are said to be distinguishable if when the

same input sequence is recognized by each flow table, different

out put sequences are produced.

If two flow tables are not distinguishable, they are indistinguishable.

We will determne the number of distinguishable control flow tables
that are correct and have n + 1 internal states. Next we give
conditions sufficient to guarantee that Restriction 1 of the mutual

exclusion problem is satisfied.

Theorem 8:

If a control flow table is such that the followi ng conditions

hol d:
1. The flow table is initially stable with initial output
state in which Ziis equal to O for all i, i =1, ...,n

2. Each output state has at nost one Z, with the value 1.

2L

3. The value of output variable z, is changed fromO to 1
only if X, is 1.
4. The value of output variable Z, is changed from1 to 0
only if x, is 0
Then, at nost one comnponent C; (1 <i <n) my beinacritica

section at any instant (Restriction 1 is satisfied).

.Proof:

By condition 1 and the definition of the parallel systemin
Fig. 2, no conponent is initially in its critical section. By
condition 3 and the flow table specification of operation for
conmponent Cﬁ (1 <i_<n)inFig 2, a conponent is enabled to
enter its critical section (Zi is set to 1) only if that conponent
isin the stable total state 2-1. | f zZ, is set to 1, condition 4
ensures that it is not set to O until X4 becomes 0. But the flow
tabl e for conponent c, shows t hat X, cannot becone 0 until after
c; has left its critical section and entered the stable tota
state [-1. Conponent C, cannot re-enter its critical section unti
z, becones 0, which only happens after Xy becones 0 at the contro
input. It follows that if conponent c, is inits critical section,
t hen zZy nmust have the value 1 or, equivalently, if Z, has the val ue
0, conponent C.1 is not inits critical section. The fact that at
most one conponent may be in a critical section at any instant

follows from condition 2

25

The following theorem establishes the output state requirenents

for a correct control flow table with n + 1 internal states.

Theorem 9:
If a control flow table is correct and has n + 1 internal
states, then
1. The output state for the initial internal state must
have Zi equal to O for all i, 1=1,...,n.
2. For eachi, i =1,...,n, there nmust be exactly one
output state with Z, equal to 1 and Z.J equal to O

for all j, j #i.

Proof :

If condition 1 does not hold, the flow table is incorrect by
Theorem 2. If condition 2 does not hold, then either sone Zi is
never equal to 1 in any output state, which is not allowed by

Theorem 1, or nore than one zi is 1 in some output state, which

is not allowed by Theorem 4.

In the remainder of this section the phrase "control flow table"
refers to a control flow table with n + 1 internal states, nunbered
0,1,..., n, and 2" colums. The initial internal state is state 0 with
out put state in which z, is 0 for all i. The output state for row i,

i =1,...,n, is ziequal to 1 and Z3 equal to 0,j #i.

26

The selection of table entries in row O is covered by the foll owi ng

two theorens.

Theorem 10:

Consider a control flow table with n + 1 internal states as
just defined. If this flow table is correct, the entries in
row 0 nust satisfy the follow ng conditions.

1. In the colum in which all input variables have the

value 0, the entry is O.
2. In the other colums, the entry is j where j is the
subscript of an input variable xj that has the value 1

in that colum.

Proof :

If condition 1 does not hold, somne z; is set to 1 when X,
is 0. By Theorem3, the flow table is incorrect. If condition 2
does not hold, either the entry is 0, a stable entry, or the
entry specifies a row with Zi equal to 1 in a colum wth X,
equal to 0. The latter case is ruled out by Theorem 3. If
the entry is 0, the enabling of-a conponent depends on an input

change produced by another conponent, which is not allowed.

27

Theorem 11:

Consider a control flow table with n + 1 internal states as
defined earlier. If the entries in rows 1 through n are specified
correctly and

1. In the colum wth all Xy equal to 0, the entry is O.

2. In the other colums, the entry is j where j is the
subscript of an input variable xj that has the value 1
in that col um.

then the flow table is correct and each choice of the entries in

row 0 results in a distinguishable control flow table.

Proof :

Each choice of an entry in a colum with sone X, equal to 1
specifies an internal state with a different output state; therefore,
each choice of the row O entries results in a distinguishable flow
table. The correctness of the flow table follows from the fact
that when a 1 input value is recognized, exactly one of the
conmponents which produced a 1 input value is enabled and al so

from the assunption that rows 1 through n are correctly specified.

There are 2" - (n + 1) entries in row 0 in colums where nore than
one input variable has the value 1 (n entries have exactly one input

variable equal to 1 and one has no input variables equal to 1).

28

There are (; entries with exactly p input variables equal to . By
Theorem 9, for each of these entries there are p ways to select

that entry and each selection gives a distinguishable flow table,
assuming rows 1 through n are correct. Therefore, the total nunmber

of distinguishable flow tables which can be produced on the basis of

row 0 alone is

For n = 3, Table 6 shows the possible entries in row 0.

= n n!
w p! (n-p)!

Tabl e 6. Possible Entries in Row O for n = 3

000 001 011 010 110 111 101 100

0 @ 3 |2,3| 2 |1,2]1,2,3/1,3 1

30

It remains to consider how the entries in rows 1 through
n may be chosen to give correct, distinguishable flow tables. The
flow tables produced by Procedure B use a fixed "rule" to deternine,
in the case of nultiple requests, which component is to be enabled
next. This rule is stated in step 4b of the procedure. This rule
can be restated in nore general terns. For each n, there is a "chain"
consisting of a circular ordering of the n integers 1,2,...,n. In
the case of Procedure B, the next integer after integer i in the chain
is given by the sumi (nod n) + 1, The chain for n = 3 is shown
in Fig. 3a. The rule to determine the entries in row i

can be restated in terns of the "chain rule" below

Chain Rule

Consider rowi (1 <i <n). The next-state entry in each

colum is speoified by the next integer j in the chain after

or including the integer i such that x_ has the value 1 in that
J

colum. If all input variables have the value 0, the entry is O.

The chain of Fig. 3a and the chain rule produce the same next-state
entries for n =3 as the Procedure B. For n =3, there is one other
chain that is different fromthe chain in Fig. 3a. This chain is
shown in Fig, 3b. |In general, for each n, there are (n - 1)! distinct
chains since the present position is always fixed by the row number and

there are (n - 1)! possible arrangenents of the other n - 1 integers.

31

(a) Chain used in Procedure B

(b) Another chain

Figure 3. Chains which determine which conponent to enable for n = 3.

32

The importance of chains and the chain rule in the determnation of the

entries in rows 1 through n is denonstrated by the followi ng two theorens.

Theorem 12:

Assume the entries in row 0 are chosen correctly. If the
selection of entries in rows 1 through n of a control flow table
with n + 1 internal states as defined earlier does not follow the

chain rule for any chain, the flow table is incorrect.

Proof :

There are two ways to violate the chain rule. One way is
to have a non-zero entry in the colum with all input variables
equal to 0. As a result, some output variable Zi is set to 1
when X4 is 0 and the flow table is incorrect by Theorem 3. The
other way involves the selection of next-state entries in colums
with at |east one input variable equal to 1. Suppose the rule is
violated in the case exactly one input variable is equal to 1.
Then the flow table is incorrect by Theorem 3. Next, consider the
violation of the chain rule when nore than one input variable has
the val ue 1. [f, inrowi, the-violation occurs such that row i
is left when X, has the value 1, the flow table is incorrect by
Theorem 6. Suppose this is not the case. There nust be an entry
in some row, say row i, such that for sonme input state with at

[east two input variables, xj and X (j,k #1i) equal to 1, the

33

rule specifies that the entry should be j and the entry is k
instead. Thus, conponent Ck enters its critical section next

i nstead of Cy Suppose that, while in row k, input variable xi
becones equal to 1 again (conponent c, wants to re-enter its
critical section). \en X, becomes 0, both X; and x.J are equa

to 1 along with all other input variables that were equal to 1

in rowi or becane equal to 1 while the control conponent was
ininternal state k. The relative positions of i, j, and k in
the chain are shown in Fig. 4. Fromrow k, component Ci must be
enabled (row i must be entered) before conponent CS is enabl ed.
Qtherwise, the chain rule is not violated. Suppose that while in
row i and when X, beconmes 0, the input state recognized is exactly
the same as the previous tine the flowtable was in rowi. As
before, row k is entered next. For this pattern of requests,

row j is never entered and conponent Cj never enters its critica

section. Restriction 2 is violated and the flow table is incorrect.

Theorem 12 is equivalent to saying that if the entries inrow 0 are
specified correctly and. the flow table is correct, then the entries

in rows 1 through n nust satisfy the chain rule for some chain. This
establishes the necessity for using the chain rule. An exanple of the
violation of the chain rule for all chains is shown in Fig. 5. The
2-101 entry is incorrect for the chain of Fig. 3a (it should be 3).
For the chain of Fig. 3b, the |-011 entry should be 3 and the 3-110

entry should be 2. The undesired transitions are also shown in Fig. 5.

Figure 4.

Rel ative chain positions of i,

j

and K.

3h

35

X1%2%3

000 001 011 010 110 111 101 100 2.2,2

0 (:) 3l 2121 1|1 0302 ’
1 o3| 2]z @ ‘@\ @ 100
2 | o | 3 {<§:L‘<::) (::) _4}// 1 010
3| o (:) (:) 2 | 1 (:)

1 001

ek

Figure 5. Incorrect flow table due to the vielation of the chain rule

36

Either i =2 =3, and k =1 with initial input state 111 or i = 1,

j =3,and k = 2with initial input state 111.

No two chains result in exactly the same specification of next-
state entries and each assignment gives a distinguishable flow table

for some input sequence. Therefore the total nunmber of distinguishable,

correct flow tables which have n + 1 internal states is

(n - 1)!, p=2

The val ues of this expression for n = 2,3, and 4 are given in Table 8.
The following theorem establishes that following the chain rule
with sone chain to fill in the entries in rows 1 through n is sufficient

to solve the mutual exclusion problemif the entries in row 0 are

specified correctly.

Theorem 13:

Gven a control flow table with n + 1 internal states as
described earlier. If the entries in row 0 are chosen correctly
and the entries in rows 1 through n are chosen using the chain

rule with a fixed chain, the flow table is correct.

Table 7.

Number of Distinguishable,

Internal States

Correct Flow Tables Wth n + 1

48

124, 416

37

38

Proof :

The flow table definition and the entries determned by the
chain rule satisfy conditions 1 - L of Theorem 8; therefore,
Restriction 1 of the mutual exclusion problemis satisfied.
Suppose Restriction 2 can be violated. That is, some conponent
C, is such that X; is 1 but Z, is never set to 1. |f there are
not multiple requests (nore than one input variable is 1), C;
will be enabled. Therefore nore than one input variable nust
be 1. Rut, the definition of the chain rule and the structure
of a chain guarantee that after at nbst n - 1 conponents enter

their critical sections, component Ci must be enabl ed.

Combi ning the results of Theorenms 10 - 13, we have the foll ow ng
t heorem whi ch establishes necessary and sufficient conditions for a

correct control flow table with n + 1 internal states.

Theorem 14:
Consider a control flow table with n + 1 internal states

as defined earlier. This flow table is correct if and only if

1. Inrow0
a. In the colum with all X equal to 0, the entry is O.
bh. In the other colums, the entry is j where j is the

subscript of an input variable x.J that has the val ue

1 in that colum.

39

2. Inrows 1 through n, the entries are chosen by using

the chain rule with a fixed chain.

The proof of Theorem T follows as a corollary of Theorem1i. Notice
that Theorem 14 defines a general procedure which can be used to construct

a correct flow table with n + 1 internal states. This procedure can be

used instead of the Procedure B defined earlier.

This conpl etes our discussion of control flow tables that have

the m ni num nunber of internal stat-es.

Unbi ased Control Flow Tabl es

Let us consider unbiased control flow tables (Definition 2).
By Theorem 2, there nust be at |east one row with output state for
whi ch Zi is 0 for all i, i =1,...,n, By Theorem1, there nust be at
| east one row for which zZ, is 1 and Zjis 0 for all j, j #i,
1 <i,j<n. There nust be n! rows with all output variables equal
to 0. Each row nust correspond to a unique past history' of critical

section executions. This nmust be done in order to

40

ensure that when nmultiple sinultaneous requests are recognized, the
conmponent enabled is the conponent which has been out of its critical
section the longest. There nust be (n-1)! rows with exactly one

Z; equal to 1 for each i, i =1,...,n. This is also required to

deci de whi ch conmponent to enabl e when conponent c | eaves its critical
section. Thus in order to be unbiased, the control flow table nust
have "perfect nmenory". The total nunber of internal states is

nl +n (n-1)!' =2n!, The follow ng theorem has been established.

Theorem 15:

For a given n, an unbiased control flow table nust have at

| east 2n! internal states.

Theorem 5 and Theorem 15 show that the cost, in terns of the nunber
of internal states, of providing unbiased service is rather high.
The followi ng procedure can be used to construct an unbiased

control flow table for any specified value of n.

Procedure U
(Unbi ased Control Flow Table Wth 2n! Internal States)
1. Define a flow table-with 2™ colums and 2n! internal states.
2. Let the first n! internal states (rows) have the output state
with all Z; equal to 0. Gve each of these rows a unique tag
which is one possible order of the subscripts of the n

conponent s C1 so e ,cn*.

* \\ adopt the convention that the leftnost elenent of the tag is the
subscript of the conponent which was nmpbst recently (or currently) in
its critical section. The rightnost tag elenent refers to the com
ponent |east recently in its critical section.

41

Divide the remaining n! rows into n groups of (n-1)! rows. In

group i, i =1,...,n, let the output state be Z, equal to
1 and zj equal to 0, j #i. Gve each rowin group i a
unique tag which has i in the first position and the sub-

scripts of the other conponents in the other positions.

(A control flow table as specified thus far is given in Table
8 for n = 3)

The table entries are determined as follows:

a. Inrows with all Z, equal to O,

(1) theré is a stable entry in the colum with al
input variables equal to 0. Oher colums have
unstable entries.

(2) For entries which are unstable, conpute a sub-order
fromthe present tag which is the tag positions which
are the subscripts on an input variable which is
equal to 1. Forma new tag using the last elenment of
the sub-order as the first elenent of the new tag, the
remai ning elenents of the sub-order as the fina
el enents, and the remaining elements of the origina
tag as the mddle elenents (For tag 2, 1, 3, 4, the
input states and new tags are shown in Table 9).

The unstable entry is the nunber of the row with the

new tag which has an output variable equal to 1.

Table 8. Flow Table Set-Up for n = 3

X1X2X3
tag s 000 001 011 010 110 111 101 100 z,7.Z,
1,2,3 1 000
1,3,2 2 000
2,1,3 3 000
2,3,1 4 000
3,1,2 5 000
3,2,1 6 000
1,2,3 7 100
1,3,2 8 100
2,1,3 9 010
2,3,1 10 010
3,1,2 11 001
3,2,1 12 001
|

t
S

| east recent

most recent

Tabl e 9.

Tag for Next RowG ven 2,1,3,4 as Present Tag in a Row

Wth all zZ, Equal to O

[nput State

(x1x2x3x4)

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

1111

Sub- Or der

New Tag

4,2,1,3
3,2,1,4
4,2,1,3
2,1,3,4
4,1,3,2
3,1,4,2
4,1,2,3
1,2,3,4
4,2,3,1
3,2,4,1
4,2,1,3
1,3,4,2
4,3,2,1
3,4,2,1

4,2,1,3

43

In rows with exactly one output variable, say Zi’ equa

1, the first elenent of the tag nust be i.

(1) If all input variables are 0, the newrowis the
row with the same tag and all output variables
equal to O.

(2) If input variable X; is equal to O, conpute a new
tag as in Step 4a(2). The unstable entry is the
nunber of the row with the new tag.

(3) If pinput variables are equal to 1, 1 <p < n and
Xi is equal to 1, find the sub-order of elenments i

the present tag for which the correspondi ng input

44

to

n

vari abl es have the value 1. If the sub-order consist-

ing of the p - 1 elements which are not equal to
is exactly the same as the sub-order consisting of
the final p - 1 elements in the present tag, the

entry is a stable entry. If not, forma new tag

using the sub-order corresponding to the p-1 input
variables which are 1 as the suffix of the new tag
and the remaining elements of the present tag as t
prefix. The unstable entry is the nunber of the
row with the new tag which has an output variable
equal to 1 (For n = 4 and present tag 1,4,2,3 ther
are stable entries in colums X [X,X3X4 = 1000,
1010, 1110, 1111. Each row has n stable entries.
complete list of the new tags for the row with tag

2,1,3,4 and z, equal to 1 is shown in Table 10,

he

e

A

Tabl e 10.

Tags for Next Row Gven 2,1,3,4 as the Present Tag and

z, Equal to 1 for the Present Row

[nput State

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

1111

Sub- Or der

New Tag

2,1,3,4
4,2,1,3
3,2,1,4
4,2,1,3
2,1,3,4
2,1,3,4
2,1,4,3
2,1,3,4
1,2,3,4
4,2,3,1
3,2,4,1
4,2,1,3
2,3,4,1
2,3,1,4
2,4,1,3

2,1,3,4

45

(stable)

(stable)

(stable)

(stable)

46

The control flow tables generated by this procedure for n =2 and n = 3
are shown in Tables 11 and 12, respectively.

The key steps in Procedure U are those which determne the next
row to be entered. This is always done in such a manner that the
component which has been out of its critical section the longest will
be enabled next, the nodification of the tags in Step 4a(2) and 4b(3)
ensures that in the preseance of nmultiple requests, the control will
first enable the conponent which has been out of its critical section
the longest and nmake the other conponents with pending requests next
in line after the first conponent enabled executes its critical
section. Procedure U satisfies conditions 1-4 of Theorem 8, so
Restriction 1 of the mutual exclusion problem nust be satisfied. The
fact that Restriction 2 is also satisfied follows directly from the
way the procedure determines the next conponent to be enabled. It

follows that:

Theorem 16:
For any given n, Procedure U gives a correct control flow

table which is unbiased.

A direct consequence of the definition of an unbiased control flow
table is the fact that for a given row with its past history of critical
section executions (tag) and for a given input state,the flow table entry

is always uniquely specified.

Table 11. Unbiased Control Flow Table From Procedure U n = 2

12
tag s 00 01 11 10 Z,%,
1,2 1 @ 4 | 4| 3 00
2,1 2 @ s | 3| 3 00
1,2 3| 1] 4 @ @ 10
2,1 4 | 2 @ @ 3 01

Table 12. Unbiased Control Flow Table From Procedu re U, N = 3

X1Xo%3

t S 001 011 010 110 111 1

g (DL 11 00 no y ot 100 72,7,
1,2,3 1 | 000

|

1,3,2 2 1@y | g g |0 4 112 | 8 000
2,1,3 3 @ 12 |11 | 9 |8 |12 !12 7 000
2,3,1 4 _@_M 12 |11 110 |8 77 I 000
3,1,2 5 sl [o |10 |10 100] 7]s 000
3,2,1 6 @ 12 o 10 | 8 '8 | 7|8 000
1,2,3 701 |11 11| o 8~ @ @ @ 100
1,3,2 8 | 2 {12 | 9 | 9 @ @‘ 7 <§“I) 100
2,1,3 9 3 |12 @f\/g\ 10 @ 12 7 010
2,3,1 10] 4 |12 | 9 @ (10) i@_9 7 | 7 010
3,1,2 11| s @ @ 10 |10 i(@ 7 | 8 001
3,2,1 12 | 6 3@ 11 |10 | 8 @ '@ 8 001

49

Theorem 17:
For each n, the correct control flow table that is unbiased

and has 2n! internal states is unique .

CENTRAL VERSUS DI STRI BUTED CONTROL

To this point, all control and decision-nmaking has been perforned
in a single conponent. As the nunber of conponents controlled (n),
beconmes |arge so does the nunber of inputs and outputs for this com
ponent. Fortunately, however, we have shown that the nunber of in-
ternal states which are necessary to obtain a correct solution for
each nis just n + 1. In this section, we will briefly discuss some
alternate control organizations. Rather than concentrating all
decision-making in a single control conmponent we will consider the
consequences of using nmore than one. Before proceeding, we must
introduce some termnology which will be useful in the follow ng
di scussion. The question of exactly where the "control" lies in a
given systemis rather difficult to specify. Thus far, for the nutual
excl usion problem we have considered the control function to reside
in conmponent Cn b of Fig. 2. This is natural because of the interpre-
tation we attach to this system however it is also conceivable that
_in some situation the control function might be thought to reside the

conponent s Cl' C C) which in turn drive the single conmponent . 1

2’

x except for the numbering of the internal states.

50

We will resolve such ambiguities in an arbitrary way be sinply stating
for a given system where the control responsibility is assumed to be.
In the case of the nutual exclusion problem as shown in Fig. 2 the
control is assunmed to be in conponent cn i1

The parallel systemin Fig. 2 is an exanple of a systemwth a

central control mnechanism Mre precisely we say the follow ng:

Definition
In a given parallel system if the control function is
performed by a single component, that systemis said to have

central control

If a system does not have central control, it is said to have distributed
control; that is, the control function is perforned-by nore than

one conponent. For a given circuit it is often possible to partition
the circuit in many different ways, making it difficult to determne

if the circuit represents a single conponent or several conponents

whi ch conmunicate with each other. In the case of a parallel system
as defined in Definition 1, we distinguish conponents on the basis

of the delay assunptions for a parallel system Any circuit in

which it nust be assumed that delays are finite and bounded in order

to ensure correct operation is considered to be a single conponent.

On the other hand,if it is possible to partition a circuit such that
the parts can communicate even though the delays in the interconnecting
lines are finite and unbounded, the parts are considered to be separate

and distinct conponents.

51

Li near Control

In this section, distributed control solutions to the nutual ex-
clusion problem are considered. One type of distributed control is
shown in Fig. 6. In this case each conponent ci,l i 4 n, has
its own control conponent Cn+i with which it comunicates in the same
manner as conponents conmunicate with the central control in Fig. 2
Bef ore conponent c, can be enabled, its control conponent nust conmunicate
with its left and right neighbor control conponents to determne if
it is possible for o to enter its-critical section. Wth this type
of organization it is necessary to propagate a request for pernission
to enter a critical section to all control conponents. W assune
each conponent can comunicate only with its left and right neighbors.
Because line delays are unbounded, when a control conponent produces
an output value transition it must recognize an input value change
produced in recognition of the propagation of its own output value
before it can proceed.* This means that pairs of lines are required
one to send a request and one to receive the reply. Furthernore
a control conponent nust not only send requests to its neighbors but

receive requests fromthemas well. The general form of a contro

conmponent-is shown in Fig. 7

* A further discussion of the consequences of the line delay assunption
is given in [6].

—-] C __‘
Cn+|] n+2
| < A
“1 2
z z
¢ Co

Figure 6. A linear distributed contro

excl usi on

probl em

U

n+i

"

for the nutua

Pi-l1 =

Figure 7.

53

r. R,
i-1 i
Bl _
P ¢ +1i
- i-1 o Py
9.3 9 N
X T Z. l
[i
(1 <i <n), xi,zi as before
31 request for permssion to enable Ck (k <)
O no 11 1 11 1 1 1
1 perm ssion to enable Cy (k <)
20 no 11 1" 1 " 1
il request for permssion to enable Ck (k > i)
O no 11 Tt 11 11 11 "
1 perm ssion to enable C, (k > i)
;O no 11 11] 11 11 1
1 request for permssion to enable Cy (k <)
%O no " 1 11 1 1 1 1
31 perm ssion to enable Ck (k <)
0 no n, 11’ 1 1 11
1 request for pernission to enable C, (k >1i)
go no " 11 11 1 1 1 1
1 perm ssion to enable ck(k > 1)
;0 no 1 1 1" 1 "
General formof a control component for Fig. 6.

54

For correct operation, each control conponent must have a sufficient
nunber of internal states to remenber whether a conmponent to his left,
right,or his own conponent was in its critical section last. This
information is necessary to resolve ties which result when nultiple
requests are recognized and also to know whether to pass permission to
enabl e to another conponent or to wait for that conponent to pass
permssion to enable to you. Only with this information can it be
guaranteed that no conponent is permanently excluded fromits critica
section. W conclude that at least three internal states are required
for each general control conponent (the leftnost and rightnost
control conponents need to renenmber only whether their own conponent
or a neighbor was in its critical section last). The actual nunber
of internal states is difficult to calculate and we will not do so here
However on the basis of this exanmination of the control structure in
Fig. 6 we can conclude that the total nunber of internal states required
for control will be at least twice as nmany as for a central control
O course the nunber of inputs and the structure of each control conponent
in Fig. 6 is fixed so we can add conponents sinply by adding another
control component without any redesign. Wthout examining actua
i npl enentations of central control components, which we do not propose
to do in this paper, it is difficult to make any evaluation of either
approach on a basis other than the total number of internal states

required for the control function.

The distributed nature of the control affects the choice
of the initial internal state for each control conponent. That

is, if each control conmponent is started in the sane

55

initial state it is always possible for the systemto be incorrect.

Suppose each control conponent were initialized so that it thought

its own conponent had been out of its critical section the |ongest.

Then it would be possible for sinultaneous requests to arrive and for

each control to wait indefinitely for enabling permssion fromits
neighbors. As a result only certain conbinations of initial contro
conponent states can be used. For exanple if n =4 then we m ght
initialize CB to think O was in its critical section |ast and C6’ C, and

C8 to think their left neighbor was in a critical section last. In

the use of nultiple requests, C5 must give permission to C6 before
it waits for permission to enable Cl‘ The conclusion of this
discussion is that there nust be a certain "asynmetry" in the choice
of the initial internal states for the control functions.

W classify the formof control in Fig. 6 as |inear because it
is possible to arrange the conponents in the nmanner shown in the figure
where each control conponent communicates only with its left and right
nei ghbors [117. Many other forns of linear control are also possible
in which groups of conponents could comunicate with a common contro
which would then communicate with its neighbors. The general organiza-
tion. is shown in Fig. 8. It is our conjecture that in all such
organi zations the nunber of internal states for the control is always

greater than the nunber required for a central control

H erarchical Contro

A different distributed control structure is shown in Fig. 9.

This structure is know as a hierarchical structure because in this

case bhefore a conponent can be enabled permission nmust be received

56

I A 7

Figure 8. General organization for a linear distributed control.

N\

Figure 9. A binary tree hierarchical control structure,

58

from the control conponents higher in the control "tree". Fig. 9is an
exanple of a binary control tree where each |ower level contro
conmmuni cates with two components and higher level control conponents
communi cate with two |ower |evel conponents. It can be shown that
such a tree has n-l1 control conponents (non-terminal nodes) and by
argunents simlar to those in the last section it follows that
(1) there nust be an "asymmetry" in the choice of the initial contro
state and (2) the total number of internal states required for contro
conponents is greater than the number required for central control
W conjecture these conclusions are valid for hierarchical tree
control structures which are not restricted to be binary.

Both linear and hierarchical control structures are biased
because the control cannot store the complete history of accesses

to critical sections.

59

CONCLUSI ONS

The use of the flow table nmodel has made it possible to characterize
in a precise way the cost of a correct solution to the nutual exclusion
probl em as measured by the nunber of internal states required by the
control function. In addition, procedures can be given to generate
correct control flow tables.

Distinctions between central and distributed (linear, hierarchical)
control can also be nade in this mdel and the effects of one type O
control over the other evaluated. Mre work needs to be done in this

area.

60

REFERENCES

(11 Adans, D.A A conputation nodel with data flow sequencing.
CS-117 (Thesis), Conputer Science Departnent, Stanford
University, Stanford, California (pec 1968).

(2] Adans, D.A. A nodel for parallel conputations. Proc.
Symp. on Parallel Processor Systenms, Technol ogies, and
Applications, Naval Postgraduate School, Monterey, Calif,
June, 1969 (in press).

{37 Ashcroft, E. and Manna, Z. Fornalization of properties
of parallel programs. AIM110, Artificial Intelligence
Project, Stanford University, Stanford, calif. (Feb 1970).

{47 Bredt, T.H and McCuskey, E.J. A nodel for parallel conputer
systems. Technical Report No. 5, SEL Digital Systens
Laboratory, Stanford University, Stanford, California (Apr 1970).

(51 Bredt, T.H Analysis and synthesis of concurrent sequential
programs. Technical Report No. 6, SEL Digital Systens
Laboratory, Stanford University, Stanford, calif. (May 1970).

[6] Bredt, T.H Analysis of parallel systens. Techni cal
Report No. 7, SEL Digital Systems Laboratory, Stanford
University, Stanford, calif. (to appear).

{71 Dennis, J.B. and Van Horn, E.C. Programming senantics
for nultiprogrammed conputations. Comm. ACM 9 (March 1966).
143-155.

[8] Dijkstra, EW Solution of a problem in concurrent
progranmming control. Comm. ACM 8 (Sept 1965), 569.

(91 Dijkstra, EW The structure of the "THE" nultiprograming
system Comm. ACM 11 (May 1968), 341-346.

{107 Dijkstra, E.W Co-operating sequential processes.in
Programm ng Languages, Genuys, F. (Ed.), Academ c Press
New York (1968).

{117 Hennie, F.C Finite State Mdels for Logical Machines.
John Wley and Sons, New York, N.Y. (1968).

[12] Karp, RM and Mller, RE Properties of a nodel for
parall el conputations: deterninacy, termnation, queueing.

SIAM J. Appl. Math., 14 (Nov 1966), 1390-1411.

61

{13] Karp, RM and Mller, RE Parallel program schemata: a
mat hemati cal nodel for parallel conputation. |EEE Conference
Record of the 8th Annual Synposium on Switching and Autonata

Theory (Oct 1967), 55-61.

(147 Karp, RM and Mller, RE Parallel program schenata.
J. of Conputer and System Sciences 3, 2 (May 1969), 147-195.

[157 Knuth, D.E. Additional comrents on a problem in concurrent
programmng control. Comm. ACM 9 (My 1966), 321-322.

(167 Lampson, B.W A scheduling philosophy for nultiprocessing
systems. Comm. ACM 11 (May 1968), 347-360.

[177 Luconi, F.L. Conpletely functional asynchronous conputational
structures. | EEE Conference Record of the 8th Annual
Synposi um on Swi tching and Automata Theory (Oct 1967), 62-70.

{187 Luconi, F.L. Asynchronous conputational structures.
MAC-TR-49 (Thesis), Mssachusetts Institute of Technol ogy,
Canbridge, Massachusetts (Feb 1968).

{19] Luconi, F. L. Qutput functional conputational structures.
| EEE Conference Record of the 9th Annual Synposium on
Sw tching and Autonmata Theory (Oct 1968), /0-84.

[20] mManna, Z. Ternmination of algorithms. Computer Science
Department, Carnegie-Mellon University, Pittsburgh,
Pennsyl vania (Apr 1968).

(2171 Manna, Z. Properties of prograns and the first-order
predicate calculus. J. ACM (Apr 1969).

[22] Manna, Z. The correctness of programs. J. of Conputer
and System Sci ences, 3 (May 1969).

{237 Manna, Z. The correctness of non-deterninistic prograns.
Artificial Intelligence J. 1, 1 (1970).

[24] mcC uskey, E.J. Introduction to the Theory of Switching
Circuits. MGawH Il Book Co., New York, N.Y. (1965).

{251 muller, DE and Bartky, WS. A theory of asynchronous
circuits. Proc. of an International Synposium on the Theory
of Switching, the Annals of the Conputation Laboratory of
Harvard University, Vol. 29, Part |, Harvard University
Press (1959), 204-243.

62

(267 Rodriquez, J.E. A graph nodel for parallel conputations.
Ph.D Thesis, MT, Department of Electrical Engineering,
Canbri dge, Massachusetts (Sept 1967).

{27] Slutz, D.R The flow graph schemata nodel of parallel
conputation. MAC-TR-51 (Thesis), MT, Canbridge, Mssachusetts
(sept 1968).

