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. .
Several algorithms are presented for solving linear least squares

problems; the basic tool is orthogonalization techniques. A highly

accurate algorithm is presented for solving least squares problems with

linear inequality constraints. A method is also given for finding the
least squares solution when there is a quadratic constraint on the

solution.
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One of the most common problems in any computation center is that of

finding linear least squares solutions. These problems arise in a variety

of areas and in a variety of contexts. For instance, the data may be

arriving sequentially from a source and there may be some constraint on

the solution. Linear least squares problems are particularly difficult

to solve because they frequently involve large quantities of data, and

they are ill-conditioned by their very nature.

In this paper, we shall present several numerical algorithms for

solving linear least squares problems in a highly accurate manner. In

addition, we shall give an algorithm for solving linear least squares

problem with linear inequality constraints.

1. Linear least sauares

1
1
L
I
L
L
L
!
i

Let A be a given mxn real matrix of rank r and b a given

vector. We wish to determine % such that

m n

C(
is1

bi - Ca..x.)
2 = min.

i=l lJ J

or using matrix notation

\lb-A_x/j2 = min.

If m>n and r<n, then there is no unique solution. Under these
m

conditions, we require amongst

II II2- 2 = min.

For r =n, % satisfies the normal equations

ATA;( = ATb .

Unfortunately, the matrix

influenced greatly by roundoff

this well. Suppose

bl>

those vectors E which satisfy (1.1) that

ATA is frequently ill-conditioned and

errors. The following example illustrates

1

(1.2)
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which is clearly of rank 4 . Then .

1+s2

ATA = I 1

1 1 1

l+s

2

11 1 1 2l+e 1'
1 1 1 l+s2

1 .
and the

eigenvalues of ATA are 4+&
2 2 2 2. ,E ,E ,& . Assume that the

elements of ATA are computed using double-precision arithmetic, and then

rounded to single precision accuracy. Now let q be the largest number

on the computersuch that fl(l+q) = 1 where fR(...) indicates the

floating point computation. Then if E < Jrl ,

T(A A

i

1

1
8) = 1

1

a matrix of rank one, and consequently, no matter how accurate the linear

equation solver it will be impossible to solve the normal equations (1.2).

LONGIJSY  [1967] has given examples in which the solution of the normal

equations leads to almost no digits of accuracy of the least squares problem.

2.

Now 11~11~ = (~~y)'/~NN

QTQ=I.

A matrix decomposition

SO that IlQ$, = lly/12 when Q is an orthogonal

Thus

11  b-Ax11  2 = 11 C-QIX~~ 2- H H

where c = Qb and Q is an orthogonal matrix. We choose Q so that
N

gcI=R= (2.1)
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where ?I is an upper triangular matrix m. Let

R =-I rll r12 l ' l rln

r22 l l � r2n

0

. . .
.

.
r

then

lI_b-A& = cc 1-rllxl-r12x2 - . . . -
+(c-r 2

2 22x2 - l ** - '2nxn)

+ + (c,-r 2. . .
nnxn)

+ c
2
n+l

+ c2 + 2
n+2 . . . + c

m'--.

Thus lib-A& is minimized when

rll 1
3+r?+

12 2 l ** +
2.

L n = '1

% +r22 2 . . . + r2n"xn = c2

.

.
r ^x =c!
nn n n

i.e., R? = E, where

ET = (yp”” Cn> Y

and

rlnxn)2

l/b-Aqg = cz+l + cE+2  + . . . + cN N z .

!Chen

RTR = [x:OjT[$O] r iT;;
. .

= ~aAIT~eAl =ATA y

-T-and thus R R is simply the Cholesky decomposition of ATA .

There are a number of ways to achieve the decomposition of (2.1);

e.g. one could apply a sequence of plane rotations to annihilate the

elements below the diagonal of A . A very effective method to realize

3



the decomposition (2.1) is via Householder transformations. A matrix P

is said to be a Householder transformation if

P = I - 2uuT , uTu = 1 .NN NCV
. .

Note that 1) P = PT and 2) PPT = I - 2uuT - 2uuT + 4uuTuuT  = I soNM MN MN --
that P is a symmetric, orthogonal transformation.

Let A (1) = A and let A (2) , A (3)
>***>

Ab+') be defined as follows:

(k = 1,2,...,n)

where P ( >k I= ( >k
. The matrix P is

chosen so that (k+l> (k+l) - (k+l)
ak+l k = ak+2 k = . . . = a _ = 0 . Thus after k

9 > n,k
transformations

Ack+‘) =

(2) ( 12
all al2 l

(3)
"22 l

.

.

.

k+l
a:k )

0

.

.

.

.

a(k+l>
m,k+l

0
aln

(3)
a2n

k-t1
'h )

. I

.

.

a (k+1)-J
Note that jakk(k+l)( = (aik))2)1j2 since P ( >k is an orthogonal

transformation. The details of the computation are given in BUSINGER and I

GOLUB [lg65] and GOLUB [1965]. The Householder transformations have been used

in a highly effective manner by KALPON et al. [1968] in the implementation- -
of the projection gradient method.

Clearly

i

4



and

Q = p(")ph-')
. . l

p(l)

although one need not compute Q explicitly. The number of multiplications

required to produce R is roughly mn2-(n3/3) whereas approximately .
mn2/2 multiplications are required to form the normal equations (1.2).

3. The practical procedure

It is known that the Cholesky method for solving systems of equations

is numerically stable even if no interchanges of rows and columns are

performed. Since we are in effect performing a Cholesky decomposition

of ATA no interchanges of the columns of A are needed in most

situations. Hcwever, numerical experiments have indicated that the

accuracy is slightly improved by the interchange strategies outlined

below, and consequently, in order to ensure the utmost accuracy one

should choose the columns of A by some strategy.
04

In what follows,

we shall refer to the matrix A even if some of the columns have

been interchanged.

One possibility is to choose at the kth stage the columns of

A od which will maximize I (k 111+
"kk l

This is equivalent to searching for

the maximum diagonal element in the Cholesky decomposition of ATA .

Let

sck) = fJ (a!"!>"
3

for
j&. llJ

j = k,k+l,...,n .

-Then since
- (k)

jaLr')( = (sLk))U2 , one should choose that column for which

: s.
J

is maximized. After A(k+l) has been computed, one can compute

(k+l)
'3

as follows:

s (k+l) s(k) (a(k+l) )2
J

=
3 - k,j

(j = k+l,...,n)

since the orthogonal transformations leave the column lengths invariant.

Naturally, the ( >k
s. ( >k
3

Is must be interchanged if the columns of A are
interchanged.

I

5



The above strategy is useful in determining the rank of a matrix.

If the rank of A is r and the arithmetic is performed exactly, then

after r transformations

and

Acr+” = [i!f!! __...._ 1 .:I;:& ] ,
I

(r+l) _ 0
5 -

for j = r+l,...,n

which implies N = 0 . In most situations, however, where rounded

arithmetic is used /INI/ = E . It is not easy to determine bounds on e

when the rank of A is unknown.

The strategy described above is most appropriate when one has a

sequence of vec%ors b b
-lY-2'"',,bp for which one desires a least squares

estimate. In many problems, there is but one vector b and one wishes

to express it in as few columns of A as possible. O"r more precisely,

one wishes to determine the k indices such that

n k

C(bi - Ea.. 2. )2 = min.
i=l u=l iJU J,

We cannot solve this problem, but we shall show how to choose index k

when the first k-l indices are given so that the sum of squares of

residuals is maximally reduced. Thi is tlle stage-wise regression problem.

We define

;(k+l) =

Let c

;(k-1;

. . T

0 l

.

.
*

(1) = b and cck+') = p(k)c(k) . Now R(k)fc(k'l) = Fck >
N

is the least squares estimate based on (k-1) columns

E w- = Thus by (2.2)

rll . . .
rlk

r22 . . .
r2k

(2)
alk

(3 >
a2k

k+a,lk ')

6
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= f (,(k+l))2  _ (,(k+l)):!.
j-k -.J k

since length is preserved under an orthogonal transformation. Consequently,
we wish to choose that column of A 04 which will maximize I (k 1)/+

'k l

Let

t od
j =

for j = k+l,...,n .

Then since k/cck+l)l = I(~~=, ai$ik))/skk)I , one should choose that

column of A 04 for which (t is maximized. After P k is( >

applied to A (k)
Y one can adjust

3
as follows:

t (k+l) t(k)
3

=
2 - "kj

(k+l)cljk+l) .

In many statistical applications, if (tq~,sw
3 2

is sufficiently small,
then no further transformations are performed.

4. Statistical calculations

In many statistical calculations, it is necessary to compute certain
-auxiliary information associated with ATA . These can readily be obtained
:from the orthogonal decomposition. Thus

det(ATA) = (rll x r22 x . . . xr,,) 2 .

Since

ATA = "RT"R -1
Y (ATA) = ;;-l"R-T

.

The inverse of i can be readily obtained since i is an upper triangular
matrix. It is possible to- calculate cATA>

-1
directly from R . Let

7



CATA, -1 = x = (lcl,x2,...,~n) l

Then from the relationship

t

L-

and by noting that {?T}ii = l/rii , it is possible to compute
,XnyX-n-l Ye*-, :1 l

The number of operations is roughly the same as in the first method but

more accurate bounds may be established for this method provided all inner

products are accumulated to double precision.

In some applications, the original set of observations are augmented

by an additional set of observations. In this case, it is not necessary

to begin the calculation from the beginning again if the method of

orthogonalization is used. Let $Zl correspond to the original data
--.

after it has been reduced by orthogonal transformations and let A2,b2

correspond to the additional observations. Then the up-dated least squares

solution can be obtained directly from

L
A =

i

i
i

i

i

Ii

i

i
L

This follows immediately

A2
. . .: 1il

b
b2= H. . .

E
-1

the fact that the of two orthogonal

transformations is an orthogonal transformation.

The above observation has another implication. One of the arguments

frequently advanced for using normal equations is that only n(n+l)/2

memory locations are required. By partitioning the matrix A by rows,

however, then similarly only n(n+1)/2 locations are needed when the

method of orthogonalization is used.

In certain statistical applications, it is desirable to remove a row

of the matrix A after the least squares solution has been obtained. This

can be done in a very simple manner. Consider the matrix

A = [.!6.] and ,d = [.&.I

where a is the row of A which one wishes to remove, @ is the corresponding

element of b , and i g/-l . Note that
I

8
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sTs = “RT;; - aTa = ATA - olro! .

Let

I cos 8 0 .

We choose cos 8 so that (J2)}
n+l,l = 0 . Thus

NN

. . l sin 8a.

.

1 0

0 -cos 8

and S (2)
= 'l,n+l

0)s .

(d2)) l,l = J(+2,)

(d2)]

1,j = (rllrlj-alaj )lJ(r~,-ol2,) j = 2,3,. . l in

(d2)]
n+l,j = i(CX r1 lj-clljrll )/to++ j = 2,3,...,n .

Note no complex arithmetic is really necessary. The process is continued

as follows:

Let

Z
k,n+l =

k n+l

1 .

1 .. .". ..
. . l . c o s  8k

0 ....
sin (

0

. 1

.

.

e

sin 8k '

9

.
1 ..

. . -co; c

'k
k

n+l

.
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Then

s +(k 1 >
= 'k,n+l'

(k
> k = 1,2,...,n ,

. .

and cos 0
k

is determined so that (S (k+O ] - 0 .
k,n+l -

Thus roughly 3n2

multiplications and divisions and n square roots are required to form the

new ii .

Suppose it is desirable to add an additional variable so that the

matrix A is augmented by a vector Q bay>. The first n columns of
"n
R ( 1 are unchanged. Now one computes

h =P" . ..P( > P)p(l) g .

From h one can compute pb+u and apply it to P ( >n . ..P ( >l b . This-=.
technique is also useful when an auxiliary serial storage (e.g. magnetic

tape) is used.

It is also possible to drop one of the variables in a simple fashion

after E has been computed. For example, suppose we wish to drop

variable 1 , then

'r12 l l rln

r22 . . .

.

3
*\ .
‘\\

r
nn

nx(n-1)

*By using plane rotations, similar to those given by (4.1), it is possible

to reduce R to the triangular form again.

5a Gram-Schmidt orthogonalization

In $2, it was shown that it is possible to write

QA=R . * (54

The matrix Q is constructed as a' product of Householder transformations.

10
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From (54, we see that

A = & 3 PS

where PTP t In , S : 7. Each row of S and each column of P is. .
uniquely determined up to a scalar factor of modulus one. In order to avoid
computing square roots, we modify the algorithms so that S is an upper

triangular matrix with ones on the diagonal. Thus PTP =D, a diagonal
matrix. The calculation of P and S may be calculated in two ways.

4 Classical Gram-Schmidt Algorithm (CGSA)

The elements of S are computed one column at a time. Let

=6. d l< i,j < k-l liji ' - -

At step k , we compute

S -jk = ~_pT _ak/di) ) l< i < k-l- -

e b) Modified Gram-Schmidt Algorithm(MGSA)

Here the elements of S are computed one row at a time. We define

dk) = (gl,p2,  l l �,pk pik), . . .,ack))

SW- - ,n

and assume

= 6..d
1~ i , qT a(k) = 0

-i -1 9 l<i,jsk-1 , k<.!<n.- -

At step k , we take p = a k( >
-k -k ' and compute

s = /j&ii: 9 'kj = (2; ,6k))/4, ., "kk+' > = (k
3

>
-Skk! ,Pk ' k+lz a < n .

IL
11
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In both procedures, Skk = 1 . The two procedures in the absence of

roundoff errors , produce the same decomposition. However, they have

completely different numerical properties when n>2. If A is at all

"ill-conditioned", then using the CGSA, the computed columns of P will

soon lose their orthogonality. Consequently, one should never use the

CGSA without reorthogonalization, which greatly increases the amount of

computation. Reorthogonalization is never needed when using the MGSA.

A careful roundoff analysis is given by BJkK [1967]. RICE [1966] has

shown experimentally that the MGSA produces excellent results.

The MGSA has the advantages that it is relatively easy to program,

and experimentally (cf. JORDAN [1968]), it seems to be slightly more

accurate than the Householder procedure. However, it requires roughly

mn2/2 operations which is slightly more than that necessary in the

Householder pro%edure.  Furthermore, it is not as simple as the Householder

procedure to add observations.

6. Sensitivity of the solution

We consider first the inherent sensitivity of the solution of the

least squares problem. For this purpose it is convenient to introduce the

condition number K(A) of a non-square matrix A . This is defined by

K(A) = ‘,/‘n ) ‘1 = Inax llA~l12 / Il~\l2 ) ‘n = min \lAzl12  / llxl12
x+0 X#O

so that d
2 2

and 0 are the greatest and the least eigenvalues of ATA .

From its difinitionnit is clear that K(A) is invariant with respect to

Iunitary transformations. If i is defined as in (2.1) then

q”R) = al(A) , o,(R) = o,(A) , K(“R) = K(A) ,

while

o#) = @II, and on(E) = 1/ @-‘\I2 .

The commonest method of solving least squares problems is via the normal

equations s

ATAx = ATb . I

12

(6.1)
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The matrix ATA is square and we have

K (ATA) = K~(A)  .

This means that if A has a condition number of the order of $P

ATA has a condition number of order
. . then

2t and it will not be possible

using t-digit arithmetic to solve (6.1). The method of orthogonal

transformations replaces the least squares problem by the solution of

the equations Ex = z and K(z)  = K(A) . It would therefore seem to have

substantial advantages since we avoid working with a matrix with condition

number K~(A) .

We now show that this last remark is an oversimplification. To this '
end, we compare the solution of the original system [A : b] with that of

. N
a perturbed system. It is convenient to assume that

--.

01 = II412 = lly, = 1 ;
this is not in any sense a restriction since we can make IIAII~ and I(bJ/2

of order unity merely by scaling by an appropriate power of two. We now

have
I

40 = K(i) = /ii-l\l, = l/a
I n'

Consider the perturbed system

(A + eE : b + Ee). - N j PII = ll~ll, = 1 9

* where s is to be arbitrarily small. The solution 2 of the perturbed
N

system satisfies the equation

(A + &EIT(A + GE);; = (A + EE)T(b + Ee) .
CI (6.2)N w

If 2 is the exact solution of the original system and Q is the exact
N

fi
. . . I0 '

Q(A + EE) =

and

orthogonal transformation corresponding to A we have

r = b-A; , ATr = 8 .L1 w CI LI N

13



Ii
rl
: !
L

I
i’

L
L

Equation (6.2) therefore becomes

/

CA + eEIT(A + EE) = (AT + eET)(Ax + r + ae)N N

giving
, . .

Neglecting ~2 where advantageous,

(' + &F)
T-
(R + EF); = .(li + EF)' & + E(R + ,F)T f + EET r + o(E2) ,N 0.4

5;= (fi + ,F)-l --RX ' e(i + sF)'l f + s(iTii)-l ETr + o(s2)

-.

giving

2 1X - Efi- -T-
N F' + &R-l f + ,R'l f + s(R R)O1'ETr + 0(,2)N . N N

,

’ ILY, 5 dI~-111211d1211~112  + dI~-‘/1211fI12  + &T’II~ /E/12/lr(12 + o(E2>NN N

5 ~K@)l~~~i,m + eK(A) + eK2(A)l/r\12 + O(E~) .m

We observe that the bounds include a term eK2(A)l(ro2  . It is easy to

verify by means of a 3 x 2 matrix A that this bound is realistic and

that an error of this order of magnitude does indeed result from almost

any such perturbation E of A . We conclude that although the use of

m the orthogonal transformation avoids some of the ill effects inherent in

the use of the normal= 2u&ions Dhe value K (A) is still relevant to some

extent.

Yen the equations are compatible Il_rll, = 0 and the term in K~(A)

d&appears. In the non-singular linear equation case r is always null

and hence it is always 2K(A) rather than K (A) 'which-is relevant.

Since the sensitivity of the solution depends on the condition number,

it is frequently desirable to replace the original unknowns x by a new

vector of unknowns D-lx where D is a-diagonal matrix with-non-zero

diagonal elements. Thus we wish to find 3 for which
CI

L

i

bC?l12 = min. ,
N N

14



where C = AD and j, = D-l? . Let B
n

be the set of all n x n diagonal
matrices with non-zero diag"ona1 elements. We wish to choose i so that

K(& 5 K(AD) for all Dan .

Let 5692, and {on] ii = 1/llaill2  l VAN, DER SLUIS [1968] has shown that

K(&) L/n K(AD) .

Therefore in the absence of other information, it would appear that it is

best to precondition the matrix A so that all columns of the matrix A

of the stored

representation

. . have equal length. In practice, one adjusts the exponents

elements of A so that the mantissa of the floating point

is not changed,

7. Iterative refinement for least squares problems

The iterative refinement method may be used for improving the

solution to linear least squares problems. Let

ap = b-A2 9 a>0N N N

so that

Tcap T Th= A b-A,Ax = 9 .c1 N

When a =l, the vector p
N

is simply the residual vector r . Thus
e

or :

CY=g .N

(74

One of the standard methods for solving linear equations may now be used

to solve (7.1). However, this is quite wasteful of memory space since the

dimension of the system to be solved is (m+n) . We may simplify this

problem somewhat by noting with the aid of (2.3) that

15
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a1 A

-tAT 0
m

3 LU. (7 J)

Once an approximate solution to Cy = g has been obtained, it is

frequently possible to improve the acciacy of the approximate solution.

Let $! be an approximate solution, and let v = g-C: . Then if y = f+S ,

6 sa"tisfies  the equation
N N m CI-

. (7*3)

Equation (7.3) can be solved approximately from the decomposition (7.2). Of -

course, it is not possible to solve precisely for 8 so that the process

may be repeateck

We are now in a position to use the iterative refinement method

(cf. MOLER [lg67], WILKINSON [lg67]) for solving linear equations. Thus one '

might proceed as follows:

1) Solve for x O( 1 using one of the orthgonalization procedures outlined

in 0 2 or 5. fi -must be saved but it is not necessary to retain Q . Then

Jo) 1= ; (b-Ax (01) .
N H N

2) The vector y(s+o is determined from the relationship
e

Y( )
s+l = y(s)+&)

N. m

where

CT5 s( 1 = g-cy s( > ( 1S.
3V .

N m N

This calculation is simplified by solving

(7.4)

Lz s( > ( >S= v

UfP =zs .( 1 ( 1 .a\
C

The vector v '( 1 must be calculated using double precision accuracy and

then rounding to single precision. ‘

16



3) Terminate the

prescribed number.

Note that the

iteration when \$')\I / \[y(')\\ is less than aN

computed residual vector is an approximation to the

residual vector when the exact solution ^x is known. This may differ

from the residual vectorcomputed from.th"e approximate solution to the

least squares problem.

There are three sources of error in the process: (1) computation

of the vector v ( 1S
., (2) solution of the system of equations for theCI

correction vector 6 ( >S
, and (3) addition of the correction vector to

the approximation y ' .- 0 It is absolutely necessary to compute the

components of the vector
S

v ( > using double precision inner products and

then to round to single pr&ision accuracy. The convergence of the iterative

refinement process has been discussed in detail by MOLER [1967]. Generally
--.

speaking, for a large class of matrices for k 2 k. all components of y '( >

are the correctly rounded single precision approximations to the components

of y . There are exceptions to this, however, (cf. KAHAN [ 19661).

Expe"rimentally it has been observed, in most instances, that if

ll,(“)ll, / lly(“~llm <, cp where

II IIy = max yi-a I I 9
l<i<n- -

then k. > [t/p] . We shall return to the subject of iterative refinement

when we discuss the solution of linear least squares problem with linear

constraints.

A variant of the above procedure has been analyzed by BJbRCK [1967b],

C19681, and he has also given an ALGOL procedure. This has proved to be

a very effective method for obtaining highly accurate solutions to linear

1 least squares problems.

8. Least squares problems with constraints

Frequently, one wishes to determine 2 so that l\b-A%l12 is minimizedH -
subject to the condition that Gfi: = h where G is a pxn matrix of rank p .

One can, of course, eliminate p" of the columns of A by Gaussian elimination
I

after a pxp non-singular submatrix of G has been determined and then solveI
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the resulting normal equations. This, unfortunately, would not be a numerically

stable scheme since no row interchanges between A and G would be permitted.

If one uses Lagrange multipliers, then one must solve the (n+p)x(n+p)

system of equations.
f- I . . .

ATbN
. . .

hN

(8.1)

where Th is the vector of Lagrange multipliers. Since ^x = (A A)'lATb-(ATA)-lGTh ,N N

G(ATA)-' GT h = Gz-g
GIN

where

Z = (ATA)-'AT b .--.

Note z is the least squares solution of the original problem without

constraints and one would frequently wish to compare this vector with the

final solution ^x . The vector z , of course, should be computed by the

orthogonalization procedures discissed earlier.

Since
TA A = ET6 , G(ATA)-lGT = WTW where W = EMTGT . After W is

computed, it should be reduced to a pxp upper triangular matrix K by

orthogonalization. The matrix equation

KTKh = Hz-g
NN

should be solved by the obvious method. Finally, one computes

2 = z-(ATA)-' GA
N

where (A~A,"G?L can be easily computed by using E' 1 .

It is also"possible to use the techniques described in 97. Again,

let r.= b-A% so that from (8.1)

r
N

l . .

2

.*.

h

=
18

- F

b
. . .

8
CI

. l .

h

(8.2)
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or

Dz=g .

Note D is an (mtn+p)x(mtn+p)  matrix. We may simplify the solution

of (8.2 ), however, by noting that . .

L

(8.3)

--1 Twhere B = (GR ) = PS and PTP = I with S : q . The decomposition

(8.3) can be used very effectively in conjunction with the method of iterative
refinement. BJBRCK and GOLUB [1967] have given a variant of the above

--.
procedure which requires Q and P .

Ye Linear least squares solutions with inequality constraints

Again let A,G be given real matrices of orders mxn , pxn , with

m>n, and let b , h be given real vectors of orders m , p . For any

vector x we define
c1

r = b-Ax
N N

a and we wish to determine an x such thatm

T
r r = min.'U N

_ subject to

Gx_>_h .

Our problem can therefore be stated as follows: find r , x , w such that
N

r + Ax = bN N

G x - w = h

w>Q -m-m

Tr r = min.GIN

I

19
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These problems can be solved by quadratic programming

an algorithm in this section which leads to a much smaller

and highly accurate results.

If we define

but we present

system of equations

'1 T
f(r,w,x,y,z)  3: z r r - xT(f+Ax-b_)  - ~~(Gz-z-h)NNNNN mm

where we require without loss of generality that z 18 , then an equivalentN N

problem is to determine r,w,x,y,z such thatNNNIIN

w,z> 8mm- N

f = min.

Equating to zero the partial derivatives of f with respect to r,~,y,zmm-m

respectively, we get

r - y  =QN

-ATy - GTz = Q
N m

r+Ax-b=Q
N

G x - w - h = 8  .
- N

Further, let the elements of w,z be wi,zi (i = 1,2,...,p) . Then
m N

af
-☺--y  = zi l

i
\

SNOW if wi > 0 in the optimal solution, the constraint wi 2 0 is not
.
-binding and we have

i.e.,

wi > 0 => zi = 0 .

Since zi > 0 , this further means that
s
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zi > 0 r;r> w. = 0 .
1

(For otherwise, zi > 0 => wi > 0 => zi = 0 which is a contradiction.)

Accordingly, our problem has become one of finding a solution of the

system

r + AxN N
= b

N

T
A r

T
+Gz = 8

u

Gx - w = h
OI -

(9.1)

(9.2)

(9.3)

such that

z>e , T
m-m w>e , zw=o .m-m mm

--.
We now determine an orthogonal matrix Q and an upper-triangular

matrix R such that

A =BR,

where R is nxn and non-singular if rank(A) = n . Then

ATA = RTQTQR = RTR .

Letting B = (GR-l)T and eliminating r from (9.1) and (9.2) it is easily
verified that

where

x= ?c + R-l& I (9.4)

^x = (II~R)'I- ATb

is the unconstrained least squares solution (i.e., the solution of (9.1) and

(9.2) with z = 8 ). 2

We now "dete"rmine

is found by the methods of $7.N
if 2 satisfies the original inequalities: if we

define q = Gk-h and find ihat q > 8 then the constraints are satisfied- II --+U
and ?c solves the problem.

"Otherwise, we substitute (9.4) in (9.3) and obtain
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T
B B z + q = w

N

where we further require'

-.

I
(9*5)

z>Q ,
T

--.U w>Q , zw=O
m-m NN J

Thus we find that z,w solve the linear complementarity  problem (LCP)

defined by (9.5). ih"is is a fundamental mathematical programming problem

and several algorithms have been developed for finding solutions (e.g. see .

LJ3MKE [ 19681, COTTLE [ 19681, CATTLE and DANTZIG [1968]).  The matrix M = BTB
is positive semi-definite, and this is one of the cases when, for example,

the principal pivoting method in COTTLE [1968] guarantees termination with
a solution, or with an indication that none exists.

Once z has been found it would be a simple matter to substitute

into (9.1),"(9.2) and find r,x frommm

r + A x = bH m N

ATr = -GTz
6.0

(9.6)

In practice, however, if we are concerned with the accuracy of our estimate

of x we use the solution of the ICP (9.5) only to determine which elements
N

of w are exactly zero. These are the wi which are non-basic in the
e

solution of (9.5). (There is certainly at least one such wi , for

otherwise we would have z = 8 , w>Q- - , which is the case checked for

.earlier in determining whither or n"ot ^x solved the problem.)
. We now delete from (9.3) those constraints for which wi is basic,

obtaining an 1xr-i system of equations

where llllp.

If ';, is the vector z with the corresponding elements deleted, the

remaining step is to solve the system

i
i.

22



r + Ax = b

ATr -Tm+Gz=Q
m - (9*7)

&C =h '..

where we are now working with original data and can therefore expect a

more accurate solution than could be obtained from (9.6). We can now apply
the methods of $8 to this system of equations.

The standard methods for solving the linear complementarity problem

enploy the elements of w as the initial set of basic variables, with all

elements of z initialyy non-basic. In general, it is probable that only

a small propo"rtion of the inequalities in the original problem will be

constraining the system, which means that only a small proportion of the w.
1

will be non-zero. Hence it might be expected in general that only a small

number of iterations (relative to p ) should be required to bring some of

the zi into the basis and reach a feasible solution.

In our particular form of the problem, since the matrix M = BTB

has its largest elements on the diagonal, accuracy can be conserved, to

within the limits of the error in forming M , by interchanging rows

whenever a column of M is brought into the basis in such a way that the

diagonal elements of M become diagonal elements of the basis matrix.

This is easily done if the LU decomposition of the basis is calculated

each iteration as in the treatment of the simplex method by BARTELS [1968]
and BARTEIS and GCLUB [ 19691.

Note that B = (GR-l)T can be determined column by column via

repeated back-substitution on the system

. RTB =GT .

The algorithm presented here can be used for any quadratic programming

problem when a positive definite quadratic form is given. Suppose we wish

to determine an x such that

xTCx + dTx = min.
H N mm

>

(9.8)
subject to Gx > hm-m s

23



Since C is positive definite, we may write

C = RTR

where NV) is the Cholesky factor of C . Such a decomposition can

easily be computed. If tie now define 'b = - h RoTd (and calculate b

from RTb =
N

- 8 d ) we find that

II-b - R& = bTb - 2bTRx + xTRTRxNN m m N

= bTb + dTx + x CxT
NN NN N N

and consequently if we determine an x such that
-

II,b - ~2112 = min.

subject to Gx > h
m-m

then x will satisfy (9.8) as required.N

10. Singular systems

If the rank of A is less than n and if column interchanges are

performed to maximize the diagonal elements of R , then

A(r+l) = [';xr / '(n-;)xr

when rank(A) = r . A sequence of Householder transformations may now be

Iapplied on the right of A b-+1) so that the elements of S (n-r)xr become
annihilated. Thus dropping subscripts and superscripts, we haveY 0

@Z = T = L+!0 0

where T is an rxr upper triangular matrix. Now
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II b - Az112 = lb - QT T ZTxl12N

= II c -Ty11,

L where c = Qb and y = ZTx . Since T is of rank r , there is no unique

solutioi so "that we &pose-the condition that ~~$~~, = min. But llYl12  = lIxl12N
since T is orthogonal and llyl12 = min. whenN

Thus

Yr+l = yw2 = . . . = ym = 0 .

I ^x=z
-0
T1 0HI0 0

Qb

This solution has been given by FADEEV, et, al. [1968] and HANSON and

LAWSON [ 19681. The problem still remains how to numerically determine

the rank which will be discussed in $12.

L
I

11. Singular value decomposition

L
L

Let A be a real, mxn matrix (for notational convenience we assume

that rnzn ). It is well known (cf. IANCZOS [1951]) that I

A = mvT (11.1)
e

where

L
L
L
L

U-J =
Irn ' wT I=

n

and

The matrix U

c
a1

l
0

0

.

*cl

n

L 0
consists of the orthonormalized eigenvectors of AAT , and

m
the matrix V consists of the orthonormalized eigenvectors of ALA . The

s
I
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diagonal elements of C are the non-negative square roots of the eigenvalues

of ATA ; they are called singular values or principal values of A . We

assume

o1 2 a2 > . . . > an 2 Q .

Thus if rank(A) = r , ati = Clr+2 = . . . = on = 0 . The decomposition

(11.1) is called the singular value deconrposition (SVD).

Let

0 A
L [ 1 .

AT 0

It can be shown that the non-zero eigenvalues of

pairs, viz. ='

(11.2) .

ii always occur in 2

hj(ii) = t ~j(A) (j = 1,2,...,r) . (11*3)  *

12. Applications of the SVD

The singular value decomposition plays an important role in a number

of least squares

e Throughout this

matrix, viz.

problems, and we will illustrate this with some examples.

discussion, we use the Euclidean or Frobenius norm of a

Il. AlI = (⌧☺aij 12)1�2 l

A) Let Un be the set of all nxn orthogonal matrices. For an arbitrary

nxn real matrix A , determine 'QEU such thatn

\\A-~\l 5 \IA-xII for any Xd.i, l

It has been shown by FAN and HOFFMAN [1955] that if

A = m-VT
T

,, then Q = UV .
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B) An important generalization of problem A occurs in factor analysis.

For arbitrary nxn real matrices A and B , determine Qetr such thatn

\IA-BQ\~ 5 I\A-Bx\\ for any XCU, .
. .

It has been shown by GREEN [l952] and by SCHBNEMANN [1966] that if

BTA = lJiqTT T
, then Q = W .

c> Let 04
%l

be the set of all m)(n matrices of rank k . Assume

( 1
rn

.A&$Fn . Determine 04B%,, (k 5 r) such that

I\A-B~\ 5 /A-XII for all x<L .

--.
It has been shown by ECKART and YOUNG [1936] that if

A = umT ,
T

then B = USlkV

where

Note that

"1

O2
0

.

0
. .

'k

llA-Bll = \Ic-n,ll  = (‘;+l + . . . + (J2)1/2  '
r .

D> An nxm matrix X is said to be the pseudo-inverse of an mxn

matrix A if X satisfies the following four properties:

27
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i) AXA =A,

ii) XAX =x,

iii) (N
T
4X,

iv) (XA)T =xA .

We denote the pseudo-inverse by A+ . We wish to determine A+ numerically.

It can be shown (cf. PENROSE [ 19551) that A+ can always be determined and

is unique. It is easy to verify that

A+ = VAUT (12.4)

where

Ii

A=

L

t
L

!
i

i
L

i
L

I
L

!

L

1
5

.
0 l

1

0

r

“0
nxn

In recent years there have been a number of algorithms proposed for

computing the pseudo-inverse of a matrix. These algorithms usually depend

e upon a knowledge of the rank of the matrix or upon some suitable chosen

parameter. Gor example in the latter case, if one uses (12.4) to compute

the pseudo-inverse, then after one has computed the singular value

decomposition numerically it is necessary to determine which of the singular
.

values are zero by testing against some tolerance.

Alternatively, suppose we know that the given matrix A can be

represented as

A = B+6B

where 6B is a matrix of perturbations and

IWI 5 ‘1 l -

i
28



Now, w.e wish to construct a matrix 5 such that

and

rank @) f minimum .

i- This can be accomplished with the aid of the solution to problem (C).
Let

Bk = vn,vT

L.
L

where Rk is defined as in (12.2). Then using (12~)~

5 = B
P

if --.

L ( CT2 2
I+ + apc2 + "*

2 l/2
+ ",I s tl

an.d

( 2 2
up + up1 + . . . + u2y2n

>v l

Since rank($) = p by construction, ,

Thus, we take Tf as our approximation to A' .

- E) Let A be a given matrix, and b be a known vector. Determine x

so that amongst all x for which llb~A~l~,=  min , ll;cll
N - 2

= min. It is easy
to verify that

2 =A+b .N

13* Calculation of the SVD

It was shown by G-CLUB and KAHAN [1965] that it is possible to construct

a sequence of orthogonal matri5es
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via Householder transformation so that

p(")pb-1) . . . pw*QoQ(2) .. .Q(n4. . . E P*AQ = J

and J is an mxn bi-diagonal matrix of the form

The singular values of J are the same as those of A . Thus if the

singular value decomposition of

J= x3

then

A = PXZY*Q*

so that

U=PX , vzqr l

GOLUB  [1968]  has given an algorithm for computing the SVD of J ; the

algorithm is based on the highly'effective QR algorithm of FRANCIS [1961,  19621

for computing the eigenvalues.

It is not necessary to compute the complete SVD when a vector b is

given. Since x = VZ+UTb , it is only necessary to compute V,C an: r;rb ;

note, this has a strong "flavor of principal component analysis. An ALGOL"

procedure for the SVD has beeen given by GOLUB and REZNSCH  [1969].
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14. Quadratic constraints

We wish to determine ? so that

t

L
L
L
L
t

Ilb-A6/12  = min. sN N

when

Such problems occur in a number of situations, e.g. in the numerical solution

of integral equations of the first kind (cf. PHILLIPS [1962]), and in the

solution of non-linear least squares problems (cf. MARQUARM'  [196;31).

Using Lagrange multipliers, we are led to the equation

(A~A-~*I);C = A*b--.

where the real constant A* is determined as the smallest root of

a2-bTA(ATA-AI)-2  A*b = 0 .

Using the decomposition A = mVT and c = U*b YN equation (14.1) becomes

A combination of bisection and Newton iteration may be used to determine A* .

It is easily shown that A* < o2
min (cf. FORSYTHE and GOLUR [1965]).

It is also possible to determine A* as a solution to an eigenvalue
- problem using a technique given by FORSYTHE and GOLUB [1965]. Consider the

identity

det = de-t(X) det (W-Z&-Y)

which is valid for any partitioned matrix with X and W square and

det(X) f 0 . Thus (14.1) is equivalent to the determinantal equation

det
I b*A d
c -

A*b

a2
-I

= 0 .
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Now there exists a vector p and a number q such that

(A*A-AI)~~ + A*bq = 8 , b*Ap + CX*q = 0 .
N u

A simple elimination shows that A* -must satisfy the determinantal equation

det[(ATA-AI)* - am2 A*bb*A] = 0 .NN (14.2)

It is possible to transform (14.2) into a 2nx2n ordinary eigenvalue

problem.

Once A* is determined, the solution 2 can be computed from the

SVD of A . Thus,

3r = v(c-h*z-yc .

e

-.
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