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Relaxation Methods for Semi-Definite Systems

Relaxation methods like the Gauss-Seidel iteration are widely

used to solve linear systems of the form

Avr =
h A

o

when A 1s a Hermitian positive definite matrix, but their usefulness
when A is semi-definite is less well appreciated. A recent paper -
by H. Keller (1965) has expanded earlier results of G. Forsythe (1960)
and the author.(l958, Ch. 2) concerning the‘convergence of stationary
iterations when the system is consistent, though singular. The gist

of Keller's paper is that those iterations of the form

Yory = I + T(e-Ag)

which are usually used when A is definite also work when A 1s semi-

definite. This note is concerned with a non-stationary iteration

Yo+l = Ly + Tple-Ay,)

and can be regarded as a supplement to Keller's work. In particular,
the results here imply that some of his stationary iterations are

i numerically stable;‘but there are other applications too, like eigen-
value problems, for this note.

The hypotheses used in this work are intended to be as weak as
will fit methods likely to be uséd in practice. Consequently, the
results here do not completely generalize the work of A. Ostrowski
(1954) or S. Schechter (1959). There is also some overlap with recent

independent work of Ostrowski (1965).



The report is divided into four numbered sections. Section 1
is remeniscent of works by Kaczmarz (1937) and Agmon (1954) in that

it characterizes the relaxation lteration to be considered here as a

is shown to converge at least as fast as some geometric series.
Section 2 defines that "suitable space' more precisely in terms
of the given matrix A , and shows how convergence can be sustalned in
the face of certain rounding errors committed during'the iteration. |
Section 3 mentions two applications and discusses some open
problems. The central problem is that the solution y of a singular
but consistent system Ay = ¢ 1s not a continuous function of A or
¢ . Therefore, it is no surprise that rounding errors in ‘A and ¢
may obscure the criteria by which one judges whether or not an iteration
has come close enocugh to a desired solution that further iteration is
worthless. Attempts have been made to iterate instead with a non-
singular system that is practically equivalent to the given singular
system Ay = c ; +two such attempts are mentioned in this section.
Section 4 shows that relaxation diverges to infinity when the system

-Ay = ¢ 1s inconsistent, and is almost certain to diverge exponentially

if A is indefinite.

1.) Relexation in a Simple Case

To begin, consider the solution by relaxatlion of the trivial

equation



as follows:

Let yeee, 9M} be a given set of non zero vectors

e, » &
which, though not necessarily linearly independent, do span X's
space. In other words, M is no smaller than the dimension of Xx

and both matrices
(&g 5 & seres e} end ey , &5 ,--05 &y x}

have the same rank for all vectors X .

Next let By » B seves By seee be & sequence constructed by
choosing 2, - Ej for some J = J(n) so contrived that each set of
congecutive vectors {En 5 Py 200 En+L-1} spans Xx's space.

I, is some fixed integer exceeding the dimension of x .

Now the iteration to solve X = E for x can be defined.

Beginning with an arbitrary x

L s e define for n = 1,2,3,...

i

n, = p.¥(b-x )/p *p,

8, 1s arbitrary except that ls,| <a<1 forall n ,
§n = (l"‘sn)'rln ’

bx, = & By » ond

X =X + X .
-n+l = -

The numbers (l+5n) are frequently called W, in the literature.
The values 6n can be complex, but when they are real they have the

following connotations:

(o]
I

0 means exact relaxation ,
& > 0 means over-relaxation |,

5 < 0 means under relaxation .°




Each relaxation may be regarded as a near-projection;
b-x, = {1 - (1+5n) B, En*/En* En] (E‘En) .

Consequently, if the usual norm

lxll = Vx*x

is used, then "E'E-n+1“ < ||_’t_)_-x__n| . To be more precise,

o-x_, I = To-x_[I7 - (1-18_17) |p*(p-x_)1%/llp, I

- 2
< flo-x I unless p*(b-x ) =0
2

because 1 - |8n|2~21 -d">o0.

If we use the abbreviation
P(p,d) = I - (1+#8) p p*/p*p ,
then 1t becomes convenient to write

b-X = Tn(p_—x_n) where

Tn=HP(2m,8m) over n<m<n+L .

The next step is to show that HTnII <1, where the matrix norm is

defined by

I, Il = mex fiT vli/liwll over v #0



Let us write X = "Tn". Obviously A < 1. If A =1 then there
must be some non-zero vector v such that HTan = |lvll + By examining

the factors P(Qm s am) of T in turn, we conclude that

T v=v and
n— —

I

Emfx =0 for m=n, ntl ,ee., n+L -1 .,

Because of the way the vectors D, wvere chosen, there exists a com-
plete linearly independent subset among them, and since Emf_ =0

for all Py in that subset, v =0 . This contradiction shows that
hn <1l.

-

Now, Xh may be identified with a continuous function

M = MBy s Byaa sttt Brager 5 B0 Bpea st Pnapg)

of L vector and L scalar arguments. The vector arguments are con-
strained in such a way that there is only a finite number of permissible
sets of L vector arguments. Indeed, of the LM ways to choose the

L vectors
Bn 7 Bpia 20007 Bparan

from the set [Sl 2 €5 seces EM} , most will be rejected because the
p-vector must include a complete set spanning x-space. The scalar
arguments 8 are constrained to the compact set [ | <d<1.

Therefore there must exlst a number



A = max AMp,_
1

\ 2 Proy s
) =\<)

over the set of allowed choices for B(m) and S(m) s

and this maximm is achieved, and A< 1 ‘ﬁy virtue of the same argument

as was used to show A < 1.

Therefore, the relaxation iteration converges at least as quickly

as a geometric series with a common ratio Xl/L H

2.) Relaxation in Practice

The foregoing theory 1s applicable to the solution by relaxation

of the equation
Ay =¢

when A is Hermitian and positive definite or semi-definite, provided
the equation is consistent when A 1s semi-definite. Only the semi-
definite case is discussed here.

The relaxation process for solving Ax =C consists in choosing

v

a set of spanning vectors f

J

each consecutive L vectors include a spamning subset of the f's ,

and a sequence of vectors gn of which

and a sequence of velues & with |8n|2 <d<1l. Then

=
!

n = S(eAY )/a g,

(148 I,

uve
]




*¥Af = O dmplies Af = O and, because ¢ = Au for some u,
c =0, 1t suffices to define n, = O instead of using the inde-
terminate O/O when g,n*A_qn = 0 . In practice one is unlikely to
have to worry about this contingency.

The relaxation process for Ay = c can be related to that for

x = b via a non-singular linear transformation U which satisfies

U*AU = disg(1,1,1 ,..., 1,0,0 ,..., O) .

The number of 1l's and zeros depends only upon A ; otherwise there

is a substantial degree of freedom in the choice of U . One possibility
is to choose U 1n such a way that U¥U is diagonal too. That such

a matrix U exists follows 'immedia.tely from the fact that A 1s uni-
tarily similar to a non-negative diagonal matrix.

Let us impose a partitioning upon

I O
U*AU =
(0] 0

and , conformally, upon

% b
z:U(A s U*S= /b\ R
X




Note that the vectors [9_1 ) €p e, gM} span the space of x be-

cause the vectors [_f_‘_l geeey EM} span the space of y . Now, Ay =¢

is precisely equivalent to

The last condition 1s necessarily satisfied because the equation Ay = ¢

is consistent by hypothesis. Furthermore,
9 *Agn* = By By > 0 and
Ty = 9ot (e-Ar, Vg *hg,
= e RE)/p By

Therefore the theory developed for x =b 1s almost applicable to

Ay = ¢ , the defect being that while X, —b we do not yet know what

\
happens to x -

. Now,

P

n-1 A
+ 2]; ngm ’

pe>

/\‘ 0
so we can deduce that X converges if we can prove that Z |§n|
1

converges. Because




lomx_yr |l < A Jo-x || for a1l n and k =1,2,3,... ,

and A 1is some number which depends upon {zi} s 4, L and. 1)

 (actually upon A instead of U) , and A <1, the series

.

b A
E-1 + 2; E'n B,y

converges at least as quickly as a geometric series with common ratio

xl/L

< 1l . Therefore the sequence Xn converges too to one of the
finite solutionéhof Ay = c .

The foregoing theory is easily generalized to include block relexa-
tion as well as poiﬁt relaxation, but the theory is already too general
to permit anything useful to be said about the rate of convergence
of the iteration, nor upon how to choose {zg] and {Sn] to minimize X\ .
However, convergence mayibe fetarded if Gn is chosen in a way which keeps

|8, | too large. More precisely, if B < |8, <a forall n, then

Xl/L > B . This is so because

lo-x_,, 17 = lox, 1P - (1-18_12) |p*(0mx, )%/l P

v

5 |° |lo-x 2 by the Schwartz inequality .
n — =

And if the values 6n and vectors g, eare chosen cyclically (gn+L = gh

and 8 . =8 forall n ) then

L .
»>TT ISmll/R where R = rank (A) .
m=1



The last inequality can be proved by generalizing a theorem due to
the author (1958); the theorem and proof can also be found in Varga's
book (1962). The proof of the generalization is a tedious computation
too long to include in this report.

Finally, one aspect of numerical stability is considered here.

Let a semi-norm for the error (Zh‘l) be defined by

ly-zll, =T (xn-z)*A(zn-x)ll./ °
= bl -
stnce Iy, yll, 3% gyl a2 AMP<a,

1
L4y can be replaced by a perturbed vector FAEY which still satisfies

"1£+l'l“A < K"zh-x"A for some K <1

provided the perturbation (x%+l-zh+l) is smell enough to satisfy

e Tnsalla < (K')“l/L) ozl -

Therefore, the relaxation iteration will appear to converge as long as
rou@doff is kept sufficiently small. But the foregoing argument is too
supérfiqial to be of much use in practice because one does not normally
know Ihﬁ'z“A nor A\, and therefore cannot tell when rounding errors
are small enough to be unimportant. When an iteration converges

slowly (because A is very nearly 1 ), 1t can be difficult to

supply criteria whereby a computer progrem will be stopped after the

10
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is desired or possible, but before a large quantity of time has been

wasted on iterations whose effect has been nullified by roundoff.

Goludb (19

Fortunately, the relaxation iteration need not suffer intolerably
from these'difficulties, because the iteration can be carried on usefuldy
until Ayh remains smalier in magnitude than two or three units in ‘
the last place’of zh" after which there is no point in continuing.
This is so for the following reasons, which are adapted from Ch. 4 of
the author's thesis (1958).

Let each vector gﬁ be one of the coordinate vectors

T
fj = (0,0 400, 0,1,0 ,..., O)

with a 1 din the jth position. Sinqe gn is chosen from the set of

f's , 1t too 1s a coordinate vector. Therefore

Ny = 4 *(e-Ay, )/a,*Ag

can be computed to almost full single precision; to do so one must
compute the relevant component of the résidﬁal [ Azh with the aid
tof double~precise accumulation,bf products of single precision numbers
before the residual is rounded to single precision. Next, the number
gn = (1+8n)nn can be computed tentatively to provide a value for the
formala 1

ol T In * gn 4 -

11




However, the vector Lo will be rounded before it is stored.
Therefore, the value of gn actually used will be defined in fact

by the equation

in which only one component c

Rl +ad

B

difference between the new value and the previous value stored in the
array y - In other words, when we let the symbol‘ I stand for a
vector which is precisely represented by an array 6f numbers stored in
the computer, then all of the foregoing theory remains applicable
provided we underfténd that §n is finally defined after Yo+l is
rounded and stored. Therefore §n may differ from the tentative value
(1+8n)nn which had been intended for it. Even so, convergence is

assured if the final value of §n satisfies

lgn/qn-1|_<_d<1 for all n .

This last condition can be satisfied easily unless ., is not much
larger than & unit in the last flace of the affected component of Yy -
Therefore, rounding errors mey slow the iteration down, but they need
not prevent the iteration from progressing to a point where the scaled
residual |

(aiag(a))™ (c-ay)

is scarcely larger than a unit in the last place of N This is as
small a residual as might reasonably be hoped for, but whether it is

worth waiting for i1s a harder question. In my opinion, a good relaxation

12




program can confidently be expected to reduce the scaled residual
to about ten units in the last place in ¥, » beyond which point

furthér progress is likely to be too slow to be economical.

3.) Open Problems Connected with Applications

There are two important applications of the foregoing theory.

One is to the solution of
(A-B) u = 0

for an eigenvéctor u corresponding to the smallest’eigenvalue A
of A with resﬁéct to B when both A and B are Hermitian and B
is positive definite. Since this application usually entails the
similtaneous calculation of A as well as u , the details are de-
ferred to a later feport (Kahan, 1966).

The second application is to the solution of the Neumaenn problem
in potential theory. Here the semi~definite matrix A represents a
discrete approximation to a partial differential operator, and ¢

in the equation
Ay =¢

éepends upon boundary values assigned to a normsl derivative. The
5oundary values must satisfy a compatibility condition to permit a
solution y to exist. Unfortunately, roundoff in ¢ may prevent the
compatibility condiﬁion from being precisely satisfied. What happens

to the iteration in this case?

15




This question was considered in the author's earlier work (1958)
only for the stationary case of constant Sn = 8 and a cyclic choice
of L = Lo, for a1l n . There it was shown that the sequence of

residuals

c - Ay,
converged like a geometric series even though the sequence I diverged
like an arithmetic progression. The implication was that if c
deviated only slightly from consistency, then the sequence y would
diverge fairly slowly and, for n large enough, would adequately
approximate the solution of a nearby consistent system. Besides, if

the general solution of

=0

were known then some lterates I could be replaced by I = kn . with
k chosen to diminish “ym - kn|| conveniently. In particular, if A
came from the Neumann problem then n would represent a function every-
where constant.
But the situation is not so ¢lear for the non stationary relaxation
process. The best I can do is prove that for all large enough velues
of n the residuals 2,- Alh will be bounded by some expression of

the form

le - Ayl < Ll

where ||| is the minimm possible value of |[c-Ay|| for all y and K
depends upon the same date as determines A , i.e. uwpon 4, L, A

and the set £, . (Unfortunately, |zf|, » and K are discontinuous

J

14




functions of A .) This is enough to establish numerical stability
in the face of errors in ¢ and in Aﬂh’ but not enough to tell

a computer program when to stop iterating. The problem is acute when
"eonvergence" is slow, because the effect of inconsistency in ¢

is scarcely distinguishable from the effects of a value A very near
1 or a rounding error in A .

One way to sidestep the problem of a slightly inconsistent right-
hand side c¢ 1s to use a restricted relaxation itefation; a selected
component of ¥, is forced to be constant for all n and then
relaxation is restricted to the other comporents. For example, in the
Neumann problem Ehe value of the desired solution at one point in the
region of interest could be fixed arbitrarily, and the valués of the
solution elsewhere could be obtained by solving the relevant difference
equations by relaxation. Such a procedure is described unenthusiﬁstically
by Forsythe and Wasow (1960). The scheme is open to two criticisms:

First, the effect of aﬁ inconsistent right-hand side c¢ 1is con-
centrated in the one equation of the system whose residual is never
relaxed. For the Neumann problem this cen mean a cusp-like intrusion
in the solution at the artificially fixed point.

Second, the rate of convergence of restricted relaxation can compare
ﬁnfavourably with that of unrestricted relaxation. This possibility
is clear in those cases, as when A has Young's "property A" , when
the rate of convergence of successive overrelaxation can be computed
directly in terms of the smallest non-zero elgenvalue of A ; these

cases must have been the ones that Forsythe and Wesow had in mind when

15



they advised against the restricted relaxation scheme. But in
general there is no way to estimate the rate of convergence of successive
overrelaxation in terms only of the non-zero eigenvalues of A , and
there are rare cases in which a restricted iteration is faster than
the corresponding unrestricted iteratian. The following example is
one for which, if & 1is fixed at its best constant value for each
iteration separately, the restricted successive overrelaxation converges
almost twice as quickly as the unrestricted overrelaxation.

Let A = {aij) be the symmetric semi-definite N X N circulant
matrix defined by

a.. =0 except that

13
8,4 = 1l and
844 = -1/2 whenever i=j+1 mod N.

The equation Ay =b is consistent whenever

and successive overrelaxation with constant © and arbitrary x}

- produces a sequence of iterates

2
Xl,x ’f,oc', Xn geee

via the recurrence

ntl _n 1 n+l n i.n
Ym =¥ * (1+8)(bm TEVpa1 "t 2 yﬁ#l)

in which it 1s to be understood that Yok = Y for a1l m . The

16




sequence of error-vectors E? satisfy the same recurrence except that
bm is replaced by zero. The iteration is stationary; its eigenvalues
€ are the N complex numbers for which there exist complex error-vectors .

EF satisfying

It can be shown that theseveigenvalues satlisfy

-

€=z and 27 - (l+8)(zN'l+z)r+ 28 = 0 ;

this is done in Ex. 5 of the author's thesis (1958), and by further
tedious work along-the lines discussed there and in Ex. 3 it is possi-
ble to approximate each of the N eigenvalues € as functions of §
with sufficient accuracy to support the author's claims. But the same
conclusions can be drawn more elegantly from an argument patterned upon
Garabedian's (1956):

When N is large the equation Ay = b can be approximated by

the differential equation

with periodic boundary conditions

y(x+x) = y(x) for all x .

Then the error vectors uﬁ can be approximated by the function
u(mh , nk) , where u(x , t) satisfies the hyperbolic partial
. ’ :

differential equation

17




with constants
p=h/k and T = ((1-8)/(1+8))/h .

Here h = n/N can be made arbitrarily small by meking N large
enough, and the error of approximation tends to zero as h —» 0 ; note
that k20 and 8-1 as N -w.

We deviate slightly from Garabedian by neglecting to transform
the partisl differential equation into canonical form before separating

the variables. Instead, a trial solution

u(x , t) = X(x) T(t)

yields
o(T'/T) = p(X"/X) - (X*/X)(T'/T)

for which the solutions are T = exp(At) and X = exp(px) provided
TN=p p,2 - KH A

Now we write the general solution wu(x , t) symbolically in the form

u(x , ) = L oln) exp(wesr(u)t)

summed over all permissible complex numbers p , with

Mu) = /()

18




and a(u) chosen to satisfy the periodic boundary conditions
u(x+n , t) =u(x, t) for all x and t .

To any value A corresponds at most two values of u for which

» = Mu) , and if we call these values u' and u" then
£, (x) = op') exp(p'x) + a(n") exp(p"x)

must be periodic too. This leads promptly to the conclusion that the

only permissible values of u are
By = eni

where n is an integer (positive, negative or zero) and 12 = =1 .

The corresponding values of A are

M, = _ln® p(T-Qni)/(12+hn2) .

Our object now is to choose T, and hence & , in such a way that

max |exp(h )|
nfo

is minimiied, thus ensuring that even if wu(x , O) (corresponding to
ui ) 1is chosen in the worst possible way, the convergence of u to
its limiting form

u(x , w) = constant for all x

will be as fast as possible. Since

19




it is soon concluded that the best value for T is 2 ; then
lexp(r, )| = exp(-p) .

The restricted successive overrelaxation differs from the fore-

going only in that the boundary conditions for wu(x , t) are
w0, t)=u(x, t) =0 for all t ,

whence the values xn are

xn = =2p(T+ni Vn2-'t2 ) for +n =123 ,... ;

now the best value for T is 7 =1, and
lexp(2))| = exp(-20) .

The conclusion is that the restricted iteration is twice as fast as
_ the unrestricted iteration.

The example should not be taken too seriously; it is a cm;mter-
example to a plausible conjecture, and a.typical of most cases encountered
in ‘practice. |

Finally, a trick due to Riley (1955) deserves some attention.

The idea here is to approximate the semi-definite system Ay = c

by a definite system

(A+0A) z = ¢




in which AA is a suitably chosen positive definite matrix. To be‘
most useful, AA should be just large enough to swamp the uncertainties
in A and ¢, but not too'large lest 2z be useless. An attractive
choice for A is an N X N diagonal matrix each of whose diagonal
elements is of the order of N or N2 units in the last significanf
decimal place of the corresponding element of A . This choice may be
useful when AA is qegligible compared with the smallest poéitive
eigenvalue of the semi-definite matrix A . Otherwise one may be forced
to embed the relaxation iteration within an outer iteration process

defined by

(A+0A) Lz = ¢ - Az
-n - —n

and designed to replace z, by a vector z

—n+l =»(En * AEn) “h19h

better approximates y . The relaxation process would be used to

compute each Agn . Unfortunately, these wheels within wheels can be
troublesoﬁe, especially when‘they all turn very slowly, because if is

so hard to tell a computer which wheel should be turned and when to

stop. I am not convinced that Riley's trick 1s worth while when
relaxation methods must be used to calculate Agn » although it has
proved valuable when used with direct methods like Geussian elimination
wﬁere it is much easier to deal with & matrix (A+AA) that stays
positive definite despite perturbation by roundoff than to deal with

a matrix A which may be made indefinite by perturbation. (cf. sections

2 and 6 of the paper by Martin, Peters and Wilkinson (1965).)

21




k.) Some Negative Results

It is widely known that the relaxation iteration described in
section 2 of this report may fail to converge when the system Ay = ¢
is inconsistent or when A 1is indefini-;te.' (ef. Keller (1965, theorem
2) or Ostrowski (1954, theorem II) .) The results proved here are
somewhat stronger. We find that if .Az = ¢ has no solution y
then the sequence of iterates ¥, must diverge to infinity. We find:
that if A is indefinite (has both positive and negative eigenvalues)
then the sequence In is almost certain to diverge to infinity like an

exponentiasl function of n . The proofs involve heavy computations, so

,,,,,,

The assumptions about £ 5 9&1 and Bn in section 2 are
repeated here with one extra restriction; we assume | QJ*A:_QJ > O_ for
all J . Moreover, to simplify the computations we shall assume that
each -f-;) ‘has been scaled so that gj*Agj =1.

The first step in the computation is the construction of matrices

D
n

%

]

diag(an » Baq reees 5n+L-1 ) and

i

(Qn 2 Spay 20or Spape1 )

Tlfle matrix Q‘n may have more columns than rows. Since its columns contain
a spanning subset, the equation Qng = y cen always be solved for' u,
albelt not uniquely, whatever y may be. Also, Qn*z = 0 1implies

Y = 0 for the same reason.

Since _gn*Agn =1 for all n, 1t is possible to write

22




QA =1 - R - RfY

where Rn is an upper triangular matrix with zero diagonal. The
relaxation iteration can now be described conveniently in a closed

form; the reader is asked to verify that

Yoo, = Iy * QLT T+ RXTE QX (eoay)
]

(This relation may seem less mysterious after one observes that it is

possible to solve the equations

-~

Qn YWoim = Lntm for m=0,1,2 ,..., L
for vectors Yt corresponding to the L Intermediate steps from
u to u of one iteration of the extrapolated Gauss-Seidel Method

-n - =n+L

for solving

=R =R ¥ = *
(I-R-R*¥)u=Q*c .

Compare Kahan (1958), or Varga (1962) p. 59 where 8 =w-1 is held
constent for all n .)

The second step in the computation is to define the quadratic functional
W(y) = y*AV - v¥e - c*¥

The significance of W 1is clear when A is positive definite because

then ¢ = Ay and.

25




=

I<

~r
n

(v-y)* A(v-y) - y*Ay

le-glfs - lgl -

But if A is indefinite, then |---|| 5 1s not a norm; and if Ay =c
has no solution then (!?X) canmnot be computed. Even so, W is
always computable. The reader is asked to verify the following connection

between W and the sequence of iterates ¥, ¢

W(xn+L) - W(Zh) =- (E‘Alh)* B (c-Ay, ) where

B =Q/[I+ (I+DZ)%]-1 (I-D} D )T + (I+Dn)R:]'l Q* -

Since |8 | <d<1 forall n, B 1is soon shown to be positive
definite (not semi-definite); and another compactness argument, like
that used in section 1 to establish the existence of A < 1 , establishes

the existence of some constant B > 0O such that

v* Bn >Ppyv*¥v forall v and all n .

Therefore
Wy ) < W(y) - elle-ay IF -

The discussion branches here to deal separately with each of two

cases.

Cese 1: BSuppose Ay = c¢ has no solution. Then some positive constant

7 exists such that

24




IIAX_-_c_Ile >y>0 forall y .
Consequently,
W(zh+kL) < W(zh) -k By for k=1,2,3,...

- - as koo .

This implies that the sequence L diverggs to infinity at least as

)
quickly as Yn as n-oow.,

(If A is positive semi-definite, the preceding statement can be
elaborated slightly; N diverges to infinity no faster than an -
arithmetic progression. This follows from a lengthy computation in

which (E‘AZh) » and hence (zh+L-zh) 5, 1s shown to be bounded. The

crux of the computation consists in pre-multiplying the equation:
¢ - Ay . = (1-8q_[(1+D )"t + R *]7F @ * )(e-ay )
= =n+L n n n n - Axn

' _ by the matrix U of section 2 to obtain

’ b - Xy, = Ttk

The matrix Tn was defined in section 1 where it was shown to be bounded

by Izl <*»<21. The matrix S  can be shown to be bounded too, say

by

"Sn" <o for all n .

Therefore

25



N\
- | < Mip-x, | + olipll
and hence

o ppr | < Mlo-x Il + olfRll/(2-2)

whence comes the desired result.)

Case 2: Suppose now that A is indefinite. We already know that
zn diverges when Ay = c¢ has no SOlution, so suppose too that a
solution y exists. Now there can be no guarantee of divergence
because setting H=x yields a convergent sequence .=y
However, if any member of the sequence ¥, should fall into the open

cone
(x,~x)* Aly,-y) <0 ;

then the sequence I will subsequently remain in the cone as it

diverges exponentially to infinity. .This is so because

(Ypar ¥ Apagx) - (g -x)* Ay, -y)

W(Ypr) - W(g,)
- (gy)* A B, Az -y)

i

< - B(xnéx)* Ag(;:n-x)
< oB(y, -y)* Aly,-y) <o ,

where a 18 a positive constant defined by

26




min( - _vjeAzg/l*Az) over V¥A v <O

Q
Hi

- (the negative eigenvalue of A closest to zero) .

Therefore it is possible to place a lower bound upon

e A L N APE')

> - (1408) (g, -y)* Ay -y)

which shows that Tk, diverges to infinity at least as quickly as

(1&oﬁ)k/2 as k » o . The foregoing argument can be refined slightly

to show that exponential divergence takes place whenever some member of

the sequence ¥n falls into the slightly larger open cone
(,-x)* (A-BA°)(y-y) <O
Y Y,y

Conversely, whenever the sequence ¥, diverges exponentially, the
sequence ultimately falls into the cone (zh-x)* A(Zh'l) < 0 and never
gets out. This is so because the exponential diVergencé of ¥ implies
exponential divergence of (zh+L-zh) , which implies exponential
divergence of g - Aﬁh » which implies exponential divergence of

W(zh) to - . |

A Exponential divergence is Eossible, but how likely is it? In a
sense t0 be made more precise later, divergence is almost certain provided
the sequences 9, and Sn are chosen in advance, as indicated in

section 2, before X, is known. The proof is based upon the linear

relation between y ., and ¥, s

2T




L, -¥- En(xl-x) where
E, =I and, for n=1,23,... ,
By = [T-(1%8) g a*p/g*A g l1E .

Note that B, is independent of ¥y v though it does depend upon A
'and the sequences g~ and 8, - Also, ||En [l >~ exponentially as

n -« because, if ¥, is any vector in the cone mentioned above,

\

el > 1, Gy =1/ gy =gl

lev.n"X"/"X]_'I" - exponentially .

On the other hand, suppose ¥y could be so chosen that ".Zn"l’."

did not diverge exponentially. In other words, suppose

Ily_n-x" < enllzl-zll for each n , where

e exp(-nt) -0 as n - forall t>0 .

Could such a b2y exist; and if so, where?

The region in which ¥, must lie to satisfy
gl = 1 Gyl < e_lly, -
is a closed cone Cn :

(-* (B*E )g-p) < €& (m-p)* (-3) -
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The shape of Cp depends upon the eigenvalues of

-2
e En*En-I H

at least one eigenvalue must be negative if Cn is not to collapse

to a point =y But no negative eigenvalue can be less than -1 ,

while the largest eigenvalue is
e 1P/e2 50 a5 now .

Therefore, as n -, Cn ténds to become flat lik; a hyperplane, and
so the regior_zcommon to all cones ACn must be either the point Y

or a hyperplane 741 through y . 7;/1 depends only upon A and the
seq_uenceg _c_;n and Sn . The dimensionality of 7‘/1 is.definitely less
than the dimension of the whole y-space .

Now it is clear that I will diverge exponentially unless A

lies in 7/1 . Since Nl
in which zl might otherwise be chosen, the probability seems small

is of measure zero relative to the space

that hE will lie in 7/1 « And even if one were to succeed in placing
b in 7‘/1 s one faces a considerable risk that roundoff will throw
some y. out of its corresponding hyperplane 7’/n = EnHl . From a
practical point of view there is ample Justification for concluding that s
when A 1is indefinite, the relaxation iteration is almost certain
ultimately to diverge exponentially unless the sequences 4, and 'Sn

are carefully correlated with P
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