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Abstract

In this paper, we derive and generalize the methods of Buneman

for solving elliptic partial difference equations in a rectangular

region. We show why the Buneman methods lead to numerically accurate

solutions whereas the CORF algorithm may be numerically unstable.

Several numerical examples are given and discussed.
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Introduction

L-

ic the first part of this report, we described several direct

;r,ethods for solving linear equations arising from elliptic partial

difference equations. In this part, we develop the Buneman algorithms

whrich are closely related to the Cyclic Odd/Even Reduction and

Factorization (CORF) algorithm which was derived in the first part.

We then show why the CORF algorithm is numerically unstable whereas

the Buneman algorithms yield numerically accurate results. Finally,

we describe some numerical examples and compare the time and accuracy

of several methods for solving them.

ii



10. Accuracy of the CORF algorithm

As will be shown in Section 11, the CORF algorithm and the Buneman

algorithms are mathematically identical. The difference between the

methods lies in the way the right hand side is calculated at each

stage of the reduction. To the authors' knowledge, this is the only

direct method for solving linear equations in which the right hand side

of the equations plays an important r6le in the numerical solution of

the equations. In this section, we show the difficulties encountered

in using the CORF algorithm. In Section 13, we will prove the stability

of the Buneman algorithms.

Recall from Section 3 that it is possible to compute rA(')_ys ).

by the following algorithm:

Lb
= -zy(r) ) ‘I1 = &Jr)

4 -3

'I,S = -Ajs-1 - T211s-2

(10.1)

for s = 2,3,*oej2r

so that

Because of roundoff error, one actually computes the sequence

( >

& = _'yjr 9 -1 = %j
(4 + Fj

-0

(10.2)

11 = -Av
,S -s-l - T2 k-2 + 3-l (s = 2,...,2r)
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where 8
,S

is the perturbation induced by the roundoff error. Pgain

as in Section 2, we write

A=QAQT 9 T=QnQT (10.3)

where Q is the set of orthonormalized eigenvectors of A and T ,

and A and s2 are the diagonal matrices of eigenvalues of A and T ,

respectively. Thus substituting (10.3) into (10.2), we have

5s = - * :s-1 - n2js-:!  + zs-1

where

L

7 = QTy(‘)

-4
9 & = QT js 9 5

= QTts .

Because A and 0 are diagonal, we may write an equation for each

component of As ; viz.

E j, s+l +h.E +clJ25
3 j9s j j,s-1 = 'j,s (j = 1,2,...,P) .

The solution of (10.5) can be given explicitly. Consider the characteristic

equation

(10.4a)

(10.4b)

cpj(cz) - a2 + hja+ $ =o

which has roots p.
J and '3 ' then
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$S - YS

s-l s-l

t jrs
=JJs

Bj - yj
j,l - 'j'j *'ij --YJj 'j,O

s-

+
c Bj - yj 'W

when Bj k Yj (10 .6a)

k=l

s-l
= sg.

3 '
j

>
k1 (s -k)@;-k-l zj k
k=l 7 when 'J = 'j '

(lo.G;b)

Let

Aj/2U. 3 = cos 8. J when Ihj/2Ujl 5 I

= cash z. when3 l~j/2~j~ 2 1 .

Then using the initial conditions (10.4-a), we may write (10.6a)  as

follows:

s-1 s k 1 sin (s-k)Q.
E -2u3; cos(s Qj)Yj + z Luj- - J
j,s = k=O

sin 8
j

'W

Note that

when (hj/2ujl < 1 (10.74

sinh (s-k)z.
= -ib; cosh(s zj)yj -t SC' u$-~-' 4

k=O
sinh z J 5

j
W

10-3
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I

/
It

3
- PS"j,"j)

z
3

given in Section 3. Thus

( > s-l
js = 's(A,T)_yjr ' C Q S

k=O s-k QT:k

where

I sin m 8,
J

sin 0
3

when lhj/2~ji < 1 and i = j

Ts 3
m-l

. m ij =w. x
J

sinh m z
j

sinh z
j

when l"j/2~jl > 1 and i = j

= 0 for i # j .

(10.8)

(10.9)

Therefore, if /X./~U./ > 1
J 3

, the effect of the roundoff

error can be catastrophic. However, if lh./2~.1 < 1
3 J-

, we see from

(10.9) that i
N2r

may be a good numerical approximation to A
"'2 )

.r .

We now apply the above results to Poisson's equation with

Dirichlet boundary conditions. For the five point difference operator

with mesh width L!x in the x-direction and ny in the y-direction,

we have

h
j = 41 + /02(l - cos pl-%, c.lJ3 =

1

10-4



and

I -

L-

L-

L

‘i-

L

c

depending on how one orders the equations. By inspection

j ; and hence for large s , equationfor all (10.1) leads to a

numerically unstable algorithm. A similar result holds for the nine

Ihj/2Uj 1 > 1

point difference approximation to Poisson*s equation. Using the five

point approximation with uniform mesh and any number of grid points,

equation (10.9) predicts severe loss of accuracy for more than five

contractions on a CDC 6600; and this has actually been observed. As

noted in Section 3, Hackney [ 6, 71 has combined one or more steps of

CORF with the fast Fourier transform to produce a Poisson solver. For

such a use of CORF one must pay careful attention to the above results.

The cyclic odd/even reduction method can be used successfully

for solving tridiagonal systems of equations. In that situation, one

must make provision for the fact that overflow can occur during the

reduction stages.

10-5
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11. The Buneman algorithm and variants

-.

-

L

In this section, we shall describe in detail the Buneman algorithm

[ 2 ] and a variation of it. The difference between the Buneman algorithm

and the CORF algorithm lies in the way the right hand side is calculated

at each stage of the reduction. Henceforth, we shall assume that in

the system of equations (2.5) T = I
P'

the identity matrix of

order p .

. Again consider the system of equations as given by (2.5) with

q=2 .k+l-l After one stage of cyclic reduction, we have

,"j-2 +(21 -
P

A2)zj + x
,j+2 = _Yj,l +Y - AY-j+l -j

for j = 2,4,...,q-1 with ,x0 = x
,q+l = !! ' the null vector.

the right hand side of (ll.l)may be written as follows:

(11.1)

Note that

(1)
Zj = _Yj,l +Y - AY-j+l -j

= AoA'= +  y
-A -j-l

+ y
-j-+1

- 2A-ly
-j

(11.2)

where A0) = (21P-
A2) .

Let us define

Then

p(l) = A-'y (1)

4 -j ' Z!j = xj-1 +Y
(1)-2p .

-j+l -j

(1)
Yj

= &) p(1) + q(1)
4 -j

. (=*3)

IL-1



Af'ter r reductions, we have by (3.3)

(U-4)

Let us write in a fashion similar to (11.3),

= A(T) p(r) +

4
(11*5)

Substituting (11.5) into (11.4) and making use of the identity

(A(r))2 = 21 -A(*') from (3 3). J we have the following relationships:
P

.(P( )
r ( >

-j-zr
+Prr-zj

W)

"j-l-2

pw ( > ( 1-j =gjr -(Ar (Ida

b+l) = q(r) + q(d _
2-j

-j-zr H j-l-2'

for j = izr+l (i = 1,2,...,2k-r-l) with

( >r ( >r ( 1r
20 = p2k+l = ,gO

( 1r
= :,k+l = f '

To compute (A('))-'(p(')  + P(~) - q(r)) in (11 6a) we solve the.
Nj-2r

r -A
3

"j+2

c --

system of equations

= P
(d + p(r)

"j-zr -j+zr

11-2



where A ( )r is given by the factorization (3.10), viz.

A' =-( >
2r

rI (
( >

j=l
A+ 2~0s 0.' Ip) ,

J

O.r = (2j - l)n/2( > rtl .
3

Af'ter k reductions, one has the equation

A04
:,k

= *(k) p(k) + q(k) -
w2k w2k

and hence

o-4
E2k = p,k

+ (A(k))-1 q(k)
N2k

.

( )k
,92k lAgain one uses the factorization of A04 for computing (p )-I

In order to back solve, we use the relationship

. x +Ar( 1 + x .
N.J-gr

:j cI j+2'

= ACT) $1 + q(r)
-j

for j = i2r (i = 1,2,...‘,2
k+l-r-1) with x0 = xw2k+l = : l

For j = 2r, 3 l 2r,...,2k+l-2r , we solve the system of equations

( )A r (“j - Pj(1”)) = p - (x + x )
N.J-2r H j+gr

)

using the factorization of A ( 1r ; hence

(11.7)

11-3



X.
( > ( >

-3
= _pjr + (xj - Pjr ) (11.8)

k--

Thus the Buneman algorithm (variant 1) proceeds as follows:

1)
Compute the sequence (p(') , q(r)

-j -j
) by (11.6) for

r = l,..., k with (0) k+l
p. =Q for j = 0,...,2 , and
-J -

(0)
9j = xj

for j = 1,2,...,2 k+lJ .

2) Backsolve for x-j using (11.7) and (11.8).

( >
It is possible to eliminate the sequence (zjr } . From (11.6b),

we note that

b-+1)
3

where

h = 3-l .

U*P>

I I--.

Using (ll.9) in (11.6a) and modifying the subscripts and superscripts

appropriately, we have

(r-1) b-1 +
- ?j+h + %j+2h

+ (A(r))-1[q(r-1)- q(d + qcr-‘) _ 2qcr) +

-j-3h ,j-2h -j-h -3

(11.10)

11-4
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c

for j = (2r,2r+1,...,2k+1-2r) with

( >r
,gO

( 1r
= ,9,k+l = f

(0)
2-j = -yj

(1)
hgj = Tj-1 'Y-j+l

- a-1
-Yj

for all r ,

for j= 1,2,...,2k+1-l  ,

for j = 2,4 ,..., 2k+1-2 .

To solve for x
-j

, we use 'the relationships (11.7) and (11.9) so that

X.
-J

= $ '&"' + q&1) - q!r))-
-J

- (Aq -1(x
-j-2h (111.11)

Thus the Buneman algorithm (variant 2) proceeds as follows:

1) ( >Compute the sequence {q." ] by (11.10) for
-J r = 1,2,...,k .

2) Backsolve for x-j using (11.11).

Note that the Buneman algorithm (variant 2) requires half the storage

that the Buneman algorithm (variant 1) requires. However, the

variant 2 algorithm requires approximately twice as many additions.

The p.
-3

9 and q.
-J

% can be written in terms of the x 9. In
-4

Section 13, we shall show how this affects the stability of the methods.

Note

11-5



(1)
Pj

= A-l -1
Yj =zj+A (x.

NJ-1
+x. )

,J+l

and

(1)
!?j = xj,1 fY-j+l - 2$)

= x
-j-2 - (A)-1 AO(,j-l + “j+l) + zj+2 Ce

By an inductive argument, it is possible to show that

p(1”) = zj + (-l)r+l  s (
4

r>
(:j-(2k-1) + ,Xj+(2k-1) >

>

(11.12)

and

= x
-j-$

+ (-# &' ACT) bJ (2k 1) +
*- -

+ x (11.13)

where

&d = (A(r-l) fLbg2) . . . A(o))-1 .

11-6
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12. Applications of the Buneman algorithm to Poissonrs equation

As was pointed out in Section 4, matrices of the form (2.5)

arise in solving the five point finite difference approximation to

Poisson's equation over a rectangular region with Dirichlet boundary

conditions and hence it is possible to use the methods of Section 11.

For the five point approximation to Poissonrs equation over a rectangular

region with Neumann or periodic boundary conditions it is necessary to

modify the Buneman algorithms.

For the Neumann boundary conditions, we have the system of

equations

50
-t 2x

-1 = ,yo

+AX
,"j-1 -j

+x
-j+l = Uyj

2x
-m-l

+AX
,m = ,Ym

(j = 1,2,...,m-1) ,

with m = 2k+1 .

We define

0)
3 for j = 0,2,4,...,2 k+l

where

(1)
PO

(1)= A-l ,yo 7 ,go = 2(_yl - go0))
7

L

L

(1) - A
-1

Pj -
(1)

?Ij ' u9j = Tj-1 +Y - 2p(l)
-j+l -j (j = 2,4,...,m-2) ,

p(l) = A-l y (1)

9-n

(1)

,m ,m', -- em -I - Em9-i > l

12-1



In general then, as in Section ll, we have for r = 1,2,...,k-1

y( 1)r+
-j

= A(r+l)p( *l> + qb+l)
-j -j

where

_ (Ab) )-1(2p(r) _ q(d)
-2r -0 t qb+l)  = 2(q(r) _ p(r+l))

-0 -9 -0

b-+1)
'Ej

(d _ (A(r))-l(p(r)  + p(r) _ q!r))

-j-zr -j+2'- c*J
, qb-+l) = q(r) +qb) _ 2p(r+u

A
.

-j-2r -j+zr -J
9

for j = i2
r+l

(i = 1,2,...,2k-r-Q

p(r+l) = pb) _ (A(r))-1(&)
-m -m

Nm 2r-NQ', , q$+l) = 2>lr;r-2$+l) l

-

Finally,

@+1)
:,k

= Bck+') p(k+l) + q(k+l)
-2k -2k

(12.1)

where

ck+l) = _p(k) _ (Ak)-l(p(k) + p(k) _ q(k))
g,k 2k

-0 w2k+l y2k t

@+l) = q(k)
!,k

04
-0

_ 4p(k+l)
+ ,9,k+l m2k '

(12.2)

12-2
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From (5.4) we see that

i
L

i
L

so that

i
I

i
L

IL

,(k+l>x
-2k

= B(k+l)p(k+l)  + q(k+l)
-2k -2k

@+1)
X2k = :,k

+ (B(k+l)>-  q(k+l)
-2k

.

(B&+‘) )-q(k+l)
k indicates a solution to the singular system

-3

B(k+l)(x  _ p(wl)) = q(lrtl) . The factorization of B @+l)
m2k m2k -2k

is given by (5.6).

The backsubstitution process proceeds as in Section 11. It is also

( 1possible to eliminate the pjr sequence as was done in the previous

section.

For periodic boundary conditions, we have the system of equations

L

L

L

We define

AxI++ Z2 + :rn = 5

X +Ax +x
-j-l -j -j+l = ~j

for j = 2,3,...,m-1 ,

+ Ax
3 + ,Xm-1 -m = ,ym l

(1) = A(l)p(l)  + q(1) for j = 2,4,...,2 k+lY, 2 .:
-J -J -J

L where

12-3



(1)
P2

= A-l-z2 7 0)
3

(1)
=x1+ :3 - %2 t

(1)

??j = A-'y ,
-j

q(1)
-j = zj-1 f Y- - 2p I-( )

dJ+l -j , (j = 4,6,...,m-2) ,

(1)
!?j

(1)= A-‘zrn > c& (1)

= Tl + Ysn,l - Q!$-n
l

In general for r = 1,2,...,k-1 ,

= A(~l)p(rtl) + q(el)
-3 4

for j = i2331 ( i = 1,2,...,2k-r)

where

_ (A(r))-l(pb)  +p(r) _ qb) ), q(F) = qb) f q(d _ Q,(~+‘)

-2r -3X2r -2r+1 -2r+l -2r
-3~2~ d2rtl ’

(*‘) = p(I) - @(‘))-‘(PC’)  +p(‘) _ qb)) , qb+‘) = q(r) + q(T) _ 2pb+1)
Pj J

.
-jg2r -j+2’ -3 -3

.
-j-2r -j+2' -J

p( 1)r+
-m

b) _ (A(r))-l(p(') + ,crlr _ $1) ,
-2r "m-2

&*'I = q(r) + q(T)r - 2$+1

-2r "m-2

Finally as (12.1),

f> .

(k+l)
x2k

= B(k+1) p(k+l) + q(k+l)
-2k -gk

where

x2-4

t -



,(k+l>  = p(k) 04
-3k

- (Ack) )-1(%(kJ
-2k+1-!2k 1 , q(k+l) = ,,(k) _ ip(k+l)

-2k
m2k+l -2kg2k

(k-tl) is defined by (and B 12.2). Then

so that

1 .(k+l)
:,k = p,k

+ (B(k’l))-  q(k+l
-2k

The backsubstitution process proceeds as
(-r-j

in SectiQn 11,

( )
It is possible to express ~3~' and zjr in terms of x. as in

-J

equations (ll.12) and (11.13).

12-5



13* Accuracy of the Buneman Algorithms

As was shown in Section 11, the Buneman algorithms consist of

generating the sequence of vectors . Let us write using

(11.12) and (11.13)

q(r) = x-: + x M
_ A(T) gb)

4 (13.lb)

where

-J “j-2’ “j+2” -J

w =
!Zj

(-#+l s(r ) 13.2)

and

= (J&‘-~) . . . A(o))-1 . (1393)

Then

/Qr) - xCr)I/ 5
-4 -j 2

l!s(‘)l\ 11 x /I’
2'-

I\,(r) - (x +x
-j Nj-2r -j+zr )ll

2-
5 Ii,(r) A(r)(j 11 x 11'

2 -

03.4 >

(13.5)

where

II II-v2 indicates the Euclidean norm of a vector v ,
N

II IIC
2

indicates the spectral noMn of a matrix C , and

II z II ’ = f ll~jll2 l

j=l

1 3 - l



When T =I
P'

we may redefine the polynomials given in Section 3

in the following way. Let

$ = -a/2 ,

and define

qf = cos 8 for

= cash Q for

Then in a similar fashion to (10.8),  -

p
2k

(a) = -2 c0s(2~ cos-l l/r) for 51Id

= -2 cosh(gk cash -IL 44 for I$1 21 Q

Thus for A = AT ,

l(,(r) 11 ='f+ II(A(j))-ll(2
j=O

2

r-l
= Tl- max I [P2j(hi) l-l1

j=O CX,)

where rh 3i are the eigenvalues of A . Therefore for

where

I/SC ) II
r-l

r 2=2-r 0n max [cash 2' @,I-'
j=O (Q,.J

@i
-1= cash (- hi/2) l

1 I-hi x2,

13-2



Finally,

/I@ A(I)11
‘2

= z-Y31 x mace 5 '+cosh 2j Qi]

i
j=O

-') x cash 2r Qi}

when hI I,i >2 .

For the five point difference approximation to Poisson's equation

over a rectangular region with Dirichlet boundary conditions

hi = -2(1+ p2(l - cos S))

where p = Ax/Ay or (@L-K) depending on the ordering of the

equation&. Thus

Qi = cash-l(1+ p2(l - cos 2))

which implies Qi >l for all i . Then

.
max [cash 2' &l-l = [cash 2J (cash-'(l+ p2(l
CQ 3i

I

13-3



Thus after some simplification,
i

i rlls( Ill2 =

-cQ
1e

r-l -2j+1Q

I-I ( l+e
1

>
j=O

-cQ
< e

1 (13.6)

i

Tr
where c = 2r-l , cash Ql = 1 + p2(i - c o s  - l

P
>

i A similar calculation shows

i

t
i

I!,(r) &)I\ <2e% .
2

(13.7)

Therefore from (13.6) we see that for large r ,
( 1rp. will be a

-J

good apRrox%nation  to x, . And from (13.5) and (13.7), we see that
-J

1/,(r) - (x
Q

+ x )\I < 2ep
4 -j-zr -j+zr 2 -

II - IIx ’

so that the l\c$)li, remains bounded throughout the calculation. This

explains why the Buneman algorithms lead to numerically stable results

for solving the finite difference approximation to PoissonTs  equation.

13-4



14. Conclusions

The Appendix contains the results of some numerical experiments

involving the application of the Buneman algorithm (variant l), the

method of matrix decomposition, the method of point successive

over-relaxation (cf. [lo]), and the Peaceman-Rachford alternating

direction method (cf. [ll]) to the five point finite difference

approximation to Laplace's equation over a rectangle with Dirichlet

boundary conditions. In these experiments the Buneman algorithm was

the most efficient and accurate; however, the method of matrix

decomposition was competitive in several cases. We conclude, therefore,

that the Buneman algorithm and the method of matrix deconposition

are useful methods in the situations where they apply.
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aendix

Numerical Experiments

In order to gain computational experience with the methods of matrix

decomposition (MD) and the Runeman algorithm (variant l), it was decided to

apply the algorithms to the five point difference approximation of Laplacers

equation with Dirichlet boundary conditions. In addition, in order to

compare these methods with established methods, it was decided to apply

the methods of point successive over-relaxation (SOR) (cf. [lo]) and

Peaceman-Rachford alternating direction method (PR) (cf. [XI]) to the

same problems. We did not attempt to-determine which method is best in

general. Those interested in operation counts, variations of these direct

procedures, and customizing the direct procedures for particular problems

are referred to [4] and [7].

The following problems were chosen so that the.computed  error could

be detemined exactly:

Problem #l, u=l;

Problem #2, u = cos(x) cash

Problem $3, u = ex(sin(y) +

Problem 44, u = x5 - 10x3y2

(Y) ;

COS(Y)> ;

4
+5KY l

Let

G = <computed solution of the difference equation>

and

the tabulated error is

I
G-U

1d l

One should note that in many cases the tabulated error is the truncation

error of the difference equation.

A-l



Each of these problems was solved on the following meshes (includes

boundary points):

Mesh #l 20 by 129 ,

Mesh #2 40 bY 129 3

Mesh #3 80 by 129 ,

Mesh #4 129 bY 129 3

Let p = &+y . Each of the four problems was solved on each of the

four meshes for five values of p :

i &c AY ti.

1 .025 .00025 .Ol

2 .025 .0025 .I

3 .025 ,025 1.0

4 .0025 .025 10.0

5 .00025 .025 100.0

Thus each problem was solved on a total of twenty rectangular regions

These regions were chosen such that the lower left-hand corner of the

rectangle was always at the origin. The following is a table of the

coordinates of the upper right-hand corners:

Mesh #L ' Mesh #2 . Mesh #3 Mesh #4

p1 ( -5, -032) (1 '3 0032) (2 '3 -032) (4 -3 .032)

p2 ( -5, 0322) (1 '3 0322) (2 -3 -322) (4 03 .322)

p3 (05, 3.225) (10, 3.225) (20, 3.225) (40, 3.225)

p4 ( 005, 3.225) (-1, 3.225) (.2, 3-225) (04, 3.225)

p5 (0005, 3 . 2 2 5 ) ( -01, 3.225) ( .02, 3.225) (004, 3.225)
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We define

V(p,i,j) = max {solution of prob #p on region with pi and mesh #j}

- min [solution of prob b on region with pi and mesh #j]

Note V(l,r,j) = 0 for all i and j . The following tables give V

for the other problems:

Mesh #l

%
.l

p2 015

p3
11.1

p4 11.0

p5
11.0

v(3 >Aj

Mesh #l

p1 059

p2 095

p3
3.84

@4 2.56

p5
2.46

Mesh #2 Mesh #3 Mesh #4

.42 1.37 2.0

047 1.44 2.1

11.4 16.4 24.0

11.0 11. 11.

11.0 11. 11.

Mesh #2 Mesh #3 Mesh #4

1.64 6.22 23.6

2.24 7.84 29.2

6.32 17.2 58.5

2.7 2.97 3.36

2.47 2.5 2.53
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Mesh #l Mesh #2

.018 -77

l 07 l 92

219.5 400.0

22.9 48.2

Mesh #3

28.2

28.3

556.0

98.2

Mesh #4

323 -0

323 .O

1733 -0

158.0

F5
2.29 4.82 9-9 16.1

For the above rectangles, the opt-imum relaxation factor is given by

where

Bij

and N.
3

is the number of grid points in the x-direction of the j-th mesh.

The initial guess for SOR and PR was the zero vector.

The iteration process was terminated when

+1un -vn -4
max < 10 .

(entire mesh) TJn

lu"l > 10 -5

Optimum PR parameters were determined by Wachspress's  algorithm [ll]
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li

L

L

L

-

L

-

-

L

C

-

B.

L

-

L

-

i

L-

.

for cycles of length 2k . Convergence required

(completYZycle)
max

(entire mesh)

I 1Un > 10 -5

U
n+l

- un

Un

Because of this convergence criterion, a short cycle was desirable.

After some experimentation, it was decided to use a cycle length of

four exclusively.

All problems were run on a CDC 6600 (about 14 decimal digits of

accuracy); -the RR, MD, and Buneman programs all used the same tridiagonal

system solver. The Q matrix and eigenvalues required by MD were

computed with the QR algorithm for symmetric tridiagonal matrices. The

matrix multiplications (QTy) required by MD were performed with a

machine language inner product routine which is quite efficient and

which accumulates the inner products in double precision. It should be

noted that for problems with uniform mesh spacing, these matrix products

may be performed with the fast Fourier transform; and this makes MD

competitive in speed with the Buneman algorithm. However, MD is capable

of handling more general problems such as those with non-uniform mesh

spacings; in these cases Q must be computed and the matrix products

performed. Thus the MD routine used in this study gives an indication

of the kind of performance one might expect with these more general

problems. Note also that the matrix multiplication (QTy) requires

ohP2) operations. The Buneman algorithm requires a ,total of

O(qp log2 p) operations. Thus as p becomes small,

MD approaches the Buneman algorithm in speed.
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L

The following tables of computation times are normalized by the

time required for the Buneman algorithm on Mesh #l;

Computation times for the Buneman algorithm (variant 1) and MD

Mesh #l Mesh #2 Mesh #3 Mesh #4

BlJ.rK3la.n 1.0 2.08 4.31 6.96

MD 1.18 3.65 14.9 41.0

Computation time for RR

(These times are averages over all four problems.)

Mesh #l Mesh #2 Mesh #3 Mesh #4

% 2.56 5*17 9.43 15.2

o2 4.85 10.3 20.6 30.1

p3
5.44 12.6 31.2 47.7

P4 2.56 7.61 15.2 32.5

PC; 2.25 4.49 8.58 13.5

Computation time for SOR

(These times are averages over all four problms.)

Mesh #l Mesh #2 Mesh #3 Mesh #4

Pl 40.9 89.0

P2 45.1 97.9

p3 16.1 60.1 (not run) (not run)

P4 7.58 32.9

p5 7.22 28.8
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Relative error for the Buneman algorithm, Mesh #l

Prob 1 Prob 2

Pl 4(-11) 7(-9)

P2 2(-11) 5(-7)

p3 5(-13) 2(-6)

p4 2(-U) 1( -8)

p5 2( -13) l(-10)

Relative error for MD, Mesh #l

Prob 1 Prob 2

Pl 5(-7) 5(-7)

P2 1( -7) 5(-7)

p3 u -9) 2( -6)

p4 2(-10) U-8)

p5
8(-10) 7(-l@

Relative error for PR, Mesh #l

Prob 1 Prob 2

Pl 2(-11) 769)

P2 2( -8) 5(‘7)

p3 7(-81 2w

P4 2c -9) 1( -8)

p5 8( -13) l(-10)

Prob 3 Prob 4

6( -9) 3(-7)

4(-7) 2(-5)

2w 4(-7)

1( -8) 2(-9)

l(-10) 2(-11)

Prob 3 Prob 4

4(-7) 3(-7)

4(-7) 2(-5)

2( -6) 4(-7)

U-8) a-91

7(-N 6(-10)

Prob 3

6(-9)

-4( -7)

2( -6)

1( -8)

l(-10)

Prob 4

3(-7)

2( -5)

4(-7)

2( -9)

2(-u)
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Relative error for SOR, Mesh #l

Prob 1

4( -4)

U-3)

5(-4)

3(-4)

Prob 2

4( -4)

I( -3)

1( -4)

3(-4)

Prob 3

w+)

I( -3)

1W)

3(-4)

Prob 4

3(-6)

a-5)

4(-7)

9w

p5 3(-4) 3(-4) 3(-4) 5(-5)

Relative error for the Buneman algorithm, Mesh #2

Pl

P2

p3

P4

PC;

Prob 1 Prob 2 Prob 3

4(-l-J-> 7(-9) 6( -9)

3 ( -11) 6(-7) 4(-7)

2(-12) 5(-6) 7(-6)

3(-13) 5(-8) 6( -8)

7(-13) 6(-10) 6(-10)

Relative error for MD, Mesh #k

Prob 1 Prob 2

Pl U-7) Q-8)

P2 5(-8) 6(-7)

p3 a-91 5(-6)

p4 a-91 6( -8)

p5 5(-N 1( -9)

Prob 3

U-7)

5(-7)

7(-6)

6( -8)

U-9)

A-8

Prob 4

7(-7)

5(-5)

2( -6)

8( -9)

8(-11)

Prob 4

8(-7)

5(-5)

2( -6)

8( -9)

3(-l@



Relative error for PR, Mesh #2

Pl

P2

p3

P4

p5

Prob 1

2(-11)

4( -8)

4( -6)

8(-10)

3 ( -12)

Prob 2

7G9)

6( -7)

4( -61

6( -8)

6(-10)

Relative error for SOR, Mesh #2

mob 1

4( -4)

7(-4)

U-3)

5(-4)

4( -4)

Prob 2

4( -4)

5(-4)

6( -4)

4( -4)

4( -4)

Prob 3 Prob 4

7G9) 7(-7)

4( -7) 5(-4)

7(-6) 2( -6)

68) 8( -9)

6(-10) 7(-6)

Prob 3 Prob 4

3(-4) 2(4

3(-4) 5(-5)

2C -4) 2(-a

6(-5) 7(-7)

4( -4) 8( -5)

Relative error for the Buneman algorithm, Mesh #3

Prob 1

4(-11)

3(-l-u

l(-11)

4( -13)

Prob 2

7G9)

6( -7)

8( -6)

a-71

Prob 3

Q-9)

4(-7)

I( -5)

a-71

Prob 4

5(-8)

5(-6)

1( -5)

3(-8)

p5 2 ( -12) a-91 3

A-9
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Relative error for MD, Mesh #3

Pl

P2

p3

P4

p5

Prob 1 Prob 2

U-9) 8(-9)

I( -9) 6( -7)

8(-10) 8W

8(-10) a-7)

8(-10) X-9)

Prob 3 Prob 4

769) 5(-8)

4(-7) 5(-Q

I( -5) U-5)

a-7) 3(-Q)

3(-9) 7(-N

Relative error for PR, Mesh #3

Prob 1 Prob 2

1(-w 7(-9)

6( -8) 6(-7)

3(-Q 8( -6)

a-7) 3(-7)

l(-11) 3(-9)

Prob 3 Prob 4

6( -9) 5(-8)

4(-7) 4( -6)

U-5) 1( -5)

2( -7) 3(-8)

3(-9) 3( -10)

Relative error for the Buneman algorithm, Mesh #4

Prob 1 Prob 2 Prob 3 Prob 4

Pl 4(-11) 7G9) 69) 8( -9)

P2 3 (-11) 6(-7) 4(-7) 7(-7)

p3 3 (-11) 8( -6) 2( -5) U-5)

p4 l(-12) 5(-7) 6(-7) 8( -8)

p5
k( -12) 6( -9) 7(-9) 8(-10)
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L

L

L

L

Relative error for MD, Mesh #4

Prob 1 Prob 2

% 7(-7) 5(-7)

P2 2( -9) 6(-7)

p3 2( -9) 8( -6)

p4 X-9) 4(-7)

p5 3(-9) 9(-9)

Relative error for PR, Mesh #4

Prob 1 Prob 2

I c 5 l(-11) 769)

p2 6( -8) 6(-7)
L

p3 U-5) w -6)

P4 6( -8) 4(-7)L

I p5 3(-11) 6( -9)

Prob 3 Prob 4

4(-7) 4(-7)

4( -7) 7(-7)

a-51 U-5)

6(-7) 8( -8)

9(-9) 2( -9)

Prob 3

6( -9)

4(-7)

a-5)

6( -7)

7(-9)

Prob 4

Q-9)

7(-7)

1( -5)

8(-Q

8( -10)
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