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Abstract:

A digital computer whose memory words are composed of r-state devices
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is considered. The choice of the base, B, for the internal floating-

point numbers on such a computer is discussed. Larger. lJ:i;.i;c:  2 0;" '"1

necessitate the use of more r-state devices for the mantissa, in order

to preserve some "minimum accuracy," leaving fewer r-state devices for

the exponent of S D As B increases, the exponent range may increase

for a short period, but it must ultimately decrease to zero. Of course,

this behavior depends on what definition of accuracy is used. This behav-

ior is analyzed for a recently proposed definition2 of accuracy which

specifies when it is to be said that the set of q-digit base S floating-

point numbers is accurate to p-digits base t . The only case of prac-

tical importance today is t = 10 and r = 2; and in this case we find

that f3 I= 2 is always best. However the analysis is done to cover

all Cal-'cs.
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Symbol

digitr

( o*ala2*** "n)r

(b b1 2 l l �b&

&(Lj >

PI
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Rotation

Meanin

digit of a base r number

the base r number
0.a . ..a

1 n (where o < a_ iKr)

the base r integer bl...bn

( hw ere o 2 bi < r)

greatest common divisor of the
integers i and j

greatest integer < X
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1. Introduction

I. B. Goldberg recently showed that 27 bits are not enough for
. .

8-digitlo accuracy (under a suitable definition of accuracy), but that

28 bits are. 1
He proved that if 29-l > lop > 2q-2 then q bits are

enough for p-digit
10 accuracy. He also gave several examples (p=l,2,8)

in which q-l bits are not enough for p-digitlo accuracy.

Shortly after this D. W. Matula independently discovered and proved

his Base Conversion Theorem.
2

Let r and t be incommensurable integers
-=.

. .
,L 2 (r and t are commensurable if and only if r' = tJ for some

positive integers i and j) l The Base Conversion Theorem essentially

states that q-digitsr suffice for p-digitt accuracy if and only if

rqwl> tp - 1 e

In this paper the Base Conversion Theorem is extended to commen-

surable bases. These results are used in a discussion of the choice of

.
the internal representation of floating-point numbers for an r-ary corn-

puter; i.e., a digital computer whose memory cells are composed of r-state

deviceso This representation is specified when

. 1) a base for the floating-point numbers is chosen and

2) the number of r-state devices to be used for the mantissa
(and hence the exponent) is chosen.

For example the IBM 7090, the Burroughs B5500 and the IBM 360 series

computers are 2-ary computers. The bases for the internal representation

of floating-point numbers in these three computers are 2, 8, and 16,

respectively. In the- IBM 7090, 27 bits are used for the mantissa and

8 bits for the exponent. The mantissa is stored in binary notation,

1
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an extra bit being provided for the sign. The value of the 8 bit

exponent is used as an excess 128 exponent of 2; i.e., 2 raised to

the power [(the value of the 8 --bit exponent)-1281 is the exponent-

part of the floating-point number0 In the B5500, 39 bits are used

for the mantissa and 7 bits for the exponent. The mantissa is stored

in octal notation, each group of three bits representing one octal

digit. The 7 bit exponent is used as a signed magnitude exponent of

8 e The following is a basic property of this representation: if 1

is added to the exponent of such a number then its mantissa must be

shifted right three bits: (o.a a
n n+l

1 2""a13 8x = oeoala2"'a12  8x1 8 ( > 8 .

In the IBM 360 series, 56 bits are used for the mantissa and 7 bits

for the exponent (of a long word). The mantissa is stored in hexa-

decimal notation? each group of four bits representing one hex digit.

The value of the 7 bit exponent is used as an excess 64 exponent of

16, and again (ooblb2~00b14)16x16n = (o.oblbg"'b )
13 16

xl6n+l o

We restrict our discussion to the case in which the choice of

representation for an r-ary computer is subject to the following con-

straints only:

( .,i‘ if base s is chosen, with rk > s > rk-l , then the mantissa

must be made of an integral multiple of k r-state devices,

iOeoJ fractions of digitss are not permitted;

(ii) the mantissa must be accurate to at least p-digitst,  for

given p and t (accuracy is defined in Sec. 2);

(iii) the base chosen must give the largest exponent range possible

subject to (i) and (ii).
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Observe that larger bases offer larger exponent ranges, but require

more bits to be used for the mantissa. Thus there is a definite trade-

off involved in using larger bases, and it is not obvious which base(-s)

will satisfy (i)-(iii). We prove that (1) if t is a power of r then

t is the only base which allows all of (i)-(iii)  to be satisfied; (2)

if t and r are incommensurable then r is the only base which allows

all of (i)-( iii) to be satisfied; (3) if t and r are commensurable

and r > 8, then there are cases in which r is the only such base and

cases in which r
2

is the only such base.

Constraints (i)-( iii) above are discussed further in the conclusion.

We will find that these constraints can be weakened somewhat without

disturbing our results. Applications are also discussed there.

20 p-digitt Accuracy

Following D. W. Matula2 let us define the set of q-digitr numbers,

S(?PD,)J for r > 2 and q > 1 , by

(201) S(q-D,) = (x: 1x1 = 3, airnBi for integers n, aij with

o<ai<r} o

We will discuss the rounding and truncation conversion mappings from

sh-D,) into S(p-Dt) D Since the results presented in this paper

are the same for both methods of conversion, we let C:S(q-Dr) --)

S(p-Dt) stand for either .mappingO We say that S(q-D,) is accurate

d

to p-digitst if and only if C:S(p-Dt) +S(q-D,) is (l-l) and

3



C:S(q-Dr) +S(p-Dt) in onto. This means that distinctness of "input"

numbers from S(P-Dt) is preserved by rounding (or truncation) con-

version into Sk@& and that all "output" numbers in S(p-Dt) are

attainable in the "output" conversion from s (q-D,) onto S(p-Dt) 0

This definition of accuracy is essentially*equivalent  to the

following due to I. B. Goldberg': for all x, if x 6 S(p-Dt) converts

into y E S(q-Dr) which converts into z E S(p-Dt) then S(q-D,)

is accurate to p-digits
t

if and only if z = x . Roughly speaking,
--.

this means that you must get out what you put in. We now state

Theorem I (The Base Conversion Theorem -- D. W. Matula
2

)

Let r and t be incommensurable integers both 3 2 . Then-

C:S(p-Dt) +S(q-Dr) is (l-l) if and only if rqml> tP - 1 and is onto

if and only if tPml> rq - 1 0-

Observe that S(q-D,) is accurate to p-digitst precisely when

rq-l > tP-1 )- since this inequality alone implies both the required

(1-l)-ness and the required onto-ness.

Corollary I (D. W. Matula2)

Let r and t be incommensurable integers both > 2 .

Then C:S(p-Dt) -+ S(q-D,) cannot be both (l-l) and onto0

*They are essentially, but not completely, equivalent.

4
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Thus if the conversion mapping is to preserve distinctness, it cannot

make use of all the numbers available in the range set, and vice versa.

This corollary also applies to the commensurable case, as is shown in I

the appendix* . .

Example 2.1:

By our definition of accuracy, the sets S(14-D16) and S(51-D,)

are both accurate to 15-digits
10°

Observe that all numbers in S(51-D,)
.

can be represented exactly in S (14-D16 > > but not vice versa. Yet

s(%D,) is just as accurate, base 10, as S(l4-D16) . Of course

S(l4-D16)--' is more accurate, base 2 or base 1.6, than is S(51-D,) ,

since s (51-D, > is only accurate to 12-digits
16 '

We are mainly interested in the case r = 2 and t = 10 since

modern computers are binary and since base 10 is used both in daily

life and in higher level computer languages such as FORTRAN and ALGOL.

Applications to other values of t and (eventually) to other values

of r are also of interest It may be, for example, that one really

wants to attain 14-digit16 accuracy in a binary computer. Our results

show that, in this case, the unique best representation (subject to

(i)-(iii) in Seco 1) is just 14-digits
-3c

16 ’

In the next section we give an example to clarify and direct our

discussion. The reader is referred to D. Matula's paper2 for a clear,

detailed discussion of this definition of accuracy and its ramifications.

*This is not as obvious as it may at first appears It seems
possible that base 32 or base 64, for example, could yield a wider
exponent range than base 16 while preserving 14-digit16  accuracy.

5
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39 An Example

Suppose we are given 63 bits in which to store the mantissa and
. .

exponent of a floating-point number and we wish to achieve 15-digitI 10

accuracy. Which of the bases 2, 4, 8 and 16 will give us the widest

exponent range (while preserving 15-digitlo  accuracy)?

The inequalities

(3.1) --'

250 > 1015 - l> 249-

425 > 1015 - l> 424

817 > 10~~ - 1 > 816-

1613 > 10~~ - 1 > 1612-

along with D. W. Matula's Base Conversion Theorem, show that we need

[51, 26, 18, 141 - digitsi 4 8 16] of mantissa, respectively, for
Y Y Y

15-digitlo accuracy. Thus we need [51, 52, 54, 56, ]-bits for the

mantissa, leaving [12, 11, 9, 7]-bits for the exponent. If the

signed magnitude method of storing the exponent is used, the exponent-

part ranges are 12
& ( 2 % )

Y 4
A(21°-l)

7 8
L(284) , 16’ (26--1)  ] . Let

B, = 2
k(211-1)

Y

(302)

the range for base 2. The equations

4’j210-1) =: $1 B&

,&‘%) = 2T33/8  ,1/Bi

6
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show that base 2 has the largest exponent range; for example,

421o-l
= .5B+ < B-I- and

4-210+l
=2B >B . The difference between. .

base 2 and base 16 is a factor of 8 in the exponent; a range of 10A616

versus 10&76 0

The excess-quantity method of storing exponents will be of principal

interest here, although our results are the same for both methods. If

n r-state devices are used to form the exponent, then i. 5rnl is consi-

dered a zero exponent; those above are positive, those below are negative.

This avoids wasting one of the possible exponent values on -o and

eliminates the necessity of an exponent sign bite With this method the

8 6
exponent-part ranges for the example above are P491 , 4&JO , 8-2 , 16-2 ]

211-1 4 p-1
8 6

to 62 , , 82 -l, 162 -l] and again base 2 is best*

If 16-digitlo accuracy is desired then the same sort of analysis

shows that base 2 is again better than 4, 8, 16, yielding an exponent-

part range of lob38 as opposed to 10
J=4

for base 16.

4. The General Case

We now consider the general case in which N r-state devices are

used in forming the exponent and mantissa of floating-point numbers.

A mantissa sign bit is to be provided separately0 Given positive integers

t and p, we wish to find the base, S, which gives the widest ex-

ponent range while preserving p-digitt accuracy (see Seco 1, constraints

7
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(i)-(iii)). We will call s a best (p-D,, N, r)-base. If s remains

a best (p-Dt, N, r)-base for all appropriate N (i.e., all N which

allow p-digitt
accuracy to be realized in fewer than N-digitsr) we

will call s a best (p-Dt, *, r)-base, etc. We will call t the

target base- We will find that there is always a unique best

(p-Dt, *, r)-base.

.
Theorem II,, The best - t,(P D N, r)-bases are always of the form rJ

for j > L-. a-

In other words, the best bases are those which make use of all the

possible states of the r-state devices.

.
Proof: If a base s not of the form rJ is used&hen k-digitsr

(ice0 k r-state devices) are used for each digits of the mantissa,

where rk>s>r nk-l If n-digitsr are left for the exponent then

the exponent-part range is s PO 5(rn-1) I
Y using the excess-quantity

method. (It is s
A(rn-1) if an exponent sign bit is provided and the

signed magnitude method is used.) If base rk were used instead of

base s then no more digitsr would be needed and the exponent-part

range would be rk[Ao5(m-l)] (,Lk(r"-1)
for signed magnitude exponents),

a strictly larger range.

Q.E.D.

8



The following lemma gives a sufficient condition for [the exponent-

part range of a representation using the smaller base rk] to be
. .

greater than [the exponent-part range of a representation using the

.
larger base ri(i > k)] . The lemma states that if positive integers

.
1, k, ni

and n
k satisfy nirnk+k-i and k<i thenthe

exponent-part
k ala2”‘“Ilk

(r ) has a wider range of values than the

. blb2.e"bn
exponent-part (r') 1 Y where alo o l ank and bl...bni  are

--.
arbitrary nk-digitr and ni-digitr integers, respectivelye

t.
L
L
1
L
t
L
L
I
L

(44

L
(4.2)

i (4.3)

L
L (44

L
L
I

Lemma I. If i< ni + i< nk + k for given integers i > k > 1 then

n.
i(r i -1) < k (r nk-1)

n.
i[.5(r i -I)] < k [U5(r nk-1)l

i[-a5(rni _-I)] > k [-,5(r nk-I)]

Proof: The hypothesis niz nk + k-i can be rewritten as

i r

The function f(x) = x rex is a strictly decreasing function for

x>2 . Further f(2) 5 f(1) , where equality can occur only when

r 2,z and so equation (4.4) along with -i < -k imply (4.1). The

1
L

factor r -liek)i/k in (4.4) essentially bounds the ratio of [the range

9
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of the exponent for base ri] to [the range of the exponent for base

krl l As i-k increases, this upper bound decreases slightly less

than exponentially. Inequalities (4.2) and (4.3) follow easily from

(4.1).

Q.E.D.

This lemma will be used in the proof of Theorems III and V. We now

state the Best Base Theorem for incommensurable bases. It is given in

full generality in Sec. 6.

Theorem III. If t and r are incommensurable then base r alone is

the best (*-Dt, *, r)-base.

Proof:

Let integers N, p > 1 and t 2 2 (t and r incommensurable)

be given. Let integers qi satisfy

(4.5)
i Qi-’

( >r > tP - 1 >- (ri)
q-2

for i = 1, 2, . . .

.
If r1 is used as base then, according to D. Matula's Base Conversion

Theorem, qi-digits i are needed for p-digit
t accuracy. Precisely

r

iqi-digitsr are needed to hold qi-digits  i and so n
i = N-iqi r-state

r

.
devices are left for the exponent of ri e The exponent-part range is

n.
r
i[b.5(rni-l)]

Y so the range of the exponent of r is i[&.5(r i-l)] .

L
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By equation (4.5) and the fact that ql-1 is the smallest integer

value of x satisfying rx > tP-1, we have
-.

(44

(4.7)

i(?li-l) > 91-l

n.
1
= N - i qiz N - (ql-1) - i = n

1
+ l-i

We need consider only i for which ni > 0 so that

_-
(4.8) iCn

i
+i<n +I

- 1

Applying Lemma I with k = 1, we find that r is the best bDty NY d-

base. But p and N were arbitrary, so base r is the best

( D*- t’ *, r)-base (provided t and r are incommensurable).

Q.E.D.

58 The Base Conversion Theorem for Commensurable Bases.

We next discuss the case when r and t are commensurable, As

. . .
mentioned earlier, we will find that if t = rJ then rJ is the best

( D%-- t' % r)-base and so r is not always a best (p-Dt, N, r&base,

.
If r = 2 then t = rJ is the only case left to be considered. But

in general we must discuss the case tP 7=r in order to complete our

results. First we must extend the Base Conversion Theorem to the case

where t and r are commensurable.

11
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Example 5.1: Consider the conversion from S(2-D16) into S(4-D8) .

16 and 8 are commensurable since 16 3 = 84 l The mapping

c:s(2-56) +S(4-D ) is (l-l) since8

(591)

(“‘a1a2)16  X 1’
3n-2 = (o.blb2...b8)2 x 212n-8

= (o.oob b .q.b8)2 x 8
4n-2

1 2

* (0-c c c c )
12348

x 8kn-2

(O*a-~-~2)-~6 x 163n-1 = (o.b b 12n-4
12

..*b8)2 X 2
--.

(5.2) = (0.0blb2...b8)2 x 84n-1

4n-1= (Oaclc2c3)8 X 8

(“‘“l”2)16 x 16
3n

= (0.blb2...b8)2  x 212n

(5.3)
4n= (O*Clc2C3 18 X 8

Since any number in S(2-D16) can be written in the form

(o*a-~-~2)-~6 x l6
jn-k

for k=O, 1 or 2, the above shows that any

element Of s(m& is exactly expressible in w-D& i.e. that

S(2-D16) c s(4-D8) . Further, (5.1) shows that q = 4 is the smallest

value of q for which S(2-D16) C S(q-D8) . The proof (given in the

appendix) of the following theorem is nothing more than a generalization

of the methods of this example.

12



L Theorem IV. Suppose tP =r' for some relatively prime positive

L
integers p and 7 . Let -.
(594) 7 =cp+d with o<d<p

L

L _-

L

(5.5) TP =xp+y with o<d<p e

The conversion mapping C:S(p-Dt) -+S(q-Dr) is (l-l) if and only if

(5.6) q> x -t 6(d) + 6(y-1)

where

(5.7) --.
i

0 if n<O
w = .

1 if n<O

Corollary III in the appendix shows that C:S(q-Dr) +S(p-Dt) is onto

L

I
L

precisely when C:S(p-Dt) +S(q-Dr) is (1-l). Thus S(q-D,) is accurate

to p-digitst precisely when (5.6) is satisfied.

6. The Best Base Theorem,

Theorem V. Base rT is the best (*-D
7'

*, r)-base, for 7 = 1, 2,... q
r

Base r2 is the best (p-Dt, *, r)-base if and only if the following

three conditions all hold:

(1) tP = rT for some relatively prime integers p and T

(2) P is odd, _p>3 and ~>2

(3) TP =xp+2 for some integer x l

L
13
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In these cases base r2 affords twice the exponent range as does r .

Otherwise (when at least one of (l)-(3) does not hold) r is the best

b-Dt, *, r)-base. If either (1) or (2) does not hold then r is the

best (*-Dt, *, r)-base.

Example 6.1: An example in which r2 is a better (p-Dt, N, &base

than r should clarify matters. Such is the case when r = 8, t = 16

and p = 2 . In this example we wish to decide which of 8 and 64

is the better base for the internal representation of floating-point

numbers inan 8.ary computer with N-digits8 per memory word. The

constraints on this decision are (1) achieving the widest exponent range

while (2) preserving 2-digit16 accuracy (see Sec. l)* If base 8

were used then k-digits8 would be used for the mantissa, since q = 4

is the smallest value of q for which S(q-D8) is accurate to 2-digits16

(see Example 5.1)* This leaves nl=N-4 digits8 for the exponent,

"1
affording an exponent-part range of 8k5(8 -l>l (or 8’(8n1-lI for ,

signed magnitude exponents). If base 64 were used,then, by Theorem IV,

2-digitsG4 or equivalently, k-digits 8 would be needed for the mantissa,

again leaving nl-digits8 for the exponent. This allows an exponent-

6$k.5@n1-~)l  car
nl

part range of 64'(8 -1) for signed magnitude

exponents). Hence base 82 is better than base 8 here. In general,

base r2 is better than r precisely when n2 = n
1

.

14



The method of proof for this theorem is essentially the same as

that used for Theorem III. It is a more involved proof because some

of the inequalities to be proved are more delicate.
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Proof of Theorem V: See appendix*

70 Conclusion.

The Best Base Theorem shows that, in many cases) the choice of the

base under constraints (i)-(iii) of Sec. 1 is independent of the variable

p in constraint (ii). For example, this is the case when binary com-

puters are under consideration (r=2) or when the target base is ten

(t=10). In these cases constraints (ii) and (iii) can be replaced by

(ii)' if representations A and B have the same accuracy
base t , for a given t , then A must be chosen
over B if A gives a larger exponent range than B

without disturbing our results. And the Best Base Theorem states that

the representation chosen will use (1) ,base r , if t is not a power

of r , or (2) base t if t is a power of r . In these cases one

need not know in advance how many digits
t of accuracy are desired from

floating-point representation in order to choose a base. One must know

only that accuracy is to be measured with respect to base t .

When r=2 there are cases in which base 4 may be preferable to,

but not better-than (in our formal sense) base 2 . This occurs when

the exponent range for base 4 is only slightly less than that for base

2; in the notation of Theorem III, this occurs when =n
n2 1 - 1 and

%I2 = Q1 + 1, and n1 is not small (say nl> 5) . This was true in

15



’ L

i

L

L

i

L or a particular base advantageous. For example, suppose that (due to
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the examples of Sec. 3* In these cases the exponent range for base 4

5 nl
is 4-2 nl to 42 1nlwl and that for base 2 is 4-2 to 42 -q5 1 .-.
The transformation of representation from base 2 to base r in these

cases is affected by transferring one bit from the exponent to the man-

tissa. And so the base 4 representation is just as accurate, base 2 )

as the base 2 representation, and more accurate, base 4 ) than the

_- base 2 representation. This gain in accuracy more than makes up for

*
the negligible loss in exponent range.

Of course the choice of any base, rj (j > l), for an r-ary com-

puter can be justified via (i) and (ii)' by simply asserting that
.

accuracy is to be measured with respect to base rJ . In general the

author does not agree with such reasoning, because today's computer

user is interested in base 10 accuracy. Of course base 10 is not

sacrosanct, but the existence of a standard base is most valuable. It

facilitates comparision of new results with old results and standardizes

the form in which results are to be documented.

In practice, constraints other than (i) and (ii)' can arise.

Internal data paths may make particular length exponents and mantissas

some other considerations) an eight bit data path is selected for a

proposed binary computer. Then it would be advantageous to have the

exponent and mantissa each occupy a multiple of 8 bits (the mantissa

*The author is grateful1 to I. B. Goldberg for bringing this
phenomenon to his attention0 (It should be added that this does not
occur if the normalization bit cf the base 2 representation is made
implicit0 "1

16
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I i change our results considerably.

i

sign bit being included with either the exponent or the mantissa). Also

fast shift instructions which shift the contents of a register four bits

at a time (right or left) may be available on such a computer. If base

16 is used for the internal floating-point numbers,then normalization

(and unnormalization done when the exponents of two numbers to be added

are made equal) can be done quickly

such normalizations would be needed

by these shift instructions. Also,

less often. 3 Such constraints would

One could argue that constraint (i) has prejudiced us against larger

bases. Certainly this is true. However, we would (mildly) argue against

the use of fractions of digits i purely for aesthetics. Nevertheless,
r

our analysis could be redone without this constraint by generalizing

Mutala's results as follows Let r = sP , t =W ' and define

(Tol) S(: -Dr) = (X: 1x1 = jzl ajs-j X rn where= O<cuj<S] *

We will say that S is accurate to p -digitst if and only if

i

L

i

c:s(f -Dt) -+S($ -D,) is (l-l) and C:S(: -D,) -S(f -Dt) is onto.

We conjecture that the corresponding theorem in the incommensurable case

is the following: S(; -D,> is accurate to f -digitst if and only if

s9-P > wp-1 0 When p divides q and T divides pJ this reduces-

to the previous results0
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We conclude with the following observation on the generality of our

results: the Best Base Theorem and its proof, as given here, are valid

for any definition of accuracy of-.the form "S(q-D,) is accurate to

p-digitst if and only if rqml> f(p,t)," where f is an arbitrary

function.

t

i
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8. Appendix

Proofs of Theorems IV and V-are given here.

Proof of Theorem IV: Equality between [the prime factorization of tlP

and [the prime factorization of rlr implies the existence of an integer

s > 2 satisfying

(80 1-I t ' and r = sp= s

We are discussing conversions from S(p-D ) to S(q-D ) . We will
ST SP

-=.

consider the p-digitt numbers

(84 Z =
n ( ooculcy2*~* apIt x t"

with a1 # 0

= bB,B,* o ‘B,,),  x sTn

The proof is divided into two cases.

Case ID p = 1

In this case d = y = 0 and r = s so zn expressed in base

r is

(8.3) Zn = (o’8182”.BTp)r  ⌧ rTn l

Thus the conversion mapping C:S(p-Dt) +S(q-D,) is (l-l) if and only

if q>Tp=x = x f 6(d) + 6(y-1) l

Observe that in this case, as in Example 5.1, C is (l-l) if and

only if every element in S(P-DJ is expressible exactly in Ski-P,) > .

19
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i.e. if and only if
S(p-Dt)  = Sk-D,) l

This means that C is

(l-l) if and only if it is the identity map.
. .

Case II p > 1

Let un,vn,a and bn n be integers satisfying

(84 7n= y-p -vn with 0 < vn < p

(8.5)

In this case

-=.

(8.6)

Y+v = a,p + bn with 0 < bn < p e
n

Z
n = (0. 13p2*  ’

V
n

b . B 1xP+Y s
X

u p-v
sn n

U_
= (d.O...O pl...pxp+y)s x r n

where at least one of ~,,~,,~~~,~
cp+d

is non-zero. When z is
n

converted to base r the first digitr will be yl = (ele l *B & .
Pmvn I

If x=an = 0 then we are done. Otherwise there are xp+y - (p-v,) =

(x+an-l)p+bn digitss left to be converted. Each of the next (x+a,-1)

groups of p-digitss convert into yi = (e. B
J+L j+2"' B >j+p s ' where

j = (i-l)p-vn , for i = 2, 3,.,.,x + a . If b = 0 then
n n

yx+an+l =
0 . Otherwise y,+, +1 = (e

xp+y-bn+l"' B >xp+y s
x spebn .

n

20
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Thus zn expressed in base r is

At most [x f an + G(b,)]-digitsr  are needed to express z
n l When,

say ct. = t - 1 for i = l,...,p
1 in equation (8~)~ precisely

[x + an + 6(bn)]-digitsr are needed for z
n l If y30 or y=l

_-
then the exact conversions from S(p-Dt) to base r requiring the

most digits occur when
r [a

n
= 0 and bn # O] or [a, = 1 and

--.

bn = O] (see (8.4) and (8.5)), since vn can be made to take on any

of the values 0, l..., p-l by varying n . (If v =V thenn m

T(m-n) = (urn-u,)p and so m-n = k p for some k # 0 . Thus

. V
n+l ,...,v

n+P
are p distinct integers living between 0 and ~4 .)

It follows that the mapping C:S(p-Dt) --+S(q-Dr)  is (l-l) if and sly if

q>x*l = x + 6(d) + 6(y-l), when y=O or y=l .

. If y 2 2 then conversions requiring the most digitsr occur when

an=1 and bn f 0 . Again C:S(p-Dt) + S&D,) is (1-l) if and only

. if q>_x+2 = x + 6(d) + 6(y-1) .

Q.E.D.

Corollary II:. If r and t are commensurable then C:S(p-Dt) -+ S(q-D,)

is (l-l) if and only if C is the identity mapping. Further,

C:S(p-Dt) +S(q-Dr) is the identity mapping if and only if

S&D,)  = Sb-Dt) l -
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Corollary III. Let t and r be as in Theorem III and let

VW P = c '73-d' with _o<d'<T

WY) Pq = x’ T+y’ -- with ozY’<T

The conversion mapping C:S(p-Dt)  -+S(q-I),) is onto if and only if

(8. lo) p 2 x’ + 6(d') + 6(y'-1) .

Proof:

*: If C:S(p-Dt) -+ S(q-D,) is onto then S(q-D,) = S(P-Dt)d

(this is ev-ident from the discussion of the conversion of the z inn

the proof of Theorem IV). This implies C:S(q-Dr) -+S(p-Dt) is (14) .

*: If C:S(q-Dr) -G(I)-Dt) is (l-l) then S(q-D,) c S(p-Dt)

and so C:S(p-Dt)  -+ S(q-D,) maps the subset S(q-Dr) of S(p-Dt) onto

itself.

Q-E-D.

Corollary IV. For any t and r both > 2 the conversion

C:s(p-Dt) +S(q-Dr) is both onto and (l-l) if and only if t = r and

p=q 0

Proof:

The case when t and r are incommensurable is covered by

Corollary I. Suppose tp = 2 for some relatively prime positive integers

P '7 e
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Case I p = 7 = 1

Here t = r and so p = q yields S(p-Dt) = S(q-D,) .

C:S(p-Dt) +S(p-Dt) is both (1-‘i) and onto,

Case II p # 1 or 7 f 1 or both

The conversion is both onto and (l-l) if and only if

(8.11)

(8.12)

P ,> x' + 6(d') + 6(y'-1)

which can be rewritten as
--.

s>x+6(d)+6(y-1) .

(8.13)

(8.14)

2 2: +: (6(d') + 6(y'-l)- $)
P

4> 2 + $ (6(d) + 6(y-l)- x ).
7-p P

These imply

(8*15) 0 2; @(a') + 6(y'-l)- K) +$ (6(d) + &(y-l)-Y) ,T P

But the right side of (8.15) is positive since

i) d # 0 or d' # 0 or both;

ii) if d = 0 then p = 1 and y = 0 and so 6(d) + 6(y-l)- x = 0;
P

iii) if d' =0 then r=l and y' = 0 and so 6(d') + 6(y'-l)- $=O;

iv) if d # 0 then 6(d) + 6(y-l)- ; > 0;

V> if d' f 0 then 6(d') + 6(y'-l)- q>o .

Q.E.D.
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Proof of Theorem V:

Theorem III takes care of the case when t and r are incommensurable.

Here we consider the conversions. C:S(p-Dt) +S(qi-D i) for r and t
r

satisfying tP 7=r . For i = 1, 2,..., let

(8.16) gi = gcdhi)

(837) 7.1 = cipi + di

(8.18) 'iP = xipi + yi
--.

.'pi g ,'i=$=ip
i i

with o < di < pi-

with o<yi<pi l

. .
Since tip = (r')' , Theorem IV and its corollaries imply that the

smallest value of qi for which S(qi-D i) is accurate to p-digitst is
r

(8.19)

Let us define

'i = xi * 6(di) + 6(yi-1) m

(8.20) n. =N-iqi for i = 1,2,... .
1

We need consider only those i for which ni> 0 and we assume that

N is larger than imJnl i qi so that there is some i for which

ni>O e Equation (8.19) written in the form of (8.22) will prove

useful:

(8.21)
TP - y-g.

9i =
i P

1 I- + 6(di) + 6(yi-1)

24
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(8022) i q
'ii

i
,zP+i

P
6(di) -I- 6(yi-1) - r' 2 y .

iiN
-.

Case I D = 1

In this case we prove that rT is the best (S-D 't, *, r)-base.
v

c kk
Here %

= 0 if and only if L = ok = 'kPk = gk
which occurs if and

gk

only if k divides T . Also dk = 0 implies yk = 0 . Thus

(8.23) a. kqk = T p when k divides z .

In particular, nZ = N-T%= N-zp = rn& ni > 0 by (8.22). Thus r7

is the best (P D- t, N, r)-base among r,r2,...,r7 . If i>z

.
then pi = k > & = 2; and so 2; = di $ 0 and

4
“L

(8.24)

(8025)

iqi> 'tp + i(l- $, = Tq, f i - gi
i

-iq. .+ i < -zq
1 -

r + gi < 07q2 + '

. (8.26) i < ni + i < nZ + z for i with i > T and ni > 0 .

Applying Lemma 1 with k = T shows that the exponent-part range for r
7

.
is strictly greater than that for r1 when i>s . This completes

the proof that rT is the best (*-D 2~ % r)-base.
r

This also completes the proof for r = 2 (and for any other r
.

which is not an integral power of an integer).
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Case II p > 1

In this case di # 0 for i = 1, 2,... since

. -.

di
= 0 implies 2 Ci = Cipi = Ti '=-

i @;i
which implies T = iCip- 9

the last equation being impossible because gcd(z,p) = 1 . Also,

r = sp > 2p > 4 0 Equation (8.22) becomes_-
W27) i q = z + i 1 + ~(y -1) _ Yyi p c i

.
For brevity, let us define

--.

(8.28) hi
'i

= 1 + 6(yi-1) - p for i = 1, 2, . . . .
i

For a fixed i, hi takes its minimum when yi = 1 and its maximum

when yi =2 andso

(8.29) 2(y)l"i) (5) for i=1,2, l *a l

Equations (8027) to (8.29) imply

(8.30) ni + i h. = n. + j h.
1 3 J

for all i, j

(8.31) ni + i (~)~nl+2 (0) for i=2,3, e.. .

.
But pi = y> p and so

i-
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(8*32) n. < nl -l- (i-2) (~-1)/p

(8.33) i rni < r (i s-(i-2> (P-1))nl Pwhere r = s .-.

The function f(x) = x s
-(x-2) (P-1) is strictly decreasing for x>2 l

Further f(4) < 1 and so

(8.34)
n.

i r '<r
nl for i > 4 .

As shown in the proof of Lemma I, (8.34) implies that the exponent-part

aL**'anl
. bl...b,-

range for -3 is strictly greater than that for (r') 1, for

i>4, where
al'"anl

and bloD.b
ni

are aribitrary nl and ni-digit,

integers, respectively. Thus the best (p-Dt, N, r)-bases are among

r,r2,r3 . Further if p > 2 then f\'3j c( 3 s
-2 < 1 and r3 cannot

be a best base.

.

Subcase IIa base r3 versus base r for p = 2

We compare y and y3 given by

(8e35)

(8.36)

zp = 2x+y

-I,,
6x3

=-+y3g3 “3

O<y<l- -
.

6
05Y3<g '

3

From these we find that

(8.37) 2 (X-3X3  > = t33Y3-Y ’

L
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Since
g3 = gcdh3) is odd, equation (8.37) implies that

(8.38) [y=O e y3 is even] and so [hl=l @ h3 > l]-.

(8.39) [y=l e y3 is odd] and so [ hl=+ * h3 > +I .

The corresponding bounds for n3 from (8.30) are

(8.40)
n3 5 3 - 2 for (8.38)

(8.41) n3 < nl - 1 for W9)

and these equations imply

(8.43)

n33r <r5 3 < ml

r2
for (8.38)

3rn3 < r"' f < r"l for (8-39)

and so base r3 is never a best iP-Dt 9 N, r)-base.

Subcase IIb. base r2 versus base r for odd 7

We must compare y and y2 in

(8.44) TP =xp+y OlY<p

(8.45)
T2p =7p = 2X2P + Y2 O<Y2<2P '

The last equation is valid since 7 is odd and so g
2
= gcd(T,2) = 1 .

From these equations we find that

(8.46) /3(X-2X2) = y2 - y = kp where k = 0, Ll

28,
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and so

(8.47)

(8.48)

(8.49)

(8.50)

p divides y2 - y . Thus

cy=o @ y2=0,p] and so. . [hl=l * h2=1,3/2]

Cy=l @ y2=l,p+l] and so [hl=l- $ ($ hg=l-  1,2-  p+l]
2P 2P

[Y>l - Y2 #0,l,p,p+U and so [hl<2- 2 M h&2- F]
P

Ly<_l  * y2=0,1,p,p+l] and so _[ hl<l * hj3/41

where the last equation summarizes the first two. Corresponding bounds
--.

on n2 from (8.30) are

(8.51) n2 I nl

(8.52) n2 < nl

2
P

for (8.49)

1
2 for (8.50)

and these equations imply

i

(8.53)
n2

2r ‘s--
nl 2

-7--=’ &L<rLr p S3

for (8.49)

i
(8.54)

n2
2r <r

nl 2 nl
7r125r for (8.50).

So when p is even,base r is strictly better than base r2 .

Subcase TIC base r2 versus base r for odd p > 3 and even T

We now characterize the situations in which r2 is the best

(p-Dt, N, r)-base. As in the other subcases, we compare y and y2 in
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(8.55) TP = xp + Y 0~Y-Q

(8.56) TPz-z
T2p 2 X2P + Y2 05Y2<P l

_.

The last equation is valid since 7 is even and so g2 = 2 . From

these we derive

(8.57)

Thus

(8.58)

(8.59)

(8.60)

(8.61)

p(X-2X,) = 2y, - y = kp for k = 0, 41 .

[y=o @

--.

[y=l @

[y=2 e

[Y>2 *

y2=O] and so [hl=l c3 h2=l]

y2= Qgl and so [hl=l- 1 a h2'2. #-$I
P

y2#0,1q] and so [h,12- $ eo h&l] . '

The corresponding relations between nl and n2 are

(8.62) =n -1n2 1 for (8.58)

(8-63)

(8.64)

n2 lo2= n for (8.59)

= nn2 1
for (8.60)

(8.65) 3
n2<n -;- 1 for (8.61) I

As shown in the previous subcases, all these conditions except (8.64) imply

that base r is the best (p-Dt, N, r)-bast::; (8.64) implies that r2 is

the best (p-Dt, N, r)-base.*

Q.E.D.
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