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Abstract

In this paper, we derive and generalize the nethods of Buneman
for solving elliptic partial difference equations in a rectangul ar
region. W show why the Buneman nethods |ead to nunerically accurate
solutions whereas the CORF algorithm nmay be nunerically unstable.

Several nunerical exanples are given and discussed.
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[ ntroduction

In the first part of this report, we described several direct
methods for solving linear equations arising fromelliptic partia
difference equations. In this part, we develop the Buneman al gorithms
which are closely related to the Cyclic Qdd/ Even Reduction and
Factorization (CORF) algorithm which was derived in the first part.

Ve then show why the CORF algorithmis nunerically unstable whereas
the Buneman al gorithns yield numerically accurate results. Finally,
we describe some numerical exanples and conpare the tinme and accuracy

of several nethods for solving them



10.  Accuracy of the CORF algorithm

As will be shown in Section 11, the CORF algorithm and the Buneman
algorithns are mathematically identical. The difference between the
methods lies in the way the right hand side is calculated at each
stage of the reduction. To the authors' know edge, this is the only
direct nethod for solving linear equations in which the right hand side
of the equations plays an inportant role in the nunerical solution of
the equations. In this section, we show the difficulties encountered
in using the CORF algorithm In Section 13, we will prove the stability
of the Buneman al gorithns.

Recal | from Section 3 that it is possible to compute A(r)yg‘r)

~

by the follow ng algorithm

_ oy (T) _ (r)
Jo =725 0 T A
(10.1)
2 _ r
Ny = 'Aﬂs-l -T Ng_o for s = 2,3...,2
so that
1, -y
~p 2
Because of roundoff error, one actually conmputes the sequence
~ o\ = (r)
To = 25 o om T Ayt T,
(10.2)
A 2 5 (s =2,...,2%)
Mg = g1 - k-2 + Zs-1 R



wher e 5 is the perturbation induced by the roundoff error. Again

as in Section 2, we wite
A-arQ , T=-qaQ (10.3)

where Q is the set of orthonornalized eigenvectors of A and T ,
and A and Q are the diagonal matrices of eigenvalues of A and T,

respectively. Thus substituting (10.3) into (10.2), we have

- 1
= 0 ht-3hit (10.13)
E =-ANE . -Q% _ 41 (10.4b)
28 ~s=1 28-2 ~8=-1 )
wher e
- T (r) _ T T
v =Q gj 2s Q s 2 Ts ~ Q és

Because A and Q are diagonal, we may wite an equation for each

conponent of &, ; viz.

MNE.  + oot - 1. (3 = 1,2,...,0) . (10.5)

E. + NLEL E.
Js s+l J3>s | "3ss-1 Js» s

The solution of (10.5) can be given explicitly. Consider the characteristic

equation

9.(a) = o? + Ao+ aﬁ =0
J J J

whi ch has roots BI and 73 , then
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Let

Then using the initial conditions (10.%a), we may wite (10.6a)as

fol |l ows:

Not e that

A2,
B

n

Bs _ 7s BS.-I _ 7S-I
e e

cos 4. when |xj/awj|

A

i}

cosh z.J when lkj/2w3| > 1

-20° cos(s 6.)¥ +S_:l oSt M
3 393 k%b 3 STh 6.

when |7\j/2wj‘ <1

S=l k1

inh (s-k)z.
sinh (s )zJ

- g - S-
-2&3 cosh(s Zj)yj'+k§g @ S nh Zj

when ij/a%” > 1 .
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7’3--

(10.7a)

(10.70)



—

cCos s Q.
J

S
ey X = B (M) (10.8)
cosh s 17,
J
given in Section 3. Thus
s-1
TOo— P (r) T
JS = S(A’T)XJ + ;:OQ SS-k Q §k (10’9)
where
rsH1mQ
_SIWJ,J when l?\.j/QU,)J_I <1 and i =]
m |
{Srﬁlj =X <
sinh mz,
ST 7 when “j/aﬂﬂ >1 and i = j
J
.
=0 for i £ ]

Therefore, if INJ-/ijl >1  the effect of the roundofe

error can be catastrophic. However, if ’xj/2w31‘< 1 we see from

(10.9) that 7 . My be a good numerical approxination to A(r)ygr)_

~

V¢ now apply the above results to Poisson's equation with

Dirichlet boundary conditions. fFor the five point difference operator

we have

%.J, = -2{1 + pg(l - COS %H >y = 1
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and
o = (&x/ay)  or (Ly/hx)

depending on how one orders the equations. By inspection
|>\J_/2a>j | > 1

for all j ; and hence for large s, equation (10.1) leads to a
nunerical ly unstable algorithm A simlar result holds for the nine
point difference approximation to Poisson's equation. Using the five
poi nt approximation with uniform mesh and any nunmber of grid points,
equation (10.9) predicts severe |oss of accuracy for nore than five
contractions on a CDC 6600; and this has actually been observed. As
noted in Section 3, Hockney [ 6, 7] has conbined one or nore steps of
CORF with the fast Fourier transformto produce a Poisson solver. For
such a use of CORF one nust pay careful attention to the above results.
The cyclic odd/even reduction method can be used successfully

for solving tridiagonal systens of equations. In that situation, one
must nmake provision for the fact that overflow can occur during the

reduction stages.
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11. The Buneman al gorithm and variants

In this section, we shall describe in detail the Buneman al gorithm
[2]and a variation of it. The difference between the Buneman al gorithm
and the CORF algorithmlies in the way the right hand side is calculated
at each stage of the reduction. Henceforth, we shall assume that in
the system of equations (2.5) T = IP' the identity matrix of
order p .

Again consider the system of equations as given by (2.5) wth

g =2 "-1. After one stage of cyclic reduction, we have

2
+ (2T - A )x, + X, _=y. . +y. . - Ay. (11.1)
P ~J ~Jt2  Z23-1 0 i+l 2 '

for j =2%...,q-1 With x_ = Xge1 = 9 the null vector. Note that

the right hand side of (11.1)may be witten as fol | ows:

(l) — — (l) -l 4 —l
Yy "5 T ¥y TAYy S ATTATY  yg )t Vg -2y (11D
wher e A(l) = (EIP - AQ)
Let us define
(1) _ ,-1 (1) (1)
. = A . . = -
PJ XJ ’ gJ ZJ-l " I5+1 %j
Then
1 1
g1 A )+ ) _ (11.5)
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After r reductions, we have by (3.3)

(r+1) _ (r) , (x)y _alx) (&) A
g ety AT (-4

Let us wite in a fashion sinilar to (11.3),

(r) _ (=) E)gr) R %(r) _ (11.5)

4 J

~J

Substituting (11.5) into (11.4) and making use of the identity

(r+1)

(A<r))2 =2T P—A from (3 3), we have the following relationships:

(r+1) _ (r) _ ,p(r)y-1,(r (r) _ (x) ,
B TR C TR TR g (11.62)
(r+1) _ (xr) + (r) _ 5 (r+l) .6b
45 _'ég_gr ~3+2r Egj (11.60)
for j =12t (i = 1,2,...,25T-1) with
(r)y _(r) (r)y ()
Po =2w1=20 =2k = °

To compute (A(r))'l(p(r)r+ p(r) - qgl;).) in (11 6a) we solve the
~5-28 Tgeet

system of equations

A LDy ) L) ()

= 32" et Y
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wher e A(r) is given by the factorization (3.10), viz.

o )
A(r) = - II (A+ 2 cos oﬁr ),
5E1 J P

ggr): (2j - 1)/t

After k reductions, one has the equation

k) (x) _(¥) + (k)
A( x, = A P AR
~pK NS S
and hence
(k) + (,(K)y-1 (k)
X, _D N -}
~of = oK ~plt
k : (k) y-1 (k)
rgein ONe uses the factorization of A( ) for computing (A"") 321«:
In order to back solve, we use the relationship
X s 2l ax . alx) pgr) * qgr)
~j_2r ~J ~jte ~ ~
soT (i - kAT 1) with x. = % o
for j =42 (i = 1,2,...,2 -~ X0 = N-Ekﬂ = °.
For j =3 0 ... 2%kH-2r , we solve the system of equations
A6 e o i ex (2.7
~d ~J ~dJ ~j_2r ~j+2r
using the factorization of , hence
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14

_ o\ _ (T) 11.8
X = s F (% - ps ) (11.8)

Thus the Buneman algorithm (variant 1) proceeds as follows:

1) Conpute the sequence {9(.r)’ Qgr)} by (11.6) for

~J ~J
. . k+1
r=1,...,k with péo)=9 for j =0,...,2 , and
. k+1
q(.o) =Yy for j = 1,2,...,27 -1 .

2) Backsolve for xj using (11.7) and (11.8).

£
It is possible to elimnate the sequence {pgr} . From (11.6b),

we note that

P§M) -3 (qgf%h ¥ nggh i ng)) (11.9)

~
~

wher e

Using (11.9) in (11.6a) and nodifying the subscripts and superscripts

appropriately, we have

(r+1) _ (r)  (r-1), (r) _ (x-1) ,(x) .
25 =%5.2n - YGan T Y L+ 45+2n

+ (A(r))‘l[%gf;i)_ E;fé)h+ q_gl:%l) . 2%(}‘) +

(r-1) _ () (r-1)
*an 0 7 Yron T Lgemn (11.10)
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—

for j = (27,27 %, ...,28 ~2F) with
(r) (r)
45 ° = 32k+1 =9 for all r
L0 _ y k+1
45 Vs for j= 1,2,...,27 ~.1 ,
(1) _ -1 :
S IS S 15 T for | = 2,4 ,..., 2
To solve for Xj , we use 'the relationships (11.7) and (11.9) so that
- 1, (r-1) (r-1) = (r)
572G Gy - % )-
_qalr)y -1 (r)
() T oy * Xy, - a0 - (111.11)

Thus the Buneman al gorithm (variant 2) proceeds as foll ows:
1) Conpute the sequence {q'™)} by (11.10) for ~
23 r=12,...,k .
2) Backsolve for X using (11.11).
~J

Note that the Buneman algorithm (variant 2) requires half the storage
that the Buneman al gorithm (variant 1) requires. However, the

variant 2 algorithm requires approximately twi ce as nmany additions

The Py '8 and qj 's can be witten in terms of the x 's. In

~J
Section 13, we shall show how this affects the stability of the nethods

Not e

11-5



= A C=x, 4+ A T(x,  +
BJ XJ fJ A (33-1 §j+l)
and
(1) (1)
. = 0 + . - 13
53 Xg-l XJ+1 2?3
_ -1, (1)
=X. - (A A
~J-2 ( ) (fj-l + i(,j—"l) + ,}Ej+2 g

By an inductive argument, it is possible to show that

(x) ()P
r r+l1 r
Py = x-S kzzl (%5 _(2x-1) * y(ore1))
and

(x) ) ) [T

r — r r r

35 _).(.J_er +(-1)7 s A ]:L:l (%5 (o) + X5+ (2x-1)
wher e
S@) _ (pler) (22) (01

11-6
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+

X

Ti+2

r

(11.12)

(11.13)



12. Applications of the Buneman al gorithmto Poisson's equation

As was pointed out in Section 4, matrices of the form(2.5)
arise in solving the five point finite difference approximtion to
Poi sson"s equation over a rectangular region with Dirichlet boundary
conditions and hence it is possible to use the nethods of Section 11.
For the five point approximation to Poisson's equation over a rectangul ar
region with Neumann or periodic boundary conditions it is necessary to
nmodi fy the Buneman al gorithns.

For the Neumann boundary conditions, we have the system of

equations
hxy 2 = Y
X1 + A’fj + Xiep T Y; (j =1,2,...,m-1),
me-l +A2‘(m = ¥, with m= 25
Vi define
Zgl) = A(l)ggl) + ggl) for j = O,E,M,...,Qkﬁl
wher e
R L COE O
TR R e LR R
ol sty ol - e - )
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In general then, as in Section 11, we have for r = 1,2,...,k-1
(r+1) _ (r+l) (r+1) + (r+l)
Y3 =4 %5 %
wher e
pérﬂ) g(()r)_(A(r))-:L ;) %ér)) , g(()ﬁl) _ 2(q;(:r) ~(():c+1))
p(THL) _ () (r)y-1 v o™ _ L (x) (r+1) _ (r) , () (r+1)
~J PJ B (A ) ( j-Er :j+2 i J ) ilej ~J_2r %j.{_gr 2~j
for j =125t (i =1,2...,2571)
~r51r+l) (r) (A(r)) l(zgr(nr,;r - (I')) (r+1) _ 2&;::; _Eggnrﬂ_)
Finally,
(k+l) - <k+l) (k+l) + (k+l) 12.1
Ik B 2k 3k (12.1)
wher e
(1) o (a(8)2
S BTl SR I (12.2
(kt1) _ (k) (%) . . (kt1)
1k % 4+ °12k+1p Ik
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r

From (5.4) we see that

B(k+1)X L= B(k+l)p(l;+l) + q(IPSfl)
~p ~p ~p
so that
k+1 k+1)\- _(k+1
o, o o) (plerd)y ()
~p ~D ~2

(B(k+l))'q§§+l) indicates a solution to the singular system

B&H%EE ﬂbi% =<§f”

2 2 2

The factorization of B(

The backsubstitution process proceeds as in Section 11

possible to elimnate the p§r)

~

section

For periodi ¢ boundary conditions,

+ + X =
Ai{l 3.{2 + m

. + + X =
Xt A X4l
+ AX
10+ Fual

W define

Y. 1)

AOPCRC

(
35

~

wher e

12-3

1

. for |j
s J
I

for j =

= 2,%,..

kt+1)

[t is also

sequence as was done in the previous

we have the system of equations

.,l’l’l—l y

is given by (5.6).



ety ol ey ey -al

(l) _ -1 (l) 1)
,..J = A .‘.’.:'J[ ) J = Zj-l + g,j'i'l - 295 ) (J = h)6: ,m-2) )
(1) -1 (1) (1)
by 0= A Im 2 % -V Y1 T QP,Jn

In general for r = 1,2,...,k-1 ,

L) () (1) 4 (red)

r+l1 . k-
~j ~j ~J (l - 1,2,0.-,2 z)

for j =12

a

() o2y, 2] L o) g () gprD)

= - ~ + 3 = :'
r+l r+l ro2z0T Zortl gﬁl 2ot b ﬁl

fl

b}

:,.(r)r-,:qjgr)) ) (;‘*—l) = QEI‘) (r) Qp(r'*'l)
- J*e - NJ-Q J+2

a

(r+1) _ _(x)  ,,(r)y-1, () + _(r) (r) (rt1) _ (x) + (x) (r+1)
D TNt nﬁ*}'-gmr)’ 4y —:2r+mr2\r ENmr

Finally as (12.1),

wher e
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Lo (k) (k) (k+1) _ 5 (K) _ ) (kF1)
- Eéiﬂ) = f?“]? - (A(k) ) (Egékzl'ggk ) R 2“321&1 l‘Egk

(k1)

and B is defined by ((12.2). Then

Se)_ pled) J(e1) )

~2k ~2k ~2k
so that
k+1)y - (k+1)
- X _ p(iﬂ-) + (B( )) q(k )
~p ~2 ~p

The backsubstitution process proceeds as |Nn Section 11,

{r) . .
It is possible to express ;5*’ and qgr) in terns of X as in
equations (I1.12) and (11.13).
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13. Accuracy of the Buneman Al gorithns

As was shown in Section 11, the Buneman algorithnms consist of

generating the sequence of vectors {pgr),q(r)} . Let us wite using

(11.12) and (11.13)

(r) _ (), ()

5 IS I 5

q{r) =X tx

~d ,..J._e.x. J+2r
wher e

gér) _ (_l)r+l S(r?
and

s(®) | (1)
Then

12 -5 < ™y

1 (r) - +x

Jgj ”j§2r ~ 542"
wher e

2r--l

L (x

k=1 "

J

+
j-(2k-1) © Ej+(2k-1)

\\v‘hz i ndi cates the Euclidean normof a vector v ,

||C||2 indicates the spectral nom of a matrix C, and

I Il
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Wen T =l pr we may redefine the polynomals given in Section 3

in the followng way. Let
v=-al2 ,
and define

y=cos e for |yl <1

=cosh & for |y| >1
Then in a sinmlar fashion to (10.8),

p k(a) =-2 cos(2k cos™t ¥) for |yl <1
2

= -2 cosh(gk COSh_l \],r) for |\UI 2 1.

Thus for A = AT ,

15 | -rt @),
J:

r-1 1
TT max 1 [p ;05) 177

=0 {12

wher e {kig are the eigenvalues of A. Therefore for

r-1 .
=o7F Tl;) n%ag.x}[cosh ! Oi]

I, -1

E

wher e

-1
6, = cosh (- xi/e)

13-2
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Finally,

(r) (r) -r+l r-l 3 -1 r
stoal, =2 max T [cosh 29 6,] h 27 0,
H ‘2 X {Qi} (j:O i ) X cos 5

when |r.|>2
l —

For the five point difference approximation to Poisson's equation

over a rectangular region with Dirichlet boundary conditions

_ 2 im
N, = -2(1+ p%(2 - cos ﬁ))

where p = &x/oy or (oy/ox) depending on the ordering of the

equations. Thus

- -1 2 A
6, = cosh (1L + p°(1 - cos orT )
which inplies Gi>1for all i . Then

max [cosh o 9.]—1 = [cosh o9 {cosh-l(l + p2(l - cos L))}]_l .
0.3 i ptl
|
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Thus after sone sinplification,

-Ce

() e 1 -coy 6)
r 13
= 2
(1+ e )
j=0
wh = of1 ne. =1+p°(1-.. 1
ere C =2 -1, cos 1" e P
A simlar calculation shows
o
“A(f) S(T)Hz <D e® ‘ (13.7)
() will be a
Therefore from (13.6) we see that for large r, 0.

good approximation to X, . And from (13.5) and (13.7), we see that

8

C(x L+ x <z2e? X

~j+2r)H2

so that the ||q§r)”2 remai ns bounded throughout the cal cul ation. Thi s
expl ains why the Buneman algorithms lead to nunerically stable results

for solving the finite difference approximation to Poisson's equati on.

13-4
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14. Concl usi ons

The Appendix contains the results of some numerical experiments
invol ving the application of the Buneman al gorithm (variant 1), the
nmethod of matrix deconposition, the nethod of point successive
over-relaxation (cf. [10]), and the Peaceman-Rachford alternating
direction method (cf. [11]) to the five point finite difference
approxi mation to Laplace's equation over a rectangle with Dirichlet
boundary conditions. In these experinents the Buneman al gorithm was
the nmost efficient and accurate; however, the nmethod of matrix
deconposition was conpetitive in several cases. W conclude, therefore,
that the Buneman algorithm and the nethod of matrix decamposition

are useful nethods in the situations where they apply.
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Appendix

Nurerical  Experinents

In order to gain conputational experience with the methods of matrix
deconposition (MD) and the Buneman al gorithm (variant 1), it was decided to
apply the algorithms to the five point difference approximation of Laplace's
equation with Dirichlet boundary conditions. In addition, in order to
conpare these nethods with established nmethods, it was decided to apply
the methods of point successive over-relaxation (SOR) (cf. [10]) and
Peacenan- Rachford alternating direction method (PR) (cf. [11]) to the
sane problens. W did not attenpt to-determine which nmethod is best in
general. Those interested in operation counts, variations of these direct
procedures, and customzing the direct procedures for particular problens
are referred to [4] and [7].

The followi ng problens were chosen so that the -computed error could
be detem ned exactly:

Problem 41, u =1

Probl em #2, u = cos(x) cosh(y) ;

Probl em 43, u = &*(sin(y) + cos(y)) ;

Probl em 44, u = X - 10x5y2 + SxylL

Let
<conputed sol ution of the difference equation>

=]
1

and

(Hrlnea;;l){'a i’ l.O} 5

the tabulated error is

max u - u
(mesh) '~ d I

One should note that in many cases the tabulated error is the truncation
error of the difference equation.

A



Each of these problems was solved on the followi ng neshes (includes

boundary points):

Mesh #1 20 by 129,

) Mesh #e 40 by 129 ,

Mesh #3 80 by 129 ,

- Mesh #s 129 by 129 ,
- Let p = 2&x/Ay . Each of the four problens was solved on each of the

four meshes for five values of p:

| Ax Ay o,

— 1 .025 .00025 .01
2 .025 .0025 .1
- 3 .025 .025 1.0
_ 4 .0025 .025 10.0
5 .00025 .025 100.0

Thus each probl emwas solved on a total of twenty rectangul ar regions
These regions were chosen such that the |lower |eft-hand corner of the
rectangle was always at the origin. The following is a table of the

coordinates of the upper right-hand corners:

Mesh #1 '
p ( .5, .032)
oy (-5 -322)
(.5, 3.225)
), ( -05 3.225)

p5(.oo5, 3.225)

Mesh #2 .
(1., .032)
(1., .322)
(1., 3.225)
(.1, 3.225)

( .01,3.225)

A2

Mesh #5

(2., .032)
(2., .322)
(2., 3.225)
(.2, 3.225)

( .02,3.225)

Mesh #4

(4., .032)
(L., .322)
(k., 3.225)
(.4, 3.225)

(.0k, 3.225)



V¢ define
V(p,1,j) = max {solution of prob #p on region with Py and nmesh #j}

-min [solution of prob #p on region with ps and nesh #;j}

Note v(i,r,j) = O for all i and j . The follow ng tables give V

for the other problens:

v(2,1,])

Mesh #1 Mesh #2 Mesh #3 Mesh #b

Py .1 pite) 1.37 2.0
Py .15 A7 1.44 2.1
o 11.1 11.4 16.4 2k.o
Py, 11.0 11.0 11. 11.
o 11.0 11.0 11. 11.
V(3,1,3)
Mesh #1 Mesh #2 Mesh #3 Mesh #4

Pl .59 1.64 6.22 23.6
on .95 2.24 7.84 29.2
P 3.84 6.32 17.2 58.5
o), 2.56 2.7 2.97 3.36
P 2.46 2. 47 2.5 2.53
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v(k,1,35)

Mesh #1 Mesh #2 Mesh #3 Mesh #

Py .018 ST 28.2 323 .0
fo "o U 28.3 323 .0
o3 219.5 400.0 556.0 1733 .0
o), 22.9 48.2 98.2 158.0
Ps 2.29 4.82 9.9 16.1

For the above rectangles, the optimum relaxation factor is given by

. 2
mb(l’«]) =
l+\/l-Bij
wher e
2 cos T + cos T
Py N, -1 128
B.. =

! 2(p5 + 1)

and N.‘_J is the nunber of grid points in the x-direction of the j-th mesh.
The initial guess for SOR and PR was the zero vector.

The iteration process was termnated when

|t |

max = < 10-)+
(entire mesh) | U |
|t*| > 1077

Optimum PR paraneters were deternined by Wachspress's al gorithm [11]




for cycles of length ok Conver gence required

max max < lo—u
(complete cycle) (entire nesh)
u?| > 1072

Because of this convergence criterion, a short cycle was desirable.
After some experinentation, it was decided to use a cycle length of
four exclusively.

Al problens were run on a CDC 6600 (about 14 decimal digits of

accuracy); -the RR MD, and Buneman programs all used the same tridiagonal

system solver. The Q matrix and eigenvalues required by MD were

computed with the QR algorithm for symmetric tridiagonal natrices. The
matrix nmultiplications (QTy) required by MD were performed with a
machi ne | anguage inner product routine which is quite efficient and
which accumul ates the inner products in double precision. It should be
noted that for problems with uniform nmesh spacing, these matrix products
may be perfornmed with the fast Fourier transform and this makes M
conpetitive in speed with the Buneman algorithm However, MD is capable
of handling nore general problems such as those with non-uniform nesh
spacings; in these cases Q nust be conputed and the matrix products
performed. Thus the MD routine used in this study gives an indication
of the kind of performance one mght expect with these nore general
problenms. Note also that the matrix nultiplication (QTy) requires
O(q:pg) operations. The Buneman al gorithmrequires a total of

O(qp log, p) operations. Thus as p beconmes small,

MD approaches the Buneman algorithmin speed.
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The following tables of computation tines are normalized by the

time required for the Buneman al gorithmon Mesh #1:

Conputation tines for the Buneman al gorithm (variant 1) and MD

Mesh #1 Mesh #2 Mesh #3 Mesh 4

Buneman 1.0 2.08 4.31 6.96

MD 1.18 3.65 14.9 41.0

Conputation time for PR

(These times are averages over all four problens.)

Mesh #1 Mesh #2 Mesh #3 Mesh #b

P1 2.56 5.17 9.43 15.2
Po 4.85 10.3 20.6 30.1
P 5.44 12.6 31.2 47.7
o), 2.56 7.61 15.2 325
Pc 2.25 L.ho 8.58 13.5

Conputation time for SOR

(These tines are averages over all four problems.)

Mesh #1 Mesh #2 Mesh #% Mesh #

°1 ko.9 89.0
P2 45.1 97.9
P3 16.1 60. 1 (not run) (not run)
o 7.58 32.9
fs 7.22 28.8
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Rel ative error for the Buneman al gorithm Mesh #1

Prob 1 Prob 2
P 4(-11) 7(-9)
Po 2(-11) 5(-7)
P 5(-13) 2(-6)
o) 2(-13) 1 -g)
Ps 2(-13) 1(-10)

Relative error for MD, Mesh #1

Prob 1 Prob 2
P1 5(-7) 5(-7)
Po 1(-7) 5(-T)
Pz 1(-9) 2(-6)
o, 2(-10) 1(-8)
Ps5 8(-10) 7(-10)

Rel ative error for PR Mesh #1

Prob 1 Prob 2
Py 2(-11) 7(-9)
o, 2 -3 5(-7)
Pz 7(-~8) 2(-6)
Py 2(-9) 1(-8)
Ps 8(-13) 1(-10)

Prob 3
6(-9)
4(-7)
2(-6)
1(-8)

1(-10)

Prob 3
L(-7)
k(-T)
2(-6)
1(-8)
7(-10)

Prob 3
6(-9)
4(-7)
2(-6)
1(-8)

1(-10)

Prob 4
3(-7)
2(-5)
h(-7)
2(-9)
2(-11)

Prob &
3(-7)
2(-5)
L(-7)
2(-9)
6(-10)

Prob 4
3(-7)
2(-5)
L(-7)
2(-9)
2(-11)



Rel ative error for SOR Mesh #1

Prob 1
b( -b)
1(-3)
5(-1)
3(-1)
3(-4)

Prob 2
B( -b)
1(-3)
1( -b)
3(-4)
3(-4)

Prob 3
B(-4)
1(-3)
1(-1)
3(-4)
3(-k)

Prob L
3(-6)
2(-5)
L(-7)
9(-6)
5(-5)

Rel ative error for the Buneman al gorithm Mesh #2

Prob 1 Prob 2
Py L(-11) 7(-9)
Po 5(-11) 6(-7)
P3 2(-12) 5(-6)
o) 3(-13) 5(-8)
Pe 7(-13) 6(-10)

Rel ative error for MD, Mesh #2

Prob 1 Prob 2
Py 1(-7) 8(-8)
o 5(-8) 6(-7)
P 2(-9) 5(-6)
Py, 2(-9) 6( -8)
P 5(-10) 1(-9)

Prob 3
6(-9)
4(-7)
7(-6)
6( -8)
6(-10)

Prob 3
1(-7)
5(-7)
7(-6)
6( -8)
1(-9)
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Prob 4
7(=7)
5(-5)
2( -6)
8(-9)
8(-11)

Prob L
8(-7)
5(-5)
2( -6)
8(-9)
3(-10)



Rel ative error for PR, Mesh #2

- Prob 1
oy 2-11)

- b, M-8

. Pz k(-6)
N 8(-10)

- Ps 3(-12)

Rel ative error for SOR Mesh #

Prob 2
7(-9)
6(-T)
I(-6)
6 -8)
6(-10)

- Prob 1
)
N oy (k)
_ P3 1(-3)
N 5(-4)
- p5 L( -L)

Rel ative error for the

Prob 2
(-4
5(-4)
6( -k)
B( k)

L -4

Prob 3
7(-9)
b(-7)
7(-6)
6(-8)
6(-10)

Prob L
2(-)
5(-5)
2(-6)
7(-7)
8(-5)

Buneman al gorithm Mesh #3

- Prob 1
Py 4(-11)
) 0,  3(-11)
Ps 1(-11)
P), k(-13)
- Ps 2(-12)

Prob 2
7(-9)
6(-7)
8( -6)
2(-7)
2(-9)

Prob 3
6(-9)
L(-7)
1(-5)
2(-7)
3(-9)
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Prob .4
5(-8)
5(-6)
1(-5)
3(-8)
3(-9)



Rel ative error for MD, Mesh #3

Prob 3
7(-9)
L(-7)
1(-5)
2(-7)
3(-9)

Prob 7
6(-9)
L(-7)
1(-5)
2(-7)
3(-9)

Prob L
5(-8)
5(-6)
1(-5)
3(-8)
7(~10)

Prob A
5(-8)
L(-6)
1(-5)
3(-8)
3(-10)

Bunenman al gorithm Mesh #4

Prob 1 Prob 2
o, 1(-9)  8(-9)
Ps 1(-9) 6(-7)
o5 8(-10) 8(-6)
Py, 8(-10) 2(-7)
Pg 8(-10) 3(-9)

Rel ative error for PR Mesh #3

Prob 1 Prob 2
oy L(-11)  7(-9)
o, 6(-8)  6(-)
o5 3(-6)  8(-6)
o), 2(-7) 3(-7)
Ps 1(-11) 3(-9)

Relative error for the

Prob 1 Prob 2
o A1) 7(-9)
op  3(-11)  6(-7)
P 3(-11) 8(-6)
P), 1(-12) 5(-7)
b M-12)  6(-9)

Prob 3

6(-9)
4(-7)
2(-5)
6(-7)
7(-9)
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Prob 4
8(-9)
7(-7)
1(-5)
8(-8)
8(-10)
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Rel ative error for MD, Mesh #:

Prob 1 Prob 2
oy (D) 5(-7)
Ps 2( -9) 6(-7)
P 2( -9) 8( -6)
Py, 3(-9) L(-7)
o5 3(-9) 9(-9)

Rel ative error for PR Mesh #:

Prob 1 Prob 2
Py 1(-11) 7(-9)
Po 6 -8) 6(-7)
P3 1(-5) 8( -6)
ey, 6( -8) L(-7)
Pg 3(-11) 6( -9)

Prob 3
L(-7)
B -7)
2(-5)
6(-7)
9(-9)

Prob 3
6( -9)
L(-7)
2(-5)
6( -7)
7(-9)
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Prob k4
8(-9)
7(-7)
1( -5)
8(-8)
8(-10)
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