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[ ntroduction,

The QD-al gorithm — which stands for the quotient-difference algorithm —
has been developed by H Rutishauser, |n several papers, the first of which
appeared in 1954, Rutishauser has treated the theory and a nunber of applications
of the algorithm In this treatment the theory is based on properties of continued
fractions.

In 1958 Peter Henrici based the theory of the malgorithmon the theory of
anal ytic functions. Furthernore Henrici gave sonme new results,

The present article is a new introduction to the subject. |n this paper the
theory of the @algorithmis treated by means of classical algebraic methods. The
present paper however treats only a part of this theory. Al though some of the
results devel oped are general the main part of the paper is limted to a specia
case which, as indicated in the title, may be described as the part of the theory
of the QD-algorithm needed for finding the roots of a polynomal the roots of which
are known to be positive, by neans of the algorithm

Wth this limtation it is possible to prove sone inportant results which
cannot be proved in the general case, First the existence question of the QD-scheme
can be solved; that is the QD-scheme Will always exist in the case of positive
roots — as nmay be shown by exanples this is not true in the general case

Furthermore the question of convergence of the colums of the QD-scheme can
be solved, In the case of positive roots we can prove that the colums wll con-
verge to the roots under all circunstances (and not only in the case of different
roots). Again this is not true in the general case, where conplex roots may Sspoi

t he convergence.







Rutishauser has al so devel oped the so-called LR algorithm which may be con-
sidered as a nore general method than the QD-algorithm. The LR al gorithm nay
be used to determne the eigenval ues and ei genvectors of matrices., Since — to
a given polynomal — there corresponds a matrix the eigenvalues of which are
the roots of the polynomal, the roots may be found by neans of the LR-algorithm
Furthermore, to nost of the results concerning one of these algorithns there

corresponds a simlar result concerning the other.







THE QD ALGOR THM
AS A METHOD FOR FINDING THE ROOTS OF A
POLYNOM AL  EQUATI ON WHEN ALL ROOTS ARE PCSITI VE *)

BY
Chr. Andersen

Summary.

In Sections 1 and 2 the QD-scheme, symmetric functions and sone results from
the theory of Hankel determinants are treated. NMst of the results have been known
for a long time. Aitken [1] and Henrici [6] have used these for the same purpose
of rootfinding as treated here. However, theorem 2.4 by neans of which the
exi stence of a positive constant ¢ such that HE > C (positive roots) may be
proved, seens to be new

Section 3 contains some well known relations expressing the elenents of the
Q- schene by neans of the Hankel determinants, and the existence theorem nentioned
above.

In Section 4 the question of convergence of the colums of the QD schene is
treated. An exact expression for qi is devel oped for the case of different roots.
This expression seens to be new. It is proved that the colums of the &D schene
will converge not only in the well known case of different roots, but in all cases

where the roots are positive,

*) A part of the present paper was first presented at the Mtrix Synposiumin
Gatlinburg, Tennessee, April 13-18, 196k.

Reproduction in Wwole or in Part is Permtted for any Purpose of the United
States Government. This report was supported in part by Office of Naval Research
Contract Nonr-225(37) (NR Okk-211) at Stanford University.




Section 5 contains a detailed exam nation of the convergence to the smallest
root. In this section an exact expression for qg I's devel oped. This expression
is correct in all cases of nultiple positive roots

It turns out that the convergence of the colums of the Q D scheme to the roots
of the polynom al equation may be slow, and it becomes necessary to speed up the
convergence before the @D-algorithm can be of usein practice.

In [Il] Rutishauser uses the principle of replacenent as a device for accele-
rating the Q@-algorithm This principle has also been used by Faddeev and
Faddeeva [4]. They remark, that the method may be useful as soon as the QD-scheme
"has stabilized". It is however not easy to give general and useful criteria
for such "stability? Furthernore, Rutishauser [16] remarks that the conputation
practice with the nethod of replacement has not always been successful,,

Numerical experiments in which | have tried to use the A tken 52-process on
the colums of the QD-scheme has not indicated that this process will be useful in
connection wWith the Qp-algorithm in all cases.

In the case of positive roots it is however possible to use the principle of'
repl acement in such a way that faster convergence will be obtained. Theorens con-
cerning this question are included in Section 5.

Finally, in Section 6, it is shown that the progressive formof the & al gorithm
is only "mldly unstable".

In Part 2, that is Sections 7 and 8, sone ALGOL prograns and sonme results ob-
tained by neans of these, are given. The exanples show that the QD al gorithm works
nicely in practice in cases where the roots are positive, and the difficulties
which arise in cases where several roots are equal or alnost equal do not give

too mch trouble.




A few words about the practical use of the & -algorithm as a general rootfinder
may be added. In nunerical experinents with real polynomals wth conplex roots
(polynomal with real roots may be transforned into polynomals with positive roots)
the algorithm works perfect in many cases; but in cases where several roots were
of the same, or alnost the same, nodulus (apart from conjugate roots) the ALGOL
prograns witten by the present author failed to work properly. This fact does
not nmean however that the QD algorithm should not be used in such cases. But it
means that the QD algorithm should be conbined with other algorithns. Used in
the beginning of a general root-finding program the QD-algorithm nay give some
very useful information concerning the roots and this information can be used in

other algorithm for the final determnation of the roots.




Part 1:  [fhe Q.D-algorithm

1. The QD-scheme.

1.1 Fornulation of the problem

_ N N-1
(1.1) pN(x)—aNx +aN_|x teeetaxtag, aN,éo
be a polynomal of degree N, |et a # 0 and let the roots of pN(x) = 0 be

nunerated such that
lzll 2 |22| 2 e _>_ lzNI

The-coefficients a8 -ay Ay be conpl ex.

e
The problemwe will treat is to find the roots of pN(x) = 0 by nmeans of the
QD-algorithm, or better, to find approxi mations to the roots by neans of this
al gorithm
It turns out to be difficult to treat this problemin its full generality;
at least it seems to be difficult to use the walgorithmwth success for all poly-

nomals. In the present work the problemto be considered is then [imted to the

fol | ow ng:

Let pN(X) be a polynomal with real coefficients, and let it be known

that all the roots of pN(x) = 0 are real and positive. Find approximtions to

the roots by neans of the Qp-algorithm.




1.2 The progressive formof the Q_}al gorithm

The QD-scheme.

Ve begin with the formal rules for constructing a & scheme, which consists

of two sets of elements, called qi(l and ei, witten as follows:

1 2 N

9 9 %4 Q)
O ' el e2 o N-| eN
1 1 1 1 1

' U_H 2| . 3 N

- L 9 E%)
e > % ey >

The upper index k in qﬁ runs froml1< k < Nand in ei, k runs from

O<k<N. The lower index n runs froml<n <~ in both cases. The index

k is the colum nunber and n is the row nunber.

The form and the notation used in this paper is the same as Henrici has used
in(7];it differs fromthe notation used by Rutishauser and by Henrici in [6].

In the progressive formof the gD-algorithm the elements in the first g-row

and the first e-row nust be given. Furthermore the first and the |ast e-col um

has zeros in all places.

From these quantities we construct the following rows in the @D-scheme by

means of the recurrence relations:

K _ .
(1.2) c+ €n "€, a, k=12 ... N n=1 2




k k+l/ k k

k = 1,2,0.0,N-1; N = 1,2,

(1.3) ®nt1 = G/ e X G

These formulas are used as follows:

First (1,2) for k = 1,2,.-.,8N to obtain the "g-part" of a new row
and then (1,3) for k = 1,2,---,N1 to obtain the remaining "e-part" of the
sane row.

Ve renmark, that the construction cannot be carried out if qi = 0 for sone
k<N -1 and some n > 0. In this case the QD scheme is said not to exist.

The formulas (1.2) and (1.3) are known as the rhonbus rul es (Stiefel)

since they connect four elenents, the configuration of which is a rhonbus, in the

QD-scheme.

1.7 The forward formof the @D-algorithm.

The fornula (1.3) may be witten in the form

(1.1) il K e

+1 ~ Cn+1 +1

and by putting k + 1 instead of k in (1.2) this nay be witten as

k+1 k+1 K+1 k
(1.5) T 91 T4 tE

The fornulas (1.4) and (1.5) show, that a new colum (k+1) nay be obt ai ned
fromcolum k; that is the QD-scheme can be built up froma given e-colum and
a given g-colum. In this case the QD-scheme is not limted to the right, and
we can only find el ements q}; and efl for which n > k. This formof the

QD-scheme i s obtained by neans of the forward formof the &D-algorithm




As we will show in Section 6, the forward form of the Qd-algorithm 1S not
suited for numerical purposes since this formis unstable.

In the remaining part of the paper we shall only use the progressive form

of the QD-algorithm.

1.4 The first_row of the &D schene.

Wien the QD algorithmis used as a nethod for finding the roots of

pN(x) = 0 the first rowis constructed from the pol ynom al,

N N-1
= + o0 + +
p](x) aX toay X ax+ag ,

as follows:
- S ]

1 aN

ql=0 2_<_k5N
(1.7)

0_ N_

el—el—O

k  2N-k-

ey o oot 1<k<N-1

N-k

Until now we have assuned that &y # 0 and a, # 0. Fromthe last of the
fornulas (1.7) follows that all the other coefficients nust be different from
zero in order to start the QD-algorithm.

By neans of a sinple substitution x = x, + C it is always possible to ob-

tain an equation where all the coefficients are different from zero.



It is nmore serious if one of the g-elenents conputed by means of the formula
(1.3) becomes zero and then spoil the algorithm By means of an exanple it is

easy to show that this may happen.

Exanple 1.1
p5(x) %0 + ax° +bx+ce
Q- schene
o0 o oL e o2 O )
a 0 0
0 ° ¢ 0
SO R

1 . b
|\qu2:0|1‘ g-a:Oand q§=0 if%- =0. In these cases the
QD-scheme Wi Il not exist.

It is however possible to show, that the QD-scheme always exists, if all

roots of p,(x) = 0 gie real and positive. This will be proved in another

section.




2. Symmetric functions. Hankel determ nants.

In Section 2.1 we state sone well known results about the symetric functions
in the roots of a polynomal equation. These results will be used to prove a

theorem which is fundanental for the solution of the existence problem

2.1 The elenentary and the conplete symretric functions.

The el ementary symetric functions in the roots z -z of the polynom a

Uy

equation p,(x) = 0 are defined as fol | ows:

0’0 = l

9% 2N
(2.1) Op = 292y + 2923 - Zy 1%y

UN — 2122 ZN

o5 = for p<O0 or p>N
The pol ynom a

N N-1
= sos T +
Py (x) ax + ap X + ax +ag (aN # 0)

may be expressed by means of the elenentary symetric functions as

N-1 N-2
p,(x) = aN(ng + 0, % + eeo + (..]_)NUN)

that is we have the relation




(2.2)

The conplete symretric functions in Z seeesZy ArE defined as foll ows
s =1
(0]
Sl - zl+ooo ZN
S 22 A Z.2 Z Z z2
2" 71 172 1 N-1"N N
(2.3) >
-5 2 e 3
S3_21+le2+ +ZN

The conplete symretric function S, of degree n consists of the sumof all

different terns of the form

a
1 Oy
(2.4) AL -
N
where 0<a, <N 1<i<N and Y. o =n
- 71 = -7 = . i
i=1
Theorem 2.1

Let s denote the conplete symetric function of degree n in the N

variabl e Zyseeey and | et sr(lr) denote the conplete symmetric function in

the (N-1) variable Zyse 2 15 Gu1s Iy Then

10



(r
(2.5) Srl =2 8 14 sr\1 ) (r<1,...,N; all n)

Pr oof

The terns of S, may be divided into two sets, the first of which consists
of all terns with z, 6 as a factor and the second set of all other terms. Hence
(2.5) is true.

By means of a sinmilar argument we nay prove the corresponding relation

between the elenmentary symmetric functions:

(2.6) o. =z a(r>+o§lr), (r=1,...,N; all n)

wher e Ur(l-rl) and cr(]l) denote the elementary symmetric functions of degree

(n-1) and n, respectively in the (N-1) variable =z z

I EEREE L PR PR N
Theorem 2.2
For all positive values of n the conplete and the elementary symmetric

functions in N variables are connected by the relation

-g. S x4 (L)L s

(2.7) Sy = $ 2 °n-2 + n 0

Pr oof

By induction with respect to N

N=2 In this case og. = 2. + z

1 1 0y Oy = 2, 2z and cP=o for p>3. Hence

2 1"
(2.7) has the form

5, = (2%2, ) Sn-1 " %1%

which, with S - zrf + Zr11+122 JREI legﬂ zm and the corresponding

expressions for S and S.p s true

n-1

11



W assune (2.7) is true for 2, 3,...N-1 variables, respectively and for all

values of n in these cases, and consider the case of N variables z Z

12 ZprererZye
W prove that (2.7) holds in the case by induction with respect to n. n=1; that

is sl =0y which is true.

Let (2.7) be true for 1, 2,...,n and consider the case n+l. W have to

prove

LA S =0, S

n+l 18, - 98

n
n-1+% ‘n2 "7 7 (=170
By means of (2.5) we have - with the notation SI') i nstead of S£>

S

o) Sy - 0,8

n
n-1 + 93 ‘n-2 ~ + (-1)70

n+l

n
- - ! + U -0 oo (=

n n-2 n+l
=z (g, 8 - g, S + 0x S -°°°(-l)n_| g )
N1 "n-1 2 "n-2 3 "n-3 n
+ gt - 1 g, S! - e 4 (_l)n o
o1 Sy~ 92 Hio) + 93 Sho n+1
- ZN Sn
- n 1 1
+ ( Zy oc') + ci) St -(ZN o]'_+oé) S;l_l +(ZN 02'"'05) ;1_2-““"‘( 1) (ZNU +cn+l
— ] | . 1 ! - - n i
=2y %1-'- ZN(UO Sp -9 Sp-1 + (-1)7 o)
+ (0! 8! - g ol 8, = oo+ (1) gt )
91 &R+ 93 912 n+1
—_ ]
= Zy Sn+ Sn+l .
In the cal cul ations we have used (2.7) three times, and we have used (2.6)
too. The last expression however is equal to S and we have proved theorem 2.2

n+l
by induction.



2.2 Hankel determ nants,

The Hankel determnants will be used as the basic tool in the follow ng
treatnent of the QD-algorithm. The relation (2.10) which is of special inportance
“is used by Aitken [1] and by Henrici [6] for solving the same problem as we
treat, and the sketch of the proof follows the sane lines as used in [6] and in

Househol der [8].

Definition of Hankel determ nants.

Let ---a a a, a

-1’ "o 1’
. . k :
we define the Hankel determinants H , for n>0, as follows:

Y a, ‘o be any sequence of conplex nunbers, then

Kk k-1 K-n+1
B+l 8y
o1, B - . n=1 2 35 0.0
O n o
S44n-1 &k

(2.10) e O

n n n n-1 “n+l T 0 n>1;

Consi der the determ nant of order 2n + 2:

13




1 2 n n+l n+2 2n 2n+l 2n+2

}
0 0
1 8y fk-1 kentl 0, 0 1
1
0 0] 0 0
2 Sk+1 *k F-n | ke OO
‘ °
L] ‘ ‘.
n ®k+n-1  %kn *k 0 ' 0 0 0 0 0
1
1 0 0 0
wtl Sk+n fk+n-1 fx-1 0 , %k 10
____________________ = = e o= m e e e m o d e m e o
n+2 a8, 0 e .. 0 | 1% 8 _3 a,_, 01
1
w3 Srrl 0 0 %k e R #gn+1 O O
: :
i [ S 0 0 "ktn-2' %gin-3 Zgench . %1 0 O
1
a, t
2n+2 Bin 0 0 ktn-1 &in.2 Bkin.3 - B 1 O
If we subtract row (n+1+i) fromrow i for i = 1,...,n + 1 and then add col um
(2+i) to colum (n+i) for i = 0,1,...,(n-2) we find that this determinant mnust

be equal to zero. On the other hand if we conpute the deterninant by expanding

by (n+l)-order mnors we obtain two times the left side of (2.10). For further

details see Househol der [8].

2.3 Hankel determinants in the symetric functions

Hankel determnants in the elenentary symetric functions and in the conplete

symetric functions are related. W prove

14



Theorem 2.3

Let
%% Ok-1°""%k-n+1
%+1 %k
£
n - i
Oftn-1 O (n order)
and
Sn Sn-l : °Sn-k+l
n+l Sn
n_
C, =
Spek.q 000000 s (k order)

and let 1 <k <N

| f H:;é 0 for all non-negative n, then
(2011) H =¢C n= 0,1,2,.¢°°

Pr oof

By induction with respect_to k.

k =1 W have to prove that Hr]; =8 .

This may be proved by induction with respect_to n.

n=0 H = S, Is correct since both sides are equal to 1.

o
1
1

= g, = S..

n=1 H 1 1

15



Now we may assune that Hi =8, for n = 0,1,2,...,p - 1 and we consi der the

case n = p
O'l 1 O LIS 02 1
02 O'l 1 03 Gl 1
l : . ¢ - S . —
Hp = . . .. = o’l Hp_l" 0'2 ., 1 =
9 o o, oy (n-1 order)
1 p-1
- + (-
= o9 }fp 17 %" + (177 oy
p-1
- o + (-
=01 Sp1 7% 50 + (-7 oy

The last result follows from theorem 2.2. Hence we have proved theorem2.3 in
the case k = 1.

Nowvwe assume that (2.11) is true for k = 1,2,...,pandforallnon-negative
n in each case. By neans of the relation (2.10) we find for n > 0;

Pl _ rqP\2 P 4P /P-l
Hn - [(Hn) Hn+lHnl]/Hn

n,2 n+l n-1 n
= [(Cp) -0, G ]/cp L

n
= Cp+l .

16



We remark that in case p = 1 we have used Hﬁ" =1 =1=¢c% For n=0 w
n (¢]
have Hp0+l =1= C;l, and we have proved theorem (2.3) by induction.

: . ko :
In the following the notation H will only be used for Hankel deterninants

in the elenmentary symetric functions.

2.4 A fundanental theorem

Until now z_, ...z have been arbitrary conmplex nunbers, and this being

1’ N

the case the Hankel deterninants may vanish, This cannot happen if 2 eeeozZy

are real and positive nunbers.

Theorem 2.4
Let Z15%ps 000 Zy be positive. Define
a1 %a2 ° %n
UOQl 0022 o e Uo@n
pM = |
n o
croznl UomE c'omn
wher e Uaij are elementary symetric functions.
Let
(i) ail > qi2 > +4e > @in 1<i<n
(i) alj <Ry < +o- < omj 1<j<n

17




Then

N
Dr(1)>o for all n>1

and, if

Pr oof

By induction with respect to the nunber of variables N

N=1 Then o,= 1, o, = z anda;Oforp;éO, 1.

_— 0 1 1
W use induction with respect to n.
_ (1) . .
n=1: D1 = 041° The theoremis obviously true.
Assume, that the theoremis true for n = 1,2,...,p-1 and consi der
(1)
D o
P

If app £ 0,1 it follows fromthe conditions (i) and (ii) that the p-th
row or the p-th colum consists of zeros; that is Dél) = 0.

If opp = 0; that is OCopp = L» V€ have (by means of (ii))

If app = 1; that is ¢ z., we have (by means of (i))

(1)
= 29 Dp-l

18




In all cases the theoremis true for n = p and we have proved theorem (2.4) in

the case N = 1.

Let the theorem be true for (N-1) variable Zys cee By g and | et cr{)

denote the el ementary symmetric function of degree p in these (N-1) variables,

Let z. >z, > 00> 2 VW use a relation between elenentary symetric functions:

1 2 N’

(2.12) o' p=0 +1, +2,

p= W1t %
To prove (2.12) we renmark that the terms of - O'P may be divided into two sets, the
first of which contains all terns with zZy as a factor and the other set of the

remai ni ng terms.
N)

By means of (2.12) we may wite Dr(1 as follows

z.. o' g z._ o' + ¢! e o o 2. 0O + o'

N oll-1 + “qll N “olo-1 ol2 N “oln-1 oln
1 1

Zy “p1-1 + %op1

(2.13) M . ,
n

1 1 1 1

N an1-1 + %am1 ° ° “N %mn-1 ¥ %mn

From (2.13) fol |l ows that Dle) my be witten as a sumof 2" deterninants, The
conditions (i) and (ii) show, that each of these determinants may either have
proportional colums — and then have the value zero — or the indices will again
satisfy (i) and (ii), The non-zero determnants, from which zy My be renoved,
are then non-negative and as a sum of these Dr(lN) nust be non-negative itself,

Now let aii =k, 0 <k <N,

19




(-1).

If k < Nwe consider the termwith zﬁ, say D

By the induction

assunptionDéNéU >mn (1, (z, . )™). Since

. ZN-].
mn (1, (zl cee ZN)n) <mn (1, (zl ez l)n) we have

(N) (N-1) . n
If k= N we consider the termwith zﬁ,that is zﬁ . B, where A has
n

(z) ., 2y_y) in the diagonal, and zeros below the diagonal. Hence

n _ n ,
Zg - B, _(qN), and again

> > nin (1, (a)")

and we have proved theorem (2.4) by induction

Theorem 2.5
Let 2, > 2y > > zy > 0.
Then
k . n
B o2 nin (1 (o)) 1<k <N n >0
Pr oof

Since the Hankel determnants satisfy the conditions (i) and (ii) from

theorem 2.4, and since the diagonal elenments have the sane index this result is.

not hing but a corollary to theorem (2.4).

20




3. The existence theoremin the case of positive roots

3.1 Fornulas for qﬁ and eﬁ

Let the Qb scheme for the pol ynom al prQ be started as in section (1.4)

and continued by neans of the rhonbus formulas (1.2) and (1.3). Then the elenents
qi and eﬁ may be expressed by means of the Hankel determnants Hﬁ in the

sinple symetric expressions.

Theorem 3.1

[ f the Hankel deterninantst are different from zero, then

K Hk-l
(31) qiil n n-2 n:2,5,...
¢ = k -
Tn-1 gn-l k=12 ...N
and
k+l k-1
3 k Hn Hn-r n=2,3
(3.2) e = - e
n "
n n-| k=1 2 ... . NI
Pr oof
By induction with respect to n
n=2 K k-1
kT By
V¥ have to prove that q, = EE_EETT
-1 L
Now
_k k-1 k
=% "9 *9

_ON-k-1 "Nk
ok ekl

where we have used (1.7). By neans of (2.2) we find

k- %k, %%
% k-1
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On the other hand

(o a
Hk Hk"l k k-1
2 7o k+1 %k % Ox+1
k k-l [¢) (o B n - a ?
Hl Hl k k-1 k-1 k

and we have proved (3.1) for n = 2.

Since
k k+tl, k _ k
e, = /q X e
kil )k k-l
N ( 2 Hy ) By-k-1
30T x kK k-1 " &
Hy Hl H) H) N-k
k+l K k-l
_ o Hy o Tkl
- k+l k o gL o)
H) H)
) k+1 oK k-1 gkl
N 2 o X 1
=" k+l k oK g1 o
H) Hy 1
k+1 Hk-1
H, ~
=T X & ¢
H,

formula (3.2) is also correct for n= 2.

Now assune that (3.1) and (3.2) holds for 2, 3,...n, and all k in

question and consider the case n + 1. W obtain:
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k
Y41 % "% T

k+1 k-1 k k-2 k k-1
B R Y By i
T Tk k o+ k-1 k-T.+ k k-1
i By Hn H;-l Hn-lHn-l

k k k-2 k-1 k-1 k+1 k-1
_ B . Bpgfa P H H o BT HE
T k-1 k-1 _k T K

LY i B By

k k-1,2 k+1 _k-1
_ I . (Hn-l) I Hner
- k-1 _k-1Xk k k

oot i lHn-I B,

k-1 k2 k-1 _k+1
B Bt (Hn) - Hy n
T .k k-1 _k ”

Hyor B H

k-1 _k d k-1
CHnr e ’ﬁu LR
Tk k-1 _k = k k-1 °

oot By Hy # o

that is (3.1) holds for n + 1. W remark, that we have used (2.10) twice

Now

ek k+l/ k k

n+tl = Y1/ Y1 n
k+1 _k k
LA

k+1l k-1
Har1 T

" x .x
Hn+l n

and (3.2) has been proved for n + 1.
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Theorem 3.2. The existence theorem

Let the roots of p(x) = o satisfy the conditions z; >z, >... >z > o.

Then

qi >Cc>0 k =1, 2, ... N all n >2

where ¢ is a constant.

Hence the QD-scheme al ways exists in the case of positive roots.

Pr oof

From t heorem 3.1 we have

and from theorem 2.5 we know, that

H

B~

Hence we may concl ude that qﬁ > 0.

In order to prove that qﬁ > Cc >0 we use the follow ng

Lenma 3.1

ik
a, = 0q for all n>1

w
I lvl
H =

Pr oof

For n =1 this follows fromthe first rowin the QD-scheme, where
qi = 0 and qi =o for 2 <k <N.

Let it be true for 1, 2, ... n, and consider
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It follows that the lemma is true for n + 1.

Lemma 3.2
Pr oof
Lemma 3. 3

N N
D ko E(ek' k-1 4 Ky
A TR e
N
N N k
= e - e z:
n o+k=lq‘n
gk
= 0 +
k=l(ln
N ¥
an+k-N=°N for all n>N

T
|—l

___12

-
'—l

k 1 2 |
Uy« In+1-N - dnt+2-N *n

1 _ N n-1
Hn Hr21+2-N I'fn-I\I Hn i
1 2 1 N
n Hn+| -N Hn+l—N n




Pr oof

N
Since q};>o and ) qi: o, the lemma is obviously true.
k=1
Lemma 3.4
q§>oNgi-N 1<k<N =n>N
Pr oof

N
i k i k - the lemma is obviously true
Since q < o; and since Ul Usk-n= O y .

Fromlemma 3.4 foll ows that qg >c, where ¢ = o ‘%-N for
W consi der qlr: for 2 <n <N.
Si nce HE > nin (1,(0N)n), and since n < N we have
k . -
B >mn (l,(aN)N Y
for the n's in question.
Then
k : N-1,.2
q, >Cy = [mn (1, (o) ) 17/M
wher e
_ k Je-1
v 2_<n<m§X s H];’l)
Hence
inmin[chi‘—N,cl]>o 1<k <N n>2

and we have proved theorem 3. 2.
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W remark, that polynom al equations, the roots of which are known to be
real but not necessary positive, may be solved by neans of the QD algorithm as
soon as a |lower bound for the roots has been found. This being the case a

transformation may be carried out and the theory for positive roots can be used.

4. General convergence properties.

In this section we exam ne the colums of the QD scheme for a pol ynom al
equation py(x) = 0. As usual we assune that z, >z,>.. . > zy > 0. This
being the case we may prove that the g-colums converge. Precisely, that
q_l:1—>zk as n - for 1<k <N. In order to prove this result we nust
devel op some formulas for the Hankel deternminants as functions of the roots
215 Zpr wx By The formul as used until now seenms not to be useful since the
number of terns in H: tends to infinity with n.

4.1 HI}: as. a_function of the_roots.
The basic formula is
nl " " ‘n-k+l

(4.1) g = | 1<k <N

and we begin by finding S, as a function of the roots.

Theorem 4.1

Let the roots be different, that is in our case z, >z, >+ 3

17 % >0, then
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Pr oof

By induction with respect

N=2

By definition

N> 2,

I

]
J=1, i

to the nunber of variables N.

S T * 2
Zn+l Zn+l
: Z. - i (z) >z,)
17 2%
2-1 2-1
VA VA
Stz (N=2)
17 % 2" 41

which is the right side of (4.2) in this case

Let the theorem be true for 2, 3, ..., NI

each case. W consider Sn of

From theorem 2.1 we have

(4.3)

1)

1
wher e Sé ) = Si [z2, cee

The formulas (4.3) give

N vari abl es.

() — R)

Sn-l + sn - % Sn 1 + én '
2 (2)

H Sg ) = é; [zl, Z3) ;N]

- (s - d)/(, -2y

28
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or with n+ 1 instead of n:

foN fa)
(4.4) 5, = (Sr\1+]/. - S1:1+i)/(zl -22).

Now we may use (4.2) with N- 1 to obtain

ZNZ ZNZ
S 1 ‘ 1 Zn+l 3 zn+]_ e
- . [ - - e - T
nz,-z, (leﬁ),,. ﬂ%.@%ﬁ% 1+ (z3 zl)(z5 25) (z5 zN) 3
ZNZ ZNZ
+ N £1+l . 2 r%+l _
(zN-zl) (ZN-ZB) coe (ZN-ZN_l) N (22—25 cee (zg-zp 2
ZN-2 ZN-2
3 AL 'l n+l

(z3—22) (25-21&) cee (zé-z’N) 3 (ZN-Z2) (ZN-ZB) e (zN-zN_p iy

N1 N1
z z

1 n 2
Z

_ n
- (zl-z2)(zl—25) . (zl-zN) 1 (22-21)(22-25) .. (ZE-ZN—) Zs

N-1

N % 20 lzg-zp - (z5-2) ] N
=5 (zl-ZQT(zi—zl) (21-22) oo (zi-zi_l) (zi—zi+l) oo (zl-zN) i
S
= Z. P
i=1 —ll-\ll- (Zi—zj) +
i=1,1i#

and we have proved theorem 4.1 by induction

Theorem 4.2

Let zq > Z, > e ozy > 0.
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Then

N- k
(ZZ e 2 )
k 1 k 1<k <N
(4.5) H =Y (2, Zz)n - -
M TT T B2 7 % ask
1:1 j=k+l J
where the sumis taken over all (N) conbinations z_ .-+ z of k roots

k £ £

1 k
taken out of the N roots.

Pr oof

From the general formula (4.2) for S, and the formula (4.1) follows that

we my wite Hﬁ in the form

N N N
n n- | n-k+1
Eclz Z:ci 21 Ecl 1
1 1 1
N N N
De. z™ Lo O Le. z k+2
k 1 1 1 1 1 1
(4.6) u = |* ! !
N N N
n+k- 1 n+k- 2 n
{:c.l Z., }; C, 2o e e - ); ¢, Z. (k rows)

where the constants ¢ i =1, ..., Nare independent of k and n. At this

1’
point we have used n > k.

It follows that HE my be witten as a sum of Nk determ nants
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‘o) Zzl czz %1, g "o,
) Zr;l ) an L ZZ_ 2
. 1 4 o o k fx
(4.7) By =L
Zn+k- 1 Zn+k- 2 o N
o h by A by Ay

V\,here1<,ei<N =1 ...k
From (4.6) we know that the deterninants, in order to be non-zero nust

have different roots in all colums; that is le{l my be witten as a sum of

p(N k) determnants. In (4.7) we then have to take the sumover all p(N, k)
per nut at i ons (/zl, fyy . . . . &) taken out of (1, 2, . . . . N
Now the p(N, k) determ nants may be divided into (}1\:) sets, where the

menbers of each set have the sanme k roots in their colums. Hence we may

wite
. Zn-l Rkl
4 % e
k k '
(4.8) Hn=):ITr e, Lir
i=1 1
n+k-1 n+k- 2 n
Z Z . . Z
49 - 9 . %4
where the sum [II nust be taken over all k! pernutations (ql, Co. qk) of
(zl,zg, o s zk) and the sum [:I nmust be taken over all (E) conbi nati ons
(a,, 4prowee ) Of (L, 2, .. . . N). Since the constants C’Z’ll . C/Zk are

the same for all nenbers of the same set, these may be taken out as shown in

(4.8). It follows that we may wite (4.8) in the form
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k-1 k-2 0
V4 z
9 %L N
k k- | 1
Zq Zq q
k k 1 2 k
k _ n-k+1
Bo= L [T ey (z, ) Lt
i=1 I i=1 I
2k-2 2k-3 k-1
Z z
a4 a4, A
V¥ introduce the powers s® of the roots z, , z,, . z by
Y4 Y] 4
1 2 k
e 2" P=0 1, 2
1 k
Then
- Sk-l Sk-‘2 SO z}z;l+ +z§_l z%l-i- +zz
k
gk it st zi +"'+le2
1 k
A - =
gPE-2 gFk-3, S I P T 27
1 k 1 k
It follows that A may be witten as a sum of k° determnants. Of these
only k! are different fromzero and the sumof these is EII
Now
gh-1 k-2 s° 1 1 1 2K z 1
5 2
Sk Sk-l Sl z, 2z, z, le'l z, 1
1 2 k 2 2
Yir = = =2 By
k- - ] : : k-1
k-2 2k-3 k-1 ZI]; I ZI; | > 2, 1
1 k k k




Since the product of the matrices corresponding to the two |ast determnants

is the matrix corresponding to the determnant on the left side.

Since
k-1
1 1 1 1
Zﬁl Zﬂl
Zg zz zz zi-l Z 1
1 b Kk k 2 £s k
= lz;[I;ﬂ (zz.— Z£|) and =1_l <(z -z{)
zk-IZk-I K ’ J k- N »d<i ]
by 4y by by by
foll ows'that
k k k
- 2
Gp =TT T, G5y - 2) (=) EleD) )
. £
I en b Y 2 jT £
Hence
k K K n-k+1 K k n-k+1
Hy = L [Te, TT(z,) T 1T (2, - = L T‘;(C TI_(Z -z )Z/f )
i=1l "1 i=1 " i=1 j= ,J#l i 1, 541 | J
where the sum nust be taken over all (g) conbi nations of k roots taken of the
N roots.
Wth ; N- | . N- |
. zi ) zi
. = N . - N
1 TT ( ) (Z’ei- ZE )
3=1, 34, §=1, 31 ’
we obtain
N- k+n
k Y
k i
Hy = X& N
i= (Z - Z )
7
J=k+1 J




or

N-k
(zz ...zz)
(4.9) H = [ o —— LS (z, ...z,
all()—l_r_ﬂ-(zﬂ-z—@) 1 k
comb = LY okl | J
and we have proved theorem 4. 2.
The formula (4.9) may be witten as
n
(2 e 2,)
(4.10) gt = 1 k
N a7 (ig—ﬁ——ﬁ—(l z‘e/z‘e)
comb 1=1 =R+l J i
4.2 Ceneral convergence theorens.
By neans of the fornula (4.10) we may prove
Theorem 4.3
Let zl>22>-~°>zN>O.
Then
s
lim _lr:__ IENEE=
n—e H
n-1
Pr oof
Since the roots are different we have
z n
[k N 1-zi/zi ( e’ °sz )
HE 1+EEJH1 l—sz[Zzi Zl . aZkl
(h.11)  E (z) 25---2,) LT —————=, (n>k)
n-1 1+Et|7 11 (""j Zi))(‘l ! 1)
=1 J=k+1 l-zz./z. Zq e 'ij
J i
where the sums now are taken over all (ﬂ) -1 conbinations =z, ...z, different
1 k

fromsz, ...z

1 k’

3




Since z. >z.> ««+>z_>0 it follows that

17 %2 N
Zzl',. (*@&;

— <
B

T 1
1

for all conbinations in question. This neans that all the terms in the suns
in both the numerator and the denominator tend to zero, and since there are a
finite nunber of terms in these sunms the fraction in (4.11) tends to 1.

Hence we have proved theorem 4.3,

Mil tiple roots

Theorem 4.4
Let z1222>'“ZZN>0.
Then
i
IlmAk Sl SR N
n-—>m}fn_|

that is the result fromtheorem 4.3 is true also for the case where one or

several roots of pl\ﬂx) =0 are of multiplicity greater than one.

Pr oof

We begin with the case where one of the N roots, say z,, is of
multiplicity 2, and the remaining (N - 2) roots are single roots; that is the

= > S e > = S e
roots of p, (x) 0 are z, >z, z, =z, >z

Now we consi der the pol ynom al equation p§(x) = 0, which has the roots

> > .
zl Z2>.**>Zr+€ Zr>
k

Let #
n

N
(e) denote the Hankel deternminant corresponding to this equation.

Fromthe definition of HE(e) as a determnant in the conplete symetric
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functions follows that Hg(e) is a continuous function of . Hence we

find (o) = limu(e).
€
By nmeans of (4.9) we may wite

(Z z . z )N'I'n'k (Z . 2 )N'l'n-k
(4.11) Hk(e) _ 1% k 4 ...+ N-k+l N ’
n (zq-zy ) ez -2y (2 xe1721) " (2ym2yy)
where z =7 + e.
r-1 r

The terns of (4.11) in which € occurs in the denoninator nust be conbined;

that is we' have to consider all combinations (z . ..z, ) of which z but
: zl ﬂk r-1

not z, is a factor and all conbinations where z but not 2.1 is a factor.

There are (’;}"_ %) cormbi nations of each kind; we take them pairwise as in

the follow ng exanple where we assune r > Kk

. N+n-k N+n-k
J= (2 2y g2 ) (z) -z y2) ,
~ k-1 N TR N
1—[ (Zi_zr)(zr-l-zr) 21725 )TTé . ezi-%-l )(Zr_zr—l) Zr_zj)]Wé
i= —k,J,l-r r-1 i=1 j=k, Jfr,r
1 N

wher e = (z,-z,)
Wjé LJ.J k,lz;r'l +d

Then with z =z + e we obtain
rl r
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L. :Zl'-. %(% l)N+n-k | (Zr + e)N‘l'r]'k ZrN'l'n'k
- k-1 N
_ﬂ-z | el - Zi—zr) (zr ZJ+e —]—l—(z -z -e) —ﬁ—(zr-zj)
1= 3=k, j#r,r-1 J=k, j#r-1,r
k-1 N
N+n- k N+n- k
Mn% z +e) (2.-z_-¢) —rr (zr—z )- -z, (z -7 (zfzﬂe)
= ( iy 3%(% T i=1 " j=k, j#r- l;r -n_ I)Fk);.l_r]jr‘l
- N
TT‘Z eTr(zi-zr) “IT (zv-zd+e)—ﬂ_(z -z_-€) T (- 25)
i=1 J= k,J¥r r-1 i=1 J= k,j%r l,r

Let t(e) and b ¢) denote the nunmerator and the denominator of the |ast

fraction, respectively.

' N
Then t(0) = b(O = 0; b (o) = T (2 -z
J l,J;éI‘,
W find
' ] . ) N k-1 N
t'(0) = (WDl Nkl k] (zr-2y) - (-DFD T (L) T(epmzg) ok
J=1,#r,r-1 i=1 %i7%r 3=1,j=r,r-1° T
N N -
_ (_l)k-l E ]-. ) "‘T (Zr"Z ) 7 N+n-k
j=k, j#r,r-1 “r 7§ i=1,j#r,r-1
Hence
N+n- k
(z,* 2, .z)
limu = (-0)%? 1 - "k-l7r M-k Lo
€—® N 2 K N 1 ) Zp
—’T (Z -Z s ) _II—I'I' (\7“.1_2J)
J= 113741')1' i=1 j=k:j¥r:r'l
(k.12)
(Zl 'Zk L )N+n—k _
k -17r
+ (-l) N o k-1 N (.Z_: ( )+ z( “J/
(zp-2z.) —|T (zi-2,) T k"#r’r'l
3=1, j#r,r-1 J i=1 j=k, jér,r-1 J
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where [imu is witten as the sumof two terns in order to preserve the nunber
of terms in HE. The limts of the remaining pairs obviously have the sane
structure as (4.12), and we nay wite a formula for H: covering the case of
N - 1 different roots.

In this formula, which again consists of (ﬁ) terms of the form
ﬂl.._gk(zﬂl...zzk)Nm'k , the coefficients may have a factor (N'Hl'k)

By means of the technique used above we may use the first result to obtain
new fornulas covering the cases two roots of multiplicity 2 or one root of
multiplicity 3 (all other roots single in both cases) etc. until we obtain the
follow ng result:

Let r be the nunber of different roots of pN(x) = 0, and let the
multiplicity of these roots be My My . . . T, respectively.

Then we may wite le: in the form

k (n) N+n-k
(4.13) e L™ (2 )
"ar @ Ak K
conmb. "
In this formla (™ is of the form
’e“l' ..Zk
CZ Ly
1 k - -
(b.14) T G PG I
1 k=T (zi—zj) £y £y

i : a . ,
wher e czl._.zk is a constant; [ (z,-2 J.) contains powers of the differences

between different roots and o < P, <m-1(1<i <r). By neans of (k.13)
i

we obtain
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C VA Z

14T bymechye [ 4y zk\

Hk c(n) z Z }

n ( l-°°k 1 k

(4.15)  —— = (zy+002) (n-1) N T-k

H c z z

n ﬁl”',@k ['l ﬁk
1+ z (n l) )

Clevek S

where the suns are taken over all (E) - 1 conbinations (Zz R ) different
1 k

from(zl-.. zk).

Among the conbinations (zﬁ ez, ) there may be sone for which

1 k
2 ++vz =z .-z, and anong these we choose the term with max [(FR-K).. [Fn-kyq
y/ Y/ 1k P p
1 k £y 2y

By division in the nomnater and the denom nater, respectively, wth these
functions of n, the fraction in (4.15) will tend to 1 as n tends to

infinity. Since

N+n-k N+n-k N+n-1-ky . (Ntn-1-K
(G- (pzkn/w b, )+ v, D

lim =1 .

n— oo ,21

we have

1 k k f— o 0o e
[im (Hn/Hn-l) =zt
n—w

and we have proved theorem 4.4,

Theorem 4.5
Let z, >z, > >2,.>0.

Then
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Pr oof

From theorem 3.1 we have

k k-1

qﬁ Hn Hn-Z
=k -1
By W

k k-1

_ i /Hn-l'

Tk k-1

Hn-r Hn-z

Hence by neans of theorem4.4 -

lim qg = (zl' . 'zk)/(zl- . 'Zk-l) =gz

n— o

Theorem 4.6
Let levzg?_' -_>_zN>o
Then
eer—)0aS n — o
Pr oof
By induction with respect to k.
k=1

From (1.2) we have

or - since e> =20 -

°
n




Hence

. 1 1
lime~ = 1lim - lim
noe P o A+1 9,
=275
=0.

W assume theorem (4.6) holds for k - 1 and consider the case k. Again

(1.2) may be used. W obtain

kK k k k-1
®n T %1 T 4 * °n

Hence

- . k _ . k . 'e . k-1
|Imen— [im qn+l-|lmqn+ ||men
n— n-9 n—co n—
= - +
Zk Zk. (o]
=O,

and we have proved theorem k.6 by induction.
In special exanples the theorems k4.5 and 4.6 may be proved without using

theorem 4.4. W consider two cases.

Exanple 4.1
N=2
>
(1) z) >2, >0 n+l  n+l
1 _ _ n n-1 n 1 n
= = + 4 eee + = . —
Now H = =8 =z +z) "z 25 z. -z Hﬁ = (z; z,)" and

we find directly by neans of (3.1) and (3.2):
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zn+l zn )
1“1 "% .1 n 1 "2
G = n n ’ en——(zl Z2) (Zn+l_ n+l)(n_zn)
Z) " %o 1 o V1 2
n-1_ n-|
2_ ., Zq 2
W= %2 T o
1 2
From these formulas it is obvious that
1
— 0

1 2
q_n->zl,q_n—>z2 and en—>o as n

2
2n .
Then E- =S = (n + 1) 203 B = z;, and we find
2n
q_rll—n+lz el— Zl 1 ) -zl )
=n "1 “n T T n n-1 ~ (n+l)n °
(n+l)zl nz;
2n n-2
2 zl (n-l)zl ni_tlz n E’.i 2
4 © Z(@-1) n-1 n %1~ Tm %
Zl n Z].

Again it is obvious that

1 2 1
q, -2y 4 —>22(—zl) and e -0 as N -

Exanple 4.2

N arbitrary; all roots equal, that is

W& have




Now
k k-1 2
& - By Hy ooy 70kl Oy
-k k-1 g. o
H H k k-1
(4.16)
N2 N N
) - Gl ) i
= —F T 1 k =1, 2,
(1) G
and
K+l k-1 o
k. HE b (ck;l) B T
2 = K G
H2 H.[ Gk - O'k_l k+1 Uk
N /Ny (N, ,N
__(k+l) - () Gep) ) (1) ‘=
T ) T e
k k-1’ ‘ktl k
Since

N2 N, N N\ N-k+l  N+1
(k) - (k-l)(k+l) = (k—l) kK k(k+1)

(4.16) and (4.17) may be witten in the following form

k _ N+l (=1 N
LT kD A T
Kk (NKK _

€2 0D (k2 %1 k=1 . ... N

By induction we nay prove that

b3

eoy NI



K _ _(n-1)(n-1) _
(4.18) % = Tem-2) (1) 1 ¢

k N k) k _
(4.19) e, =-(%I-—rﬁg—(k+_ny zy K =1 o... NI

For n = 2 (4.18) and (4.19) holds as we have shown above.
Now we assune that (4.18) and (4.19) holds for n and consider the case

n+ 1

k _  k_ k-1, Kk

%1 = %0 T Cn 4
_[(N—kﬂ)(k-l) ) (N-k) k. (n—l)(N+n-l)]
7| (k+n-2) (k+n-1) (k+n-1) (k+n) (k+n-2) (k+n-1)

n( N+n)
(k+n-1) (kt+n) 21

which is (4.18) with n + 1 instead of n.

Then

E L (L ) K
ntl = ‘41’ Tne1’ ©n

(MK
(itn) (K+n+1) 21

which is (4.19) with n + 1 instead of n.
Fromthe formulas (4.18) and (4.19) we find

k k
q, - zk(_zl) and e, 20 as N s
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5.  The convergence to the smallest root

The fornulas devel oped in section 4 show that the convergence of the
g-colums may be very slow. In this section we shall examne the question of
the speed of convergence to the snallest root Zy of p,(x) = o0. Furthernore
we shall show that it is possible to use an acceleration technique to obtain

faster convergence to the smallest root.

5.1 A formula for qg

In "section 4 we have given a qualitative fornula for HE valid for the

case of multiple roots. In order to examne the convergence of qg to Zy
in detail we need a precise fornula for qg whi ch cover the case of multiple
roots. As usual we assune that z >.. . >z >o0.
Lenma 5.1
-1 n 1 1 1
(5'1) H-N = 0 S[——,—’-..’—.]
n N n zl 22 an
Pr oof
By definition
1 1 1 1
(o} 1 . . D _o-t_) g - .—)
N-1 'N2. le Zy 2 2. ey
g g Il J.: .i)
N N-1 ].z1 ZN
HN'1 = = ol L
n = |
1
1 a, (=
N ON-1 1
(n rows
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In the proof of theorem 2.3 we have shown that the |ast determ nant has

the val ue Sn[% , i . .Z-l-] and we have proved |emm 5.1.

1 % N
Lemma 5.2

Let p(N, n) denote the number of terms in the conplete symetric function

sn in N variabl es.

Then
N+n-1 N+n-1
(5.2) p(v, n) = (PPH = (P wm>2 nxo
pr oof

By induction with respect to n.

n=o0
Since s, = 1 and (g'i) =1(5.2) is correct for N> 2. W assune
that (5.2) holds for o,1, 2. . . . n-l and all N> 2 and consider the case

n. By means of the relation sn[zl..-z [z ---zN] + Sn[ze'”zN]’

W = 218 107

whi ch has been proved in theorem 2.1, we may obtain

p(N, n) = p(N, n-1) + p(N-1, n)

M¥n-2

n-2) 4 p(y-1, n)

_ (N+n-2) + (N+n-5) P

n
= -+ +
N-1 N-2 (l) L

where we have used that p(1, n) = 1.
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Since

N-1
+1 -
= (nl ) + (ngl) + + (Nl"\;ljlz)
_ n+2 N4n-2
N+n-
- N

we have proved |emma 5. 2.

Lenma 5.3

Let z) be of multiplicity m (1 <m <N and let the other roots be

different. Then

Sn[zl, ceeZys Base .zN]

N+N- m
Zy N+n-1 1 1, N+n-1 m-1 1 1
= —F— -8 [—— e | )z +eee4(-1)" 78 [ L 4 m-
N m-1 ) l 'z -2 : Z. =2 m=-2 1 1l 'z =z B —]Z
‘”'(zj_z.) 1 mt+l 1 N m 1 Zm+1 Zn 1
J=m+1 *

N+n-1
Z..

=.):

|
- m N
J=m+l (zi-zl) —I—I— (zi-zj)
j=m+l

Pr oof

The proof may be given by neans of the limt technique used in section 4.
In this case however the notation is so much handier that we may prove (5.3) by
induction with respect to N

N2
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If oz, >z, (5.3) is nothing but (4.9) which is correct and if =z =

. _ n : .
we find sn[zlzl] = (n+l)zl which is correct too.

1
We assune (5.2) is true

in all cases with N-I roots and consider the case with N roots.

If 2z, is of miltiplicity N,

1

Fromlemma 5.1 follows that this is correct.

and we may assunme that 1 <m <N,

By neans of (4.4) we have

Sn[z!,. ..zl, Z 0 ZN]
m
= [ sn+l[zl"' '%lfzm+2""
.*

N

z J-

we find by (5.3) that Sn[zl...z

=0
If m=1 (5.3) again is (4.9)

Sn+l[zg e By Pyt e ZN]]/(Zl'zm+1)
ml

The conplete symetric functions in the parentheses are functions of NI

variables and we may use (5.3) to obtain

zN+n-m
S [_ 1 [ N+n-1
n ( )

N m-1
_-TTf(Zl'Zj)

J =m+2

N ZiN+n-1
+

- Sl[

i=§+2 (Zi—zl)m —H"

J=m+2, j#i

1 1 N+n-1
-8 [——zmﬂ,...z — 1( n-3 )zl+°-°] ]/(zl-zm+l)

ZN+n—m.+l
1 (N+n-l)
N (Z -z ) m-2
1

j =m+1

1

1

N+n-1

1 ](N"‘H'l)
- ey, .
21" %o 2y -2y W2 z) T ... ]
N Z14\I+n--l
. m | N
(zi-zj) i=m+l (zi-zl) (zi ﬁ )
J=m+l, j#i

1 N

By reduction of corresponding terms and by use of the fornula

1 1

1
Z_ -z R/ I+
1 "mt+2 1

N 27 %l

Sr[

r-l-z_ -z 2ot

1 1

- 1
Z. =2 1= %iz -z R )
1 m+l 1 °N 1l "mt+l 1

we end up with (5.3). Lemm 5.3 has been proved by induction.
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As an obvious consequence of |enma 5.3 we have the follow ng general

resul t

Lemma 5.4

Let pN(x) = 0 have r different roots 2, > 7, > .0 > 7 > 0 of-

miltiplicity m, m,, ..., m_ respectively. (Zmi =N. Then - with the
. m; 1 1 1 1 1
notation S [—4—] = s [ , =, ... e, 1 (GA4) -
Pzy=2y P zy=2)" 2;-2) 2372 \Zi-zr’ 2172y
: ~ - kY
1 mr
Sn[zl Zysenes By, .zr}
r ZN+n-mi [ m
L — o MU SRR N o i TG PIRSRRRT O] ST (e B B
i=1 e i a2 i-1 %175
I
Ttz -2)
J=l,3#1i 1 7]
Now
- e
qﬁ _n n-2
- -1
HE—]_ lej-l
HN-l
n-2
o’ ———
N . N-1 °
G

which by means of lemma (5.1) may be witten as

1 1

Sn_z[-z-,...,;]

N 1 N

(5.5) 9 = ! 1
S, [T 5,00

n-1 zl ZN
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W use the notation fromlemm 5.4 and obtain

. (%1 )N+n—mi-2 . (_i_ )N+n-mi-ll
N N3y, i NEN-24
_iEl o (,1 l ™ : 1'1 121 T 1.1 \" - 2t
- - ) = (-7
J=l,34 1 % J=L 4% %

In this formla Z, denotes the smallest root of pN(x) = 0. Furthernore,

both the denom nator and the nunerator consists of N terns.

5.2 The nonotoni c convergence of qu\I

W consi der

m
S
I
=z 87z
]
N
=

and treat the two cases m_, = 1 and m_ > 1 separately.

m = 1; that is the smallest root is a single root.

By means of (5.5) we find

_ Zr Zr-l [(N+n-5)+ o :E:E
LU | EES R * r 1 pomyom '1num
2] T- i=
me-2)7 T G 507
j=1 "r J J=l,3;ér—1 r-1 7]
(_‘ZL )N+n—2 (Zl | )N+n-m-I-I . -
r- n-
(5.6) -z + [( JEXEES +[_: denom /
r(r S SR B 1
ne oz U G -7
j=1 “r %] j=1,fr-1%r-1
(% jn-2
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From (5.6) follows, that ¢ may be witten in the form

(5.7) o= (Zf—l)“ b(n)
r-

where b(n) -1 as n

-

Hence we have proved

Theorem 5.1
* %
Let z, >z, 3 . Za > >0
Then
n+l _ _°N
“n ZN-1
m-> 1 that is the smallest root is a miltiple root.

By neans of (5.5) we find

(7 YR
b4 r-1
n = [( — 1 1 [(ﬂ+i113)+"'] + ] num)
1_1 J r i=1
J=Ldkid %
(; 5\I+n-m-1 I
Z r-
(5.8) - Zr( rl” — [(I'r\l:?lz Yo oo ] +i);l denom)]/
jj‘;;éi(gi_ Ej)
(l )N+n-mr-]_
2y N+n-2 rel
m — [(, .17 )* -1+ L denom|.
(l 21 ) 3 T i=1

From (5.8) follows, that ¢, My be wittenin the form
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n T ¢ (N+n-2) Zy b(n)
m ~1
r
m -1
r
=cC
(Ntn- 2)
where b(n) -1 as N - =.
W have proved
Theorem 5.2
. B . :
Let z, >z, >.8" >z, =z >0, that is the smallest root is a

mul tiple root.

Then

1
e tends to zero as = .
n n

Theorem 5.3

The last colum of the @D scheme forms a nonotonically increasing sequence

Pr oof
Since
N _ N _ N1, X
1 = ©n n 9
_ _eN-l *_qg ,
we have

N N__ S o
q'n+l-q'n_en ?

52



Since

N_
e 1 <0 for all n .

From theorem 5.3 and the convergence of qg to z. follows

N
(5.10) 0< q <z n>2

W remark, that a similar theorem concerning the convergence of

the largest root z, maybe proved:

1
Let zy > z, > o0 > Zy > o. Then
1 1 .. 1 1
ql>q2>. >qn‘q~n+l' ‘zl
Theorem 5.4
Letz, >z, >.%* > zy > 0, and let N> 2 .
Then
N N
11 - -
(5.11) (N-1) q, >z a,
Pr oof

For symmetric functions of N positive variables, where N > 2,

all n>1

(5.12) S, < wq S,
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For N =2 (5.12) may be proved to hold for all n by direct calculation.
Now we assume, that (5.12) holds for N- 1 positive variables
2y 22,2 2zy> .~ For n =1 (5.12) holds. Ve assume (5.12) holds for

N variables and for n and we have to prove that

(5.13) Sn+l < 9 Sn
Now
Tt
Sn+l = ZN Sn + Sn+l
1 1
< ZN Sn + Gl Sn

where we have used

that is

Hence we have proved | emma 5.5 by induction.

The equation (5.11) may be witten in the form
N
N'q, 2 27y
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’N | 2x ’N
Since N>-—+—+ - + = _ we have by neans of (5.5):
T % N

1 1
N sn-2 [zl’ 2 EN
N q_n =N
1 1
Sn-l [;l, oo ey ;N
1 1 1 1
9 7’ ) ZN] n-2 [z_l y EN]
2 1 1 ’
S 7 g

which result by neans of lemma (5.5) shows that N qﬂ > 2y and we have

proved Theorem 5.k,

5.3 An_accel eration device

The fornulas (5.7) and (5.9), in which z, denotes the smallest root of

py(x) = o, proves the following

Theorem 5.5

Let z) > z, >, > zy

and | et p;\;(x) = 0 have the roots

> 0 be the roots of pN(x)=0, let 0 <c < zy,

Then the convergence of the last colum of the QD schene corresponding

to p;\;(x) wi Il be faster than the convergence of the last colum in the scheme
corresponding to pN(x) = o.

In order to use theorem5.5 we have to find a constant ¢ in the interval

0<c <z The formula (5.10) shows that an arbitrary element qg (n>2)

fromthe last colum of the @0 scheme may be used as the constant c¢ in theorem5.5.
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The results fromtheorem5.k and 5.5 prove that the follow ng al gorithm

my be used to find =z, wthin a prescribed error e.

N
Al gorithm
Let z, > z, >.em>_z,> 0 be the roots of p,(x) =0, and let ¢ >0

be an arbitrary real number.

Conpute r

rows of the QD scheme. If (N - 1) x qll\: < ¢ then
1 1=

2y - qllf < e otherwise conpute r, rows of the @ scheme corresponding
1

. : N
tothepolynomalvmthrootsz-qf,....z-qﬂu If(N-l)x% < e

0w Lo v 2
then z - - < ¢ otherwise compute r, rows of the QD schene

N qu q‘rg— 3
: . . N N N
corresponding to the polynonial wth roots z; -(qr + Q. )y eees Zy " (qu
1 2

etc.

6.- Stability of the QDalgorithm

6.1 The stability of the_progressive formof the QD algorithm

In the follow ng considerations concerning the nunmerical stability of the
QD al gorithm we assume that the conputations are carried out in floating point

arithmetic on a conputer for which the basic fornulas of WIkinson [1f hol ds.

In Wlkinsons notation, if x and y are floating point numbers, then

£L(x+y) = (x+y) (1+¢)
Fl(x-y) = (x-y) (1+e)
fl(xy) = xy (1+e)

f1(x/y) = (x/y) (1+e) ,
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where e I< e't, if the mantissa has t binary places. Since our

exam nation will be quantitative only, the statenents obtained in this section
will also hold for conputers for which the floating point addition and
subtraction are |ess accurate than supposed in (6.1).

In this section we use the follow ng notation:

(6.2) Qi and EE for the floating point nunbers which actually are in
the conputer instead of qﬁ and ei, respectively.
(6.3) r(q) = < - a
(6.4) r(ef) - -
n n n
k k k k-1 k
(6-5) 5(qn+l) - Q‘n+l -(En B En * Qn)
‘ k k k+l, k k
(6.6) Blepp) = Brpy -(Q,3/Q X Ep)

k .
V& want to express the errors on q . and eiﬂ, that is r(q;l) and

k
n+1l

The fornulas used in the progressive formof the QD algorithm are

r(e_..) by neans of the errors fromrow n.

k- k

(6:7) T S
ko kel K k

a1 = a1/ Y1 X Sy

In the conputer these fornulas may be substituted by nmeans of
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(6.9) €, = IE - (14 ) + &1(1 + ¢y
(6.10) Br = (@) 1+ &) x B (L + q)

Now

r(qiﬂ) = U4 T q_i;l

G R A R ICAR R
- (T ) - ) e a) v ea).

and we obtain

(6.11) r(q§+1) _ r(ei) -r(ei_l) + r(qi) + 8(q§+l).
Furt hermore
k+1 k+1
k) = s e neh,) - S x
U+l 1
whi ch may be approxi mated by
K ql;+l qnk+1 K
k 1 k k
(6.12) x( E+1) ~ icl r(qiﬁ) * Tﬂ_ r(e,) > K n2 7(gyy) + 8(ep,,)
1 L1 L1

Before we draw any conclusions fromthe fornulas (6.11) and (6.12) we

consider the terns 5<q§+1) and B(elr;_l). By neans of (6.5) and (6.9) we find
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) = 16 - D @ 10 e
- (Eﬁ S By (e LB - B (14 e) 4 &l e,
(6.13)
~ (Eﬁ BT (g ) Qg
A g e
(6.6) and (6.10) may be used to obtain
5 x}§+l) = Q;Hl/le) (1+ &) x E x (1 +¢)-( E::]_L/ U X )
R ) o Y e o)X
~ (O %y X Ep) (e + ¢,)
~ efﬂ_l (5 +¢,)

Fromthe limit theorens we know t hat eﬁ - 0 and qul >z A N e,

Hence

and

Furt hernore (6.12) gi ve
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Z
(6.15) r(ek ) = < e ().

These results together with (6.11) show that although the error
i-(q;{ﬂ) may not decrease with increasing n this error will not increase
very rapidly.

Hence we may concl ude:

The progressive formof the &-algorithmis only "mldly" unstable.

6.2 The stability of the forward flgrnhpf_the Q- al gorithm

Wen the fornulas (1.4) and (1.5) fromthe forward form of the algorithm

are used instead of (6.7) and (6.8) we find the relations

k k
e e
(6.16) r(q_i:i) ~ n;l r(qfl_,_l) + h;?l- r(eiﬂ) - —nﬂkq;ﬂ r(ek) + 5( kﬁ)
en en (en)
(6.27)  x(eg™) = rlagy) - x(af™) + rlep) + Blep™)

Si nce ef-» 0 and qﬁ+l -z 8 n -« we my conclude from (6.16)

that the forward borman the @ algorithmis "strongly" unstable.

Part 2 ALGOL procedures and numerical experinents

7. The procedure QDPCSITIVE

7.1 Introduction

The nunerical experinents with the QDalgorithm were carried out on the

Burroughs B 5000 conputer at Stanford. The progranms were witten in
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Extended ALGOL for the B 5000. The part of this |anguage used in the prograns

is so close to the corresponding part of the ALGOL 60, that | have chosen to
show the B 5000 procedures whichhave been used in practice instead of ALGOL 60
procedures. In fact, the only changes needed in the follow ng B 5000 procedure
QDPOSITIVE in order to have a correct ALGOL 60 procedure are:

1) The basic synbol + should be changed to := .

2) BEGN, COWENT etc. should be begin, comment etc.

3) The brackets following the array identifiers in the specification should

be renoved.

7.2 Description of the procedure
In order to avoid to many conments in the procedure a description of the
parameters, the main features of the algorithm the' storage; requirements
“etc.are given bel ow
L Par anet er s
| nput paraneters:
N the degree of the pol ynom al.
POLY an array which holds the (N + 1) coefficients of
aNxN+ covp @) x L ag With s in PoLY[o], ag .

in POLY[1] etc.

EPS a real nunber specifying "the tolerance.” cf. section 3
bel ow.
MAX an integer specifying the maxi mum nunbers of rows of

the @0 schene to be used.
JUMP a label to which exit is nade when the roots are not

found by neans of |ess than MAX rows.
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Qut put paraneters:
ROOTS an array which upon exit holds the N roots of the
pol ynom al equation.
RO an integer which upon exit holds the number of rows used

in the cal cul ations.

2. Met hod
In the general case Q DPCSITIVE conputes N rows of the QD scheme. Then

is carried out, and N rows of the new QD schene

N
Ay

and the process is continued with (N - 1) rows until the next root is conputed

a translation from 0 to Ay

are conputed etc., until (N-1) < EPS.  Now the snallest root is conputed
etc.

Before the @D schemes are conputed the procedure checks if all the remaining
roots are equal. This check is carried out by means of a very sinple device
whi ch consists of a conparison of the arithmetic and the geometric nean of the
remaining roots. \Wen the roots are positive these nmeans will be equal if and

only if the remaining roots are equal.

3., Accuracy

The theory of the algorithm used (chapter 5) says that the maximum error
shoul d be less than or equal to the value of the paraneter EPS.  Since the
progressive form of the Q@algorithmis mldly unstable and since the
translations used will introduce other errors this will in general not be true
In nunerical experiments with equations of degrees between L4 and 10 the first
five digits have been correct in all cases (see the exanples in 7.4).

4, Sterpgei r ement s

The procedure uses approximately (N + 4) XN cells for storing |oca
vari abl es.
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7.3 QDPOSITIVE
PROCEDURE QDPOSITIVEC(N,POLY,ROOTS,EPS»MAXs» JUMP,RONS)IVALUEN,EPS,MAX}

INTEGER N»MAX,ROWS3ARRAY POLY({0),RO0TSIL1IJREAL EPSILABEL JUMP)
BEGIN INTEGER SsKsRs1,TIREAL AM,GM»COR»COILABEL STOP,AGAIN}
ARRAY QE13INs13N),E,POL,POLITOINY}
FOR $¢0 STEP 1 UNTIL N Do POLES)¢POLICSI¢POLYLS) JCOReCO¢OSR¢0)
FOR S¢NSTEP «{UNTIL 2 DO
BEGIN AMeABSC(POLL11/5S)3GMeABSCPOLISI#(1/5)))
‘IF ABSCAM=GM)<EPS THEN
"BEGINFORT¢t STE PIUNTIL S DOROOTSITI¢AMSCOR)
Go TO STOP
ENDJ
AGAINY
FOR le¢t STEP 1 UNTIL 81 DO
BEGIN QL1s13¢03ECIY¢POLLT+1)/POLLIY}
END}
Re¢R4Y)
Ql1,1)e =POLLLI/POLLOISIALY,SI¢ELO)ELSIe0)
FOR Te¢2 STEP {UNTILSDO
BEGINFORI¢1 STEP 1 UNTILS DO
QLT IV¢ELTIwELImt)¢QLT=1,1))R¢RY)
FORI®1 STEP 1 UNTIL $S*4 DO
ECIJeQlT,1413/QCT,11%EL])
ENDJ
IF (N=1)xQ[S»SI<EPS THEN
BEGIN ROOTSCS)¢AM¢Q(S,S)+COR}
IF SSN THEN AM®AM®ROOTS[S+1))
FOR 1¢SSTEP =1UNTILID OO
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F O RTel STEP 1 UNTIL 10O
POLICTI«POLICTI+AM xPOLILTw1])}
FOR 1¢1STEP1 UNTILS*1pOPOLLI)¢POLICTY)
IF %2 THEN ROOTSE11¢Ql2511+CORS
END ELSE
BEGIN COR¢COR+QCS»S13C0¢Q(S2S)}
IFR2 NMAX THEN GO TO JUMP}
FOR1I¢SSTEP =1 UNTIL 1 DO
FOR T¢1STEP 1 UNTIL 1 DO
POLETI¢POLETI+COXPOLIT=11)
GO TO AGAIN
ENDJ
ENDJ
. STOPt RONS¢R}
END QDPOSITIVES
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7.4 Exanpl es
Lop(x) =xt - 80 + 2422 230 x + 16

Exact roots: 2, 2, 2, 2
The fol lowing output was obtained:
Table 1
CCEFFI Cl ENTS:
1. 00000000 -8. 00000000 24 . 00000000 - 32..00000000 16. 00000000
EPS = 0.00000001 NUMBER OF ROAS = 0
ROOTS:
2.00000000 2.00000000 2.00000000 2.00000000

2. p(x)=x 4 -8 +23.98 x° - 51.92 x + 15.9201
Exact roots: 2.1, 2.1, 1.9, 1.9
The follow ng output was obtained:
Table 2
CCEFFI G ENTS:
1. 00000000 -8.00000000 23.98000000 -31. 92000000 15. 92010000
EPS = 0.00000001  NUMBER OF ROWs = 54
ROOTS:
2.09999999 2.09999999 1.90004137 1989995865

The details of the conputation in exanple 2 are shown on the next pages where

the 54 g-rows and the 54 e-rows are printed.
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COEFFICIENTS
$1.,00000000

o1

8.00000000
5.00250000
4.00399600
3,50524401
4,01398402
2,51372260
2.01494834
1.76653421
2.03476855
1,20155947
1.03299026

0.91049602
1.07147703

0.68833896
0.56479397
0.50566483
0.63412153
0.42786565
0.36380441

0,33393578
0.46774781°
0,33510047
0.29355750
0.27356795
0.41768310
0.30893513

0.27338006

-8.00000000

3]
=2099750000
*0.99850200
=0,49875399
~0029885632
“1:50026143
=0,49877426
-0~24841413
«0.14828186
=0475320908
-0~24856921
-0112249424
=0,07214592
©0.38313806
=0¢12354500
=0.05912914
0103375236
=020625588
=0,06406124
=0.02986863
-0.01690210
=0+13264735
«0,04154297
=0.01998955
=0.01172245
=0.10874797
=0.03535507

23.96000000

0.00000000
1.66639074
2.00000600
2.10036278
0.00000000
0.83570776
1,00354344
1,05446896
0.00000000
0.42293200
0.50905483
0.53625845
0.00000000
0.22195673
0.27031270
0.28864757
a.00000000
0.13269127
0.16962426
0,18896805
0. 00000000
0.10494795
0.14125334
0.16042817
0.,00000000
0.10043795

0.13528846

=31,92000Q00

£2
1.33110926
‘0.66488674
-0.39839721
~0.26515190
©0,66455367
*0.33093857
-0.19748861
-0.13075966
-0.33027707
-0.16244639
«0,09529062
-0.06169423
-0.16117934
-0.07519102
-0.04079427
-0.02371865
-0.07336461
-0.02732825
=0,01052485
-0.00387783
-0.02769939
-0.00523758
-0.00081472
-0.00010784
~0,00831003

-0.00050856

15,92010000

Q3
0.,00000000
0.83235926
1.19839480
1.39788922
0. 00000000
0.41617096
0,59886764
0.69817699
0. 00000000
0. 20801860
0.29861020
0.34719120
0. 00000000
0.10354493
0.14669593
0.16782576
0. 00000000
0.04950187
0,06532691
0.06962428
0. 00000000
0.01984424
0.02197243
0,02123552
0. 00000000
0.00614661

0.00589371

€3
- 0. 49875000
-0.29885120
-0.19890279
-0.14179051
=0.2483827
-0.14824189
-0.09817926
-0.06958046
-0.12225847
“0,07185479
-0.04670962
-0.03239926
-0.05763440
-0.03208003
-0.01962445
-0.01278537
-0.02386274
-0.01150321
-0.00622748
-0.00372029
-0.00785516
-0.00310939
-0.00155163
-0.00091453
-0.00216342

-0.00076146

(1)
0.00000000

0.49875000
0.79760120
0.99650399

0.00000000

o

24838271
39662461
. 49480387
00000000

.12225847

o O o o o<

.19411326
0.24082288
0.00000000
0.05763440
0.08971443
0.10933887
0.00000000
0.02386274
0.03536595
0.04159343
0.00000000
0,00785516
0,01096455
0.01251618
0~00000000
0.00216342

0.00292407
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«0.01748297 «0,00002216 -0.00037789
0.25609709 0,152T74527 0.00553798 0. 00330276
-0~01042745 -0.00000080 *0.00022537
0.40447206 0.00000000 0.00000000 0,00000000
*=0010222985 -0.00219946 -0.00055516
0.30224221 0.10003036 0.00164432 0.00055516
=0,03383409 -0.0000~3616 -0.00018744
0.26840812 0.13382829 0.00149304 0.00074260
-0001686968 -0.00000040 -0.00009323
0,25153845 0.15069757 0~00140021 0.00063583
-0401010668 0.00000000 -0.00005565
0.40112874 0.00000000 0.00000000 0.00000000
-0010056397 -0.00056200 -0.00013788
0.30056477 0.10000198 0.00042412 0,00013788
*0~03345900 -0.00000238 -0.00004482
0.26710577 0.13345859 0.00038168 , 0.00018270
“0.01674769 -0.00000001 -0.00002145
0,25038808 0.15017627 0.00036023 0.00020415
=0,01002683 0.00000000 -0.00001216
0.40031213 0.00000000 0.00000000 0.00000000
«0,10015608 =0,00015588 -0.00002805
0.30015610 0.10000015 0.00012783 0.00002805
-0103336803 -0.00000020 =0.00000616
0.26678806 0.13336799 0.00012187 0.00003421
-0~01668076 0.00000000 -0.00000173
0,25010730 0.15004674 0,000§20%4 0.00003594
=0.,01000741 0.00000000 -0.00000052
0.40016838 0.00000000 0.00000000 0.00000000
=0,10008418 -0.00008414 -0. 00000074
0.30008420 0.10000004 0,00008340 0.00000074
-0003335205 -0.00000007 =0,00000001
0.26673215 0.13335202 0.00008346 0.00000074
*0.01667427 0.00000000 0. 00000000
0.25005788 0.15002629 0.00008346 0.00000074
-0.01000400 0.00000000 0. 00000000
0.40016540 0.00000000 0.00000000 0,060000000
=0.10008269 -0.00008265 0,00000000
0.30008271 0.10000004 0.00008265 0.00000000
=0¢03335172 -0.00000007 0. 00000000
0.26673099 0.1333516% 0.00008272 0.00000000
=0.01667413 0.00000000 0. 00000000
0.25005686 0.15002582 0.00008272 0.00000000
-0.01000393 0.00000000 0. 00000000
0.40016540 0.60000000 0,00000000 0.00000000
-0010008269 -0.00008265 0. 00000000
0.30008271 0.10000004 0.00008265 0.00000000
=0+03335171 -0.00000007 0. 00000000
0.26673099 0,13335168 0.00008272 0.00000000
-0001667413 . 0.00000000 0. 00000000
0.39991723 0,00000000 0.00000000 0.00000000
-0.09997930 0.00000000 0,00000000
0.29993793 0.09997930 0.00000000 0.00000000
-0103332643 0.00000000 0. 00000000
0.26661150 0.13330573 0,00000000 0,00000000
=0.01666321 0.00000000 0,00000000
EPS = 0,00000001% NUMBER OF ROWS = 54
ROOTSS
2.09999999 2,09999999 1.90004137 1.,89995865




six figures are correct and al

3. py(x) = X - 82+ 239999 & - 31.9996 X + 15.9996
Exact roots: 2.01, 2, 2, 1.99.
The fol lowing output was obtained:
Table 3
CCEFFI Cl ENTS:
1..00000000 -8..00000000 23. 99990000 -31.99960000
EPS = 0.00000001 NUMBER OF ROWs = 72
ROOTS
2.00996394 2.00087 089 1. 99912488 1. 99004029

4 Piogx) = 10 - 209+ 171 x 8 816 x £ 2380 x & 4368 x°
+ 5005 X - 3432 0 + 1287 £ - 220 x + 11.
The fol lowing output was obtained:
Table b
CCEFFI Cl ENTS:
1.00000000  -20,00000000 171.00000000 - 816. 00000000
_4368.00000000  5005. 00000000 - 3432. 00000000 1287. 00000000
11. 00000000
EPS = 0.00000001 NUVBER OF ROMS = 191

ROOTS:
3.91898807 3.68250232 3.30972557 2.83082807
1. 71537022 1.16916998 0.69027855 (0.31749293

15. 99960000

2380. 00000000

-220. 00000000

2.28463026

0.08101405

The pol ynomi al plo(x)iS the characteristic polynom al corresponding to

roots.
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the matrix considered in exanple 8.1 in the next chapter. In all cases the first

eight figures are correct in the three snallest




8. Exanpl es of conputation of eigenval ues.

8.1 Introduction

The following two exanples ought to be considered as illustrations of the
QD-algorithm as a rootfinder, and not as exanples of the QD-algorithmas a
method for finding eigenvalues. The reason for this point of viewis sinply
that the method used in the exanples nerely consist of a conputation of the
characteristic polynomal followed by the use of a @D-procedure Sinmlar to
QDPOSITIVE. This does not mean that the QD-algorithm in general cannot be
consi dered as a good nethod for finding eigenvalues, but it nmeans that the
starting row of the QD scheme should be conputed directly fromthe el enents of

the given matrix and not via the coefficients of the characteristic polynom al

8.2 An exanple of the, conputation of the eigenvalues of a symetric three-

di agonal natrix.

The matrix used was the following 10 x10 matrix

> -1
1 2 1 O
102 -1
102 -1
102 -1
A= 12 -1
102 -1
O 102 -1
102 -1
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The eigenvalues of A are given by neans of the formula

. 2
(8.1) EP=2s1n (518};[—17) p=12 ....N

where Nis the order of the matrix (N = 10).
The fol |l owi ng output was obtained (the nunbers in the colum "CORRECT EV"

were conputed by means of (8.1))

THE CHARACTERI STIC POLYNOM AL HAS THE CCEFFI CI ENTS:

1. 00000000@+00
-2, 00000000@+01
1.7 1000000@+02
-8.16000000@+02
2.38000000@+03
-4, 36800000@+0%
5.00500000@+03
-3.43200000@+03
1.28700000@+03
-2.20000000@+02

1.10000000@+01

NUMBER OF ROAS = 138 EPS = 0. 00000001
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El GEN- VALUE NR

v F W

10

EV COW QD- ALGORI THM

3.918986773@+00
3.682505627@+00
3.309722197@+00
2. 83082987 8@+00
2.284629734@+00
1.71537 -294@+00
1.16916997~00
6.902785321@-01
3.174929343@-01

8.101405277@-02

CORRECT EV
3.918985945@+00
3. 682507 063@+00
3.309721464@+00
2. 83083 0022@+00
2.284629673@+00
1.715370320@+00
1. 169169972@+00
6.902785306@-01
3.174929336@-01
8.101405259@-02

ERRORX1000000
8.276@-01
-1.436@+00
7.333@-01
-1.434@-01
6.103@-02
-2.593@-02
6.956@-03
1.432@-0%
6.858@-0k
1.835@-04

83 An exanple of the conputation of the eigenvalues of a symmetric full matrix.

The matrix used was the followi ng 4x4 matrix, which is used in Faddeev

and Faddeeva [ 4] (p. 281)

100 o2 0.5  0.66
o 100 032 0.4
s 0.32 100 022
0.66  0.44 022  1.00

The characteristic polynomal of Ais

xh -4 x? + 4,752 x2 - 2.111856 N + 0.28615248

where the coefficientsare conputed exactly.
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Faddeev and Faddeeva give the followi ng eigenvalues (conputed within

5.10'9):
S 2.32274880
A, = 0. 79670669
x3 = 0.63828380

)")-I- = 0, 24226071

The . following out put was obt ai ned:

THE CHARACTERI STIC PCLYNOM AL HAS THE COEFFI Cl ENTS:

1. 00000000@+00
-4, 00000000@+00
- 4.7 5200000@+00
-2,11185600@+00

2.86152480@-01

NUMBERS OF ROAS = 24 EPS = 0. 00001000

EV NR Ev COW BY QD

1 2.322748800@+00
2 7 . 967 066889@-01
3 6.382838028@-01
4 2.422607 083@-01
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