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ABSTRACT
NUMERICAL METHODS FOR SOLVING LINEAR

) %/
LEAST SQUARES PROBLEMS ~/

by

G. Golub

A common problem in a Computer Laboratory is that of finding linear least
squares solutions. These problems arise in a variety of areas and in a variety
of contexts. Linear least squares problems are particularly difficult to solve
because they frequently involve large quantities of data, and they are ill-
conditioned by their very nature. In this paper, we shall consider stable numer-
ical methods for handling.these problems, Our basic tool is a matrix decomposi-

tion based on orthogonal Householder transformations.
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1. Introduction.

Let A be a given m X n real matrix of rank r, and Db a given

vector. We wish to determine a vector .8 such that
”~ .
fo - AR |l = min. (1.1)
where H R H indicates the euclidean norm. If m>n and r <n then

there is no unique solution. Under these conditions, we require simultan-

eously to (1.1) that

21l = min. (1.2)

Condition (1.2) is a very natural one for many statistical and numerical

problems.

If m>n and r = n, then it is well known (cf. [L4])that g

satisfies the equation

ATax = ATy (1.3)

Unfortunately, the matrix ATA s frequently ill-conditioned [6] and

influenced greatly by roundoff errors. The following example of Lauchli [3]

illustrates this well. Suppose



then -
— -
1+ ¢ 1 1 1 1
1 1+ &8 1 1 1
T 1 1 1+ ¢° 1 1
ATA = € (1.4)
1 1 1 1+ 6° 1
1 1 1 1 1+e2J

'Clearly for e # 0, the rank of AiA is five since the eigenvalues of
ATAV are 5 + e2, eg, ee, ee, 52 .

; Let us assume that the elements of AIA are computed using double
precision arithmetic, and then rounded to single precision accuracy. Now
let n be the largest number on the computer such that £1(1.0 +1 ) = 1.0
where fl(...) indicates the floating point computation. Then if e < Y%; )
the rank of the computed representation of (1.4) will be one. Consequently,

no matter how accurate the linear equation solver, it is impossible to solve

the normal equations (1.3).



In [2], Householder stressed the use of orthogonal transformations for
solving linear least squares problems. In this paper, we shall exploit these

transformations and show their use in a variety of least squares problems.

2. A Matrix Decomposition.

Throughout this section, we shall assume m > n = r.

Since the euclidean norm of a vector is unitarily invariant,

lo-axl = [[ec-qaaxl|

is an orthogonal matrix. We choose Q so that

where c¢c = Qb and Q

QA = R = R (2.1)

<:> }(m-n) X n

where R is an upper triangular matrix.

Clearly,

N~

lz-akl - (L <




Since R is an upper triangular matrix and R*R = AIA, TR

is simply the Choleski decomposition of ATA.
There are a number of ways to achieve the decomposition (2.1); €.8.,
one could apply a sequence of plane roﬂations to annihilate the elements
below the diagonal of A. A very effective method to realize the decomposition

(2.1) is via Householder transformations [2]. Let A = Afl), and let

A(g), A(B), cee A(n+l) be defined as follows:

(k) .
P is a symmetric, orthogonal matrix of the form

T
for suitable E(k) such that K(k) w(k) =1.

A derivation of P(k) is given in [9]. 1In order to simplify the

calculations, we redefine P(k) as follows:

’ pK) L1 g () L)




where 1
% = <I_i (asll,iy)cf)

quk) -0 for i<k
o)~ sga(al®)) (o, + 1ol
ul(‘k) = ag}:}l for i>k

_ AU1) |40 0 RO

After P(k) has been applied to A(k) ) A(k+l) appears as follows:

(k1)
R

A(k+1) _

O




fﬁ(k+l)

where is a k X k upper triangular matrix which is unchanged by
. (k+1) (x)
subsequent transformations. Now ak,k = -(sgn ak,k) o SO that the
rank of A 1is less than n if 0 = 0. Clearly,
+
R - al0*l)
and .

g = p® pr-1) (1)

although one need not compute Q explicitly.

3. The Practical Procedure.

Wilkinson [10] has shown that the Choleski decomposition is stable
for a positive definite matrix even if no interchanges of rows and columns
are performed. Since we are in effect performing a Choleski decomposition
of ATA, no interchanges of the columns of A are needed in most situations.
However, in order to ensure the utmost accuracy one should choose the columns
of A by some strategy. In what follows, we shall refer to the matrix A(k)
-even if some of the columns have been interchanged.
One possibility is to choose at the kth stage the column of A(k) which

will maximize |a£k+l)|.
. b

X This is equivalent to searching for the maximum

diagonal element in the Choleski decomposition of ATA.
m

2
Let N ) for § =k, ktl, ... , 0.
J l=k l) J




(k+l)|

Then since lak K = O one should choose that column for which
)

k)

sgk) is maximized. After A(k+l) has been computed, one can compute
s§k+l) as follows:
(1) _ (k) _  (k+1)y° .
Sj = Sj - ( 2 ) (J = k+1l, ... , m)

since the orthogonal transformations leave the column lengths invariant.

(k)

Naturally, the sgk)'s must be interchanged if the columns of A are

interchanged. Although it is possible to compute 0 directly from the

sgk)’s, it is best to compute o, at each stage using double precision

k

inner products to ensure maximal accuracy.
The strategy described above is most appropriate when one has a

sequence of vectors Pi’ EQ, cee EP for which one desires a least squares

estimate. In many problems, there is one vector b and one wishes to
express it in as few columns of A as possible. This is the stagewise

multiple regression problem. We cannot solve this problem, but we shall

show how one can choose that column of A(k) for which the sum of squares

of residuals is maximally reduced at the kth stage.

Let g(l) = Db and 3(k+l) = P(k) g(k). Now

m 2
| 3(e) - glk) §0-1) g 5 (Cgk))
g=K

A -
where 5(k 1) is the least squares estimate based on (k-1) columns of A,

(k)

and lz(k) is the first (k-1) elements of c' /. Then since length is preserved




under an orthogonal transformation, we wish to find that column

of A(k) which will maximize |c§k+l)|.

m

Let t(k) = Z:'a§k2 égk) for j =k, k+1, ... , m.
"5 P A P R
Then since lc(k+l)| = | Ei a(k) c(k) / o.| one should choose that
X & %,k G X

2 .
column of A(k) for which (tgk)) / sgk) is maximized. After P(k) is

applied to A(k), one can adjust tgk) as follows:

$4) _ () (k1) (k1) .
J J sd k

In many statistical applications, if (t§k))2 / s(k) ig sufficiently
small then no further transformations are performed.
Once the solution to the equations has been obtained then it is
possible to obtain an improved solution by a simple iterative technique.
This technique, however, requires that the orthogonal transformations be
saved during their application. The best method fér storihg the trénsformation

is to store the élements of g(k) below the diagonal of the kth column of -
A1)

Let X be the initial solution obtained, and let g =X+ e,

Then lo-axll=lz-ael

vhere r=b-AXx, the residual vector .




Thus the correction vector e 1is itself the solution to a linear least
squares problem. Once A has been decomposed then it is a fairly simple
matter to compute r and solve for ig. Since e critically depends‘upon
the residual vector, the components of r should be computed using double
precision inner products and then rounded to single precision accuracy.
Naturally, one should continue to iterate as long as improved estimates of

A
X are obtained.

The above iteration technique will converge only if the initial
approximation to g is sufficiently accurate. Let

Sarl) | (@, (@)

with x

Then it || P |/ 1 x®) || > ¢ andaif ¢ < 12, i.e., "at least
one bit of the initial solution is correct,' one should not iterate since there
is little likelihood that the iterative method will converge. Since convergence

.tends to be linear, one should terminate the procedure as soon as

e s o




L. A Numerical Example.

In Table I, we give the results of an extensive calculation. The
matrix consists of the first 5 columns of the inverse of the 6 X 6 Hilbert
matrix. The calculations were performed in'single precision arithmetic.

The columns were chosen so that the diagonal elements were maximized at each

stage. The iteration procedure was terminated as soon as

H g(k+l) H > 0,25 “ g‘k) ” . Three iterations were performed but since

H 252) H > 0.25 ” g(l) H B 5(2) was taken to be the correct solution.

In Table II, we show the results of using double precision inner
products on the same problem. Note that the first iterate in Table I
is approximately as accurate as the first iterate in Table II. The
double precision inner product routine converged to a solution for which
all figures were accurate. The normal equations were formed using double
precision inner products but even with a very accurate linear equation

solver described by McKeeman [5] no solution could be obtained.
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3,60000000000401 °

«6.300009000084+02

3.3600000000P403
*?.56000500008403
7,56000000000403
«2,77200000008403

*6,37006872199P+06

X 9.,99999123628-01
R 1.45288321648~06
4 5.82842213838~07

X - 9,99990706868=01
R 3,20374965678=07
| - *3,7819874906P=07

«$,30000000000+02
l.nroooodooooooa
=8,8200000000%+04
2,11680000000405
«2,2050000000P405
e.sxooooooooo.ba

S.77602463688406
=6,71356268210.+04

4,99999724930-01
=4,76837158200=07
1.72925515868<07

2,99999897868-01
8,76837158208~07
*1,18877742680-07

TABLE I

A
3,36000000008403

«8,8200000000#+04
5,6448000000#4+05
“1,4112000000®+06
1,51200000008+06
=5,82120000008405

PIvVOY
3

R
20222829581 4P+06
6,03084713563F4+048
=1,848255035000403

ITERATION

3.3333322021#=01
0,000000000084+00
6,93811812798-08

3,33333289590-01
3,81069726560-06
=4,65697251130=08

*7.5600000000#4+03
2,11680000002405
“1.41120000009406
3,628800000084,06
=3,96900000002406
1,55232000002406

3,28754914208405
*1,61025520178+048
9,47070826438+02
0,61751316438401

2,0099905108801
0,00000000008+00
2.90875683958=08

2,89999981078=01
*3,81069726568-06
.1,06560767383008

7.5600000000#403
=2,2050000000P405
1+51200000000+06
=3,9690000000P+06
4,41000000000406
=1.74636000000406

=1.15224079520+04
9.49107809250402
=1,00826846360402
=1,49490380758401
2.00955590620+00

1,99999983328=01
0.000000000084+00
1.00380520038=08

1.99999993360=01
3.81489726568-06
“6,82274266010=09

8
4,563000000000+02

«1,38600000000404
94.7020000000€+04
=2,5872000000#+05
2.9106000000#4+05
"5 ,16428000008405

0,0000000000€4+00

0,00000000000400




ct

*6437068721998+06

9.9999912347€=01
1.44808655028=06

8.76531166388~07

1.0000000000€+00
=7.53789208838=09

9,477372038268«14

1.0000000000&+00
*7.53789208838=09

947737203826 =18

TABLE IT

S.7760846368P406
“6,71356268218404

4,999997243568-01
“8,86211637418"08

2.75647850220-07

5.00000000008=0%
2.13913153868=07

2.69235369096=18

5.,00000000008~01
2.13913153868=07

2,69235369098~18

PIvaT

R
=2,22244958148+06
6,03084713638404

-1,44255035008403

ITERATION

3,33333219858-01
$,.32050170388=08

1,1338a345368~07
3,33333333338-01

=1.,8423Rr583748=06

“6,06328757848=13

3,33333333336é=01

“1,44238583748=0¢

“6,06328757848=13

3,287549142084+05
~1,61025529176404
§.,47070426438402

4,61751316428401

2,45999951808=01
“2,61890818366-06

4,82014092918-08

2.500000000068=01
3,74348019258~0¢

4,25562900068=15

2.5C000000008=01
3,74034801925€-0¢

4,25562900068<-19

=1.,15224079528+04

9.491078092584+02
-1,09826446378402
“1.,4949038077¢+01

2.,00955590618400

1,999599832568=01°

2.1314%173318=07

1,67521679408~08

2,00000000008=C1
“8,12586796728~06

=7.2759561775€8=13

2.,00000000008~01
"6,12506796728=06

*7.275956177568=13

3.272703272118=C7

1.62360083743€=06

1.623600837868=0¢




5. An Iterative Scheme.

For many problems, even with the use of orthogonal transformations it
may be impossible to obtain an accurate solution. Or, the rank of A may

truly be less than n. In this section, we give an algorithm for finding

the least squares solution even if ATA is singular.
In [7], Riley suggested the following algorithm for solving linear

least squares problems for r = n. Let E(O) be an arbitrary vector, then

solve

(a%A + o 1) _;g(qﬂ) - ATy +a 5("—)' (5.1)
A
The sequence §(Q) converges to x 1if @ > 0 since the spectral radius
of Ot(ATA + I)“l is less than 1. Again we may implement this algorithm
more effectively by the use of orthogonal transformations.

First, let us note that (5.1) is equivalent to the following:

_r_(Cl) =b-A E(Q) (5.2a)
(a4 + a 1) (@) = 4T p(2) (5.2D)
Lar) (@), (o) (5.2¢)

The vector g(q) is itself the solution of a linear least squares problem
since g(q) minimize H Q(Q) -C g(q) H
where A @ £(q)

C = ceceooe ) dq = oece e

Vo I 0

13




Thus the numerical procedure should go as follows. Decompose C

by the methods described in Section 2 so that

5
PC = S - c000060
N7
T ~ : : (0)
where P'P = I and S is an upper triangular matrix. Then let X =0,

30 o ¥

—

o) _ (@), (a)

and 'f(q) is the vector whose components are the first n components of

0)

PlQ(Q), We choose §( = Q since otherwise there is no assurance that

E(q) will converge to g.
Now going back to the original process (5.1),
E(q+l) - 5(Q) +h (5.%)
where G=aa™a+a1)™ and n=a+a1)t AT b .
Thus i(q-'-l) @+ c¥te . 4D (5.4)

1L



It is well known (cf. [6]) that A may be written as
A=UZ VT

where Z is an m ¥ n matrix with the singular values Uj on the

diagonal and zeros elsewhere, and U and V are the matrices of

eigenvectors of AAi and ATA, respectively. Then

T T T
AD=VE U b=pf oy +P 0¥+ w0 vB 0 7,
where B = UT by and r is the rank of A. Then from (5.4) we see
that
(a) _ (a) (a)
X AT Y AN %
B.
where 7§Q) =[1 -~ ( O; )q] El (G=1,2, ...,1)
o+, J
J
Thus as q — oo
B B
x(q)—) —-];v F+ e + lV:Q .
- o, =1 g,—Tr =
1 r

The choice of «a will greatly affect the rate of convergence of the
iterative method, and thus one must choose « with great care. If a is

too small then the equations will remain ill-conditioned. If & is a lower

15



bound of the smallest non-zero singular value, then & should be chosen

so that

—2 < 0.1, say .
a+d

This means at each stage, there will be at least one more place of

accuracy in the solution. There are a number of methods for accelerating

the convergence of (5.1) (cf. [11).

It is easy to see that

e(q*l) = G e(q) = a(AiA + I)_l e(q)

v it follows

Since E(Q) lies in the space spanned by Voo eee s Yo

immediately that

e e A R
a+ g
r
Thus a good termination procedure is to stop iterating as soon as H g(q) H

increases.

6. Statistical Calculations.

In many statistical calculations, it is necessary to compute certain

auxilliary- information associated with A?A . These can readily be obtained

from the orthogonal decomposition. Thus

16




det(ATA) = )2

(rll X Top X eee Xor

Since ATA - BTE , (afa)t - FlxT .

The inverse of R can be readily obtained since R is an upper triangular
matrix. Waugh and Dwyer [8] have noted that it is possible to calculate

(A.TA)"l directly from R by the relation

% ()™t = 877 .

No operations are saved over the first method but it may be somewhat
more accurate.

In some statistical applications, the original set of observations are
augmented by an additional set of observations. In this case, it is not
necessary to begin the calculation from the beginning again if the method

~

of  orthogonalization is used. Let ﬁi, <Y corregspond to the original data
after it has been reduced by orthogonal transformations and let AE’EQ
correspond to the additional observations. Then the up-dated least squares

solution can be obtained directly from

The above observation has another implication. One of the arguments
frequently advanced for using normal equations is that only n(n+l)/2 memory
locations are required. By partitioning the matrix A by rows, however, then
similarly only n(n+l)/2 “locations are needed when the method of orthogonali-

zation is used.

17




7. Least Squares Problems with Constraints.

Frequently, one wishes to determine 2 so that H b-A 2 H is
minimized subject to the condition that H 3'(‘_ =g where H is a pXn
matrix of rank p. One can, of course, eliminate p of the columns of A
by Gaussian elimination after a p x p submatrix of H has been determined
solve the resulting normal equations. This, unfortunately, would
not be a numerically stable scheme since no row interchanges between A and
H would be permitted.

If one uses Lagrange multipliers, then one must solve the

(n-+ B) ¥ (nl#p )~ system-ofosquationen

AT 1 % At b
’ O - =

A -
where A 1is the vector of Lagrange multipliers. Since x = (ATA) 14T b -

T -1 _T
(A"A)"" H M,

H(ATA)—l HT§ =

sl

I
1

[11¢]

where

2= (aTa)"L 4T b

Note 2z 1is the least squares solution of the original problem without
constraints and one would frequently wish to compare this vector with the
final solution % . The vector z , of course, should be computed by the

orthogonalization procedures discussed earlier.

18




T T ~ =T T

Since ATA = ®TE, HLA) T - WW where W= R T H
After W is computed, it should be reduced to a p X p upper triangular
matrix X by orthogonalization which is the Choleski decomposition of

WTW. The matrix equation

should be solved by the obvious method. Finally, one finds

Al -
£- 2z - WotEy

-

where (A.TA)-l H A can be easily computed by using R -1
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procedure least squares solution (2, x, b, m, n, p, singular) ;
Yalue m, n, p j |
arrsy a, X, b ; integer m, n, p ; label singular ;

comment The array a[l:m,l:n] contains“the given matrix of an
overdetermined system of m linear equations in n unknowns (m = n),.
For the p right hand sides given as the columns of the array
b{;:m,l:p], the least squares solutions are computed and stored
as the columns of the arrey x[l:n,l:p]. If rank(a)<n then the
problem 1s left unsolved and the emergency exit singular is used;

In elther case a and b are left intact ;

-

begin

real procedure inner product (i, m, n, a, b, ¢) 3

value m, n, ¢ 3

real a, b, ¢ ; integer 1, m, n ;

comment The body of this inner product routine should pre-
ferably be.replaced by lts double precision equivalent in
machine code ;3

for 1:=m step 1 until n do ¢ci= ¢ + axb ;

inner product = ¢
gggéinner product ;
procedure decompose (m, n, qr, alpha, pivot, singular§ H
velue m, n ;

integer m, n ; array qr, alpha ; integer array pivot ;

label singular ; comment nonlocal real procedure inner product
comment decompose reduces the matrix given in the array

qr[l:m,l:n1

i hN
o

(m 2 n) to upéer right triangular form by means
22



of n elementary orthogonal transformations (I-2ww') =
(I-beta uu'). The diagonal elements of the reduced matrix
are stored in the array alpha{l;n}, the off dlagonal ele-
ments in the upper right trianguélér part of qr. The non-
zero components of the vectors u are stored on and below
the leading diagonal of qr. Pivoting 1s done by choosingA
at each step the column with the largest sum of squares to
be reduced next., These interchanges are recorded in the
array pivot[l:n]. If at any stage of the reduction the sum
of squares of the column to be reduced next is exactly equal
to zero then thé%emergency exit éingular is used 3
begin |
integer 1, J, Jbar, k ; real beta, sigma, alphak, qrkk §
array y, sum[l:n] H
for J:= 1 step 1 until n do
plvot[ﬂ =) 3
sumij}:= inner product (i, 1, m, qr[l,J], qr[},J}, 0)

end J 3
for k:= 1 step 1 untll n do

begin
sigma:= sum[kl ; Jbar:= k ;

for Jt= k+1 step 1 until n do if sigma<:sum[j] then
sigma := sum[j] 3 Jbar:= ]
end ;
if Jjbar#k then
23




begin
1= pivotlk] ;
pivot|k] = pivot{jbar] ;
pivot [Jbar] = 1 ;
sum[}bar];= sum[k} H
1

sumLkJ:= slgma ;

for 1:=1 step 1 until m do
begin

sigma::Iqrti,k] H

qr{},k}tz qr{i,Jbar]';

ar [1,9var] := sigma

end 1 |
end ; |
sigma := inner product (i,Km, qr[i,k], qr[i,kﬂ, 0)
if sigma=0 then goto singular ;
qQrkk = qr[k,k] ;
alphak := alpha[k]:= if qrkk <0 then sqrt(sigma)

else -sqrt(sigma) P

qr(k,k] := qrkk-alphak ;
beta = 1/(sigma-qrkkxalphak) 3

for J:= k+1 step 1 until n ao

v|3] := beta x inner product (1, k, m, ar[1,k], ar{1,3], 0) ;
for J:= k+1 step 1 until n do ‘
begin
for 1:= k step 1 until m do
ar{1,3] = ar(1,9] -ar{1,k]xy [3] ;
sum{J] = sum{gj-qr[k,ijz
' 2k




end J
end k

end decompose ;

integer m, n ; array qr, alpha, r, ¥y ; integer array pivot ;

comment nonlocal real procedure inner product ;

comment Using the vectors u whose nonzero components are
stored on and below the main diagonal of qr{lzm,l:n} solve
applies the n elementary orthogonal transformations (I-2ww')
to the right héhd side r[l:m]. From the reduced matrix given
in alphaklzn} and the upper right triangular part of qr,
solve then computes by backsubstitﬁtlon an approximate solution
to the linear system, The components of the solution vector

are stored in y(l:n] in the order prescribed by plvottlzn] H

begin

integer 1,J ; real gamma ; array z{l:nl 3
for J'=1 step 1 until n do

begin
gamma = inner product (i, Jj, m, qr[i,J], r{i], 0)
/(alpha |3 Jxar(s,3]) ;
for 1:= J step 1 until m do r[i}ﬁ= r[}]+gammaxqr[1,3]

end J ;

z(ﬁ]: an]/alphaLn] 3

for 1 := n-1 gstep -1 until 1 do

zL11:= -inner product (Jj, i+1, n, qr[;,J], zLj]l —r[}]).
/alpha{}] 3 _
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for 1:= 1 step 1 until n do y|pivotii]} = z1]

end solve 3

integer 1, J, k¥ ; real norm0, norml 3

array qril:m,l:n}, alpha, e, ytl:nj, ri}:m

-
I
integer array plvot\l:n} H

for J:=1 step 1 until n do for 1:= 1 step 1 until m do

ar{1,3] = a{1,1] 3

decompose (m, n, qr, alpha, pivot, singular)

for k:= 1 step 1 until p do

begin

for 1:=1 sted 1 until m do ri1] = bl1,k] ;

-

solve (m, n, qr, alpha, pivot, r, y) 3

for 1:=1 step 1 until m do

rti} = «inner product (}, 1, n, a{i,J}, y[J], -b[},k]) H
solve (m, n, qr, alpha, pivot, r, e) 3

norm0 = norml = 0 3

for 1 =1 step 1 until n do
begin

norm0 = norm0+yXL1}’?2 ; norml = norm1+e[;1]?2
end 1 ; _

ig norml > 0.0625<norm0 then goto singular ; comment No
attempt at obtaining the solution is made unless the norm
of the first correction is significantly smeller than the

norm of the initial approxigmation ;

iterate:

for 1= 1 step 1 until n do y513:= yi;}+e€i] K

v L.

for 1:= 1 step 1 until m do




r\}}:= ~inner product (J, 1, n, al},J}, yLJ}, -b{},kﬂ) 3
solve (m, n, qr, alpha, pivot, r, e) ;3
norm0 := norml ; norml:.= 0 3

for 1:= 1 step 1 until n do norml := norm1+e{ ??2 ;

if norm1=0.0625<norm0 then goto iterate ; comment iterative
improvement of the solution 1s terminated as soon as the
norm of a correction is not significantly smaller than the

norm of the previous correction ;

for 1:= 1 step 1 until n do x[1,k] = y[1]

end k

end least squares solution






