CS 64

FLOAT ING-PO I NT NUMBER REPRESENTAT IONS:
BASE CHOICE VERSUS EXPONENT RANGE

BY

PAUL R ICHMAN

TECHNICAL REPORT NO. CS 64
APRIL 28, 1967

This work was supported by the
National Science Foundation and the
Office of Naval Research

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY




S

r rm r— r— r— r

—

FLOATI NG PO NT nuMsER REPRESENTATI ONS:
BASE CHO CE VERSUS EXPONENT RANGE

by

Paul Richman

Abstract:

A digital conputer whose menory words are composed of r-state devices
Is considered. The choice of the base, 8, for the internal floating-
poi nt numbers on such a conputer is discussed. ILarger value s of 3
necessitate the use of more r-state devices for the mantissa, in order
to preserve some "mininum accuracy," leaving fewer r-state devices for
the exponent of 8. As B increases, the exponent range may increase
for a short period, but it nust ultimtely decrease to zero. (& course,

this behavior depends on what definition of accuracy is used. This behav-

ior i S analyzed for a recently proposed definition? of accuracy which
specifies when it is to be said that the set of g-digit pase p floating-
point numbers is accurate to p-digits base t. The only case of prac-
tical inportance today ist =10 and r = 2; and in this case we find
that 8 = 2 is always best. However the analysis is done to cover

al |l cases.
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> 2 (r and t are commensurable if and only if r

1. Introduction

|. B. CGoldberg recently showed that 27 bits are not enough for

8-digit accuracy (under a suitable definition of accuracy), but that

10
2B hits are. - He proved that if 2%+ > 10°P > 292 then q bits are

enough for p-digit10 accuracy. He also gave several examples (p=1,2,8)

in which g-1 bits are not enough for p-digit. . accuracy.

10

Shortly after this p. W Matula independently discovered and proved

his Base Conversion Theorem 2 Let r and t be incomrensurable integers

. ‘
=t for some

positive integers i and j) . The Base Conversion Theorem essentially

states that q-digitsr suffice for p-digitt accuracy if and only if

@l o1,
In this paper the Base Conversion Theorem is extended to conmen-

surable bases. These results are used in a discussion of the choice of

the internal representation of floating-point nunbers for an r-ary corn-

puter; i.e., a digital computer whose menory cells are conposed of r-state
devices. This representation is specified when
1) a base for the floating-point nunbers is chosen and

2) the number of r-state devices to be used for the mantissa
(and hence the exponent) is chosen.

For exanple the 1BM 7090, the Burroughs B5500 and the |1BM 360 series
conputers are 2-ary conputers. The bases for the internal representation
of floating-point nunbers in these three conputers are 2, 8,and 16,
respectively. In the IBM 7090, 27 bits are used for the mantissa and
8bits for the exponent. The mantissa is stored in binary notation,

1
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an extra bit being provided for the sign. The value of the 8 bit
exponent is used as an_excess 128 exponent of 2; i.e., 2 raised to
the power [(the value of the 8 --bit exponent)-128] i s the_exponent-
part of the floating-point number. In the B5500, 39bits are used
for the mantissa and 7 bits for the exponent. The mantissa is stored
in octal notation, each group of three bits representing one octa

digit. The 7 bit exponent is used as a signed nagnitude exponent of

8. The following is a basic property of this representation: if 1
is added to the exponent of such a nunber then its mantissa nust be

. . I ol n+l
shifted right three bits: (o.a,a ea,.al% g8 = (o.0ajay. . a;,)gx8

In the IBM 360 series, 56 bits are used for the mantissa and 7 bits

for the exponent (of a long word). The nmantissa is stored in hexa-

decimal notation? each group of four bits representing one hex digit

The value of the 7 bit exponent is used as an excess 64 exponent of
n+l

. n _
16, and again (ooblbe.”blu)l6xl6 = (o.oblb2..,.b13)16xl6 .

Ve restrict our discussion to the case in which the choice of
representation for an r-ary conputer is subject to the follow ng con-
straints only
(i) if base s is chosen, with £ >s > rk'l , then the nmantissa
must be nmade of an integral multiple of k r-state devices,
i.e., fractions of digits  are not permtted;

(ii) the mantissa nust be accurate to at |east p-digits,, for
given p and t (accuracy is defined in Sec. 2);

(iii) the base chosen nust give the |argest exponent range possible

subject to (i) and (ii).
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Qbserve that |arger bases offer |arger exponent ranges, but require
nore bits to be used for the mantissa. Thus there is a definite trade-
off involved in using larger bases, and it is not obvious which base(-s)
will satisfy (i)-(iii). W prove that (1) if tis a power of r then
t is the only base which allows all of (i)-(iii) to be satisfied; (2)
if t and r are incomensurable then r is the only base which allows
all of (i)-(iii) to be satisfied; (3)if t and r are comensurabl e
and r >8, then there are cases in which r is the only such base and
cases in which r2 is the only such base.

Constraints (i)-(iii) above are discussed further in the conclusion.
Ve will find that these constraints can be weakened somewhat w thout

disturbing our results. Applications are also discussed there.

2. p-digitt Accur acy

Following D. W Matula® |et us define the set of g-digit, nunbers,

S(q—Dr), for r>2and g > 1, by

-i

4 . .
(201) s(a-D) = (x: |x| = .5 airn for integers n, a, with

o<a, < r}
Ve will discuss the rounding and truncation conversion mappings from
S(q-Dr) into S(p-—Dt) . Since the results presented in this paper
are the sane for both nethods of conversion, we |et C:S(q—Dr) -

S(p—Dt) stand for either mapping. W say that s(q-Dr) is accurate

to p-digits, if and only if c:8(p-D,) »8(a-D_) i's (I-1) and

3
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C S(g-Dr) -»s(p-Dt) in onto. This means that distinctness of "input"
nunbers from S(p-Dt) is preserved by rounding (or truncation) con-

version into S(q-Dr), and that all "output" numbers in S(p-Dt) are
attainable in the "output" conversion from g (q-Dr) onto S(p-Dt) .

. . . . . *
This definition of accuracy iS essentially equivalent tO the

following due to |I. B. Goldberg': for all x, if x € S(p—Dt) converts
intoy € S(q—Dr) which converts into z € S(p-Dt) t hen S(q-Dr)
s accurate to p-digitst if and only if z = x . Roughly speaking,

this neans that you nust get out what you put in. W now state

Theorem | (The Base Conversion Theorem -- D. W. Matul az)
Let r and t be incomensurable integers both 3 2 . Then
C:8(p-D,) »8(q-p_) is (I-1) if and only if 41> tP .1 and is onto

if and only if 71> %1
Cbserve that S(q-Dr) is accurate to p-digits, preci sel y when

rq’lz tP.1 , since this inequality alone inplies both the required

(1-1)-ness and the required onto-ness.

Corollary I (D. w. Matulag)

Let r and t be incomensurable integers both > 2 .

Then C:S(p-Dt) - 8(g-D,.) cannot be both (I-1) and onto.

*They are essentially, but not conpletely, equivalent.
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Thus if the conversion mapping is to preserve distinctness, it cannot
make use of all the numbers available in the range set, and vice versa.
This corollary also applies to the comrensurable case, as is shown in

t he appendi x*

Exanple 2.1:
By our definition of accuracy, the sets s(lh-Dl6) and S(51-D2)

are both accurate to 15-digits (oserve that all numbers in S(51-D2)

10°

can be represented exactly in g (14-Dl6 ), but not vice versa. Yet

S(51-D2) is just as accurate, base 10, as s(lu-Dl6). O course

-~

s(lh-Dl6) Is nore accurate, base 2 or base 16, than is S(Sl-DE) ,

since S(Sl-D2 ) is only accurate to 12-digit516 .

We are nmainly interested in the case r = 2 and t = 10 since
modern conputers are binary and since base 10 is used both in daily
life and in higher level conputer |anguages such as FORTRAN and ALGOL.
Applications to other values of + and (eventually) to other values
of r are also of interest |t may be, for exanple, that one really

wants to attain 1h-digitl6 accuracy in a binary conputer. Qur results

show that, in this case, the unique best representation (subject to

(i)-(iii) insec. 1) is just 1h-digits *

In the next section we give an exanple to clarify and direct our
discussion. The reader is referred to D. Matula's papere for a clear,

detailed discussion of this definition of accuracy and its ramfications.

*This 1s not as obvious as it may at first appear, It seems
possi bl e that base 32 or base 64,for exanple, could yield a w der
exponent range than base 16 while preserving 1h-digit16 accuracy.

5



3. An Exanpl e

Suppose we are given 63bits in which to store the mantissa and

exponent of a floating-point nurfb/er and we wish to achieve 15-digit10

accuracy. Wich of the bases 2, 4,8and 16 will give us the widest

exponent range (while preserving 15-digit, . accuracy)?

10

The inequalities
SN 249

425 15 2l

> 1077 - 1>k
(3.1)
v > 108 - 1> 8%

167 > 1087 - 1> 16%

along with D. Ww. Matula's Base Conversion Theorem show that we need

[51, 26, 18, 14] - digits[2 Y 8 16), of mantissa, respectively, for

15-digit. . accuracy. Thus we need [51, 52, 54, 56, ]-bits for the

10
mantissa, leaving [12, 11, 9,7]-bits for the exponent. If the
si gned magnitude nmethod of storing the exponent is used, the exponent-

8(2% 200 @) @),

part ranges are Let
kot
B, = 2 (2 l), the range for base 2. The equations
10
yE(27-1) | oFl B,
: 2(2%-1) 27/8 3/8
(5.2) 8 = 2™T/" 57

6
16*(2 ‘l) = 2?55/8 Bi/8

6
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show that base 2 has the |argest exponent range; for exanple

10 10

T .58, < B, and L2 +l‘= 2B >B . The difference between
base 2 and base 16 is a factor of 8in the exponent; a range of 10=L6l6
ver sus 101':76

The excess-quantity method of storing exponents will be of principal

interest here, although our results are the same for both methods. |f

n r-state devices are used to form the exponent, then [.5r™] is consi-
dered a zero exponent; those above are positive, those below are negative
This avoids wasting one of the possible exponent values on -o and

elimnates the necessity of an exponent sign bit. Wth this nethod the

6
exponent-part ranges for the exanple above are [2.p11, 4.510, 872 1672

8
to [eotho1,4 2101, 8° 'l, 16° "1 and again base 2 is best.

[ f 16-digit accuracy is desired then the same sort of analysis

10
shows that base 2 is again better than 4, 8, 16,yiel ding an exponent-

£38 Ll

part range of 10 as opposed to 10 for base 16.

L. The General Case

W now consider the general case in which N r-state devices are
used in formng the exponent and mantissa of floating-point numbers
A mantissa sign bit is to be provided separately. Gven positive integers
t and p, we wish to find the base, s, which gives the widest ex-

ponent range while preserving p-digitt accuracy (see Sec. 1 constraints

7
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(i)-(iii)). W will call s abest (p-D,, N r)-base. If s remains

a best (P'Dt’ N, r)-base for all appropriate N (i.e., all N which
allow p-di gitt accuracy to be realized in fewer than N—digitsr) we
will call s a best (p-D,, *, r)-base, etc. Ve will call t the

target base. W will find that there is always a unique best

(p—Dt, %, r)-base.

J

Theorem 1I. The best (p-D,, N, r)-bases are always of the formr

t)

for j >1_.

In other words, the best bases are those which nake use of all the

possible states of the r-state devices.

Proof: If a base s not of the formr® is used:then k-digits_

3

(i-e. k r-state devices) are used for each digit of the mantissa,

where r=> s> rk'l .0 f n-digits ~ are left for the exponent then

. L.s(e™- . :
the exponent-part range is g[F-5(r-1) ], using the excess-quantity

i(rn—l)

nethod. (It is s i f an exponent sign bit is provided and the

signed magnitude nethod is used.) If base X were used instead of

base s then no nore digits woul d be needed and the exponent-part

n n
range would be E[¥5(-1)1 (Ak(x-1)

for signed magnitude exponents),
a strictly larger range.

Q.E.D.
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The following |lemma gives a sufficient condition for [the exponent-

part range of a representation using the smaller base rk] to be

greater than [the exponent-part range of a representation using the

larger base r'(i > k)] . The lemma states that if positive integers
1, k, n, and n satisfy n, <n_+k-i and k < i then the
a. a ...an )
exponent - par t (rk) Le 5 has a wider range of values than the
. b.b....b
exponent-part (r') 12 ni, wher e a- o ank and b.e:b are

i

arbitrary \'nk-digitr and n__.L—dtig,itr I nt egers, respectively.

Lemma |. If i< n, +1i<mn +kfor givenintegers i >k > 1 then
n. n
(.1) i(r T-1) < k (z K1)
n.l nk
(h.2) if.5(r T-1)] < k [.5(r ®-1)]
) ni ) n
(4.3) i[-.5(r *-1)1 > k [-.5(r %o1)]

Proof:  The hypothesis n, <oy * k-i can be rewitten as

. . k
(4.1) ot <k . K (iz) (-11-;—)

The function f(x) =x r* s a strictly decreasing function for
x>2 . Further f(2) <f(1) , where equality can occur only when

r =2, and so equation (4.4) along with -i < -k inply (4.1). The

factor r'<i'k)i/k in (4.4) essentially bounds the ratio of [the range



r

of the exponent for base ri] to [the range of the exponent for base

k

r ] . As i-k increases, this upper bound decreases slightly Iess
than exponentially. Inequalities (4.2) and (4.3) follow easily from
(4.1).

Q-E.D.

This lemma will be used in the proof of Theorems IIl and V. W now
state the Best Base Theorem for incommensurable bases. It is given in

full generality in Sec. 6.

Theorem IIl. If t and r are i ncomensurabl e then base r alone is

t he best (*'Dt’ *, r)-base.

Pr oof :

Let integers N, p > 1 and t > 2 (t and r i ncormensur abl e)
be given. Let integers a4 satisfy

i 4t g 1,472 o
(4.5) (r) >t -1> () for i =1,2 ...

If r~ is used as base then, according to D. Matula's Base Conversion

Theorem q.-digits , are needed for p-digit accuracy. Precisely
i ot t

iqi-digitsr are needed to hold q-digits , and so n, = N-iqi r-state
r
devices are left for the exponent of r*. The exponent-part range is

n

. 1 n.
rl[£°5(r -1)] , S0 the range of the exponent of ris i[#.5(r i-1)]

10
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By equation (4.5) and the fact that q,-1 is the smallest integer

value of x satisfying r* > tP-1, we have

(L.6) i(qs-1) > q-1

(&.7) Ny = N-i g S N-(q-1)-i =n +1-i
Ve need consider only i for which n, > 0 so that

(4.8) i<ni+i-<n1+l

Applying Lemma | with k = 1, we find that r is the best (p_Dt, N, r)-

base. But p and N were arbitrary, so base r is the best

(*-D,, *, r)-base (provided t and r are incomensurable).

t)

Q-EoD.

5. The Base Conversion Theorem for Commensurabl e Bases.

We next discuss the case when r and t are conmensurabl e, As
mentioned earlier, we will find that if t - t hen r‘j is the best

(*—Dt, *, r)-base and so r is not always a best (p-Dt, N, r)-base.

If r=2thent =1 s the only case left to be considered. Byt

in general we nust discuss the case P = 7

in order to conplete our
results. First we nust extend the Base Conversion Theorem to the case

where t and r are commensur abl e.

11



Exampl e 5.1: Consider the conversion from s(2—Dl6) into s(l«-D8) .

16 and 8 are comensurable since 163 = 84 . The mapping
L C:S(2-Dl6) —>s(4—D8) is (I-1) since
- (o.ala2 16 X l65n_2 = (O'ble"'bB)Q X 212n-8
E_ (5.1) = (o.oob]pz-..b8)2 X 84n-2
hn-2
_ = (orcye050,0g x 8
3n-1 _ 12n-4
\(oa1216X16 = (obb 8)X2
bn-1
(5.2) = (O°Oblb2"'b8)2 X 8
) kn-
* = (orciepey)g x 8™
- 3 10
n n
(o. a,85) ¢ % 16 = (o'b1b2"'b8)2 x 2
B (5.3) = (O'C1C2C5)8 x gin
B Since any nunber in s(e-Dls) can be witten in the form
- (o.ala2 16 X 160K for k=0, 1 or 2, the above shows that any

el ement O S(2—D16) is exactly expressible in S(M-DB), i.e. that

s(e_Dl6) c s(u-DB) . Further, (5.1) shows that q = 4 is the smallest

val ue of g for which S(2-Dl6) C S(q-—D8) . The proof (given in the

appendi x) of the following theoremis nothing nore than a generalization

of the methods of this exanple.

12




Theorem V. Base r

Theorem |V.  Suppose tP = 7 for sone rel atively prinme positive

integers p and T . Let
(594) T=cp+d With 0<da<p
(5.5) TP=E=xpty wth o<da<p

The conversi on nappi ng C:S(p—Dt) -—;S(q-Dr) is (I-1) if and only if

(5.6) q>x+ 6(d) + 6(y-1)
wher e
0 if n<oO
: ~ §(n) =
(5-7) 1 if n<O
Corollary Il in the appendix shows that C:S(a-D,) —S(p-D,) is onto

preci sely when C:S(p-Dt) -8(q-D,) is (1-1). Thus s(a-D,) is accurate

to p-digits, precisely when (5.6)is satisfied.

6. The Best Base Theorem

T is the best (*-D o %, r)-vase, for t =1, 2,....

r
Base rZ Is the best (p-Dt, *, r)-base if and only if the follow ng
three conditions all hold:

(1) t° = ¢’ for sone relatively prime integers p and r
(2) p is odd,p>3 and 7> 2

8 Trp=xp+t2 for some integer x.

13
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In these cases base r= affords twice the exponent range as does r
O herwi se (when at |east one of (1)-(3) does not hold) r is the best

(p-Dt, *, r)-base. If either (1) or (2) does not hold then r is the

best (*-Dt, *, r)-base.

2

Exanple 6.1: An exanple in which r® is a better (p-Dt, N, r)-base

than r should clarify matters. Such is the case when r =8,t=16
and p =2 . In this exanple we wi sh to decide which of 8and 64
is the better base for the internal representation of floating-point

nunbers in an 8-ary conputer with Ndigits,per nenmory word. The

constraints on this decision are (1) achieving the w dest exponent range

while (2) preserving 2-digitl6 accuracy (see Sec. 1). |If base 8
were used then k-di gits8 woul d be used for the mantissa, since q =4
is the smallest value of q for which s(q-D8) is accurate to 2-digits ¢

(see Exanple 5.1). This | eaves n, =N-k4 digitsg for the exponent,

1

n

Il1 l
affording an exponent-part range of gl*-5(8 "-1)1 (= g*(8 =-1)
signed magnitude exponents). |f base 64 were used, then, by Theorem IV,

2-digitsg ~or equivalently, Kk-di gits8 woul d be needed for the mantissa,

again |eaving n,-digitsg for the exponent. This allows an exponent-

n

1 oy
part range of eul¥2(8 1)1 5 (8 7-1)

for signed magnitude
exponents).  Hence base 8% is better than base 8 here. In general,

base r° is better than r precisely when n, = n1

14
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The method of proof for this theoremis essentially the sane as
that used for TheoremIll. It is a nore involved proof because some

of the inequalities to be proved are nore delicate.

Proof of Theorem V. See appendix.

7. Concl usi on.

The Best Base Theorem shows that, in many cases, the choice of the
base under constraints (i)-(iii) of Sec. 1 is independent of the variable
p in constraint (ii). For exanple, this is the case when bhinary com
puters are under consideration (r=2) or when the target base is ten
(t=10). In these cases constraints (ii) and (iii) can be replaced by

(ii)" if representations A and B have the sane accuracy

base t , for a givent , then A nust be chosen

over Bif A gives a larger exponent range than B
without disturbing our results. And the Best Base Theorem states that
the representation chosen will use (1) bvaser, if t is not a power
of r, or (2) base t if t is a power of r. |In these cases one

need not know in advance how many digits, of accuracy are desired from

t
floating-point representation in order to choose a base. (One nust know
only that accuracy is to be measured with respect to base t

Wien r=2 there are cases in which base 4 may be preferable to,
but not better-than (in our formal sense) base 2. This occurs when
the exponent range for base 4 is only slightly less than that for base

2; in the notation of Theorem IIl, this occurs when n, =m - 1 and

2q2=ql+l, and n. is not small (say anS). This was true in

1

15



the exanples of Sec. 3. In these cases the exponent range for base 4

1 !

n n
is [4-21ﬁ to henl_l. and that for base 2 is [4'2 * to 42 70
The transformation of representation frombase 2 to base r in these
cases is affected by transferring one bit from the exponent to the man-
tissa. And so the base 4 representation is just as accurate, base 2,
as the base 2 representation, and nore accurate, base %, than the

base 2 representation. This gain in accuracy nore than makes up for

the negligible loss in exponent range

O course the choice of any base, rd (j >1), for an r-ary com
puter can be justified via (i) and (ii)" by sinply asserting that
accuracy is to be measured with respect to base . In general the
author does not agree with such reasoning, because today's conputer
user is interested in base 10 accuracy. O course base 10 is not
sacrosanct, but the existence of a standard base is nost valuable. It
facilitates comparision of new results with old results and standardizes
the formin which results are to be docunmented.

In practice, constraints other than (i) and (ii)' can arise
Internal data paths may make particular length exponents and nmantissas
or a particular base advantageous. For exanple, suppose that (due to
some other considerations) an eight bit data path is selected for a

proposed binary conputer. Then it would be advantageous to have the

exponent and mantissa each occupy a nultiple of 8bits (the mantissa

*The author 1s gratefull to I. B. Coldberg for bringing this
phenomenon to his attention. (It should be added that this does not
occur if {he normal i zation bit of the base 2 representation is nmade
implicit, ™)

16



sign bit being included with either the exponent or the mantissa). Also
fast shift instructions which shift the contents of a register four bits
at atinme (right or left) may be available on such a computer. If base
16 is used for the internal floating-point nunbers,then normalization

(and unnornalization done when the exponents of two nunbers to be added

are made equal) can be done quickly by these shift instructions. Al so,

such normalizations would be needed less often. 3 Such constraints woul d
change our results considerably.

One could argue that constraint (i) has prejudiced us against |arger
bases. Certainly this is true. However, we would (nildly) argue against

the use of fractions of digits { purely for aesthetics. Nevertheless,
r

our analysis could be redone without this constraint by generalizing

Mutala's results as follows Let r = sP , t o= w' and define

a X
. 4. = (X = “d g B <a, < .
(7:1) 8 D) = (X IXI = ;g as™ xr where o< o <s}

W will say that S(% -Dr) s accurate to %-digitst if and only if

C:S(% -D,) —98(% -p_) is (I-1) and C:S(-g' -D_) —>S(§ -D,) is onto.

t

W conjecture that the corresponding theorem in the incommensurable case

is the follow ng: S(—g' 'Dr) s accurate to

Al

-digitst if and only if

s37P > w'-1 . Wien o divides g and r divides p, this reduces

to the previous results.

17
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W conclude with the follow ng observation on the generality of our
results: the Best Base Theorem and its proof, as given here, are valid
for any definition of accuracy of-the form"s(q-Dr) is accurate to

p-digits, if and only if rq'lz f(p,t)," where f is an arbitrary

function.

18



8. Appendi x

Proofs of Theorens 1V and V-are given here.

Proof of Theorem |V: Equality between [the prine factorization of 1P

and [the prime factorization of r]T inplies the existence of an integer

s > 2 satisfying

(8.1) tJsand r = sP
V¢ are discussing conversions from S(p—DsT) to S(g- Dsp) Ve will
consi der tzhe p-digit, nunber s
(8.2) 2, = (o.a/lozg...ozp)t x t" with o #0
= (0.5152. . 'BTp)s xs™

The proof is divided into tw cases.

Case I.p =1

Inthis cased =y =0 and r = s SO z expressed in base

)XI‘Tn
Pp'r

(8.3) 7 = (0.5152,..5T

n

Thus the conversion mapping C:S(p-Dt) —as(q-Dr) is (I-1) if and only
if g>r1p=x=x+ 6(d) + 6(y-1).

Cbserve that in this case, as in Exanple 5.1, Cis (I-1) if and

only if every elenent in S(p-Dt) is expressible exactly in s(q-Dr) )

19



i.e. if and only if S(p—Dt) c S(q-—Dr) . This nmeans that Cis

(I-1) if and only if it is the identity map.

Case Il p>1

Let LYPR AT

072 and b]f1 be integers satisfying

r

; o = - |
L (8.4) TR=up-v \Mth0<vn<p
8;5 = i
L (8.5) v+, anp+bn Wlth0<bn<p
[_ In this case
"nP ™V

(8.6) 2, = (O'BIBQ""Bxp+y)s X S

e
v
_ n
! u
= (0.0...0B8,+-+B_ . ) xr"
1 xpty’s
.
. where at |east one of 31,52,...,scp+d is non-zero. \When z, s
H o s : = . *

converted to bhase r the first digit will be 7, (Bl o Bp_vn)S

If x= a = 0 then we are done. (Qtherwise there are xpty - (p-v,) =
- (x+an-l)p+bn digits  left to be converted. Each of the next (x+an-1)
i groups of p-digits_ convert into 7, = (B+183+2 J+p)s , Where

j = (i-1)p-v_ , for i =2, 3,...,x+a . If b =0 then
1 n n n

= i = p—b

7x+an+l 0. Oherwise 7x+an+l (Bxp+y-bn+1"'8xp+y)s x s"n .

L

20




r— r

Thus z, expressed in base r is

— n
(8'7) Zn - (O,'71"'7x+a +l)r Xxr

At nost [x + a ¥ é(bn)]—digitsr are needed to express Z, .\When,

say oy =1t -1 for i =1,...,p in equation (8.2), precisely

[x + a * é(bn)]-digitsr are needed for z, f y=0 or y=1
then the exact conversions from S(p—Dt) to base r requiring the
nost digitsr occur when [an = 0 and b #0] or [a, = 1 and

b = 0] (see (84)and (8.5)), since v can be mde to take on any

of the values 0, 1..., p-I by varying n . (If v, = vy then

t(m-n) = (um-un)p and so mn =k p for sone k # 0 . Thus

sV are p distinct integers living between 0 and p-1 .)

v ..
n+l’ n+p

It follows that the mapping C:S(p-Dt) —>S(q—Dr) is (I-1) if and cnly if
g>x+1=X + 6(d) + 8(y-1), when y=0 or y=1 .

If y > 2 then conversions requiring the nost digits  occur when
a =1 and b #0 . Again C:S(p-—Dt) - S(q'Dr) is (1-1) if and only
if gq>x+2=x + 6(d) + 8(y-1) .

Q.E.D.

Corollary Il:. If r and t are comrensurabl e then C:S(p-Dt) - S<q'Dr)

is (I-1) if and only if Cis the identity mapping. Fyrther,

C:S(p-Dt) —>S(q-Dr) is the identity mapping if and only if

s(q-D,) > S(p-D,) .

21



Corollary Ill. Let t and r be as in Theorem IIl and |et

(8.8) p=c' T+ a with o<d <-r

(8.9) pag=x'"r~+y' N Wwth o<y ' <r

The conversion mapping C:8(p-D,) —»S(q—Dr) is onto if and only if
(8.10) p>x + 8(d") + &(y'-1) .

Pr oof :

=: If c:5(p-D,) ~ S(a-D,) is onto then $(a-D.) < S(p-Dy)

(this is evident fromthe discussion of the conversion of the z, N
the proof of Theorem V). This inplies C:8(a-D.) —»8(p-Dy) is (1-1) .
€: If c:8(a-D.) »S(p-D,) is (I-1) then 8(a-D,) & 8(p-D,)
and so C:8(p-D,) - S(q-D_) maps the subset s(q-p,) of s(p-D,) onto

itself.

Q-E.D.

Corollary IV. For any t and r both > 2 the conversion

C:S(p-Dt) ~—>S(q-Dr) is both onto and (I-1) if and only if t = rand

p=q

Pr oof :

The case when t and r are inconmmensurable is covered by

T

Corollary I. Suppose t? = " for sone relatively prime positive integers

p=r

22
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Here t = r and so p = q yields S(p—Dt) = S(q—Dr)'

C:S(p-Dt)—+S(p—Dt) is both (1-1) and onto,

Case Il p#1or 1# 1 or both

The conversion is both onto and (I-1) if and only if
(8.11) p>x'+8(d) + 6(y'-1)
(8.12) qg>x+6(a) + 8(y-1) .

which can be rewitten as

(8.13) ps9.,1 ' ' ¥
P> 22 (8(a) + 8y -1)- L)
a5p 4,1 ) L
(8.14) 1224 2 (6(d) +8(-1)- 2.
These inply

(8:15) 0> (8(ar) + 8(y'-1)- ) + X (8(a) + 6(y-1)- F)

But the right side of (8.15)is positive since

i) d#0or d # 0 or both;

ii) if d=0thenp=1and y =0 and so 6(d) + 6(y-1)- Zp:o;
iii) if d =0 then r=1 and y' = 0 and so §(a') + 6(y'-1)- {:o;
iv) if d#0 then 6(d) +a(y-1)_-‘p£>o;

v) if a'# 0 then 8(a') + 8(y'-1)- L> 0 .

Q.E.D.
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Proof of Theorem V:

Theorem |11 takes care of the case when t and r are incommensurabl e.

Here we consider the conversions. C:S(p-D.) - S(q;-D ;) for r and t

r
satisfying t° = ¢" For i =1, 2,..., let

(8.16) g; = ged(t,1) Ps =i'§? LY =é

(8-17) T, = cgp, +d with o<a <p,

(8.18) TP = xp; tyy wth o<y, <p

Si nce £ = (rl.)T ,  Theorem |V and its corollaries inply that the

smal | est value of g, for which S(qi-D i) is accurate to p-digits, is
r

(8"19) qi = xi + a(di) + a(yi_l) °

Let us define

(8.20) ng=N-1igq for i = 1,2,... .

we need consider only those i for which n, > 0 and we assune that

N is larger than ;dn, 1og, SO that there is some i for which

n, >0 . Equation (8.19) witten in the formof (822)wll prove
useful :
™ - V8
(8.21) q = l—p + G(di) + ﬁ(yi—l)
2k



~ y'"l
- 8.22) 1 g =-R+i {8(a.)+68(y.-1)- —p >R
(8.22) 1 q i (a,) + 8(y;-1) H*ﬁ" 5
) Case | p=1
- In this case we prove that r' is the best (*—DJ’ *, r)-base.
. ckk _ _
Her e q = 0if and only if T T Py = T whi ch occurs if and

k k

only if k divides . Alsoq =0 inplies y_=0. Thus

k
L (8.23) -~ kg, = TP when k divides 71 .
L In particular, n_= N-7q = N-tp = min n, > 0 by (8.22). Thus r*
L is the best (P-Dy» N, r)-base anong 1~,r2,...,rT oIt
|_ thenpi=§;>—;’;=Ti andSOTi=d1,740and
. . 1 :
L (8.24) iq, > p + i(1- —51-) =T v - g
_ (8.25) |ql + i < -Tqr + gi < _TqT + 7
. (8.26) i<ni+i<nT+T forivvithi>’randni>0.
.
: Applying Lemma 1 with k =1 shows that the exponent-part range for r
h

is strictly greater than that for r* when i3>t . This conpletes

T

the proof that r  is the best (*-D o % r)-base.

r

This also conpletes the proof for r = 2 (and for any other r

which is not an integral power of an integer).

25




Case || p>1

In this case a, #£0 for i =1,2,... since
a, = 0 inplies Ll{éci =c.p, =T =.é; which inplies 7 =icp.
the last equation being inpossible because ged(t,p) = 1 . Also,
r=sP>2"> 4. Equation (8.22) becones
(8.27) ig = 24 i{, t 8y -1) - _y_’}‘;\
i o) I N
For brevity:‘ let us define
V.
(8.28) n, = 1+6(yi—l)-31-(1- for i =1, 2 ....
For a fixed i, hi takes its m ni num when v = 1 and its naxi num

when Vi = 2 and so

pi-l pi-l . .
(8.29) 2 >h, > for i=1,2,.%a

Equations (8.27) to (8.29) inply

(8.30) n, + [ h1 = rl.3 + ] h.J for all 1, ]j
py-1 p-1
(8.31) n, + i o <ot 2 = for i=2, 3, .
p:~1
But po. = =£> 5 and so = > 01 ang
& i | T P
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(8.32) n, <n - (i-2) (p-1)/e

(8.33)  irt < i "B (e-1)y  where r = § .

The function f(x) = x S‘(x'g) (1) s strictly decreasing for x> 2

Further f(&%) < 1 and so

(8.34) irt<ry for i >4.

As shown in the proof of Lemma I, (8.34)inplies that the exponent-part

Q. .e.8 . bl...bn‘
range for r 1M1 s strictly greater than that for (c) i, for

i i bi and n,-digit
i> L4, where al...anl and by bni are aribitrary ny ;-digit,

integers, respectively. Thus the best <p'Dt’ N, r)-bases are anbng

. , -2 3
r,rg,r5 . Further if o> 2 then £(3) <3s ~ <1 and r” cannot

be a bhest base.

Subcase IIa base r5 versus base r for p = 2

W conpare y and y5 gi ven by

(8.35) Tp = 2X+y 0<y<sl
6X

T ) 6

8.36 —p=—"++y 0<y, <—

( ) &3 fs 3 3 &g

From these we find that

(8.37) 2(X-5X5) = 85V

27



Since g5 = ged(1,3) is odd, equation (8.37)inplies that

(8.38) [y=0 » y, is even] and so [n=1

(8.39) [y=1 « y, is odd] and so [ b4

eah5>l]

ehBE%].

The correspondi ng bounds for ns from (8.30) are

(8.40) ny<n -2 for (838)

(8.41) ny <ny -1  for (8.39)

and these equations inply

(8.42) Zro<r 2 <t for (8.38)

n n n
(8.43) 3r 5 < r l% < rl for (8.39)

3

and so base r” is never a best (p-Dt » N, r)-base.

2
Subcase IIb. base r versus hase »r for odd =t

We nust conpare y and Yo in

(8.44) mp=Xp+y 0<y<p

(8.45) ToP = TP = 2Xp + Y2 0<v,

The last equation is valid since ris odd and

From these equations we find that

(8.46) p(X—2X2) =V, -y = kp where k

28

< 2p

S0 g, = ged(r,2) = 1 .

=0, L1
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i and so p divides Yoo Y - Thus
|

(8.47) [y=0 @ y,=0,p] and so [h;=1 & h,=1,5/2]
—

- - . L =1 L oot
~ (8.48) [y=1 = yg—l,p*'l] and so [hl—l- 3 ® hy=l QP’2 QP]
i (8.49) [l e 40,1,p,p+1] and so [h<2- £ @ h>2- Zp-1)
\__ Y- Y2 #FUsLspsp =" p prsl 2p
| (8.50) [y<1 = ¥,=0,1,p,p+1] and sol h<1 « h2>3/4]

—
‘L where the last equation summarizes the first two. Corresponding bounds

on n, from (8.30) are
|
- 3

(8.51) n, <n; - 3 for (8.49)
(-

1

(8.52) n,<n -3 for (8.50)
L

and these equations inply
-

n n n n
2 1 2 12 1
= =<

(8.53) er " <r ;75 r > r for (8.49)

(-
n n n
2 1 2 1
: (8.54) 2r “ <r <r for (8.50).
- r172
- So when p is even,base r IS strictly better than base 2
w Subcase IIc base r° versus base r for odd p>3 and even r
W now characterize the situations in which r* is the best

— (p—Dt, N, r)-base. As in the other subcases, we conpare y and Vo in
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(8.55) ™ =Xp ty 0<y<p
(8.56) TP =52 = Xgp 4 Y2 0<y,<p

The last equation is valid since ris even and so g, = 2 . From

these we derive

(8.57) p(X-2x,)=2y, - v = kp for k =0, 41 .
Thus

(8.58) [y=0 y2=O] and so [hy=1 & h=1]

(8.59) m[y=l ® y,= -‘-’—;] and so [h =1- 53= ® h,=2- %;—}]
(8.60)  [y=2 ® y,=1] and so [h1=e--§ @ n,=l- %1
(8.61) (e « y27£o,1 Eg—l] and so [h <2- % ® hp>1]
The correspondi ng rel ati ons between ny and n, are
(8.62) n, =Ny -1 for (8.58)

(8.63) n, =N, - 2 for (8.59)

(8.64) n, =N, for (8.60)

(8.65) ny < m % for (8.61)

As shown in the previous subcases, all these conditions except (8.64) inply
that base r is the best (p-Dt, N, r)-basc; (8.64) inplies that 2is
the best (p-Dt, N, r)-base.

Q.E.D.
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