
CS 98

ALGOL W IMPLEMENTAT ION

BY

H. BAUER

S. BECKER

S. GRAHAM

TECHNICAL REPORT NO. CS 98

MAY 20, 1968

COMPUTER SC IENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERS llTY

--

ALGOL W IMPLEMENTATION*

H, Bauer

S. Becker

S. Graham

*
This research is supported in part by the National Science Foundation
under grants GP-4053 and ~~-6844.

ALGOL W- -

Table

1, Introduction~.........*0.~.**.e.....*.....".....*

XI. General Organizationos.*..e.~*....~****.*..*.. 3

lX1. Overall Design*.0~....~..~e~eo~o.e...e.....*~~.... 4

L-

L

A. Run-Time Organization ..~*0**~..*~...~...*~..., 17
1.
2.
30
4.
5.

Program and Data Segmentation ,,.,., 17
Addressing Conventions . ..*.9..*..** 20
Block Marks and Procedure Marks ,.., 20
Array Indexing ConventionsI.# 22
Base Address Table and Lirikage to

System Routines****..o....*.. 23
Special Constants and Error Codes ,. 24
Register Usage ..OI.OI.O,,..O..L,..~ 27
Record Allocation and Storage
Reclamation .0.0.~.~*0*~0..~~~.**, 27

We r....oc.o....o....o..~.*..~*.,.,.....* 33
Table Formats Internal to

Pass One . ..0...*ee..o...Q....*.~.* 3c
The Output String Representing

an ALGOL W Program l 36
The Table Output of Pass One ..,, O... 39
Introducing Predefined Identifiers.. 41

6.

;3**

A. Principal Design Considerations*......** 4
B. Run-Time Program and Data Segmentation ., ,,,... 6

C. Pass One~D..O......~e~~.*~.*~.....~.. 7
D. Pass Two*..eOC~O.4....*~~..~...~..~~....~ 8

1. Description of Principles and
-=. Main Tasks .*0*.*.......0~,00*..*..* 8
2. Parsing Algorithm*......**.* 8
3* Error Recovery
4.

.0....~..~.~.~.,~,~~~, 9
Register Analysis*.......*.... 11

5* Tables
6.

.....@.,........e..*.*.y...* 13
Output ,.......*..*0..00..0*~~..~... 13

E. Pass Three0......*....e...e..e.e........*, 16

l-v. Compiler Details~..~~~...~~~~.~~.....~..~... 17

B. Pass

IMPLEMENTATION

of Contents-. ,,

1.

2.

3*
4.

i

L

Table of Contents (cant,)- -

1.
2.
3*
4.

50
-=. 6,

�7 l

8,
9.

10.
11.
12.
13*
14,
150
16.
17.
18.

19,

20.
21.
22.
23.

Register Allocation .c,oo.ca.aove,,.,,,,,,n 62
Block Entry .00~.000000.01.00.00..~~,
Block Exit

65
.00~0~00~0000.0.00.0~.~~~

Procedure Statements and Typed
69

Procedure Designators e6606a60.60. '10
-Procedure Entry 0000000000~660*00oO.
ProTsdure Exit

73
.~060000~Q.000b~bOIOO 80

Formal Parameters in Expressions
and Assignments

Arra.y Declaration
"0000d00a*QOledOo* 81
aa.oee,,~..o.,..e.,. 83

Subscripted Variables ,a,~o..,o~.s,, 89
Passing Stibarraye as Parameters ra*a 91
Arithmetic Conversion
Arithmetic Expressions

"aeO**00.000.0 94

Logical Expressions
.o~*ooo*o~*o~lp~

String Expressions
00000*06*4...00

Bit Expressions
oo00000.Q~.0..~~0 115

oooooooo*oqo*.e..*.o
Record Designators

117

Field Designators
OPOOOOO~C0e0.dOa 118

00000~0~0.000010P
Case Statements and Case

119

Expressions .00000001U009.0.....,
If Statement, If Expression, and

120

While Statement 00.0000000000*00. 122
For Statement ~00000~0.0000060000.O
Goto Statement

123
OoQO6000000*0060,,0~ 127

Assignment Statements .000000.90,06 130
Card Embers "00~000000..*0.00000*. 134.

E. Trace Facilities 0 0 ‘7 40 0 0 0 6 0 0 0 a e OQ 0 0.0.0 0.0.0. 136

Appendix I Example .0~0000.0"00000.0000~~.~~~.*..~~,,*~,... 138

Appendix HI Simple Precedence Grammar *000~4**.0*....*...*.. 144

ii

;.

i

‘i-

. .

Figures

-

L

-

4. Example of BEOCKZIIST and NAMETABLE O.O~~O-e~aO 41

5. Format of NAMETABLE and field con-knts after
Pass Two ..Oa0OO0~~~~0000**06~,~~*.*~.~~*.*.* 52 ff

-=.
6. Pass TWO htput MoCabPljl~y~OO.OOO~~~~*~.~*~.~~~ 56 ff

iii

I. INTRODUCTION

In writing a compiler of a new language (ALGOL W) for a new machine

(IBM System/36O) we were forced to deal with many unforeseen problems

in addition to the problems we expected to encounter. In a few instan-

ces, we gave in to temptation and changed the language; in many others

we would have liked to have been able to change the machine. This

report Qescribes the final version of the compiler, Not surprisingly,

L
there are several things that in retrospect we would do differently,

both in design of the language and in design of the compiler0 We will
-=.

not discuss these after-thoughts here.

The implemented language ALGOL W1) is based on the Wirth/Hoare

proposal 2) for a successor to ALGOL 60. The major differences from

- that proposal are in string definition and operations and in complex

number representation. Consideration was given to including both paral-

lelism and data file facilities in the language but both ideas were

abandoned because their inclusion would have necessitated substantial

changes in those parts of the compiler that had already been written,

The project was initiated and directed by Professor Niklaus Wirth,

who proposed many of the ideas incorporated in the compiler and suggested

L . ways to bring them about. Joseph W. Wells, Jr. and Edwin H. Satterthwaite,

L.

1) Baueq H.R., Becker, S. and Graham, S.L. ALGOL W Language Descrip-
tion, Report CS 89, Computer Science Department, Stanford University. (March 1968).

2) Wirth, Niklaus and Hoare, CoAORe A Contribution to the Development
of ALGOL. *Comm. ACM 9 (June 1966), ppO 413-431.

1

L

Jr. wrote the a~360 System in which the compiler is embedded, the

<- linkages to the compiler, and the loader. Although the authors did

the bulk of the programming for the compiler, valuable contributions
. .

- were made by Larry L, Bumgarner, Jean-Paul Rossiensky, Joyce 33. Keckler,

Patricia V. Koenig, John Perine, and Elizabeth Fong. We are grateful

&l-so for the many helpful comments and suggestions made by the faculty
r
L- and students of the Computer Science Department. Finally, we grats-

. . fully acknowledge the support given us by the Nationti ScZience Founda-

L tion under grants GP-4053 and ~~-68lc4 and the computer time made avail-

able by the Stanford Linear Accelerator Center and the Stanford Computa-
c -=.

tion Center.

II. GENERAL ORGANIZATION

L

The compiler is divided into three passes,

Pass One is a scanner. It reads the source program, converts the

symbols to internal codes, deletes comments and blanks, converts nu-

meric constants to internal form, builds a block-structured name-table

and lists the source program.

Pass Two does a complete syntactic analysis and extensive error

checking. It does all static storage allocation. The output of Pass

Two is the completed nametable and a binary tree representing those
-=.

parts of the program for which code is to be generated.

Pass Three generates the object program in reentrant machine code.

The three passes are written in ~~360 1) as separate programs. The

passes use a common data area for data shared by them. This area re-

mains in core if sufficient room is available; otherwise the tree

output of’ Pass Two is written on secondary storage and read segment-

by-segment by Pass Three.

The discussion is divided into two sections. Part III describes

the design. of the three passes. Part IV provides information about

the details of the compiler and is devoted primarily to a discussion

of the run-time organization and the object code generated by the

compiler.

1) Wirth, Niklaus. "~~360, A Programming Language for the 360 Com-
puters,” Journal of the ACM 15 (January 1968), pp* 37-74,-m-

3

i

III0 OVERALL DESIGN

C

A. Principal Design Considerations
. .

Following are the main features we wished to incorporate and some

of the ways they were achieved,

1. Efficient object code,

All constant arithmetic (e.g. F=+a> is do3e at compile time. Global

variables we accessed (at run-time) with no overhead. The inter-

mediate language specifies nearly optimal use of the registers,

resulting in a minimum of temporary saves. Optimization which

involves rearrangement of the source progrm (for instance,

removing computations from for loops) is not done.-

2,

30

4,

Code generation only for syntactically and semantically correct

programs.

A complete syntactic check and a search for al1 errors detectable

at compile time are completed before any code is generated. Pass

Three is called only if no errors are found.

Vseful tools for numerical computatfon.O

Complex arithmetic in standard mathematical notation and double-

precision (long) arithmetic are implemented features of the

language, Facilities to detect overflow and make appropriate

recovery are provided, as is a set of standard functions of ana-

lysis 0

Fail-safe reliability.

Run-time checks on such things as array subscript bounds, substring

operations and formal procedure parameters prevent loss of control

(i .e. wild transfers) by the obje(% program.

f -I f---

. I

WI
.

B. Run-Time Program and Data Segmentation-__I_

Program segments and data segmentm are 'both logically and physi-

cally separate, Program segment8 correspond to the structural unit

"procedure" in ALGOL W. The scope of a data segment is an ALGOL W

block containing declarations. Program segments are allocated stat%--

tally (i.e. once only at compile-time); data segments are created

dynamically (i,e. each time the block is entered at run&i&e).

L:
IL

i
i

I
L

L
t

L
1
t

Pass

records,

I 1,

2.

30

. 4,

The input

C!. Pass One- -

One receives the source program as input in 80 character

Its functions are to -.

list the character string and assign it line numbers;

recognize basic entities of the language and :.place them in
an output string with byte (8 ‘bit) codes;

convert constants to internal form;

make a table of identifiers arranged by blocks and containing

type and simple type information specified in declarations,,

is scanned until a symbol is recognized - ioeO a delimiter,
-==.

an %dentifier, or a literal,, In response to this symbol a code reprer

senting the symbol is placed in the output string. New blocks are

noted, and declared varia~bles are placed in the NMBTABLE which is

organized by blocks, A

beginning of the formal

at each for statement,

new block is entered at each begin, at the

parameter list in a procedure declaration, and

A BLOCKLIST table containing one entry for

each block in order of entrance points to the entries in the NWABLE

corresponding to the identifiers declared in a given block. A table

of identifier character strings is also fiM.ed for use in Pass One:

and Pass Two,

t
L

Do Pass Two___1-

,
L

i

I
I
I-

i

L

i

1. Description of Principles and .Mafn Tasks--I

The function of pass Two i&o do a complete syntax check of the

source program, to do a thorough error analysis and generate all corn-

pile-time error messages, to complete the IMMEMKU, to build the

constant tables, and to convert the program to an intermediate language

to be used by Pass Three for code generation. The syntax analysis

is done by means of a simple precedence ianaLyzer. The interpretation

rules of the grammar specLfy the other Pass Two actions.
--.

2, Parsing Algorithm

The algorithm for syntactic analysis is essentially that used by

Wirth in I3JI.B. l? Some program modifications have been made. First:,

the look-up to determine whether a string is the right part of a pro-

duction

and the

is used

has been changed to include a check on the length of the string

length of the right part, Second, the full precedence matrix

rather than the precedence functions. This is done in order

to detect errors sooner and to provide better error recovery than is

'* possible with funct$ons. Third3 the relations found when scanning to

. the right looking for+ are stacked, Therefore, they can be easily

retrievedwhen in the process of scanning to the left for 4 rather than

having to be fetched again .fYom the matrix. The matrix is packed four

elements to a byte in order to conserve space, Consequently, a fetch

Wtfrth, Niklaus and We'ber, Helmut0 9fEXJIIR: A Generalization of ALGOL
and,its Formal Definition: Part IO"
pp0 13-23, 250

Com~v ACM 9 (January 1966),

8

from the matrix is slower than retrieval from a stack, However9 every

time a reduction is made, the relation of the new sym'bol to the symbol

below it on the parsing stack must 'be fetched from the matrix and. .

stacked. If most of the rules that are appl.ied have right parts of

length one or two, there is no significant gain in speed by stack9ng

the relations since few unnecessary matrix fetches would have to be

done., However, there is a gain in efficiency with longer right parts.

For each syntax rule there is a corresponding interpreta-M,on rule

which is executed when the reduction is made, For 'efficiency2 Inter-

pretation rules are written dire&ly in ~~360 rather than in some
--.

metalanguage. Associated with the parsing stack is a parallel value

stack containing information used by the interpretation ruJ.es.

30 Error Recovery

When simple precedence analysis is used, there are two situations

in which a syntactic error can be detected - when a reducible substring '

(Le, one delimited by 4 and*>) is not the right part of any produc-

tion and when the top of the parsing stack has no relation (+ =$ 9)

to the incoming symbo& .

In the first situation, the statement in which the error occurred

. is deleted from the program To accomplish this in ALGOL WI

is backed up to <BLOCK BODED 9 <BLOCK n 9 <CASESEQ m

file delimiter and the input string 9s advanced to end, ";":,

the stack

, or the

'begin, or

the file ,deJ.imiter. If end is erased from the stack, it becomes the

incoming symbol, otherwise the next symbol O:CI the input string is taken,

If a nonterminal which affects the value of the block ntiber is removed

9

t

;I
i.

t
i

I

i

!
i

iL
!
i

i
L

I

i

i
L

i

L
I
i

from the stack, the block number is adjusted accordingly,

Special care is taken with begin's, end's and the block number so

that the block numbers conform to those assigned by Pass One, If the

block structure were to be destroyed, many spurious errors would be

generated, If Pass One had been done by syntactic analysis, these

special fix-ups would be unnecessary provided that Pass One and Pass

Two recovered in the same way.

If the top of the stack has no relation to the incoming symbol, a

variety of recovery actions are possible. A symbol can 'be inserted,

the top of the stack can be deleted, a~~other symbol can replace the
--.

top of the stack, a reduction of the stack can be forced., or the in-

coming symbol can simply be stacked. The action to be taken is deter-

mined by the symbol at the top of the stack0 For each symbol in the

grammar, there is an entry in table EMCB pointing to a list of recovery

actions in table ERTB,

In order for a symbol to .be inserted, it must have a relation to

the incoming symbol and the top of the stack must have a relation to it.

If the inserted symbol is 4 the incoming symbol, the input string is

backed up and the inserted symbol becomes the incoming symbol, Simi-

larly a symbol replacing the top of the stack must have a relation on

either side,

An inserted or replacing symbol may generate another error message.

For instance, an undefined identifier is assumed to be integer although

it may be intended as another simple type. If the trace flag is set:,

the error recovery action is always printed out unless the incoming

symbol was stacked, A flag is set so that tihe same action will not be

L 10

I-
L
L

i

L

i

t
L

t

L

I
L

i
i

I
i

L

tried the next time through. (e .g, If the top of the stack is <BLOCK-

BODY> and it has no rel,ation to the incoming symbol, a ";" my be in-

serted, “<BLOCKBOD’Ib ; ” reduces to <BLOCKBOD35 0 Tf the error routine
. .

is called again before the input string has advanced9 it must not

again insert a ” ;I’.)

4 o Register Analysis

Two register counts are kept for each relevant position in the

stack - a count of the integer registers and a count of the floating

registers up to that point, The simple type of the operation determines

the ‘active” set of registers. The active count resulting from a binary

operation Is determined as follows:

Suppose the active counts for the two arguments are equal - both

have value k. Then k registers will. be needed to calculate the first

argument. At the end of that calculation, one register will be in use,

containing the value of the first argument d That regfster remains in

use during the calculation of the second argument, Since the binary

operation uses only the register containing the first argument, the

resulting count Ys k+l.

(let ki 7 active count for i, ki >, 0)Escample I?;

integer a, t;; oOo a + b em*

ka = kb = 00 To compute the sum it 5s necessary to load a regls-

ter with a and add b into the register containing a. Thus

L

f
L”

E&le 2

integer a, b, cs 51; 0 0 o (.&b) - (c+d) oO.,

-

ka+b = kc+d z-’ 1, The result (a-tb) occupies one register, This

register holds the value of a+% while e+d is computed, using s,n-

other register 0 Then the register for a+b is subtracted from the

register for c+d, leaving the result in the register previously

occupied by a+‘b. Thus 9

k(,a+b) - (cd-d) = 2 ’

Suppose the active counts for the two arguments are unequal - the
--.

counts are kl and k2 where kL > k2 0 Then if the argument using kl

registers is computed first, that result occupies one register leaving

kl$ registers to compute the second argument 0 Since kl > k29 kl z k2+l,

hence kl -1 >, kg0 Therefore there are enough registers left to compute

the second argument o Hence max(kljk2) is the resulting count. (If the

other argument were computed first, kl+l registers would be necessary.)

Notice that the above reasoning assumes that the operators are

commutative (or that appropriate reverse operators exist) 0 Adjust-

ments must be made for some noncommutative operators, For instance

DIV and REM require a minimum of two registers if the second argument
L

has count 0 and three integer registers if it has a non-zero count,

The resulting count of the number of 'inactive' registers is the

maximum of the counts for the arguments. The counts for an if expres-

L- sion or a case expression are the maxima of the counts of the consti-

tuent express ions D Register counts for function calls are set arbig

tarily to a large number since all registers in use before a function

call are saved,

12

t’.
1

5. ,Tables

Pass Two completes NAMETABLE, assigning hierarchy numbers, program

segment numbers and addresses fqr variables and descriptors, and in-

serting array dimensions, local stack origins and record information.

A bit string is inserted for every reference variable, indicating posi-

tionally to which record classes it may refer. A run-time constant

table and a compile-time constant pointer table are constructed for

each program. Information local to Pass Two is kept in the interpreta-

tion stack rather than in tables,

6. Output=

The output of Pass Two is a string called TREE representing the

linearization of a modified structural tree of the program being parsed.

Each nonterminal node has either one or two subtrees.

An n-ary construction is represented as a binary tree by making

the n components terminal nodes joined by a binary list operator.

Example

program fragment: F(B, 5, C + D, GOT0 X)

where F is a procedure, C is integer, D is real

Tree:

where AP, is an actual parameter

list operator and AP) indicates

the end of the list.

-

e

Semantic information is not included in the tree because it is contained

in MAMETmLE.

The order in which the nodes occur in the string is shown in the

following diagram:

It can be seen that the subtrees of a node precede the node. A

nonterminal binary node contains a pointer to its left subtree; its

right subtree will directly precede it. Each binary node has a switch

m
indicating which of its subtrees is to be processed first. Nodes are

not processed until their subtrees (in most cases arguments) have 'been

processed. The normal mode is to process the left subtree first,

'thereby preserving the order in which the structures occurred in the

source program. The exceptions are binary arithmetic operators and

the assignment operators. For these operators, the subtrees represent

two operands. In order to minimize register usage, the operand using

the larger number of registers is compiled first. (Such optimization

i

I

L is permissible according to the language definition, 1) which states
!

L
that:

, “If an operator operates on. two operands, then these operands

L
may be evaluated in any order, or even in parallel, with the
exception of the case mentioned in 6.4.2,2.0p

i Another motivation for using the tree rather than reverse polish

i

was the hope that it would be a natural way to represent parallelism in

the language. This use of the tree was investigated but was not fully

,i. developed because it was decided not to implement the parallel. features

of the language.
--.

L A separate tree is generated for each program segment. In theory

///
L

the program segments (procedures) could be processed by Pass Three in

any order; in practice they are processed in the order they occur.

h

-

1) Wirth, N. and Hoare, C.A,R.
AMOZ", Corm. ACM.

“A Contribution to the Development of
2 (June 1966), 413-432.

15

i
L-

E. Pass Three- -

i

The essence of Pass Three is the algorithm for scanning the lin-

earized trees, beginning at the root node. The switch with each binary

operator indicates which branch the scan should follow. The operator

nodes are not otherwise examined at this stage; code generation begins

with the first terminal node encountered,

Pointers to the nonterminal nodes are stacked in STACK as they are

encountered in the scan, STACK also contains a field in which infor-

mation about the first subtree is kept while the second subtree is com-

piled. --.

For each binary node there are two phases of code generation. In

the first phase the operator is considered together with its first

operand; in the second phase the operator and its second operand are

considered . Hence there are two compilation (output-generation) rules

associated with each binary node, Each unary nonterminal node has one

associated rule m

16

1 A. Run-Time Organization

IV COMPILER DETAILS

1. Program and Data Segmentation- -

Since no compiled code is modifiable at run-time, all program
L

segments are re-entrant. Data segments are created at block and pro-

i

I
L

i.

cedure entry and deleted (by resetting the stack pointer) at block

and procedure exit.

Program segments are allocated statically at the low end of avail-

able core. Data segments are then allocated dynamically, beginning
--.

jwt after the program segments and proceeding toward upper core,

Segments for system routines a& their data are alloc%ted statically

at the high end of available core. Record pages are allocated dyna-

mically downward beginning immediakely before the system routines and

system data. If the data stack and the record pages meet, the run is
L terminated.

/
t

L

PROGRAM
SEGMENTS

DATA STACK

RECORD
t

PAGES

I SYSTEM ROUTINES
AND THEIR DATA

AVAILABLE CORE

17

1
L

i A diagram of a typical data segment is shown below.

L-

L

L

Each block and procedure requires a data segment. When a block

occurs as the 'body of a procedure, its data segment is merged with the

procedure data segment.
. .

,FP

REFVAR

REFARY /

.

4

12

local 11

display 1

n-*... -- ,.-.. .- --- ----

DPD-dynamic

parameter

descriptors

PV-parameter

values

local variables

and array descriptors

local stack .
.

array

elements -

20 bytes

The static link chain - entries hold the

bases of all currently accessible data

segments. If n is the number of the re-

gister holding the base of this segment:

(13-n) * 4 bytes

* (cf. IV.D.5)

* (Occurs only if procedure has value,

result, value/result, or array para-

meters. cf, IV.D.5)

For dumping registers and partial results.

Occurs only for block which is the procedure body of a procedure
with parameters.

18

t

Each program segment has the following form:

L

L

i

i
Ii-

SFPD's Static formal parameter descriptors

Branch table

Litera table
--

N-umber of formal parameters of the

procedure

*Procedure entry code

Procedure body code

Procedure exit code

The static formal parameter descriptors (SFPD's) are one-word

L descriptors, one for each formal parameter, giving all information

needed by the system subroutine CHECK to check the formal-actual para-
c.

meter correspondence at run-time. This type of checking is done at

I

I

c
compile-time by Pass Two for non-formal procedure calls, but must be

done at ru.r+time for formal procedure caUs.

L A branch table exists in the heading of each procedure and con+

tains one branch instruction for each label in the procedure. When a

G pot0 statement is executed, a branch is made to the appropriate instruc-

\

L-
tion in the branch table which then branches to the labeled location.

The literal table is a table of all literPals (contants) used in

L the procedure. During executionp each literal is addressed by a dis-

placement relative to the base of the program segment given by R15.

L 19

f
i

-

C

Only one copy of each literal is given.

The literal table is obtained from Pass Two and is placed into

the program segment at compile-time by Pass Three.. .

2. Addressing Conventions

Because of the structure of the addressing mechanism in the IBM

System 360 Computer, program segments and the statically allocated

portion of data segments may not exceed 4096 bytes.

During the execution of a procedure or run-time system subroutine,

R15 is a pointer to the base of the procedure or system subroutine.

All branching internal to a procedure is accomplished with a displace-

ment relative to the base in R15. Branches between procedures are

accomplished by first setting R15 to the base address of the procedure

being branched to and then branching.

Upon entering each procedure and block, a data segment is allo-

cated and a general register is assigned to hold the base of that data

segment. All local variables, descriptors, and value and result para-

meters are then addressed relative to the base of the data segment via

the general register. Because the base addresses of all accessible

data segments are held in registers, all accessible variables are

immediately addressable.

a* Block and Procedure Marks-7 ,,

At the base of a data segment, a $-word procedure or block mark

is created and filled with all administrative data necessary for the

proper usage of reference quantities in the data segment, for the

20

L A mark consists of five full-word fields, as shown in the follow-

i

fr

L

creation of new data segments while this data segment is active, and

for the deletion of the data segment when its corresponding block or

procedure is exited. . .

ing diagram.

g$ The free pointer field points to the first free byte' An the data

stack. When a new array or a new data segment is allocated,

C

this pointer indicates its base.

The return address field holds the return address for pro-

cedures. This field is not used in block marks but is allo-

cated aonethdws for consistency.

L

I
c

The dynamic link field contains the base of the data segment

which was the most recently allocated data segment before the

current one. When the current data segment is deleted at an

L... .

exit from the corresponding block or procedure, the stack

pointer is reset to the contents of DL. By tracing backward

through the chain of dynamic links, one may obtain the bases

of all data segments which have been allocated and not yet

deleted. These correspond to all blocks or procedures which

have been entered and not yet exited.

i REFVAR: The upper two bytes of the field REFVAR contain the number

of reference variables local to this block. CR fe erence

value/result parameters are treated as local variables.)

All reference variables and reference value/result parameters

21

4

are grouped together so that the garbage collector may pro-

cess them. The lower two bytes of the field REFV’AR point

to the first reference variable or value/result parameter,

relative to the base of the data segment. If no reference

variables are declared in the block, th.e REFVAR

zero.

REFARY : The upper two bytes of the field R,EFARY contain

field is

the number of

reference arrays declared in the block, The lower two bytes

point to the first reference array descriptor, relative to

the base of the data segment. All reference array descriptors

are contiguous in the data segment. From the array dimension

contained in the first byte of each reference array descriptor,

-the garbage collector is able to locate all reference array

descriptors and hence all the elements in all reference arrays.

If no reference arrays are declared in the block, the REFARY

field is zero.

4. Array Indexing Conventions

A data segment corresponding to a block in which arrays are de-

clared contains an array descriptor for each array. The descriptor

.

specifies the upper and lower bounds of the indices of the array, and

a pointer to the first array element. The size of the descriptor is

dependent only upon the number of dimensions of the array; therefore

the portion of the data segment used by the descriptor is allocated by

Pass Two, At run-time, the bounds are stored into the descriptor,

the total number of bytes required for the array elements is calculated,

storage is allocated in the data stack, and a pointer to the first

array element is placed into the descriptor.

When an array element is referenced, the descriptor is used to

calculate the actual’address of the array element.

22

I- using the value of the run-time flag or the halfword of data.

5. Base Address Table and, Linkage to System Routines- -

During the execution of a programs a table giving the base ad-

dresses of all the user’s program segments and the base addresses of

all run-time system routines resides at a fixed displacement from Rl4.

The displacement for each segment base is known at compile-time,

a.llowing the compilation of instru”+LVions to load Rl5 with a segment

base before branching to that segment,

The standard calling sequence from a user procedure to another

procedure or system routine is

L 15.9 dl (14)

BALR 15, 1

L 15, d2 (14)

where dl is the displacement of the entry in the base address table

giving the base address of the called procedure or system routine and

d2 is the displacement of the entry giving the base address of the

calling procedure.

Because of addressibility problems, the above code sequence is

modified when calling certain system routines, The first load instruc-

tion above may be preceded by

WI runtime flag, byte

and the second load instruction may be preceded by a halfword of in-

Pormation. The relative origin withinthe system routine is then established

The instruction BALR 15,l is replaced by BA&R 15,o for some SyS-

tern routines so that the routines majruse the parameters more effectively,

It

L

6. Special Constants and Error Code- - -

Certain special constants needed at run-time, as well as some run-

time error check code, ie placed at

The inclusion of the constants makes

L constants in the literal tables thus

specified locations based off Rl4.

it unnecessary to insert these

saving room in the program segment.

fiI The precise locations relative to R14 of the constants and various

L. run-time entry points into the error checking code are known at compile-

time so that the proper addresses may be compiled.

t Constants
, x.i SEVEN 7
it IXIBLMASK #FFFFFFF8 >
L

mEE 3
sr:N~ua.sK #FFFFFFFc

L
ALL@YES #FFFFFFFF

NULLREFL #~~FFOOOO

ALL@RR C 0,LlN

L
BCR 5, 4

used to make an address fall on a

double word boundary

used to make an address fall on a

sfngle word boundary

used in bit-not operations

the null reference

used for data allocation; return

to point of call (BAL 4,ALLWm)

if LIM = (beginning of record pages \
has not been reached

LAL 0, 5(o)
AJFuxAmRR BCR <,, 1

Xrn1Nx~R.R IL. 15:, base of ERROR

i

error condition

used for run time array bounds

checking

error routine prints location of

error = Rl. RO is parameter to

error routine , giving the type of

error so that appropriate termina-

tion messages may be given.

24

BCR 15, 15
UBliBERR BCR 5, 1 used in array declarations to be

LA 0, 13w sure that upper bound> lower bound.

BC 15, MAINERR -. Error condition.

7. Register Usage

At run-time the following uses are made of registers:

g and g are used by the system as save and link registers for

system subroutines. lkey are otherwise available for local use.

J$ are used in evaluating arithmetic expressions.

RJ - Rlz hold the run-time display pointers to all data segments

which at any given time are accessible to the block being exe-

cuted.

R13 always holds the base of the data segment of the

program block.

main

R7 - R12 are allocated statically downwards from RX.me

word "statically" is emphasized since data segments are created

dynamically and the size of the data stack is limited only by the

physical size of available memory. Any two or more parallel

blocks (or procedures) will have the same display register point-

ing to their data segments, since only one of those data segments

may exist at any one time.

It should be remembered that the data segments for a procedure

and its outermost block (if there is one) are merged into one data

segment.

In the following diagram the numbers represent data segment base

25

registers. Each begin is assumed to be followed by one or more decla-

rations.

13

i

1

I
i

--.

i
L

i

1 -c

I
Ic .

t
i

begin . .

procedure P

12 begin

11 begin

end

end

procedure Q

12 begin

procedure F

11 be@n,

end

11 <in

10 begin L:

end

end4
end

12 &in

11 begin

10 beg,in

procedure S

9 beginI-
8 begin

end-
end- -

end-
end

end

end

Those registers not in use as display registers are available for

arithemetic evaluation, For example, at label L in the preceding dfa-

I
i

/

25

gram, RlO - R13 are in use as display registers, and R2 - Rg are avail-- -

able for arithmetic evaluation.

Rl4 always points to an area in memory which contains:

l-
1. the base address table,

2. special constants,

-i

3* error

4, local

i
L
f

executed.

codes, and

data for system subroutines.

holds the base of the program segment currently being

L At particular points in the execution of a program when it is

E known that none of the arithmetic evaluation registers are in use

i (such as at procedure entry and exit, block entry and exit, and in a

L
procedure call), they may be used by the run-time administration.

I
L

8.

core

time

that

Record Allocation and Storage Reclamation

Space for records is allocated by pages beginning at the end of

working downward. Size of the pages is a parameter of the run-

routines. As each page is allocated, the pages are formatted so

each record on the page is pointed to by a previous record or by

,
L the FRC (see below). Each page is dedicated to one record class.

Table RCT is prepared by Pass Three and loaded along with the

compiled program. It contains a 16 byte entry for each record class

L-
declared and is indexed by record class number. No record class 0

exists. This allows RCT(0) to be used for a free record page chain.

,c- RCT contains the following information about each record class:

I

L 27

I
r
L
t

--.

FIX, FRPC, and PC are initialized to 0, TOP last entry fn the tgy~e is* 4 -L ,I
set to #FFIFFFFFF whenfewerth%n 15 record classes exist.

FRC fs the origin of the Free Record Chain for the gitre:r?. ::ecaord

class.

where n is the record

class number and earl;

list element is a record

Of class n,

28

FRPC is the origin of the free record page chain. Each page on

the chain is a page whose origin address Es greater than at least one. .

af the pages in use. This chain always releases as many pages as

possible to free storage so that free storage may be used by either

data segments or record pages as needed. A record page which was

allocated and later released may then be used for data segments.

L

l-
L

A new referenue to a record class is always ObtaLned from the

JCRC corresponding to that class. If the upper byte of FRC is 0, the

gmbage collector is called, If the garbage collector cannot tiee

. enough storage for a new reference, execution is terminated.

Storage reclamation (i.e. garbage collection) consists of three

_ phases : marking used records, collecting unused records, returning

‘unused pages. For each call of the garbage collector all record classes

are searched and the FRC of each record class is updated.

Records are marked in two steps. First, each reference variable

and each reference array element is tested; for each non-null refer-

ence, the first bit of the record referenced is set to 1. The first
,

byte - of each record is not allocated for fields and is available.

29

When a record is marked which had not been previously marked, a.

check is made of the NR field corresponding to the record class. If

this field is zero, nothing more. needs to be done. If this field is

non-zero, each reference field of the record must be checked. The

reference fields are checked starting with the last reference field

t
and ending with the first reference field. Each reference field in

turn is treated recursively as a reference variable. The last reference

field has been processed when the marking bit of the record is encoun-
L.

L

tered m This test restricts the number of record classes to at most 127.

Since-the reference fields of a record are checked when the re-

, cord is marked, a backward chain must be kept so that the path may be

L- retraced and all reference fields of each record inspected. This

chain consists only of the three low order bytes of the reference. The

L

high order byte remains unchanged. Before proceeding to inspect the

fields of a new record B designated by a field of record A, the address

of the record inspected previous to A replaces the reference field in

A designating the new record. If the record A had been designated by

e a simple reference variable or a reference array element, zero re-

places the reference field in A.

e.g. record sample (reference (sample) one, two)u--c- - - i -
reference (sample) R;

c

Let A, B, C, D be symbolic names for record addresses of class

c sample and let N be the null reference. Suppose Example 1 represents

the situation when the garbage collector begins. Reference R is in-

spected and points to record A of class n (Le., sample). Record A is

30

marked (first bit on). The last reference field of A (two(A)) is checked

first. Two(A) points to a previously marked record, namely A. Then

one(A) is tested and points to record B which is still unmarked. A
. .

zero is placed in the 24 bit address field of the reference. Record

B is marked. Two(B) points to the record C which is unmarked. The

address of A replaces the address of C in two(B). The process is re-

'L- peated until record D is marked and its fields tested. Example 2 re-

._ presents this state. A return is made up the chain until each field of

b- each record involved is checked and until the zero field in record A is

I

L
encountered and changed, At this point, the result is similar to

--.
Example 1 except the first bit of records A, B, C and D is on.

All references in a block are

links to a previous data segment.,

scanned before following the dynamic

L- process is completed.

When the dynamic link is zero, the

Phase On@ of the garbage collection is completed by looking at
L

each record. The second bit of each record is used to protect records

which have been created but not yet assigned to a reference location

or used in some other manner. Therefore, each record must be scanned

to inquire if this bit is on; if SO, the record is marked and its

reference fields scanned as previously described.

In Phase Two, any record whose first bit is not 1 is put on the

free list for its record class. Phase Three is integrated with Phase

Two. If any record page has no used records, it is returned to the

free record page chain. Furthermore, if the page adjoins the free

space for data segments, the page is returned instead to the free space

for data segments. In this case, the free record chain is checked

for record pages adjoining the free space for data segments. Those
i

found are removed from the FRPC and given to the free space.

i
After all the storage reclamation is complete, the garbage collec-

tar must supply a record of the class desired. If no free record of

i_ the class desired exists, a new page is allocated for this record

t class and placed on the class's page chain. If no space for a new page
L

iS available, execution is terminated.

Example 1

1 In

n A 1

A

P

C

D

0 n B n A

0 n D n C

0 0 N n D

0 0 N 0 N

Example 2

32

I

80 On 0 n A

80 On D n A

80 00 N n B

80 00 N 0 N 4

L

‘L

L

1)

2)

3)

4)
5)

B. Pass One-1113

The output of the compiler's first pass is
. .

a listing of the source program with each line numbered

beginning at 1,

a character string representing in detail the original

source code,

a nametable, having an entry for each identifier, arranged

by blocks,

a blocklist table which indexes the nametable by blocks,

a table listing the record classes to which the declared re-

ferences are bound.--.

Other tables are passed on by P,ass One but have significance only

in producing trace output in Pass Two.

Pass One makes decisions as to the size of the tables based on

the size of the core available, The algorithm used is

CB = commonbase

LC = last core location available

cs = common size

cs := LC u CB;

If cs > = #30000 then CS := #18000 else CS :=J CS DIV 2;

NAMETABLE := CB + NT#RIGJJY;

IDDLISTBASE := ((cs DIY 3 + CB + JYT@RIGXN) DIV 8) * 8;

REFRECBASE := IDLISTBASE + ((Cs DIV 24) DIV 8) * 8;

IDDIRBASE :f; 2 * REFRECBASE - IDLISTBASE;

INPOINT := IDDIRBASE + 3 * ((CS DIV 24) DIV 8) * 8;

PASSTWOOVI'PUL'BASE := (ADDRESS OF END OF PASS ONE OUTPUT) DTV 8 * 8;

If the Pass Two output area is not at least twice as long as the Pass

One output area, a flag is set so that Pass Two output will be on tape.

33

L

1. Table Formats Internal to Pass One- - -

at

of the delimiters or reserved symbols and the table CODE containing

an entry corresponding to each reserved symbol. Two other tables are

L

L

Four main tables direct the work of Pass One. Two are intialized
. .

entrance. They are the table RESERVED of the EBCDIC representations

partially initialized at entry to Pass One and added to during its exe-

cution. They are the identifier directory IDDIR which has the EBCDIC

representation of each identifier, and IDLIST which indexes IDDIR.

The table RESERVED is divided into segments which accomodate the
--.

ALGOL W symbols grouped (alphabetically) by length. Hence RESERVED1

contains all the symbols of length 1 such as :, =t (. REsmvm2

L-

L

c

L

contains all symbols of length 2 such as do, go, if. This arrangement

continues through RESERVED9 containing -procedure, reference, Once

a match is found in the RESERVED table, a 2-byte entry corresponding

to the reserved symbol is found in CODE. For example in Figure 3, the

corresponding CODE entry for if is hexadecimal 6401.

In most cases, the first byte of the CODE entry represents the

one-byte output code for the ALGOL W symbol, This code corresponds to

the symbol number of the ALGOL W symbol in the syntactic productions

of Pass Two. The exception to this rule occurs with the RESERVED

entries representing the simple types such as integer, reGs 1,ogical.

These symbols are represented in the output string by the same charac-

ter. Instead, the first byte of the CODE entry gives the simple type

nwnber (see Figure 1). In the example of if, 64 is its output string

representation.

The second byte of %he CODE entry is used as an index to a case

statement. The hexadecimal *:ra.Lue 01 means no special processing takes

place. Such is the case in the example of if, Any other va?'tit means. . L--r

that some special note must be made of this symbol such as %c enteri

declaration mode or to declare a control variable# These speciai. ai%u-
L

ations are described ir!. %he following pages.

IDD%R is a chwacter array of al.1 identifiers predef”fned or occur-

ring in the program %e:icg compiled. The list is arranged so that. if

i only the identifiers SQ,R.T, A, TILDA appeared, the IDDIR table would

1

L

appear as SQRTATEIIA and the ir!de:lc tlo %he table would have a value--.

equal %o the number of characters relevant - in this case, 10,

L.-

IDLIST indexes IDDIR by an array of full words with one entry

corresponding to each identifier. The first half word of' each entry

is ,%he lengt'h of the i3entffier minus l, The second half of the

en%ry is a pointer %o the fi.:-s% character of the identifier. Hence)

in Figure 4 :, the e:ntry (‘4 > (5) corresponds to TILDA with the leng%h

specification of 4 and pointer value of 5 O Also in Figure 2, note that

- IDLIST ENDJEX: is a pointver to IDUST = 8.

RESERVED (in EE3CDIC) CODE (in hexadecimal)

RESERVED:1 (+ 46 CCDEl 5506 4FOl 5005

RXSERVED~ D$ IF CODE2 630s 6401

.

0

”

RES~VEDg PR$$.XDURE CODE9 851.5

Figure2

Identifier Tables -

IDDIR : SWTATILDA IDDIFUXDEX = 10

IDLIST : (3) (0) -* IDLISTINDEX = 8

(0) (4)

v-4 (5)

2 . The Output String m an ALGOL W Program-___I-

The characters of the output string representing an ALGOL W source

program are the numbers which correspond to the syntactic elements in

c-

Pass Two. For most cases, there is a
--.

the ALGOL W symbols and their codes

that do is represented by hexadecimal

one-one correspondence between

As an example, Figure 3 shows

93. Some codes represent two

ALGOL W sV@bol,s. These are exponentiation, '*!, and assignment, k=ll

and %he bound pair colons, r ::' e The following list itemizes the

other special si%uations requiring modifica%ion of the normal corre-

spondence between ALGOL W symbols and string representation.

The reserved words and reserved word pairs, intege,r, real,

long real, eex., long complex, logical and bits receive

the code for <simple type0

Each identifier is replaced by a 3 byte code. The firs%

byte is a code for <iden%ifieDO The following two bytes

contain tb,e unique identifier number, (Starting from 0).

In Figure 4, the iden%ifier number of A would be 1.

Each number is represented by a 1 byte code for <ntiber3.

followed 'by a 1 byte indication of the type of the number,

followed by the number.

36

c

f ,
t

4,

50

6.

7
* l

8.

90

10,

110

Each bit sequence (e,g.J #FAL2C (in hexadecimal)), results

in a 1 byte code representing <bit sequence, followed by

the 4 byte literal,

A coma. appearing in the identifier list of a declaration or

in the record class specification of a reference declara%ion

receives the code designated SPECCOMML

In a reference declaration, the left parenthesis preceding

the record class specification is omitted from the output

string .

In. a string declaration, if the length is specified explicit-

ly, the entire length specification, (number), is omitted

-from the output string,

Each new card is indicated in the output string by a 3 byte
code e The firs% byte specifies’new card’and the following

2 bytes give the card number.

The reserved word conanent and all characters up %o and in-

cluding the next semicolon are omitted from the output string.

An identifier following the reserved symbol end is omitted

from the output string.

A period (0) following the reserved word end is recognized4
aa %he end of program.

37

Figure 3

Output Cbdes

c.

C

I

L

70

GA

67

99

90

7E

7F

‘74

8.3

69
8~

9J-

76
8~

81

87

93

78
‘7D

‘7C

80

ABS

DIV

FOR

REM

SHL

SHR

8~

86

b

6F

9B

85

88

89

CASE 'y3

ET&E ?A.
F'j-2 SC

GOT0 %
LONG 8c

NVLL 82

STEP gc

THEN '79
TRUE 8~

GE

9'7
8E

9-F

9D

72

98WI-JCIEE

SPECCOLON 613

SPFCCOMMA 9A
ASS3GWNT 9A

TZTXD OF FILE

EXPONENT!

LINEnaRK

?5

73

7%

68

92
88

FE

77
65

81

8~

OD

i

38

3. The Table Output of Pass OneY I P - - - - -

i-

I
L

I-
L
I
c

I-
i

Three tapbles are part of the necessary output of Pass One:

NAMETABLE, BLOCKLIST (which indexes NAMETABLE), and RCCLIST,

'The BLOCKLIST table has a one-word entry for each block in the

program in the order encountered. (Each program has a predefined

outer block ntibered 0 containing predefined srymbols such as WRITE and

SQ,RT.) This full-word entry is divided into two half-word fields. The

second field points to the first ‘byte of the entries in 'Ntl'METABL,E

corresponding to identifiers declared in the block. The first field

is equal to 1.2 times the number of identifiers declared in Z&e block--.

(i,e,, the length of the NAMETABLE entry for the block). If no identi-

fiers are declared, both fields are zero. In Figure 4, the first

BL(D@KLIST entry points to WRITE and encompasses both WRITE and SQ,RT

which are predefined. The second BLOXLIST entry points to b., and

encompasses i, j declared in the outer block of the program. The third
c

entry corresponds to the control variable i,

The entrance and exit to blocks are defined by the following

rules.

a> Each 'begin signifies the entrance to a block and the corre-

sponding end signifies the close of the block,

bj Each statement following a <for clause> is surrounded by a

block in which the control variable is implicitly declared.
i

L

4 Each procedure body is surrounded by a block in which its

formal parameters, if any? are declared.

In the NAMEIABLE all identifiers declared in a blhock are grouped

together, Theref'ore the permanent entries in the NAMETABLE cannot ‘be
.

made until the block closes. If viewed ‘by blocks, the identifiers in

39

Ic

!
i
L

I a
ti

i
i

I

c

the NAMETABLE are listed in order of the closing of the blocks. In

Figure 4, the control variable 'block closes before the outer blcch and,

hence, appears in the NmABLE first.. .

The layout and field contents of l&%METABLE are shown in Figure 5.

Pass One puts in only that information required by Pass Two to check

the semantic correctness of the program Many fields are fil1eci by

Pass Two. The information entered during Pass One consists of the

following attributes appropriate to the variable.

IDNO

--.

SIMPLETYPE

- The number assigned to the identifier.

This number is equal to the number of

the IDLIST entry.

TYPE

TYPEINFO

SIMTYPEINFO

- block number of the formal parameters of

a procedure. Simple type of the argu-

ment of a standard function.

a) Value-result

for formal parameter

1. if value

2. if resu'8.t

5 if value-result

b) Record class number

Sor record class identifiers, the

re.zord class number

for record ffelds, the record class

ntiber.

- a) for string, length -1

‘bj for a reference, a pointer to the

40

-
1

L-

f

i

1
i

L-

!E
t

i

1
i

i
I

Ic.
i
L

Figure4

Example of BLOCKLIST and IVAMETABLE

BLOCKLIST . . NmABLE

18 I C

24 I 30

c I 42

entry for MAIN

entry for WRITE

entry for SQRTr
entry for i

entry for i

entry for j

entry for L

i, j ;begin integer

j 0;;rz

for i := 1. &I j := j C 1;
L: end.

Each entry of RCCLIST is a half-word which gives the IDNO of a record

to Which the reference is bound. A zero entry signifies the end of

the group. The NAMETABLE entry for a reference variable contains a

pointer to the first entry of RGCUST for that variable,

4, Introducing Predefine2 Identifiers

To introduce in the compiler new psedefined identifiers such as

standard functions or standard procedures, a series of changes must 'be

made in Pass Gneo

1. The EBCDIC code of the identifier and its length must be

added to array IDLSSTFLL;.

41

t

I
i.-

i

i j
/
c

2,

30

4.

5.

i

t
L

I1
c

6.

i
I-

i
i

i
;
i

i

Two half-word entries corresponding to the identifier must be

added to IDIXXFILLO The first half-wbrd is the (number of

characters -1) in the identifiF!x. The second half-word is
the (sum of the preceding pairs of entries tl).

IDDIRINDEX must be initia1izc~~~~.

IDLISTINDEX must be initialized t90 be equal to the (sum of

the last pair of IDDlXFILL erkriets -tl),

A 12 -byte entry (3 integers) must be added to NAMETIFZLas

described in the descziption of the NAMETABLE entries

(cfe nLc.5).

For example the entry for %JUND is:

(#o) (#0000000% 1

f
type or
parameter function procedure

BLFILL must be changed to be initialized to (#aaaaOOOC)

where aaaa is the he.xadlecima% representation of the (number

of integers -3) aekk3rea for NAMETFE,L)‘* 4.

SY?4BOXNDgC must 'be initialized to the (number of integers

declared for NAMJCPFILL) * 4.

In the initialization section of the algorithm, the initiali-

zation o:f IDDZE, IDLIST, and NAMETABLE must be corrected to

represent the length changes,

t2

C. Pass TGO_I_-

1, Storage Allocation

1
1
1
1
I
t

. .
All static storage allocation for variables and constants is

done by Pass Two. For this purpose a number of counters and link

tables are necessary,

__ the

BNC

fOT

BNC contains the current block number (cf. xV.B). BN contains

highest block number assigned so far (necessary in order to set

when a new block is entered). BLOCKLIST contains static links

blocks. These are necessary to restore BNC to the current block,
-v.

Program segment .numbers are assigned by Pass Two. Each proce-

dure constitutes a separate program segment and is assigned a unique

number. SNC contains the current segment number; SN contains the

largest segment number already assigned, SNLIST contains static

links for program segments.

The hierarchy number represents the level of nesting of data and

in actuality is the number of the base register used to access the

data segment. HN contains the current data hierarchy number.

DRELAD contains the address of the first free byte relative to

the beginning of the current data segment, DRELSAVE is a stack used

tp save values of DRELAD while parsing actual parameter lists.

DRELPOINT contains a pointer to DRELSAVE. While a record class de-

claration is being parsed, RELAD contains the current address relative

to the beginning of the record class Layout,

All addresses of variables, array descriptors, and other data are

indicated in NAMETABLE~ An address conaists of the hierarchy number

43

(base register number) plus the address relative to the beginning of

the data segment (displacement). Reference variables are grouped to-

gether at the head of the data segment; other variables occur in the

order in which they are declared in a block. A location is allocated

for each control identifier as well,

Fields of records are given addresses relative to the origin of

the record. Field addresses are first assigned to reference fields,

then to logical and string fields, then to other fields. The first_-

byte of the record or the two high-order bits of the first reference

(if there is one) are reserved for the garbage collector.
--.

The length in bytes of any record in a record class is indicated

in the NAMETABLE entry for the record class. The length is always a

mtitiple of 8.

Labels are given an address relative to the beginning of the pro-

gram segment in which they occur. The location is used for indirect

transfers.

The dimension of an array is inserted in NAMETABLE when the first

array designator or the declaration is encountered (whichever occursm

fix&l 0 This information is subsequently used to compute the length

.of the descriptor (and to check the number of dimensions each time

:that array identifier occurs).

Storage is allocated in the program segment of a

descriptors of its formal parameters, Descriptors of

procedure for

actual name para-

meters are assigned addresses relative to the beginning of the data

segment of the procedure. Space is allocated in the data segment for

values of the actual value and result parameters, since they are

treated like local variables while control is within the procedure

44.

f

-

body. Value and result parameters of simple type "reference'! ~O;;OW

all others so as to be adjacent to the local reference variables.

The first free location following the variables in each data seg-
. .

ment is the origin of the local stack (temporary storage) for the data

segment. Its address is indicated in NAMETABLE for the outermost data

segment of a procedure and in the associated begin output node otherwise.

2. Value Stack- -
._

The value or interpretation stack consists of 8;-lbyte elements.

This stack works in parallel with the parsing stack.

I
I I

I

I

i v2q v22 I I
, a I . . I

Vl v2 v3 v4 v5

The standard uses for the fields are described below, although

the actual uses vary with the construction being parsed.

Vl Simple type information

V21' Type

V22 Simple type

v3 Integer register count

v4 Floating register count

v5 Output pointer

When an identifier is looked up in NAMETABLE, a pointer to NAMETABLE

is inserted in Vl, V2 is filled, and V3 and V4 are set to zero. When

a node is put in the output array TREE, the tree pointer is put in V5.

39 Interpretation Rules

Associated with each syntax rule is a body of code, the interpre-

tation rule, which performs the semantic actions appropriate to the

45

r
/
‘L.

syntactic construction, The interpretation rules are contained in

procedures EXECUTEl, MECUTE2, and EXECUTE3 and are accessed via a

case st&ement indexed by the rule number. (Three procedures rather. .

than one are necessary because of the addressing structure of PL360.)

The interpretation rules use the value stack for working storage,

Semantic actions and value stack layouts for major constructions of

the language follow:

1. Simple variable declaration

a. Layout is standard

b. Each identifier is located in NAMETABLE, checked for multi---.
ple declaration, and allocated storage, No output is gener-

ated,

2. Array declaration

a0 Layout

Vl pointer to NAMETABLE entry of first identifier

v2 current block number of block containing declaration

v3 number of identifiers

v4 dimension 1

v5 output pointer

b. The identifiers are counted, the simple types of the bound

pair expressions are checked, the bound pairs are counted,

storage is allocated for the descriptors, the array dimen-

sion is inserted in NAMETABLE for all the identifiers, and
. output is generated for the structure.

30 Procedure declaration

a.1 Layout of

Vl

v21

v22

v3 & v4

v5

procedure head

simple type information (if typed procedure)

type (i.e. code for procedure)

simple type (if typed procedure)

current DRELAD of procedure head (mark, descrip-

tors, etc.)

output pointer

46

a.2 Layout of procedure body

Vl simple type information of expression (if typed

procedure)

v2 0 -.

v3 & v4 DRELAD of procedure body

vs output pointer

b. The counters and pointers are stacked, storage is allocated

for the descriptors of the formal parameters, record class

masks are constructed for reference parameters (cf. lXC.4),

the relative origin of the label transfer table is computeds

the simple types (for a typed procedure) are compared, the

output for the procedure and the literal table aregenerated,

the counters and pointers are restored, and the output is

(optionally) listed.

-

4. Record class declaration

a. Layout

Vl pointer to NAMETABLE

v2 current RELAD

v3 & v4 not used

v5 pointer to NAMETABLE

fier

b. The identifiers are located in

for current field

entry of record class identi-

NAMETABLE and checked for

multiple declaration, storage is allocated for the record

class identifier, relative addresses are assigned to the

fields and the number of fields is inserted in the NAMETABLE

entry for the record class.

59 Substring designator

a. Layout is standard

b. The simple types of the simple variable, the index expression,

and the length are checked, the length is checked against the

length of the simple variable, and output is generated for

the structure.

47

6. Field designator

a. Layout is standard

b. The simple type of the reference is checked, a check is made

that the reference expression can point to a record of the

record class containing the field, and output is generated

for the structure.

7 Array designator .
a. Layout (replaced by standard layout after structure is parsed),,

Vl pointer to NAME!IABLE

v21 number of *Is

v22 number of subscripts remaining, #FF if dimension

unknown

V3,V4,.V5 standard

b. The subscripts are counted (in NAMETABLE) if dimension is not

already known; otherwise the number of subscripts is checked

against the dimension The simple type of each subscript

is checked, register counts are computed, and output is gener-

ated for the structure,

8. Function designator and Procedure statement

a. Layout (replaced by standard layout after structure.is parsed),

Vl simple type information (if typed procedure)

v21 contains #FF if too many actual parameters, number

of parameters yet to come otherwise,

v22 simple type (if typed procedure)

v3 & v4 pointer to NA.?'.?'ABLE entry of current formal para-'

meter if it is actual procedure, 0 if it is formal

procedure

v5 output pointer

b. If the procedure is not formal the number of parameters and

their types are checked, output for the structure is gener-

ated.

48

9. If expression

a. Layout is standard

b, Simple types of then expression and else expression are

checked for type compatibility, type conversion is indi-
- cated if necessary, simple type of expression in if clause

is checked, output is generated.

10. Case expression

a. Layout

i

Vl

v21

simple type information

number of cases

v22 simple type

V3J4,V5 standard

b. Simple_.type of expression in case clause is checked, cases

are counted and

register counts

simple types are checked for compatibility,

are adjusted, output is generated.

<=, >J and, or, +, -> *, lJ shr, shl, div,- -

L

11. argument1 [=, >=, <>

rem,

a.

b.

*I argument2
Layout is standard

Simple types of arguments are checked, type conversion is

indicated where necessary, register counts are adjusted,

order of compilation is indicated, and output is generated.

l9 long, short, abs]

Layout is standa;

argument1

Simple type of argument is checked, output is generated0

130 Record designator

a. Layout (replaced by standard layout after structure is parsed).

Vl pointer to NAMETABLE entry for current field

v21 number of fields

v22 record class number

V3J$V5 standard

b, The number of fields is checked, the simple type of each field

is checked, conversion is indicated if necessary, register

counts are adjusted, and output is generated.

49

c

14,

15 0

160

17.3

18.

.

19,

Blockbody

a. Layout

VI

v2

v3 Be v4

v5
b. At begin

not used

0 if no declarations, #F if enclosing block of pro-

cedure body (with declarations), #FF otherwise

DRELAD of surrounding 'block

output pointer

BN, BNC, and HN are stepped, V2 and DRELAD are

set, storage is allocated for reference variables, and record

class masks are constructed (cf. IV.B.4). At end, DREW

and HN are restored. Output is generated for structure.

Label definition

a. Layout is standard

b. Storage is allocated for transfer, SNC and RN are inserted

in NAMETABLE, output is generated.

Assignment statement

a.

b,

Case

a0

b.

Layout is standard

Simple types are checked for compatibility, register counts

are adjusted, order of compilation is indicated, output is

generated,

statement

Layout is same as for case expression.

Cases are counted, output is generated.

For statement

a. Layout is standard

b. Simple types of expressions are checked, storage is allocated

for control identifier, output is generated.

While statement

a. Layout is standard

b. Simple type of expression in while clause is checked, output

is generated.

50

4. Pass Two Tables- -

Pass Two completes NAMETABLE and creates literal tables.

The information entered in NAMETABLE consists of those of the

following fields appropriate to the variable, For field contents and

table format, see Figure 5 l

1"

2.

39

4. TYPEINFO

,
5.

IDLOCl

IDLOW

SIMTYPEINFO

a. for a record class identifier, the record length is in-

serted

b. for a reference, the pointer to RCCLIST (a list of record

classes to which the reference may point) is replaced

by a 16 bit mask in which each bit position represents

a record class and is a 1 if the reference may point to

records of that class.

a0 for a label, the hierarchy number is inserted

b. for an array, the dimension is inserted

C. for a record class identifier, the number of fields is

inserted0

TYPE

a. for a formal value/result parameter, the TYPE code is

replaced by the code plus 16.

Two tables to handle literals are constructed for each program

L segment. The literal table contains all literals (numbers, literal

strings and bit sequences) occurring in the program segment. Atrun-

time it is located before the program segment code. The literal pointer

51

table is used by Pass Three and contains the simple type, the length

(if the literal is a string), and a pointer to the literal table for

each literal. The integer 1 and the logical values occur in every

literal table. Pass Two uses the stack CONSPOINTERSTACK to save the

pointers to these tables when a nested program segment is parsed.

‘6 .r j

i Figure5

FORMAT OF NM&TABLE AND FIELD CONTENTS AFTER PASS TWO

L 12 bytes/entry

--.

IDIOCl IDLOC2 7

hierarchy ' pw3 set3

SIMTYIEINFO TYPINFO dimen

. .-.^V .-^--- vr xc1 number.---.--..---.-a - __- _____.-_ __
TYPE SIMPLETYPE

ICN0
b

FIELD KINDOFENTBY- -

IDLocl

IDLoC2

simple variable

label

array

procedure

record class identifier

record field

control identifier

standard function

formal parameter

simple variable

label

array

CONTENTS

hierarchy number

program segment number

hierarchy number

origin of local stack

hierarchy number

hierarchy number

hierarchy number

simtypeinfo of argument

hierarchy number

relative address

relative address

relative address of de&
scriptor

52

-- - ---

r&r

FIELD KIND OF ENTRY- - -

record class identifier

record field
._

i
control identifier

formal parameter

hierarchy

prog seg

SIM!TYPEINFO
-_

TYPEINFO

dimen

rcclnumber

vr

TYPE

procedure

procedure

string

reference

record class identifier

label
--a.

procedure (not formal)

array

record class identifier

record class identifier

formal parameter

standard procedure

simple variable

label 1

array

procedure

record class

record field

control identifier

standard function

standard procedure

formal name parameter
\
L

I

i

SIMPLE TYPE integer

real

long real

complex

CONTENTS

relative address

address relative to ori-
gin of record

relative address

relative address of de-
scriptor or value/result

hierarchy number

program segment number

length -1

record class mask

record length

hierarchy number

block number of formal
parameters

dimension

record class number

number of fields

1 if value, 2 if result,
3 if value/result

vr for parameters

0

2

Y
16 + TYPE number

1

2

3
4

53

- ------p

r \

i

i

FIELD KIND OF ENTRY- - - CONTENTS

long complex

logical

string a-

bits

reference

NOTE: The SIM!TYPEINFO entry for a reference variable and the
TYPE entry for a formal value/result parameter are
changed from their contents at the end of Pass One.

The tables PRTB, MTB, and MATRIX: are used by the syntactic ana-

lyzer and are initialized upon entry to Pass Two. MATRIX contains the

simple precedence relations of the ALGOL W (simple precedence) grammar

(cf. Appendix 2) The array is packed two bits per entry. PRTB con-

tains the productions of the simple precedence grammar grouped so

that all productions having the same leftmost symbol of the right part

are together. The format for a production is the following

production: L ::= RlR2 00. Rn l<n<_5

representation in PRTB (one byte per entry):

n-l

production number

The SpQOl #FF indicates the end of a production group,
MTB is

an index to PRTB. The entry for a given symbol indicates the beginning

54

i

of

of

the group of productions of which that symbol is the leftmost

the right part.

symbol

METATABLE contains the EBCDIC representation of the symbols of the

simple precedence grammar and is used for printing out the parsing

stack. OPTABL contains the EBCDIC representation of the Pass Two

output nodes and is used for printing out the tree. Both tables are

initialized upon entry to-Pass Two

5. Output of Pass Two- - -

Each element of the output string TREE consists of a four-byte---.

word with the following format:

OP CONV
1

POiJTER ,

SWITCH is on (1) if the right subtree is to be compiled first and off

(0) if the left subtree is taken first. Conversion of arithmetic type

may be indicated in the source program implicitly, by mixed-type ex-

e pressions, or explicitly, by the operators long or short. In either

case, the simple type to which the expression is to be converted is

indicated in CONV. For a terminal node POINT.ER points to NAMETABLE

or the literal pointer table; for a nonterminal it points to the last

node of the first subtree.

54a

!
i

Example

program fragment and tree - previous example (cf, 111.~~6)

output substring:

’ /
r

c

i

SWITCH OP CONV POINTER. b
FIJNCID points to table entry for F

0 AC 4-

NUMBER points to table entry for 5

0 Jr7 l

J-ARID 2 points to table entry for C

VARPD points to table entry for D

.LAREL%D

GOT0

pointer to table entry for X

J

A separate tree is generated for each program segment, with output

pointers relative to that tree, The output for each program segment is

of the following form:

I pointer to end of tree I
\

PROCDC I
pointer to NAMETABLE

0
0 (tree for procedure body)
.

PCL I pointer to PROCDC
,

Origin of literal table
Length of literal pointer table
Literal pointer table
Length of literal table
Literal table

55

1ci
c- I

Figure 6

OUTPUT VOCABULARY

I. Binary Operators

f conversion I
OPl b%ts

pointer to lfirst argument
I

switch

Where OPl can be one of the following binary operators;

$TEWNTIL

DIV

REM

<

<,
>

>

OPERATOR

-I-

*

I
*+6

L z=

A z=

S :=

R :=s

L 2:=

A 2:E

s 2:=

R 2:=

CODE REMARKS

4
4

5 exponentiation

6 logical assignment

7 arithmetic assignment

8 string assignment - conversion field contains
string length

9 reference assignment - no conversion

12

13
14

15 ',
16

17

i

conversion bits indicate length for string
18 comparison

19
20

22 multiple assignment

23
24

25 s

56

(pointer to i first argument
I 4

(left branch always processed first)

(conversion field may contain-string length for string arguments)

OPERATOR CCDE

API 29

INDX 30

REFX

TFEXP

31
---.

32

PCL

SUBSTRING

39
40

REMARKS

Indicates end of actual parameter list. Con-
version bits indicate conversion of result
of function call.

Indicates subscripting operation. Conversion
bits can occur only with last such operator
and indicate that resulting array element
must be converted.

Indica.tes computation of field (1st arg.) of
record reference (2nd arg.).

Indicates tha.t label should be issued for end
of if exp. and unconditional jump patched.
Conversion bits indicate that resulting ex-
pression must be converted,

Indicates end of procedure declaration.

pointer td first argument
-..-w- -I_

(no conversion)
switch

OPERATOR CODE REMARKS

SHL 35 left shift

SHR 36 right shift

57

I

i

1
i
I

t
L

OP4 I pointer to first argument

(no conversion: left branch always processed first)

OPERATOR

BB

END

I

APJ

R,

Jw9

AR)

R)

VWR
BITfiR

L&AND

BITAND

ITERST

TTE3ST2 52

F$RLIST 53
F@R CL 54
ENDFflRLIST 55
US$FEXP 56

UJ 57

CL 58

IFST 59

: :

LS

9

WILEOP

WHELEST

IFJ

-G.

CODE- -

37

38

41

42

43

44

45
46

47
48

49

50

51

60

61

63
64

65

66

REMARKS *.

indicates end of declarations, beginning of
blockbody.

for actual parameters

for record designators

for array declarations

indicates end of array declaration

indicates end of record designator

indicates @R of logical arguments

indicates #R of bit sequences

indicates AND of logical arguments

indicates AND of bit sequences

indicates generation of transfer to iteration
test (for WHILE st and simple F@R st)

indicates generation of transfer to iteration
test (for F@R st with FjdR list)

links control assignment and STEPUNTIL

indicates unconditional jump in IF exp

indicates issue jump to end af case list or
IF SC,. (to be patched)

indicates label should be issued for end of
CASE st and jump addresses patched

indicates label should be issued for end of
IF statements and jump addresses patched

array bounds COLON

indicates N#$P (statement separator)

indicates issue jump on condition false to
end of IF exp, or IF st.

58

II. Unary Operators

Op5 conversion ., I I
bits I

I 4
Where 05 can be one of:

67 unary minus
68 absolute value

.

0~6
I

. I
1--.

Where 0~6 can be one of:
4

OR%RATOR CODE

LJdG -I 71
BIT-I 72
BN 73
BFF 74
G&g 7s
: 76
STACKADDR 77

m

REMARKS
negation of logicrtl value

negation of bit sequence

label COLON

argument is local stack origin for implicit
subroutine (statement parameter)

source card Inumber

tc

III. Terminal Nodes

L

1

,

I
I
c

I block no. I local stack origin I
. .

block no. and local staek origin
occur only if begins data seg-
ment

I integer value
NUMBER conversion
WI bits

pointer to constant table

I
conversion

bits I
pointer to NAMETABLE

Where Xl can be:

TERMINAL CODE

ID 87

LABELID 88

AlEu3KYID 89

FUNCID 90

RCCLID 91

FIELDID 92

CONID 93

PROCDC 95

RCCLDC 96:

REMEWC3

no conversion

no conversion

no conversion if proper procedure

no conversion

no conversion

no conversion (procedure declaration)

no conversion (record class declaration)

SEG(9’7j program segment number
r

indicates program segment
occuring in outer segment.

60

I x2 pointer to constant table I

Where X2 can be: . .

TERMINU CODE REMRKS

BIT 98

STRING 99

TRUE 100

FALSE 101

*
I

I- -

x3 I
I
I

--.
Where X3 can be:

TERMINAL CODE REMKS

IF 111

WHILE 102

NULL 103 indicates undefined reference

NULLST 104 indicates empty statement

A.7FwuDc 105 array declaration

AR+ 106 indicates dummy array subscript

I IX4
conversion i

bits
pointer tolNAMEZBB]LE

I

Where 3% can be:

TERMIN& B REMARK3

‘L,
t

/
1

L

DD, Pass Three- -

t

II
i

Code generation for arithmetic operations involves the knowledge of

which registers are occupied and where each partial result is held,

Temporary storage must be provided for dumping partial results from

i registers into main memory when either too few registe.rs are available

__ Or a subroutine call is made. An even-odd pair of general regis-

ters is required for integer multiplication and division0

c
Al.1 the floatfng registers are avai1,able for arithmetic, Some of--.

the general registers are reserved for special purposes, The compiler

variable CLN always contains the number of the lowest-numbered base

register in the current program segment. All lower-numbered general.

registers are available for arithmetic with the exception of RO and Rig

and R2 in iterative statements.

The compiler uses two half-word arrays R and F to indicate which

registers are occupied, To each general register which is free corre-

spends a .fl.ag equal to 0 in the array R0 A non-zero flag indicates

the register is occupied, The .array F serves the same function for

the floating registers0

Partial :res-~lts are located by referring to LSTACK, Each current

c partial res=u.it, whether value or address, has an entry in LSTACK,

These entries have the folllo=wing formats:

i

i-

1

I

L

In (1>9 N2 is zero except for one case: a complex value is in the

floating registers Nl and N,. Nl is the number of either a general

or floating register> and bits 16-31 are interpreted as a base with

displacement address.

__
In general, a procedure call involves dumping all partial results,

Also, one or more partial results will be moved from registers to main

memory when ashortage of registers occurs. Each quantity dumped must

have its LSTACK entry changed to indicate the new location. Thus

pointers to the LSTACK entries indicating registers are required.

These pointers are in two arrays,? FSTACK for general registers and

FSTACK for floating registers. Each RSTACK entry consists of only the

displacement field, for indexing LSTACK. Each FSTACK entry has this

index and two other bits of information: bit 0 is on for type real

and off for type complex, and bit 1 is on only if the quantity is not

e long. Complex values are never split between a register and a memory

call; either both real and imaginary parts are in registers or both

-are in memory.

A procedure call requiring the saving of registers causes the

necessary store instructions to be generated, all corresponding LSTACK

entries referenced via RSTACK and FSTACK to be updated, and RSTACK

and FSTACK to 'be emptied. During Pass Three R2 always points to the

next available word in RSTACK and R4 similarly for FSTACK. The pro-

63

cedures DUMPALLGENREG and DIMPALLFLREG carry out these functions.

When one or two registers are needed @or partial results and

are not availablie, one or two registers 'holding th? currently oldest. .

partial results are stored, This involves updating at most two LSTACK

entries, The relevant RSTACK or FSTACK element(s) are eliminated,

and al.1 elements above are moved down, The currently oldest partial

results in registers are thus always referenced via the bottom entrLes

of RSTACK and FSTACK, The procedures DUMPGENREG, DUMWLREG, and

DUMWRFLREG generate the store instruction(s) and do the necessary up-

dating, --.

When a register or pair of registers is needed, the appropriate

register request routine is called and is one of the following:

GENREG, .P.RGENREG, FLREG-, or PRFLRIEG. This routine scans the R or F

array to find, if poswi'ble, the required single register or pair., If

necessary, it will call the appropriate save procedure as described

above o Having determined or created the requested register(s), the

procedure will flag the appropriate element(s) of R or F, set up

the LSTACK entry at the top of the stack, and create the appropriate

RSTACK or FSTACK entry, A register release is performed by either

RELEASE or ZREXWE.

In certain cases of inputs to binary operations, an adjustment

must be made in the top pointer value of either RSTACK or FSTACK.

Consider the situation below just before code is to be generated for

an add operation,,

i-
RSTACK LSTACK

L

i
t

7L

+
0 ADDR

)1 N

i

It is only necessary to generate one ADD instruction to add the con-

tents of memory location ADDR to register N. Afterwards, the situa-

I _-

tion must be the following.

RSTACK LSTACK
-v.

L L

0

a1 N

The pointer at the top of RSTACK must be decremented to point to the

new top of LSTACK, Whenever this is necessary, procedure ADJSTACKS

is called,

Procedure ASSEMBLE, though used in many parts of Pass Three, was

L

:

designed primarily with arithmetic instruction generation in mind, It

accepts as inputs registers holdin two LSTACK-format entries, one of

them also holding the second half-byte of the instruction code in

bits 4-q. The third input contains the type, From these the routine

can determine the first half-byte of the instruction code and build

c each field of the instruction.

2, Block Entry

,

L

There are four purposes of block-entry code: First, the data

stack pointer, a system cell called MP, must be updated. At any given

. 65

L

time, MP contains the base address of the most recently created data

segment.

Secondly, space must be allocated in the data stack for the data

segment to be created.

Thirdly, the block mark must be built and placed at the base of

the data segment.

Finally, the local display must be set to reflect the accessib&

lity of all variables which can be referenced within the block.

The total amount of storage to be allocated for the data segment

is not known when Pass Three encounters a block. Pass Two calculates
--.

the static amount of storage required for the block mark, local display,

and local variables and array descriptors. This information is given to

Pass Three. However, during compilation of the block body., registers

with partial resultsmay need to be dumped due to procedure calls, etc.,

and the amount of storage required for this purpose, called the local

stack, is not known until the block is compiled. Hence at the end of

compilation of the block the instruction which specifies the total

amount of data storage required for the data segment is fixed up9 and at

execution time the total amount of data storage needed is correctly given.

Since the display registers are allocated statically downwards

from R13, the base register to be used for the data in the block being

entered is nutn'bered one less than for the enclosing block. The display

for the block is then identical with the display for the enclosing

block with the addition of the display entry for this block.

The code for block entry is given below: n is the number of the

register which will be the base of the data segment for this block.

66

L

lx 2&l R2 = base of data segment of enclosing
block

L ow R6 = free pointer in enclosing data
. . segment

A 63=7 = base of new data segment

N 6,X'FFFFFFF8' set data segment on a double word
boundary

LA O,length(,6)

BAL 4,ALLOcm

LA 3J
LA by

STM --. 0,4,0(6)

length is the total amount of static
storage needed for this data seg-
ment - fixed up at block exit,
RO = new FP

see discussion of error code (Sec. IV.A.6)

see discussion below

see discussion below

RO = FP

Rl = not used in block mark

R2 = dynamic link

R3 = REFYAR

Rk = REFARY

ST 6m update stack pointer

LR n,6 R6 = Rn = base of this data segment

STM n&Z,. 20 (,6) store local display (if n&Z, then
ST 12, 20 (,6))

In the instructions

i.- LA 39x
LA by

L
X is the re1ative address of the first reference variable declared in

the block, and Y is the relative address of the base of the first

reference array descriptor declared in the 'block,

/
L After a11 code producing declarations (e,g. array declarations)

:

L

have been processed, MVI instructions are used to insert the number of

reference variables and number of reference arrays in their appropriate

67
L.

i

Blocks without declarations have the foLL1owin.g t,ree:

c

L

\
/““\CARD ‘4a statements

/
BEGZN

The pointer field p in the node BEGIN is the amount of data storage

required for the block, with the e:ir-elusion o.f' the '4,o~a% stack, except

__ for the outermost 'block of a procedure ~?~ose data segment is merged

with the procedure dat;a segment0 In this case, the p-field in the

node BEGIN is 0-m.

procedure-block

and the amount of storage req~.ired. for the combined

data segment is given in the NAMETABLE entry for the

procedure,

The second byte in the node BIEGIN is a pointer (by lls) to -&e

BLOCICLJST table. Hence, t&e WMETABLE entries for -the! variables and

arrays d.eclared in tBe block zan be scanned., and the count and start-

i,ng addresses of P,he

for the fnclusion in

- The node Cm n

reference variab,%?a UK?L array-s can 'be obtained

the block mark1,

is explained in a following section (1-f. IV.Po23)o

The purpose of the code emitted for block exit is to reset MJ9 to

the base of the data segment for the block tc which cmkrol is being

ret:~d.n,ed. o

The tree outph of Pass Two for 'block exit is the same part of the

tree used for block entry0 It is enc~ountered again after all state-

men-b in. the 'block have been psocessedO C~~mpound. statement exit and

block exit are distinguishable, as 'before, by the presence or absence

of the tree node BB.

Code emitted for a block exit is as follows: n is the number of

the register which holds the base of the data segment corresponding to

the block being exited.

L Lw,Jd Rl = dynamic link (field mark block)
I= base of data segment of block re-
turning to

ST 1,~ Reset data pointer stack

4. Procedure Statements and Typed Procedure Designators__I-

The tree output for procedure statement and function designator

parameters (n > 0) is as foU.ows:

i

!

i

I,,

/
BP.9

.9

/"'\

tree for
parameter #n

\
tree for
parameter # n-l

/

\
tree for
parameter # 1

F&m(t)

The pointer fit-Ad t of FUN@SD is a pointer to the NIQ@3XBLE0

70

The tree for a proper procedure without parameters is:

‘-

/3

/
. . \

FuNcID(t)

The tree for a typed procedure without parameters looks just like

an identifier except that the terminal node is FUlKXD(t) instead of ID(t).

The code generated for a proper or typed procedure call, with or

._ without parameters, is as follows where m is the number of the regis-

ter which holds the base of the data segment corresponding to the

block in which the called procedure was declared:-=.

,

L

. SETDPS

.

LR 5sm R5 = base of data segment from which
display will be updated in pro-
cedure entry (after parameters
are established)

L 15, base of procedure

1, 15
L 15, base of current

procedure

B SETDIS

SAPD9 s

Subroutines.
(cf. W.D.5)

IIM n, 12, 20(2) Rtset the display -
R2 C: dynamic link loaded at procedure

exit
= base of current data segment

n is the number of the general register holding the base of the

data segment for the current block. If n=l3, the LM instruction is

emitted e

-. --1 1
I

i

Call of a Formal Procedure--s-P

The following code is emitted for the call of a formal procedure:

IN

LA

L

BALR

L

B

4,5 ,DPD

. .
R.4 = address o.f subroutine (cf. .IV.D.~)

0, number of actual
parameters

L5g CHFCK

1.9 15

15, base of current
procedure

SETDIS

SAPD'S

Subroutines0e

SETDIS L&I n, 12, 20(2)

The CHECK routine checks actual-formal correspondence, since this

checking cannot be done at compile-time, Actual parameter descriptors

are obtainable via RI (the 2nd~4th byte of each SAPD). Formal para-

meter descriptors are in the head of the called procedure (SFPD'S).

J8+ contains the address of the subroutine which will. call the procedure;

therefore there is an instruction in the subroutine of the form

L 4, base of called procedure .

The CHECK routine locates this instruction (via R4), executes it

and then checks actual-formal correspondence.

The CHECK routine save s Rk and R5, and ends with

72

It-

5* Procedure Entry

The tree pro&uzed 'by- Pass Two for pro~&ure entry is:

The purposes of procedure entr;T code are almost those of block

entry code9 and for this masoil, the codes wil.1 be quite similar.

The additional requirements of procedure entry are those of set-

ting up dynamic formal parameter descriptors, evaluating value p-a-

meters, and the more ~omplica-5ed manner of setting up the dfspPlay.

At procedure call (cfo IV.D.b~)s R5 holds the base of the data

segment surrounding the deCI.aration of the called proT,edure. This

data erivironment is precisely that which should be valid while the

procedure is 'being exewted. *Therefore the display of this surround-

ing 'block plus the dispIa;r entry for the called procedure constitute

the displqy while executing the procedurz.

73

1
r

t
k

r

!

Procedure entry code is as .fo19ows: Rn will hold the base of the

data segment to be created.

L ?9m
L 6dw ,921

LA O,length() 6)

4,B&LWERR

LA 3.9x
LA 4,x

STM 0,4,0(6)

ST 6m

SAPD +-DPD operations

LM n+1,%2, 20 (5)

LR n, 6

STM n, 12, 20 (6)

DPD + PV operations

-.

base of calling data segment

R6 = base of new data segment

add in required storage. RO - new PP.

check to see that allocation is valid

(Note 1) _(cf eXAo6)

store procedue mark

update stack pointer

(Note 2) update the display

(Note 31

Note 1:- - X is the relative address of the first reference value/

result parameter; or if there are no value/result parameters, X

is the relative address of the first reference variable local to "

the block whose data segment is merged with this procedure's data

segment ; or if there are no reference value/result parameters and

rk0 .hxl se.ference v2t.r;~ciblea or no blocks then X is 0,

Y is the reSatfve address of the first reference array de-

scriptor in the block whose data segment is merged with the pro-

cedures data segment Ef -",bhere are no reference arrays or no

Slack, then '1. is 0.

MV& i:nst.ructions are used to place the number of reference

~~aiue~resalt parameters and local reference variables, and the

74

-_ -. _.-___-- _- -
1h

number of local reference arrays:, into the fields REFVAR and REI%mY,

respectively, in the procedure mark.

Note 2: This instruction is“0mftted if n = 12.- -

If n = 11, the instruction becomes L 1.2, 20 (95)

Note 2: If n = 12, then th. is instruction becomes ST 12, 26 (,6)

Notioe that 6 f n < 12 .,

SAPDvs - Static Actu@ Par Descriptors eLnd Subroutines

-

The calls ofpro~edures without parameters haveno SAPPs or sub-
--

routines x.rrespsnding to them, and the reloading of R15 to the basz

of the current program segment is immediately followed by the resetting

of the display at procedure cal.11. (<:f. .IV.D.&).

For procedures with parameters,? each parameter has associated with

it one SAPD of 8 bytes. AcxoMfng to different forms of actual para-

meters, different SAPDvs are established. 111 general, an actual para-

me'Ger is represented by a subroutfnej and the SAPD gives the address

of that subroutine, If the parameter is an identifier, the SAPD con-

tains the address of the identifier. Note that addresses of subrou-

tines are given relative to the instruction

L 15) base of current program segment

imediateig fc.IIcx&ng the instruction BAU 1.915 in procedure

' call0

The I"& bits in the SAPD define the character of the actual para-

mcz:ter O :? specifies whe4Ixx a s&r~~tine eYi~4Gs or not:

75

1
!
i

I?=1 : access to parametes invc&ves a subroutine call

P=O : no subroutine eaI,l

Q specifies whether the par%rr,ete!,- may OCWY in the left pwt of m-.

assignment statement:

Q=B : assignment is possib1e

Q#p : assignment not posa;ible

The type fnfsrmation field of three bytes is used only by the @HE@~

routine when a formal procedure is caLled,

identifier

-

czo..st8nt, expression
or statement

procedure

i
subscripted variable

or field designator

formal. parameter copy of DPD

The implicit subropLJ+r.,ines crosresponding to param&r t:nes II

L (expressions and statemen-@ acid, IV create data segments of hierarchy

/ level. one 3,~~s tha,n at the point oT" procedure call. Tithe format of

these data segments is like those created by blocks except that for

implicit subroutines, there are no local v,ax%ables.

i
i

Implicit subroutines corresponding to constants are as follows:

-

15, base of segment
in which cmpnstant
table lies

L ?9m set R2 for ret~n

LA 3.9 address of
c.onstant (Qj

BCR X%1 this subroutfne branched to via Rl

Impl.icit subroutines corresponding to proper procedures arrd all typed._

proce&zes are as follows:

Id 4, base of called pr~ce%w~~
-=.

LR

L 5,=F'(X-C&N-+1)*4' (5) where
X= hierarchy # of called

procedure
C!%N = current 'nierarchy

number

BCR 15315

The purpose of this subroutine is to set Rr correc~tly. Recall that R5

wf:LZ be used as the base to update the display in the entry code of

,the eall.ed procedure o R$ cannot be set corre&ly at the point of men-

-
tion of the formal name parameter corresponding tc the procedure for

which this subroutine is set up in czertain recursive procedure call

aLt9ations O

Notice that the su'broutines given above do not set up a data seg-

ment of their own*

A.11 string routines (i.e. string procedures and implicit sub-

youtines I-eturning the results of string procedures) are exited with

the addless of the resulting string in R.3. For some string routines

L.

the string itself may 'be in the data segment of the string ~~~1-t,ine.

When the routine is exited, Dlhe d&a segment is r~e'irase~, and the PC~-.

sulting string may' thus be ~5le~txoyed if another data segmeir.t is aLlo-

cated before the string (whose address fs in 33) is usp;!&.

This situation axises foT typed ~T"OW&X~XS of types c.J-iAET t-hall

stroing, but the manner of compiling expr~~ioes cf ,l;b,ese ty~cs ins-yes

that the zesult of the typed p.rocedure wiL1. Se '~ksc=d <i.e. c!ithey placed

en a register, added to an acxxmulating sum, c.ompe;r"ed, ete.'j befox!

any nev data segment could be created.

This 5-s not the case for strings.-=.

Hence, to insure that the string which is the result of a string

routine is not lost, ,the string must be moved to a data segment which

cannot possibly be 'released, unki.1 the string is used. Ll khe case

under discussion, the string must be moved into the local stack of the

data segment at the point of c.a.l.1 of the string routine,

:Ln the deseCption of the DEWS (to be dlsjeussed pPeeently), the

adliress and data base fields we absolute COW addresses. The data

base f'ie'ld is the base of the data segment of the block in which the

p.roeeduTe call occurs o This field is used as the base from which to

ipciate 7;lfF! display when execuifng imp.licli.5 subrohiwzs or proceduxxs

i" 07:'*c:s pmd fxg to the mention cf the corresponding fsrmai parameters.

The byte ST is -t&e simple type of the actual param&x (0 for

proper pnaoeedxres and statements) and fs used for Qpe conversion. ;for

'"Ja !:Jq~re 9KLLt 4-Apa.rame LJcrs 9 IQxa.I.1 that all name parameters must match

exac9; l.y in type 0

‘tip 1:i @i*, subroutine,s which 'have vaILu.es a~! so constructed. that the

address of the result is returned.

SAPD + DPD Operations

. .
SAPD : Static Actual Parameter Descriptor

DPD : Dynamic Parameter Descriptor

The SAPD -) DPD operation consists ofanevaluation ofthe staqceesses

@.venLQeach SAPD%t procedm cay andthetransmission of the type infor-

c

L

._ mation about the actual parameter including the %wo-bit code (PQ).

If the actual parameter is a formal parameter? the DPD must be copied.

Each DPD is eight bytes wide and there is a .1-Jl correspondence between
--.

SAPD and DPL. The possible formats for the DPDvs are given in the

section discussing the SAPD's.

The code for prodxing the DPD+ is as fol.lows:

'Let a E= address of DPD to be creaked (using R6 as base - see, pro-
cedure entry code)

'b = address of SAPD (using Rl- see procedure call code)

LR 4,2

Ex. O,b+li

dynamic link = data base for DPD

executes instruction in SAPD, For all
types except 'V, this loads R3 with
address of procedure OF implicit sub-
routine.

for type V, (actual parameter is formal
parameter), this loads DPD of formal
parameter into Ra and R&.

store DPD

establish PQ ‘bits

establish ST fie'ld

-1

!

:I/,‘/

DPD + PV Operationsm -

c

L-

I-

L

-

L

L

As stated in the report, each value parameter 5s evaluated and its

value is stored in the procedure's data segment, Any further occurrent+

of the parameter uses the parameter value (PV).

Since, by definition, arrays are always passed by name, the DPD

is used to obtain the address of the actual descriptor, which is therrk

copied into the data segment of the procedure. The DPD may or may not

require a subroutine call to obtain the address of the descriptor,

._ depending on whether or not a sub-array is being passed. Any further

occurrence of the array parameter uses the copied descriptor, the

parameter v$ue (IT), to compute the addresses of the array elements.

L

i-

i

6. Procedure Ekit

Because of the tree scanning mechanism in Pass Three of the com-

piler, typed procedures with parameters and typed procedures without

parameters are detected as requiring a procedure call at different

places in Pass Three. For this reason, the mode of returning the

result is different,

Por typed procedures with parameters, the result of the procedure

is returned in a register, depending on the type, as follows:

integer

real

Long real

complex

long complex

bitis

reference

logical

string I

R3
FO

FOP

FO-F2

FOLF23

R3

R3
R3 (address of result)

R3 (address of result)
80

For typed procedures without parameters (which include implicit

c subroutines which return values), the address of the result is returned

in R3, ._
c

The addresses of the actual parameters corresponding to result

parameters are evaluated and a validity check is made to be sure that

the actual parameter can be stored into, The type of the result is

converted i$" necessary and the result is stored.

The code emitted for procedure exit is as follows:

LM wm(n) Rl = return address

--. R2 = dynamic link

ST Q@

BCR 15.71

Notice that upon return, the display is updated from R2, set

correctly here in procedure exit.

%* Formal Parameters in Expressions and Assignments

Reference to a formal n&e parameter requires testing whether a

subroutine eaL1 is necessary, or whether the descriptor (DPD) already

contains the absolute address of a variable. Furthermore, a validity

L..

test is performed if an assignment is to be made to the formal para-

- meter0

81

t
i

The code emitted for a formal parameter in an expression is:

TM

Y B@

L

BC

x L

_ ‘
f

L

i

I
L

L

BCR

L

I’M

.sz 0
0 --.
0

DPD(n)JP02~ test P-bit

1,x
3,DPD(n)

branch if P=l, iOe. must call subr.

“no subroutine, R3 = address of id

154
S,DPD&(n) R5 = data base = base to update dis-

play inside subroutine or procedure

15,DPD

15.915

Rl5 I= base cf subr or procedure

15 ., base of current
program segment

n,l2, 20 (2) reset display

At Z, R3 has the address of the formal parameter, and its value

is easily obtained. c

Value parameters are referred to only once as shown above, in the

DPD + PV,operations. If the type of the value parameter is arithmetic,

a call to a system routine which converts the actual parameter if

necessaq and stores the result in the formal value location is placed

at the label Z. Tf the type is non-arithmetic no conversion is

possible and an instruction to store the value is placed,at Z. If the

*pe is string, instructions to insure that non-significant characters

of the formal parameter are set to blank are inserted before the store

inst:ru?tion.

For a formal name parameter occurring on the left of an assign-

ment statement, the code is as before except for the first instruc-

,&ion9 which is replaced by:

82

i

L

c-

TM DPD(n),Xv03' test P and Q bits

BC BJ branch if PQ bits not mixed, i.e. can
store into

BAL 1,MAIlYERR -.branch to error rou%ines Rl = loca-
tion of error

Result parameters are referred to only once in this manner fn pro-

eedure exi%.

8. w Declaration

Corresponding %o the array declara%ion of n dimensions

fn the head--.of a block, an array descriptor of length 121~8 bytes is

built in the data segment of the block.

SIMPLE NIJ'MBEROFBYTES
TYPE PERARRAYELEMEWT

1, integer 4

2. real 4

30 long real 8

L. complex 8

50 long complex 16

6. logical 1

79 string declared string length

8. bits 4

90 reference 4

The size of the descriptor depends onXy upon %he number of di-

mensions of the array and hence the storage for the descriptor is

aUoca%ed s%a%icaUyO The storage for the array elements themselves

must .j of course, be allocated dynamically. The descriptor has the

83

following format:

Pn-l
A

-."

where Q! -
0 is the base address of the array elements

a -O
0 1s as given in the table above and is the number of

bytes per array element

5 - the lower bound of the ith dimension

%

- the upper bound of the ith dimension

nf = hi-l - ii-1 + 1) x Aial f = 1,2,...,n

We require that Ai, i=O,l, 000 ,n-3, fit into 15 bits so that the more
*

convenient mu.ltiply halfword (MI-I) instruction may be used for the

multipU.cation.

:wkli ch. *

Note that no such restriction is required for An,

represents the total number of bytes required for the array.

92ie value of Ai i--1,2, o o 0 ,n is the number of bytes required for

the first i dimensions of the array0 The restriction that A
'JJ

j=O,OOO,n-~l fit into 15 bits results in the restriction that A
nbl fit

into 15 bits P for if any AJ J'=o,. .o,n-2 does not fit into 15 bits,

then Ans=. 1 will not fit into 15 bits.
, Therefore, the value of A

n-l

84

’

c

must be less than or equal to 3276710. Observe that for a l-dimensional

array, this restriction is automatically satisfied,

The following table gives the maximum number of elements for the._

first n-l dimensions of an array of the indicated simple type,

simple type of array
maximum number of elements
in first n-l dimensions

logical

integer, real, bits,
reference

long real, complex

long complex
-v.

string

32767

8191

4095

2047

32767 DIV q
where q is the
declared string
length

For storage of the array itself upon block entry> An bytes are re-

quested and the free pointer (FP) of the data segment in which the

descriptor resides becomes the base of the array, after which FP is

incremented by An.

In Algo notation:
Qb := FP

FP := FP+A
n

In the case of reference arrays, the upper byte of the first word of

the descriptor, the r-field, gives the num'ber of dimensions so that

the garbage collector can find the next reference array descriptor.

85

The tree format for the array declaration <simple type array Xl, X2,

.0.) XIII (lo z:: po, Pl :: pl, ..“> ln 1 :: pn l) is as follows:

c1 n-l

/
ARRAYDCmp

The pointer field p in ARRAYDC is a pointer to the IQIMETABLE entry for

Xl; m is the number of identifiers. The nodes ai and pi can be sub-

trees for any integer arithmetic expression.

All. left subtrees are processed first. The descriptor is built

into the descriptor location of the last identifier, in this case Xm,

and finally at AR) the completely built descriptor is copied into the

descriptor locations for the other arrays. As each descriptor is
'. -Tbb

copied, storage for that array is allocated and the base address is

placed in the a0 field of the descriptor,

86

iL

Example: a r r a yinteger X,Y(O::lO,A::A*B)

2,=F'0' lcrwer bound of first dimension

number of bytes per array element

-.
upper bound of first dimension

L

ST

IA

ST

L

ST

S

2,n,
2,=F'lO'

2,cI0 First
) dimension

1,uBLEER.R

2,m

23

GA1

2~6

see error code discussion in section ~[NJL~
LA

L
SLL

__ ST

Jcheck if Al ean fit into a halfword

lower bound of second dimension

L SLA

s L
L ST

L
1
i A

24
29, --

2,Al

24

2
jc'l
W,

1,uBLBERR

upper bound of second dimension

Second
' dimension

ST

i S

\ MH
L-

ST

0,FP

0,THREE

free pointer

see discussion of special constants
based off ~14 (cf. FLA..~)

see discussion of special constants

store base Y in descriptor Y

RO = new FP - ‘base of next array

set base of
array to ward
boundary *L- * N

/ ST

0,SINGLMASK

wo
OJn,
4,ALL@RR

x(29M

see error code discussion

move descriptor (30 bytes) :from Y to X

store base X in descriptor X

RO = new FP

Mvc
L-

ST

A
L

ST

(LAO
4,ffiLPJCERR

0,FP store new free pointer
c 3t

For
For

arrays of type 1ogicaXand string, the free pointer is not adjusted.
arrays of type long real and long complex, the free pointer is ad-

justed to a double word boundary. For-x-her types, the free pointer
is adjusted to a word boundary.

07

At each node ts::99g t;he lower bomd '1s placed in the descriptor when

the left sub-tree has 'been processed. After the right sub-tree has

been processed, the upper bound is placed in Le desc~ip~~o~~

is calculated, and n
i-p-1 is placed fnto the descriptor0 FOI- i=OPvn-3,

a test is performed to assure that n
i-l-1 wikl fit into a 'half-word, For

i--O, the multiplication by no is peTformed SIy a shift for al types

except <strin@, since no wi1.l be a power of two for these types, AIT?gTS

are stored by CO~LUTUIS. At the completion of the execution of this code,
x_

the desmiptors in the stack would loch like the following, assuming

A-3, B& (al.1 numbers in base lo),

x

Y

--_?

I I

Lj

88

i

90 Subscripted Variables

\- Consider the following reference to a subscri,pted variab.Ee from

an array A of n dimensions: . .

where Xi may be any integer arithmetic: expression In tree .form, the

above construction is represented as,:

I\
IIYDX

/\
Xn-l

Xn-2

/

1mx

/\
TMDX

\
X

/

1

xO

The address & of %he array
element is given by

n-l

where the left sub-trees are always processed first. The pointer field

c of the node ARRAYID is a pointer to the NAMETABLE

I
Each node Xi msy be a subtree for an arithmetic expression. The

indices are evaluated in order from Xo %oXn 1 DI_

I

L
Af%er the value of Xi has been computed, it is checked against

li and. qi (the upper and lower bounds for the i *th
dimension). If

c either bounds test fails, the run is terminated with an appropriate

error message 3 If the bounds tests are successf'ul, the lower bound is

subtracted from the subscript and this quEtratity is multiplied by the

current f and added into the aecumul.atirr.g address.

L

As an example, consider a reference YQ3,T-27) to an array de-

clared integer array -Y(O::lO, A::A+B), where T+, A-3, B=40

The address of the array element 2s given by

o! = a0 * (3-o) x 4 4" (y-,3) x 44 :-. cYo P .loc

where a0 is the base of array and is o'b%ainab.le from the first wcrd of

the descriptor. (See descrip%o:r: given in sectfon on array declara%ions.)

The following code is genera%ed for this array reference:

L 3'-a j a0

L 3pP3C
c --3+)

LA w(3)

S

B@

SLL

AR

L

S

c

BALI

S

B@

m

AR

1 JARRAYERR

3110
<~MAINERR

382

%3
3.J
3,d?'27'

3,i.y
1,ARRAYERR

3.95
<,~INERR

3.7 (*p2)

2.93

R2 will be accumulating address register

firs% subscript

sets RO %o type of error if bonds check
fails (see discussion of error checking
code [se&ion nLA.6j)

(cf. :rv.ao6)

(ef. l-V.A.6)

(x0-l,) x Do

add in%o accumulating register

second stibscript

At this point, R2 has tiadd~ssofY(3,T-2'7% o

i

10, Passing Sub-Arrays as Parameters

The user may pass any generalized row or column, i.e, any sub-

array of dimension l,2,00.,n- i of-.an n-dimensional array as a parameter

to a procedure. Since all array parameters are passed by name, all

that is needed is to copy certain par%s or all of the array descriptor.

At this point, the reader should familiarize himself with the de-

tails concerning the building and format of array descriptors, and the

calculettion of the address of an array eleme.n% when the element is re-

ferenced,

According %o %he syntax, an asterisk (*) is placed in those posi-

tions of the actual sub-array parameter to indicate which dimensions

are to be included in the formal array.

In those positions in which * occurs in the source code, the

Pa.ss Two tree output is the node AX* For example, the tree corre-

sponding to the actual parameter

A(*,4)

is

’ ‘4IIJDX

/

\
AR*

APRAYID(A)

indicating that the firs% dimension of the two-dimensional array A is

to be unspecified and that the fourth column corresponds to the one-

dimensional formal array.

91

i

L

i

t

1
t
i

It should be recalled that an array descriptor consists of a

series of triples {Ai+@ where 1. and p
1 i are the lower and upper

-.
bounds of the ith dimension, Ai = (pi l-R,

-. L-1) ' 'i-1 (=cepM'orAo), and

khattk first entry inthe descriptor is cu,,the absol& address of the first

array element Therefore, to compose the sub-array descriptor, rules

must be given on how to build the triples cni,l+} and how to cdcu-

late aoe These rules are as follows:

othIf Xi is the 1 index, then for each position with

xi=* : copy the descriptor triple [Ai,!i2pi]
--_

xi#* : omit the descriptor triple

To @alculate (9 the absolute address of the first formal array

element:

n-l

CYf =cko+ c
f=l

(Z,-'.) x A. :,1 1

where Z =
& if X =*

i i i

'i if Xi + *

e As an example of the use of these rules, consider the following

array declaration and the layout of the array elements in core:

92

!
L

I.ogixal array A(0::1,0::2,0::3)

‘-

I

L

c

L

L

@O
e

A
0 1

PO

E

0

pO 1

A
1

R
1

5
A
2

l2

c12

2

0

2

6
0

3
24

A(*,12 >

I

total number of bytes in array
- not used in subarray calcula-
tions or descriptors

000

100

010

110

020

120

001,

101

011.

111

021

121

002

IL.02

012

112

022

122

303
103

313
Lx3
323

123

0

1

2

3

4

c;/

6

7
8

9
PO

1.1

12

1-3
14

15
16

17

18

19
20

2x

22

23

.A(++&*)
,

e

1

0

1

6

0

3Y P

93

f
i

’ :
P ,

L

i

c

/
c

The calculation of the addresses of sub-array elements is the

same as for ordinary array elementso

The implicit subroutine corresponding to an actual sub-array para-

meter builds the sub-array descriptor in thelocal. stack of its data

segment and returns the address of this descriptor. During the

DPD + PV operations, this descriptor is copied into the procedure9

data segment,

110 Arithmetic Conversion

Type conversion in ALGOL W is implicit in a number of cases,

However 9 real to integer, or complex or long comp.lex to real or integer

must be specified by transfer functions,

10 Integer to real or long real

A quantity of type integer is converted to long real by means of

a subroutine. The linkage code is:

LA 1,.X9rii9

L 15> base of segment 57

BAIlR O,L5

E 15, current segment base

The quantity placed in register 1 is a parameter to the conversion

routine.. i specifies the register which contains the quantity to be

converted and r specifies the destination floating point register,

Therefore, the same conversion routine is called for integer to real

conversion as for integer to long real conversion. Likewise, the same

routine is used to obtain the real part in conversion from integer to

complex and long complex, The imaginary part is attained by the in-

94

,

i

struction

SDR r2J r2

i

The routine to do the conversion stores the absolute value of register

i in the lower half of a double word whose upper half is #4EOOOOOO.

This quantity is loaded into register r to which zero is added to nor-

malize the number. Register r is negated if register i contained a

negative number. The execute instruction is used to mainpulate

register i and register r.

II. Real @long real, complex or long complex

A quantity of type real is converted to long real by two methods.

a) If the value V is not in a floating-point register, the

sequence of instructions used to load V into register r is

SDR
r19 Ipl

LE r9v1

b) If the value is in register r, the sequence of instructions

used to convert V is

STE r,TEMP

SDR r9T”

LE r,TEMP

A quantity of type real is converted to complex by subtracting

the second of the pair of floating-point registers from itself.. If

the conversion is to long complex, the real value is first converted

to long real. and then the subtract register instruction is emitted.

95

III. Conversion from long real

L

i

No instructions are used to convert to real. A conversion to

either complex or long complex is.. done by subtracting the register

representing the imMinary part from itself0

Iv. Conversion from complex

A complex value is converted to long complex by applying the rules

for converting from real to long real to both the real and imaginary

-- parts of the complex value.

V. Conversion from long complex

No inst,ructions are emitted to convert long complex values to

complex values.

The indication for conversion is made in Pass Two by placing the

destination type in the conversion bits (8-15) of the node to which

the conversion is applied. (cf. IV.C.5) If the node is a terminal node,

(iOe, variable, constant), the conversion takes place before the value

is used. If the node is a non-terminal node, the Conversion takes

place after the operation the node specifies is completed,

1Example

INTEGE8 I; REAL R;

R Lo-(I-

A z=

A
R m

,L ?9I

L l,=X9022S

L 15, base of seg 52

BAL 0915
L 15, curreg base

STE 0,R

96

Example 2

LONG COMPLEX C; REAL R;

C := R + R; . .

C +(5)
/\
R R

’
P

L

LE

AE

STE

SDR

LE

SDR

STD

STD

O9R

O9R

0,TEMP

090

0,TEMP

292

09c

2,~+8

i
L.

12. Arithmetic Expressions

--.
ADDITION

The tree produced by Pass Two for addition is

+
/\

x Y

Since the addition operator is commutative, the code produced

does not depend on the order in which the subtrees are processed. Let

i- X be the first subtree and Y the second.

-
Case I0 The result of processing X is not dumped while processing Y.

If Y is in core:

Register(s) holding
the result of first
subtree:

Code generated:

Integer

R2

A 2,Y

If the processing,of Y is

Long Long
Real Real Complex Complex

FO FOl FO,F2 ~01~~23

AE 0,Y AD 0,Y AE 0,Y AD 09Y

AE 2,Yt-4 AD 2,~+8

in a register(s) then the following code

97

1

!
L-

L

sequence is emitted. Assume the register(s) holding the result

of processing X is as shown above.

. .
Long Long

Integer Real Real Complex Complex

Register(s) holding
result of second
subtree: R3 F2 F23 F&F6 F45 9 F67
Code generated: AR 293 AER O,2 ADR 092 AER 0,4 ADR 0,4

AER 2,6 ADR 2,6

Case II. The result of processing X is stored in TEMP while

Then the result of the second subtree must be in a

Long
Integer Real R,eal Comp,lex

Register(s)
holding result
of second
subtree: R2“ FO F01 FO,F2

Code , \
generated: A 2,TEMP AE 0,TEMP AD 0,TEMP AE 0,TEMP

processing Y.

register(s).

Long
Complex

FOl,F23

AD C,TEMP

AE 2,TEMP+4 AD O,TEMP+8

MULTIPLICATION

The tree produced by Pass Two for multiplication is

*

/\
x Y

Since the code needed for complex and long complex multiplication

is lengthy, a run-time subroutine is called for multiplication of

these types. A discussion of the linkage and parameter conventions 5s /

found elsewhere in this section.

For integer, real, and longreal, the situations and corresponding

l

98

L.-

i
i-

codes are identical with those for addition except for the following

substitutions in the code sequences:

Addition .. Multiplication

A M

AR -MB

AE ME

AER

AD MD

ADR MDR

All integer multiplications are follmed by SLDA r932 where r

specifies the even register of the result. This instruction detects

an overflow if it occurred during the multiplication.

SUEQRACTION

The tree produced by Pass Two for subtraction is

I\
x Y

There are four situations which can arise while processing the

tree9 as in the case of arithmetic assignment (cf. IV.D.22).

Case I. Process X first.

A,. The register(s) holding the result of the left subtree X is

not dumped while processing Y.

Long; Long
Integer Real Real Complex Complex

Register(s) holding X: R2 FO FOl FO,F2 ~01, ~23

Code generated: s 2,Y SE 09Y SD 09Y SE 0,Y SD 09Y

SE O,Y+4 SD 09~+8
.

99

i

B. The register(s) holding X is dumped at TEMP while processing

YO

The result of processing Y must then bein a register(s).

Integer

Register(s)
holding X: R2

Code
generated: L 39TJQQ

SR 392

i

i

--.

Case II, Process Y first.

Long Long
Real Real Complex Complex

FO FOl FO,F2 ~01~~23

LE 2,TEM.P LD 2,TEMP LE k,TEMP LD 4,TEMP
SER 2,o SDR 2,O LE 6,~EMp+4 LD ~,TEMP-+~

Em? 4 9 0 SDR 4,O

SER 6,2 SDR 692

A, The register(s) holding Y is not dumped while processing X.

X is then loaded into a register(s) and the appropriate

register-to-register instruction is generated.

BQ The register(s) holding Y is stored in TEMP while processing

X. The result of X is then loaded into a register and the

appropriate subtract f!rom storage (TEMP) is generated0

DllY1S10N

The tree produced by Pass Two for division is

/
B \

Y

As in multiplication, complex and long complex division is per-

formed in a run-time subroutine and is discussed elsewhere in this

section.

100

c

Integer division is accomplished using DIV and REM and is also

discussed elsewhere in this section. For real and long real, the

situations and corresponding code sequences are identical with those-.

for subtraction except for the following substitutions in the code

sequences.

L

L

Subtraction

SE

SER

SD

SDR

Division

DE

DER

DD

DDR

--.

DIV AND REM

The trees produced by Pass Two for DIV and REM are

DlY REM
/\ /\
x Y x Y

The code sequences for both are identical, After the division,

the result of DIV is in the odd register of the even-odd pair required

for integer division, and the result of REM is in the even register.

No matter which subtree is processed first:, the dividend is even-

L_ tually placed in the even register of an even-odd register pair. This

register pair is then shifted right-double-arithmetic 3210 bit posi-

tions in order to place the dividend in the odd register The division

is then performed with the divisor in a register if it has been placed

there or from storage if the divisor is simply a single variable or if

it has been dumped into storage while processing the dividend subtree.

101

As an example, consider

A DIV Al(l)

. .
where Al is a l-dimensional integer array. Assume the subscripting

has been accomplished leaving Al(l) in R2. Then

L 49A

SRDA 4232
DR 492

The result is then in R5.

If an even-odd register pair is not available, then the fewest

number of registers are dumped (maximum of two).inorder to secure the

even-odd pair.

As another example, consider

Al(l) DIV A .

As before, Al(l) will be processed first - assume Al(l) is left

in R2 with R3 already occupied.

LR 492
SRDA 4932
D ?9A

CO~WLEX ?X?LTIPLICATION AND COMPLEX DIVISION

Complex multiplication and division are carried out by means of

a subroutine.

For multiplication, one multiplier must be in the pair of floating

point registers FOl and F23, and the second in storage. If neces-

sary., one multiplier will be stored in a temporary location. Separate

102

routines exist for complex and long complex multiplication. The

calling sequence when one multiplier is in location TEMP is:

LA 19TEMP -.

L I& base of segment 62

MVI FLAG,X'O2'

BALE3 0915

X'OOOl'

L 15r base of current segment

For division, the numerator must be in the pair of floating point

registers F01 and F23; the denominator must be in storage. If neces-

sary, the denominator will be stored in a temporary location. Separate

routines exist for complex and long complex division. The calling

sequence when the denominator is in location TEMP is:

LA 1,TEMP

L 15, base of segment 62

MVI FLAG,X'CP

BALR 0915

x ’ 0003’

L 15, base of current segment

The algorithm used for complex multiplication X := A*B is

e+if := (v -+ iw) * (x + iy)

r :z Y*w S z= Y*v
e := v*x-r; f := w*xxs;

103

,’
..

c

i

1
1

The algorithm used for complex division X := A/B is:

e + if := (v + iw) / (x + iy)

r := abs x;- S :: = a.bs y;

if r > = s then

begin r := y/x; S :Z y*r+x;

t :=(r*w+v)/s; e +v*r;

f (w - e)/so:2 9 e .'=: t;
end else

gi;;l;: :-- x/y; S :=r *x +y;

t := (I" *v + w&k;
--_

end;

f :zz (w *r - v)/s*9

uNARYMIlKJs

The tree produced by Pass Two for unary minus is

The result of processing the subtree is loaded into a register(s).

-
Integer peal

Long

Register(s)
Real

holding result
of processing
gubtree: R2 FO F01
Code

generated: LCR 23 LCER 090 LCDR 0,O

Complex

3’0, I?2

LCEX 0,o

LCER 2,2

Long
Complex

FOl,F23

LCDR 0,O

LCDR 2,2

c

i

L
I

EXPONEIVTIATION

The tree produced by Pass Two for exponentiation is

*++

I I
x Y

Since the code needed for exponentiation is lengthy, exponentia-

tion for all types of bases is accomplished with run-time routines. Re-

call that all powers must be of simple type integer.

One run-time routine 9 EXPON, handles bases of simple type integer,

real and long real, converting the base to long real before exponentia-

ting. Input to the routine is the type of the base, the register

holding the base, and the register holding the power. The result of

the exponentiation is left in the register of the base if the base is

of simple type real or long real. If the base is of simple type

integer, the result is left in FOL

Another run-time routine, CEXPON, handles the bases of simple

type complex and long complex, converting the base to long complex

before exponentiating. Input to the routine is the simple type of the
-

base:, the base in FO, F2 (or FOl_, F23), and the register holding the

power. The result of the exponentiation is left in FOl, F23.

. Consider X * Y, where X is real and in F4 and Y is in R3, Then

the calling sequence for EXPON is

LA 0,Xr243' simple type of base, reg. of base,
reg. of power

MVI FIAG,X'Ol'

L 15, base of standard functions

BALR 1915 .

x*0001'

L 15, base of current segment

105

i

i

1
Ii

Now consider X * Y where X is long complex (in FOl, F23) and Y

is in R2. Then the calling sequence for CEXPON is
-.

LA o,x'502f

MVI FLAG,X'Ol'

L 15> base of standard functions

1915
X'OOO2'

L 15, base of current segment

__
The algorithm for real exponentiation is given in the form of an

Algol W procedure,
-.e_

LONG REAL PR~CEDUEU~ EXPON (LONG REAL vffiuE RASE; INTEGER vmn3 POWER);

BEGIN

LONG REAL X; BITS A; LCMCAL NEGATIVE3
NEGATIVE := FALSE;

IFP0WER<OTREN

BEGIN

POWER := -PCMER; NEGATIVE := TRUE

‘EN-R

A := BITSTRING(P0WER); X := 1L;

L: B ,"= A; A :== A SHR 1;
-

IF (B AID #l) = #l THEN X := X * BASE;

IFA-v#OTBEN

BEGIN

BASE :=BASE*BASE; G0TOL

END;

IUKEGATbCrEl THENIL,% ELSEX

END EXPON;
,

The algorithm for CEXPON is the same as for EKPON except all long

real's abo-fe become long complex%,

106

ABSOLUTE VALUE

The a& operator has an argument of any arithmetic simple type.
. .

For the simple types integer, real and long real, the quantity must

first be placed in a register r corresponding to its type, if it is not

already there, and one of the following instructions executed:

Izl? T”.9* for integer

LPW r,r for real

LPDR r,r for long real

For the types complex and long complex, a subroutine is called to-.-.

obtain the absolute value, which is a real or long real number. The

argznent of the operator must be placed in the floating point register

pair Fol, ~23. The result is returned in register FOL Separate rou-

tines exist within the subroutine for complex absolute value and long

complex absolute value. The calling sequence for

E 15, base of segment 62

MKI _ FLAG,XvOlv

BALI3 145
xvooolc'

L J-5, base of current segment

The algorithm for the complex absolute value

a zzz 1 x -e fy 1

X y :z abs y

a := if x = 0 t@enTelse if y = 0 then- -

the routine is:

is:

x else

if x > y a x * sqrt (I + (y/x) 9636 2)

else y * sqrt (1 + (x/y) %+ 2)

107

i
c

1
L

iI

130 Logical Expressions

The philosophy of implementation of logical expressions was guided

by two principles. First, only those parts of the expression needed to

determine the truth value of the whole expression need be evaluated,

For instance, in the expression A or (B and Cj3 if A is true the whole

expression is true. Therefore, neither B nor C requires evaluation if

A is true, Analogous.ly, if A evaluates to be false, B must be evalu-m

ated. If B is false, C need not be evaluated since the whole expres-

sion is false. A, B9 and @ are all evaluated only if A is false and

B is true,

The second princsfple followed in implementation required that EUJ.

explicit logical result be created in a register only when necessary,

For example, the ILogical expression of the conditional statement, if

A E B then S, need not have a logical value created for the expression

A or B. Oily a 'branch is required 'based on the condition code set by

the evaluated expression. As succeeding examples will i$lustrate,

the principle involving explicit evaluation is carried to its ultimate

in logical conditional expressions and conditional ease expressions

with at most one extraneous branch instruction being emftted after the

,

1.08

1. logical A,B,C

C :=AzBandC

:=
C

/L h
LOGOR

v\
A LOGAND

fl \B C

c

--_

20 A,B,Clogical

C :=AzlB

CL1

BC

CL1

BC

CL1

BC

T LA

B

F LA

STORE STC

A,X'Ol'

=JT

B,X'Ol'

+2

C,X'Ol'

#,F

291

STORE

w

%C

CL1 A9X'01'

BC =>T

CL1 B,X'Ol'

BC #J
LA 220

B STORE

T LA 24
STORE STC 2,@

109

30 &ogic@lA,B, C

I
L

if A pr B then S else S
-11 2

4. lmogiCai --. A , & , C

1

T

NEXT

1
I.

C := if A or B then A and B else_ 7 B;

i

i

-

Tl

I F1

T2

F2

STORE

110

CL1

BC

CL1

BC

%
B

s2

CL1

BC

CL1

BC

CL1

BC

CL1

BC

B

CL1

BC

LA

B

LA

STC

A,X’Ol’

=? T

B,X’Ol’

f ,F

NEXT

A,x’o~/

=,Tl

B,X'ol'

f 1,>F

A,X'ol'

792

B,X'Ol'

fm

T2

,B,X'Ol'

=,F2

221
STORE

290

W

A,B,C;logical

C := 1 (case I of (AVB, 1 B) >

. .

L

C
/

--.

:=

%
LOGNOT

I
CL

L

LA

CR

BAL

LTR

Bc

SLA

B

Ll CLS

BC

CL1

BC

B

L2 CL1

B

LAST B

B

B

T B

LA

B

F LA

STORE STC

231

1.9 2

291
1,mmRR

292
<_~MAI~

292

IJQm2)
A,X'Ol'

=,T

B$X'Ol'

f,F

T

B,X'Ol'

=>F

T

Ll

L2

w

230

STORE

2,1

2,C

RELATIONAL OPERATORS

Relational expressions give_logical results and hence are treated

the same as logical expressions in that an explicit value is not

created unless necessary. In the case of the equivalence or nonequi-

I
i

L

valence of logical expressions a truth value for one side of the ex-

pression must be explicitly generated and the address of the resulting

truth value placed in a register0
__

Zn the case of string expressions, efforts have been made to

use the CLC instruction as efficiently as possible in analogy to the
2.

use of MVC instructions in string assignments.

1, Arithmetic relations

r e a l X,Ylogical A,B;

A := (X<Y) OiJ-

:=A/L \\;\
LOGOR

J/ \

V<\
B

X 2

LE 2,x
CE 2,Y
BC GT
CL1 B,X'Ol'

BC #IF
F LA 230

B STORE

T LA 291

STORE ATC 24

112

2. Complex relation

complex Cl,C2; logical A;

A := Cl = c2 . .

-_

C

L

L

A/L :=p
V\

Cl c2

30 Logical relations

a0 logical A,B,C

C A=B:=

L zz

c/ \h=

V\
A B

LE

LE

LE

LE

CER

BC

CER

BC

F LA

B

T LA

STORE STC

IC

N

IC

N

CR

BC

IA

B

T LA

STORE STC

%=(cl)
2,IMAG(Cl)

~,~W

6,mG(~2)

0

#.vF

692

=,T

2.90

STORE

291
%A

?A
29=F'l'

39B
3,=F'l'

32
=,T

290

STORE

291
2,@

113

b. logical A,B,C

C := (A or" B) = (C AND B)

-

‘L-

L

L

4-

4. String relation

i

/

L-

i

/ 3
C

J/=\
LOGOR LOGAND

A
Y

B Tl
@ B

FL

NEXT

COMP

T2

T3

STORE

string (5) S,T; logical A;

A :=Sl=T

z=

A/L \‘u
1=

fl\
S T

CL1

BC

@%I

BC

LA

B

LA

CL%

BC

CL1

BC

LA

B

LA

CR

BC

LA.

B

LA

STC

C,X'Ol'

#3 .Fl

B,X'Ol'

#>Fl

291

NEXT

2.90

C,XVO1'

-,T2

B,X'OI'

-,T2

390

COMP

3.91

3‘92

=J3

290

STORE

24

2.A

CLC S(%T

B #J

LA 2,0

B STORE

T LA 291

STORE STC W
114

5. Reference relation

logical A;

reference (R) Rl,R2;

I
t

t

L
t

Y

L E=

n/ k
V=\

Rl R2

z_

14. String Expressions

L

C

BC

:LA

B

T LA

STORE STC

2,Rl

2,R2

'gT

2,o

STORE

291

24

The substring operator forms a string valued expression of the

form V(ElN) where V is a simple variable, an array variable or record

field, E is an integer ex.pression and N is an integer number. The

result of the expression is an address of the string in a general

register. -N is-
The restriction that 0 5 E <, (length of VI

checked. If E is an tfnteger constant, the restriction may 'be checked

at compile-time and the run-time code shortened.

I - - - - - r - - - I---- - r
-_ /.

r- - - - f - - - r - - r- - - r-’ --. r- r-- -- 1 r---- r- -- --

cn
.--Y
6-l

A

VI

V

H
\r.

L

I
i

ic

15 0 Bit Expressions

Bit sequences may be ANDed, ORed or shifted, For the shift oper-

ations, the absolute value of the shift expression is loaded, No dis-

tinction is made between constant and nonconstant shift expressions0

The compile-time procedures involved are SHI..AMOUNT, BITSSHIFTARG2,

and BITSAJYDORARG2.

As an example, consider the following:

A:=B shr 3 and (A and B) shl (I-3) or 7 (B shr 12 or #J?F) and 7 B;

--_ ;z

/\

L
N

A BITOR
L

SR

LPR

L

N

ALL

L

LPR

L

SRL
BITOR NR

L

LPR

L

SRL

OR.

XOR

.Ll

XOR

NR.

OR

ST

16. D e s i g n a t o r sRecord

ALGOL W permits records to be created in two ways, First2 the

name of the record class may sttid alone. Se?oad, the name of the

record class may be followed by a list of the 'initial values of the

fields. Both record creations are reference expressions.

RECORD A(IMTEGER IJ);

REFERENCE(A) R; '

R A;:z

R

R := A(SJ8); .

R ;=
. \R’ ’RI

1c/\R, 8

/
J ’5

RCCLID A

i

LA

L

BA.323

L

ST

3> address of Aqs free record
chain (FRC)

159 base of record creator

1.915
15g current segment base

33

LA 3> address of A's 3RC
L 15, base of record creator
BALEI w-5
L 15, current segment base
L 4,=F'5'

ST 4A,3)
L 4,==~!8'

ST ?94(,3)
ST 3rR

118

17 * Field Designators

Since a reference points to a record with fields of any of the nine

simple types, field designators of the form

F(R)

where F is a field name and R a reference expression select the de-

sired field of the simple~~decktedti F, Throughoutthe compiler,

the loading of the reference value into a register is analogous to the

address resulting from a subscript calculation This address is then

used as a base to index the proper element of the record while the dis-

placement is the relative displacement of field F within the record,

record A (reference (A) X, Y;i n t e g e r I) ;

J;integer reference (A) R;

J := I(R);

I(Y(R)) := J;

L 24

L W(2)

ST %J

L %J
L 39
L 3,4(3)
ST ?98(3)

119

i

18. Case Statements and Case Expressionsv-

The purpaseof the case construction is to select the statement

or expression given by the value of the expression following case,

When beginning case expressions all registers except the for-variable

register are stored, This occurs immediately before the uncondi-

tional branch selecting the appropriate expression.

1. case I of

begin

sl;

s2;

/““\
/""\

ITUIILST

UJ S2

/\
UJ

/
sl

CASE(O) (3)
I
I

L

LA

CR

LTR

BC

SLA

B

LZ: sl
B

L2: S2
B

LAST L3 B

B

B

B

291

193

291
1,ARRAyERR

292
<_,MAmERR

292

~Tca

J!XEXT

NXXT

NEXT

Ll

L2

L3
NEXT

120

)I

H

\
/

19. g Statement, Tf Expression, While Statement

The while statement has the following interpretation,

WHILE C DO Sl s L‘; IFCTHEN

BEGIN Sl; GO TO L

END

All registers except the control variable register must be dumped

before entering the if expression. They are dumped before the evalua-

tion of the conditional expression,

1. A ;logical--.

if A then S
- - 1

.

IFST

Y \
IFJ sl

2. If A then Sl else S2

IFST

u \
UJ

v \
s2

IFJ
/I/ \

sl

IF A

CLI A,X'Ol'

BC #d=T

sl
NEXT

CLI A,X'Ol'

BC fJJ

sl
B NEXT

'122

L

30 while A do S

C

C

WHILEST

'I/ \
WHILEOP S

v \
WHILE A

20. For Statement

I

i

-

i

i

i

t-

I

c

LOOP CLI A/01'

BC #JEXT

S

B LOOP

NEXT

The two kinds of for statements will be designated here - the

step-until statement and the for-list statement
--.

A, The control identifier

Both the step-until and for-list statements have control identi-

fiers, The implementation treats this identifier essentially the same

in both cases. R2, designated symbolically as FORREGS is generally

used to hold its value. Each control identifier is also assigned by

Pass Two a relative location in a data segment, into which the value

is stored when a transfer of control to a closed subroutine is to

OGGUT or R2 is needed for some other purpose, At compile-time GETADDRESS

will deliver the correct register or location for a reference to a con-

trol identifier, The occurrence of the control identifier immediately

after for causes the initial processing of this identifier; this is

done by lWME3ICALASSIGN.

At compile-time a 20-word stack @STACK and a location LASTFORLOC

are used to keep track of the locations of the various control identi-

fiers that may be active at a given time, At any time LASTFORLOC holds

the address assigned by Pass Two to the innermost control identifier

I

i

123

!

for the text being compiled. @STACK is a stack of pointers to the

entries in LSTACK which are control identifier locations. The pointer

for CSTACK itself is a memory location called CPOINTER.

The routines DUMPFORREG and RESTOREFORREG generate instructions

to move the value of a control identifier to and from memory as re-

quired.

B. Step-until statement

In addition to the memory location for the control identifier,

three other locations are used for each statement af this type.
-v.

These are assigned by Pass Three and are called "incr", "mask", and

"1 ih.P ; they hold the increment value, the mask used by anexecute

instruction in the test, and the limit value, respectively. The

example below illustrates their use,

i

i

i

iL

c 124

c
i
i

i
L

i

L

f
L
I

i

Ii

i
i

L-

i

t

FORST

/ \
FORCL A :Ezz

/

\

-. /
I s

STEPUNTIL
A ~1
J\ /

1 P+
/\
q 1

\
+

/\
r. 1

\
+
A

;r 1

for i := p step q-+1 until r-43 do s :- s+l

L

L
-v.

A

LTR

ST

LA

BC

S&L

ST

L

A

ST

B

L A

C

L

Ex

I;

AR

ST

B

M BC

2,P

3.9Q
3$one (one contains 1)

323
39incr

3,const (const contains 2016)
?,*a

3, one
3,mask (=OOlO 0000 or 0100 0000),

39

3, one

3Jrfm
-8

2,incr

2,lim

&mask

324

3‘9s

332

3,s
L

0 ,-4J

125

wEl \

-/

“*/

21, S t a t e m e n tGoto

A branch table is built in the head of each program segment, and

each label in the procedure is represented by a branch instruction in

the branch table,

The Pass Two tree format for a labeled statement

L:

Stat 1;

Stat 2;

Stat 3;

is as foPloWs:

--.

/
\CARD Y

/ Stat 3
9

/

\

Stat 2

/‘\
CARDX :
/ I

3 LlLBELID(L)

/
\
Stat 1

where I; is a porinter to the NAMETABLE Since the left sub-trees are

always processed first9 the label declaration is encountered just be-

fore the compilation of Stat 2.

When the node LABELID is encountered, as above, the NAMEZABLE

entry for L enables Pass Three to calculate the address of the branch

instruction corresponding to the label L in the branch table in the

head of the procedure. The current value of the instruction counter

is then placed in the *displacement field of the branch instructions

127

The Pass Two tree format for the statement goto L is as follows:

where L is a pointer to the NAMETABLE. With the NAMETABLE entry for

L, Pass Three looks up the address of the branch instruction in the

branch table corresponding to the label L. If this address (relative

to the base of the program segment is cy, then the code

--.
B 415 >

is emitted,

By the end of compilation of the procedure, all labels have been

encountered and all branch instructions in the branch table have their

correct

If

emitted

form,

the label occurs in a different program segment, code is

for procedure exit, for loading R15 with the base of the pro-

gram segment being branched to, and for a branch to the appropriate

instruction in the branch table of the target program segment,

The following is the code generated for the statement goto L

where n is the number of the register which gives the base of the data

segment where the label L is defined, and CY is the displacement of

the instruction in the branch table corresponding to the label LO The

label IL is in a procedure different from the procedure where the goto

statement occurs,

128

ST nd@ reset data stack pointer

t,”, *

i

!
\
L

I
L-

;i
l-
IL-
i
I
L

X L 15, base of program
segment in which
label resides

B 415 >

Notice that precisely the same code is emitted for a branch(xout of

a block, e,g.

begin integer A;
00

begin integer
d
0

got0L;

end;
.

0

1 “J i-L
end;

B;

In this case, the load instruction at X above is superfluous and

is not compiledo

GOT0 STATEMENTS AND LABELS INSIDE FOR-LOOPSM

L Because of the manner in which the control identifier is manipu-

lated inside a for-loop and the desire to keep the innermost control

identifier in a register whenever possible, special code is emitted

L
for goto statements and labels which are inside the scope of a for-loop,

As explained more fully in the section on for-loops (cfO IV.D.20),

Pass Two allocates one word in the data stack for

fier, In the event that a control identifier must

dumped into its special location rather than into

each control identi-:

be dumped, it is

the local stack.

129

L
1
L

1

i

i

!
c

it
L

i
L

i
i

i
L

L

\
L

Since only the innermost control identifier is kept in a register, the

compiler always has a variable LASTFORLOC which contains the relative

address of the word in the data stack into which the control identi-

fier is dumped when necessary and from which it is reloaded.

1) For a goto statement inside the scope of a for-loop,, the control

identifier is first dumped into LASTFORLOC:

ST 2JASTFORLOC(n)

B 415 1 branch to branch table

2) At the definition of a label L, a branch is made around the in-

structl'on to which

tion in the branch

is reloaded, i.e.:

BC

L L

NEXT

transfer is controlled by the branch instruc-

table, At the label, the control identifier

NEXT

2,LASTFORLOC(n)

This allows transfers within a for-loop and from an inner for-

loop into an outer for-loop.

r *
L

%Lzo Assignment Statements

t
L

/
i
L

iI
L

AEtITmIC ASSIGIWENTS

The tree produced by Pass Two for arithmetic assignments is

g=/” \
X Y

Since the discussion concerning implicit conversion between the

arfthmetic types occurs elsewhere in this report (cf. N.D.11)5 thiss

130

ti

section will deal only with arithmetic assignments of identical type,

Four situations may occur in processing an arithmetic assignment

since either the right or left subtree may be processed first, and for

each of these cases, the register(s) holding the result of the subtree

processed first may be dumped while processing the second subtree.

IO Process right subtree first

Ao The register(s) holding Y is not dumped wh%le processing

the left subtree.

L

--_ Integer Real

Register(s)
holding X: R2 FO

Code
generated: ST 2,X STE 0,x

Long Long
Real Complex Complex

FOP FO,F2 FOl,F23

STD 0,X STE 0,X STD 0,x

STE 2@+ STD 2,x+8

a

B, The register(s) holding Y is dumped while processing the left

subtree.

This situation may occur when the left subtree contains

a procedure caJ.1. For example

X(P) := Y

where X is .a l-d5mensional array and P 5s an integer pro-

cedure with no arguments.

Assume the register(s) hol$ing the results of the right?

subtree have been dumped at TEMP, and that general register.2

holds the address of X(P).

131

Code generated:
Long Long

Integer Real Real Complex Complex

L &TEMP LE 0,TEMP LD WT.~ LE 0,TEMP L'D 0,TEMP

ST 3,0(e) STE 0,0(2) STD 0,0(2) LE 2,TEMP4+ LD ~,TEMP+~

STE O,O(2) STD 0,0(2)

STE 2,4(2) STD 2,8(2)

Xl-“. Process left subtree first.

Assume the processing of the left subtree results in an ad-

-

L

dress in general register 2.

A0 R2 is not dumped while processing the right subtree.

--. .

Long Long
B Real Real Complex Complex

Register
holding 'Y': R3 FO FOl FO,F2 FOl,F23

Code
generated: ST &O(2) STE 0,0(2) STD 0,0(E) STE 0,0(2) STD 0,0(a)

STE 2,4(2) STD 2,8(2)

B0 R2 is dumped at TEMP while processing the right subtree.

L

L

The code sequences are then identical to those given in

IIOA except that each code sequenze is prefixed by

L 2,TEMP. .

For logical assignmmts, a truth value must be generated, 1 re-

present,s true and 0 represents false. This value is placed in an

.'in+:rge.r register and stored by an STC instruction, Examples of this

aysigament may be seen in the section concerning logical expressions,

132

STRING ASSIGNMENTS

The assignment of string variables is defined so that the assfgn-

ment takes place left to right, character by character. If the assigned
i

string is shorter than the destination string, the remaining characters

are ffPled with blanks. The WC instruction is used for the assign-

ment and some combination of MVI and MVC instructions used for the in-

sertion of blanks0 The length of the assignment appears in the con-

version bits of the S:= operator and the length of the string appears

in the node immediately to the left of the S:= node.

STRING(5) S,T; S:=T-

S(5LTs:-(5)
/ *

8 (5) T

Mvc-

STRING(5) S; STRING(k) T; S:=T

s:=(4)

S
/ Y3
(5) T

MJTC

MY-1

P-KING(5) S; STRING(3) T; S:==T

?Nc

Ml-1

MY1

S(3)Js:=(3)
/ \a

sg(1 T
W3,X’40

s+49x’40v

133

STRING(T) S; STRING(l) T; S:=!r

. .

S:=(l)
1 \

S(5) T

WC

MVI

MVC

S(O,T
s+l,x'40'

s+2(3),s+i

REFERENCE ASSIGFMENTS

Reference assignments are handled just as integer assignments are

handled in the integer registers. Examples of reference assignments

rn%$ be seen in the section on field designators (cf. IV.D.16).--.

I
i-

23, Card Numbers

In srder to give the user a meaningful message if an error occurs

L during Pass Three or at run-time, a unary card node having the form

1 CARD 1 I SOURCE CARD NUMBER I
L

is placed in various places in the tree, as described in the documen-

tation of Pass Two0 With this information, Pass Three always has

available the current (or almost current) user card number If an

error ocmxrs during Pass Three, the current card number is printed out

i . along with an appropriate message.

I
/ In addition, to prepare for possible errors at run-time, Pass

L
Three bu$lds one table for each user procedure (including the main

IL

,

block) associating a card number with a relative location in the user's

procedure.

i If no errox are detected during Pass Three, the card tables are

i

L

i

L

written out onto the ssme device used to hold the user’s compiled pro-

cedures prior to their loading and execution. The card tables are

written out only after all the user v s procedures have been written out,

and associating each card table with a procedure, the card tables are

written out in order of ascending (procedure) number, beginning at 1.

If an error is detected at run-time, the absolute location of the

error is available to a run-time error routine, This routine deter-

tines the number of the user procedure in which the error occurred by

scanning the program reference table which contains the base addresses

of all user--,procedures . In addition, the relative location of the

error within that procedure is determined. The appropriate card table

is then read in, and with the relative location available, the card

nmber is retrieved,

135

L
L

E. Trace Facilities
c -

c

C the associated results:

L

L

L

An optional trace card of the form $TRACExy beginning in column 1

of the card allows the user to trace certain features of the compila-

tion and execution of his job,

x and y are integers which may take on the following values, with

X

2 or greater

b --_

4 or greater

0 or blank

Complete map of all compiler passes is printed.

All actions of garbage collector are printed.

In case of run error, dump of absolute location

of error, contents of general registers, data

area9 and record and run-time data area are

printed.

None of the above.

Different values of y will cause printing of different parts of

Action

the output of Pass Two and Pass Three of the compiler, The following

abbreviations will be used:

NT

BL

TREE

I_st

final

ret3

nametable

blocklist

tree

compiled code before certain addresses are fixed

up -listed as procedure is being compiled.

final version of compiled code which will be exe-

cuted - listed at end of procedure compilation,

contents of general registers at end of compiling

a procedure.

L

L

L

136

.z Actions

4-

reg, final

lst, reg, final

NT, BL

NT, BL, reg, final

NT9 BL, lst, reg, final

TREE, NT, BL

TREE, NT, BL, reg, final

TREE, NT, BL, lst, reg, final

no action
c

The trace card $STACK has the same effect as $CRACE03,
-.m.

L-

L

137

APPENDIX I

EXAMPLF: OF ALGOL W COMPILER OUTPUT

SOURCE LISTING

X A L G O L

0001 8EGIN
0002 R E A L X ,SlJMX#MEANX;
0003 I N T E G E R N,li\
GO04 I
0 0 0 5 SUNG

0;
:= MEAMX %= 0 ;

GOG6 READ(N);
3GO7 ~~RI’TE(NI;
0 0 0 8 L:RE40ClN(XL-;
0 0 0 9 I := I + 1;
i.xlG su ‘4 x : = SCJMX + X ;
OGil MEANX := SUMX / I;
GOli ~RITE(I,X,SUMX,HEANX~;
0013 IF I = N T H E N WRITE(“FINISHED”1 E L S E G O T O L ;
Q014 E N D .

C
65002A70 F~+.ijoGddO
C5650029 9A65002A
0 0 0 16A65
ii02C7E77

o+za 770
Boloo 0 0 0

65CC2983 65!002C70
FEOOaD78 65002C90
7OF EC)OOE ~F92000.0

65002866
9A770100
F E 0 0 0 8 6 5
017OFEOO
FEOOOC65
6 5 0 0 2 8 7 9
0 0 0 0 0 0 0 0

PASS ONE OUTPUT

65002C70
0 0 0 0 0 0 7 0
002Q9965
OA650029
00016A65
650,b016A
0 0 0 0 0 0 0 0

F E 0 0 0 1 9 7 PENO2b-D
F E 0 0 0 4 6 3 002C9Af7
F E 0 0 0 6 6 5 00106A65
OOUMA.65

’ 9A650029
0 0 2 8 6 7 7 0
7 6 6 5 0 0 2 8

002C6965 0 0 2 8 6 9 6 5
8107CbC9 DSC9E2CB
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ci5002066
01000000
0 0 2 8 6 7 7 0
F E 0 0 0 9 6 5
tOFE’0006
0 0 2 9 6 9 6 5
CSC4677A
00000000

b3002966
OOlOFEOO
F E 0 0 0 7 6 5
002C9A65
65002A9A
002A6770
9 4 6 5 0 0 2 0
OOOOOOO’i

PASS TWO OUTRJ!.C TREE

L O C
GGGG
0 0 0 4
0008
o o o c
0010
0 0 1 4
0 0 1 8
GOlc
0020
0 0 2 4
0 0 2 8
GOZC
GCj 30
0034
Go’38

--_ GG3C
GC4O
GO44
GO48
GG4C
OG5O
c c 5 4
GO58
GG5C
GO60
OGb4
0068
0 0 6 C
0 0 70
c o 7 4
GO78
G@7c
0 0 8 0
3084
GC88
008C
GG9G
0094
OG98
OC9C
GOAC(
O C A 4
GOAR
OOAC
OCHO
OO)i34
0 0 8 8
GOBC
OOCQ
O G C 4
0GCR
o o c c
OGOO

GOD4
G O D 8
OGDC
GOEO

"LAG QPCf?DE

1 r’i: ::c, DC
0 CARu
0 B E G I N
0 C A R D
‘3 NULLST
3 66
3 N U L C S T
0 C A R D
0 ID
i3 NUMBER
1 A:=
0
0 ;ARO
3 IO
0 ID
0 N U M B E R
1 A:=2
1 A : =
0
0 ;ARD
3 STPROCIO
0 ID
J AP)
3
0 ;ARD
3 STPRflCiD
0 IO
3 AF’)
0
0 HARD
0 ID
0 :
3
I) ;TPROCID
3 I D
0 AP)
0
0 EARD
9 ID
0 ID
0 NUMRER
1 +
1 4:=
0
3 ;ARD
G ID
-J ID
3 IO
1 +
1 A : =
3
3 ;ARD
3 10
3 , 10
3 ID
1 /

C O N V PDINTER
3153
cc-p;3
: :? Qj!

1 0001)
0 0 0 2
OCPO
GO10
QCOO
0004
0 2 1 0
OCGC
G O 2 4
0020
GCOS
OLEC
OlF8

2 30OC ’
OG3C
0638
G O 3 4
OCO6
o o c o
O204
co54
oc50
0 0 0 7
3CGC
0204
0 0 6 8
0064
NOR
OZLC
OCGO
GO78
3120
01EO
0C88
OG84
OCG9
0219
0 2 1 0
QCGO
i)CAO
009c
UC9R
OGOA
OlEC
0 1fC
OlEO
ocf3c
0CtJ8
OCB4
0008
01F8
OlEC

2 f21O
GCOR

1-39

L

-

-

Qc‘k4
OGEB
GOkC
GCFC
O G F 4
OCF8
SOFC
0100
3104
Cl08
01x
0110
0114
OLlR
GllC

3 12G 124 128
G12C

--. 013Q
0 1 3 4
0 1 3 8
C13C
0140
0 1 4 4
0148
G14C
0150
0 1 5 4
0 1 5 8

1.
;
‘J
3

1,’
0
3
3
0
3
3
3
0
i)
1
3
1
0
0
0
0
0
3
0
0
3
0
0

b : =

:Aw o

STPROCID
ID
APv
ID
API
ID
Apt
10
API

;AR”
I D
I D
=

I F
IFJ
STPKOCID
S T R I N G
API
U J
LABELID
GOT0
I FST

EAR0
END
PCL

9T!24
GC 110
4coc
;?Or,C
c213
C C F 0
OlEG
IjCF8
GlEC
0’100
OlF8
31,s
OGEC
GCOD
3 2 1 0
0 2 0 4
GllC
ocoo
0124
OQQC *
0010
0130
0 12c
021c
OGOO
013c
0 1 1 8
GOOE
OC18
0 0 0 8

LI’TERAL ORIGIN - GOOC
L I T E R A L P O I N T E R T A B L E

L O C L E N G T H T Y P E P O I N T E R
0000 1 0000
GGQ4 6 0000
0008 6 0003
GGOC 1 0 0 0 4
0 0 1 0 7 7 GO08

L I T E R A L T A B L E
0 5 0 1 0 8 OGOO300 1 OGOOOOQO CbC9D5C9 E2C8C5C4

ELAPSE0 T I M E I S GG:mG1:58
T O T A L T R E E L E N G T H ‘ I S 0 1’5c
T O T A L O U T P U T L E N G T H IS 018C

140

L

NAMETABLE
LOC IIILlJC.1

(HEX)

L

L

L

‘-

L

i

IDLOC2
HN SFG
GO 1

OGGO
GO00
OCOG
0060
UOCCJ
O@CG
OGCO
COG0
oooc
0000
ooco
0 00
0 a CG
00~00
OGCO
oocc

-=. r,GOO
iJCCG
0000
@c1QO
OCCG
OCCO
OOGG
occo
0000
O/j00
OGCO
OCOO
hGCO
OOCG
OOCG
0000
OQCO
O(!OO
0000
9GCO
3260
QZA"
U2AE
or\14
0 0 1 8
CClC
0020
0024
OOC8

1
1
8
7

0 1
2
2
2
4
4
5
5
3

2
2
2
2
2
2
2
2

2
3
3
3
3
3
3
2
3
4
5
1
1

SIMfYPE I N F O T Y P E I N F O
-.VR R C C L N O

0
1

13

L c NC? ti POINTER
1104 OCOC
Sb48 CIlE@, -

T Y P E
(HEX)

0 3
GO
0 0
07
07
07
07
07
07
07
07
G7
07
07
07
07
00
07
07
07
07
07
07
07
00
07
07
07
07
07
07
07
07
07
37
07
07
00
00
00
GO
00
00
00
00
01

SIMTYPE I D

*MAIN
WRITE
ADUMP

6 flDD
8 BITSTRING
1 NUMBER
1 D E C O D E
7 CODE
1 T R U N C A T E
1 ROUND
1 ENTIER
2 REALPART
2 I M A G P A R T
3 L O N G R E A L P A R T
3 LUNGIMAGPART
3 LONGSQRT

R E A D
2 SQRT
2 EXP
2 L N
2 L O G
2 S I N
2 cos
2 ARCTAN

READON
3 L O N G E X P
3 LONGLN
3 LONGLOG
3 LONGSIN
3 L O N G C O S
3 L O N G A R C T A N
4 I M A G
5 L O N G I M A G
4 COf"PLEXSQRT
5 LONGCOMPLEXSORT
1 MSGLEVEL
1 TIME
1 INTFIFLOSIZE
6 U N O E R F L O W
6 O V E R F L O W
2 x
2 SUMX
-2 MEANX
1 k
1 I

e

141

!) ‘-J ,:: 1

0391
0001
!I'30 1
0301
3001
0!3Ql
0301
03Gl
0301--b.
0001
Ob)O 1
0 0 0 4
0 0 0 4
oil05
0 0 0 5
0 0 0 5
0305
0005
0005
3005
0306
0 0 0 6
0 0 0 6
0 0 0 6
0006
0 0 0 6
0 3 0 7
0 0 0 7
0 3 0 7
3 0 0 7
0 0 3 7
0007
0 3 0 8
0 0 0 8
0 0 0 8
0 1 0 8
03138
0009
0009
rI009
0310
0010
0310
0311
0311
0311
0911

‘;c)i pJ

ooc 4
GcrC 8
c: 3 c c
OOOE
1010
GO14
CO18
GOlC
0020
G O 2 4
uG2R
002c
CO30
io34
Gt-73 8
co3c
0 0 4 0
GO44
C C 4 8
oc44
C04E
0 0 5 2
0 0 5 6
OOSA
OOSE
OC60
CC?64
0 0 6 8
CO6C
co7c)
0 0 7 4
0 0 7 8
007c
007E
0092
G O 8 6
0084
008E
0 0 9 0
o c 9 2
0 9 6

x0 9 4
01)9E
OOA2
OOA4
OOA8
OOAC
CO BO
oon4
COti8
OOBC
coca
o o c 4
OOCR
oocc

-. RC

L
L
A
N
L A
B A L
L A
L A
STM
ST
L R
L
ST
L
L A
L
B A L R
L
S T E
S T E
M V I
L A
L A
1.
B A L R
L
L A
L
L
B A L R

L
L A
L A
L
B A L R
L
L
A
ST
L E
A E
S T E
L
L A
L
B A L R

/, JC ‘FP2i
; .: i; 3 0 0

4 ?i-‘iIFC96
00.3 3
GG30
00000301
00 3OOOQC
CbC9D5C9
E2C8CSC4
582/3E17C
586020QO
SA6i)E194
5460El98
4 1 0 0 6 0 2 8
4540ElTA
41300000
4 14’30000
90046OQO 8
5060E170
1806
582OFOL4
502ODO24
582OFO34
4 1 1 0 0 0 2 2
58FOEOE4
c5oi
58FOEOQ4
7COODOlC
7 0 0 3 0 0 1 8
92FFE1’/9
41203100
4 1 3 0 0 0 2 0
58FOEQOC
Q5lF
58FOE004
4 1 2 0 0 0 0 1
5833D020
58FOEOF4
OSlF
0001
58FOfO04
4 1 2 0 0 2 0 0
413ODO14
58F3EODC
c151F
5 8FtIE 034
582OFOlO
SA2i)D024
5 0 2 0 0 0 2 4
7 8 0 0 0 0 1 4
7A030018
7OOODOlB
5 8 2 0 0 0 2 4
411Oi3022
58FOEOE4
O5OF

I:’ .

L

i

-

,
c

e’lC E
OUD 2
uGD6
OODR
OODC
OOEO
OOE4
OOE8
crOEA
OOEE
3OF2
GOF6
G O F A
OOFC
GlOO
0104
0 1 0 8
OlOC
OlOE
0112
0116
OllA
OllE
Ll120
0 1 2 2
0 1 2 6
0 1 2 A
012E
0 1 3 2
0 1 3 6
013A
013E
0 1 4 2
0 1 4 6
0 1 4 8
014A
014E
0 1 5 2
0 1 5 6
OlSA
QlSE
Ol6Q
0 1 6 2

L
L E
DER
S T E
L A
1
L
B A L R
L
L A
L E
L
B A L R
L
L A
L E
L
B A L R
L
LA
L E
L
B A L R

L
L
c
BC
LA
S L A
L A
L A
L
BALR
**se
L
BC
BC
1.M
ST
BCR
ly++*
h#*

~BFOE!.IC’J~
7 8 2 0 0 0 1 8
3D20
7’32ODOlC
4 1 2 0 0 0 0 1
58390024
58FI)EOE8
051F
58FOEO04
4120G002
78000’314
58FOE3E8
OSlF
58FCE004
4 12cIooo2
789iID018
58FOEOE8
GSlF
58FOEb04
4 1 2 0 0 9 0 2
78OODOlC
58FOEOF4
OSlF
0001
58FOE004
5 8 2 0 0 0 2 0
5 9 2 0 0 0 2 4
477OF152
4 1 2 0 0 0 0 7
8823001Q
4 1 2 0 2 0 0 7
413OFg18
58FOEOF4
05lF
0001
58FOE004
47FOF 1 5 6
47FOFOO8
9 8 1 2 0 0 0 4
SOZOEl70
07Fl
0 0 0 0
0 0 0 0

OUTPUT FROM EXECU?'.ICA'l OF COMP'ILFJI PROGRAM

3
1 1.000000’+00
2 2.OCCOOO’+OG

1.000000’+00

3
3,00cnfxv+oo

1.000000’+00

3.OOOOOO’+OG
1.500000’+00

F I N I S H E D
6.000GQ3 +%O 2.000000’+00

Ii
ii

L

L

i

i

i

/
L

L

L-

L

L

L

1

2
3
4
5
6
7
8
9

10
11
1 2
13
14
15
16
17
18
19
20
21

22
23
2 4
2 s
2 6
2 7
2 8
2 9
3c)
31
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9
4 0
4 1
4 2
4 3
4 4
4 s.
4 6
4 7’
4 8
4 9
50
5 1
5 2
5 3
54
5 5
5 6
5 7
59

APPENDIX II

SIMPLE PRECEDENCE GRAMMAR FOR ALGOL W

CT V A R ID> t::= <ID7
< L A B E L I D > :t= <CD> ’ =.+
<T A R R A Y ID>i P:= C I D >
<T F U N C IO> :t= <ID7
C R C C L ;I37 t:= <ID>
<T F L D I D 7 ::= <ID>
<CON ID> :t= <ID>
< S T F U N C ID7 ::= <ID>
< S T P H O C I D > ::* < I D >
<SI V A R D C > :t= <SI V A R DC+7 c
<St V A R DC*> ::= <SI TVPE> CID>

<SI V A R D C * 7 9) <ID>
<SI TVPE> ts= <REF TVPE>‘ 1
<REF TYPE> :t= R E F E R E N C E < I D >

<REF TVPE7 1) <ID>
< A R R A Y D C 7 :t= <RN0 L S T YD> <T EXP> :: CT EXP> !
CARRAV HD> :t= CSI TYPE> A R R A V < ID7

<ARHAV HO7 qq <ID>
<BND LST HI-l> t:= <ARRAV HO7 (--.

<RhD LST HO> <f EXP> :: <T EXP> 9
<P’IflC DECL> ?:= <T P R H E A D 7 < S T A T E M E N T * >

<T P R H E A D >
C T P R H E A D > <T P R BODY>

C? PK BIlDY> ts= <T EXP>
<BLOCKBODY <T EXP7 E N D

<T PR HEAD> t := <T PR HEAD*> :
<T P R H E A D + 7 : : = <PROCEDURE7

<PRO.CFDlJRE> <FPAR H E A D > D
< P R O C E D U R E > t := P R O C E D U R E <ID,

<SI TVPE> P R O C E D U R E <ID>
<FPAk H E A D > ?:= <FPAR HEAD*>

<FBND L I S T 7
CFPAR H E A D * > ?:= f <SI TYPE7 <ID>

(<SI TYPE7 VALUE <ID>
f <SI TVPE7 R E S U L T < I 07
(<SI TVPE7 V A L U E R E S U L T < I D >
t <SI TVPE7 P R O C E D U R E C I D >
(P R O C E D U R E C I D >
<FPAR HE4D-7 <SI T Y P E 7 < I D >
<FPAR H E A D - 7 <SI TVPE7 V A L U E < I D >
<EPAR HEAD’-> <SI TYPE> R E S U L T < I D 7
CFPAR HEAD-7 <SI T Y P E 7 PROtEOURE CID>
<FdAR HEAd> <SI ‘TYPE> V A L U E R E S U L T < I D >
<FPAR H E A D - > P R O C E D U R E <IO> ,
<Fk’AR HEAD*> 9) <IO>

<FPAR H E A D - > : t= <FPAR H E A D >
d

;
<fRND L I S T

<FBND L I S T > t:= <fBND H E A D 7 f)
<FBND H E A D > : : = <F A R R A Y HD> 4

<FRND H E A D > *
<; ARRAY f-ID7 ::= (<SI TVPE7 ARiAV <XD>

<FPAR H E A D - 7 CSI TVPF7 ARq A Y <ID>
< F A R R A Y HO7 ,, <ID)

<KC CL I?C> ::= <RC HEAD> 1
<RC H E A D > ::= < R E C O R D > 4 <SI TVPE7 <ID7

<RC H E A D 7 <ID>
<SC HEAD*7 ‘;SI TVPE> <ID>

<RC H E A D * > :t= <RC H E A D > ;

.

144

i

c

L

L

4

i

5 9
6 0
6 1
6 2
6 3
64
6 5
6 6
6 7
60
6 9
7 0
7 1
7 2
7 3
7 4
7 5
7 6
7 7
70
7 9
8 0
8 1
8 2
83
0 4
8 5
86
8 7
8 8
8 9
9G
91
92
93
94

;p”
$7
d3

i

9
1 0
1
t
e

2
123
1 0 4
l/o5

t”;

1:8
ice 9
blC
111
1 1 2
1 1 3
1 1 4
1 1 5
1 1 6
117
118

< R E C O R D >
<T VAR9

CSTH S E L YD>
<LENGTH>
<SI 1 VAR9

CT FL0 HO>
<T A R R A Y H O >

<T F U N C D E S >

<AkAR HEAD9

--.
C T EXP>
CT EXP*9

<If CL9
< T R U E EXP9
*CASE HEAD9

<CASE C L 9
CSI t EXP>

<SI T EXP**9
<SI T EXP*9

CT T E R M >
<T TERM*9

KT F A C T >

<T SECON9

C T P R I M >

: : = R E C O R D < I D 9
::= <SI T VAR9

<T A R R A Y I D 9
<$TRs S E L H O 9 ti EXP9 < L E N G T H 9 1

::= <SI T VAR9 (
::= I <T NUMBER>
::= CT V A R ID>

<T FL0 HO> <T EXP9 1
<T ARRAY HO> <T EXP9 1
CT ARRAY HO9 * 1

::= CT FLD ID9 (
::= <T ARRAY ID9 1

<T ARRAY HO9 <T EXP9 v
<T ARRAY HO9 * t

::m <T F U N C ID9
<APAR H E A D > <T EXP9 1
CAPAR H E A D > <STATEMENT9 b
<APAR H E A D > 1

::= CT FUNC ID9 (
<APAR H E A D > <T EXP>
<APAR H E A D 9 <STATEMEN;> 9
<APAR H E A D 9 v

::= <T EXP*>
::= <SI T EXP>

< I F C L 9 < T R U E EXP9 <T EXP*>
< C A S E H E A D 9 <T EXP9 1

3:s IF <T EXP9 THEN
3 := <T EXP> E L S E
:t= <CbSE C L > C

< C A S E HEaD, <T EXP> 9
:t= CASE ct ~XB~ OF
f:= CSI T EXP**>

<SI T FXP*9 <EQL CIP>, ($1 T EXP**>
($1 T EXP*> <REL OP> <$I T EXP**9 .
<SI T EYPf> IS <RC CL IO9

g:= <SI T EXP*S
: := <T TER!‘!>

+ < T T E R M 9
- <T TERY9
<SI T EXP*9 + <T T E R M 9
<SI T EXP*t) - <T T E R M 9
CSI T EXP*9 O R <t T E R M 9
<RC C L 1 0 9
CRC DES\ HO9 CT EXP9 1
<STRING9
NlJLL ’

::= CT T E R M * >
tti <T F A C T 9

<T T E R M 9
<T $

* <T F A C T >
TERs *> / <T FACT9

<T T E R M * > DfV < T F A C T >
<T T E R M * > R E M <T F A C T 9
<T TERM*> A N D <T F A C T >

: := C T SECON9
-, <T F A C T 9

::= <T P R I M 9
<T SECON> <SHL O R I*> <T PRIM>
<T SECON9 S Y R <T P R I M 9

: := <T VAR9
<T FUNC DES9

t

L

L

1 1 9
1 2 0
121
1 2 2
1 2 3
1 2 4
1 2 5
1 2 6
1 2 7
128
1 2 9
1 3t;
131
1 3 2
1 3 3
1.34
1 3 5
1 3 6
1.37
L-3 8
13’)
14 1%
14 1
143
143
144
145
1 4h
1411
l -tti
144,
155
1911
;2;1

1514
1%
l’jh,
157’
I 5 4
159;
1 bcJl
1 11
1 2

11 3

;gi

1617
168
1’@9
1,710
1 7 1
1 7 2
1 7 3
1.74
1 7 5
1 7 6
1 7 7
176

<REL OP9

< S T F U N C ID>
< L E F T PAR> <T FXP> 1
TKUF
F4LSF -.
<r,fJt\l ID9
L O N G <T P R I M >
SHORT <T PKIM>
ASS <T PKIH>
<T NUMRF?>
< B I T SEOr

: := <
< =

> =
<EQL OP> ::r =

- =
<l.EdT PAR9 t:= (

<RC \DES Hr)9
<ST FUNC ID> f

:t= CRC CL II>> l
<RC DES HO> <T EXP> 9

< P R O G R A M 9 ::= . <BLUCto l

TSTATEMENT9 : := < S T A T E M E N T * >
<STATEMENT*9 ::= < S T S T >

<FOR C L 9 D’1
< F O R C L > DO < S T A T E M E N T * >
< W H I L E C L > D O
<NJHI LE CL> D O <STATEMENT*9
< I F CL,
(IF C L > <ST4TCMEYT*>
< I F C L 9 <TRUF P A R T >
<IF CL9 <TRUE PART9 < S T A T E M E N T * 9
< C A S E SEQ> END
< C A S E SEQ, < S T A T E M E N T > E N D

< S I S T > ::r <YLf-lCK>
<T A S S S T 9
<T FUNC D E S >
GUTO <LIZHEL I D >
<ST PROC HO> <T EXP9 1

<CLIICK> ::= <RLOCKBrlDY > END
<‘)LClCKRfJ~1Y> C ST ATEMENT9 END

<SLflCKBODY> : 3 = <HLOCKHEAf.l>
<YLOCKH’lDY> ;
<8CtlCKRc3DY> < S T A T E M E N T > ;
<UCOCKB?DY > < L A B E L DEF9

<PLrlCKHEAD9 : t =
9

‘ECIN]
RLUCKHEAD9 <SI’VAR D C > ;

fBLOCKHf40> < A R R A Y D C > ;
@L~CKHEA 9

$

<PRoC oEc~9 ;

<LABFL DE!=9
;(HLflCKHE I)> < K C C L D C > :

::= <ID> :
< T A S S S T > ::= <T VAR> := <T EXP*>

I <T V A R > := CT A S S S T >
<TRUE P A R T > 2:s <SI S T 9 E L S E

E L S E
< C A S E SEQ> ::= <CASE Cl> B E G I N

< C A S E SEQ> < S T A T E M E N T > :
< C A S E SEQ> :

< F O R C L > :: = <FOR H E A D > <STEPUNTIL> <T EXP9
<FOR H E A D >
<FC)H L I S T > <T EXP9

146

.

.

l
*

.

.

.

.

.

.

.

.

l
.

.

.

.

.

.

.

.

.

.

.

I
I

I
I

II

Ii
II

I
I

