
CHANGE MANAGEMENT AND SYNCHRONIZATION
OF LOCAL AND SHARED VERSIONS
OF A CONTROLLED VOCABULARY

A DISSERTATION

SUBMITTED TO THE PROGRAM IN

BIOMEDICAL INFORMATICS

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Diane Elizabeth Oliver

August 2000

ii

© Copyright by Diane E. Oliver 2001

All Rights Reserved

iii

I certify that I have read this dissertation and that in my opinion it is fully adequate, in

scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Mark A. Musen, M.D., Ph.D., Principal Adviser

(Stanford Medical Informatics)

I certify that I have read this dissertation and that in my opinion it is fully adequate, in

scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Edward H. Shortliffe, M.D., Ph.D.

(Stanford Medical Informatics)

I certify that I have read this dissertation and that in my opinion it is fully adequate, in

scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Yuval Shahar, M.D., Ph.D.

(Stanford Medical Informatics)

I certify that I have read this dissertation and that in my opinion it is fully adequate, in

scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Gio Wiederhold, Ph.D.

(Department of Computer Science)

Approved for the University Committee on Graduate Studies:

v

Abstract

To share clinical data and to build interoperating computer systems that permit

data entry, data retrieval, and data analysis, users and systems at multiple sites must share

a common controlled clinical vocabulary (or ontology). However, local sites that adopt a

shared vocabulary have local needs, and local-vocabulary maintainers make changes to

the local version of that vocabulary. If the local site is motivated to conform to the shared

vocabulary, then the burden lies with the local site to manage its own changes and to

incorporate changes from the shared version at periodic intervals. I call this process

synchronization. In this dissertation, I present an approach to change management and

synchronization of local and shared versions of a controlled vocabulary. I describe the

CONCORDIA model, which comprises a structural model, a change model, and a log model

to which the shared and local vocabularies conform. I demonstrate use of this model in

the implementation of a synchronization-support tool that supports carefully controlled

divergence. To evaluate my model and methods, I performed synchronization on a small

test set of medical concepts in the subdomain of rickettsial diseases. The CONCORDIA

model served as an effective approach for representation and communication of

vocabulary change.

vi

Acknowledgements

I thank Mark Musen, Yuval Shahar, Ted Shortliffe, and Gio Wiederhold for their

contributions as members of my dissertation committee. I thank Octo Barnett for

introducing me to the challenges of controlled medical vocabularies. I thank Keith

Campbell, Alan Rector, Samson Tu, Ray Fergerson, Larry Fagan, John Gennari, Jeremy

Wyatt, and Darlene Vian for valuable discussions and inspiration. I thank Lyn Dupre for

editing this dissertation. Above all, I am grateful for the support from my family and

friends.

This work was funded by the Agency for Health Care Policy and Research, the

Veterans Administration, and the National Library of Medicine.

vii

Table of Contents

Abstract ... v

Acknowledgements .. vi

Table of Contents.. vii

List of Figures .. xiii

List of Tables... xvii

List of Boxes ... xix

1 Management of Change in Controlled Medical Vocabularies .. 1

1.1 Hypothesis .. 3

1.2 The Need for a Shared Controlled Medical Vocabulary .. 3

1.3 The Problem of Local Divergence.. 4

1.3.1 An Example of Divergence: The VA Lexicon.. 5

1.3.2 Update of a Local Terminology: A Report from the Trenches ... 5

1.3.3 Tradeoffs Between Autonomy and Conformance... 7

1.3.4 Reasons for Shared and Local Change.. 7

1.4 Research Assumptions.. 8

1.5 Research Approach .. 9

1.5.1 Extended Vocabulary Model .. 9

1.5.2 Synchronization .. 10

1.5.3 System Architecture.. 11

1.5.3.1 Concept and Change-Data Repositories... 12

1.5.3.2 Browsers and Editors ... 13

1.5.3.3 Synchronization-Support Tool ... 13

1.6 Evaluation .. 14

1.7 Vocabulary Problems Not Addressed Herein... 15

1.8 Summary... 16

1.9 Guide for the Reader .. 16

viii

2 Structural Models, Change Models, and Log Models in Existing Systems 19

2.1 Controlled Medical Vocabularies and Frame-Based Knowledge-Representation Systems 20

2.2 Structural Models... 23

2.2.1 Naming and Identification of Concepts .. 24

2.2.1.1 Codes, Names, and Unique Identifiers... 24

2.2.1.2 Synonyms and Abbreviations .. 26

2.2.1.3 Translation Between Coding Systems.. 27

2.2.1.4 Translation Between Natural Languages ... 28

2.2.2 Organization of Concepts.. 28

2.2.2.1 Hierarchy.. 30

2.2.2.2 Binary Relations... 30

2.2.2.3 User-Defined Facets and Cardinality ... 31

2.2.2.4 Transitivity of Roles... 32

2.2.2.5 Individuals or No Individuals... 33

2.2.2.6 Inheritance and Subsumption... 33

2.2.2.7 Conjunction, Disjunction, and Negation .. 34

2.3 Change Models... 35

2.3.1 Additions... 35

2.3.2 Deletions or Retirement .. 36

2.3.3 Name Changes .. 37

2.3.4 Hierarchical-Relationship Changes... 39

2.3.5 Binary-Relationship Changes ... 39

2.3.6 Merges .. 39

2.4 Comparison of Log Models .. 40

2.4.1 ICD-9-CM... 41

2.4.2 MeSH.. 42

2.4.3 DSM.. 45

2.4.4 SNOMED.. 46

2.4.5 UMLS ... 48

2.5 Management of Shared and Local Versions... 49

2.5.1 Methods Proposed by Developers of Controlled Medical Vocabularies 51

2.5.1.1 Distinct Namespace for Local Codes ... 51

2.5.1.2 A Generative Approach to Facilitate Local Changes ... 51

2.5.1.3 Central Coordination.. 52

ix

2.5.1.4 Clarification of Missing Codes as Deletes or Merges .. 52

2.5.1.5 An Open Sharing Approach ... 52

2.5.1.6 Collaborative Development ... 53

2.5.2 Methods Proposed by Researchers in the Knowledge-Representation Community 53

2.5.2.1 Translating Between Different Knowledge Representations ... 55

2.5.2.2 Creating a Common Application Programming Interface.. 55

2.5.2.3 Sharing a Common Syntax and Semantics... 56

2.5.2.4 Merging and Aligning Ontologies.. 56

2.5.2.5 Assembling Modular Ontologies ... 57

2.5.2.6 Comparing Concepts by Description-Compatibility Measures.. 57

2.6 Summary... 57

3 CONCORDIA Model.. 61

3.1 CONCORDIA Structural Model... 62

3.1.1 Data Elements in the Structural Model ... 62

3.1.2 Organization and Constraints.. 64

3.2 CONCORDIA Change Model .. 69

3.3 CONCORDIA Log Model... 76

3.4 Data Interchange Format... 78

3.5 Summary... 78

4 Synchronization Methods... 85

4.1 Synchronized State ... 85

4.2 Synchronization Change Operations.. 87

4.3 Synchronization Process .. 89

4.3.1 Valid Actions .. 91

4.3.2 Claims ... 93

5 Implementation ... 97

5.1 Functional Requirements ... 98

5.2 Design Choices... 99

5.2.1 Object-Oriented Design .. 99

5.2.2 User Interface.. 99

5.2.3 Input and Output ... 100

x

5.3 Development Environment ... 101

5.4 Basic Functionality .. 102

5.4.1 Core Vocabulary Functions .. 102

5.4.2 Search Methods... 104

5.4.3 Change Operations.. 104

5.4.4 Log.. 105

5.4.5 Error Checking.. 107

5.4.6 Data Entry and Data Display .. 107

5.5 Applications.. 108

5.5.1 Shared-Vocabulary Browser ... 108

5.5.2 Shared-Vocabulary Editor .. 109

5.5.3 Local-Vocabulary Browser ... 111

5.5.4 Local-Vocabulary Editor .. 112

5.5.5 Synchronization-Support Tool.. 112

5.6 Summary... 115

6 Evaluation .. 117

6.1 Restatement of Hypothesis.. 117

6.2 Evaluation Approach.. 117

6.2.1 A Case Study .. 119

6.2.2 Methods .. 119

6.3 Vocabulary Test Set.. 125

6.3.1 Initial Shared Vocabulary (SV-0) ... 125

6.3.2 Initial Local Vocabulary (LV-0) ... 126

6.3.3 Modified Shared Vocabulary (SV-1) .. 126

6.3.3.1 Classification of Concepts (Shared Vocabulary) ... 126

6.3.3.2 Synonyms (Shared Vocabulary)... 129

6.3.3.3 Obsolete Concept (Shared Vocabulary) ... 129

6.3.3.4 Additional Concepts to Assist Organization (Shared Vocabulary) 130

6.3.3.5 Naming Problem (Shared Vocabulary) .. 130

6.3.3.6 Abbreviations (Shared Vocabulary)... 130

6.3.3.7 Attribute Names (Shared Vocabulary) ... 130

6.3.3.8 Attribute–Value Pairs (Shared Vocabulary)... 131

6.3.4 Modified Local Vocabulary (LV-1).. 131

xi

6.3.4.1 Classification of Concepts (Local Vocabulary) ... 131

6.3.4.2 Synonyms (Local Vocabulary) .. 135

6.3.4.3 Obsolete Concept (Local Vocabulary) ... 136

6.3.4.4 Additional Concepts to Assist Organization (Local Vocabulary) 136

6.3.4.5 Naming Problems (Local Vocabulary) .. 136

6.3.4.6 Abbreviations (Local Vocabulary)... 137

6.3.4.7 Attribute Names (Local Vocabulary) ... 137

6.3.4.8 Attribute–Value Pairs (Local Vocabulary)... 138

6.3.4.9 Merges (Local Vocabulary) ... 138

6.4 Outputs ... 138

6.4.1 Synchronized Local Vocabulary (LV-1-synch) .. 138

6.4.1.1 Automated Changes ...139

6.4.1.2 Supported Changes .. 146

6.4.2 Synchronization Report .. 149

6.5 Analysis of Results.. 149

6.5.1 Were the Synchronization Criteria Fulfilled? ... 149

6.5.2 Was the Model Effective for This Test Set? ... 152

6.5.2.1 Effectiveness of Structural Model.. 152

6.5.2.2 Effectiveness of Change Model ... 153

6.5.2.3 Effectiveness of Log Model ... 154

6.5.3 Did Automation of Certain Tasks and Support of Other Tasks Facilitate Synchronization?....

.. 154

6.6 Conclusion.. 156

6.6.1 Strengths and Limitations of Study... 157

7 Discussion and Future Work.. 161

7.1 Comparison of CONCORDIA with Existing Models .. 162

7.1.1 CONCORDIA and Existing Structural Models... 162

7.1.2 CONCORDIA and Existing Change Models .. 164

7.1.3 CONCORDIA and Existing Log Models.. 167

7.1.4 CONCORDIA and Local Extensions in Existing Systems ... 167

7.2 Analysis of Model and Methods ... 168

7.2.1 Analysis of the CONCORDIA Design.. 168

7.2.2 Analysis of Synchronization-Support Services... 172

7.2.3 Further Evaluation .. 175

xii

7.3 Beyond Vocabularies: Application of Change-Management Principles to Clinical Guidelines .. 176

7.4 Contributions.. 179

7.4.1 Contributions to Medical Informatics ... 179

7.4.2 Contributions to Computer Science .. 181

7.4.3 Contributions to the Practice of Medicine .. 181

7.5 Unsolved Problems Related to this Research... 182

7.6 A Look Ahead ... 185

Appendix A: Shared-Vocabulary Structural Model ... 187

Appendix B: Local-Vocabulary Structural Model .. 193

Appendix C: Shared-Vocabulary Change Model .. 199

Appendix D: Local-Vocabulary Change Model... 233

Appendix E: Shared-Vocabulary Log Model... 243

Appendix F: Document Type Definition (DTD) for Shared Vocabulary... 251

Appendix G: Document Type Definition (DTD) for Log .. 255

Appendix H: Synchronization Actions 263

Appendix I: Changes Made to Shared Vocabulary ... 273

Appendix J: Changes Made to Local Vocabulary ... 279

Appendix K: Synchronization Report .. 285

References ... 291

xiii

List of Figures

Figure 1.1. Synchronization process. The shared and local vocabularies (SV and LV) are identical at time 0

(t0). They diverge at time 1 (t1). The LV is synchronized with SV, and the process is repeated. 11

Figure 1.2. System architecture of Concept Manager. Concept Manager includes a suite of tools and

concept and change-data repositories. Arrows indicate flow of data. ... 12

Figure 1.3. User interface of the synchronization-support tool. The tool recommends that the user retire

Wassermann test, but also makes it possible for the user to retire and then to preserve the concept. . 14

Figure 2.1. Rubrics in ICD-9-CM from the cardiac-dysrhythmias category. .. 41

Figure 2.2. Example of a new MeSH heading with its scope note and previous indexing............................. 43

Figure 2.3. Change in hierarchical location of Mumps in MeSH between 1996 and 1997. See Table 2.10 for

the MeSH representation of this change. .. 44

Figure 2.4. Examples of term-code reassignments in SNOMED. Documented data include term codes,

ENOMENs, and terms.. 47

Figure 2.5. Example from semi-structured list of reference corrections in SNOMED. Documented data

include term codes, ENOMENs, terms, and structured text stating the change. 47

Figure 2.6. Examples of deletes in SNOMED. Documented data include term codes, ENOMENs, terms, and

brief explanations of what change was made and why. .. 48

Figure 2.7. Examples showing the representation of deletions in the UMLS, as listed in the file named

DELETED.CUI.. 48

Figure 2.8. Examples showing the representation of merges in the UMLS, as listed in the file named

MERGED.CUI... 49

Figure 3.1. Hierarchy showing where the concept Ebola hemorrhagic fever would be located in a hierarchy.

Hierarchical links are is-a; attribute–value pairs are shown.. 66

Figure 3.2. Examples of three types of parent–child relationships permitted in the CONCORDIA structural

model: (1) a child has an additional attribute–value pair that its parent does not have; (2) a child has

an attribute value that is related by an is-a relationship to the attribute value of the same attribute in

its parent, and (3) a child may share the attribute has-location with its parent, and the value in the

child is related by a part-of relation to the value in that parent... 67

Figure 3.3. Process for retire concept. (1) Label concept retired. (2) Add retired concept’s parents to list of

parents of retired-concept’s children. (3) Add retired concept’s children to list of children of retired-

concept’s parents. (4) Remove retired concept from list of children of each parent of retired concept.

(5) Remove retired concept from list of parents of each child of retired concept. (6) Add retired

xiv

concept to list of retired children in each parent of retired concept. (7) Add retired concept to list of

retired parents in each child of retired concept. 71

Figure 3.4. Process for replace concept name. (1) Change concept name to new name. (2) Add old concept

name to list of synonyms... 71

Figure 3.5. Process for correct concept name. (1) Change concept name to new name. (Do not add old

concept name to list of synonyms.) ... 71

Figure 3.6. Process for merge two concepts into one of the concepts. (1) Select one of the two concepts to

retain. (2) Label other concept retired. (3) Add retired concept’s synonyms, abbreviations, parents,

and children to retained concept. (4) Add retired concept’s name to synonyms of retained concept.

This example also shows the effect of an additional change operation that replaces concept name... 72

Figure 3.7. Process for merge two concepts into a new concept. (1) Label the two concepts retired. (2) Add

new concept, selecting one of the parents of one of the retired concepts as the parent of the new

concept, and select a new name. If one of the retired concepts was a parent of the other, then select a

parent of the more general retired concept to be the parent of the new concept. (3) Add attribute–

value pairs, remaining parents, and children to new concept. (4) Add retired concepts’ names and

synonyms to synonym list of new concept.. 73

Figure 3.8. Process for split one concept into two new concepts. In this case, the synonym was not passed

down to either of the two new concepts. This example shows the results of a split followed by

application of add synonym and add abbreviation to each of the new concepts................................. 74

Figure 3.9. Sample change record for concept change operation add child. .. 77

Figure 4.1. Application of one synchronization operation to a local vocabulary. .. 93

Figure 4.2. Application of a series of synchronization change operations to a local vocabulary. 93

Figure 4.3. Application of changes to a local vocabulary during the change interval followed by application

of synchronization operations during the synchronization interval... 94

Figure 5.1 Components of Concept Manager and flow of data. ... 97

Figure 5.2. Inputs and outputs of applications. Names of input and output files are italicized; names of

applications are not. Files at the origins of dashed arrows represent inputs; files at the ends of solid

arrows represent outputs. .. 101

Figure 5.3. Hierarchy of classes for changes in the log. ... 105

Figure 5.4. Portion of a sample log. The log is a sequence of change records in chronological order. 106

Figure 5.5. Shared-vocabulary browser. ... 108

Figure 5.6. Shared-vocabulary editor. .. 110

Figure 5.7. Local-vocabulary browser. ... 111

Figure 5.8. Local-vocabulary editor. .. 112

Figure 5.9. Synchronization-support tool. .. 113

xv

Figure 6.1. Initial shared vocabulary (SV-0). The concept hierarchy for the initial local vocabulary (LV-0)

is the same as the concept hierarchy for SV-0. ... 122

Figure 6.2. Shared vocabulary (SV-1). (The second column is a continuation of the first.)....................... 123

Figure 6.3. Local vocabulary (LV-1). (The second column is a continuation of the first.) 124

Figure 6.4. Synchronized vocabulary (LV-1-synch). (The second column is a continuation of the first.) . 140

Figure 6.5. System recommends merging Mediterranean spotted fever and boutonneuse fever................ 144

Figure 6.6. System shows that the merge of Mediterranean spotted fever and boutonneuse fever has been

completed. ... 145

Figure 6.7. Panel that alerts the user to the fact that two concepts with the same name exist. The user may

click on the buttons for more information about the shared and local concepts to see if they have the

same meaning. If the user confirms that the two concepts have the same meaning, the local concept

will be merged into the shared concept. .. 147

Figure 6.8. Panel that displays added local concepts, among which the user searches for a local concept that

is equivalent to the shared concept Orientia tsutsugamushi.. 148

Figure 6.9. Portion of the synchronization report. .. 150

Figure 6.10. Comparison of shared and local vocabularies. Upper panel shows the comparison before

synchronization begins. Lower panel shows the comparison after synchronization is completed.... 151

xvii

List of Tables

Table 2.1. Examples of controlled medical vocabularies. .. 21

Table 2.2. Examples of frame-based knowledge-representation languages (including description logics),

protocols, and specifications. Languages identified as frame-based knowledge-representation

languages in this table are non–description-logic languages... 22

Table 2.3. Comparison of features that relate to naming and identification of concepts. 24

Table 2.4. Comparison of features that relate to organization of concepts. .. 29

Table 2.5. Comparison of features that relate to creation or addition of new entities................................... 36

Table 2.6. Comparison of features that relate to deletion or retirement of entities....................................... 37

Table 2.7. Comparison of features that relate to modification of existing entities. 38

Table 2.8. Selected examples of changes made to ICD-9-CM.. 42

Table 2.9. Examples of replaced Medical Subject Headings with their replacements.................................. 43

Table 2.10. Sample MeSH tree-number changes. These changes occurred in the 1997 release of MeSH. By

deleting a previous tree number and adding a new tree number, Mumps was moved from one part of

the tree to another. See Figure 2.3 for a hierarchical view of this change... 44

Table 2.11. Examples of adds in SNOMED. Structured data for additions include term codes, date, ENOMEN

(English term classification data item), term, and cross-references to other SNOMED codes. Adds refer

to either preferred terms or synonyms... 46

Table 2.12. Examples of text corrections in SNOMED. Text corrections include removal of words from a

term and changes of spelling (e.g., “Creutzfeld” -> “Creutzfeldt”). ... 47

Table 3.1. Data elements in the CONCORDIA shared-vocabulary structural model. 62

Table 3.2. Representation of a CONCORDIA concept, Ebola hemorrhagic fever. .. 65

Table 3.3. Valid shared-vocabulary change operations. ... 70

Table 3.4. Data elements in the CONCORDIA log model for the concept change operation replace attribute

value.. 77

Table 4.1. Action choices for add concept. .. 90

Table 4.2. Action choices for add parent. .. 91

Table 6.1. Number of occurrences of change operations applied to the local vocabulary during the

synchronization session... 141

xix

List of Boxes

Box 3.1. Valid local-vocabulary change operations. .. 75

Box 4.1. Synchronization change operations that affect the concept hierarchy.. 88

Box 4.2. Synchronization change operations that do not affect the concept hierarchy................................. 88

Box 6.1. Domain-modeling rules for transferring content from a source textbook to a vocabulary........... 118

Box 6.2. A subset of changes made to the shared vocabulary, SV-0, to create the modified shared

vocabulary, SV-1. The complete list of changes is given in Appendix I. ... 127

Box 6.3. A subset of changes made to the local vocabulary, LV-0, to create the modified local vocabulary,

LV-1. The complete list of changes is given in Appendix J.. 132

1

1 Management of Change in Controlled Medical
Vocabularies

“Quot homines tot sententiae; suos quoque mos.”

(So many men, so many minds, every one has his point of view.)

(Terence, c. 170 B.C.) [Sargeaunt 1995]

Controlled medical vocabularies in computer-based patient-record systems

facilitate data entry [Musen 1995, Nowlan 1991], data retrieval [Elhanan 1997], data

aggregation [Baorto 1997], and data analysis [Paty 1994]. Work on patient-record

systems [Cimino 1994, Nowlan 1991], diagnostic decision-support applications [Elhanan

1996, Giuse 1995], alerts and reminders [Thurin 1995], and computer-based guidelines

[Musen 1996, Ohno-Machado 1998, Shahar 1998] has revealed that management of

medical vocabulary and its evolution is crucial. These vocabularies are frequently large:

on the order of thousands [Forrey 1996], tens of thousands [Cimino 2000], or hundreds of

thousands [Humphreys 1996a, Humphreys 1997] of elements. Maintainers of large

medical vocabularies find that updates are essential and that management of change is a

nontrivial problem [Cimino 1996a, Olson 1996, Robinson 1997, Tuttle 1996]. Changes

occur due to advances in medical knowledge and due to changes in user requirements.

Changes typically involve modifications to concepts, terms, and relationships in

structured vocabularies.

Independent development of a multitude of coding systems, thesauri, and data

dictionaries in computer-based systems for health care that were not initially intended to

interoperate has led to the creation of numerous different controlled medical

vocabularies. Nonetheless, if health-care providers, payors, patients, administrators,

researchers, and government regulatory agencies want to communicate health-care data

via computer-based systems, the software they use must recognize the names and

meanings of the same data elements. Hence, there is a need for a common shared

controlled medical vocabulary.

It is not sufficient to share only the names and dictionary definitions of data

elements. Management of a vast number of terms requires organization of those terms so

that both people and computer-based systems can use them. Because the existing diverse

2

controlled vocabularies were developed by different groups for different purposes, their

developers used a wide variety of organizational structures and concept-representation

techniques. Yet, if the goal of interoperation is to be achieved, then we must have a

common understanding of how terms and concepts are represented and organized.

Assume that health-care organizations recognize that shared medical vocabularies

are essential. These organizations recognize that it is too expensive for every group to

develop its own comprehensive medical vocabulary, and to create translations to every

other group’s vocabulary. They agree that pooling resources to create a vocabulary that

everyone can use is a good idea. However, local sites that adopt a shared vocabulary have

local needs that prompt the local-vocabulary maintainers to make changes to the local

version of that vocabulary. For a local site, there is a tradeoff between having autonomy

over a local vocabulary and conforming to a shared vocabulary to obtain the benefits of

interoperation. If the local site is motivated to conform, then the burden lies with the local

site to manage its own changes and to incorporate the changes of the shared version at

periodic intervals.

Ultimately, to support interoperation of systems that manage vocabularies and of

applications that use vocabularies that change over time, the community needs standards

for the way that concepts are represented, for the types of changes that can be made, for

the semantics of those changes, and for the way that changes are documented. Given such

standards, automated or partially automated tools could support the task of updating

mapped, merged, or divergent vocabularies. It is important to note, however, that a

standard for representation of changes to concepts invariably depends on the standard

chosen for representation of those concepts.

In this chapter, I begin by stating the hypothesis of my research. I elaborate the

need for a shared vocabulary and the problem of local divergence. Next, I summarize my

approach for communicating about change at the shared and local level. I describe the

implementation of the system, Concept Manager, that I have built to evaluate my

methods. Concept Manager is a system of five software tools that supports vocabulary

management in shared and local environments. Finally, I comment on related vocabulary

problems that are not a part of my research, and I offer a guide to the reader that explains

the organization of this dissertation.

3

1.1 Hypothesis

Communication of changes between an organization that develops a shared

vocabulary and a local site that uses and adapts that vocabulary requires a shared

understanding of an explicit formal vocabulary structural model, change model, and log

model; the utility of such formal models can be demonstrated by their implementation in

a synchronization-support tool that enables a vocabulary developer to synchronize a local

version of a shared vocabulary with the shared version from which it was derived.

1.2 The Need for a Shared Controlled Medical Vocabulary

There are multiple reasons why health-care organizations need to use a controlled

medical vocabulary in computer-based patient records, and there are many controlled

medical vocabularies that exist for different purposes. Reasons to use such vocabularies

in patient-record systems include displaying terms for structured data entry, indexing text

and images by content, naming data elements in databases, linking patient data to

literature-retrieval systems, reporting data to payors and government agencies, and

connecting decision-support systems with patient data. Well-known examples of

controlled medical vocabularies are the International Classification of Diseases, Ninth

edition, Clinical Modification (ICD-9-CM) [ICD-9-CM 1993], which is used for health-

care reimbursement in the United States; Medical Subject Headings (MeSH) [NLM 1999],

which indexes the medical literature; and the Unified Medical Language System (UMLS)

[McCray 1995], which provides a mapping among multiple source vocabularies [McCray

1995]. Other controlled medical vocabularies have evolved at sites that collect and store

patient data. For example, the Computer-Stored Ambulatory Record (COSTAR) developed

at the Massachusetts General Hospital in Boston contained a standardized vocabulary for

clinical terms [Barnett 1982], and the Medical Entities Dictionary (MED) [Cimino 1995]

is the vocabulary that integrates the names of data elements used in computer-based

patient-care systems at Columbia-Presbyterian Medical Center in New York.

As institutions accumulate patient data, multiple parties develop a demand for

those data. Because groups need to share data, there is a need to share the vocabulary

that people use to represent those data.

When the developer of a computer-based patient-record system confronts the

problem of choosing a controlled medical vocabulary, he typically finds that, although

there are many controlled medical vocabularies from which to choose, there is no single

existing vocabulary that completely suits his needs. The developer can create a new

4

vocabulary or use whatever vocabulary is available. On the one hand, unfortunately,

creation of an entire controlled vocabulary that covers a large portion of medical care

requires significant resources of time and expertise. On the other hand, if the developer

chooses an existing vocabulary, he will face disadvantages that arise because the

vocabulary was originally designed for a different purpose.

Patient-care providers, managers of health-care organizations, and clinical

researchers need to share patient data. A single patient often has many providers, all of

whom need to have access to the same data. Analysis of health-care practices within an

organization requires aggregation of data from groups of patients cared for in a number of

different settings. Similarly, epidemiological studies of disease patterns and clinical trials

that evaluate the efficacy of medical treatments frequently require that patient data be

combined from multiple sources. However, when data exist in disparate systems that use

different concept representations, it is often prohibitively costly to translate data from one

system to another, and research and clinical questions remain unanswered.

Thus, there are two primary reasons why people choose to share vocabularies: (1)

they do not want to do all the development and maintenance of a vocabulary themselves;

and (2) they want to share data among diverse applications without a costly or ineffective

translation process.

1.3 The Problem of Local Divergence

If there is a shared vocabulary that many people want to use, people frequently

adapt it for their own local purposes. Unfortunately, if both the shared vocabulary and the

local vocabulary evolve independently, the problem of local divergence from the shared

clinical vocabulary emerges.

People build vocabularies using other existing vocabularies, either because the

existing vocabularies provide needed content or because the authors of a new vocabulary

think that their system would be more valuable if it included a mapping to another

commonly used vocabulary. In the first case, the vocabulary developers can adapt the

existing vocabulary to their own needs and not worry about divergence of the two

vocabularies—that is, until data managers decide that they want a system based on the

original vocabulary to interoperate with a system based on the derived vocabulary. In the

second case, where the goal is to have a mapping to an existing vocabulary to enhance

the value of the new vocabulary, it is necessary to update the mapping to avoid disparity

as both vocabularies evolve.

5

1.3.1 An Example of Divergence: The VA Lexicon

An example of a new vocabulary that was built from a preexisting vocabulary is

the VA Lexicon, which is used for patient problem lists in the Veterans Administration

Health Care System. The VA Lexicon was adapted from the Unified Medical Language

System (UMLS) from the National Library of Medicine (NLM). The VA Lexicon was

derived initially from the 1993 version of the UMLS. The developers of the VA Lexicon

added their own terms, and the UMLS maintainers proceeded to make changes and to

release new versions every year. By adopting the UMLS as the starting point for the VA

Lexicon, the VA benefited from the work done by other vocabulary developers.

However, as the UMLS changed and the VA Lexicon changed, the two vocabularies

became dissimilar. Mapping them back to each other is a monumental task; so far, neither

the VA nor the NLM has devoted the resources to make the two vocabularies compatible

with one another. We can infer that, at this point, the cost of creating the mapping

outweighs the perceived benefits of doing the job.

1.3.2 Update of a Local Terminology: A Report from the Trenches

If a local vocabulary depends on one or more external vocabularies maintained by

other groups, then the local-vocabulary developers have the burden of accepting and

implementing update information. For example, the MED at Columbia–Presbyterian

Medical Center includes the names and codes found in ICD-9-CM because reimbursement

for health-care services in the United States depends on those codes. Updates for ICD-9-

CM are released annually.

The experience reported by James Cimino [Cimino 1996a, Cimino 1996b], who

directs maintenance of the MED, no doubt is similar to what other clinical vocabulary

maintainers will encounter. Cimino incorporated ICD-9-CM into the MED during initial

development of the MED and regularly incorporates changes to ICD-9-CM. To share his

strategy with other researchers and to raise awareness of the problems, he reported the

details of the process he undertook and the difficulties he faced when he updated the MED

with the 1994 version of ICD-9-CM.

Two crucial features of the MED are that a code for a concept keeps the same

meaning always and that a code is never deleted, because historical patient data depend

on those codes. There is an old rule that patient records should never be erased or altered.

Surely, erasing or altering the meaning of codes would violate this principle. However, in

6

performing the update, Cimino found that the meanings of codes in ICD-9-CM

occasionally did change, and codes sometimes were deleted entirely.

ICD-9-CM changes were limited to additions, deletions, name changes, and code

changes. Cimino found these change operations to be too nonspecific for his purposes.

For additions, he needed to distinguish among simple addition (addition of an entirely

new concept), refinement (addition of a child concept to an existing concept),

precoordination (combination of two existing concepts—for example, the attachment of

a modifier to a base concept), disambiguation (creation of new terms to replace a

previously ambiguous term), and redundancy (addition of a term that has the same

meaning as a term that already exists). For deletions, he needed to distinguish between

obsolescence (identification of a term that is no longer in use) and discovered redundancy

(removal of a term that duplicates the meaning of another term). For name changes, he

needed to determine whether the change was a minor name change (a change of name,

but essentially no change in meaning) or a major name change (a change in name, and a

change in meaning). In his taxonomy of changes, he also included code reuse and code

change, which were operations allowed in ICD-9-CM, but not in the MED. He needed to

distinguish among these 11 types of changes, because actions taken depended on change

type.

Another problem with the update process was that the documentation distributed

by the maintainers of ICD-9-CM provided only an overview of changes made since the

previous year, and offered few details. Therefore, Cimino found that his best option was

to do a line-by-line comparison of ASCII text of the 1993 and 1994 ICD-9-CM files for the

full sets of codes and terms for each year. For this task, he used the “diff” program

available on Unix systems. He then had to process manually each line that differed.

Identification of the change type according to Cimino’s taxonomy of changes facilitated

the next step, which was to update the MED.

Thus, classification of change operations identified by ICD-9-CM maintainers was

not what was needed, the change documentation gave inadequate explanations, and

change files were difficult to process. Tuttle and Nelson, who are also familiar with the

challenges of updating vocabularies [Tuttle 1995, Tuttle 1991], offered comments on the

approach [Tuttle 1996]. They bemoaned the need to resort to a line-by-line comparison of

ASCII text files, using a program such as “diff.” They voiced a hope that, in the future,

vocabulary maintainers will be more explicit about changes and will provide computer-

processable change files. They said that they might be able to make use of Cimino’s

experience in updating external vocabularies to the UMLS, but expressed hope that such

7

an approach would be a short-term interim solution, and that vocabulary maintainers

ultimately will report their changes in a more disciplined manner.

1.3.3 Tradeoffs Between Autonomy and Conformance

Administrators and clinicians at a local site typically want to have control over

their patient data. They must make decisions about the database-management systems,

hardware, and software applications used at their site. The nomenclature used for the data

must be acceptable to local users. If the local site is a specialty clinic, then users may

need more specialized concepts and terms than the shared vocabulary supports. Computer

systems at the local site must support the kinds of queries that people at the site need to

ask about the data. A local site’s ability to adopt a shared vocabulary may be constrained

by these local factors. There are additional costs in building consensus about vocabulary

with other sites, and it is costly to make changes to local data, databases, and applications

for the sake of conforming if those changes are not useful at the local site. Thus, the

pressures to optimize systems and vocabularies for local use are significant.

Although people at a local site want to have autonomy over their data and

vocabularies, managing and maintaining a large vocabulary is a time-consuming and

expensive task that may require expertise in a variety of specialized subdomains. If a

single individual is in charge of maintaining the vocabulary, that individual may not have

expertise in all the necessary areas. If many people with differing expertise contribute to

the vocabulary, they can provide broader and deeper content coverage, but then they face

difficulties in ensuring that patterns are followed consistently and in avoiding duplication

of concepts. If there is already a vocabulary available that has been built and is kept up

to date by another organization, then people at the local site may prefer to use that

product because doing so could save money and improve quality. Thus, there are

tradeoffs between having complete control over a vocabulary locally, and having the

work done by other people who may have more experience, resources, and expertise for

the task.

1.3.4 Reasons for Shared and Local Change

Natural languages change over time, and the language of medicine is a classic

example. Certain aspects of the language of medicine change more rapidly than others.

For example, anatomic terms such as hand or stomach and physical-examination terms

such as hepatomegaly or systolic ejection murmur have changed little compared to terms

for procedures such as cholestectomy, which now includes both laparoscopic

8

cholecystectomy and open cholecystectomy, or tests that did not exist previously, such as

dobutamine stress echocardiogram or plasma HIV-1 RNA load. We now know of

diseases that were unheard of in the past, and as we learn more about known diseases, we

give them new names that reflect our increased understanding. For example, 20 years

ago, the term acquired immune deficiency syndrome had not yet been coined, and what

was called epidemic catarrhal jaundice in a previous era is now recognized as hepatitis

A. Other concepts are no longer useful; for example, purpura variolosa and variola

hoemorrhagica pustulosa, terms denoting subtypes of smallpox, probably should not

clutter the terminology we use daily. A terminology that is useful today will not be useful

tomorrow if it is not kept up to date.

Factors that contribute to differences among health-care sites include differences

in patient population, health-care providers, health-care resources, services rendered,

management structures of health-care organizations, and local expertise. Because of these

differences, local sites differ in the kinds of data that can and should be collected, the

level of detail desired for data, and the terms that people prefer to use. Given these

differences, people at a local site may decide that, although they want to benefit from the

shared work of other vocabulary developers, they also want to be able to make their own

modifications.

The shared-vocabulary maintainers may try to take into account requests by local

sites, and may seek to modify the shared vocabulary in ways that will benefit the greatest

number of local sites. However, if there are many local sites and numerous requests, no

single site can expect the shared-vocabulary maintainers to respond to all its needs at any

given time. Yet, if the changing needs of a local site are shared by many other local sites,

changes that address those needs probably will be reflected eventually in the shared

vocabulary. For example, when a new form of juvenile arthritis became epidemic in

Lyme, Connecticut, clinicians needed a name for the illness locally before that illness

was recognized in other parts of the country. With time, however, the term Lyme disease

and terms for various Lyme-disease diagnostic tests became important for clinical care

nationwide. A local site, however, may not be able to wait until a term needed locally is

sanctioned by the shared-vocabulary maintainers.

1.4 Research Assumptions

Given the need for a shared clinical vocabulary and ongoing work to develop

widely used vocabularies [Cimino 1994, Lindberg 1993, O’Neil 1995, Rocha 1994,

Rothwell 1995], I assume in my research that, in the future, there will be one, or at least

9

one, clinical vocabulary that can be shared for patient care at multiple sites. Given that

there are tradeoffs between local autonomy and conformance, my work is also predicated

on the assumption that local divergence will continue to occur.

The local site needs the controlled vocabulary to support local needs and, in

particular, to store and manage patient data. Commercial software developers who

produce decision-support applications and programs that facilitate reporting of patient

data would like to use a controlled vocabulary that is compatible with patient data at

many local sites so that widespread distribution of their software is possible. If such

applications conform to the shared vocabulary, but run on local patient data, mechanisms

must be in place to ensure that the vocabulary of the local data does not diverge too far

from the shared vocabulary.

When a shared vocabulary is available that serves the needs of many sites, a local

site downloads a copy and makes changes as needed. When a new version of the shared

vocabulary becomes available, the local site takes the shared-vocabulary log file and

incorporates those changes into the local version.

1.5 Research Approach

Incompatibilities can arise that make it difficult to update the local vocabulary to

ensure compatibility with the shared vocabulary. To make the task more manageable and

to make it possible to automate partially the task, I propose that the shared and local

vocabularies conform to the same vocabulary model and follow certain constraints. I

have designed an extended vocabulary model to which the shared and local versions

conform, and I have developed methods for partially automated support of

synchronization of the local version with the shared version of the vocabulary.

1.5.1 Extended Vocabulary Model

The extended vocabulary model comprises

1. A structural model to which the shared vocabulary conforms

2. A local extension of the structural model to which the local vocabulary

conforms

3. A change model to which the shared vocabulary conforms

4. A local extension of the change model to which the local vocabulary conforms

10

5. A log model that the shared vocabulary and local vocabulary use for storing

change data in log files

Thus, I define an extended vocabulary model as a set of five submodels. The

structural model specifies the data required to represent a concept. The local extension

to the structural model adds flags that indicate whether a concept originated in the

shared vocabulary, in the local vocabulary, or in the shared vocabulary that has been

modified locally. The change model specifies allowable changes, with their inputs,

effects, and constraints. The local extension to the change model adds change

operations and constraints on certain changes according to a concept’s site of origin. The

log model specifies data that are tracked regarding changes made to the vocabulary.

Although there is a local extension to the log model that adds a few data items needed to

document local changes, the local extension does not affect the synchronization process,

and I do not discuss it further.

I call the extended vocabulary model that I have developed CONCORDIA (CONcept

and Change Operations for DIAlects). I have fully specified the semantics of the

CONCORDIA model, and have implemented in software the operations that a developer

uses to create and maintain the vocabulary.

1.5.2 Synchronization

Synchronization is the periodic process by which developers update the local

vocabulary to obtain the benefits of shared-vocabulary updates, while maintaining local

changes that serve local needs.

Synchronization is depicted in Figure 1.1. I propose that, to manage the problem

of local divergence, local sites periodically update their local versions to include changes

made to the shared vocabulary. In the figure, there are two phases shown in a series of

changes. Each phase consists of modification of the shared vocabulary and modification

of the local vocabulary during a given time interval, followed by synchronization.

At the beginning of the first phase, the shared and local vocabularies are

equivalent; at the end of the first phase, the vocabularies are synchronized. The resulting

vocabularies of the first phase become the inputs to the second phase when the individual

vocabularies are again modified, and the local vocabulary is synchronized with the shared

vocabulary.

The target state after synchronization is not a state of exact equivalence between

the shared and local vocabularies; instead, the target state for the local vocabulary

11

SV-0 SV-1 SV-2

LV-0 LV-1 LV-1-synch LV-2 SV-2-synch

t0 t1 t2

Figure 1.1. Synchronization process. The shared and local vocabularies (SV and
LV) are identical at time 0 (t0). They diverge at time 1 (t1). The LV is synchronized
with SV, and the process is repeated.

requires that the following conditions are fulfilled: (1) every concept in the shared

vocabulary is represented in the local vocabulary, (2) every concept in the shared

vocabulary has the same unique identifier that it has in the local vocabulary, (3) all

subsumption relationships in the shared vocabulary are preserved in the local vocabulary,

and (4) every attributeíYDOXH�SDLU�WKDW�LV�SUHVHQW�LQ�RU�LQKHULWHG�E\�D�FRQFHSW�LQ�WKH�VKDUHG

vocabulary must be present in or inherited by that same concept in the local vocabulary.

A subsumption relationship exists between concept A and concept B if B is a

kind of A, or alternatively, if all instances of B are also instances of A. Preservation of

subsumption relationships is required because an application that retrieves patient data

may use a more general form of a term, although the particular data element uses a more

specific term. For example, if the application searches for patients who have a history of

gastrointestinal bleeding, then the program should be able to retrieve patients who have

diagnoses such as upper gastrointestinal bleeding secondary to esophageal varices as

well as rectal bleeding due to hemorrhoids. If the shared-vocabulary concepts and

subsumption relationships are preserved in the local vocabulary, then the more specific

patient-data elements will be retrieved.

1.5.3 System Architecture

Figure 1.2 displays the Concept-Manager system architecture. At the level of the

shared vocabulary, there is (1) the shared-vocabulary concept repository; (2) the shared-

vocabulary change-data repository; (3) the shared-vocabulary browser, which permits

12

Synchronization-
Support Tool

Local-Vocabulary
Browser

Local-Vocabulary
Concept Repository

Local-Vocabulary
Change Repository

Local-Vocabulary
Editor

Shared-Vocabulary
Browser

Shared-Vocabulary
Concept Repository

Shared-Vocabulary
Change Repository

Shared-Vocabulary
Editor

Figure 1.2. System architecture of Concept Manager. Concept Manager includes a
suite of tools and concept and change-data repositories. Arrows indicate flow of
data.

read-only views of the vocabulary; and (4) the shared-vocabulary editor, which allows

read–write functions for updating the vocabulary. At the level of the local vocabulary,

there is, analogously, (1) the local-vocabulary concept repository; (2) the local-

vocabulary change-data repository; (3) the local-vocabulary browser; and (4) the local-

vocabulary editor. In addition, at the local level, there is the synchronization-support

tool, which enables the local maintainer to synchronize the local vocabulary with the

shared vocabulary.

1.5.3.1 Concept and Change-Data Repositories

The vocabulary is stored in a concept repository, which could be implemented

either as a database or as a file. Similarly, change data require persistent storage and

could be implemented as a database or as a file. I chose to use text files as my persistent

13

storage medium for both concept data and change data in the shared vocabulary and in

the local vocabulary.

1.5.3.2 Browsers and Editors

The browser and editor for the shared vocabulary run as separate applications

because a vocabulary end-user would not have rights to vocabulary editing operations,

whereas a vocabulary maintainer would have such rights. The browser application offers

only search and display capabilities. The editor application permits the vocabulary

maintainer to make changes to the vocabulary; it also contains all the browsing features

that are present in the browser application.

The local-vocabulary browser and editor are similar in appearance and

functionality to the shared-vocabulary browser and editor. The primary difference in the

local-vocabulary browser is the ability to distinguish concepts that originated in the

shared vocabulary from those that originated in the local vocabulary. The local-

vocabulary editor enforces constraints depending on the concept or attribute site of

origin; it also offers change operations that are unique to the local vocabulary.

1.5.3.3 Synchronization-Support Tool

The synchronization-support tool processes the shared-vocabulary log file from

the most recent modification interval. The local maintainer uses the tool to monitor the

synchronization process and to provide input when feedback is required. The tool can

handle certain changes automatically, but for those changes about which the local

maintainer should have a choice or for which there is a conflict that needs resolution by

the local maintainer, the tool presents the essential information and requests the necessary

data from the maintainer.

Figure 1.3 shows the user interface of the synchronization-support tool. The

screen shown presents information about the removal, or retirement, of Wassermann test

from the shared vocabulary. The Wassermann test was an old test used to diagnose

syphilis; the test has been replaced by more modern tests. During synchronization of the

local vocabulary with the shared vocabulary, the tool processes changes sequentially

from the shared-vocabulary log. The system processes certain changes automatically, and

provides recommendations for other changes about which the maintainer may want to

have choices. In the example, the maintainer has the choice of retiring Wassermann test,

because this term was retired in the shared vocabulary, or of preserving the term, because

14

Figure 1.3. User interface of the synchronization-support tool. The tool recommends that
the user retire Wassermann test, but also makes it possible for the user to retire and then
to preserve the concept.

the local site still needs it. For either choice, the system makes the changes that are

necessary to ensure structural consistency of the local vocabulary with the shared

vocabulary. I discuss use of the tool in greater detail in Chapters 5 and 6.

1.6 Evaluation

To demonstrate use of the CONCORDIA model, I applied the model to an example

of the synchronization process. I selected the subdomain of rickettsial diseases as the

content area and used medical textbooks as the sources of content for different versions

of a small medical vocabulary. I used a 1917 textbook entitled The Diagnostics and

Treatment of Tropical Diseases [Stitt 1917] as the source for the initial vocabulary. I then

used two modern textbooks of medicine as sources for divergent versions to which the

initial vocabulary evolved. Harrison’s Principles of Internal Medicine [Fauci 1998] and

Cecil Textbook of Medicine [Bennett 1996] are two well-known textbooks of internal

medicine. I randomly chose Harrison’s and Cecil to be the source of the modified shared

15

and local vocabularies. First, I created the initial vocabulary according to content in the

1917 textbook. Then, I modified that vocabulary according to content in Harrison’s to

create the modified shared vocabulary, and I modified that same vocabulary according to

content in Cecil to create the modified local vocabulary. Finally, I synchronized the local

version with the shared version.

Thus, for this evaluation, I created a sample test set based on existing sources of

medical knowledge in a single subdomain and demonstrated evolution of medical

vocabulary in two divergent directions. I synchronized the local version with the shared

version using the synchronization-support tool. I discuss the results of this process in

Chapter 6.

1.7 Vocabulary Problems Not Addressed Herein

The topic of local variation of shared vocabularies is broad. Three areas that are

related to my work—but that deal with problems I do not address—are (1) mapping of

legacy systems to a shared vocabulary, (2) distributed development of a shared

vocabulary by multiple domain experts, and (3) feedback to shared-vocabulary

developers from local sites in the form of change requests.

A common situation is that many sites have legacy systems V\VWHPV� DOUHDG\� LQ

place. Legacy systems pose a problem because they have their own vocabularies that are

incompatible with other vocabularies, yet the cost and work to replace those systems is

prohibitive. People at these sites may want to conform to a shared clinical vocabulary, but

they may not want to incur the expense of creating and maintaining mappings. They

would be delighted to have an application that could translate any legacy-system

vocabulary to the shared vocabulary. Creating such an application, of course, would be

no small task, since legacy systems vary markedly. Because a legacy system and a shared

vocabulary are unlikely to follow my extended vocabulary model or to start out in a

structurally consistent state, my specific approach does not apply. If, however, a local site

were able to create and maintain a mapping to a shared vocabulary and to fulfill the

assumptions of my approach, the model and methods provided in this dissertation would

be relevant.

It is likely that development of a useful, large clinical vocabulary for the

computer-based patient record will require contributions from many experts. Mechanisms

that allow for distributed development without threatening to create incoherent

organizational patterns within the vocabulary are essential, but are not the topic of my

16

thesis. Campbell proposed a strategy for resolving conflicts that result from distributed

development of a shared controlled vocabulary by multiple contributing authors at

different sites [Campbell 1996, Campbell 1998a].

The interactive relationship between the shared vocabulary site and the local sites

is bi-directional. I consider the perspective of the local site and the flow of changes that

goes from shared site to local site. I do not deal with what feedback the local sites give to

the shared site, or with how the shared site manages that feedback. In the United

Kingdom, for example, local sites that use the Read codes send requests for changes to

the National Health Service for review and for possible incorporation into the national set

of Read codes [Bailey 1999, Robinson 1997].

1.8 Summary

The lack of a standard for concept representation makes it difficult to map or to

merge independently developed vocabulary systems, and the lack of a standard for

change representation makes updates to mapped, merged, or divergent vocabularies

difficult.

In this work, it is my goal not to set standards, but rather to analyze the

commonalities and differences in existing vocabulary systems, and then to present a

possible approach for concept modeling and maintenance that is based on the analysis of

existing systems. I have created CONCORDIA, an extended vocabulary model that supports

concept and change representation for local variants of a shared controlled vocabulary.

To evaluate my model, I produced a synchronization-support tool that depends

crucially on a formal change model. I generated a test set of medical concepts based on

knowledge contained in two contemporary textbooks of medicine and one out-of-date

textbook of medicine. In demonstration of the value of a formal change model, I ran this

test set through the synchronization-support tool and analyzed the results.

1.9 Guide for the Reader

In this chapter, I presented the problem of divergence of a local version of a

shared vocabulary from the version from which it was derived. I stated my hypothesis

and gave an overview of my proposed solution. I introduced CONCORDIA, and I defined

terms VXFK�DV�extended vocabulary model, structural model, change model, log model,

and synchronization WKDW�IRUP�WKH�EDVLV�RI�P\�ZRUN�

17

In Chapter 2, I review the literature on the representation of concepts and change

in existing controlled medical vocabularies and frame-based knowledge representation

systems. Subsequently, in Chapter 3, I describe the CONCORDIA model, which is an

extended vocabulary model that includes three component models—a structural model, a

change model, and a log model—for both a shared vocabulary and a local vocabulary. To

evaluate the usefulness of the change model, I have produced a methodology for

synchronization that depends on the change model. In Chapter 4, I discuss the

synchronization process and its underlying methodology. In Chapter 5, I describe the

implementation of the software that I have developed to demonstrate the entire process of

editing and synchronizing; in Chapter 6, I describe my test vocabulary and my experience

with this test set in the synchronization-support tool. In the final chapter, I discuss the

implications of my work and the relationship of my work to other work in the field. I

outline the contributions of my research in the fields of medical informatics, computer

science, and medicine. I conclude with a discussion of work that lies ahead.

19

2 Structural Models, Change Models, and Log Models
in Existing Systems

To reach consensus on controlled-vocabulary standards, we need agreement on

formal vocabulary structural models (representations of terms, concepts, and

relationships in organized structures), formal vocabulary change models (representations

of allowable changes), and formal vocabulary log models (representations of completed

changes). Pleas for a standard vocabulary have been voiced many times [AMIA 1994,

Hammond 1997]. Without consensus on such models, however, standards will remain

elusive. Users and developers of health-care information systems would like a standard

vocabulary that permits the exchange of data between systems without translation of data

at either end, that allows decision-support systems built in one place to run on patient

data stored in another, and that facilitates the reporting of data in the form in which the

data were collected. The names and codes used by one system must be understood by

another. However, just as standards for vocabulary content that provide an agreed-on set

of comprehensible names and stable unique codes are important, standards for vocabulary

structure, vocabulary change operations, and vocabulary log files are also essential if

content is to be shared.

There are several reasons why a specification of change operations, which is

provided by the change model, and a data model for log files, which is provided by the

log model, are important. First, any software application that makes use of an evolving

shared vocabulary must be able to recognize types of changes and to incorporate those

changes easily. Second, if local-vocabulary maintainers want to keep up with changes

made to the shared vocabulary, their local-vocabulary maintenance software must be able

to incorporate changes from the shared site. Third, if local-vocabulary maintainers also

make their own changes to the shared vocabulary, then there must be a mechanism in the

local-vocabulary maintenance software for handling divergence of the shared and local

versions. Thus, a common understanding of the change model and log model must be

shared between software that generates and reports changes and applications that

incorporate or adapt to those changes.

In this chapter, I review existing controlled medical vocabularies and computer-

based systems that store vocabularies and knowledge bases. Controlled vocabularies

contain knowledge and have similarities to knowledge bases. Knowledge bases contain

20

named concepts and have similarities to controlled vocabularies. There is significant

overlap between the work that has been done in the medical-informatics community on

controlled medical vocabularies, and that done in the computer-science community on

knowledge-representation systems. The purpose of this review is to explore existing

vocabularies and knowledge-based systems according to a framework of structural

models, change models, and log models. In addition, I present an overview of articles

from the medical-informatics literature and from the computer-science literature that

address problems of sharing and local variation of vocabularies and knowledge bases.

Based on this analysis of the current state of the art, I have developed CONCORDIA, a

model that is based on prevalent trends in design, but that adds features to assist with

local divergence. The CONCORDIA model is the topic of Chapter 3.

2.1 Controlled Medical Vocabularies and Frame-Based Knowledge-

Representation Systems

Controlled medical vocabularies are prevalent in computer-based systems that

support health care. Many of the current well-known vocabularies that have medical

content useful for their intended purposes do not use formal approaches in the

representation of concepts. On the other hand, frame-based knowledge-representation

languages, including description logics, provide formal methods for representing

concepts, but many are still only prototypes in research environments. Few systems based

on framed-based knowledge-representation languages have been populated with medical

concepts to the degree that is necessary for widespread use in health care. Developers of

controlled medical vocabularies have expressed interest in adopting more formal

approaches to concept representation such as those that have been popularized in the

knowledge-representation community [Cimino 1994, O’Neil 1995, Spackman 1997,

Tuttle 1994]. However, controlled medical vocabularies may not need all the features

available in typical frame-based knowledge-representation systems.

Frame-based knowledge-representation languages are characterized by classes,

slots, and slot values. Classes have slots, where slots are binary relationships between

classes, and slot values. Kind-of relationships between classes are used to organize

classification of hierarchies, and classes inherit slots from superclasses.

Description logics are also frame-based languages, but they typically call classes

concepts, slots roles, and slot values role values. Description logics represent logical

21

Table 2.1. Examples of controlled medical vocabularies.
Popular Name or

Acronym Complete Name

ICD-9 International Classification of Diseases, 9th Revision

ICD-9-CM International Classification of Diseases, 9th Revision, Clinical
Modification

ICD-10 International Classification of Diseases, 10th Revision

CPT Current Procedural Terminology

MeSH Medical Subject Headings

DSM Diagnostic and Statistical Manual of Mental Disorders

MED Medical Entities Dictionary

LOINC Logical Observation Identifiers, Names, and Codes

NANDA North American Nursing Diagnosis Association

GALEN Generalised Architecture, Languages, Encyclopaedias and
Nomenclature in Medicine

UMLS Unified Medical Language System

SNOMED Systematized Nomenclature of Human and Veterinary Medicine

SNOMED RT SNOMED Reference Terminology

Read Read Clinical Classification

SNOMED CT SNOMED Clinical Terms

connectors such as and, or, for all, and there exists. Implementations of description-logic

systems generally offer automatic classification of concepts.

Although change is inevitable in controlled medical vocabularies that are in active

use, formal models for change are lacking just as formal models for concept

representation are lacking for these vocabularies. In contrast, frame-based knowledge-

representation systems have formal underlying models for concept representation and

have well-specified operations for queries and updates, but the developers have had

minimal experience in managing the evolution of large populated systems. Therefore, the

requirements for change and for the representation of change have received only

22

Table 2.2. Examples of frame-based knowledge-representation languages
(including description logics), protocols, and specifications. Languages identified
as frame-based knowledge-representation languages in this table are non–
description-logic languages.

Name or Acronym Type

KL-ONE description logic

BACK description logic

NIKL
(New Implementation of KL-ONE)

description logic

Krypton description logic

CLASSIC
(CLASSification of Individuals and
Concepts)

description logic

Loom description logic

K-Rep description logic

GRAIL
(GALEN Representation And Integration
Language)

description logic

Theo frame-based knowledge-
representation language

Protégé frame-based knowledge-
representation language

Ontolingua frame-based knowledge-
representation language

OKBC
(Open Knowledge-Base Connectivity)

protocol for frame-based
languages, including description
logics

KRSS
(Knowledge Representation System
Specification)

specification for description logics

minimal attention by researchers in the knowledge-representation field, particularly with

respect to health care.

Tables 2.1 and 2.2 list controlled medical vocabularies and frame-based

knowledge representation languages that are familiar to the medical community and to

the knowledge-representation community, respectively. In these tables, I make a

distinction between GRAIL and GALEN, although the latter is based on the former. GRAIL is

a knowledge-representation language, whereas GALEN is an implemented GRAIL system

23

that is populated with medical concepts, called the GALEN CORE model. Thus, I classify

GALEN as a controlled medical vocabulary, that, unlike the other medical vocabularies

listed, does follow a formal approach to concept representation (GRAIL).

A complete review of vocabularies and frame-based knowledge-representation

systems relevant to or potentially relevant to medical care is beyond the scope of this

review; therefore, I have chosen for discussion only a few existing systems. First, I

compare structural models of selected controlled medical vocabularies and frame-based

knowledge-representation systems, whose underlying structural models can be inferred

from the literature. For controlled medical vocabularies, I have chosen ICD-9-CM (coding

system used for health-services reimbursement in the United States), MeSH (thesaurus

used for indexing the medical literature), the UMLS (controlled vocabulary that links

multiple source vocabularies, developed by the National Library of Medicine), SNOMED

(comprehensive medical nomenclature developed by the College of American

Pathologists), and Read (coding system used for health-data reporting in the United

Kingdom); for frame-based approaches, I have chosen CLASSIC, GRAIL, OKBC, and KRSS.

CLASSIC and GRAIL are knowledge-representation languages. OKBC is a protocol that

permits communication among different frame-based knowledge-representation systems;

KRSS is a specification for description logics. SNOMED Clinical Terms is a new

vocabulary that will combine SNOMED and Read. I do not discuss it further because there

is little published literature on SNOMED Clinical Terms at the time of this writing. Next, I

compare the change operations that are implied or explicit in controlled medical

vocabularies and in frame-based knowledge-representation systems. For the discussion of

change, I again consider ICD-9-CM, MeSH, the UMLS, SNOMED, Read, CLASSIC, GRAIL,

OKBC, and KRSS. Finally, I present examples of change data from several controlled

medical vocabularies to demonstrate the variability in data models and change-file

formats. I have selected change files from ICD-9-CM, MeSH, DSM (system used for

classification of psychiatric disorders), SNOMED, and the UMLS because they are readily

available.

2.2 Structural Models

The structure of a vocabulary is determined by the elements that are available to

content developers for the representation of concepts, and for the organization of

concepts relative to one another. Therefore, choices made for the structural model depend

on choices made for concept representation. In this section, I look at features pertinent to

24

Table 2.3. Comparison of features that relate to naming and identification of concepts.

Feature I M U S R CL GR OK KR

Code + + + + +

Constant unique code + a +

Unique name + + + + + + + + +

Synonyms + + + + +

Abbreviations

Lexical variants + +

Text definition + + +

Translation to other
coding schemes

+ + + +

Translation to other
natural languages

+ + + +

a Later versions of SNOMED have constant unique codes.
Legend:
I: ICD-9-CM; M: MeSH; U: UMLS; S: SNOMED III; R: READ Version 3;
CL: CLASSIC; GR: GRAIL; OK: OKBC; KR: KRSS.

concept representation, and discuss the variability of those features in different systems.

First, I look at features that relate to naming and identification of concepts. Next, I

consider features that provide ways of organizing concepts, such as hierarchical

relationships and other types of relationships between concepts.

2.2.1 Naming and Identification of Concepts

Various features contribute to naming and identification of concepts in the

different systems. Codes, names, and unique identifiers are common, but are not

necessarily handled the same way in each system. Systems may or may not have

synonyms, abbreviations, lexical variants, and/or text definitions. In addition, translations

to other vocabularies or to natural languages may be a central task or may not be

addressed. Table 2.3 compares features that relate to naming and identification of

concepts.

2.2.1.1 Codes, Names, and Unique Identifiers

Many controlled medical vocabularies have both a code and a name to identify

each concept uniquely. Codes are strings that typically contain numeric digits and that

sometimes contain characters, hyphens, or periods. For example, ICD-9-CM, the UMLS,

25

SNOMED, and the Read codes have codes that serve as concept unique identifiers. In the

UMLS, such codes are called concept unique identifiers (CUIs); in SNOMED, they are called

term codes. Frame-based knowledge-representation languages, in general, do not use

both codes and names that are visible to the user as unique identifiers. Instead, a concept

name that could be a meaningful name or a code-like string may serve as the only unique

identifier.

Users of vocabularies often assume that coded unique identifiers will remain

constant in meaning over time. Developers of the UMLS and of the MED have emphasized

and promoted the importance of this goal [Cimino 1998, Cimino 1996a, McCray 1995].

As described in Section 1.2.2, however, ICD-9-CM developers have not always kept the

meaning of a code constant, and have reused old codes for new meanings [Cimino

1996a]. Reuse of codes for different meanings can cause problems if health-care

providers record patient data with the codes, because the meaning of a patient data item

should never change.

Nearly all vocabularies and frame-based knowledge-representation languages

require concepts to have unique names. ICD-9-CM is an exception. Names such as Other

and Unspecified site occur repeatedly. The UMLS guarantees unique names, but in certain

cases an appended integer is required to create distinct terms. Because the term cold can

mean either cold temperature or the common cold, the UMLS contains the concept name

Cold<1>, which links to one concept unique identifier that means cold temperature, and

Cold<2>, which links to a different concept unique identifier that means the common

cold [Humphreys 1996a].

In ICD-9-CM, SNOMED III, and Read Version 2, the code not only serves as a

unique identifier for a term, but also indicates where the term lies in a hierarchy. A

disadvantage in using the identifier to indicate location is that doing so limits placement

of the term to only one place in the hierarchy. For example, in ICD-9-CM, acute

pharyngitis is located under diseases of the respiratory system, but streptococcal sore

throat is located under infectious and parasitic diseases. Hence, there is no apparent

relationship between acute pharyngitis and streptococcal sore throat. Another

disadvantage is that this practice limits the number of levels in the hierarchy if the code

has a fixed number of digits and each digit indicates a level. Using a code both to provide

a unique identifier and to specify location in the hierarchy is now considered poor

practice by vocabulary specialists in the medical-informatics community [Chute 1998,

Cimino 1998, O’Neil 1995, Spackman 1998].

26

OKBC has an identifier called a frame handle that identifies a frame uniquely.

Both classes and slots are frames and are identified by handles. Frame handles are

required. OKBC makes it possible to have a frame name that identifies the frame as well,

however there is an operator frame-names-required that may be set to true or false. When

the value is false, frame names are not required, and may not be unique if they are given

[Chaudhri 1998a]. CLASSIC and KRSS both have concept names and role names that are

unique and that serve as the only unique identifiers. Such names can be arbitrary strings.

A GRAIL canonical form is a unique name and serves as the unique identifier; however,

this type of unique identifier is not an arbitrary string, or code. A user of a GRAIL system

forms a GRAIL canonical form by naming the parent concept that subsumes the concept

and by specifying the concept’s attributes and attribute values in a structured way. An

example of a GRAIL canonical form is the following:

Fracture which<

hasLocation Femur

hasCause (Osteoporosis which hasCause PostmenopausalChange)>.

This concept refers to a femur fracture caused by osteoporosis due to postmenopausal

change [Rector 1997].

2.2.1.2 Synonyms and Abbreviations

Synonyms are common in controlled medical vocabularies and uncommon in

knowledge-representation systems. Often, systems offer synonyms to facilitate search by

users. Users of large medical vocabularies need to be able to find terms of interest, and

alphabetized lists of terms are often not adequate. If high recall is more important than

high precision for retrieval of terms, both exact synonyms and near-synonyms are useful.

On the other hand, if a user expects two terms to have exactly the same meaning, because

interchangeability in any context is a goal, synonyms should be more restrictive and only

exact synonyms should be included in a synonym list.

MeSH has print entry terms, which facilitate Medline searches. Print entry terms

are alternate names for Mesh headings that make it possible for a user to find an article in

Medline on a particular topic even if he enters a term that is not a MeSH heading, but that

is close in meaning to a MeSH heading. In such cases, near-synonyms as well as exact

synonyms are useful as print entry terms.

27

The UMLS stores multiple terms that map to the same CUI because the goal of the

UMLS is “to facilitate the development of conceptual connections between users and

relevant machine-readable information” [Humphreys 1993]. This goal led UMLS

developers to provide multiple terms for the same concept in case the user enters a term

that differs from the term used in a machine-readable source. The UMLS developers

organized terms that mean the same thing by mapping them to the same CUI. However,

terms that map to the same CUI may not be interchangeable in all settings. Campbell and

colleagues pointed out that the concept named aspirin has the same CUI as Ecotrin

[Campbell 1998b]. The former term is a generic name and the latter term is a trade name

for an enteric-coated preparation that is less irritative to the stomach. In certain contexts,

these two terms would be interchangeable because they both contain aspirin; however,

the distinction may be important if a patient has trouble tolerating one and not the other.

In SNOMED, two terms are recognized as synonyms if they have the same term

code. An extra 2-digit field, which is distinct from the term code, designates a term as a

primary term (01) or as a secondary term (02). The primary term is also called a

preferred term, and the secondary term is also called a synonym.

Most knowledge bases built in frame-based knowledge-representation languages

are small, in comparison to controlled medical vocabularies, and synonyms have not been

a high priority. For example, KRSS does not have a representation for synonyms. CLASSIC

is unusual because it does have a specific representation for synonyms. OKBC permits the

designation of a pretty name for a concept, but does not have a construct for a set of

synonyms. A pretty name in OKBC does not have to be unique, but is intended for display

on a user interface, and therefore, should be visually appealing and terse [Chaudhri

1998a].

Use of abbreviations is common in medicine, and controlled medical vocabularies

typically store abbreviations as synonyms. Generally, there is no distinction between

abbreviations and synonyms. CLASSIC, GRAIL, OKBC, and KRSS make no mention of

abbreviations as separate recognizable entities.

2.2.1.3 Translation Between Coding Systems

Translation between coding systems is essential in health care if there are

requirements or services that are crucial for patient care that depend on data coded in

different standard coding systems. When using an electronic medical record, a provider

may collect patient data using a clinical terminology such as the Read codes or SNOMED,

28

and then report data in ICD-10 or ICD-9-CM for epidemiologic purposes or for financial

reimbursement. In addition, the provider may need to jump quickly to Medline, which is

indexed with MeSH, to find the latest medical information relevant to the original patient

data. The mapping between the coding schemes may not be one to one, and translation

can result in loss of information.

One of the original goals of the UMLS was to link many coding systems together,

and the UMLS continues to excel in this area. No other controlled medical vocabulary in

existence today contains such an extensive set of links among multiple health-care coding

systems.

SNOMED includes codes for diagnoses from ICD-9-CM to provide compatibility

with billing codes.

Read codes Version 2 included cross-mappings to ICD-9. When Read Version 3

was created, ICD-10 had been released, and cross-mappings to ICD-10 were built in

[O’Neil 1995].

2.2.1.4 Translation Between Natural Languages

As communication of information becomes increasingly important on a global

scale, the need for translation among different natural languages increases. SNOMED III

(also called SNOMED International) supports translation to multiple languages, such as

French, Spanish, and German. A different type of translation is used in GALEN. Since a

GRAIL concept name (a GRAIL description) may not be a name with which users are

comfortable, because of its formal structured nature (consider, for example, the GRAIL

description “Disorder which actsOn (Valve which isComponentOf Heart)” [Rector

1997]), more familiar names are necessary (e.g., “valvular heart disease”). GALEN

researchers have developed tools that can translate formal GRAIL descriptions to natural

language, a process that they call automatic generation of natural language [Rassinoux

1998, Rogers 1997]. Most other frame-based knowledge-representation systems have not

dealt with translation between coding systems or natural languages.

2.2.2 Organization of Concepts

Features relevant to concept organization include hierarchies, is-a relations, non–

is-a binary relations, and individuals. Table 2.4 compares systems by these

characteristics. How concepts are organized affects the ease of maintenance of a

29

Table 2.4. Comparison of features that relate to organization of concepts.

Feature I M U S R CL GR OK KR

Hierarchy + + + + + + + + +

Subsumption hierarchy + + + + +

Strict hierarchy + +

Multiple parents + + + + + + +

Binary relations + + + + + + + +

Named binary relations + + + + + +

Binary-relation
hierarchy

+ +

Primitive and
nonprimitive concepts

+ + + +

Transitivity of roles +

User-defined facets +

Maximum cardinality + + +

Minimum cardinality + + +

Exact cardinality + +

Individuals + + + +

Inheritance + + + + +

Conjunction of concepts + + +

Disjunction of concepts +

Negation of concepts +

Conjunction of binary
relations

+

Disjunction of binary
relations

+

Negation of binary
relations

+

Legend:
I: ICD-9-CM; M: MeSH; U: UMLS; S: SNOMED III; R: READ Version 3;
CL: CLASSIC; GR: GRAIL; OK: OKBC; KR: KRSS.

vocabulary. Hierarchical approaches are popular, and are useful both to end users and to

maintainers of a vocabulary system. In this section, I use parent and child to refer to two

concepts that are linked by an unspecified type of hierarchical relationship or by a clearly

defined subsumption relationship in the main hierarchy, and binary relation to refer to a

binary relationship that is not a hierarchical relationship in the main hierarchy.

30

2.2.2.1 Hierarchy

All the systems mentioned in this discussion have hierarchies of concepts, where

concepts higher up in the hierarchy are more general than their descendants. However,

the relationship between parent and child is not always named in controlled medical

vocabularies. In MeSH, for example, the relationship may be one whose implied meaning

is is-a, part-of, has-location, or contains [McCray 1995]. For example, finger is a child of

hand, and Chicago is a child of Illinois.

In contrast, frame-based knowledge-representation systems, in which precise

classification is of central importance, are rigorous about the relationship between parent

and child: Every concept, except the top-level concept, must have at least one parent that

subsumes it.

A number of controlled medical vocabularies have strict hierarchies, in which

each concept can have only one parent. ICD-9-CM, SNOMED, and Read Version 2 use such

hierarchies. Frame-based knowledge-representation systems typically are directed acyclic

graphs that form polyhierarchies, in which each concept can be classified under more

than one more general concept. The trend appears to be toward multiple classification,

because the newer controlled medical vocabularies—including GALEN, the MED, Read

Version 3, and SNOMED RT—permit multiple classification [Cimino 1994, O'Neil 1995,

Rector 1997, Spackman 1997].

2.2.2.2 Binary Relations

Binary relations are more common in frame-based knowledge-representation

systems than in controlled medical vocabularies. In knowledge-representation systems,

binary relations are often called roles (e.g., KL-ONE [Brachman 1985], KRSS [Patel-

Schneider 1993], and LOOM [MacGregor 1991]) or slots (e.g., Ontolingua [Gruber 1993]

and OKBC [Chaudhri 1998a]). In certain cases (e.g., KRSS and CLASSIC) multiple-valued

binary relations are called roles, whereas single-valued binary relations are called

attributes. GRAIL uses the term attribute for all its binary relations [Rector 1997]. In each

of these systems, binary relations are named.

ICD-9-CM is a controlled medical vocabulary that does not have binary relations to

link concepts. Other vocabularies, such as MeSH and SNOMED, use binary relations called

cross-references. For example, in MeSH, there is a cross-reference between “Neoplasms”

31

and “Precancerous Conditions.” These terms are not synonyms, but they are related.1

There is no name assigned to describe their relationship. Similarly, in SNOMED, there is an

unnamed cross-reference between “botulism” and “Clostridium botulinum toxin.” The

UMLS has named binary relations, called semantic relations, which link semantic types

in the UMLS semantic network. Every concept in the UMLS is assigned to one or more

semantic types. However, if two semantic types are linked by a semantic relation,

FRQFHSWV� DVVLJQHG� WR� WKRVH� WZR� VHPDQWLF� W\SHV� DUH� RQO\� SRWHQWLDOO\ EXW� QRW

QHFHVVDULO\ OLQNHG�E\�WKH�JLYHQ�VHPDQWLF�UHODWLRQ�[Humphreys 1996a].

MeSH and SNOMED cross-references and UMLS semantic relations do not serve the

same purpose that binary relations often serve in frame-based knowledge-representation

languages. In frame-based knowledge-representation languages, when a set of binary

relations and their values constitute a set of necessary and sufficient conditions for a

concept, those conditions may be used for concept classification. Concepts that have

necessary and sufficient conditions are called nonprimitive concepts in OKBC, defined

concepts in CLASSIC and KRSS, and composite concepts in GRAIL. Concepts for which

necessary and sufficient conditions cannot be defined are called primitive concepts in

OKBC, CLASSIC, and KRSS, and elementary concepts in GRAIL. An elementary concept in

GRAIL may have necessary conditions specified that are also used to classify a concept.

2.2.2.3 User-Defined Facets and Cardinality

A feature associated with binary relations in knowledge-representation systems is

the facet, which provides information specific to a particular slot or role. In OKBC and in

various languages for which OKBC provides a common protocol, the user can define

facets. KRSS and GRAIL, on the other hand, do not permit user-defined facets. They both

have a representation of cardinality, however, which is one of the predefined facets in

OKBC. The general notion of a facet does not appear to have a counterpart in existing

controlled medical vocabularies.

The cardinality of a binary relation is the number of values that the slot, role, or

attribute can have. Cardinality may be specified for a particular relation for a particular

concept, as it is in KRSS, or it may be specified for a relation regardless of which concepts

1 MeSH also refers to links between headings and print entry terms as cross-references, but for

purposes of this discussion, such cross-references are synonyms. The other type of cross-reference in MeSH

links nonsynonymous, but related, headings and is indicated in MeSH manuals by the phrase see related. It
is this nonsynonymous type of cross-reference that is analogous to slots, roles, and SNOMED’s cross-
references.

32

use that binary relation, as it is in GRAIL. In CLASSIC, KRSS, and OKBC, a role can have a

maximum cardinality, a minimum cardinality, or an exact cardinality specified. Work in

GALEN has revealed that such detail about cardinality frequently is not necessary for large

medical vocabularies [Rector 1997]. Consequently, cardinality choices in GALEN are

limited to one or many.

2.2.2.4 Transitivity of Roles

An interesting feature that is unique to GRAIL is the specialisedBy construct (or its

inverse, refinedAlong).

For example, if GALEN contains the statement

hasLocation specialisedBy isDivisionOf,

then the system can infer

Fracture which hasLocation Femur

 subsumes

Fracture which hasLocation (AnatomicalNeck which isDivisionOf Femur)

In other words, the system can infer that a fracture of the anatomical neck of the

femur is a fracture of the femur [Rector 1997].

Rector and colleagues call this feature transitivity of roles. They describe the

general case as follows [Rector 1997]:

A1, A2: attributes

E1, E2: entities (i.e., concepts)

V: attribute value

A1 specialisedBy A2 implies:

E1 which A1 V

 subsumes

E1 which A1 (E2 which A2V)

The connection between location and anatomic part-of relations is important in

medicine when vocabulary users need to determine subsumption [Bernauer 1994].

33

2.2.2.5 Individuals or No Individuals

A key difference between controlled medical vocabularies and frame-based

knowledge-representation systems is that the former have only concepts (or classes), and

no individuals (or instances), whereas the latter have both. An individual is a member of

the set that the concept represents. The GRAIL language permits the creation of

individuals, but the GALEN vocabulary developers chose to use only concepts [Rector

1997]. Brachman and colleagues pointed out that the decision where to draw the line

between classes and individuals is dependent on the application [Brachman 1991]. The

GALEN group states that “one of the earliest observations which led to GRAIL was that, in

medicine, such arbitrary distinctions are often untenable even within a single application”

[Rector 1997]. Thus, GALEN does not have individuals. Data about individual patients

typically are stored in patient databases. Thus, there is a goal in medicine to separate

concepts, which belong in a controlled vocabulary, from information about individuals,

which belongs in a patient database.

2.2.2.6 Inheritance and Subsumption

Knowledge-representation systems allow concepts to inherit properties from

concepts higher up in the hierarchy. The is-a (i.e., is-subsumed-by) relation is transitive:

If concept A is subsumed by concept B and concept B is subsumed by concept C, then

concept A is subsumed by concept C. Thus, concepts inherit the is-a links of their

parents. In addition, concepts inherit roles from their parents and ancestors. In the

original KL-ONE system, the role-value type of a role inherited by a concept could be

restricted by that concept [Brachman 1985]. When the value of the role of a concept is

restricted, its role value type is more specific than the role value type of the same role in

the concept’s parent or ancestor. KRSS and GRAIL both follow this approach. In OKBC,

there is a distinction between slots that are inherited and slots that are not inherited.

Inheritance of hierarchical relations and nonhierarchical binary relations cannot

be assumed in controlled medical vocabularies that are not rigorous in ensuring the type

of hierarchical relationship. In SNOMED and MeSH, there is no implication that cross-

references can be inherited. In the UMLS, inheritance of semantic relations cannot be

guaranteed [Humphreys 1996a]. Hence, the more rigorous approaches taken by frame-

based knowledge-representation languages makes inheritance and subsumption feasible

and reliable, whereas the less rigorous approaches of certain controlled medical

vocabularies makes it difficult to draw inferences about inherited properties.

34

2.2.2.7 Conjunction, Disjunction, and Negation

Conjunction, disjunction, and negation are logical and, or, and not, respectively.

Most controlled medical vocabularies have no formal way either to combine terms or

concepts with conjunction or disjunction, or to negate a term or concept through

negation. Names of terms or concepts are precoordinated; thus, any combination must be

represented explicitly as a combination, and a combination that is not explicitly

represented cannot be considered part of the controlled medical vocabulary.

ICD-9-CM, MeSH, and the UMLS are vocabularies that have only precoordinated

terms and do not have conjunction, disjunction, and negation. However, the developers of

SNOMED describe SNOMED as a compositional language [Spackman 1998]. They state that

terms can be combined to form new legal SNOMED constructs. The problem with this

approach, however, is that there is often more than one way to create a new concept. For

example, low back pain could theoretically be low + back pain or low back + pain or low

back pain. With no constraints or rules for composition, different vocabulary users will

generate different concepts that do not have equivalent unique identifiers, and

interoperability will be lost.

The developers of the Read codes Version 3 targeted composition as a goal in

their design. They used a template approach to constrain possible compositions. When

both a precoordinated term and a compositional term have the same meaning, an explicit

link between the two representations is stated.

The GALEN developers believe strongly in a compositional approach, and this

feature is central to their choice of use of the GRAIL language. GRAIL, like other

description logics, does permit conjunction of concepts. The GALEN researchers argue

that it is important for the system to be able to recognize concepts with different GRAIL

descriptors that are equivalent in meaning. GRAIL does not have disjunction or negation

[Rector 1997]. Similarly, CLASSIC is a description logic that has conjunction of concepts,

but does not have disjunction or negation. Negation is difficult because not A means

everything except A, and the number of elements in not A may approach infinity.

KRSS is a system specification, which does include disjunction and negation as

well as conjunction; for a system to be KRSS compliant, however, software developers do

not have to implement all features of KRSS [Patel-Schneider 1993].

35

2.3 Change Models

It makes sense to talk about a change model for a vocabulary only in the context

of the structural model of that vocabulary. However, it is instructive to learn from the

work and experiences of other developers who have dealt with change in controlled

medical vocabularies and who have designed and built knowledge-representation

systems, despite the variability of structural models. In this section, I consider similarities

and differences among change models in existing systems.

Frame-based knowledge-representation languages are implemented in software

systems that permit users to build knowledge bases. The process of developing a

knowledge base requires the ability to make changes. Thus, these software

implementations must have specific change operations, and in certain cases, user’s

guides, published articles, or online resources are available that describe the meaning of

these operations [Chaudhri 1998a, Rector 1997, Resnick 1993]. For most controlled

medical vocabularies, on the other hand, editing software is available to only vocabulary

developers, and detailed documentation generally is not available. To understand changes

in controlled medical vocabularies, however, we can review the lists, tables, and natural-

language text that document completed changes in each release. In this section, I discuss

change operations that are either implied, as they are in controlled medical vocabularies,

or explicit, as they are in frame-based knowledge-representation systems. Tables 2.5, 2.6,

and 2.7 summarize changes in existing systems. Information is based on available

literature, but in certain cases, whether or not a feature is present may be a matter of

interpretation.

2.3.1 Additions

All systems have ways for users to make additions. The systems presented differ,

however, in whether additions are additions of concepts or of terms. Other types of

additions are additions of slots, roles, or attributes. Table 2.5 compares additions in the

different systems.

For example, an add in SNOMED refers to the addition of a new term, which can be

either a primary term (preferred term) or a secondary term (synonym). The distinction is

specified by the use of a code (01 for preferred term, 02 for synonym). Thus, an add takes

place if either the concept did not previously exist or if a new name is being added for a

concept that did previously exist. In CLASSIC, on the other hand, adding a new concept

36

Table 2.5. Comparison of features that relate to creation or addition of new entities.

Feature I M U S R CL GR OK KR

Create new concept + + + + + + + + +

Create defined concept + + + +

Create primitive concept + + + +

Create disjoint concept + + +

Create binary relation + + + + +

Legend:
I: ICD-9-CM; M: MeSH; U: UMLS; S: SNOMED III; R: READ Version 3;
CL: CLASSIC; GR: GRAIL; OK: OKBC; KR: KRSS.

and assigning it an additional name or synonym are clearly separate operations. In

CLASSIC, the developer uses the operation cl-define-concept to add a new concept and the

operation cl-define-concept-synonym to add a synonym to an already existing concept. In

GRAIL, addition of a new concept is done through a concept-forming operation that results

in the creation of a new GRAIL canonical form. GRAIL also offers a separate construct

name which allows the user to assign an additional name to a concept. In OKBC, the

creation of a frame requires the use of one operation create-frame and assigning an

additional name to that frame requires a different operation put-frame-pretty-name. A

pretty name does not need to be unique. In KRSS, define-concept, define-primitive-

concept, define-disjoint-concept, define-role, define-primitive-role, and define-attribute,

provide ways to add concepts, roles, and attributes. Define-disjoint-concept permits the

user to define a concept in which there is no overlap with another specified concept. An

individual can be a member of one of the two disjoint concepts but not of the other. All

codes in ICD-9-CM are intended to represent disjoint, nonoverlapping concepts.

2.3.2 Deletions or Retirement

Table 2.6 compares deletions and retirements in different systems. In SNOMED, a

delete results in the removal of a term (either a preferred term or a synonym) from the set

of terms in the vocabulary. In the UMLS, a concept is deleted when its CUI is deleted. A

CUI is deleted when there is no longer any concept from any source vocabulary that is

linked to that CUI. Deleted CUIs are reported each year in a change file. The MeSH

developers also permit deletions, but name changes are more common than true deletions.

In the Read codes, obsolete concepts are labeled extinct, but are not deleted from the

vocabulary.

37

Table 2.6. Comparison of features that relate to deletion or retirement of entities.

Feature I M U S R CL GR OK KR

Delete obsolete concept + + + + + +

Label concept obsolete,
but do not delete

+

Delete binary relation +

Label binary relation
obsolete, but do not
delete

Legend:
I: ICD-9-CM; M: MeSH; U: UMLS; S: SNOMED III; R: READ Version 3;
CL: CLASSIC; GR: GRAIL; OK: OKBC; KR: KRSS.

In systems that provide automatic classification, it can be more difficult to delete

concepts. In CLASSIC, the authors of the manual state that “once a concept has been

defined, its definition cannot be modified, and it cannot be deleted.” [Resnick 1993].

Bechhofer points out that, to retract a concept in GRAIL, the user or system must remove

other concepts that use the retracted concept in their defining or necessary criteria

[Bechhofer 1994]. In addition, Bechhofer states that if a concept is retracted, then all its

children will be retracted too [Bechhofer 1994].

In OKBC, delete-frame and delete-slot are valid operations. Using delete-frame, the

user can delete a class, but there is no way to retire that concept without removing it by

labeling it obsolete. The operation delete-slot first deletes the slot from all frames that

contain the slot, and then deletes the slot from the knowledge base as well [Chaudhri

1998a].

In KRSS, there is no syntax specified for deleting a concept or a role [Patel-

Schneider 1993].

2.3.3 Name Changes

Replacing a concept’s name without changing the identity of that concept is

possible in systems that have a separate unique identifier. In MeSH, the name can be

changed, as indicated by the table Replaced Medical Subject Headings with Replaced-By

Headings [NLM 1996, NLM 1997], but there is no code visible to the user that refers to

both the old and new names. In GRAIL, since the GRAIL canonical form is the unique

identifier, if that name changes, the concept becomes a new concept. GRAIL handles other

unique-name changes through its name feature.

38

Table 2.7. Comparison of features that relate to modification of existing entities.

Feature I M U S R CL GR OK KR

Replace unique concept
name without changing
concept

+ + + + + + +

Add/remove synonym + + + + + +

Add/remove abbreviation

Add/remove cross-
mapping code

+ + + +

Add parent/child +a +a + +a + +b +b +c +b

Remove parent/child +a +a + +a + + +c

Add binary relation
between concept 1 and
concept 2

+ + + + +

Remove binary relation
between concept 1 and
concept 2

+ + + + +

Attach binary relation to
concept without a value

+

Replace binary-slot value + + +

Merge concepts +
a Modifications to hierarchical codes result in changes to parents and children (ICD-9-CM,
MeSH, and SNOMED III).
b Parents and children may not be added directly, but new parents may be inferred when
new concepts are added (CLASSIC, GRAIL, and KRSS).
c Children are not added or removed directly, but result from the addition or removal of
parents (OKBC).
Legend:
I: ICD-9-CM; M: MeSH; U: UMLS; S: SNOMED III; R: READ Version 3;
CL: CLASSIC; GR: GRAIL; OK: OKBC; KR: KRSS.

In OKBC, there is an operation put-frame-name, which allows the user to change a

name, but it is not necessary for the new frame object with the new name to be the same

as the frame object with the old name. The philosophy held by the developers of the

UMLS lies in direct contrast to this approach. In the UMLS, if the name changes, the

concept does not, because the unique identifier remains the same.

In CLASSIC, the operation cl-change-canonical-name makes it possible to change a

name, but there is no unique identifier available to the user to indicate that the new

concept is the same as the old concept. There is an unusual operation in CLASSIC called

cl-remove-concept-names, which removes all names in the list of names, and if the

39

canonical concept name is in the list of names to be removed, then the system will pick

one of the synonyms as the new concept name. However, “there is no way for the user to

know which of the remaining names will become the canonical one” [Resnick 1993]. In

KRSS, there is no specific syntax for changing a concept name or role name.

2.3.4 Hierarchical-Relationship Changes

In SNOMED, there are term-code reassignments, which have the effect of

changing a term’s location in the hierarchy. In MeSH, the addition of a tree number has

the effect of giving a heading a new parent (and possibly new children) and the deletion

of a tree number has the effect of removing a parent (and children). In OKBC, there are

operations add-class-superclasses and remove-class-superclass. There are no comparable

operations for making changes to children, because the change is always specified in

terms of superclasses, and the resulting subclass relationships in the opposite direction

are inferred. In CLASSIC, GRAIL, and KRSS, a concept can acquire a new parent if a new

concept is defined that subsumes the first concept. However, redefining an already-

defined concept by giving it new parents directly is not possible in CLASSIC or GRAIL. In

GRAIL, the addition of a necessary statement to a previously existing concept may have

the effect of giving that concept a new parent.

2.3.5 Binary-Relationship Changes

SNOMED change files report modifications to cross-references between terms in

lists of reference corrections. The MeSH manuals do not include separate tables of

changes to cross-references, but such changes would have to occur if a heading to which

another heading referred changed its name or was deleted. CLASSIC and KRSS do not

permit modifications to roles and role values assigned to a particular concept after that

concept has been defined. OKBC provides a number of operations on slots, such as attach-

slot, detach-slot, put-slot-value, put-slot-values, remove-slot-value, remove-slot-values,

and replace-slot-value.

2.3.6 Merges

The UMLS is the only system reviewed here that explicitly supports merges. A

merge in the UMLS occurs when two concepts duplicate meaning, and one concept is

merged into the other, followed by deletion of the unique identifier of one of the two

concepts. It would be possible to perform merges in MeSH, SNOMED, ICD-9-CM, and Read;

in those vocabularies, however, a merge is done by a series of other operations, and there

40

is no notion of merge itself. CLASSIC, GRAIL, OKBC, and KRSS do not have merge

operations. However, in recent years, researchers in the knowledge-representation

community have recognized the importance of merge operations because they have

become interested in merging ontologies [Noy 1999b, Valente 1999]. I discuss that

research further in Section 2.5.2.4.

2.4 Comparison of Log Models

There is no standard method for representing completed changes in controlled-

medical-vocabulary systems. Change documentation may appear in published printed

manuals or in electronic text files, and the choice of data elements and their organization

is highly variable. Change descriptions occur in structured formats, such as lists or tables;

in unstructured formats such as paragraphs of natural-language text; or in semi-structured

formats that combine structured formats and natural-language text. To demonstrate the

variety of methods that vocabulary maintainers currently use to represent change, I give

examples from MeSH, DSM, SNOMED, and the UMLS. Little has been published by the

knowledge-representation community on representation of completed changes.

I make a distinction between a log model and a data format. I use log model to

indicate what kinds of data elements are in the log, how those elements are organized,

and what they mean. In contrast, I use data format (or data interchange format) to mean

the actual file format. Examples of data formats are Elhill format used by the National

Library of Medicine, Abstract Syntax Notation 1 (ASN.1), and EXtensible Markup

Language (XML) [Connolly 1997]. It is possible to infer a log model by analyzing the data

format of a change file.

The highly structured tables of MeSH changes provide a good example of change

data. Such tables are included with the annually released printed manuals of MeSH [NLM

1996, NLM 1997]. Since 1999, the change files have been distributed on the Web [NLM

1999]. The text files produced by the College of American Pathology for updates to

SNOMED provide an example of changes presented both in structured tables (in tab-

delimited format) and in semi-structured text. The changes to DSM are less structured;

many of the changes are described in natural-language text. The changes are included at

the end of DSM-III-R and DSM-IV, which are published as books [Frances 1994].

Finally, the developers of the UMLS distribute change files with each new version

of the UMLS as electronic text files of simple structured tables (in vertical-bar delimited

format), but the only changes reported are merges and deletions.

41

2.4.1 ICD-9-CM

ICD-9-CM , the coding system mandated for reimbursement of health-care services

in the United States, is divided into chapters that classify diseases and injuries. There are

sections (groups of three-digit code numbers), categories (three-digit code numbers),

subcategories (four-digit code numbers), and fifth-digit subclassificatons (five-digit

code numbers) [ICD-9-CM 1993]. A coded term is called a rubric. Associated with

rubrics are additional explanations that, by convention, use terms such as excludes, which

specifies conditions that should be coded elsewhere under another code, code also, which

instructs the user that more than one code is required to describe the condition fully, and

use additional codes, which suggests additional codes that the user might want to use.

Figure 2.1 shows examples of rubrics in ICD-9-CM. Table 2.8 shows examples of changes.

427 Cardiac dysrhythmias
427.0 Paroxysmal supraventricular tachycardia
427.1 Paroxysmal ventricular tachycardia
427.2 Paroxysmal tachycardia, unspecified
427.3 Atrial fibrillation and flutter
427.31 Atrial fibrillation
427.32 Atrial flutter
427.4 Ventricular fibrillation and flutter
427.41 Ventricular fibrillation
427.42 Ventricular flutter
427.5 Cardiac arrest
427.6 Premature beats
427.60 Premature beats, unspecified
427.61 Supraventricular premature beats
427.69 Other
427.8 Other specified cardiac dysrhythmias
427.81 Sinoatrial node dysfunction
427.89 Other
427.9 Cardiac dysrhythmia, unspecified

Figure 2.1. Rubrics in ICD-9-CM from the cardiac-dysrhythmias
category.

Source: International Classification of Diseases, 9th Revision,
Clinical Modification, Fourth Edition, Practice Management
Information Corporation, Los Angeles, 1993, pp. 212–213.

42

Table 2.8. Selected examples of changes made to ICD-9-CM.

Code Description Change Made

010 Primary tuberculous infection Exclusions added

038 Septicemia Exclusion added

077.9 Unspecified disease of conjunctiva due
to viruses and Chlamydiae

Description revised
Code invalid for Medicare after
October 1, 1993

077.98 Due to Chlamydiae Code added

077.99 Due to viruses Code added

250 Diabetes mellitus Exclusion added, and fifth-digit
subclassfications revised and
added

250.2 Diabetes with hyperosmolarity Code revised

250 Diabetes mellitus with other coma Description revised and exclusion
added

438 Late effects of cerebrovascular disease Use additional codes deleted, code
also added

Source: International Classification of Diseases, 9th Revision, Clinical Modification,
Fourth Edition, Practice Management Information Corporation, Los Angeles, 1993. From
section entitled “Summary of Additions, Deletions, and Revisions to Volume 1,” pp.
1367–1368.

2.4.2 MeSH

MeSH is the thesaurus of terms that is used to index the medical literature in

Medline. MeSH has headings, which are the controlled terms, print entry terms, which

are alternate terms that are listed with each heading, non-print entry terms, which are

alternative terms that are not listed directly, cross-references, which point to other

related MeSH headings, scope notes, which are text definitions, and tree numbers, which

indicate where a heading is located in the hierarchical tree structures. A heading can

appear in more than one tree and in more than one place in a given tree.

MeSH changes are presented in three text files: (1) new MeSH headings with scope

notes, (2) replaced MeSH headings with replaced-by headings, and (3) MeSH tree-number

changes. The first file, in Elhill format [NLM 1998], includes a variety of data elements,

such as MeSH heading, MeSH tree number, MeSH scope note, annotation, history note, and

backward cross reference (Figure 2.2). Data elements in the second file include the old

heading, the new heading, and a flag that specifies the fate of the old term (Table 2.9).

43

Cloning, Organism

The formation of one or more genetically identical organisms derived by vegetative
reproduction from a single cell. The source nuclear material can be embryo-derived,
fetus-derived, or taken from an adult somatic cell.

X Cloning, Embryo
X Cloning, Human
X Embryo Cloning
X Human Cloning

Previous indexing:
Cell nucleus/transplantation (94-97)
Genetic Engineering (94-97)
Reproduction Techniques (94-97)

Figure 2.2. Example of a new MeSH heading with its scope note and previous indexing.

Legend:
X: Cross-references
Source: National Library of Medicine. Medical Subject Headings, Annotated Alphabetic
List, 1998. Bethesda, MD, August 1997.

Table 2.9. Examples of replaced Medical Subject Headings with their
replacements.

Replaced Heading New Status Replacement

Delta Agent (P) Hepatitis Delta Virus

Delta Infection (P) Hepatitis D

Dementia, Senile# (P) Dementia

Dementia, Presenile# (P) Dementia

Disabled Disabled Persons

Heart, Mechanical Heart-Lung Machine

Hodgkin’s Disease (N) Hodgkin Disease

Zaire (P) Democratic Republic of the Congo

Legend:
#: deleted record
(P): replaced term continues to exist as a print entry term
(N): replaced term continues to exist as a non-print entry term.
Source: National Library of Medicine. Medical Subject Headings, Annotated
Alphabetic List, 1998. Bethesda, MD, August 1997.

44

Table 2.10. Sample MeSH tree-number changes. These changes occurred in the 1997
release of MeSH. By deleting a previous tree number and adding a new tree number,
Mumps was moved from one part of the tree to another. See Figure 2.3 for a hierarchical
view of this change.

Heading
1996

Deleted Tree Number
1997

Added Tree Number

Mumps C2.782.580.600.600.500 C2.782.580.600.680.500

Source: National Library of Medicine. Medical Subject Headings, Tree Structures,
1997. Bethesda, MD, August 1996.

1996
Virus Diseases C2
 RNA Virus Infections C2.782
 Mononegavirales Infections C2.782.580.
 Paramyxoviridae Infection C2.782.580.600

 Paramyxovirus Infections C2.782.580.600.600
 Mumps C2.782.580.600.600.500

1997
Virus Diseases C2
 RNA Virus Infections C2.782
 Mononegavirales Infections C2.782.580.
 Paramyxoviridae Infections C2.782.580.600
 Rubulavirus Infections C2.782.580.600.680
 Mumps C2.782.580.600.680.500

Figure 2.3. Change in hierarchical location of Mumps in MeSH
between 1996 and 1997. See Table 2.10 for the MeSH
representation of this change.

Sources: National Library of Medicine. Medical Subject Headings,
Tree Structures, 1996. Bethesda, MD, August 1995.
National Library of Medicine. Medical Subject Headings, Tree
Structures, 1997. Bethesda, MD, August 1996.

Data elements in the third file include the MeSH heading, added tree numbers, and deleted

tree numbers. Table 2.10 shows an example, and Figure 2.3 shows a hierarchical view of

that example.

The MeSH developers report the frequency with which certain changes are made.

In 1997 (with a total of 17,895 terms), there were 350 descriptors added, 71 descriptors

replaced with more up-to-date vocabulary, 60 descriptors deleted, and 560 print entry

45

terms added [NLM 1996]. The reports do not quantify the number of deleted tree

numbers and added tree numbers.

2.4.3 DSM

DSM is a classification system that organizes mental disorders. DSM has

categories, which are classes of mental disorders that are based on criteria sets with

defining features [Frances 1994, Spitzer 1987]. Categories are associated with ICD-9-CM

codes. In Diagnostic and Statistical Manual of Mental Disorders, Third Revision Revised,

Appendix D is entitled “Annotated Comparative Listing of DSM-III and DSM-III-R”

[Spitzer 1987]. This appendix lists the categories in the order in which they appear in the

old edition, DSM-III, and identifies the corresponding new categories in DSM-III-R. If there

has been a change, an explanation is given in natural-language text. Similarly in

Diagnostic and Statistical Manual of Mental Disorders, Fourth Revision, Appendix D is

entitled “Annotated Listing of Changes in DSM-IV” [Frances 1994]. In this appendix,

disorders are listed in the order in which they appear in the new edition, DSM-IV, and

annotates them with explanations of the ways in which the new categories were changed.

For example, in DSM-III- R, the category Autistic Disorder was annotated as

follows:

The distinction between the two specific DSM-III categories

of Infantile Autism and Childhood Onset Pervasive

Developmental Disorder, on the basis of age at onset, was

judged to be not valid. Therefore, these two categories have

been combined into the single category in DSM-III- R of

Autistic Disorder. [Spitzer 1987]

In DSM-IV, the category Anorexia Nervosa was annotated as follows:

This disorder has been moved from the Disorders Usually

First Diagnosed in Infancy, Childhood, or Adolescence

section to the Eating Disorders section of the

Classification. [Frances 1994]

In these examples, two types of changes are identifiable within the natural-

language text: (1) “ ... two categories have been combined into the single ...,” and (2)

“This disorder has been moved ... ” Other examples of phrases used to express the types

of changes include “the name has been changed,” “this integrates into one overarching

category what were two categories,” “this new category was added,” “the duration

46

requirement has been reduced from 6 months to 3 months,” “this has been omitted as a

separate category,” “the criteria set has been changed,” “this disorder is new,” “a

specifier has been added,” and “the frequency criterion of at least three times a week was

dropped” [Frances 1994].

Because there is no consistent nomenclature used to identify change types, it is

difficult to determine the frequency of each type of change. However, in DSM-IV, there is

a listing of “New Disorders Introduced into DSM-IV,” which lists 13 disorders, and a

listing of “DSM-III-R Disorders Deleted from DSM-IV or Subsumed into Other DSM-IV

Categories,” which lists eight disorders [Frances 1994].

2.4.4 SNOMED

SNOMED is a systematized nomenclature that broadly covers human and

veterinary medicine. SNOMED has terms, which may be preferred terms or synonyms,

term codes, which indicate where terms are in the hierarchy, ENOMENs, which are

integers that classify types of terms, and cross-references, which link SNOMED terms that

are related by meaning. An ENOMEN may be 01 to indicate a preferred term, 02 to indicate

a synonym of the preferred term, 03 to indicate a term with a more specific characteristic

of the primary term, or 05 to indicate an adjectival form (e.g., hepatic for liver).

Types of changes in SNOMED include: adds, deletes, text corrections, term-code

reassignments, reference corrections or adds, and ICD adds or corrections. Change

data are presented in tables and lists that, in certain cases, include natural-language text.

Tables 2.11 and 2.12 and Figures 2.4, 2.5, and 2.6 give examples.

Table 2.11. Examples of adds in SNOMED. Structured data for additions include term
codes, date, ENOMEN (English term classification data item), term, and cross-references to
other SNOMED codes. Adds refer to either preferred terms or synonyms.

Term Code Date ENOMEN Term Cross-References

D2-54126 01/96 01 Sick building syndrome (T-20000) (C-00220)

D2-61140 01/96 02 Pulmonary haemorrhage (T-28000) (M-37000)

D2-61100 01/96 02 Pulmonary oedema, NOS (T-28000) (M-36300)

Legend:
01: a primary or preferred term
02: a synonym of the primary term
Source: Adapted with permission from file ADDS96.TXT on floppy disk SNOMED
International Update No. 3 for Complete Dataset (July 1996). © 1996 College of
American Pathologists. All rights reserved.

47

Table 2.12. Examples of text corrections in SNOMED. Text corrections include removal of
words from a term and changes of spelling (e.g., “Creutzfeld” -> “Creutzfeldt”).

SNOMED Code ENOMEN Text Correction

D3-31532 01 “Atrial” flutter-fibrillation1

DE-3Bl020 01 Jakob-”Creutzfeldt” disease1

DE-3B020 02 “Creutzfeldt”-Jakob disease1

T-175B3 01 Deep flexor tendon of middle “third” finger (Remove “third”) 2

1Update No. 3 January 1996
2Update No. 4 August 1997
Legend:
01: a primary or preferred term
02: a synonym of the primary term
Sources: Adapted with permission from file CORR96.TXT on floppy disk SNOMED
International Update No. 3 for Complete Dataset (July 1996) and from file CORR34.DOC
(TEXT) on floppy disk SNOMED International Update No. 4 for Complete Dataset (August
1997) © 1996, 1997 College of American Pathologists. All rights reserved.

Replace L-10038 - 03: Clostridium botulinum toxin for C-36304 - 01
Replace L-10038 - 03: Diphtheria toxin for C-36310 - 01

Figure 2.4. Examples of term-code reassignments in SNOMED. Documented data include
term codes, ENOMENs, and terms.

Source: Adapted with permission from file CORR96.TXT on floppy disk SNOMED
International Update No. 3 for Complete Dataset (July 1996). © 1996 College of
American Pathologists. All rights reserved.

DE-11310 01 Botulism
Replace (L-10038) for (C-36304)

Figure 2.5. Example from semi-structured list of reference corrections in SNOMED.
Documented data include term codes, ENOMENs, terms, and structured text stating the
change.

Source: Adapted with permission from file CORR96.TXT on floppy disk SNOMED
International Update No. 3 for Complete Dataset (July 1996). © 1996 College of
American Pathologists. All rights reserved.

48

F-51530 01 Expectoration of sputum
 Delete, confusing with sputum (T-20270)

D8-04400 02 Failed attempted legal abortion
 Delete confusing

Figure 2.6. Examples of deletes in SNOMED. Documented data include term codes,
ENOMENs, terms, and brief explanations of what change was made and why.

Source: Adapted with permission from file CORR96.TXT on floppy disk Update No. 3 for
Complete Dataset (July 1996). © 1996 College of American Pathologists. All rights
reserved.

2.4.5 UMLS

The UMLS contains multiple sources vocabularies and mappings among terms that

have the same meaning. Terms that share the same conceptual meaning are linked by a

concept unique identifier, or CUI.

With each new release of the UMLS, files called DELETED.CUI and MERGED.CUI are

distributed. With these two files, users can determine whether a concept unique identifier

that is no longer present in the new version was removed due to a deletion of the concept,

or due to a merging of the concept with another concept. There is no explanation of why

the changes were made. Examples of such updates are shown in Figures 2.7 and 2.8.

C0119634|Gly-Pro-Arg-Pro-Tyr|
C0119651|Gly-Tyr-Phe-Phe-Phe-Arg-Pro-Arg-Asn-NH2|
C0121341|hemoglobin Cleveland|
C0121366|hemoglobin La Roche-sur-Yon|
C0124739|KRRG|
C0124757|KT 6124|
C0146163|tobacco vein mottling potyvirus 34k protein|
C0146164|tobacco vein mottling potyvirus 42k protein|
C0150366|Surgical Assistance: Circulating|
C0150367|Surgical Assistance: Scrubbing|
C0150620|Hyperalimentation, NOS|
C0152022|BRAIN, HEMORRHAGE|
C0170962|unk gene product|
C0173192|SIOP protocol|

Figure 2.7. Examples showing the representation of deletions
in the UMLS, as listed in the file named DELETED.CUI.

Source: National Library of Medicine. UMLS Knowledge
Sources, 7th Experimental Edition (CD-ROM) January
1996, Disc 1.

49

C0000105|C0001964|
C0000267|C0000266|
C0000776|C0008489|
C0001070|C0014848|
C0001123|C0011880|
C0001167|C0000889|
C0001194|C0001193|
C0001336|C0086066|
C0001440|C0014177|

Figure 2.8. Examples showing the representation of merges
in the UMLS, as listed in the file named MERGED.CUI.

Source: National Library of Medicine. UMLS Knowledge
Sources, 7th Experimental Edition (CD-ROM) January 1996,
Disc 1.

2.5 Management of Shared and Local Versions

Because ICD-9-CM is mandated for reimbursement of health-care services in the

United States, there is high motivation for clinicians to conform to this coding system,

and there has been little incentive to alter it for local needs. The Read coding system in

the United Kingdom has been mandated for reporting data to the National Health Service.

However, in the United Kingdom, since the Read codes are also used by clinicians for

managing local clinical data, clinicians find it useful to make local modifications. The

National Health Services permits local modification and reviews requests for changes

that are submitted by local sites.

MeSH was created for the purpose of indexing the medical literature, and although

it—or parts of it—may have been adopted and modified for other uses, there are few

well-publicized examples of local modification. Thus, MeSH is a vocabulary that is shared

by many people worldwide, but in the majority of cases, it is used for the same purpose—

retrieval of articles from Medline. SNOMED has been used by pathologists, but is not yet

in widespread use for electronic medical records. So far, little has been published about

local modification at health-care delivery sites.

The developers of the UMLS have distributed the UMLS annually since 1990, and

have encouraged its use for research purposes. The emphasis on research encouraged use

of the UMLS for a variety of purposes at a variety of sites. The developers recognized that

the UMLS would not cover all users needs—especially when it was first released—and

would need enhancements.

50

Tuttle and colleagues wrote about the local update problem in an early paper

entitled “Adding your terms and relationships to the UMLS Metathesaurus” [Tuttle 1991].

They described what they called “the local dilemma,” pointing out the problems that

developers would face if they enhanced the Metathesaurus locally. They recognized that

local enhancements would increase the burden of maintenance when new versions of the

Metathesaurus were released, and predicted that the effort required to integrate local

enhancements with Metathesaurus updates could easily exceed the effort required to add

the local enhancements in the first place.

The idea of a shared vocabulary that everyone can use is appealing, because

people believe that a shared vocabulary would permit everyone to communicate and

share data, knowledge, and applications, and pooled resources could go toward the

development and maintenance of the vocabulary. However, there are multiple reasons

why local sites may differ in their vocabulary needs.

In an ideal world, the shared-vocabulary maintainers could serve the needs of all

users. They could take into account all requests by local sites, and make updates to

accommodate all users. If there were any discrepancies in this ideal world, the user

community could find ways to achieve consensus. Unfortunately, however, no single

local site can expect the organization that develops the shared vocabulary to respond to

all its needs, and consensus among all potential users for all potential purposes is far from

likely. Too much detail in a vocabulary may be costly for an organization, and too little

detail does not serve intended objectives.

We may be tempted to conclude that the optimal design and content of a

vocabulary depends strictly on the purpose of the application, and we might

pessimistically believe that no standard is possible. However, different groups do have

common or at least overlapping purposes in health care; if we can identify our common

needs for structure and content, we can design and maintain a shared health-care

vocabulary that serves the needs of many.

In the remainder of this chapter, I first describe methods for managing local

customization that have been proposed or implemented by developers of controlled

medical vocabularies, including Read, GALEN, the UMLS, and SNOMED. Subsequently, I

explore work done by researchers in the knowledge-representation community, who have

recognized the problem of shared use and local customization. Knowledge-representation

researchers recognize that the cost of building knowledge bases is high and strive to

51

develop methods to make knowledge-base reuse possible. In working on problems of

reuse, they have dealt with problems with sharing and local modification.

2.5.1 Methods Proposed by Developers of Controlled Medical
Vocabularies

ICD-9-CM was initially released in 1975, when few clinical centers had any

interest in maintaining a computer-based repository of concepts that would be compatible

with ICD-9-CM and its annual releases. In contrast, many health-care vocabularies and

corresponding vocabulary-management systems are now being developed to be used in

computer-based systems. Vendors of electronic medical-record systems that feature

structured data entry find that currently available vocabularies are inadequate, and their

customers may demand support for local modification. Developers of the Read Codes

and of electronic medical-record products that use the Read codes offer support for local

modification, and developers of GALEN, the UMLS, and SNOMED have proposed methods

for dealing with local variation as well.

2.5.1.1 Distinct Namespace for Local Codes

In a discussion of how the Read codes are updated in response to user change

requests, Robinson and colleagues emphasized the importance of having a code

namespace for local terms that does not overlap with the code namespace for official

terms [Robinson 1997]. Users of the Read codes may add temporary codes or local

codes. If a temporary code represents a concept that is later adopted in the national set,

then a permanent code replaces the temporary code. Local codes accommodate site-

specific needs. Such temporary and local additions have codes that are distinguished from

official codes by a specific initial character.

2.5.1.2 A Generative Approach to Facilitate Local Changes

Rogers and Rector [Rogers 1997] argued that the generative approach of a

vocabulary system such as GALEN offers more principled methods for users to make local

extensions to the vocabulary than does an enumerative approach. If it is possible to

compose existing concepts to generate new concepts, while following sanctions and other

rules enforced by the system, then the local site may use new concepts immediately,

rather than wait for updates from the shared vocabulary.

52

2.5.1.3 Central Coordination

In an earlier article about GALEN changes, Rector and colleagues speculated on

methods for locally extending the GALEN CORE model [Rector 1995]. They envision a

central coordinator who monitors local changes at the various sites to identify conflicts.

The authors’ basic premise is that changes that simply increase the level of detail could

be made locally, but the local site should notify the central coordinator, whereas more

drastic changes should be done only with careful control and coordination at the central

site. Although the specifics of which situations would or would not require central control

and what decisions the central coordinator would be expected to make are not fully

delineated, their point is that if all sites share the vocabulary despite local changes,

certain basic aspects of the overall framework must be retained.

2.5.1.4 Clarification of Missing Codes as Deletes or Merges

Olson and colleagues described the five change files distributed with the annual

release of the UMLS Metathesaurus [Olson 1996]. These change files provide information

that helps local sites to update their local copies of the Metathesaurus. Three change files

list deleted codes: DELETED.CUI (for concepts), DELETED.LUI (for terms), and DELETED.SUI

(for strings). The remaining two files list merged codes: MERGED.CUI (for concepts) and

MERGED.LUI (for terms). The problem for local sites is that, if they compare the old

version with the new version and find a former code missing, they do not know (without

being told) whether the loss is due to a deletion of the code or to a merge of the original

code into another code.

2.5.1.5 An Open Sharing Approach

Suarez-Munist and colleagues depicted a scenario in which multiple sites

communicate openly with one another as they make local updates [Suarez-Munist 1996].

This approach assumes that all sites want to distribute their local changes and to adopt

other sites’ local changes. The MEME-II vocabulary-management software developed by

the makers of the UMLS could support the updates. However, although this approach

could work well for truly collaborative development with a few interacting groups or

individuals who could also communicate in other ways, it might not be appropriate if

there were hundreds or thousands of local sites. With many sites, differences in opinion

may not be easy to resolve. Also, not every site will want every change from every other

site, especially if there are conflicts. In addition, because the expense of updating

vocabularies is high, groups that spend the most resources may not be willing to share

53

their work if they do not receive compensation. Alternatively, a group that spends few

resources and is not conscientious about quality control could do sloppy work and

produce errors that are propagated. Without a single organization in charge, there may be

nobody to take responsibility for quality, and without a mechanism for distributing costs,

there may be no incentive to produce good work.

2.5.1.6 Collaborative Development

Campbell and colleagues, in a study of collaborative development by physicians

working in distributed locations, addressed conflict resolution [Campbell 1998a]. Unlike

the maintainers of the UMLS, Campbell and colleagues strove to maintain a single

coherent hierarchical structure that involved all concepts in the system, despite

development by more than one maintainer. They identified two types of conflicts: (1)

multiply defined term conflict (same term, different structured definitions) and (2) non–

unique-definition conflict (same structured definition, different terms). They emphasized

collaborative development of a convergent medical vocabulary, and used SNOMED as the

basis for their work. In their approach, software supports identification of conflicts, and

then developers must communicate among themselves to reach consensus when conflicts

occur.

2.5.2 Methods Proposed by Researchers in the Knowledge-Representation
Community

Work to design and build health-care vocabularies grew out of needs for

managing terms for patient data in databases, for assigning standard codes for billing, and

for retrieving literature from indexed systems such as Medline. As it has become clear

that long lists of terms, with strict hierarchies, inconsistent types of parent–child

relationships, and unlabeled nonhierarchical relationships, are not adequate for many

clinical purposes, medical-informatics investigators have recognized the overlap with

research in knowledge representation.

While developers of MeSH, SNOMED, and the UMLS were creating large sets of

terms with valuable content during the past few decades, knowledge-representation

researchers were focusing on concepts rather than on terms, and the hierarchies they

designed were typically formal taxonomic structures to which algorithms for determining

subsumption or for performing classification could be applied. In the early 1970s,

Brachman designed the KL-ONE knowledge representation language, which employed

concepts, roles, role values, and role restrictions in its approach to concept representation

54

[Brachman 1985]. Numerous other researchers followed his work by designing variants

of KL-ONE in the 1980s. Each offered a slightly different approach, emphasizing one

aspect or another, and a significant body of research accumulated. Examples of

knowledge-representation languages are Krypton [Brachman 1983], BACK [Peltason

1991], CLASSIC [Brachman 1991], Loom [MacGregor 1991], and K-Rep [Mays 1991,

Mays 1996].

In 1994, Cimino argued for following a knowledge-based approach to managing

controlled medical vocabularies [Cimino 1994]; in 1997, Rector and colleagues described

their implementation of the description logic GRAIL, which they populated with medical

terms to form GALEN [Rector 1997]; and in 1998, Campbell and colleagues populated

K-Rep with SNOMED terms [Campbell 1998a]. Gradually, the medical-informatics

community has recognized the desirability of approaches more formal than those used in

MeSH, SNOMED, ICD-9-CM, and the UMLS, but the goal to create systems that hold

hundreds of thousands of medical concepts—as are found in the UMLS—far exceeds the

scale of knowledge bases built in KL-ONE–like systems in the early days.

Description logics include systems descended from KL-ONE, such as CLASSIC,

Loom, GRAIL, and K-Rep. Research on description logics continues as improvements in

scalability, increased functionality, and methods for knowledge sharing are sought

[Campbell 1998a, Horrocks 1999, Mays 1996, Swartout 1996, Valente 1999].

The word ontology has become popular, although its meaning is often vague. The

term was borrowed from the discipline of philosophy where it means, according to

Webster’s Dictionary, “a particular theory about the nature of being or the kinds of

existents” [Webster's 1991]. For the purposes of the knowledge-representation

community, Gruber defined an ontology as a specification of a conceptualization [Gruber

1993], where a conceptualization comprises the objects, concepts, and other entities that

are presumed to exist in some area of interest and the relationships that hold among them

[Genesereth 1987]. More simply, a set of concepts in a domain and the relationships

among them constitute an ontology.

Swartout and colleagues recognized problems that arose with local use of a shared

ontology in a DARPA-funded research initiative [Swartout 1996]. The goal of the project

was to integrate systems developed by teams of researchers working in a common

domain to produce a single larger and more capable system. The resulting ontologies

apparently were not widely used.

55

Rather than growing with the systems in a tightly coupled fashion, ontologies

were either released once and not extended, or versions of an ontology were made

available at periodic intervals. If a particular system builder wanted to extend the

ontology, it took a long time for his extension to be reflected in the shared ontology.

Furthermore, when a new version of an ontology was released, developers were reluctant

to take on the burden of updating their software to track changes in the ontology. As a

result, the ontology and the implementations diverged, thus negating the advantages of a

shared ontology [Swartout 1996].

Knowledge-representation researchers have found that the high cost of building

knowledge bases impedes the development of large systems [Neches 1991]. Therefore,

the problems of sharing, reuse, and local modification have become prominent research

topics. Solutions proposed include translating between different knowledge

representations, creating a common application programming interface (API), sharing a

common syntax and semantics, merging and aligning ontologies, assembling modular

ontologies by ontology inclusion, and comparing differentiated ontologies by employing

description-compatibility measures. I discuss each of these approaches briefly.

2.5.2.1 Translating Between Different Knowledge Representations

Gruber and colleagues confronted the problem of heterogeneity of knowledge-

representation languages by creating Ontolingua [Gruber 1993], a frame-based language

based on the Knowledge Interchange Format (KIF). Translators have been written from

Ontolingua to other representations, such as Loom, and the Interface Definition Language

(IDL) of the Common Object Request Broker Architecture (CORBA) [Farquhar 1997].

Although the original goal of Ontolingua was to support translation between different

knowledge-representation languages, automatic translation was sometimes difficult

[Uschold 1998]. Perhaps a more important contribution of the work on Ontolingua has

been the development of Web-based services for storing knowledge bases in a sharable

repository on the Internet [Farquhar 1997].

2.5.2.2 Creating a Common Application Programming Interface

Chaudhri and colleagues developed OKBC as an API, to permit client applications

to interact with different knowledge-representation systems in a standard way [Chaudhri

1998a, Chaudhri 1998b]. OKBC comprises explicit operations for creating, querying, and

modifying an ontology. Its knowledge model makes use of frames, classes, slots, slot

values, and facets. OKBC change operations were discussed in Section 2.3. If a knowledge

56

base is OKBC compliant, then an application can send OKBC-compliant queries to the

knowledge base to retrieve knowledge. As long as the underlying knowledge base is

OKBC compliant, it does not matter whether that knowledge base is written, for example,

in Protégé [Musen 1998], Loom, or Ontolingua.

2.5.2.3 Sharing a Common Syntax and Semantics

Description-logic researchers dealt with the knowledge-sharing problem by

specifying the syntax and semantics of an expressively powerful description logic,

incorporating constructs that were generally accepted [Patil 1992]. This specification was

KRSS [Patel-Schneider 1993]. In the specification, they included a minimal set of

interface functions that permitted construction and querying of knowledge bases.

Features included representation of defined and primitive concepts and roles; disjointness

of concepts; conjunction, negation, and disjunction of concepts and roles; existential and

universal role quantification; maximum, minimum, and exact cardinality of roles; role

inverses; and assertions about individuals. It is not possible to design a system that

contains all features and that runs efficiently, and therefore not all features must be

implemented for a system to be KRSS compliant. However, the designers of the

specification identified a core set of constructs and inferences that should be

implemented, and provided additional constructs that could be implemented if desired.

2.5.2.4 Merging and Aligning Ontologies

Valente, Russ, and Swartout, using the description logic Loom, merged two

ontologies that contained knowledge about air-campaign planning [Valente 1999]. They

found that “the merging proved trickier than expected, because there were substantial

structural differences between the two ontologies.” They succeeded, however, in

integrating the different viewpoints into an ontology that incorporated both views.

Noy and Musen developed an algorithm for merging and aligning ontologies,

using the frame-based system Protégé [Noy 1999a, Noy 1999b]. In their approach,

merging results in a single merged version of the original ontologies, whereas alignment

results in the persistence of the two original ontologies, with links between them.

Mitra and colleagues developed a set of algebraic operators that take ontologies

represented as graphs as inputs [Mitra 2000]. Operators include union, intersection, and

difference. The union operator generates a unified ontology graph from two original

ontology graphs.

57

2.5.2.5 Assembling Modular Ontologies

So that they could assemble collections of ontologies to build larger ontologies,

Fikes and colleagues promoted the idea of inclusion of one ontology in another [Fikes

1997]. They implemented their approach using the Ontolingua formalism, in which an

ontology is a vocabulary of nonlogical symbols and a set of axioms. Including an

ontology A in an ontology B requires specifying a translation of the vocabulary of A into

the vocabulary of B, applying that translation to the axioms of A, and adding the

translated axioms to the axioms in the specification of B. Each ontology provides a local

name space for the symbols defined in it, to avoid symbol conflicts.

2.5.2.6 Comparing Concepts by Description-Compatibility Measures

Weinstein defined differentiated ontologies as local versions that result when

diverse participants adhere to a standard vocabulary on a general level, but are given the

freedom to develop specialized meanings in local communities [Weinstein 1999]. In his

work on description-compatibility measures, Weinstein assumed that an ontology would

be represented in a description logic or in some other formalism that supports

subsumption inference. Using a language that contained a subset of features from Loom

and CLASSIC, he developed a number of measures that resulted in numeric scores to

indicate semantic closeness of two concepts in two differentiated ontologies. He based

his comparison methods on the structure of the ontology in the area of the concept of

interest. Although he did not use the symbols assigned to concepts (e.g., concept names

and synonyms) in his comparison algorithms, he believed that symbols were a potential

source of additional information.

2.6 Summary

In this chapter, I surveyed a variety of controlled medical vocabularies and frame-

based knowledge-representation techniques. I emphasized the ideas of structural models,

change models, and log models. Controlled medical vocabularies typically do not follow

formal models with clear semantics that are described explicitly and followed

consistently. Nonetheless, many controlled medical vocabularies are rich in content, are

in widespread use, and have been highly successful for the purposes for which they were

designed. In contrast, knowledge-representation languages that can represent knowledge

content in diverse domains, protocols that specify application-programming interfaces,

and system specifications that describe common syntax and semantics for knowledge-

representation languages in a particular family do follow formal models with clear

58

semantics. The languages, protocols, and specifications are described explicitly, and

computer-based implementations follow the declared models rigorously. Nevertheless,

medical ontologies built according to these models have not found widespread use in the

delivery of health care.

When controlled medical vocabularies are designed for a particular purpose, such

as for literature retrieval or reimbursement for health-care services, and there has been no

goal to conform to a model that is useful for other applications, it is difficult to merge or

share content. For example, the use of parent–child relationships that could mean is-a,

part-of, or located-in in MeSH makes it difficult to reuse MeSH for purposes that require

explicit subsumption relationships in a conceptual hierarchy. The use of a code that

indicates a concept’s location in the hierarchy and that also serves as a unique identifier

makes it impossible to permit more than one classification of a concept. Such an

approach works for ICD-9-CM if users use the hierarchy only to help them find particular

codes, and get accustomed to where codes they commonly use are located. However, if

an application needs to know that streptococcal pharyngitis is both a disease caused by

streptococcus and a pharyngitis, then the vocabulary system cannot be reused for this

other application that depends on multiple classification.

It is complicated to sort out these kinds of differences between vocabularies if

their structures and underlying assumptions are not clearly expressed in a uniform

manner. Hence, formally expressed structural models make it possible to understand

differences in how controlled medical vocabularies are designed; were there agreement

on structural models, it would be easier to merge and share content as well as to share

software browsers and editors that manage content.

Because language reflects current thinking and behavior and our medical

knowledge and health-care services are constantly changing, the language of medicine is

constantly evolving. Therefore, even if we start with common structural models and are

able to share content, we will run into trouble if we cannot share changes. A formal

change model that specifies change operations and their semantics permits a shared

understanding of change. A formal log model that specifies data elements for completed

changes facilitates the sharing of log files. With agreement on a change model and a log

model, different groups can write their own vocabulary editors and applications that

incorporate shared changes.

Analysis of change files for ICD-9-CM, MeSH, SNOMED, and DSM shows that there

is little consistency among change models and log models for these vocabularies. Data

59

formats for change files are also highly variable. Although knowledge-representation

researchers have been careful to express their structural models and change models

formally, they have little experience in representing shared changes for medical

ontologies that are in actual use. Thus, we can learn from the history of changes made to

controlled medical vocabularies about the types of changes that are needed and about

how frequently such changes occur, and we can learn from the principles followed by the

knowledge-representation community regarding formal approaches to change.

Problems of local modification have been recognized both by developers of

controlled medical vocabularies and by knowledge-representation researchers.

Developers and users of the Read codes probably have had the most experience in this

area for actual patient care. However, changes to the Read codes at the local level are

limited primarily to changes in names of concepts, and changes to the hierarchy generally

remain under central control at the National Health Service [Robinson 1997]. Cimino

also faced the problem in dealing with actual patient care and reported his solution

[Cimino 1996a]. Other researchers in the medical-informatics community have

speculated on or studied methods for handling local modification. UMLS, GALEN, and

SNOMED researchers have published on this topic.

The high cost of creating knowledge bases and the widely accepted goal among

computer scientists and programmers of developing software that can be reused have led

knowledge-representation researchers to confront problems of sharing and local

modification. Methods for translating between languages, using a common API, agreeing

on syntax and semantics, merging or aligning ontologies, and predicting semantic

closeness of concepts in differentiated ontologies are topics that have received attention.

Based on this analysis of structural models, change models, log models, and local

modification, I created the CONCORDIA model, which I describe in detail in Chapter 3.

61

3 CONCORDIA Model

In this chapter, I describe CONCORDIA. The CONCORDIA model fulfills many of the

ideas that health-care-vocabulary developers currently find useful in vocabulary design,

but I do not claim that it is the ideal model. Vocabulary developers still have years of

work ahead—some of which will be by trial and error played out in the marketplace—to

acquire experience with applications and evolving health-care vocabularies. CONCORDIA

is just one piece of the work that needs to be done. In particular, it introduces the idea of

a local extension to a vocabulary model; it emphasizes the importance of explicit change

models [Oliver 1999]; and it permits us to explore the process of synchronization.

In the design of CONCORDIA, I chose not to use the vocabulary model of the UMLS,

because the UMLS has no subsumption hierarchy that links all its concepts. I chose not to

use the models of MeSH, ICD-9-CM, and ICD-10 for the same reason. SNOMED III and Read

codes Version 2 were not appropriate because each of these vocabularies has a strict

hierarchy, and the code identifier determines a concept’s location in the hierarchy. To be

consistent with modern concepts in vocabulary design, I needed a hierarchy that permits

multiple parents per concept, and unique identiers that do not determine hierarchical

position.

GALEN, SNOMED RT, and Read codes Version 3 have subsumption hierarchies,

allow for multiple parents, and have concept codes that are independent of hierarchical

location. In addition, they allow for the specification of structured definitions of concepts.

I wanted to include these features in CONCORDIA. However, for simplicity, I chose a

somewhat simpler model than that of GALEN. SNOMED RT did not exist when I began my

work. The vocabulary model of Read codes Version 3 is similar to mine; however, the

Read system has templates that permit compositional concept generation [O'Neil 1995],

and my model does not.

Based on the analysis of existing vocabularies and knowledge-representation

methods, I have selected a set of concept data elements and constraints for the

CONCORDIA structural model, a set of change operations and their semantics for the

CONCORDIA change model, and a set of log-file data elements and constraints for the

CONCORDIA log model. I describe those choices in this chapter, then conclude with an

analysis of alternative choices that were considered.

62

3.1 CONCORDIA Structural Model

The CONCORDIA structural model consists of a shared-vocabulary structural model

and a local-vocabulary structural model. First, I describe the data elements in the

structural model. Then, I describe the organization of and constraints on those data

elements.

3.1.1 Data Elements in the Structural Model

Table 3.1 shows the data elements in the shared-vocabulary structural model.

CONCORDIA uses certain data elements to specify concepts and other data elements to

specify attributes.

Every concept must have a concept unique identifier that remains unique and

constant in meaning. In CONCORDIA, the unique identifier is a meaningless alphanumeric

string (frequently called a code), rather than a meaningful word or phrase. Words or

phrases that people use to denote a concept may change over time, but the concept itself

does not change. If a patient data element is stored in a database using the concept

identifier, the representation of the concept will always be valid, even if the name

changes. Unique identifiers in CONCORDIA do not indicate the location of the concept in a

hierarchy.

Table 3.1. Data elements in the CONCORDIA shared-
vocabulary structural model.

Data Elements

Concept Data Concept unique identifier
Concept name
Concept text definition
Synonyms
Abbreviations
UMLS code
Parents
Children
Defining attribute set
Concept usage status
Retired parents
Retired children

Attribute Data Attribute unique identifier
Attribute name
Attribute text definition
Attribute usage status

63

Every concept has a meaningful concept name that can be a word or a phrase. A

concept name should be as explicit and as unambiguous as possible. Terms such as

cold<1> and cold<2>, which are found in the UMLS [Humphreys 1996a], should be

avoided and replaced, for example, with upper respiratory infection and cold

temperature. Terms should be meaningful to a person who is knowledgeable about the

subject matter. The concept name is unique at any particular moment: There are no two

concepts that have the same meaning at the same time. However, the name of a concept

may change over time, while its code stays the same.

Synonyms are optional and may be assigned to concepts. A synonym is an

alternate name for the concept. Synonyms help users to search for coded concepts.

Therefore, near-synonyms are permitted. Abbreviations are similar to synonyms in that

they are used to facilitate search. However, they are distinct from synonyms and are

maintained in a separate data structure. A synonym or abbreviation may be used for two

different concepts. For example, cold could be a synonym for upper respiratory infection,

and cold could also be a synonym for cold temperature. Similarly, LAD could be an

abbreviation for left anterior descending artery as well as for left axis deviation.

A concept text definition is optional but desirable. A text definition is presented

in unstructured natural language, like a dictionary definition.

A translation code serves as a link from the CONCORDIA-based vocabulary to

another system that performs translation services. Implemented software based on the

CONCORDIA model is not required to perform translation to other coding schemes. For

medical vocabularies, the UMLS currently offers such services, and the translation code

would be a UMLS code.

A subsumption hierarchy is defined in CONCORDIA by the specification of parents

and children. The relationship between parents and children is always is-a. That is, if

concept P is a parent of child concept Ch, then Ch is a kind of P. For example,

cardiovascular disease is a parent of coronary artery disease, and coronary artery

disease is a child of cardiovascular disease. Although children could be inferred from

parents, CONCORDIA includes children in the concept model to facilitate more efficient

retrieval of hierarchical information by an implemented system. Subsumption

relationships are inherited down the hierarchy (i.e., subsumption is transitive). Ancestors

and descendants are not explicitly included in the concept model, because, when

necessary, ancestors and descendants can be computed recursively from parents and

children by the implemented system.

64

The defining attribute set is a set of attribute–value pairs that define the concept.

The set must contain necessary conditions, but it does not have to contain necessary and

sufficient conditions. Attribute–value pairs are inherited down the hierarchy. The values

can be restricted further at lower levels of the hierarchy as described in Section 2.2.2.6.

What constitutes defining attribute–value pairs is a matter of judgment. The attribute–

value pairs should contain information about the concept that is noncontroversial and that

is inherently true.

Each attribute has a code that serves as an attribute unique identifier, and that

remains constant in meaning over time. It also has an attribute name that is unique at

any given moment, but that may change over time. The CONCORDIA model currently does

not specify a hierarchy for attributes. However, GALEN researchers have shown that such

a feature is useful, and we there are potential benefits to such an approach, especially if

the set of attributes is large. In CONCORDIA, an attribute also has an optional attribute

text definition.

So that change can be managed, a concept has a concept usage status and an

attribute has an attribute usage status. The usage status may take on the value of current

or retired. If a concept has a parent that is retired, that parent is removed from the

concept’s list of parents and placed in its list of retired parents. A similar construct is

available for retired children.

The local-vocabulary structural model also includes the data elements concept

site of origin and attribute site of origin. The site of origin indicates whether the

concept originated at the shared-vocabulary level or at the local-vocabulary level. Data

elements for shared-vocabulary parents (SV parents) and shared-vocabulary children

(SV children) are also included to track required subsumption links.

3.1.2 Organization and Constraints

The shared-vocabulary structural model is specified by definitions for a

shared-vocabulary concept, a shared-vocabulary root concept, a shared-vocabulary

attribute, and a shared vocabulary; it also includes a set of assumptions that form

constraints (Appendix A).

A shared-vocabulary concept C is a structure that contains the following

required elements: (1) concept unique identifier (2) concept name, (3) concept usage

status, and (4) set of parents that contains at least one element. C may also contain the

following elements, but they are not required: (1) concept definition, (2) synonyms, (3)

65

abbreviations, (3) translation code, (4) children, (5) attribute–value pairs, (6) retired

parents, and (7) retired children. Table 3.2 shows an example of a shared-vocabulary

concept, Ebola hemorrhagic fever. Figure 3.1 shows a hierarchical view.

A shared-vocabulary root concept R is like a shared-vocabulary concept, but its

set of parents is empty, and its set of retired parents is empty. An example of a root

concept is a concept named “entity.” All other concepts are hierarchical descendants of

the root. There is exactly one root.

A shared-vocabulary attribute A is a structure that contains the following

required elements: (1) attribute unique identifier, (2) attribute name, and (3) attribute

usage status. A may also contain an attribute definition, but a definition is not required.

There is no attribute hierarchy. An attribute–value pair of shared-vocabulary concept C is

Table 3.2. Representation of a CONCORDIA concept, Ebola hemorrhagic fever.

Concept Data Element Value

Concept unique identifier 1000

Concept name Ebola hemorrhagic fever

Concept text definition a highly fatal hemorrhagic fever, clinically very similar to
Marburg virus disease, caused by the Ebola virus (family
Filoviridae), and occurring in the Sudan and adjacent areas
in northwestern Zaire; the natural reservoir and mode of
transmission of the virus are unknown, but secondary
infection is by direct contact with infected blood and other
body secretions and by airborne particles.1, 2

Synonyms Ebola virus disease2, Ebola disease1

Abbreviations —

UMLS code C0282687

Parents viral hemorrhagic fever

Children —

Defining attribute set caused-by: Ebola virus

Concept usage status current

Retired parents —

Retired children —

1 Dorland’s Illustrated Medical Dictionary, 28th edition. Philadelphia, PA: W.B. Saunders; 1994. Ebola
disease, Ebola virus disease; p. 481.
2Dorland’s Illustrated Medical Dictionary, 28th edition. Philadelphia, PA: W.B. Saunders; 1994. Ebola
hemorrhaghic fever; p. 619.

66

hemorrhagic fever

caused-by: virus

caused-by: Ebola virus

Ebola hemorrhagic fever

viral hemorrhagic fever

IS-A

IS-A

Figure 3.1. Hierarchy showing where
the concept Ebola hemorrhagic fever
would be located in a hierarchy.
Hierarchical links are is-a; attribute–
value pairs are shown.

a two-element set containing a shared-vocabulary attribute A and a shared-vocabulary

concept V such that C is related to V by attribute A. An attribute of a concept may have

more than one value (cardinality �����

A shared vocabulary SV is the set {R, C1, C2, C3, ... Cn, A1, A2, A3, ... Am}, where

1. R is a shared-vocabulary root concept.

2. C1, C2, C3, ... Cn are shared-vocabulary concepts.

3. A1, A2, A3, ... Am are shared-vocabulary attributes.

4. For all concepts Ci belonging to SV, R belongs to the set of ancestors of Ci.

5. All shared-vocabulary assumptions hold true. These assumptions are

1. A concept name is unique.

2. A concept unique identifier is unique, and its meaning is constant.

3. A concept may have a translation code (UMLS code) assigned to it, and more

than one concept may have the same translation code.

4. A synonym (or alternate name) may be shared by one or more concepts.

5. The concept name is not the same as any synonym for the same concept.

6. The usage status of a concept or attribute must be either current or retired.

67

7. There are no cycles between parent and child or between ancestor and

descendant.

8. The union of attribute–value pairs of C and inherited attribute–value pairs of

C is a superset of the union of attribute–value pairs of a parent P and

inherited attribute–value pairs of P.

9. If an attribute–value pair of a concept C has the same attribute as an

inherited attribute–value pair of C, then the value of that attribute–value pair

is a descendant of the value of the inherited attribute–value pair. (Also see

assumption 10.)

10. If a child concept shares the attribute has-location with its parent concept,

then the value of has-location in the child may be related by a part-of

relation to the value of has-location in the parent.

Figure 3.2 shows three types of parent–child relationships, which exemplify

assumptions 8, 9, and 10 above. In the first example, fracture of bone is a child of

fracture. The child has an additional attribute–value pair, has-location:bone, which is not

shared by its parent, and assumption 8 holds. In the second example, since fracture of

1

2

3

fracture of femur

fracture of bone

fracture

has-location : bone

fracture of shaft of femur

has-location femur:

has-location shaft of femur:

IS-A

PART-OF

Figure 3.2. Examples of three types of parent–child
relationships permitted in the CONCORDIA structural
model: (1) a child has an additional attribute–value pair
that its parent does not have; (2) a child has an attribute
value that is related by an is-a relationship to the
attribute value of the same attribute in its parent, and (3)
a child may share the attribute has-location with its
parent, and the value in the child is related by a part-of
relation to the value in that parent.

68

femur shares the attribute has-location with its parent fracture of bone, and the attribute

value femur is subsumed by bone, attribute value femur is subsumed by bone, assumption

9 holds, and a legal parent–child relationship is present. In the third example, fracture of

shaft of femur shares the attribute has-location with its parent fracture of femur, and the

attribute value shaft of femur in the child is related to the attribute value femur in the

parent by a part-of relationship.

The local-vocabulary structural model is specified by definitions for a local-

vocabulary concept, a local-vocabulary root concept, a local-vocabulary attribute,

and a local vocabulary; it also includes a set of assumptions that form constraints

(Appendix B). A local-vocabulary concept, a local-vocabulary root concept, and a local-

vocabulary attribute are analogous to their shared-vocabulary counterparts, but each also

has a site-of-origin flag. The site of origin indicates whether the concept originated at the

shared site and has not been modified locally (a shared concept), the concept originated

at the shared site but has been modified locally (a locally modified shared concept), or

the concept originated at the local site (a local-only concept). A local modification is

any change of concept name, definition, synonyms, abbreviations, translation code,

parents, children, or attribute–value pairs. Ancestors, descendants, and inherited

attribute–value pairs may change without turning a shared concept into a locally modified

shared concept.

A local-vocabulary concept that originated in the shared vocabulary also keeps a

list of its parents and children in the shared vocabulary: SV parents and SV children.

The lists may differ from the local concept’s own lists of parents and children.

A local vocabulary follows the rules of a shared vocabulary, but additional

assumptions hold true. Local-vocabulary assumptions are

1. The usage status of a local concept is current, retired, hidden, or preserved.

2. The site of origin of a local concept is shared, local only, or locally modified

shared.

3. If the site of origin of a local concept is shared or locally modified shared, then

the usage status is current, retired, hidden, or preserved.

4. If the site of origin of a local concept is local only, then the usage status is

current or retired.

5. There exist two distinct namespaces: (1) a local namespace and (2) a shared

namespace. For each concept LC belonging to local vocabulary LV, if LC’s site

69

of origin is shared or locally modified shared, then LC’s concept identifier

belongs to the shared namespace, and if LC’s site of origin is local only, then

LC’s concept identifier belongs to the local namespace. For each concept SC

belonging to shared vocabulary SV, SC’s concept identifier belongs to the

shared namespace.

3.2 CONCORDIA Change Model

The CONCORDIA change model comprises a shared-vocabulary change model and

a local-vocabulary change model.

The shared-vocabulary change model consists of a set of change operations

(Appendix C). A change operation is a valid shared-vocabulary change operation if it

is one of the change operations listed in Table 3.3. The complete specification of change

operations requires a declaration of assumptions, input parameters, constraints, and

effects. Appendices C and D describe all change operations in the shared and local

vocabularies.

There are three types of change operations: (1) vocabulary change operations, (2)

concept change operations, and (3) attribute change operations. A vocabulary change

operation is a change operation that affects the structure of the vocabulary. It affects the

presence or absence of concepts and attributes in the vocabulary. Additions, retirements,

merges, and splits fall into this category. A concept change operation is a change

operation that affects the values of data elements contained in a particular concept. For

example, replace concept name, add synonym, add parent, and delete attribute–value

pair are concept change operations. An attribute change operation is a change

operation that affects the values of data elements contained in a particular attribute.

Replace attribute name and replace attribute definition are the only attribute change

operations.

Several change operations involve one or more steps. Retire concept, for example,

involves labeling the concept as retired, leaving the retired concept where it is in the

hierarchy when it was last used, and relinking the parents of the retired concept to the

children of the retired concept. The retired concept is stored in the set of retired children

of its parents and in the set of retired parents of its children. Figure 3.3 shows an example

of retire concept.

70

Table 3.3. Valid shared-vocabulary change operations.

Type of Operation Name of Change Operation

Vocabulary change operation Add concept

Retire concept

Merge two concepts into one of the two concepts

Merge two concepts into a new concept

Split concept into two new concepts

Add attribute

Retire attribute

Merge two attributes into one of the two attributes

Merge two attributes into a new attribute

Concept change operation Replace concept name

Correct concept name

Replace concept definition

Add translation code (UMLS code)

Delete translation code (UMLS code)

Add synonym

Delete synonym

Add abbreviation

Delete abbreviation

Add parent

Remove parent

Add child

Remove child

Add attribute–value pair

Delete attribute–value pair

Replace attribute value

Attribute change operation Replace attribute name

Replace attribute definition

71

infectious disease of doubtful or unknown etiology

small-pox

infectious disease

infectious jaundice

RETIRED

Figure 3.3. Process for retire concept. (1) Label concept
retired. (2) Add retired concept’s parents to list of parents
of retired-concept’s children. (3) Add retired concept’s
children to list of children of retired-concept’s parents.
(4) Remove retired concept from list of children of each
parent of retired concept. (5) Remove retired concept
from list of parents of each child of retired concept. (6)
Add retired concept to list of retired children in each
parent of retired concept. (7) Add retired concept to list of
retired parents in each child of retired concept.

Synonyms:

Lymphoma, lymphocytic

Synonyms: lymphoma, lymphocytic

Lymphoma, small cell

Figure 3.4. Process for replace concept name. (1) Change
concept name to new name. (2) Add old concept name to list
of synonyms.

Synonyms:

Amennorhea

Synonyms:

Amenorrhea

Figure 3.5. Process for correct concept name. (1)
Change concept name to new name. (Do not add old
concept name to list of synonyms.)

The operation replace concept name differs from correct concept name in that

replace concept name automatically includes an add synonym operation to add the former

name to the synonym list. Thus if the name changes, the old name is still accessible.

However, if the old name was misspelled or was otherwise incorrect, it may not be

appropriate to keep the old name in the synonym list. The change record will store the

former incorrect name, but the change operation, correct concept name, will not

72

perpetuate the error in the synonym list. Figure 3.4 shows an example of replace concept

name. Figure 3.5 shows an example of correct concept name.

A merge involves merging two concepts into one of the two concepts or into a

new concept. In the former case, one concept is kept and one concept is retired; in the

latter case, both of the original concepts are retired. The merged concept acquires the

union of the parents, children, synonyms, abbreviations, and attribute–value pairs of the

merged concepts. A split divides a concept into two new concepts, and the original

concept is retired. For a split, the user must specify which parents, children, attribute–

value pairs, synonyms and abbreviations go with which concept. Figures 3.6 and 3.7

show examples of the two types of merges. Figure 3.8 shows an example of a split.

In Figure 3.6, the two concepts human T-cell lymphotropic virus type III (HTLV-III)

and lymphadenopathy-associated virus (LAV) were initially created as distinct concepts

with distinct unique identifiers. When it became clear in the scientific community that

Concept unique id: 200
Abbreviations: LAV

human T-cell lymphotropic virus type III

Concept unique id: 100
Abbreviations: HTLV-III

human immunodeficiency virus

Concept unique id: 100
Synonyms: human T-cell lymphotropic virus type III, lymphadenopathy-associated virus
Abbreviations: HIV, HTLV-III, LAV

lymphadenopathy-associated virus RETIRED

merge

Figure 3.6. Process for merge two concepts into one of the
concepts. (1) Select one of the two concepts to retain. (2)
Label other concept retired. (3) Add retired concept’s
synonyms, abbreviations, parents, and children to retained
concept. (4) Add retired concept’s name to synonyms of
retained concept. This example also shows the effect of an
additional change operation that replaces concept name.

73

these two viruses were actually the same virus, the concepts had to be merged. In this

sample case, the choice was to retain the concept with unique identifier 100 and to retire

the concept with unique identifier 200. Hence, lymphadenopathy-associated virus was

merged into human T-cell lymphotropic virus type III. The name lymphadenopathy-

associated virus was added as a synonym, and LAV was added as an abbreviation. The

merge could have been done in the opposite direction because the concepts were

identical, and ultimately neither of the original names was retained. The virus was

renamed human immunodeficiency virus. In the CONCORDIA model, the renaming step

requires an additional change operation. The operation replace concept name is applied,

and human T-cell lymphotropic virus type III becomes a synonym automatically. This

type of merge is called merge two concepts into one of the two concepts. If it is

appropriate to retain one of the original names, then the merge is not followed by replace

concept name. References to the retired concept in attribute–value pairs are changed to

references to the merged concept.

In Figure 3.7, a different type of merge is chosen. In this example, acidosis,

diabetic is merged with ketosis, diabetic to create a new concept diabetic ketoacidosis.

acid-base imbalance

metabolic diseases

acidosis, lactic
acidosis, diabetic

has-pH: high
has-pH: low

alkalosis
acidosis

complication-of: diabetes mellitus

associated-with: ketone bodies

Concept unique id: 100

Concept unique id: 200

diabetic ketoacidosis

Concept unique id: 300

RETIREDRETIRED

RETIRED
ketosis, diabetic

Figure 3.7. Process for merge two concepts into a new concept.
(1) Label the two concepts retired. (2) Add new concept, selecting
one of the parents of one of the retired concepts as the parent of
the new concept, and select a new name. If one of the retired
concepts was a parent of the other, then select a parent of the
more general retired concept to be the parent of the new concept.
(3) Add attribute–value pairs, remaining parents, and children to
new concept. (4) Add retired concepts’ names and synonyms to
synonym list of new concept.

74

neurosis of the stomach

Synonyms: nervous dyspepsia

gastroesophageal reflux disease

Abbreviations: GERD

Synonyms: reflux

peptic ulcer disease

Synonyms: ulcer

Abbreviations: PUD

Figure 3.8. Process for split one concept into two new
concepts. In this case, the synonym was not passed down to
either of the two new concepts. This example shows the
results of a split followed by application of add synonym and
add abbreviation to each of the new concepts.

This type of merge is called merge two concepts into new concept. Whenever a new

concept is formed in the CONCORDIA model, one parent must be assigned. A name and a

unique identifier are selected for the new concept. The remaining parents, children,

synonyms, abbreviations, and attribute–value pairs are added to the new concept.

Figure 3.8 shows a split. There is only one type of split: split one concept into two

new concepts. In 1923, Osler and McCrae described a condition called neurosis of the

stomach, or nervous dyspepsia [Osler 1923]. They stated that the condition presents a

varying picture. In one form, the following symptoms occur:

... there are some symptoms apparently associated with hyperacidity

especially in nervous individuals. They do not, as a rule, immediately

follow the ingestion of food, but occur one to three hours later, at the

height of digestion. There is a sense of weight and pressure, sometimes of

burning in the epigastrium, commonly associated with acid eructations.

[Osler 1923]

Other symptoms of neurosis of the stomach are as follows:

The attack is usually independent of the taking of food, and may recur at

definite intervals, a periodicity which has given rise to the supposition in

some cases that the affection is due to malaria. The most marked

periodicity, however, may be in the gastralgic attacks of ulcer. They

75

frequently come on at night. Vomiting is rare; more commonly the taking

of food relieves the pain. [Osler 1923]

The former description paints a clinical picture similar to what clinicians today

would call gastroesophageal reflux disease, and the latter description is more like peptic

ulcer disease.

Suppose a vocabulary maintainer were updating the vocabulary. If neurosis of the

stomach had become obsolete, and characteristics of the conditions gastroesophageal

reflux disease and peptic ulcer disease had become clearer, it would be reasonable to

perform a split. The concept neurosis of the stomach would be split into two new

concepts, gastroesophageal reflux disease and peptic ulcer disease, and the original

concept would be retired. There are no attribute–value pairs in this example, but if there

were, the user would have to specify whether one or the other or both of the new concepts

acquired the pairs. The user also would have to specify that the synonym nervous

dyspepsia would not be passed to either of the new concepts.

The local-vocabulary change model consists of a set of change operations,

where that set is a superset of the set of shared operations (Appendix D). A change

operation is a valid local-vocabulary change operation if it is included in the list in Box

3.1.

A local maintainer can apply the operation hide concept or hide attribute to a

concept or attribute that comes from the shared vocabulary, when that concept or attribute

is not useful at the local site. Retiring a shared or locally modified shared concept is not

permitted, if that concept is still current in the shared vocabulary. If a concept or attribute

has been retired at the shared site, but is still needed by the local site, the local maintainer

can apply the operation preserve concept or preserve attribute.

Box 3.1. Valid local-vocabulary change operations.

1. A valid shared-vocabulary change operation
2. Hide concept
3. Preserve concept
4. Hide attribute
5. Preserve attribute

76

3.3 CONCORDIA Log Model

The shared-vocabulary log model is a data model for completed changes in a

shared vocabulary (Appendix E). If a valid shared-vocabulary change operation is applied

to the shared vocabulary, then the change record contains a set of data elements that

corresponds to that particular change operation. A log is an ordered sequence of change

records. The model assumes that only one developer is making changes to the vocabulary

at a time.

The set of data elements recorded includes universal data elements that are

recorded for all change operations (change-operation name, timestamp, author,

explanation, and assigned sequence number), and additional elements depending on the

type of operation. As described in Section 3.2, there are vocabulary change operations,

concept change operations, and attribute change operations. In addition to universal data

elements, a vocabulary change operation requires only change-specific data elements.

For example, a change record for the vocabulary change operation add concept would

include the unique identifier of the added concept, current name of the added concept,

unique identifier of the parent of the added concept, and current name of the parent of the

added concept. However, a concept change operation also requires concept-change data

elements to identify the concept (concept unique identifier and current concept name), in

addition to universal data elements and change-specific data elements. The current

concept name is included because the name may change from time to time, and the

maintainer must have easy access to an identifier that is readily understandable.

Therefore, a change record for the concept change operation add synonym would include

concept unique identifier, current concept name, and added synonym. Similarly, an

attribute change operation requires attribute-change data elements to identify the

attribute (attribute unique identifier and current attribute name) in addition to universal

data elements and change-specific data elements. A change record for the attribute

change operation replace attribute definition would include attribute unique identifier,

current attribute name, old attribute definition, and new attribute definition.

Examples of data elements recorded for particular change operations are given in

Table 3.4 and Figure 3.9. Table 3.4 shows data elements recorded for replace attribute

value, and groups those elements by type. Figure 3.9 shows a sample change record for

add child. Appendix E gives the complete log model.

77

Table 3.4. Data elements in the CONCORDIA log model for the
concept change operation replace attribute value.

Type Name of Data Element

Universal data elements Change-operation name

Timestamp

Author

Explanation

Sequence number

Concept-change data elements Concept unique identifier

Current concept name

Change-specific data elements Attribute identifier

Current attribute name

Old value identifier

Old value name

New value identifier

New value name

Type of change: Add child

Author: Diane E. Oliver

Timestamp: November 11, 1998, 10:30 a.m.

Explanation: Dengue hemorrhagic fever is classified as a viral
hemorrhagic fever because it is caused by a virus (the dengue virus), and
because, like other viral hemorrhagic fevers, it has clinical manifestations
of fever, hemorrhagic manifestations, shock, thrombocytopenia, and
neurologic disturbances. (See Dorland’s Illustrated Medical Dictionary,
14th Edition. Philadelphia, MA: W.B. Saunders, 1994. Hemorrhagic
Fevers; p. 619.)

Concept unique identifier: S3046

Current concept name: viral hemorrhagic fever

New child concept unique identifier: L5112

New child concept name: dengue hemorrhagic fever

Figure 3.9. Sample change record for concept change operation add child.

78

3.4 Data Interchange Format

Any data format that can be produced easily by vocabulary developers and that

can be read easily by software at local sites should serve the data-sharing needs of the

community. Essential factors for such a data interchange format are that the format must

be agreed on, the format must faithfully follow the accepted data model, and the data

must be structured consistently in ways that are readily computer processable.

Tab-delimited files that can be read into relational databases are easy to share, but

there is no standard way to specify which fields correspond to which data elements. The

LOINC vocabulary is distributed in tab-delimited files. Abstract Syntax Notation 1 (ASN.1)

is another format that has been used to share data [Larmouth 1999]. The UMLS was

distributed in ASN.1 format for a few years, but this practice was discontinued. The

majority of users probably preferred the relational format, probably due to familiarity

with and easy access to relational databases. Formats designed for a specific use, such as

the Elhill format from the National Library of Medicine, are sharable if the format is

explained to users, and if programs can be written easily to process these files. MeSH files

are distributed in Elhill format. Currently, XML (EXtensible Markup Language) is a

language that is popular and is becoming widely known [Connolly 1997]. Using XML,

data-format developers can express the format specifications by means of a document

type definition (DTD). If a community agrees on a DTD for a particular domain, data can

be shared easily.

Due to the widespread acceptance of XML, and the ease with which a data format

can be specified and communicated with a DTD, I chose to use XML in my implementation

of the CONCORDIA model. I created a DTD that conforms to the CONCORDIA vocabulary

structural model, and a DTD that conforms to the CONCORDIA log model.

Appendix F shows the DTD for the shared vocabulary. Appendix G shows the DTD

for the shared-vocabulary log.

3.5 Summary

In this chapter, I described the CONCORDIA model. The design of CONCORDIA was

directly influenced by the design of existing controlled medical vocabularies and frame-

based knowledge-representation languages. In Chapter 2, I looked at the design of ICD-9-

CM, MESH, SNOMED, Read, GALEN, DSM, CLASSIC, GRAIL, KRSS, and OKBC. There is no

single design that encompasses all of these systems, nor do I believe it to be desirable for

a single design to do so. Instead, I carefully selected features that appear to be beneficial

79

based on current trends. For example, in the transition from SNOMED III to SNOMED RT or

from Read Version 2 to Read Version 3, the developers abandoned the use of codes to

specify a concept’s location in a hierarchy, they made the change from single

classification to multiple classification of concepts, and they followed the trend toward

specifying structured definitions for concepts using attributes and attribute values. The

latter two features have been present for years in frame-based knowledge-representation

systems, and have been important in GALEN since its inception.

I made other design choices for CONCORDIA that another designer might not have

preferred. Certain choices were made for the sake of simplicity, and other choices were

made simply because a choice had to be made, and the ideal choice is not yet clear.

For the sake of simplicity, I chose not to include data structures and associated

change operations that would represent and facilitate changes for translation of terms in

one natural language, such as English, to another natural language, such as French or

Spanish. Clearly, support for such translation services would be essential for international

communication.

In addition, I chose not to guarantee that automatic classification can be

performed in systems based on the CONCORDIA model. In GRAIL and in other description

logics, a concept must have necessary and sufficient conditions specified if it is to be

classified automatically. In CONCORDIA, there is no way to represent whether a set of

attributes and values associated with a concept is a set of necessary and sufficient

conditions, or simply a set of necessary conditions. The set must contain necessary

conditions in CONCORDIA; but if those conditions are also sufficient, there is no way to

say so. Thus, the burden of classification lies to a greater extent on the user. Constraints

in CONCORDIA limit the types of attribute–value pairs that can be assigned to a child

concept, given the attribute–value pairs of its parent concept. These constraints facilitate

classification, but do not guarantee that automatic classification can be performed. The

benefit of this approach is that there are fewer restrictions on changes that can be made to

the system. However, it is up to the user to be sure that changes made do not adversely

affect the correctness of other concepts in the hierarchy.

The approach taken in CONCORDIA is similar to the approach taken in OKBC in that

the OKBC model does not guarantee that an OKBC-compliant system will perform

automatic classification. Because the burden lies with the user to make sure that the

semantics dictated by the model are adhered to, change operations available in OKBC are

relatively flexible, and it is easy to make changes to parents, children, slots, and slot

80

values. In contrast, the changes available in GRAIL, CLASSIC, and KRSS are more limited

because it is computationally expensive to reclassify the entire knowledge base

automatically whenever a small change is made.

Also for simplicity, I chose not to include features that would permit automatic

concept generation from existing knowledge in the vocabulary. Templates in the Read

codes provide a straightforward approach for specifying concepts that can be generated

from component parts. Use of grammatical statements, sensible statements and other

structures in GRAIL make it possible for the system to determine if a concept generated

from component parts is a valid GALEN concept or not. I did not follow either of these

approaches in the CONCORDIA model, primarily because of the difficulty in assigning

unique identifiers to concepts that have been generated compositionally. However, this

area is one where more research is needed. The huge numbers of concepts in medicine

make it desirable to find ways to represent these concepts from their component parts,

rather than to enumerate all concepts directly.

A feature of the GALEN model that is not shared by other controlled medical

vocabularies or description logics is the specialised by construct. This feature is the

generalization of the constraint on inheritance of an attribute that indicates anatomic

location, in which the value of the attribute in the child is a part of the value of the

attribute in the parent. An example of a situation in which this feature applies was the

example of fracture of shaft of femur shown in Figure 3.2. Bernauer also wrote about the

need for this type of construct for subsumption hierarchies in medical domains [Bernauer

1998]. The GALEN group generalized the effect for attributes other than anatomic

location. I took a simpler approach to accommodate only anatomic location, but

additional research would be valuable in this area.

I chose not to have a representation for an attribute hierarchy in CONCORDIA, not

only because I wanted simplicity, but also because there is minimal experience with

attribute hierarchies in controlled medical vocabularies. The GALEN developers have

found an attribute hierarchy useful for medical concepts, and the vocabulary community

may find such a feature necessary in the future as the number of attributes users need

grows large.

In CONCORDIA, I chose to make the restriction that a unique identifier is a

meaningless string. There are three reasons for this requirement: (1) if the unique

identifier contains meaning about hierarchical location, there are disadvantages in

classification, (2) if the code is composed of words that have meaningful connotations

81

and those connotations change with time, the code itself has an implied meaning that

becomes obsolete, and (3) if a code contains characters or digits that contain meaning

based on their position in the string, then certain codes could be invalid, and certain

meanings could have no valid codes.

First, as I discussed in Section 2.2.1.1, use of the identifier to indicate location in

the hierarchy has the disadvantage of limiting placement of a concept to only one position

in the hierarchy. It also limits the number of levels in the hierarchy.

Second, if a word or phrase is the unique identifier and that word or phrase term

becomes obsolete due to changes in commonly used language, then the meaning of the

concept may be confusing. For example, if the term Lues which hasComplication

NeurologicImpairment (following the GRAIL format for a hypothetical concept) is the

unique identifier for neurosyphilis, the fact that lues is no longer a term that is readily

recognized by the medical community makes the unique identifier confusing. For another

example, suppose the term non–insulin-dependent diabetes mellitus is the unique

identifier assigned to one of the two most common types of diabetes mellitus. Later, the

term is changed to type 2 diabetes mellitus because the original term is confusing:

although patients with this condition do not depend on insulin for immediate survival,

they may depend on insulin for glucose control. If the medical community begins to use

of the newer term, the vocabulary looks out of date if the older term must be retained as

the unique identifier.

Third, if a code contains characters that have meaning in certain positions, then

particular combinations of characters could be invalid if combinations of the implied

meanings make no sense. Also, if meaning is specified by the choice of alphanumeric

character in a particular position in a code, then the number of possible meanings is

limited by the finite number of possible characters. Therefore, certain codes might not

have meanings, and certain meanings might not have codes.

Due to the relative lack of experience with formal change operations in the

medical-vocabulary community, and lack of standards, I made several arbitrary choices

in the change model. For example, I chose to make two separate operations: replace

concept name, which includes automatic addition of the old name to the synonym list,

and correct concept name, which does not. With no standards for what to do with

obsolete concepts, I had to make choices for retire concept regarding the fate of

descendants of the retired concept. There were two options I considered: (1) retire all

descendants of the retired concept, or (2) relink the parents of the retired concept with all

82

the children of the retired concept. I chose the latter. In addition, I had to make a decision

about the fate of the attribute–value pairs of the retired concept. Again I considered two

options: (1) push the attribute–value pairs of the retired concept down to all the children,

or (2) effectively delete those attribute–value pairs so that they are no longer associated

with the descendants, although previously they had been inherited by the descendants. I

chose to delete them from the sets of inherited attribute–value pairs of descendants.

Because there are no standards for merge or split operations, and because such

operations have received little attention in the literature, I arbitrarily chose two types of

merges and one type of split that I believed sounded reasonable. If two concepts being

merged are identical in meaning, then theoretically, either concept could be retained and

the other retired. A vocabulary developer, however, might prefer not to select one

concept over the other to retain, and might prefer to create a new unique identifier for the

merged concept. Therefore, I offered both possibilities.

Initially, I had two split operations. The first split operation resulted in the

concept being split into two new concepts. The second split operation made it possible to

split a new concept off the original concept and retain the original concept. This process

occurs in MeSH when there become too many Medline articles in one category, and it is

prudent to create another classification of a subset of those articles. In this case, the

original MeSH heading is retained and a new MeSH heading is created for the subset.

However, I chose not to include this type of operation because it conflicts with the notion

that the meaning of a concept should never change. Therefore, I included only one split

operation.

Another arbitrary choice was the decision to include a single translation code in a

concept’s specification. An alternative would be to map to a single coding system such as

the UMLS as I have done, but to permit more than one UMLS concept per CONCORDIA

concept. Such an approach would be reasonable because there often is not a one–to–one

mapping between concepts in different coding systems. Another option would be to

permit specification of an unlimited number of coding systems to which translation could

be performed. For example, there could be a data structure associated with each concept

that permits a user to store a set of names of multiple coding systems, and the equivalent

code for that concept in each coding system. However, I chose to assume that another

service, such as the UMLS, would be available where translation to multiple health-care

coding systems would be performed.

83

In the CONCORDIA log model, inclusion of both a timestamp and a sequence

number is not necessary. A computer program could generate a sequence number

according to timestamp. Due to this duplication of information, I would prefer to remove

the sequence number from the model. However, maintaining a record of the sequence

number made it unnecessary to include a timestamp-sorting routine in the

implementation. Therefore, for ease of implementation, I included both timestamp and

sequence number.

Sharing a structural model, change model, and log model, such as I have

described for CONCORDIA, makes it possible for a shared-vocabulary site and a local-

vocabulary site to share vocabulary content and communicate about changes.

Synchronization of a local version of a shared vocabulary with the shared version from

which it is derived requires a shared model like CONCORDIA. In the next chapter, I discuss

synchronization methods and show that the chosen methods fulfill the goals of

synchronization.

85

4 Synchronization Methods

Researchers who have investigated methods for sharing, modifying, converging,

translating, merging, and differentiating vocabularies or ontologies—as discussed in

Section 2.5—have dealt with a number of the same problems that arise in managing local

divergence. For example, these investigators have faced problems with different

representations of concepts and relationships that make integration difficult, problems

that result from different perspectives and goals of content developers working with the

same subdomain, and difficulties in determining automatically if two concepts have the

same intended meaning. However, despite advances in these related areas, the problem of

local divergence remains challenging.

In this chapter, I propose methods for coordinating divergent versions of a shared

vocabulary through a process that is based on the CONCORDIA model. I define

synchronization as the application of shared-vocabulary changes to the modified local

version of a shared vocabulary to reach a target state. I describe the target state,

synchronization change operations, the synchronization process, and the difference

between automated and supported changes in a synchronization-support tool.

4.1 Synchronized State

The target state, or synchronized state, for local vocabulary LV and shared

vocabulary SV, occurs when the following three requirements are met:

1. Every concept that is represented in SV is also represented in LV, and it has the

same unique identifier (preservation of concept existence and identity).

2. Every subsumption relationship that exists in SV also exists in LV (preservation

of subsumption relationships).

3. Every attribute–value pair in the defining attribute set of a concept in SV is also

in the defining attribute set of that concept in LV (preservation of attribute–

value pairs).

According to the first requirement for the synchronized state, if a concept unique

identifier represents a concept in SV, then that concept unique identifier exists in LV and

represents the same concept. Ideally, the concept in the shared vocabulary and the

corresponding concept in the local vocabulary have the same meaning (in the opinion of

86

experts). If the two meanings are different, the situation would be considered an error, but

if the requirements for a target state hold, then the system would still be in a

synchronized state. The local vocabulary can include concepts that are not in the shared

vocabulary, but all concepts in the shared vocabulary must be in the local vocabulary.

The second requirement for the synchronized state implies that, if concept A

subsumes concept B in SV, then concept A subsumes concept B in LV. The relationship

between A and B may be a parentíFKLOG� UHODWLRQVKLS� LQ� ERWK� WKH�SV and LV, but other

states are also possible. For example, A could be a parent of B in SV, but A could be a

parent of a parent (grandparent) of B in LV. Another way to state the second requirement

is that, if A is a parent or ancestor of B in SV, then A is a parent or ancestor of B in LV. It

follows that, if A is a child or descendant of B in SV, then A is a child or descendant of B

in LV.

The third requirement guarantees that defining-attribute information will not be

lost, but may be enhanced.

Formally, the set {LR, LC1, LC2, LC3, ... LCn, LA1, LA2, ... LAm} is a

synchronized local vocabulary LV associated with a shared vocabulary SV = {SR, SC1,

SC2, SC3, ... SCp, SA1, SA2, ... SAq} if:

1. LV is a local vocabulary.

2. SV is a shared vocabulary.

3. LR is the root concept of LV.

4. SR is the root concept of SV.

3. LR.concept_id = SR.concept_id.

4. LR.site_of_origin = “shared.”

5. If concept SC is a shared-vocabulary concept in the shared vocabulary SV, then

there exists a local-vocabulary concept LC in the local vocabulary LV such

that SC.concept_id = LC.concept_id.

6. If SC1 and SC2 are shared-vocabulary concepts that belongs to shared

vocabulary SV, LC1 and LC2 are local-vocabulary concepts that belong to

local vocabulary LV, SC1.concept_id = LC1.concept_id, SC2.concept_id =

LC2.concept_id, and SC1 is a parent or ancestor of SC2 in SV, then LC1 is a

parent or ancestor of LC2 in LV.

87

7. If SC is a shared-vocabulary concept that belongs to shared vocabulary SV, LC

is a local-vocabulary concepts that belong to local vocabulary LV, and

SC.concept_id = LC.concept_id, then for each attribute–value pair avpair

belonging to the defining attribute set of SC, avpair belongs to the defining

attribute set of LC.

Statements 5 through 7 are the three requirements for a synchronized state.

4.2 Synchronization Change Operations

A change operation is a valid synchronization change operation if it is either a

valid local-vocabulary change operation (Section 3.2), or one of the following:

1. Merge local concept into shared concept

2. Merge local attribute into shared attribute

The operation merge local concept into shared concept is the same as the

operation merge concept into one of the two concepts in the local-vocabulary change

model, except constraints differ. The local-vocabulary operation permits the merge of

two local-only concepts, and either concept may be retired. Alternatively, it allows a local

concept to be merged into a shared concept, and the local concept is retired. In contrast,

the synchronization operation dictates that the merge must be a merge of a local concept

into a shared concept, with retention of the shared concept and retirement of the local

concept. The reason for making a distinct operation that merges a local concept into a

shared concept is to indicate explicitly that there was duplication of concepts in the two

versions of the vocabulary. It emphasizes the importance of this task in the

synchronization process. The purpose of merge local attribute into shared attribute is

similar.

Changes that do not affect the hierarchy are relatively easy to implement; changes

that do affect the hierarchy are more complex because they must not violate the parent–

child relationship rules that affect defining attribute sets. Therefore, it is helpful to

distinguish those changes that do not affect the hierarchy from those changes that do.

Boxes 4.1 and 4.2 show the synchronization change operations, grouped accordingly.

Note that add attribute refers to adding the attribute as a registered attribute to the

terminology, rather than adding it to a particular concept’s attribute set. Also, hide

attribute and preserve attribute refer to the attribute’s existence in the vocabulary, rather

88

Box 4.1. Synchronization change operations that affect the concept
hierarchy.

Add concept
Retire concept
Add parent
Remove parent
Add child
Remove child
Merge two concepts into one of the two concepts
Merge two concepts into new concept
Merge local concept into shared concept
Split concept into two new concepts
Hide concept
Preserve concept

Box 4.2. Synchronization change operations that do not affect the
concept hierarchy.

Replace concept name
Replace concept definition
Add synonym
Delete synonym
Add abbreviation
Delete abbreviation
Add attribute–value pair
Remove attribute–value pair
Replace attribute value
Add attribute
Retire attribute
Merge two attributes into one of the two attributes
Merge two attributes into new attribute
Merge local attribute into shared attribute
Replace attribute name
Replace attribute definition
Hide attribute
Preserve attribute

than to its presence in the defining attribute set of a particular concept. Therefore, add

attribute, hide attribute, and preserve attribute have no effect on the concept hierarchy.

The semantics of the synchronization change operations are the same as the

semantics for the corresponding local-vocabulary operations, except for important

differences in constraints related to site of origin. Certain change operations can be

performed only on local-only concepts or attributes in the local editor, whereas those

same change operations can be performed on only shared or locally modified shared

concepts or attributes during synchronization.

89

In the local-vocabulary change model, the operation add concept adds a local-

only concept to the vocabulary. It is not possible to add a shared concept during a local-

vocabulary editing session. In contrast, during synchronization, the opposite is true: add

concept adds a shared concept to the vocabulary, and it is not possible to add a local-only

concept. Similarly, the operation retire concept can be performed on local-only concepts

in the local-vocabulary change model, but is performed on shared concepts during

synchronization. The analogous situation is true for add attribute and retire attribute.

Because the two concept merge operations and the split operation result in

retirement of one or two concepts, the constraints on site of origin that apply to retire

concept must be considered for merges and splits. On the one hand, in the local-

vocabulary change model, merges and splits can take place only if concepts being retired

are local only. On the other hand, during synchronization, merges and splits being

processed affect shared concepts, because these operations reproduce operations that

were performed on the shared vocabulary, which contains only shared concepts.

The remainder of the change operations have no constraints on site of origin in the

local-vocabulary change model that differ from constraints on those same operations in

synchronization. Those operations are add synonym, delete synonym, add abbreviation,

delete abbreviation, replace concept definition, replace UMLS code, add attribute–value

pair, delete attribute–value pair, replace attribute value, hide concept, preserve concept,

hide attribute, and preserve attribute.

4.3 Synchronization Process

Before defining the synchronization process, I describe variables used in the

definition. Let the following assertions hold:

1. SV is a shared vocabulary.

2. LV is a local vocabulary.

3. LV is synchronized with SV at time t.

4. SVLog is a shared-vocabulary log (i.e., a record of change operations applied to

SV between time t and t+1).

5. n is the number of shared-vocabulary change operations applied to SV between

time t and time t+1.

6. sv_opi is the ith shared-vocabulary change operation applied to SV (i=1 to n).

90

7. {sv_op1, sv_op2, ... sv_opn} is the ordered set of n shared-vocabulary change

operations applied to SV.

8. CRi is the ith change record in SVLog, which documents sv_opi.

9. SVLog = {CR1, CR2, ... CRn}.

10. action is an action performed on LV to process a change record CR.

11. synch_op is a synchronization change operation.

For each shared-vocabulary change operation (sv_op), there is exactly one change

record (CR). For each change record, the user or system selects exactly one action

(action). For each action, there are one or more steps. A valid action is a sequence of

steps permitted for that action. For example, Tables 4.1 and 4.2 show the steps in valid

actions for add concept, and add parent, respectively. Each step in an action is a

synchronization change operation (synch_op). Therefore, n shared-vocabulary change

operations correspond to m synchronization operations where m ��n.

Table 4.1. Action choices for add concept.

Action Steps

Action 1 Step 1: Add concept

Action 2
(if local name conflicts)

Step 1: Rename local concept with conflicting name
Step 2: Add concept

Action 3
(if local name conflicts)

Step 1: Rename local concept with conflicting name
Step 2: Add concept
Step 3: Rename new concept
Step 4: Rename local concept back to original name

Action 4
(if local concept has same
meaning)

Step 1: Add concept
Step 2: Merge local concept into shared concept
Step 3: Retain local name as synonym

Action 5
(if local concept has same
meaning)

Step 1: Add concept
Step 2: Merge local concept into shared concept
Step 3: Rename concept with local name
Step 4: Retain shared name as synonym

Action 6
(if local concept has same
meaning)

Step 1: Add concept
Step 2: Merge local concept into shared concept
Step 3: Rename concept with local name

Action 7 Step 1: Add concept
Step 2: Hide concept

91

Table 4.2. Action choices for add parent.

Action Steps

Action 1 1: Add parent
2: Add parent to list of SV parents

Action 2
(if a cycle would result
from adding the parent)

1: Break cycle
2: Add parent
3: Add parent to list of SV parents

Action 3
(if concept gaining new
parent is already subsumed
by parent)

1: Add parent to list of SV parents

The synchronization process is the step-by-step application of a sequence of

valid actions {action1, action2, ... actionn} to the local vocabulary LV that corresponds to

the sequence of change records {CR1, CR2, ... CRn} in SVLog. When there is one or more

valid action for a given type of change record, the selected action is based on either the

state of the local vocabulary, or on user preference. The result is a sequence of

synchronization operations applied to the local vcoabulary determined by the sequence of

actions. The goal at the end of synchronization is for the local vocabulary to be in a

synchronized state.

The actions must be performed on LV in the same order specified by the order of

the change records. That is, for i = 1 to n and j = 1 to n, such that i < j, if actioni

corresponds to CRi, and actionj corresponds to CRj, then actioni is applied to LV before

actionj is applied to LV.

4.3.1 Valid Actions

Appendix H gives valid actions for all the shared-vocabulary change operations.

Allowable actions must be implemented so that the requirements for a synchronized state

and for a local vocabulary are fulfilled. Important local-vocabulary constraints are

1. Concept names are unique.

2. There are no cycles.

3. If a concept C has attribute–value pair made up of attribute A and value V1, a

descendant of C may have an attribute–value pair made up of attribute A and

value V2 if V1 subsumes V2.

92

Change operations that involve additions of concepts or attributes are add

concept, add attribute, and the merge and split operations. Action choices for these

operations must guarantee that there is no local concept or attribute with the same name

as the new concept or attribute, and must guarantee that the new concept or attribute is

added to the local vocabulary.

Change operations that affect retirement of a concept are retire concept, retire

attribute, and the merge and split operations. Action choices allow the concept or

attribute that was retired in the shared vocabulary to be either retired or preserved in the

local vocabulary.

Change operations that result in addition of a parent or a child (add parent and

add child) must take into account the possibility that a cycle will occur after the parent or

child is added. Because cycles are not permitted, the system must take steps to avoid

creating a cycle before adding a parent or child.

Change operations that result in removal of parents and children are remove

parent and remove child. If a parent or child was removed in the shared vocabulary, the

local-vocabulary maintainer may choose whether to remove it from the local vocabulary,

or to leave it as is.

Change operations that affect attribute–value pairs are add attribute–value pair,

delete attribute–value pair, and replace attribute value. Deleting an attribute–value pair

cannot cause conflicts, but addition of an attribute–value pair or changing the value of an

attribute may do so. Action choices must guarantee that the new or modified attribute–

value pair is added to the local vocabulary, but the requirement on attribute values for

concepts that share the same attribute as an ancestor must not be violated. The system

must take steps to make sure that the maintainer removes attribute–value pairs that were

added locally if they would conflict after the change from the shared vocabulary is made.

Change operations that do not affect the hierarchy, but that affect name changes

are replace concept name and correct concept name. Action choices must take into

consideration the requirement for unique names. If there is a conflict, then one of the

conflicting names must be changed. If there is no conflict, then the user has the choice of

whether to change the name. In the case of replace concept name, the user also has the

choice of whether to add the old name to the synonym list.

Change operations that do not affect the hierarchy, and that do not affect

uniqueness of the concept name are replace concept definition, replace UMLS code, add

synonym, delete synonym, add abbreviation, and delete abbreviation. These operations do

93

not cause potential conflicts in the local vocabulary, and are not required during

synchronization. Therefore, action choices permit the local-vocabulary maintainer to

decide whether to make the corresponding change in the local vocabulary.

4.3.2 Claims

By definition of the requirements of a local vocabulary (Section 3.1.2) and by

definition of synchronization change operations (Section 4.2), the following claim holds.

Claim 1. If LVi fulfills the requirements of a local vocabulary, and

synch_op is a valid synchronization change operation, which causes the

local vocabulary to be transformed from an initial state, LVi, to a

subsequent state, LVi+1, then LVi+1 also fulfills the requirements of a local

vocabulary.

In other words, after a single synchronization change operation is applied to LV,

LV is still a local vocabulary, according to the definition of local vocabulary. Figure 4.1

depicts the process.

By transitivity of Claim 1, the following claim is also true.

Claim 2. If LVi fulfills the requirements of a local vocabulary, synch_op1, synch

_op2, ... synch_opn are valid synchronization change operations, and LVi+1, LVi+2, ...LVi+n

are the states of the local vocabulary after each change operation respectively, then LVi+n

also fulfills the requirements of a local vocabulary. In other words, after a series of

synchronization change operations is applied to LV, LV is still a local vocabulary,

according to the definition of local vocabulary. Figure 4.2 depicts the process.

synch_op

LVi ---------------> LVi+1

Figure 4.1. Application of one synchronization
operation to a local vocabulary.

synch _op1 synch _op2 synch _opn

LVi -------------> LVi+1 -------------> LVi+2 . . . -------------> LVi+n

Figure 4.2. Application of a series of synchronization change operations to
a local vocabulary.

94

These two claims partially support the final claim.

Claim 3. Suppose that

1. LVt is a synchronized local vocabulary that is synchronized with

shared vocabulary SVt at time t.

2. SVt is transformed to SVt+1 by a series of shared-vocabulary change

operations.

3. LVt is transformed to LVi by a series of local-vocabulary change

operations. LVi is not synchronized with SVt+1.

4. {action1, action2, ... actionn} is the sequence of actions that the user or

system selects and that corresponds to the sequence of change records

{CR1, CR2, ... CRn}.

5. {synch_op1, synch_op2, ... synch_opm} is the sequence of

synchronization change operations that are applied to LVi as a result of

{action1, action2, ... actionn}.

Then, LVi+m is a synchronized local vocabulary that is synchronized with

SVt+1.

In other words, if LV is synchronized with SV at time t, then after a series of local-

vocabulary change operations and synchronization change operations, LV will be a

synchronized local vocabulary that is synchronized with SV at time t+1. Figure 4.3

depicts the process.

 synch_op1 synch_op2 synch_opm

LVt ------------> LVi -------------> LVi+1 -------------> LVi+2 . . . -------------> LVi+m

SVt SVt+1

time t time t+1

 CHANGE INTERVAL SYNCHRONIZATION INTERVAL

Figure 4.3. Application of changes to a local vocabulary during the change interval
followed by application of synchronization operations during the synchronization
interval.

95

Discussion of Claim 3.

By Claim 2, we know that LVi+m will be a local vocabulary. To show that LVi+m is

in a synchronized state, we consider the three requirements for synchronized state: (1)

preservation of concept existence and identity, (2) preservation of subsumption

relationships, and (3) preservation of attribute–value pairs.

For the first requirement of a synchronized state to hold, the following must be

true:

A. Every concept that was added to SV is also added to LV and has the same

unique identifier in LV that it has in SV.

B. No concept in LV is retired that was not retired in SV.

There are two phases during which LV can change. First, there is the local-

vcoabulary editing phase (called “CHANGE INTERVAL” in Figure 4.3). Second, there is the

synchronization phase (called “SYNCHRONIZATION INTERVAL” in Figure 4.3).

Statement A is true because during the local-vocabulary–editing phase, no

concepts of type shared or locally modified shared are added. Only local-only concepts

can be added to LV. During the synchronization phase, the only concepts that are added

to LV are those that were added to SV and recorded in the shared log. Inspection of the

permissible actions for add concept shows that each valid action includes a step that adds

the concept. There are seven valid actions permissible for add concept (Table 4.2.). When

add concept is performed, the concept added to LV is a replica of the concept added to

SV, but also includes information about site of origin, SV parents, and SV children. The

concept unique identifier is the same when the replicated concept is created, and there is

no valid change operation in the local-vocabulary change model that permits a user to

change a concept’s unique identifier after concept creation. Thus, every concept added to

SV exists in LV and has the same unique identifier.

Statement B is true because during the local-vocabulary–editing phase, no shared

concepts may be retired due to constraints on retire concept, merge two concepts into one

of the two concepts, merge two concepts into new concept, and split concept into two new

concepts. During the synchronization phase, shared concepts may be retired only if they

were retired previously in SV.

For the second requirement of a synchronized state to hold, subsumption

relationships must not be removed during local-vocabulary editing or during

synchronization if the corresponding relationships have not been removed in the shared

96

vocabulary. During local-vocabulary editing, the operation remove parent and remove

child could lead to incompatibility with the shared vocabulary if concepts affected are

shared or locally modified shared. These operations are permitted only if another

subsumption path links the parent and child concepts that are directly involved in the

operation. If remove parent or remove child breaks a subsumption path that affects any

other concepts in LV that have a known subsumption relationship in SV, then the

operation is not permitted. During synchronization, if remove parent or remove child is

processed from the shared log, the same operation may be applied to the corresponding

shared concepts in LV, but does not have to be. Whether or not the change is applied to

LV, the list of SV parents or SV children in the corresponding concept in LV is updated to

maintain information about subsumption relationships in SV.

For the third requirement of synchronized state to hold, attribute–value pairs must

not be lost during local-vocabulary editing or during synchronization. During local-

vcoabulary editing, attribute–value pairs in shared or locally modified-shared concepts

cannot be deleted if they are not already inherited. During synchronization, add attribute–

value pair or replace attribute value must be applied to the corresponding shared or

locally modified-shared concept in LV if the resulting attribute–value pair is not already

inherited.

The synchronization process is implemented in the synchronization-support tool,

which is discussed in Chapter 5.

97

5 Implementation

CONCORDIA provides a data model for the shared and local vocabularies, a

specification for change operations, and a data model for change logs. Concept Manager

is an implementation that demonstrates use of the CONCORDIA model. The purpose of

Concept Manager is to support synchronization.

Concept Manager is the name of the overall system; it comprises a suite of the

five applications. The five applications are (1) a shared-vocabulary browser, (2) a shared-

vocabulary editor, (3) a local-vocabulary browser, (4) a local-vocabulary editor, and (5) a

synchronization-support tool. Together these applications form a coordinated concept-

management environment for the shared-vocabulary–development organization and for

the local organizations that conform to but adapt the shared vocabulary to local needs. In

this chapter, I describe the design and functionality of the implemented system. Figure

5.1 shows the components of the Concept Manager system and the flow of data.

Figure 5.1 Components of Concept Manager and flow of data.

Legend:
SV: Shared Vocabulary; SV0: SV at time 0; SV1: SV at time 1;
LV: Local Vocabulary; LV0: LV at time 0; LV1: LV at time 1;
LVSynch1: LV at time 1 after synchronization

SV Browser

SV Editor

LV Browser

LV Editor

Synch.-Support Tool

SV
Maintainer

LV
Maintainer

SV Log File

SV0

SV1

LV0

LV1LV Log File

LV1Synch

Synch Report

LV Log File

98

5.1 Functional Requirements

The browser and editor are distinct applications because an end user would have

rights to view and navigate the vocabulary, but would not have the authority to make

changes. A vocabulary developer, however, would need both browsing and editing

functions. An end user would use a stable, static version of the vocabulary, and the

vocabulary developer would use a dynamically evolving version of the vocabulary. In

most cases, end users will use a browser, and developers will use an editor that includes a

browser. It is important to separate the functions required by the two groups.

The browser must enable the user to perform the following tasks: (1) search for a

concept or attribute; (2) view information about a selected concept or attribute; (3) view

the hierarchy of concepts; (4) navigate through the hierarchy by clicking recursively from

parent to child or from child to parent.

In addition to providing support for browsing tasks, the editing application must

be able to perform the following services: (1) add, modify, and retire concepts and

attributes at the user’s request; (2) perform checks on data input when the user requests a

change, and guarantee that constraints of the structural model or change model will not

be violated; (3) display changes made during the current editing session; (4) save the

modified version of the vocabulary; and (5) save changes in a log.

Browsing and editing requirements for the local and shared vocabularies are the

same, but the local-vocabulary software must take into account differences in the

vocabulary structural model and change model. For example, the local-vocabulary

browser must display the site of origin for a concept or attribute (with values of shared,

local only, or locally modified shared), and the local-vocabulary editor must offer the

change operations hide and preserve for both concepts and attributes.

The synchronization-support tool must make it possible for the user to view and

understand changes that were made to the shared vocabulary, and must enable the user to

make changes to the local vocabulary that correspond to changes made to the shared

vocabulary. Tasks that the tool must perform are as follows: (1) display changes made to

the shared vocabulary; (2) guide the user through the change process, facilitating decision

making by the user, and performing as many tasks automatically as possible; (3) permit

the user to browse the shared vocabulary, which is static; (4) permit the user to browse

the local vocabulary, which is changing during synchronization; (5) display changes

99

made to the local vocabulary during the synchronization session; (6) save the modified

version of the local vocabulary; and (7) save changes in a log.

5.2 Design Choices

A variety of choices were available regarding programming design, user interface,

and input and output mediums. I chose an object-oriented design, made compromises on

the user interface, and used text files for basic input and output.

5.2.1 Object-Oriented Design

I chose to use an object-oriented design to facilitate reuse of program code in the

five applications (shared-vocabulary browser, shared-vocabulary editor, local-vocabulary

browser, local-vocabulary editor, and synchronization-support tool). These applications

have numerous overlapping functions and services, and object classes can be reused in

their original form or modified by subclassing.

Many of the classes that are subclassed are needed by both the shared and local

vocabularies. All the data elements of such a class in the shared vocabulary are inherited

by the corresponding class in the local vocabulary, which may have additional data

elements. All the methods of the class in the shared vocabulary also are inherited or

overridden by the class in the local vocabulary, which may have other methods as well.

Classes used to support data entry and data display in the shared-vocabulary browser and

editor are subclassed for use in the local-vocabulary browser and editor.

This approach allows distinct separation of editing functionality from browsing

functionality. That is, the browser can be packaged as a separate application that makes

no reference to the editor. Similarly, the local-vocabulary software is separate from the

shared-vocabulary software. The local vocabulary depends on the shared vocabulary but

not vice versa. None of the classes required for the shared vocabulary make reference to

any classes, data elements or methods that are specific to the local vocabulary. The

shared-vocabulary software can be packaged separately and makes no reference to local-

vcoabulary features.

5.2.2 User Interface

User-interface design has a significant influence on the usability of a software

tool. For a vocabulary of thousands or hundreds of thousands of concepts, the challenge

is to provide the user with essential information, but to minimize data overload. It is also

100

important to minimize the number of mouse clicks and keystrokes needed for navigation

and data entry. There is no consensus on the optimal design of humaníFRPSXWHU

interfaces for browsers and editors for large vocabularies. My goal, however, is to

develop models that represent change and methods that support change, rather than to

study user interfaces and human-computer interaction. Therefore, I created a user

interface that offers the desired services, but tradeoffs and compromises were necessary

due to time and resource limitations. Development of elaborate user interfaces and

evaluation of different approaches are beyond the scope of this work.

5.2.3 Input and Output

Figure 5.2 summarizes input and output.

Each of the applications reads in an entire vocabulary from a text file in XML

format. (Section 3.4 describes the use of XML for the vocabulary data file, and Appendix

F gives the DTD for the shared vocabulary.) A browser or editor reads in only one

vocabulary at a time. The synchronization-support tool reads in one shared vocabulary

and one local vocabulary. The synchronization-support tool also reads in a shared-

vocabulary log and a local-vocabulary log. (Appendix G gives the DTD for the log.)

Vocabularies and logs are stored in main memory.

The browsers, editors, and synchronization-support tool accept keyboard and

mouse-click data entry for user input. For example, when using the browser, the user

types in a string, and the program searches for a concept whose name matches the input.

Alternatively, the user selects a concept by clicking on a menu item in a pull-down menu

that displays concepts hierarchically.

The browser does not produce any output. The editor produces a modified version

of the vocabulary in a vocabulary output file, and a record of changes in a log output file.

The local-vocabulary editor and synchronization-support tool produce a modified version

of the local vocabulary in a local-vocabulary output file, and a record of changes in a log

output file. The synchronization-support tool also produces a report of changes that

occurred during the synchronization session.

The log output files generated by the local-vocabulary editor and by the

synchronization-support tool are not formatted specifically for the local vocabulary; in

particular, the log file does not contain information about concept or attribute site of

origin. A better design choice would be to generate a local-vocabulary–specific log

output file; however, because the additional information was not needed for the

101

SV Browser SV Editor LV BrowserLV Editor

Synchronization-Support Tool

Shared-Vocabulary File Local-Vocabulary File

Local-Vocabulary File Local-Vocabulary Log

Shared-Vocabulary File Local-Vocabulary File Shared-Vocabulary Log Local-Vocabulary Log

Figure 5.2. Inputs and outputs of applications. Names of input and output files are
italicized; names of applications are not. Files at the origins of dashed arrows represent
inputs; files at the ends of solid arrows represent outputs.

synchronization task in this research, I chose to reuse the same program code that writes

and reads logs for the shared vocabulary.

5.3 Development Environment

I used the Java1 programming language [Flanagan 1997], Version 1.1.

Unfortunately, the Java Foundation Classes—commonly called the Java Swing Set—

were not available when I began this work [Topley 1998]. The Java Swing Set includes a

class for displaying trees that would have been useful for displaying concept hierarchies.

However, since Java 1.1 does not include a tree class, I used pull-down menus to display

concept hierarchies instead.

For the software-development environment, I used Metrowerks CodeWarrior2

Integrated Development Environment (IDE), Release 3 [Metrowerks 1998]. The

CodeWarrior IDE supports editing, compiling, and debugging in Java.

1 JavaTM is a trademark of Sun, Inc.
2 MetrowerksTM and CodeWarriorTM are trademarks of Metrowerks, Inc.

102

For hardware, I used a Windows NT workstation that runs Version 4.0 of the

Windows NT operating system. The computer has a 400 MHz Pentium II processor with

����0%�RI� UDQGRP�DFFHVV�PHPRU\�� 7KH� YLGHR� GLVSOD\� KDV� D� UHVROXWLRQ� RI� ����� � ���

pixels.

The software that I developed for this project functions as a standalone

application that runs on a single computer. Concept Manager currently is not accessible

over a network.

5.4 Basic Functionality

Many classes developed for the system are used repeatedly by other classes in the

system. I describe several of those classes here to provide an explanation of the basic

functionality of the implementation, and to relate function to design. In a shared object

model of vocabulary services, interfaces to classes such as these could be standardized

and shared. Each standard interface would contain a specification for the data elements of

a class and for the methods that can be performed on that class. In this section, I

concentrate on data elements and methods in classes that provide basic services in the

software. I discuss core vocabulary functions, search methods, change operations, change

logs, error checking, data entry and data display.

5.4.1 Core Vocabulary Functions

The basic classes required for populating the vocabulary with concepts and

attributes according to the CONCORDIA model are (1) Vocabulary, (2) Concept, (3)

Attribute, and (4) Attribute–Value Pair.

The Vocabulary class contains a root concept and a set of hashtables that index

concepts and attributes in the vocabulary. An instance of Vocabulary is the vocabulary

itself. Multiple hashtables are currently implemented, including a table that indexes

concepts by concept code, and a table that indexes concepts by concept name. Because a

code is unique, a table lookup for a concept, given a concept code, gives a unique

concept. Similarly, because a concept name is unique for current concepts, a table lookup

of a concept in the current concept-name table, given a concept name, gives a unique

concept. However, because the name of a retired concept can be reused for a current

concept, the table of all concepts indexed by concept name may yield more than one

concept, given a concept name.

103

Additional tables in the Vocabulary class permit lookup of attributes, given

attribute code or attribute name. There is also a synonym table and an abbreviation table

for concepts. From the synonym table, one or more concepts can be retrieved given a

string that matches a synonym. The abbreviation table functions similarly.

In addition to providing methods for table lookups, the Vocabulary class contains

methods for the vocabulary change operations add concept, add attribute, retire concept,

retire attribute, the concept merge operations, the concept split operation, and the

attribute merge operations.

The Concept class contains data elements that are used to represent a concept: (1)

concept unique identifier, (2) concept name, (3) synonyms, (4) abbreviations, (5) concept

definition, (6) UMLS code, (7) parents, (8) children, and (9) defining attribute set. In

addition, it contains two data elements that facilitate management of links when parents

and children are retired: (1) retired parents and (2) retired children. Methods support

queries that get information, and perform updates that set information about a concept.

Update methods correspond to concept change operations. Examples of concept change

operations supported by methods in the Concept class are replace concept name, add

synonym, add parent, and replace attribute value.

The Attribute class contains data elements that are used to represent an attribute:

(1) attribute unique identifier, (2) attribute name, and (3) attribute definition. Methods

support queries that get information about an attribute, and perform updates that set

information about an attribute. Update methods correspond to attribute change

operations. The only attribute change operations are replace attribute name, correct

attribute name, and replace attribute definition. The Attribute class also offers a method

(get linked concepts) that determines all concept pairs that are linked by a particular

attribute. For example, if concept C1 has attribute A with value C2 in its attribute set, then

C1 and C2 form a pair of concepts that are linked by attribute A. If no concept pairs are

linked by the attribute, the attribute can be retired.

As its name implies, the Attribute–Value Pair class contains an attribute and a

value. A list of attribute–value pairs associated with a concept forms the attribute set in

the Concept class. The Attribute–Value Pair class is used repeatedly, but the way it is

used is an implementation choice. The CONCORDIA model does not require that a unique

identifier be assigned to each attribute–value pair. Therefore, in this implementation, two

attribute–value pairs are equivalent if they contain the same attribute, for which there is

an attribute unique identifier, and the same value, for which there is a concept unique

104

identifier. However, those two attribute–value pairs may have different references, or

addresses. Methods for this class include queries about the attribute and value, as well as

methods for setting the attribute and value.

5.4.2 Search Methods

The Search class provides methods that search for concepts or attributes, given

particular inputs. The browser performs the following functions:

1. Retrieves concept or attribute that has the same name as the input string

2. Retrieves concepts that have a synonym that matches the input string

exactly

3. Retrieves concepts that have an abbreviation that matches the input

string exactly

4. Retrieves concepts that have a name and/or synonym that matches the

input string exactly

5. Retrieves concept or attribute that has a unique identifier (i.e., code) that

matches the input string

6. Retrieves concepts or attributes whose names share the same first three

letters as the three-letter input string

There are many more search methods that could enhance a user’s search for

concepts and attributesIRU� H[DPSOH�� WHUP� FRPSOHWLRQ�� PRUSKHPH� PDWFKLQJ�� OH[LFDO�

variant matching, and matching tokens within phrases. Browser developers could

incorporate quantitative methods to rank order possible matches. Researchers at the NLM

have studied methods for matching input strings to concepts in the UMLS [Divita 1998];

my implementation would benefit from the application of their findings. However,

because analysis of search methods is not the emphasis of this research, I have

implemented only a small set of basic search methods in this prototype. A broader set of

search services would be desirable and necessary in a production system.

5.4.3 Change Operations

For each change operation in the CONCORDIA model, there is one change-

operation class. Each change-operation class has methods for performing a temporary

change, for performing error checks on the proposed change, for performing the actual

change, and for adding a record of the change to the log. For example, the class for the

105

operation merge two concepts into new concept contains a method that performs the

proposed merge on copies of the two concepts. The purpose of performing a temporary

merge is to permit the user to review the effects of a change before committing to that

change. The merge class performs error checks and returns flags if errors occur. The

method for completion of the actual change is invoked if the change is confirmed by the

user, who makes a decision to confirm after reviewing results of the temporary change.

Finally, the class contains a method that creates a change record to document the merge,

and adds that change record to the log.

5.4.4 Log

The log is a sequence of log classes. Each log class is specific for a particular

change operation, but inherits properties from more general classes. Figure 5.3 depicts

the class hierarchy for log classes. The most general class (LogChange) is the abstract

superclass of each of three other abstract classes that support vocabulary changes,

concept changes, and attribute changes (LogVocabularyChange, LogConceptChange, and

LogAttributeChange). These three abstract classes are direct superclasses of the non-

abstract change-specific log classes (e.g., LogReplaceConceptName, LogAddParent,

LogDeleteSynonym). Each change-specific class inherits data elements and methods

LogChange

LogVocabularyChange LogConceptChange LogAttributeChange

LogRetireConcept

LogMerge2ConceptsIntoExistingConcept

LogReplaceConceptName

LogReplaceAttributeName
. . .

. . .

. . .

LogAddParent

LogReplaceAttributeDefinition

LogReplaceConceptDefinition

LogAddSynonym

LogDeleteSynonym

LogRemoveChild

LogAddConcept
LogAddAttribute

LogRetireAttribute

LogSplitConceptInto2NewConcepts

Figure 5.3. Hierarchy of classes for changes in the log.

106

from its superclasses. For example, the log class for the operation add parent

(LogAddParent) inherits universal change-data elements date, timestamp, author,

explanation, and change-operation name from the top-level class (LogChange); it

inherits concept-change data elements concept unique identifier and current concept

name from its direct superclass (LogConceptChange); and it provides its own change-

specific data elements parent concept unique identifier and parent concept name in its

own set of data elements (LogAddParent).

A diagrammatic representation of a portion of a sample log is shown in Figure

5.4. A log is a sequence of change records of different types. A legal change-record type

is one of the non-abstract change-specific log classes.

For certain change operations, completion of the change operation generates not

only a change record for the log, but also a sublog that goes in the log. Any change

operation that involves more than one step requires a sublog. Such operations include

replace concept name, merge two concepts into one of the two concepts, merge two

concepts into new concept, and split concept into two new concepts.

For example, replace concept name is a composition of correct concept name

followed by add synonym. The concept name is first changed to the new concept name,

and then the old concept name is added as a synonym. The resulting additions to the log

would be the change record for replace concept name, and a sublog that contains two

change records—one record for correct concept name followed by a second record for

add synonym.

The merge and split operations have sublogs that document the creation of new

concepts; that document addition of parents, children, synonyms, abbreviations, and

attribute–value pairs to original or new concepts; and that document retirement of the

original concepts. Thus, sublogs for merges and splits may describe many change

Correct
Concept

Name

Add
Concept

Add
Synonym

Add
Parent

Figure 5.4. Portion of a sample log. The log is a sequence of change records in
chronological order.

107

operations. The sublog will contain many records if the number of parents, children,

synonyms, abbreviations, and attribute–value pairs is large.

5.4.5 Error Checking

Constraints in the CONCORDIA model are enforced in Concept Manager through

error-checking classes. The error-checking classes are used by the editors and the

synchronization-support tool.

In the shared-vocabulary editor, every request for a change to the vocabulary is

checked against constraints for that particular change operation. For example, if the user

wants to add a concept, the system checks to see whether any current concept already has

the same concept name as the concept being added. If one does, an error message pops up

with an explanation of the problem. In addition, the system checks to see be sure that the

parent specified for the new concept exists and is not retired. If the parent does not exist

or is retired, an error message pops up. If a retired concept already has the same name as

the name given to the new concept, the system recognizes a potential problem, but issues

a warning, rather than an error message. The CONCORDIA model permits reuse of names

from retired concepts, but the user may be unaware that the old name exists, and a

warning may be helpful. The difference between an error and a warning is that the user

can still choose to make the change despite a warning, but if an error is identified, the

system will block the change until the error is corrected.

Error checking is the same in the local-vocabulary editor as in the shared-

vocabulary editor, but the software checks for additional constraints on site of origin and

usage status. For example, retire concept has the additional constraint in the local

vocabulary that a concept can be retired only if it is a local-only concept. In contrast, in

the synchronization-support tool, processing a record for retire concept in the shared

vocabulary log implies that retire concept will be performed on a shared concept in the

local vocabulary. Therefore, constraints on changes to the local vocabulary may differ

depending on whether the changes are being made from within the local-vocabulary

editor or from within the synchronization-support tool. The local-vocabulary editor also

performs checks on operations hide concept, hide attribute, preserve concept, and

preserve attribute, which are operations that do not exist in the shared vocabulary.

5.4.6 Data Entry and Data Display

Many of the classes in Concept Manager support the graphical user interface.

There are myriad ways that such classes can be designed; I do not describe the user-

108

interface classes in detail. I note, however, that many of the classes designed for the

browser were readily adaptable by the editor, and that many of the classes designed for

the shared vocabulary were readily adaptable by the local vocabulary. In addition, classes

that support display of hierarchies through pull-down menus, display of changes made

during the editing session, and display of vocabulary summary data are reused by the

synchronization-support tool. I used subclassing techniques to reuse these functions.

5.5 Applications

In this section, I summarize each of the applications, as viewed from the user’s

perspective.

5.5.1 Shared-Vocabulary Browser

The shared-vocabulary browser is shown in Figure 5.5. In the center of the upper

panel is a pull-down menu from which the user selects the type of search. Search options

Figure 5.5. Shared-vocabulary browser.

109

are the functions described previously in Section 5.4.2. To the left of the pull-down menu

is a field in which the user enters a search string. The user hits Return after entering a

search string.

The concept or concepts that match appear in the list box in the left panel. The

user double clicks on a selected concept by name, and the information about the

corresponding concept appears in the data display. The concept that appears in the data

display is the concept of focus.

To march up or down the hierarchy from the concept of focus, the user can double

click on one of the parents or one of the children listed in the Parents or Children boxes,

respectively. When the user selects a parent or child, the concept of focus switches to that

parent or child, and the information about the new concept of focus appears in the

display.

Alternatively, the user can navigate up and down the hierarchy by starting at the

root on the pull-down menu at the top of the screen labeled Hierarchy. Each concept that

has children has a submenu that displays those children. The user can navigate the

hierarchy by traversing menus and submenus, and can select a concept at any level.

5.5.2 Shared-Vocabulary Editor

When the user launches the shared-vocabulary editor, the browser interface

appears first, and the user has access to the full set of browsing services.

To edit the vocabulary, the user clicks on the button Go to Editor, and the editor

interface appears (Figure 5.6). The concept of focus that the user selected in the browser

automatically becomes the concept of focus in the editor. The user may also select a

concept from within the editor by typing a string in the text field in the upper panel. For

simplicity in software development, the only two search techniques available in this

portion of the interface are exact string matches of concepts or attributes. Alternatively,

the user can select a concept of focus by navigating the pull-down menu labeled

Hierarchy and by clicking on a concept.

The left side panel in the editor displays information about the concept. The space

available for concept information in this area is limited, however, and therefore a toggle

button labeled Next (or Previous on the next screen) is necessary. The user toggles back

and forth between Next and Previous to see the complete information about the concept.

110

Figure 5.6. Shared-vocabulary editor.

Buttons on the right side panel refer to categories of changes. If the user clicks on

Add Concept, a panel in the center appears for the user to enter the name of the concept,

and the name of the parent concept. The system automatically retrieves and displays the

unique identifier for the parent concept. Unique identifiers in the shared-vocabulary

editor are integer strings. The system assigns integer unique identifiers in numeric order

as it creates new concepts. The built-in root concept has the unique identifier 0.

If the user clicks on the button Change Concept, a dialog box appears with a list

of changes from which the user chooses, as shown in Figure 5.6. These changes

correspond to concept change operations in the CONCORDIA model. Similarly, if the user

clicks on Change Attribute, a dialog box appears with a list of changes that correspond to

attribute change operations in the CONCORDIA model.

After the user makes a change request and enters the data required, the system

performs a temporary change. A temporary change does not alter the vocabulary itself,

but demonstrates what the effect of the change will be. The user has a chance to confirm

or cancel the change at this point. If the user clicks to confirm, then a display of actual

111

results appears. The system creates a change record by making an instance of the

appropriate log change class, and stores the record in sequence in the log.

The user may view the contents of the evolving log as it exists up to that point at

any time during the editing session by clicking on View Log. At the end of the editing

session, the user clicks on Save Vocabulary and Save Log to save the modified

vocabulary and the log, respectively.

5.5.3 Local-Vocabulary Browser

The local-vocabulary browser looks like the shared-vocabulary browser, with one

notable difference. There is an extra data field that displays the concept or attribute site of

origin (Figure 5.7).

Figure 5.7. Local-vocabulary browser.

112

Figure 5.8. Local-vocabulary editor.

5.5.4 Local-Vocabulary Editor

The local-vocabulary editor looks like the shared-vocabulary editor, with several

differences. There is a data field that displays the concept or attribute site of origin, and

there are several additional change buttons on the right side panel. The additional change

buttons are Hide Concept, Preserve Concept, Hide Attribute, and Preserve Attribute

(Figure 5.8). The local-vocabulary editor enforces constraints according to the local

extension of the CONCORDIA model, which in certain cases, differ from constraints on the

shared vocabulary.

5.5.5 Synchronization-Support Tool

Figure 5.9 shows the synchronization-support tool. The synchronization-support

tool reads in four files: (1) the shared vocabulary, (2) the local vocabulary, (3) the shared

log, and (4) the local log. The local vocabulary is modified during the synchronization

session, and the shared log provides the raw data that drives the changes. The tool reads

in the shared vocabulary so that the user can view the shared vocabulary at any time;

113

Figure 5.9. Synchronization-support tool.

however, the synchronization process makes no changes to the shared vocabulary. The

tool reads in the local log because the local log contains information about changes made

to the local vocabulary since the two vocabularies were last synchronized.

There are two choices available to the user. The first option is called facilitate

changes. If the user selects this option, the system performs certain changes

automatically, thereby facilitating the process as much as possible. The other option is

called step through changes. Under this option, the system displays every change that

was made to the shared vocabulary. The system does not perform any changes

automatically; rather, the user makes a decision about every change, with the benefit of

direct review.

In facilitate mode, the system automatically performs changes that do not affect

the hierarchy. Those changes are replace concept name (if no duplicate name exists), add

synonym, delete synonym, add abbreviation, delete abbreviation, and replace UMLS code.

Other changes can be made automatically only in certain situations. For example, add

parent and add child are performed automatically if there is no violation of constraints

for attribute–value pairs, and no cycles will occur. Remove parent and remove child may

114

be performed automatically if no concept is left without at least one parent. Add

attribute–value pair and replace attribute value may be performed automatically if no

constraints are violated. Delete attribute–value pair can be performed automatically

because this change cannot violate any constraints.

A change that occurs frequently in existing controlled vocabularies is add

concept. In general, this change operation is difficult to automate. There are only two

cases in which the system, as it is currently implemented, takes the liberty of handling the

change without consulting the user. In each of these cases, the system adds the shared

concept and merges the local concept into the shared concept.

The requirements for the first case of automated concept addition are as follows:

(1) a concept that was added to the local vocabulary during the change interval has the

same name as the concept that was added to the shared vocabulary, and (2) the concept

that was added to the local vocabulary has the same parents, the same children, and the

same attribute–value pairs that the new concept has in the shared vocabulary. These

requirements are restrictive to reduce the risk of an error by the system.

The requirements for the second case are as follows: (1) the concept added to the

shared vocabulary has the same concept name as the synonym of a concept that was

added to the local vocabulary, and (2) the concept in the local vocabulary has the same

concept name as a synonym of the concept in the shared vocabulary. This case assumes

that two independent developers might add two concepts with the same name, but intend

two different meanings, but would probably not add two concepts with two of the same

names if those concepts have different meanings.

A more common situation occurs when the system encounters a change record for

add concept in the log, but neither of the requirements for automatic addition is fulfilled.

In this case, the system takes steps to retrieve information that will help the user to make

a decision. First, the system checks to be sure that no other concept exists in the local

vocabulary with the same name as the concept being added. If such a concept does exist,

the system asks the user to determine whether the two concepts have the same meaning.

If they do not, then the user is asked to change the name of the local concept.

If no concept by the same name exists in the local vocabulary, the system could

try to identify concepts that have been added to the local vocabulary during the change

interval that are most likely to have the same intended meaning as the added shared

concept. It could use a combination of measures that assess similarity of names and

synonyms, similarity of location in the hierarchy, and similarity of attribute sets to rank

115

order candidate concepts. As a last resort, the system could ask the user to review all the

remaining concepts that were added to the local vocabulary since the previous

synchronization to verify that no duplicate concept exists. In the current implementation

of the synchronization-support tool, the system checks for exact name matches, but does

not assess or rank order potential matches. The system gives the user the opportunity to

review concepts added to the local vocabulary during the previous change interval to

make sure that no concept with the same meaning, but different name, exists in the local

vocabulary.

For each change in the shared log that is presented to the user, the system gives a

recommended action and a set of zero or more alternatives. The possible actions,

including recommended and alternative actions are those actions discussed in Chapter 4

and listed in Appendix H. The recommended action for the local vocabulary is the change

that most closely resembles the change made to the shared vocabulary.

When a recommended action or alternative action contains more than one step,

each step is displayed. The user reviews the options. If more than one alternative is

available, the user may click buttons labeled Next and Previous to review each

alternative. Finally, the user applies the recommendation or an alternative by clicking on

one of two buttons: Apply Rec or Apply Alt. If the user chooses to apply an alternative,

the system performs the alternative that is currently displayed.

The system performs the change, displays data about the change on the screen,

and stores a change record in the local log. At any point during the session, the user may

review the local log that has been created so far. Finally, when all change records from

the shared log have been processed, the user clicks to save the local vocabulary, save the

local log, save the report, and exits. The report is a printout of the changes that have been

made to the local vocabulary during this synchronization session; it permits the user to

review all the changes that were made.

5.6 Summary

Concept Manager is a set of software tools that permit the shared vocabulary

maintainer to browse and edit the shared vocabulary, the local vocabulary maintainer to

browse and edit the local vocabulary, and the local-vocabulary maintainer to synchronize

the local vocabulary with the shared vocabulary.

The system is designed in such a way that the shared-vocabulary browsing

components are part of the shared-vocabulary editor, the local-vocabulary browsing

116

components are part of the local-vocabulary editor, the shared-vocabulary browsing

components are part of the local-vocabulary browser and editor, and the shared-

vocabulary editing components are part of the local-vocabulary editor. In addition, the

shared-vocabulary and local-vocabulary browsing components are part of the

synchronizer.

The CONCORDIA model lends itself well to an object-oriented approach. In

addition, the XML-based format for vocabulary files and log files works well for an

object-oriented design. The log was designed in such a way that each type of change

operation could have a slightly different set of data elements recorded in the log.

In Chapter 6, I describe the evaluation, which was performed using the Concept

Manager software.

117

6 Evaluation

The purpose of this evaluation is to provide a proof-of-concept demonstration of

the utility of establishing formal models to facilitate the sharing of changes. Different

applications use change information in different ways; sharability is facilitated by a

common understanding of data models for content and change, and by agreement on

methods that operate on the data in those models. In this demonstration, I show that

CONCORDIA can serve as such a common data model for content and change, and that it

can provide sharable change methods.

6.1 Restatement of Hypothesis

In Chapter 1, I stated the hypothesis of this research. I restate the hypothesis here:

Communication of changes between an organization that develops a

shared vocabulary and a local site that uses and adapts that vocabulary

requires a shared understanding of an explicit formal vocabulary structural

model, change model, and log model; the utility of such formal models

can be demonstrated by their implementation in a synchronization-support

tool that enables a vocabulary developer to synchronize a local version of

a shared vocabulary with the evolving shared version from which it was

derived.

6.2 Evaluation Approach

To demonstrate the use of a shared model that supports change, I implemented

Concept Manager, which is a suite of tools that depend on the CONCORDIA model and that

support carefully controlled local divergence. I generated a test set of shared and local

versions of a small medically oriented vocabulary (80 concepts in the final vocabulary),

and used the tools to synchronize the local version with the shared version. For the

vocabulary test set, I obtained content from three different textbooks of medicine: a

textbook from 1917 for the initial vocabulary, and two contemporary textbooks by

different publishers for divergent versions of the initial vocabulary. I discuss the results

by considering the following questions: (1) Were the synchronization criteria fulfilled?

(2) Was the model effective for this test set? (3) Did automation of certain tasks and

support of other tasks facilitate synchronization for this test set?

118

Box 6.1. Domain-modeling rules for transferring content from a source textbook to a
vocabulary.

1. Name concepts according to the names used in the text.

2. If the name of a concept in the text is plural, make it singular.

3. If the name of a concept is in a compound form, using the conjunction and, create two
distinct concepts, and make each of those concepts singular.

4. If a concept is referred to by multiple names and one name is used more frequently
than the other(s), choose the name that is most frequently used to be the concept
name.

5. If a concept is referred to by two different names, and one name is followed by an
alternate name in parentheses, choose the name that is not in parentheses to be the
concept name.

6. If a concept is referred to by two different names, and one name is followed by an
alternate name in parentheses, make the name that is in parentheses a synonym.

7. If a pattern for naming emerges, but is not consistently followed in the text, select a
pattern and be consistent in the vocabulary, even if another one of these rules is
violated.

8. Classify concepts in the vocabulary according to the hierarchy implied in the text. For
example, the following hierarchical relationships may be adapted to the vocabulary:
(1) a chapter title is superordinate to a section title; (2) a section title is
superordinate to a subtitle; (3) a subtitle is superordinate to a term used in the body
of the text; and (4) one concept that is described in the text as being more general
than a second concept is superordinate to that second concept.

9. Classify concepts in the vocabulary according to the hierarchy implied in tables. For
example, the following hierarchical relationships may be adapted to the vocabulary:
(1) a concept in a column header is superordinate to concepts listed under that
header; (2) a concept that is indented and located under another concept is
subordinate to that other concept.

10. If a relationship between two concepts is described in the text, create an attribute that
corresponds to the relationship.

11. If an attribute is referred to by more than one name and one name is used more
frequently than the other(s), choose the name that is used most frequently to be an
attribute name. If no name is used more frequently that the others, arbitrarily select
one of the names to be the attribute name.

12. If information in the text implies that a relationship between two concepts exists,
create an attribute–value pair for the first concept, where the relationship is the
attribute, and the second concept is the value.

13. If a concept selected for the vocabulary is referred to by an abbreviation in either the
text or tables, add that abbreviation to the concept.

14. If a set of related concepts can be grouped together semantically to facilitate
management of the hierarchy, create a concept as a superconcept to the related
concepts, even if that concept is not explicitly discussed in the text.

15. Avoid any concept whose name contains the word “Other,” if the concept means
everything not included in other concepts defined in the vocabulary.

119

6.2.1 A Case Study

This evaluation is a case study that requires domain modeling of a particular

subdomain and synchronization of vocabularies encoded for that subdomain. A case

study can lead to new hypotheses and further testing, and therefore provides a basis for

future work.

This evaluation is not a large-scale study to determine the validity of the model

for all users or for all purposes, and it is not a comprehensive study of the usability of the

software that I have developed. Because I have not studied the usefulness of the model

for a broad variety of subdomains and for a broad variety of vocabulary services, the

conclusions that I can draw regarding generalizability of the model are limited. In

addition, because I have not studied the use of the software by many users, I cannot offer

conclusive evidence about the usability of the tools. Nevertheless, testing the software

with medical content from existing textbooks yields information about the model, the

software, and the synchronization process that contributes to our understanding of the

synchronization process.

6.2.2 Methods

In this section, I list the steps that I followed in the experiment. I state the goal of

each step, and explain what I did to carry out each step. In Box 6.1, I state the rules that I

followed to transfer knowledge from the textbooks to the vocabularies. Figures 6.1, 6.2,

and 6.3 show the initial vocabulary, the modified shared vocabulary, and the modified

local vocabulary, respectively. My evaluation followed the following steps:

1. Implement software that enables communication of changes between a shared-

vocabulary–development organization and local sites, and that makes use of a

common understanding of shared and local models. I implemented the

Concept Manager suite of tools, which I described in Chapter 5. Concept

Manager is faithful to the CONCORDIA model, which includes both shared and

local models.

2. Select sources of medical content in a limited subdomain of medicine from two

points in time, including two sources by different authors from the second

point in time. I chose rickettsial diseases to be the subdomain, and I chose

widely separated points in time: the second and last decades of the twentieth

century. The sources of medical content were

120

1. The Diagnostics and Treatment of Tropical Diseases [Stitt 1917] (used

for the initial versions of the shared and local vocabularies)

2. Harrison’s Principles of Internal Medicine [Fauci 1998] (used for the

modified version of the shared vocabulary)

3. Cecil Textbook of Medicine [Bennett 1996] (used for the modified

version of the local vocabulary)

The current editions of Cecil and Harrison’s were only two years apart, and I

regarded them as contemporary sources written by different authors at

approximately the same point in time. Because the different authors made

different choices about the naming and classification of concepts, the authors

are analogous to vocabulary maintainers at different sites. I refer to the three

textbooks listed above as Source 1, Source 2, and Source 3, respectively.

3. Select one of the two contemporary textbooks to be the source of content for the

modified shared vocabulary, and the other to be the source for the modified

local vocabulary. I arbitrarily chose Harrison’s (Source 2) to be the source of

the shared vocabulary, and Cecil (Source 3) to be the source of the local

vocabulary.

4. Create the content of the initial shared vocabulary. I modeled content

knowledge contained in Source 1, according to the CONCORDIA shared-

vocabulary structural model.

5. Create the content of the initial local vocabulary. I made the content of the

initial local vocabulary the same as the content of the initial shared

vocabulary, but adapted it to the CONCORDIA local-vocabulary structural

model.

6. Create the content of the modified shared vocabulary. I modeled content

knowledge contained in Source 2 according to the CONCORDIA structural

model for a shared vocabulary, and identified changes that would complete

the transition from the initial shared vocabulary to the modified shared

vocabulary. The changes complied with the CONCORDIA shared-vocabulary

change model.

7. Create the content of the modified local vocabulary. I modeled content

knowledge contained in Source 3 according to the CONCORDIA local-

vocabulary structural model, and identified changes that would complete the

121

transition from the initial local vocabulary to the modified local vocabulary.

The changes complied with the CONCORDIA local-vocabulary change model.

8. Enter the content of the initial shared vocabulary into the system using the

shared-vocabulary editor, and save the resulting file in the shared-vocabulary

format. I selected concepts from The Diagnostics and Treatment of Tropical

Diseases (Source 1) that were discussed in the same chapter as “spotted fever

of the Rocky Mountains.” Rocky Mountain spotted fever is now known to be

a rickettsial disease. I entered those concepts into the shared-vocabulary

editor. I saved the shared vocabulary at time 0 as SV-0. SV-0 contains 8

concepts.

9. Read the shared vocabulary at time 0 into the local-vocabulary editor, and

save the resulting file in the local-vocabulary format to create the local

vocabulary at time 0. I loaded SV-0 into the local-vocabulary editor, and

saved the local vocabulary at time 0 as LV-0. Like SV-0, LV-0 contains 8

concepts.

10. Make changes to the shared vocabulary at time 0, using content from the first

contemporary source. I made changes to SV-0, using the shared-vocabulary

editor, according to changes I identified to create the modified shared

vocabulary. I saved the resulting version as the shared vocabulary at time 1

(SV-1). SV-1 contains 62 concepts.

11. Make changes to the local vocabulary at time 0, using content from the second

contemporary source. I made changes to LV-0 using the local-vocabulary

editor, according to changes I identified to create the modified local

vocabulary. I saved the resulting file as the local vocabulary at time 1 (LV-1).

LV-1 contains 59 concepts.

12. Synchronize the local vocabulary with the shared vocabulary, noting choices

made. The resulting local vocabulary represents the local version at time 1

after synchronization (LV-1-synch). LV-1-synch contains 80 concepts.

13. Save the printed results of the synchronization session, and analyze the

results. The printed results produced by the system are reproduced, in part, in

Figure 6.9, and are reproduced in full in Appendix K. I analyze the results in

Section 6.5.

122

entity
 disease
 tropical disease of disputed nature or minor importance
 tsutsugamushi
 heat stroke
 verruga peruviana
 spotted fever of the Rocky Mountains
 typhus fever

Figure 6.1. Initial shared vocabulary (SV-0). The
concept hierarchy for the initial local vocabulary
(LV-0) is the same as the concept hierarchy for
SV-0.

123

entity
 disease
 rickettsial disease
 mite-borne spotted fever
 rickettsialpox
 tick-borne spotted fever
 Rocky Mountain spotted fever
 Mediterranean spotted fever
 African tick-bite fever
 Japanese spotted fever
 Queensland tick typhus
 Flinders Island spotted fever
 flea-borne rickettsial disease
 murine typhus
 louse-borne rickettsial disease
 epidemic typhus
 Brill-Zinsser disease
 ehrlichiosis
 human monocytic ehrlichiosis
 human granulocytic ehrlichiosis
 Q fever
 scrub typhus
 verruga peruviana
 heat stroke
 living organism
 tick
 Dermacentor variabilis
 Dermacentor andersoni
 Rhipicephalus sanguineus
 Amblyomma cajennesne
 Amblyomma americanum

 Ixodes scapularis
 Ixodes ricinus
 Ixodes holocyclus
 mite
 louse
 Pediculus humanus corporis
 chigger
 Rickettsia
 Rickettsia rickettsii
 Rickettsia conorii
 Rickettsia japonica
 Rickettsia australis
 Rickettsia honei
 Rickettsia akari
 Rickettsia typhi
 Rickettsia prowazekii
 Rickettsia africae
 flea
 Xenopsylla cheopis
 Ctenocephalides felis
 Orientia
 Orientia tsutsugamushi
 Ehrlichia
 Ehrlichia chaffeensis
 agent of human granluocytic ehrlichiosis
 Coxiella
 Coxiella burnettii
 anatomic part
 cell
 monocyte
 granulocyte

Figure 6.2. Shared vocabulary (SV-1). (The second column is a continuation of
the first.)

124

entity
 disease
 heat stroke
 verruga peruviana
 rickettsial disease
 typhus-like fever
 typhus-group disease
 murine typhus
 louse-borne epidemic typhus
 Brill-Zinsser disease
 spotted-fever-group disease
 ehrlichiosis
 ehrlichiosis caused by Ehrlichia chaffeensis
 human granulocytic ehrlichiosis
 Rocky Mountain spotted fever
 boutonneuse fever
 scrub typhus
 rickettsialpox
 Q fever
 tick-borne rickettsiosis
 North Asian tick-borne rickettsiosis
 Queensland tick typhus
 Rocky Mountain spotted fever
 boutonneuse fever
 ehrlichiosis
 ehrlichiosis caused by Ehrlichia chaffeensis
 human granulocytic ehrlichiosis
 organism
 Rickettsia
 Rickettsia typhi
 Rickettsia prowezekii
 Rickettsia siberica

 Rickettsia akari
 Rickettsia tsutsugamushi
 Rickettsia prowazekii
 Rickettsia rickettsii
 Rickettsia conorii
 Rickettsia australis
 Ehrlichia
 Ehrlichia chaffeensis
 Ehrlichia species of human granluocytic ehrlichiosis
 Coxiella
 Coxiella burnettii
 Amblyomma
 Amblyomma americanum
 Xenopsylla
 Xenopsylla cheopis
 Pediculus
 Pediculus humanus humanus
 Dermacentor
 Dermacentor variabilis
 Dermacentor andersoni
 Dermacentor sylvarum
 Dermacentor nuttallii
 Leptotrombidium
 Leptotrombidium deliensis
 Ixodes
 Ixodes holocyclus
 Allodermanyssus
 Allodermanyssus sanguineus
 Rhipicephalus
 Rhipicephalus sanguineus
 Haemaphysalis
 Haemaphysalis concinna

Figure 6.3. Local vocabulary (LV-1). (The second column is a continuation of
the first.)

125

6.3 Vocabulary Test Set

The vocabulary test set comprises the initial shared vocabulary, the initial local

vocabulary, the modified shared vocabulary, and the modified local vocabulary. Note that

for this test set, I did not assign UMLS codes to the concepts, and I did not create text

definitions. I describe here how I reconstructed knowledge contained in the textbooks to

create the controlled vocabularies according to the CONCORDIA model.

6.3.1 Initial Shared Vocabulary (SV-0)

There are eight concepts in SV-0, as shown in Figure 6.1: entity, disease, tropical

disease of disputed nature or minor importance, heat stroke, tsutsugamushi, verruga

peruviana, spotted fever of the Rocky Mountains, and typhus fever. The 1917 textbook

includes a section called Tropical Diseases of Disputed Nature or Minor Importance. In

this section, the chapters are named Verruga Peruviana and Oroya Fever, Heat Stroke

and Heat Prostration, Tsutsugamushi or Japanese River Fever, Spotted Fever of the

Rocky Mountains, and Typhus Fever.

In CONCORDIA, a vocabulary requires a root concept. I called the root entity,

which is the system’s default name for the root. I changed the section title from plural to

singular, and used it as the name of a new concept in the hierarchy. Then, I mapped each

chapter to a new concept, where each concept represented only one entity, and each

concept name was in the singular, lower-case form. Therefore, the chapter Verruga

Peruviana and Oroya Fever became the concept verruga peruviana. Heat Stroke and

Heat Prostration became heat stroke. Tsutsugamushi or Japanese River Fever became

tsutsugamushi. I did not change Spotted Fever of the Rocky Mountains or Typhus Fever,

except for converting them to lower case. The book explained that verruga peruviana and

Oroya fever are the same disease, and I made Oroya fever a synonym of verruga

peruviana. Because the book recognized heat stroke and heat prostration as different

conditions, I did not make heat prostration a synonym of heat stroke. Because the text

explained that Japanese River fever was another name for tsutsugamushi, I made

Japanese River fever a synonym of tsutsugamushi.

The children of tropical disease of disputed nature or minor importance became

verruga peruviana, heat stroke, tsutsugamushi, spotted fever of the Rocky Mountains, and

typhus fever because the chapters were subordinate to the section. I wanted to include a

concept that was more specific than entity to group the disease concepts. Therefore, I

126

added disease as a child of entity, and made disease a parent of tropical disease of

disputed nature or minor importance.

Another chapter in this section was entitled Climatic Bubo, Ainhum, Goundou,

and Rat Bite Disease. Because it was difficult to map these items to currently known

medical conditions concepts with certainty, I chose not to include them in the initial test

set.

6.3.2 Initial Local Vocabulary (LV-0)

LV-0 contains the same concepts as SV-0, but each concept in LV-0 has an

DGGLWLRQDO� GDWD� HOHPHQW WKH� VLWH� RI� RULJLQ�� 6LQFH� DOO� FRQFHSWV� RULJLQDWHG� LQ� WKH� VKDUHG

vocabulary, the value of the site of origin for each concept is shared. The concept

hierarchy for the shared vocabulary is the same as the concept hierarchy for the local

vocabulary at time 0 (Figure 6.1).

6.3.3 Modified Shared Vocabulary (SV-1)

Using Harrison’s Principles of Internal Medicine to guide the creation of the

modified vocabulary, I created SV-1. I followed the rules for transfer of content from the

text to the vocabulary (Box 6.1).

I applied 129 changes to SV-0 to create SV-1. I list those changes in part in Box

6.2 and in their entirety in Appendix I. I explain next how I used the names and

classification structure from the text of Harrison’s to select changes and to generate the

modified shared vocabulary. The concept hierarchy of the resulting shared vocabulary is

shown in Figure 6.2.

6.3.3.1 Classification of Concepts (Shared Vocabulary)

The title of the relevant chapter in Harrison’s is “Rickettsial Diseases” [Walker

1998]. Following the convention of naming concepts in their singular forms (modeling

rule 2 in Box 6.1), I created the concept rickettsial disease. I added rickettsial disease to

the vocabulary as a child of disease.

The chapter has five sections. The names of the sections are in capitals as follows:

1. TICK- AND MITE- BORNE SPOTTED FEVERS

2. FLEA- AND LOUSE-BORNE RICKETTSIAL DISEASES

3. CHIGGER-BORNE SCRUB TYPHUS

127

Box 6.2. A subset of changes made to the shared vocabulary, SV-0, to create the
modified shared vocabulary, SV-1. The complete list of changes is given in Appendix I.

1. Add concept: CONCEPT rickettsial disease, PARENT disease

2. Add concept: CONCEPT mite-borne spotted fever, PARENT rickettsial disease

3. Add concept: CONCEPT tick-borne spotted fever, PARENT rickettsial disease

4. Add concept: CONCEPT flea-borne rickettsial disease, PARENT rickettsial disease

5. Add concept: CONCEPT louse-borne rickettsial disease, PARENT rickettsial disease

6. Add concept: CONCEPT ehrlichiosis, PARENT rickettsial disease

7. Add concept: CONCEPT Q fever, PARENT rickettsial disease

8. Replace concept name: OLD tsutsugamushi, NEW scrub typhus

9. Add parent: CONCEPT scrub typhus, PARENT rickettsial disease

10. Remove parent: CONCEPT scrub typhus, PARENT tropical disease of disputed nature or
minor importance

11. Replace concept name: OLD spotted fever of the Rocky Mountains, NEW Rocky
Mountain spotted fever

12. Add parent: CONCEPT Rocky Mountain spotted fever, PARENT tick-borne spotted fever

13. Remove parent: CONCEPT Rocky Mountain spotted fever, PARENT tropical disease of
disputed nature or importance

14. Add concept: CONCEPT Mediterranean spotted fever, PARENT tick-borne spotted fever

15. Add concept: CONCEPT African tick-bite fever, PARENT tick-borne spotted fever

16. Add concept: CONCEPT Japanese spotted fever, PARENT tick-borne spotted fever

17. Add concept: CONCEPT Queensland tick typhus, PARENT tick-borne spotted fever

18. Add concept: CONCEPT Flinders Island spotted fever, PARENT tick-borne spotted fever

19. Add concept: CONCEPT rickettsialpox, PARENT mite-borne spotted fever

20. Replace concept name: OLD typhus fever, NEW epidemic typhus

21. Add parent: CONCEPT epidemic typhus, PARENT louse-borne rickettsial disease

22. Add concept: CONCEPT Brill-Zinsser disease, PARENT epidemic typhus

23. Add concept: CONCEPT murine typhus, PARENT flea-borne rickettsial disease

24. Remove parent: CONCEPT epidemic typhus, PARENT tropical disease of disputed
nature or minor importance

25. Add concept: CONCEPT human monocytic ehrlichiosis, PARENT ehrlichiosis

26. Add concept: CONCEPT human granulocytic ehrlichiosis, PARENT ehrlichiosis

27. Add parent: CONCEPT verruga peruviana, PARENT disease

28. Remove parent: CONCEPT verruga peruviana, PARENT tropical disease of disputed
nature or minor importance

29. Add parent: CONCEPT heat stroke, PARENT disease

128

4. EHRLICHIOSES

5. Q FEVER

From the section title TICK- AND MITE- BORNE SPOTTED FEVERS, I created two

concepts in their singular forms, tick-borne spotted fever and mite-borne spotted fever

(modeling rules 2 and 3). Similarly, from FLEA- AND LOUSE-BORNE RICKETTSIAL

DISEASES, I created flea-borne rickettsial disease and louse-borne rickettsial disease. The

section entitled CHIGGER-BORNE SCRUB TYPHUS contains a discussion of only one disease,

which is most frequently referred to as scrub typhus. Since the terms chigger-borne scrub

typhus and scrub typhus refer to the same entity, I created only one concept, and named it

scrub typhus. The last two section titles of the chapter are EHRLICHIOSES and Q FEVER.

From the title EHRLICHIOSES, I created the concept ehrlichiosis; from Q FEVER, I created Q

fever.

The section TICK- AND MITE- BORNE SPOTTED FEVERS has three subtitles:

1. ROCKY MOUNTAIN SPOTTED FEVER

2. MEDITERRANEAN SPOTTED FEVER (BOUTONNEUSE FEVER) AND OTHER SPOTTED

FEVERS

3. RICKETTSIALPOX

The concept Rocky Mountain spotted fever already existed in the old version of

the shared vocabulary, although by a slightly different name. Therefore, using replace

concept name, I changed spotted fever of the Rocky Mountains to Rocky Mountain

spotted fever. I created a new concept that corresponded to the subtitle Mediterranean

Spotted Fever (Boutonneuse Fever) and Other Spotted Fevers. Based on the authors’ use

of parentheses, I made Mediterranean spotted fever the concept and boutonneuse fever a

synonym (modeling rules 5 and 6). I removed the conjunction and (modeling rule 3), and

to avoid concepts whose names contain Other (modeling rule 15), I created only

Mediterranean spotted fever. The conditions discussed in the text that are grouped as

“other spotted fevers” are African tick-bite fever, Japanese or Oriental spotted fever,

Queensland tick typhus, and a spotted fever observed on Flinders Island. I created

concepts for each of these diseases, and named them African tick-bite fever, Japanese

spotted fever, Queensland tick typhus, and Flinders Island spotted fever. I chose

Japanese spotted fever to be the name of the concept referred to as “Japanese or Oriental

spotted fever,” and made Oriental spotted fever a synonym, because it was named second

in the disjunction. The text refers to the spotted fever on Flinders Island as “the spotted

129

fever observed on Flinders Island (near Tasmania),” but a table used the term Flinders

Island spotted fever. I chose the latter term.

Other changes included the addition of murine typhus, and the concept-name

replacement of typhus fever to epidemic typhus.

6.3.3.2 Synonyms (Shared Vocabulary)

In certain cases, the text explains reasons for alternate names. For example,

Harrison’s discusses various names for Mediterranean spotted fever:

The names for this disease vary with the region in which it occurs;

examples include Mediterranean spotted fever (also known as

boutonneuse fever), Kenya tick typhus, Indian tick typhus, Israeli spotted

fever, and Astrakhan spotted fever. [Walker 1998]

I added the latter four terms to the synonym list for Mediterranean spotted fever.

The synonym list already included boutonneuse fever.

In other cases, alternate terms occur in parentheses. For example, “Dermacentor

variabilis (dog tick)” and “Ixodes scapularis (deer tick)” are listed as tick vectors in a

table that compares human monocytic ehrlichiosis and human granulocytic ehrlichiosis

[Walker 1998]. I used the official taxonomic names for concept names, and made the

common English names in parentheses synonyms.

However, the description of human monocytic ehrlichiosis says, “The Lone Star

tick (Amblyomma americanum) is the major vector ...” The name that appears first is the

common name Lone Star tick, and the name that appears second in parentheses is the

taxonomic name Amblyomma americanum. However, to be consistent with the preceding

examples, I made the taxonomic name the concept name, Amblyomma americanum, and

the common English term, Lone Star tick, a synonym.

6.3.3.3 Obsolete Concept (Shared Vocabulary)

Not surprisingly, the term tropical disease of disputed nature or minor

importance from the old version of the vocabulary is not used in the 1998 edition of

Harrison’s. However, before I could retire the concept, I had to remove the concept from

the list of parents of each of its children. Therefore, I applied remove parent to scrub

typhus (formerly tsutsugamushi in SV-0), to Rocky Mountain spotted fever (formerly

spotted fever of the Rocky Mountains in SV-0), to epidemic typhus (formerly typhus fever

in SV-0), to verruga peruviana, and to heat stroke. Then, I retired the obsolete concept.

130

6.3.3.4 Additional Concepts to Assist Organization (Shared Vocabulary)

In the description of each rickettsial disease, the text identifies the rickettsial

organism that causes each disease. The only concept in the vocabulary that was more

general than each organism was entity. To group rickettsial organisms so that each

organism would not be a sibling of disease, I created a concept living organism. This

concept encompasses organisms that cause disease and that transmit disease.

In addition, I decided to include the concepts monocyte and granulocyte, which

are target cells of Ehrlichia organisms in ehrlichiosis. To form additional subdivisions of

the hierarchy, I added the concept anatomic part as a child of entity, and added cell as a

child of anatomic part. I made cell a parent of monocyte and granulocyte.

Two other concepts I added that are not specifically discussed in the textbook are

Rickettsia and Orientia. I added these two concepts to group species that are in the genus.

However, I did not create distinct concepts for every genus, which would have been more

consistent.

6.3.3.5 Naming Problem (Shared Vocabulary)

A naming problem arose for the organism that causes human granulocytic

ehrlichiosis. In Harrison’s, the organism is referred to as an “ E. equi-like organism” in a

table, an “Ehrlichia equi-like organism” in one part of the text, and the “agent of HGE” in

another part of the text. I preferred to avoid the vagueness of “Ehrlichia equi-like

organism,” and instead preferred “agent of HGE.” However, to be as specific as possible

and to avoid using an abbreviation, I selected agent of human granulocytic ehrlichiosis.

6.3.3.6 Abbreviations (Shared Vocabulary)

7KUHH� DEEUHYLDWLRQV�DUH� LQWURGXFHG� LQ� WKLV� FKDSWHU RMSF, HGE, and HME. When

each abbreviation is introduced, the full term is used in the text, followed by the

abbreviation in parentheses. Later in the text, the abbreviation alone is used. I added these

abbreviations to the corresponding diseases in the vocabulary.

6.3.3.7 Attribute Names (Shared Vocabulary)

I identified three relationships that would help to distinguish related concepts in

the chapter if I used them in attribute–value pairs for concepts. The rickettsial diseases

can be distinguished from one another by the organisms that cause the diseases, and by

organisms that transmit the organisms that cause the diseases. Therefore, I created

131

attributes for etiology and transmission. I also created an attribute for major target cell, to

distinguish between the two ehrlichioses.

Phrases used in the text suggest names for attributes, but my choices might differ

from another person’s choices. From the phrase “etiologic agent of scrub typhus” and

similar phrases, I selected has-etiology. From multiple instances of the phrase “is

transmitted by,” I chose transmitted-by. From the phrase “Ehrlichia chaffeensis, which

targets mainly macrophages and monocytes” I selected major-target-cell.

6.3.3.8 Attribute–Value Pairs (Shared Vocabulary)

An attribute of a concept links that concept to the attribute’s value. In the shared

vocabulary, there are three attributes that are used in relationships between pairs of

concepts. The attribute has-etiology links a rickettsial disease and a rickettsial organism.

The attribute transmitted-by links a rickettsial organism with an organism such as a tick,

a mite, or a chigger. The attribute major-target-cell links an organism that causes

ehrlichiosis with either monocyte or granulocyte. The following are examples of

attributes (underlined) linking pairs of concepts:

1. Rocky Mountain spotted fever has-etiology Rickettsia rickettsii

2. Rocky Mountain spotted fever transmitted-by Dermacentor andersoni

3. Mediterranean spotted fever has-etiology Rickettsia conorii

4. Mediterranean spotted fever transmitted-by Rhipicephalus sanguineus

6.3.4 Modified Local Vocabulary (LV-1)

I used Cecil to create LV-1, and followed the rules for the transfer of content from

textbook to vocabulary (Box 6.1).

I applied 119 changes to LV-0 to create LV-1. I list those changes in part in Box

6.3, and in their entirety in Appendix J. I explain here how I selected the changes and

modified the local vocabulary. The resulting local vocabulary is shown in Figure 6.3.

6.3.4.1 Classification of Concepts (Local Vocabulary)

In Cecil, the relevant chapter is entitled “Rickettsial Diseases,” which is the same

name as the name of the corresponding chapter in Harrison’s. This chapter employs

several classification schemes. It organizes information into sections and subsections, and

displays information about the diseases in several tables.

132

Box 6.3. A subset of changes made to the local vocabulary, LV-0, to create the modified
local vocabulary, LV-1. The complete list of changes is given in Appendix J.

1. Add concept: CONCEPT rickettsial disease, PARENT disease

2. Add concept: CONCEPT typhus-like fever, PARENT rickettsial disease

3. Add concept: CONCEPT typhus-group disease, PARENT typhus-like fever

4. Add concept: CONCEPT murine typhus, PARENT typhus-group disease

5. Add concept: CONCEPT louse-borne epidemic typhus, PARENT typhus-group disease

6. Add concept: CONCEPT Brill-Zinsser disease, PARENT louse-borne epidemic typhus

7. Add concept: CONCEPT scrub typhus, PARENT typhus-like fever

8. Add concept: CONCEPT spotted-fever-group disease, PARENT typhus-like fever

9. Add concept: CONCEPT ehrlichiosis, PARENT spotted-fever-group disease

10. Replace concept name: OLD spotted fever of the Rocky Mountains, NEW Rocky
Mountain spotted fever

11. Add parent: CONCEPT Rocky Mountain spotted fever, PARENT spotted-fever-group
disease

12. Remove parent: CONCEPT Rocky Mountain spotted fever, PARENT tropical disease of
disputed nature or minor importance

13. Add concept: CONCEPT boutonneuse fever, PARENT spotted-fever-group disease

14. Add concept: CONCEPT rickettsialpox, PARENT rickettsial disease

15. Add concept: CONCEPT Q fever, PARENT rickettsial disease

16. Add concept: CONCEPT tick-borne rickettsiosis, PARENT rickettsial disease

17. Add concept: CONCEPT North Asian tick-borne rickettsiosis, PARENT tick-borne
rickettsiosis

18. Add concept: CONCEPT Queensland tick typhus, PARENT tick-borne rickettsiosis

19. Add parent: CONCEPT Rocky Mountain spotted fever, PARENT tick-borne rickettsiosis

20. Add parent: CONCEPT boutonneuse fever, PARENT tick-borne rickettsiosis

21. Add parent: CONCEPT ehrlichiosis, PARENT tick-borne rickettsiosis

22. Add concept: CONCEPT organism, PARENT entity

23. Add concept: CONCEPT Rickettsia, PARENT organism

24. Add concept: CONCEPT Rickettsia typhi, PARENT Rickettsia

25. Add concept: CONCEPT Rickettsia prowazekii, PARENT Rickettsia

26. Add concept: CONCEPT Ehrlichia, PARENT organism

27. Add concept: CONCEPT Ehrlichia chaffeensis, PARENT Ehrlichia

28. Add concept: CONCEPT Ehrlichia species of human granulocytic ehrlichiosis, PARENT
Ehrlichia

29. Add concept: CONCEPT Rickettsia siberica, PARENT Rickettsia

The chapter is divided into six sections, which have the following section titles:

133

 1. The Typhus Group

 2. Rocky Mountain Spotted Fever

 3. Other Tick-borne Rickettsioses

 4. Rickettsialpox

 5. Scrub Typhus

 6. Q Fever

The Typhus Group has two subtitles in all capitals:

 1. EPIDEMIC LOUSE-BORNE TYPHUS

 2. MURINE TYPHUS

One table in the chapter divides the diseases into three groups [Hornick 1996c]:

1. Typhus-like fevers

2. Ehrlichiosis

3. Q fever

The first group, Typhus-like fevers, contains three subgroups:

1. Typhus group

2. Scrub typhus

3. Spotted-fever group

Another table divides the diseases into five groups [Hornick 1996b]:

1. Typhus group

2. Spotted-fever group (selected examples)

3. Rickettsialpox

4. Scrub typhus (Tsutsugamushi disease)

5. Q fever

The typhus group has three members:

1. Murine typhus

2. Epidemic typhus

3. Brill-Zinsser disease

134

The spotted-fever group has three members:

1. Rocky Mountain spotted fever

2. Ehrlichiosis

3. Boutonneuse fever

Thus, even in a chapter written by a single author [Hornick 1996a], there are

multiple classification schemes. The schemes are similar, but not exactly the same.

I used the structure of the first table to organize upper-level concepts in the

vocabulary. I added the members of the typhus group and the members of the spotted-

fever group, which were given in the second table. A disease cannot be a direct child of a

group of diseases because the relationship would not be a subsumption relationship.

Therefore, I created typhus-group disease and spotted-fever–group disease.

The text includes a section entitled “Other Tick-borne Rickettsioses,” which

includes discussions of boutonneuse fever, North Asian tick-borne rickettsiosis, and

Queensland tick typhus. I avoided a grouping based on an “Other” category (modeling

rule 15), and created tick-borne rickettsiosis. I added boutonneuse fever, North Asian

tick-borne rickettsiosis, and Queensland tick typhus as children of tick-borne rickettsiosis.

Because Rocky Mountain spotted fever and ehrlichiosis are also described as tick borne

in the text, I included them as children of tick-borne rickettsiosis.

In the first table, Brill-Zinsser disease is a sibling of Epidemic typhus. However,

the text says:

Patients who recover from classic typhus have the opportunity to develop

Brill-Zinsser disease and at that time have rickettsemia and are able again

to infect body lice. However, this happens rarely, for few cases of Brill-

Zinsser disease have been detected among the many hundreds of

thousands of soldiers who acquired typhus in World War II; one estimate

suggested a rate of 10 per 10,000 cases of primary typhus. More cases

may be recognized as the geriatric population continues to increase.

[Hornick 1996a]

Based on this explanation, I concluded that Brill-Zinsser disease is a particular

form of epidemic typhus, and made Brill-Zinsser disease a child of louse-borne epidemic

typhus. Another vocabulary developer might have reached a different conclusion.

135

6.3.4.2 Synonyms (Local Vocabulary)

The textbook gives synonyms for certain diseases and organisms. It suggests

synonyms through the use of parentheses or commas, and by the explicit identification of

alternate names as synonyms.

In the discussion of scrub typhus, the organism Rickettsia tsutsugamushi has an

alternate name specified in parentheses:

ETIOLOGY. Rickettsia tsutsugamushi (R. orientalis) is a small gram-

negative, obligate intracellular organism. Unlike other rickettsial

infections, infection with R. tsutsugamushi does not induce solid

protection against additional bouts of scrub typhus. This results from the

variable antigenic compositions of the strains. [Hornick 1996a]

I made Rickettsia orientalis a synonym of Rickettsia tsutsugamushi.

In the discussion of organisms that cause Rocky Mountain spotted fever, alternate

names are set off by commas.

Several species of ticks are commonly involved in transmission of disease:

Dermacentor andersoni, the wood tick, in the Rocky Mountain states; D.

variabilis, the dog tick, in the East and Oklahoma; Amblyomma

americanum in Texas and Oklahoma; and Rhipicephalus sanguineus in

Texas and Mexico.” [Hornick 1996a]

I made wood tick a synonym of Dermacentor andersoni, and dog tick a synonym

of Dermacentor variabilis.

In the discussion of louse-borne epidemic typhus, synonyms are identified

explicitly in the text.

Synonyms include classic, historic, and European typhus; jail, war, camp,

and ship fever; Flichfieber (German); typhus exanthematique (French);

and tifus exantematico and tabardillo (Spanish). Many of these names

indicate the location of the outbreaks—military and concentration camps,

crowded ships with poor and starved immigrants, outbreaks in persons

living in occupied countries during wartime, and so forth. [Hornick 1996a]

I included the explicitly stated synonyms in the synonym list of louse-borne

epidemic typhus.

136

The author suggests a contradictory classification of ehrlichiosis. In the section

entitled “Other Tick-borne Rickettsioses,” there is a subtitle “HUMAN EHRLICHIOSIS

(SPOTLESS ROCKY MOUNTAIN SPOTTED FEVER).” I added spotless rocky Mountain spotted

fever as a synonym of ehrlichiosis. Because this name contains the adjective spotless, it is

difficult to determine if the condition should be grouped with spotted fevers or not. In

fact, the author classifies ehrlichiosis in the spotted-fever group in one table, but not in

another table [Hornick 1996a]. I put ehrlichiosis in the spotted-fever group.

6.3.4.3 Obsolete Concept (Local Vocabulary)

In Cecil, as in Harrison’s, the concept tropical disease of disputed nature or

minor importance did not appear. I removed the children of tropical disease of disputed

nature or minor importance, and retired the obsolete concept.

6.3.4.4 Additional Concepts to Assist Organization (Local Vocabulary)

To assist with the organization of concepts in the hierarchy, I added several

additional concepts that are not used explicitly in the text. I subgrouped the etiologic

organisms by genus, creating Rickettsia, Coxiella, Xenopsylla, Pediculus, and Ehrlichia.

In addition, I grouped the vectors by genus, creating Dermacentor, Amblyomma, Ixodes,

Leptotrombidium, Allodermanyssus, and Haemaphysalis. I grouped these genera under a

concept organism. I chose the name organism because it is the column header in a table

that specifies etiologic organisms. Another domain modeler might have made different

choices.

6.3.4.5 Naming Problems (Local Vocabulary)

Two naming problems arose due to the lack of specific names in the text. The

author of the chapter in Cecil discusses two types of ehrlichioses, but does not give the

first type a specific name. He refers to the first type as simply ehrlichiosis. The name

ehrlichiosis is not specific enough for the first type, because both types are ehrlichioses.

Also, the author gives no specific name to identify the organism that causes human

granulocytic ehrlichiosis.

The following paragraph describes, but does not name, the first type of

ehrlichiosis:

The first reported case of infection with a species of Ehrlichia in the

United States occurred in 1986. A patient was found to have

137

intracytoplasmic inclusions (morula) in monocytes ... In 1990, the first

isolation was made on a continuous cell line of canine macrophage cells

using blood drawn from a patient with a 3-day history of fever, headache,

pharyngitis, nausea, and vomiting. This isolate was named E. chaffeensis

because the patient was an Army reservist stationed at Ft. Chaffee,

Arkansas. This strain is different from but closely related to E. canis and is

now used as the antigen for serologic studies. Patients suspected of having

ehrlichiosis, but no antibodies when tested with E. canis, do have

antibodies to this human isolate. The organism can be stained in

circulating monocytes. [Hornick 1996a]

The second type of ehrlichiosis is described in the following paragraph, and it

does have a specific name—human granulocytic ehrlichiosis.

In 1994, another Ehrlichia species was associated with human disease ...

closely related to the E. equi / E. phagocytophilia group ... The unique

feature of infection with this strain was the location of the morulae. They

were found in granulocytes in the circulation and in the bone marrow.

Because of this, the current name for the disease is human granulocytic

ehrlichiosis (HGE). [Hornick 1996a]

Thus, the author views these conditions as distinct diseases. To distinguish

between the two types, I called the first type ehrlichiosis caused by Ehrlichia chaffeensis,

and the second type human granulocyte ehrlichiosis. In addition, I created concepts for

the organisms that cause these diseases. One of these organisms is referred to as

Ehrlichia chaffeensis in the text. The other organism is not explicitly named, and I named

it Ehrlichia species of human granulocytic ehrlichiosis.

6.3.4.6 Abbreviations (Local Vocabulary)

Abbreviations used in this chapter were RMSF and HGE. I added them to the

relevant concepts.

6.3.4.7 Attribute Names (Local Vocabulary)

I selected two attributes. I named the first attribute etiology because most of the

sections describing the diseases have subsections named “Etiology.” I named the second

attribute vector. A column header in one of the tables is “Arthropod Vector.”

138

6.3.4.8 Attribute–Value Pairs (Local Vocabulary)

For attribute–value pairs, I identified information in the text that expresses the

etiology of diseases and the vectors that transmit organisms causing those diseases.

Examples of attributes that link pairs of concepts are as follows:

1. Queensland tick typhus etiology Rickettsia australis

2. rickettsialpox etiology Rickettsia akari

3. scrub typhus etiology Rickettsia tsutsugamushi

4. Queensland tick typhus vector Ixodes holocyclus

5. rickettsialpox vector Allodermanyssus sanguineus

6. scrub typhus vector Leptotrombidium deliensis

6.3.4.9 Merges (Local Vocabulary)

Two of the new concepts that I added to local vocabulary, based on information in

Cecil, duplicated the meaning of two older concepts in the vocabulary.

Tsutsugamushi, described in the 1917 textbook, is the same concept as scrub

typhus described in Cecil. Therefore, I merged the new concept scrub typhus into the old

concept tsutsugamushi to keep the concept identifier from the shared vocabulary.

However, because I kept the old concept, the merge yielded a concept with the old name.

Therefore, I had to perform replace concept name to update the name of the old concept.

The new name became scrub typhus. The old name tsutsugamushi became a synonym.

Similarly, I merged the local concept louse-borne epidemic typhus into the shared

concept typhus fever, and then replaced the old name with the new name. The new name

became louse-borne epidemic typhus, and the old name typhus fever became a synonym.

6.4 Outputs

The outputs of synchronization are the synchronized local vocabulary, and the

synchronization report.

6.4.1 Synchronized Local Vocabulary (LV-1-synch)

I used the synchronization-support tool to process the shared-vocabulary log, and

to synchronize the local vocabulary (Cecil) with the shared vocabulary (Harrison’s).

Figure 6.4 shows the concept hierarchy after synchronization. In this section, I discuss the

139

kinds of changes that occurred during synchronization, and the level of support that the

system offered when it performed the changes.

Table 6.1 shows the number of occurrences of each type of change operation

applied to the local vocabulary during synchronization. These changes reflect the effect

of the local maintainer processing the shared log, using the synchronization-support tool.

The changes are not exactly the same changes that the shared-vocabulary maintainer

applied to the shared vocabulary during the previous change interval. For example, the

synchronization changes include the merges of local concepts into shared concepts that

result from processing add concept change records where the added concept also exists in

the local vocabulary; they include the individual changes given in the sublogs of

compound changes; and they include choices made by the local-vocabulary maintainer

who performs the synchronization. The frequencies given are for the test set only, and do

not necessarily reflect frequencies that would typically occur in other test sets, or in the

clinical setting.

6.4.1.1 Automated Changes

The most common automated change was add synonym. There were 13 cases of

add synonym. Other alternate-name changes that are performed automatically by the tool

are add abbreviation, delete synonym, and delete abbreviation. In the rickettsial-disease

example, there were only three cases of add abbreviation, no cases of delete synonym,

and no cases of delete abbreviation.

When the change operation replace concept name is applied to the shared

vocabulary, it appears as a compound operation in the log with a sublog of the two

operations, correct concept name and add synonym. If the local-vocabulary maintainer

works with the synchronization-support tool in facilitate mode to perform replace

140

entity
 disease
 heat stroke
 verruga peruviana
 rickettsial disease
 typhus-like fever
 typhus-group disease
 murine typhus
 epidemic typhus
 Brill-Zinsser disease
 spotted-fever-group disease
 ehrlichiosis
 human monocytic ehrlichiosis
 human granulocytic ehrlichiosis
 Rocky Mountain spotted fever
 Mediterranean spotted fever
 scrub typhus
 rickettsialpox
 Q fever
 tick-borne rickettsiosis
 North Asian tick-borne rickettsiosis
 Queensland tick typhus
 Rocky Mountain spotted fever
 Mediterranean spotted fever
 ehrlichiosis
 human monocytic ehrlichiosis
 human granulocytic ehrlichiosis
 mite-borne spotted fever
 rickettsialpox
 tick-borne spotted fever
 Rocky Mountain spotted fever
 Mediterranean spotted fever
 African tick-bite fever
 Japanese spotted fever
 Queensland tick typhus
 Flinders Island spotted fever
 flea-borne rickettsial disease
 murine typhus
 louse-borne rickettsial disease
 epidemic typhus
 Brill-Zinsser disease
 living organism
 tick
 Dermacentor variabilis
 Dermacentor andersoni
 Rhipicephalus sanguineus
 Amblyomma cajennesne
 Amblyomma americanum
 Ixodes scapularis
 Ixodes ricinus
 Ixodes holocyclus
 mite

 louse
 Pediculus humanus corporis
 chigger
 flea
 Xenopsylla cheopis
 Ctenocephalides felis
 Rickettsia
 Rickettsia typhi
 Rickettsia prowezekii
 Rickettsia siberica
 Rickettsia akari
 Orientia tsutsugamushi
 Rickettsia prowazekii
 Rickettsia rickettsii
 Rickettsia conorii
 Rickettsia japonica
 Rickettsia honei
 Rickettsia australis
 Rickettsia africae
 Orientia
 Orientia tsutsugamushi
 Ehrlichia
 Ehrlichia chaffeensis
 agent of human granluocytic ehrlichiosis
 Coxiella
 Coxiella burnettii
 Amblyomma
 Amblyomma americanum
 Xenopsylla
 Xenopsylla cheopis
 Pediculus
 Pediculus humanus corporis
 Dermacentor
 Dermacentor variabilis
 Dermacentor andersoni
 Dermacentor sylvarum
 Dermacentor nuttallii
 Leptotrombidium
 Leptotrombidium deliensis
 Ixodes
 Ixodes holocyclus
 Allodermanyssus
 Allodermanyssus sanguineus
 Rhipicephalus
 Rhipicephalus sanguineus
 Haemaphysalis
 Haemaphysalis concinna
 anatomic part
 cell
 monocyte
 granulocyte

Figure 6.4. Synchronized vocabulary (LV-1-synch). (The second column is a
continuation of the first.)

141

Table 6.1. Number of occurrences of change operations applied to the local vocabulary
during the synchronization session.

Change Operation
Number of

Occurrences Automated Supported
Add concept 55 11 44

Merge local concept into shared concept 32 11 21

Add attribute–value pair 17 17 0

Add synonym 13 13 0

Add parent 6 6 0

Remove parent 4 4 0

Add attribute 3 0 3

Merge local attribute into shared attribute 2 0 2

Add abbreviation 2 2 0

Correct concept name 1 1 0

Retire concept 1 1 0

Delete synonym 0 0 0

Delete attribute–value pair 0 0 0

Replace attribute value 0 0 0

Merge 2 concepts into 1 of the 2 concepts 0 0 0

Merge 2 concepts into new concept 0 0 0

Split concept into 2 new concepts 0 0 0

Merge 2 attributes into 1 of the 2 attributes 0 0 0

Merge 2 attributes into new attribute 0 0 0

Total 136 66 70

142

concept name, the system applies both operations from the sublog automatically.

However, if the maintainer chooses to work in step mode, the system offers the

maintainer the choice of changing the concept name to the new name (using correct

concept name), or not, and of adding the old name to the synonym list (using add

synonym), or not.

In the experiment, the shared log contained a change record for replace concept

name applied to the concept typhus fever. In the shared vocabulary, the name typhus fever

was changed to epidemic typhus. The same concept was also changed in the local

vocabulary during the change interval. The name typhus fever in the local vocabulary was

changed to louse-borne epidemic typhus. The change report, which displays concepts by

name instead of by code, shows that correct concept name was applied to the concept

named louse-borne epidemic typhus in the local vocabulary. This local concept acquired

the shared name epidemic typhus. Thus, in facilitate mode, which aims for maximal

consistency between the shared and local vocabularies, the system automatically assigns

the new shared name to the local version of the concept, even if that means overriding a

name change made at the local level.

In another example of replace concept name, the shared log contained a record

indicating that the concept spotted fever of the Rocky Mountains was changed to Rocky

Mountain spotted fever. However, the same change had also occurred in the local

vocabulary. Therefore, the system recognized that, in this case, no action was required to

process the change.

Text definitions and UMLS code were not studied in this experiment, but the

addition and deletion of these data elements is similar to the addition and deletion of

synonyms and abbreviations. In facilitate mode, the system preferentially assigns choices

made by the shared-vocabulary maintainers to shared concepts in the local vocabulary.

The most common change was add concept, but only a subset of add-concept

changes could be processed automatically. As described in Section 5.5.5, the only

situations in which a concept can be added automatically (in this implementation) are (1)

the concept names are the same and all parents, children, and attribute–value pairs the

same, and (2) the concept name and a synonym of the added shared concept are the same

as a synonym and the concept name of a local concept.

In this experiment, there were a number of cases that fit the first situation. For

example, six species in the Rickettsia genus (Rickettsia typhi, Rickettsia prowazekii,

Rickettsia akari, Rickettsia rickettsii, Rickettsia conorii, Rickettsia australis) had the

143

same name in the shared vocabulary that they had in the local vocabulary, and had the

same parent Rickettsia. Although initially there were two Rickettsia concepts—one in the

shared vocabulary and one in the local vocabulary—the order of changes in the shared

log guaranteed that the parent Rickettsia would be added (and merged) first, before the

rickettsial species were added as its children.

Subsequently, when the system encountered an add concept record for a

rickettsial species, such as Rickettsia typhi, the system determined that there was a

concept Rickettsia typhi in the local vocabulary with a different unique identifier, but

with the same name and the same parent (Rickettsia) that Rickettsia typhi had in the

shared vocabulary. Rickettsia typhi had only one parent, no children, and no attribute–

value pairs, and the requirement for automatic merging was met. The system

automatically merged the local concept Rickettsia typhi into the shared concept, and kept

the shared unique identifier.

7KUHH� RWKHU� ULFNHWWVLDO� VSHFLHV Rickettsia japonica, Rickettsia honei, and

Rickettsia africae ZHUH� SUHVHQW� LQ� WKH� PRGLILHG� VKDUHG� YRFDEXODU\�� EXW� QRW� LQ� WKH

modified local vocabulary. These concepts could not be added automatically. The system

gave the user the opportunity to search for equivalent concepts, but there were none.

A case that fit the second situation for automatic concept addition and merging

was the addition of Mediterranean spotted fever from the shared vocabulary to the local

vocabulary. There was no concept named Mediterranean spotted fever in the local

vocabulary, but there was a local concept that included a synonym Mediterranean spotted

fever. The concept name of this local concept was boutonneuse fever, and a synonym of

the shared concept was boutonneuse fever. Because the concept name of one was the

synonym of the other, and vice versa, the system concluded that the two concepts were

the same. The system automatically merged the local concept into the shared concept.

Screen shots in step mode are shown in Figures 6.5 and 6.6.

Change records for the operations add parent and add child are processed

automatically in a limited number of situations. For example, if a parent was added to a

concept in the shared vocabulary, and it was also added to the concept in the local

vocabulary, clearly, it does not need to be added to the local vocabulary again. In

facilitate mode, the system does not display the change record at all. There were no

examples in the test set.

144

Figure 6.5. System recommends merging Mediterranean spotted fever and boutonneuse
fever.

145

Figure 6.6. System shows that the merge of Mediterranean spotted fever and boutonneuse
fever has been completed.

146

If the parent was not added already, the system adds the parent if there is no

conflict. The same is true for add child. If there is a conflict, such as the creation of a

cycle, or violation of inheritance rules for attribute–value pairs, the system requires the

user to solve the conflict first, and gives the user choices for doing so. The test set did not

contain examples of such conflicts.

Remove parent and remove child can potentially leave a concept with zero

parents. The CONCORDIA model requires at least one parent for each concept. If removing

a parent or child does not leave any concept without parents, the operation can be

performed automatically in facilitate mode. In this test set, the only examples of such

removals were the removals of the parent tropical disease of disputed nature or minor

importance from its children. However, the same changes had occurred in the local

vocabulary already, and did not have to be repeated when the shared log was processed.

The operations add attribute–value pair and replace attribute value can be

performed automatically if there are no conflicts with inherited attribute–value pairs in

ancestors or in descendants. There were 17 examples of add attribute–value pair in this

test set. All were done automatically. However, the cautious local-vocabulary maintainer

might prefer to run such changes in step mode to guarantee that no problems with

meaning occur. The operation delete attribute–value pair cannot cause conflicts and can

be performed automatically. There was no example of delete attribute–value pair in the

test set.

6.4.1.2 Supported Changes

The most frequently supported change was add concept. There were 44 cases of

add concept that could not be automated, but that were supported. There also were 3

cases of add attribute that were supported. Support for additions takes two forms: (1)

identification of another concept or attribute that has the same name, or (2) display of

other concepts and attributes added during the change interval that may have the same

meaning.

Whenever a concept is identified that has the same name as another concept, but

does not fit a requirement for automatic merging, the system alerts the user to the

possibility that the concept being added from the shared vocabulary might be the same

concept as a concept in the local vocabulary. Ehrlichiosis, Queensland tick typhus,

rickettsialpox, and murine typhus were such concepts. Figure 6.7 asks the user if he

would like to merge the local concept into the shared concept for Queensland tick typhus.

147

Every time the synchronizer encounters add concept or add attribute in the shared

log, the local maintainer has the opportunity to review the concepts or attributes that were

added to the local vocabulary during the previous change interval. When the system

cannot identify a concept or attribute in the local vocabulary that is equivalent to the

added concept or attribute from the shared vocabulary, it is up to the maintainer to do so.

For example, the attribute vector was equivalent to transmitted-by, the attribute etiology

was equivalent to has-etiology, and the concept Orientia tsutsugamushi was equivalent to

Rickettsia tsutsugamushi. Figure 6.8 shows how the user selects a concept to merge with

Figure 6.7. Panel that alerts the user to the fact that two concepts with the same
name exist. The user may click on the buttons for more information about the
shared and local concepts to see if they have the same meaning. If the user
confirms that the two concepts have the same meaning, the local concept will
be merged into the shared concept.

148

Figure 6.8. Panel that displays added local concepts, among which the user searches for a
local concept that is equivalent to the shared concept Orientia tsutsugamushi.

149

Orientia tsutsugamushi. The user first clicks a button labeled “Look for EQUIVALENT

local concept.” Then a dialog box appears with a list of local concepts for the maintainer

to review. Algorithms that look for partial string matches or for exact matches of tokens

within phrases could be implemented to help the user to identify concepts that might be

the same.

Two types of conflicts can occur with add parent and add child. First, if a cycle

will exist after the addition, there is a conflict. Second, if the rules about a concept’s

attribute–value pairs and inherited attributeíYDOXH� SDLUV� ZLOO� EH� YLRODWHG�� WKHUH� LV� D

conflict. If the system detects that there will be conflict after the change, the system asks

the user to resolve the conflict before continuing. There were no examples of such

situations in the test set. Similarly, add attribute–value pair and replace attribute value

may result in a conflict between a concept’s attribute–value pairs and its inherited

attributeíYDOXH� SDLUV�� ,I� VR�� WKH� V\VWHP� DVNV� WKH� XVHU� WR� UHVROYH� WKH� FRQIOLFW� EHIRUH

continuing. Again, there were no examples in this test set.

6.4.2 Synchronization Report

The system produces a synchronization report so that the local maintainer may

review a readable version of the changes that took place during the synchronization

session. Figure 6.9 shows a portion of the synchronization report produced in this

experiment. Appendix K shows the entire report. The report can help the maintainer to

select portions of the vocabulary to review. The maintainer uses the local-vocabulary

browser to display and review selected portions of the modified hierarchy, and verifies

that the changes made are appropriate for the local site.

6.5 Analysis of Results

In this section, I consider the questions that I raised at the beginning of this

chapter: (1) Were the synchronization criteria fulfilled? (2) Was the model effective for

this test set? (3) Did automation of certain tasks and support of other tasks facilitate

synchronization?

6.5.1 Were the Synchronization Criteria Fulfilled?

A comparison of the final version of the shared vocabulary, SV-1, and the final

version of the local vocabulary, LV-1-synch, demonstrates that the three criteria for

synchronization were met. Those criteria are (1) preservation of concept existence and

150

REPORT OF CHANGES PERFORMED DURING SYNCHRONIZATION

DATE OF REPORT: Mon Dec 13 16:37:04 PST 1999
AUTHOR OF SYNCHRONIZATION: Diane E. Oliver

FILE NAMES:

Local vocabulary (input): E:\Development\Demo\Save Items
Local\LocalVocabTimeI
Shared vocabulary (input): E:\Development\Demo\Save
Items\SharedVocabTimeF
Local log (input): E:\Development\Demo\Save Items Local\LocalLogAToI
Shared log (input): E:\Development\Demo\Save Items\SharedLogAToF
Synchronized local vocabulary (output):
E:\Development\Demo\LocalVocabTime1Synch
Synchronization local log (output): E:\Development\Demo\LocalLogSynch
This report: E:\Development\Demo\AToFSynchReport.txt

LIST OF CHANGES:

Add concept: "rickettsial disease" with parent = "disease"
Merge 2 concepts into one of the 2 concepts: "rickettsial disease" into
"rickettsial disease"
Add concept: "mite-borne spotted fever" with parent = "rickettsial
disease"
Add concept: "tick-borne spotted fever" with parent = "rickettsial
disease"
Add concept: "flea-borne rickettsial disease" with parent =
"rickettsial disease"
Add concept: "louse-borne rickettsial disease" with parent =
"rickettsial disease"
Add concept: "ehrlichiosis" with parent = "rickettsial disease"
Merge 2 concepts into one of the 2 concepts: "ehrlichiosis" into
"ehrlichiosis"
Add concept: "Q fever" with parent = "rickettsial disease"
Merge 2 concepts into one of the 2 concepts: "Q fever" into "Q fever"
(Concept: scrub typhus) Add parent: "rickettsial disease"
(Concept: scrub typhus) Remove parent: "tropical disease of disputed
nature or minor importance"
(Concept: Rocky Mountain spotted fever) Add parent: "tick-borne spotted
fever"
Add concept: "Mediterranean spotted fever" with parent = "tick-borne
spotted fever"
Merge 2 concepts into one of the 2 concepts: "boutonneuse fever" into
"Mediterranean spotted fever"
Add concept: "African tick-bite fever" with parent = "tick-borne
spotted fever"
Add concept: "Japanese spotted fever" with parent = "tick-borne spotted
fever"
Add concept: "Queensland tick typhus" with parent = "tick-borne spotted
fever"
Merge 2 concepts into one of the 2 concepts: "Queensland tick typhus"
into "Queensland tick typhus"

Figure 6.9. Portion of the synchronization report.

151

identity; (2) preservation of subsumption relationships; and (3) preservation of attribute–

value pairs. The first criterion requires that all concepts from the shared vocabulary are

present in the local vocabulary with the same unique identifier after synchronization. The

synchronization methods guarantee that this criterion will be met, if the software is

implemented correctly. Built into the synchronization-support tool are checks that

compare the two versions of the vocabularies during the synchronization session. At the

conclusion of the session, the software displays comparison data for the final versions of

the vocabularies. Figure 6.10 shows the comparison of concepts before and after

synchronization (top half of each panel).

Figure 6.10. Comparison of shared and local vocabularies. Upper panel shows the
comparison before synchronization begins. Lower panel shows the comparison after
synchronization is completed.

The method for this comparison is straightforward. For every concept in the

shared vocabulary, the system looks up the unique identifier of the shared concept in the

152

local vocabulary, and verifies that a concept with that identifier exists in the local

vocabulary.

The second criterion requires that all hierarchical relationships in the shared

vocabulary are present in the local vocabulary. Again, the synchronization methods

guarantee that this criterion will be met, and a simple, straightforward algorithm performs

a comparison between the shared and local vocabularies. For each parent–child pair in the

shared vocabulary where parent concept P has unique identifier P.id, and child concept

Ch has unique identifier Ch.id, the system locates a concept in the local vocabulary

whose identifier is P.id, and verifies that this concept has a descendant whose identifier

Ch.id. Figure 6.10 shows the comparison of hierarchical relationships before and after

synchronization (bottom half of each panel).

The third criterion requires that all attribute–value pairs of a concept in the shared

vocabulary are represented for the corresponding concept in the local vocabulary—either

as attribute–value pairs or as inherited attribute–value pairs. The system currently does

not track and display the fulfillment of this criterion.

6.5.2 Was the Model Effective for This Test Set?

The structural, change, and log models for this test set were generally adequate.

The goal was not to represent all content in the chapters of the textbooks, but only

selected content. Change operations for the test set were satisfactory. The log model was

designed to support synchronization and served the purpose well.

6.5.2.1 Effectiveness of Structural Model

Features of the structural model that were clearly essential were concept unique

identifier, unique concept name, parents, and synonyms. Names did change, and constant

unique identifiers were necessary to maintain identity of concepts. Few medical-

vocabulary experts would argue against the usefulness of these data elements. There were

a few examples in the test set of multiple parents for a single concept, and experts

generally agree that for anticipated uses of controlled medical vocabularies, the ability to

classify a concept in more than one way is important [Chute 1999, Cimino 1998].

Including an explicit listing of children in the representation of a concept

duplicates information stored in the vocabulary about the concept’s parents. As a user, it

is helpful to be able to view both parents and children, and from an implementation

153

perspective, it is easier to store children than to compute them each time the system

displays them or uses them to compute descendants.

Abbreviations were useful in this test set, but it is uncertain whether abbreviations

should be lumped with synonyms, or should be distinct. The answer to this question

depends on the applications that will use the knowledge stored in the vocabulary. For

browsing and editing, it appears to be convenient to have them displayed separately.

I did not study text definitions and UMLS codes in this example. However, for

users who wish to use the vocabulary resource as a dictionary and for maintainers who

need to know intended meaning of concepts to classify concepts correctly, text

definitions would be useful. If the vocabulary system does not provide translation to

multiple coding systems (or natural languages), a translation code to another system, such

as the UMLS, that provides such translations would be useful.

Finally, the use of attribute–value pairs as a means of linking related concepts to

one another was explored in this study. In CONCORDIA, attributes and their values are

meant to provide non-controversial, defining information for a concept. A set of

necessary and sufficient conditions is not required in the CONCORDIA model. It would

have been difficult, if not impossible, to create necessary and sufficient conditions for all

the concepts in this test set. However, it was possible to link diseases with etiologic

organisms and with vectors of transmission, and attribute–value pairs were useful to store

such knowledge.

The CONCORDIA model does not prevent a developer from entering non-

definitional knowledge in attribute–value pairs. For example, the textbooks contained

information about the distribution, incidence, pathology, clinical manifestations,

diagnosis, prognosis, and treatment of rickettsial diseases. A controlled vocabulary is not

meant to be a repository of all knowledge known about a topic, and I did not include this

information in the vocabulary. However, it may be difficult for a developer to decide

whether knowledge is definitional or not.

There is currently no way in CONCORDIA for values of attributes to be numeric

values or strings. This restriction posed no problem for the test set, but could for other

test sets.

6.5.2.2 Effectiveness of Change Model

Change operations that I used during editing of the shared and local vocabularies

were add concept, add attribute, replace concept name, add synonym, add abbreviation,

154

add parent, remove parent, retire concept, add attribute–value pair, and merge two

concepts into one of the two concepts. I did not use correct concept name, delete

synonym, delete abbreviation, replace UMLS code, delete attribute–value pair, replace

attribute value, replace attribute name, replace attribute definition, merge two concepts

into new concept, split concept, merge two attributes into one of the two attributes, or

merge two attributes into new attribute. In editing the local version, I did not use

preserve concept and preserve attribute in the local vocabulary because no shared

concepts had yet been retired. I could have used hide concept to make verruga peruviana

and heat stroke invisible in the modified local vocabulary. These concepts are not

rickettsial diseases, and, therefore, were not in the rickettsial disease chapter of Cecil.

6.5.2.3 Effectiveness of Log Model

The log model was designed with the goals of the synchronization-support tool in

mind, and therefore, it served the requirements of synchronization well. However, if other

applications have different requirements for a change log, a different log structure might

be preferred. For example, if an application needs all the information that is current about

a concept at the time of the change, then the contents of the entire concept object would

have to be stored. However, the log design for CONCORDIA follows the principle of logs

used in databases for recovery from failures [Korth 1991], in which saved log data can be

used to bring the database back to a desired state. Data stored in the log makes it possible

to undo or redo the stored operations. Although I have not implemented software to undo

changes, a previous state of the vocabulary could be generated by application of changes

in reverse. Alternatively, the current state of the vocabulary could be generated from a

previous state by redoing changes specified in the log.

6.5.3 Did Automation of Certain Tasks and Support of Other Tasks
Facilitate Synchronization?

When I designed the synchronization-support tool, I assumed that synchronization

would be only a partially automated process rather than a fully automated process. That

is, certain tasks could be automated, but other tasks would have to be supported, but not

fully automated. My experience with this test set suggests this assumption is reasonable.

The easiest changes for the system to perform automatically during

synchronization were name changes, including synonym and abbreviation changes. In

this test set, name changes were relatively common. Although accepting a change to a

concept name, synonym, or abbreviation does not take much of the user’s time when the

155

change is not performed automatically, if there are many such changes, time saved for the

user could be significant. Also, the user may be spared confusion if multiple names for a

concept are similar but not exactly the same. For example, the concept named typhus

fever in the initial shared vocabulary became louse-borne epidemic typhus in the

modified local vocabulary, and epidemic typhus in the shared vocabulary. Other terms in

this portion of the vocabulary were scrub typhus, endemic typhus and murine typhus, but

those terms did not refer to the concept formerly known as typhus fever. A maintainer

needs to keep the names straight and needs to decide which name should be current in the

local vocabulary for a particular concept. A vocabulary maintainer—especially a

maintainer who is not an expert in typhus fever, its variants, and the different names by

which the condition is recognized—may find that the synchronization-support tool is

valuable because automation of name changes reduces confusion.

The most frequent change to the shared vocabulary was add concept. Since the

same concept could have been added to the local vocabulary that was added to the shared

vocabulary and a concept must have only one unique identifier, identification of

equivalent concepts is important during synchronization. This task is not easy to

automate, but probably can be automated successfully in certain circumstances. In other

circumstances, the system can help the user to identify matching concepts. I implemented

three types of assistance with identification of equivalent concepts in the

synchronization-support tool, and in this test set, use of each type was demonstrated.

In the first type of equivalent-concept identification that I implemented, the

system identifies a concept in the shared vocabulary and a concept in the local

vocabulary, recognizes them as the same concept, and merges them automatically. The

user is spared the risk of making an error in performing the merge, or of accidentally

retaining the local concept instead of the shared concept. The system always retains the

shared concept with the shared unique identifier, and retires the local concept. An

example in the test set of was the merge of boutonneuse fever and Mediterranean spotted

fever. The shared concept, Mediterranean spotted fever, was retained.

In the second type of equivalent-concept identification, the system identifies a

potential match, but asks for verification from the user. Queensland tick typhus and

ehrlichiosis fell into this category. For Queensland tick typhus, two concepts by the same

name existed in the shared and local vocabulary, but criteria for automatic merging were

not met. The user had to verify that these two concepts were equivalent.

156

Third, the system does not recognize a potential match, and the user must search

for a match. For example, the system did not recognize Rickettsia tsutsugamushi and

Orientia tsutsugamushi as equivalent or potentially equivalent. The user had to review a

list of new concepts to determine that these two concepts were the same. Similarly, the

user had to recognize that the attributes etiology and has-etiology were the same, and that

vector and transmitted-by were the same. Simple algorithms could suggest potential

matches between concepts that share the same word within a multi-word phrase or that

share the same substring. More sophisticated algorithms could consider additional clues

and rank the possibilities. Algorithms of this kind were not implemented, but would be

worth studying.

If the shared-vocabulary developers and the local-vocabulary developers had

assigned UMLS codes to added concepts, then the synchronization-support tool could use

this additional information to match concepts. This feature was not implemented.

6.6 Conclusion

This case study provided a good example of divergence of a local version of a

shared vocabulary from the evolving shared vocabulary. The synchronized local

vocabulary reached a state in which the synchronization criteria were fulfilled. The

CONCORDIA structural model was appropriate for the representation of selected content;

the CONCORDIA change model was sufficient for the performance of desired changes; and

the CONCORDIA log model served the synchronization process well. The shared-

vocabulary browser, shared-vocabulary editor, local-vocabulary browser, local-

vocabulary editor, and synchronization-support tool provided appropriate services for

supporting the process. The synchronization-support tool automated certain

synchronization tasks, and supported other tasks that required input from the user.

Usability of the software tools would be enhanced by improvements in user-interface

design, and additional algorithms that match potentially equivalent concepts would be

useful in the synchronization-support tool.

The chapters studied in Harrison’s and Cecil both contained content on rickettsial

diseases, but there were differences in classification and naming of concepts. These

differences suggest that different domain experts who work independently will generate

different representations of the same subdomain when they develop vocabularies, as they

do when they author textbooks. It is not obvious why the authors of the chapter in

Harrison’s made certain choices and the author of the chapter in Cecil made other

choices, but differences were present.

157

A vocabulary developer could be influenced by three factors: (1) representation of

content in resources such as textbooks and dictionaries written by other authors, (2)

preferences of the developer for what content to include and exclude, and (3) choices

made regarding which concept-representation constructs to employ. In this experiment,

the final differences in the overall structure were the result of a series of small choices

made at multiple decision points.

The synchronization process offered choices explicitly. When the

synchronization-support tool ran in facilitate mode, it rapidly cycled through changes

such as add synonym and add abbreviation, but stopped on many cases of add concept.

Further work could investigate additional techniques for guiding the synchronization

process and for increasing automation.

6.6.1 Strengths and Limitations of Study

In this experiment, authors of textbooks served as surrogates for vocabulary

maintainers. Textbook authors are experts in their field, and the same individuals who

write textbooks could be domain experts for vocabulary development. Like vocabulary

developers, textbook authors generally organize topics by grouping concepts that share

common features. In the textbooks used, different authors organized topics differently

and used different approaches to naming the same concepts. Therefore, the use of

textbooks provided a ready source of data that reflected differences in how domain

experts model a domain.

To minimize the effect of individual interpretation when a domain modeler

transfers content from a textbook to a vocabulary, I created domain-modeling rules (Box

6.1). These rules helped to promote consistency in the transfer process, and they provide

an explanation of the process that was followed.

The subdomain of rickettsial diseases was a good choice for testing, because it

contained examples of many of the constructs in the CONCORDIA structural and change

models. In particular, infectious-disease concepts lend themselves well to being defined

by attributes and attribute values. Semantic definitions in the Read codes are analogous to

defining attribute sets in CONCORDIA. When Brown and colleagues studied the frequency

with which disorders in the Read codes could be represented by semantic definitions, and

grouped those disorders by specialty, they found that 80% of infectious diseases could be

described with semantic definitions [Brown 1998]. Rickettsial diseases fall into the

category of infectious diseases. For comparison, the percent of diseases that could be

158

described completely with semantic definitions ranged from 11% for psychiatric diseases

to 87% for neoplastic diseases.

The long period of time between the publication date of Source 1 and the

publication dates of Sources 2 and 3 (1917 for the former source, and 1996 and 1998 for

the latter sources) made it likely that significant changes would have occurred during the

change interval. Indeed, there were many new concepts, there were changes in concept

names, there were changes in classification, and one concept became obsolete.

Despite these advantages, there were a number of limitations.

The goals of an author of a textbook differ from those of a vocabulary maintainer,

and conventions for organizational structure and for terms used are not the same. The

author of a textbook may classify concepts, but is not required to organize topics by

subsumption relationships. Names do not need to be unique, if meaning is clear from the

context.

Although domain-modeling rules encouraged consistency, they could not

guarantee that domain modeling would be reproducible from one subject to another.

Different individuals who generate a vocabulary from text-based content will make

different choices. To study the actual behavior of domain modelers who develop and

synchronize vocabularies, a user study is necessary.

Because the study was limited to a single subdomain, the study did not address

problems of scalability. A comprehensive medical terminology used in an electronic

medical record or a thesaurus used to support medical-information retrieval would be

much larger than this test set, by several orders of magnitude. The methods presented

here may need to be modified to accommodate large vocabularies.

The wide gap in time between 1917 and the 1990s made it likely that changes

would occur over time due to changes in medical knowledge. However, in practice,

synchronization would take place at shorter intervals. The wide gap in time might

overemphasize certain change types and underestimate others. Other studies would be

required to investigate the impact of the time interval.

Finally, the synchronization task would be performed repeatedly throughout the

life cycle of a local vocabulary. This study considered only the first cycle of change.

Despite limitations, this work offers a new perspective on management of change

and local divergence of controlled medical vocabularies. It emphasizes the need for

explicit representation of structure and change so that separate applications can share

159

change data. This study explores ways for medical content to be mapped to the

CONCORDIA structural and change models, and looks at the kinds of decisions that arise

during modeling, editing, and synchronization. In Chapter 7, I summarize this work and

discuss how it might lead to future investigation.

161

7 Discussion and Future Work

The first task in this research was to review controlled medical vocabularies that

are in use; because they are in use, these vocabularies force developers to deal with

maintenance. Often, developers release a new version of a vocabulary, without reporting

changes; if they do report changes, they rarely present the details of those changes in a

consistently structured, machine-readable format.

The second task was to review frame-based knowledge-representation systems,

including description logics. These systems have formal syntax and semantics, and well-

defined specifications for changes. However, work on knowledge-representation systems

does not emphasize representation of changes made, and systems often lack special

constructs for managing constant unique meaningless identifiers, changeable unique

names, synonyms, and abbreviations. Certain features that frame systems do offer

probably are not needed in medical vocabularies, such as the ability to represent

individuals, and the option to specify any integer value for cardinality of an attribute.

From this review of existing systems emerged CONCORDIA, a model whose goals

are consistent with the requirements of rapidly changing controlled medical vocabularies,

but whose features also include characteristics of frame-based knowledge-representation

systems. My third task was to produce a specification of the CONCORDIA model, taking

into consideration lessons learned from existing systems.

The fourth task was to demonstrate the utility of such a model by implementing a

system that is based on the shared-vocabulary and local-vocabulary models of

CONCORDIA. That implementation is Concept Manager—a set of browsers, editors, and a

synchronization-support tool.

The fifth task was to create a vocabulary test set based on content from textbooks

of medicine. The test set mimics the divergence that might occur if different developers

were to modify a shared version of a vocabulary in different ways. Using the software

tools of Concept Manager, I demonstrated synchronization of the local version of the test-

set vocabulary with the shared version.

162

The CONCORDIA model provides a framework within which developers and users

can manage, understand, and communicate about change. The synchronization methods

that I developed are based on the model and offer one solution to the problem of local

divergence.

The relevance of this work extends beyond controlled medical vocabularies.

Problems of change management and local divergence occur in other types of

knowledge-based systems. For example, representation of and management of change in

computer-based clinical guidelines pose challenges that are similar to and perhaps more

complex than those presented here.

In this chapter, first, I compare CONCORDIA with existing models. Next, I analyze

the design of the CONCORDIA model and synchronization services that I implemented. I

summarize the evaluation and describe further evaluation to be done. I discuss how

problems and solutions that pertain to maintenance of controlled vocabularies also apply

to the maintenance of computer-based clinical guidelines. I describe the contributions of

this work to the scientific community, discuss unsolved problems, and conclude with a

look ahead.

7.1 Comparison of CONCORDIA with Existing Models

In Chapter 2, I reviewed existing systems. Here, I compare CONCORDIA with those

systems in terms of structural models, change models, and log models.

7.1.1 CONCORDIA and Existing Structural Models

A structural model can be as simple as a list of terms, or as complex as a set of

knowledge-representation constructs in the most expressive description logic. If the

community needs to agree on only a small set of terms, a list might suffice. Larger sets,

however, require a meaningful organization structure so that a user can find terms of

interest without viewing every term in the set. Handling synonyms, abbreviations, and

lexical variants becomes important in a large vocabulary because these alternate names

help a user to search for concepts. To ensure that a concept’s meaning remains constant,

developers attach a meaningless unique identifier to a set of terms that share equivalent

meaning; the meaning of the concept identifier never changes, despite changes in the

associated terms. The result is a concept-based vocabulary. CONCORDIA is such a

vocabulary.

163

If concepts are organized in a directed acyclic graph, users can use the graph not

only to navigate and to search for a desired concept, but also to retrieve concepts more

specific or more general than a particular concept, and to determine whether one concept

is a subtype or supertype of another. For these reasons, CONCORDIA has a hierarchical

structure.

Although MeSH is a hierarchy, the types of relationships between parent concepts

and child concepts are not specified. Although the UMLS contains hierarchies of its

component vocabularies, the union of the hierarchies does not form a consistent

hierarchical structure, and types of parent–child relationships are not labeled. Therefore,

in MeSH and in the UMLS, it is possible for a user to navigate the hierarchy and to retrieve

concepts that are more general or more specific than a particular concept, but it is not

possible to determine whether one concept is truly a subtype or supertype of another. In

contrast, CONCORDIA has a subsumption hierarchy, which guarantees is-a relationships

between parent and child concepts. In this respect, CONCORDIA is like frame-based

knowledge-representation languages.

If a vocabulary has a subsumption hierarchy, then it is possible to express how a

child concept is similar to its parent concept by stating inherited properties that the child

shares with its parent, and to differentiate the child from its parent by stating additional

properties that the child has that the parent does not have. Designation of a concept’s

parents and properties gives the concept a structured definition. Vocabulary maintainers

can use structured definitions to promote consistency of manual classification, as in the

Read Codes [Schulz 1997], or to permit automatic classification, as in GALEN and

SNOMED RT [Rector 1997, Spackman 1997]. A structured definition in the Read codes

(called a semantic definition) is set of object–attribute–value triples [Schulz 1997]; a

structured definition in SNOMED RT (called a definition) is a superconcept with a set of

roles and their role values [Spackman 1997]; and a structured definition in GALEN (called

a GRAIL canonical form) is a base concept and a set of criteria specified by attributes and

attribute values [Rector 1997]. In GALEN, the value of an attribute may itself be a

complex concept specified by a base concept and a set of criteria; therefore, the user can

nest concepts to create complex, highly expressive concepts. A CONCORDIA concept has

one or more parents, inherits attribute–value pairs from parents and ancestors, and may

have additional attribute–value pairs of its own.

SNOMED RT and GALEN distinguish defined from primitive concepts [Mays 1996,

Rector 1997]. In a structured definition, attributes or roles and their associated values

164

specify conditions that are true about a defined or primitive concept. As described in

Chapter 2, a defined concept contains conditions that are necessary and sufficient,

whereas a primitive concept does not. Concepts defined by necessary and sufficient

conditions can be classified automatically. Developers of the Read Codes found that

many concepts in medicine are not definable by necessary and sufficient conditions

[Brown 1998]. There is no distinction in CONCORDIA between primitive and defined

concepts. There is no expectation that conditions are necessary and sufficient, and

automatic classification is not a feature of the implemented system. However, in

CONCORDIA there are restrictions on values of attributes that encourage correct placement

of concepts, and the implementation alerts the user to any violations of those restrictions.

7.1.2 CONCORDIA and Existing Change Models

Explicit descriptions of change models that include, for all change operations,

operation names, inputs, constraints, and effects have not been widely distributed for

existing health-care vocabulary systems. Therefore, it is difficult to compare existing

systems in detail. However, we can gain insight from change files that are distributed for

MeSH, SNOMED III, and the UMLS, as well as from published articles about changes to the

Read Codes [Robinson 1997], the MED [Cimino 1996a], and the UMLS [Olson 1996,

Suarez-Munist 1996, Tuttle 1995]. SNOMED RT change files are not yet available. I

highlight similarities and differences among systems, and explain how the CONCORDIA

change model compares.

Important points are whether the unique identifier for a concept can be changed,

and whether the identifier of an obsolete concept can be reused. The current trend is

clearly against either of these two types of changes [Chute 1998, Cimino 1998].

CONCORDIA forbids a user to change the unique identifier of a concept or attribute, or to

reuse a code from an obsolete concept.

Most systems associate with each concept a unique name; in many such systems,

that name can change. In GALEN, since the GRAIL canonical form serves as the unique

identifier, the GRAIL canonical form cannot change without a subsequent change in the

identity of the concept. There is, however, a name label in GRAIL that may be associated

with the concept; this label is often more readable than the unique-identifier name, and is

also unique [Rector 1997]. The label can be changed, without the identity of the concept

being changed. In MeSH, when the name of a MeSH heading is replaced, a record of

previous names is kept, and the old name frequently becomes an alternate name for

165

search purposes. However, there is no constant unique code identifier accessible to the

user in MeSH; hence, a user must know the history of name changes to know which

current headings relate to previous headings. In systems such as the Read codes, the MED,

the UMLS, and SNOMED RT, the coded unique identifier is constant; thus, the concept name

can change, without the identity of the concept being affected. CONCORDIA is like the

Read codes, the MED, the UMLS, and SNOMED RT: The unique identifier cannot change, but

the unique name can.

Changes in hierarchical structure can be represented by changes in codes that

indicate location in a hierarchy, changes to a concept’s set of parents or children, or

changes in classification based on automatic inference. In MeSH, a term has tree numbers

to specify where the term lies in the hierarchy. Maintainers add or delete tree numbers to

change a MeSH term’s location. In SNOMED III, maintainers assign a new code to a term to

alter the term’s location in the hierarchy. In the successor of SNOMED III, SNOMED RT, a

concept’s location in the hierarchy is no longer determined by that concept’s code. In a

manually classified system (e.g., the Read codes), changes to parent–child relationships

are specified directly. In an automatically classified system (e.g., SNOMED RT and GALEN),

changes to parent–child relationships can occur as a result of changes made to roles and

role values or to attributes and attribute values. CONCORDIA has operations that add and

remove parents and children and operations that modify attribute–value pairs. Therefore,

CONCORDIA is a manually classified system like the Read codes, rather than an

automatically classified system like SNOMED RT or GALEN. However, as in SNOMED RT

and GALEN, a concept in CONCORDIA specifies who its parents and children are by

pointers to those concepts; there is no code or tree number to indicate the concept’s

location.

The UMLS has operations for deletion of concept unique identifiers, term unique

identifiers (which identify lexically related strings), and string unique identifiers [Olson

1996]. In contrast, concepts in the MED are retired, instead of deleted [Cimino 1998].

Concepts in the Read codes, also are not deleted: They are labeled optional if they are no

longer useful, or redundant if they duplicate the meaning of other concepts [Robinson

1997]. CONCORDIA uses the operation retire concept. A concept that is retired has a usage

status that is changed from current to retired.

In Cimino’s taxonomy of change operations, disambiguation is a type of change;

such a change results in the creation of new terms from an ambiguous term. In the Read

codes, if a concept is ambiguous or obsolete, it is flagged extinct and is no longer

166

recommended. Concepts may be ambiguous because they have synonyms that were

inappropriately assigned, or because they have hierarchical relationships that imply more

than one meaning for the concept [Robinson 1997]. CONCORDIA’s split operation is

similar to disambiguation or to flagging of a concept as extinct. However, after a

CONCORDIA concept is split, it is labeled retired.

The UMLS has a merge operation that causes two concepts to be combined into

one. The effects of a merge can occur in MeSH, but there is no high-level merge operation

recorded in the change files. For example, analysis of MeSH change tables reveals that,

through a series of steps, diabetic acidosis and diabetic ketosis were removed from MeSH

and diabetic ketoacidosis was added. In the UMLS, this change is represented as a merge.

In Cimino’s taxonomy, redundancy is an operation that corresponds in CONCORDIA to

merge two concepts into new concept or merge two concepts into one of the two concepts.

For consistency of naming in the CONCORDIA change model, change-operation names are

verbs in the imperative form.

Because KRSS lacks constructs that represent and distinguish synonyms,

abbreviations, and constant coded unique identifiers, the model underlying KRSS does not

suffice for a controlled–medical-vocabulary structural model. Statements available in

KRSS are largely constructors, and there are no statements for concept retirement, merges,

splits, name changes, or addition or removal of synonyms or abbreviations; therefore,

additional features beyond those in KRSS are needed for a medical-vocabulary change

model. The goals of CONCORDIA are to fulfill the requirements of controlled medical

vocabularies, and to offer the types of change operations that developers need to maintain

those vocabularies. CONCORDIA lacks representation of individuals, and does not support

inferencing about individuals in the way that a KRSS-compliant system does. In general,

description-logic inferencing in KRSS systems is more elegant than is inferencing offered

by a CONCORDIA implementation, but I designed CONCORDIA intentionally to avoid

individuals, to be more flexible about change, and to support management of names.

OKBC is a formally defined protocol whose underlying model is frame based.

OKBC defines methods that query for knowledge (read-only methods) and that update the

knowledge (write methods). The CONCORDIA change model is analogous to OKBC

methods that update knowledge. Unlike OKBC, the CONCORDIA specification does not

define queries for retrieval of information. Because the underlying model of OKBC is

different from the CONCORDIA model, change operations defined for the two

specifications are not the same. However, the clarity and completeness with which the

167

OKBC developers define operations should be goals for designers of controlled medical

vocabularies, and for standards developers in the health-care–terminology community.

7.1.3 CONCORDIA and Existing Log Models

Developers of ICD-9-CM, MeSH, SNOMED III, and DSM produce change records, but

they follow a variety of approaches for presenting changes made. They depict changes in

tables and lists, in unstructured text written in paragraph form, or in mixtures of

structured and unstructured data. In the knowledge-representation community,

researchers unified conceptual structures and operations in different frame-based systems

when they created OKBC and KRSS, but did not create a data model for documenting

completed changes.

The CONCORDIA log model is an object-oriented data model for representation of

completed changes. Each type of change operation has a slightly different set of data

elements that would be recorded in a log. Each change record shares with all change

records certain data elements—such as change operation name, author, and date of

change—but also has other data elements that are specific to the type of change. An

object-oriented model is well suited to the organization of such data, and an XML

Document Type Definition serves as a specification for the documentation of these data

in text files.

7.1.4 CONCORDIA and Local Extensions in Existing Systems

Tuttle and colleagues recognized the problem of local modification with the

earliest releases of the UMLS Metathesaurus. They knew that sites would want to add their

own concepts and terms, and they realized that it would be difficult for local sites to

incorporate a new release of the UMLS into their version. There are few cases of this

problem reported in the literature, but in the case of the VA Lexicon (Section 1.3.1),

which evolved from the UMLS, new updates to the UMLS were not incorporated.

Campbell and colleagues studied problems of local variation, but their goals were

different from mine. They aimed to create a convergent medical terminology. In their

approach, several different local terminology developers work independently and then

strive to reconcile conflicts and to reach consensus. In contrast, I postulate that there will

be so many local sites that the central authority will be unable to serve requests from all

the sites in a timely fashion, and may choose not to honor all requests. Local groups will

have needs that they do not share with the remainder of the community, and the time

168

delay for distribution of shared updates may be a problem for local sites. My goal,

therefore, is to support carefully controlled divergence. The CONCORDIA model and the

methods for synchronization offer a solution.

The National Health Service in the United Kingdom and users of the Read codes

have dealt with the problem of local modification. The National Health Service mandates

use of the Read codes, and accepts change requests from users. Clinical information

systems that support the Read codes make it possible for local sites to add concepts and

synonyms. Concepts and synonyms added locally initially are labeled temporary. When a

local group submits a change request to the NHS, the NHS determines if the change will be

made to the official Read codes, and sends a response to the local group. If a change

request is accepted, the local site makes updates to incorporate the new Read code; if the

change request is not accepted, the local site labels the concept or synonym local.

CONCORDIA permits not only addition of concepts and synonyms, but also modification

of parent–child relationships, modification of attributes and values, and hiding and

preservation of concepts and attributes.

7.2 Analysis of Model and Methods

In the evaluation, I demonstrated the utility of the CONCORDIA model by

implementing software that is faithful to the model and by conducting a case study of

synchronization. Because the exercise is a case study, it suggests—but does not prove in

the general case—the value of design and implementation choices that I made. I analyze

those choices here.

7.2.1 Analysis of the CONCORDIA Design

The CONCORDIA structural model was well suited to the subdomain of the test set.

For diseases and organisms in the chapters on rickettsial diseases, it was not difficult to

identify a preferred name. Many synonyms were given. A few concepts had

abbreviations. Since etiologic organisms that cause rickettsial diseases and vectors that

transmit those diseases are generally known, I was able to structure such knowledge

using attributes and attribute values for most of the disease concepts. Several diseases

belonged to more than one grouping, and the option of assigning multiple parents to a

CONCORDIA concept was useful. Although I did not use UMLS codes or text definitions in

the evaluation, they are theoretically useful.

169

The change operations available in CONCORDIA were sufficient for creating and

modifying the test vocabulary. I did not use all the change operations, but the changes

that I needed to make were supported adequately by the model. Many of the change

operations require little comment because they are unlikely to be controversial, given

acceptance of the structural model. For example, add concept, replace concept definition,

add synonym, delete synonym, add abbreviation, delete abbreviation, replace UMLS code,

add parent, remove parent, add child, and remove child are straightforward. However,

different observers might have different opinions about how to perform retire concept,

replace concept name, correct concept name, add attribute–value pair, delete attribute–

value pair, replace attribute value, and the merge and split operations. Also, the hide and

preserve operations deserve brief comment.

Retire concept results in the labeling of a concept as retired, and the relinking of

parents of the retired concept to children of the retired concept. An alternative approach

would be to retire the entire subtree of concepts beneath the retired concept. If the

concept being retired is a leaf node in the hierarchy, then the effects of the two

approaches are the same. In the experiment, when tropical disease of unknown etiology

or minor importance was retired, it was more appropriate to relink its parents and

children than to retire the entire subtree. The children of the retired concept included

typhus fever and tsutsugamushi, and these concepts were still valid. This example

supports the choice I made for how to perform retire concept.

I created replace concept name as a compound change operation that results in the

new name replacing the concept’s old name, and the old name being added to the

concept’s synonym list. The same effect would be achieved if the user performed the two

steps separately as distinct operations. It is useful to include the compound operation if it

saves the user time. In the experiment, the concepts typhus fever and tsutsugamushi

underwent name changes through the use of replace concept name. In each of these two

cases, it was appropriate to include the old name in the synonym list, and it saved the

maintainer an extra step. Therefore, the compound operation appears to be useful. I did

not use correct concept name in the modification of the shared or local vocabulary, but if

the user did not want to keep the old name as a synonym, it would be important to have

this operation available.

Because the CONCORDIA structural model specifies a set of attribute–value pairs

associated with a concept, the change operations available in the CONCORDIA change

model include the addition and deletion of attribute–value pairs and the replacement of an

attribute value. An alternative approach would be to permit the user to assign an attribute

170

to a concept without specifying a value, and later to assign a value to that attribute.

Although this approach makes sense in a frame-based system, and add slot is a valid

operation applied to a class in OKBC, I did not take this approach in CONCORDIA.

The hide and preserve operations make it possible for the local-vocabulary

developers to make choices different from those made by the shared-vocabulary

developers about the inclusion or exclusion of particular concepts or attributes. Hide and

preserve operations simply label concepts; software developers have the responsibility to

decide how to make use of these labels. For example, a browser can make hidden

concepts invisible to the user by not displaying those concepts. The local-vocabulary

browser in Concept Manager uses the hidden-label information in this way.

I did not use the hide operation when I modified the local vocabulary in the test

set, but experimentation with the local-vocabulary editor made it clear that two additional

operations would be useful: unhide concept and unhide attribute. Developers at the local

site may choose to hide a concept at one point in time, but later find that users at the local

site need it. The unhide operations should be added to the local extension of the

CONCORDIA model.

If a local site wants to use only a small portion of the shared vocabulary, the

majority of the concepts in the local vocabulary might be hidden. For example, if the

shared vocabulary is a comprehensive health-care vocabulary that provides broad

coverage of many specialties such as cardiology, gastroenterology, nephrology,

neurology, critical care, orthopedics, ophthalmology, neurosurgery, cardiothoracic

surgery, and dermatology, but the local site is a podiatry clinic, there may be many

concepts that the local site does not need. The sheer size of the shared vocabulary may

make it undesirable for the local site to maintain the entire system, if only a small

minority of concepts is used. Labeling concepts as hidden, then, may not be the optimal

solution. If the concepts of interest were all located in a subtree that had only a few links

to the rest of the vocabulary, then the subtree could be maintained and distributed as a

separate entity. However, if the links to the rest of the vocabulary are complex, managing

the subset as a separate entity may be problematic. More research is needed in this area.

Although I did not use the split operation in this test set, a split operation appears

to be conceptually useful. In my initial design of the CONCORDIA change model, I

included two split operations: split concept off and split concept into two new concepts.

The former operations resulted in a portion of the original concept being split off to form

another concept. The original concept was retained with the original unique identifier.

171

However, I concluded that if, after a split, a concept loses a chunk of its meaning, the

concept should no longer have the same unique identifier.

Splitting a concept off from its predecessor concept occurs in MeSH. Because

MeSH is a thesaurus used for indexing the medical literature, a MeSH header forms a

category for a set of related citations. If a group of citations under a single MeSH header

becomes large, it makes sense to divide the group. If there is a meaningful subset of

citations within the large group of citations, that subset could be grouped under a new

MeSH header. The effect of this kind of change is similar to the effect of splitting a

portion of a concept off, and retaining the original concept. If the MeSH header served as

the unique identifier, this kind of change would violate the goal that unique identifiers

have constant meaning.

The operation split concept into two new concepts differs from two add child

operations, because in a split, the original concept is retired, and in two additions, the

original concept is retained. A true split may be uncommon. Further study of medical

subdomains and applications that depend on controlled medical vocabularies could

provide evidence for or against the use of split operations.

The merge operations in CONCORDIA are likely to be useful, given that duplicates

can occur. Any concept that is duplicated in the vocabulary by another concept with the

same meaning, but different identifier, must be merged into its duplicate concept. The

two types of merges in CONCORDIA are merge two concepts into one of the two concepts

and merge two concepts into new concept. I used only the former in the test set. Further

study will determine which of the two merge operations maintainers find most useful.

The operation merge local concept into shared concept is a synchronization

operation, and currently is not part of the CONCORDIA change model, or part of the local

extension of the CONCORDIA change model. In the shared vocabulary, the operation

merge two concepts into one of the two concepts permits the merge of two concepts,

which is, of course, a merge of two shared concepts. In the local vocabulary, the

operation merge two concepts into one of the two concepts permits the merge of two

concepts, but only if the concept being retired is not a shared concept, since it is illegal to

retire a shared concept in the local vocabulary (from the local-vocabulary editor).

Therefore, it is possible to merge a local concept into a shared concept in the local

vocabulary, but the operation used is merge two concepts into one of the two concepts.

The synchronization-support tool has an operation merge local concept into shared

172

concept, but this operation always occurs in conjunction with the processing of an add

concept change record from the shared log.

An alternative design of the local extension of the CONCORDIA change model

would restrict the operation merge two concepts into one of the two concepts to local

concepts only, and would include the additional change operation merge local concept

into shared concept. Since there is one more type of merge—merge two concepts into a

new concept—there would be three merge operations in the local extension of

CONCORDIA. Such design issues are subtle, but clarification and agreement on the exact

names and meaning of change operations is critical for communication about change.

A problem will arise if changes in domain content imply that a concept should be

split into three or more concepts, or that three or more concepts should be merged into

one concept. Examples of changes that would be difficult, or impossible, to model in

CONCORDIA are the changes that would have taken place in a structured vocabulary to

represent the transition from the Rappaport classification of non-Hodgkin’s lymphoma to

the Lukes–Collins classification [Lukes 1974], or from the Rappaport classification to the

Kiel classification [Lennert 1975]. These transitions involved mappings between

lymphomas that were not one to one. For example, three types of lymphomas in the

Rappaport classification mapped to follicular-center-cell, large, cleaved-cell lymphoma in

the Lukes–Collins classification, and lymphocytic, poorly differentiated lymphoma in the

Rappaport classification mapped to four types of lymphomas in the Lukes–Collins

classification [Lukes 1974]. In the absence of specialized operations to support such

changes, the developer of a CONCORDIA-based vocabulary probably would add the new

concepts identified by Lukes and Collins, and would retire the old concepts popularized

by Rappaport. The developer would have to describe the connections between the new

and old concepts in text in the explanation field of the change record for add concept, and

in the text-definition field of each new concept. Structured documentation of the changes

would not be possible unless a more flexible merge operation or additional types of

merge operations were available.

7.2.2 Analysis of Synchronization-Support Services

The goal of the synchronization-support tool was to automate as many services as

possible, but to direct the user’s attention to relevant data or decision options when

human input was necessary. My work suggests that useful services offered by a

synchronization-support tool are those that do the following:

173

1. Assist the user with decisions that are difficult. Finding equivalent concepts or

attributes is a task that the system can achieve occasionally, but that

frequently requires feedback from the user. Any time that a concept is added,

the system or user must determine whether there is a concept that is equivalent

to the added concept.

In the design of the synchronizer, I allowed only two cases in which the

system concludes automatically that a shared and local concept have the same

meaning. One criterion was that a concept name of the first concept matches a

synonym of the second concept, and vice versa. An alternative criterion was

that the concept names of the two concepts are the same, and that the parents,

children, and attribute–value pairs are the same. Other design choices are

possible. I made a restrictive choice to minimize false positives (that is, errors

that occur when the system concludes wrongly that two concepts are the

same).

If matching criteria were less restrictive, the false-negative rate (the rate at

which the system concludes wrongly that two concepts are not the same)

would decrease, but the false-positive rate might increase. For example, a less

restrictive criterion for concluding that two concepts have the same meaning

would be that the two concepts share the same concept name or a same

synonym. Further research could evaluate different methods for matching

concepts and for rank ordering possible matches.

2. Perform complex tasks. When the system processes a change that requires

multiple steps and multiple links, the system reduces complexity for the user

by performing steps and creating links automatically. For example, in a

merge, the system assigns to the merged concept the union of parents,

children, and attribute–value pairs that belonged to the two original concepts.

If there are no conflicts, the system performs the tasks seamlessly. If there are

conflicts, the system presents the choices available to the user to resolve those

conflicts.

3. Do not display changes that do not require a decision. Changes that do not

require a decision include replace concept name in the absence of unique-

name conflicts, add synonym, delete synonym, add abbreviation, delete

abbreviation, replace UMLS code, and replace concept definition. The system

can easily make these changes automatically. If the local site is willing to

174

accept the changes imposed by the shared-vocabulary maintainers, then the

local-vocabulary maintainer can be spared from viewing such changes.

4. Do not display changes that have already been completed. A concept that has

already been retired, a concept whose name has already been replaced with

the new name, a synonym or abbreviation that has already been added or

deleted, a UMLS code that has already been replaced with the new code, or a

text definition that has already been replaced with the new definition in the

local vocabulary does not have to be presented the user.

5. Reduce number of steps. For concept changes, the system retrieves the concept

in the local vocabulary that corresponds to the concept that was changed in the

shared vocabulary. The concept is retrieved by unique code, instead of by

unique name, because the concept’s name in the local vocabulary may be

different from its name in the shared vocabulary. The user does not have to

take steps to locate the concept to make the change.

 In certain changes, the system can perform more than one step based on a

single command from the user. For example, if a concept is retired in the

shared vocabulary, the user may choose to retire it and preserve it at the same

time. If a concept is added to the vocabulary, the user may add it and hide it at

the same time. Otherwise, the user would have to apply the change from the

shared vocabulary and go back to the local vocabulary later to preserve the

retired concept or to hide the added concept.

6. Identify cycles. The system must identify potential cycles that will occur

following add parent, add child, or a merge and must present to the user

choices that will prevent the cycles. The system permits the addition or merge

to take place only after the user makes an intervention to prevent the cycle.

7. Identify attribute–value–pair conflicts. The system must identify potential

attribute–value–pair conflicts that will occur following add parent, add child,

add attribute–value pair, or replace attribute value, and presents the user with

choices that will prevent the conflicts. Again, the system permits the change to

take place only after the user makes an intervention to prevent the conflict.

8. Give the user a choice for more or less control over the synchronization

process. The current system addresses user preference for control of decision

making by offering a choice of facilitate mode or step mode. In step mode, the

user has to make a choice for every change in the shared log.

175

 However, in facilitate mode, the system may make choices that do not reflect

the user’s preference. For example, in facilitate mode, the shared concept

name is chosen over the local concept name if replace concept name is

encountered in the shared log. However, the user may prefer to keep the local

concept name in every case of replace concept name that is processed from

the shared log. The system could allow the user to specify alternative

preferences in advance, and carry them out in facilitate mode.

7.2.3 Further Evaluation

The study based on vocabulary content from textbooks was a first step. Additional

resources of time and money would permit further evaluation of the CONCORDIA model,

the synchronization process, and the software tools. User studies that involve

knowledgeable subjects as vocabulary authors and that cover a wide range of clinical

subdomains would improve our understanding of the generalizability of this work.

Studies could be done in a laboratory setting, and then, when feasible, in a real-world

setting. I describe here studies that could be done in a laboratory setting.

The CONCORDIA structural and change models would be evaluated first.

Knowledgeable experts would be asked to model a variety of subdomains. The set of

subdomains would cover many specialties and multiple practice settings. The experts

would use medical-information resources—such as medical textbooks, medical records,

journal articles, and controlled medical vocabularies—to provide assistance with content

development. Theoretically, subjects could develop content without software tools, but it

is generally more difficult to develop content if there is no support for search and display.

The goal, however, would be to evaluate the CONCORDIA model independent of the

quality of the tools. Questionnaires and interviews would be used to collect data on the

subjects’ views on the suitability of the model.

Following analysis of data from the modeling experiment, the CONCORDIA model

would be refined and software tools would be modified accordingly. In preparation for a

software usability study, the software (browsers, editors, and synchronization-support

tool) would be made as robust as possible, the user interface would be enhanced, and

search and display functions would be improved. Again, knowledgeable individuals

would be recruited to be subjects. The usability study would be designed to determine

what functions best serve the needs of users, and to determine what user-interface–design

techniques are most successful. Questionnaires, interviews, and audiotapes and

videotapes of the experimental sessions would be used to collect data.

176

The results of the usability study would be used to refine and improve the

software, and finally, a study of the synchronization process could be performed. Another

set of knowledgeable subjects would be recruited. One subject would play the role of the

shared-vocabulary developer, and the remaining subjects would act as local-vocabulary

developers.

The subject acting as the shared-vocabulary developer would produce a shared

vocabulary. Each subject acting as a local-vocabulary developer would modify the shared

vocabulary to produce a local vocabulary. The shared-vocabulary developer would also

modify the shared vocabulary. Then, each local-vocabulary developer would synchronize

his local vocabulary with the modified shared vocabulary. Given additional time and

resources, a series of modifications and synchronizations would be studied. As in the

usability study, investigators would use questionnaires, interviews, audiotapes, and

videotapes to collect data. Goals of data analysis would be to determine what level of

support users want from the synchronization-support tool, how well they understand and

agree with the process, and how comfortable they are with the time required to perform

synchronization.

7.3 Beyond Vocabularies: Application of Change-Management Principles

to Clinical Guidelines

While interest in sharing controlled medical vocabularies has grown during the

past decade, interest has also grown in sharing clinical guidelines. There are parallels

between the problems of change that face the vocabulary community and similar

problems that face the guideline community. In both communities, there are problems

related to knowledge representation, change management, sharing, and local

modification. This situation exists not only for guideline systems, but also for knowledge

bases in general. Because of the relevance to clinical medicine, I discuss the relevant

issues specifically with regard to clinical guidelines.

The work of this dissertation demonstrated the need for expression of and

agreement on formal structural models, change models, and log models for vocabulary

change management. In particular, such models are important to support local variation.

Although the analogous premise for computer-based guidelines has not been studied, it is

a reasonable hypothesis that these three basic types of models are essential for sharing

guidelines, and in particular, for supporting local variation.

177

Lack of shared models results in heterogeneity in software that makes integration

of information difficult. Shared models are crucial, but developing shared models is not

enough; the next step is to agree on shared data formats and application programming

interfaces. Data-format specifications facilitate data interchange by dictating explicitly

how data are documented in files. Interfaces specify how communication takes place

between client and server software entities. I concentrate on the underlying models, but

clarify that the benefit of these models will be realized only when standards for

interchange formats and programming interfaces follow.

Structural models of guidelines for computer-based representation have been

proposed. Basic elements include eligibility criteria, actions, and decisions. PROforma

[Fox 1998], GLIF [Ohno-Machado 1998], the Arden Syntax [Hripcsak 1994], and Asbru

[Shahar 1998] have constructs that permit representation of such elements. The Arden

syntax is a current standard that is used primarily for alerts and reminders. A universally

accepted standard for complex guidelines has not yet been established. Hence, there is no

universally accepted standard for a change model either.

The types of change operations that we need to support evolution of medical

knowledge in guidelines will depend on how guidelines are represented, and must reflect

the kinds of changes that guideline authors actually make to guidelines. In a review of an

antiemetic guideline at Mayo Clinic Rochester, Loprinzi and colleagues give the history

of the development of this guideline [Loprinzi 2000]. Their review provides an example

of how a guideline can change. The serotonin-receptor antagonists ondansetron and

granisetron were relatively new treatments for chemotherapy-induced nausea and

vomiting when the guideline was developed. These agents were expensive, and were used

in different ways by different oncologists at the Mayo Clinic. The diversity in usage was

due both to the complexity of the literature, and to the lack of definitive answers to

clinically important questions. A committee of physicians, nurses, and pharmacists

convened to develop a guideline for the institution, which they released initially in

September 1995.

Loprinzi and colleagues describe the initial guideline and changes made in three

revisions [Loprinzi 2000]. For example, in February 1997, intravenous doses of

dexamethasone were decreased from 20 mg to 10 mg because there was no evidence that

20 mg was substantially more effective than 10 mg. In July 1998, metoclopramide 40 mg

orally twice a day was substituted for ondansetron 8 mg orally every 8 hours for 7 doses

on the 4 days after chemotherapy. Also, the 20 mg dose of dexamethasone was resumed,

178

but the route was change from intravenous to oral. After the July 1998 guidelines were

instituted with the switch to metoclopramide, the oncology nurses noticed a higher

frequency of restlessness, agitation, drowsiness, and sleeplessness in patients. In

December 1998, the use of metoclopramide in the regimen was discontinued.

These changes appear complex on the surface, but careful analysis of patterns

could lead to the identification of commonly used change operations. Change operations

that would support the changes described for this guideline might include replace

medication x with medication y, assign dosing regimen r to medication x, change route

for medication x from intravenous to oral, and discontinue medication x. In the

documentation of each change, an explanation for why each change was made should be

included, if available. For a formal description of the change model, the change

operations would be named, their input parameters specified, their constraints carefully

documented, and their effects on constructs in the guideline knowledge model expressed

clearly. Shahar and colleagues took a similar approach and identified a set of formal

change operators for clinical guidelines [Shahar 1995].

For the example of the Mayo Clinic antiemetic guideline, I suggest a possible

change record for the discontinuation of metoclopramide. The record might include the

date (December 1998), the name of the guideline (use of ondansetron and granisetron to

prevent chemotherapy-induced nausea and vomiting), a reference to the particular

guideline step affected (e.g., a code identifier for the particular action step in the encoded

guideline), the name of the change operation (discontinue medication x), the name of the

medication discontinued (metoclopramide), an explanation for why the change was made

(higher incidence of restlessness, agitation, drowsiness and sleeplessness in patients),

and the names of the authors who made the change. What the required data elements are

and how they are organized would determine the log model.

For both vocabulary and guidelines, there is local pressure to modify content

because of differences in opinions and priorities. In certain cases, guidelines may be

accepted only if modifications can be made locally.

Text-based guidelines often have overly general or excessively vague

recommendations so that the recommendations will be valid in all situations. However,

encoding guidelines for computer-based guidelines frequently demands greater detail and

specificity than text-based guidelines provide. One problem with encoding guidelines in

greater detail is that recommendations may depend on how the organization carries out its

179

responsibilities. Organizations vary in terms of departmental structure, workflow

processes, and roles of actors. Fridsma and colleagues have developed techniques for

making guidelines site specific [Fridsma 1996]. They address organizational issues that

affect implementation of a guideline.

Shahar and colleagues proposed an intention-based guideline-representation

language to support detection of or explanation of significant changes to guidelines

[Shahar 1995]. Their approach takes into consideration the intended goal of a guideline

and recognizes that different paths may accomplish the same goal. In their work, they

consider differences between the shared guideline and its execution by a particular local

provider at a local institution. Thus, they recognize and address the problem of local

modification of guidelines.

A formal approach to the development of structural models, change models, and

log models will encourage progress in the development and distribution of computer-

based guidelines just as a formal approach will benefit development and distribution of

vocabularies. In both cases, changing medical knowledge forces knowledge to change

over time, and local views and goals affect local preferences.

7.4 Contributions

Medical informatics is an interdisciplinary field that bridges gaps between

computer science and the practice of medicine. The research conducted for this

dissertation contributes both to the field of medical informatics and to the associated

disciplines of computer science and clinical medicine.

7.4.1 Contributions to Medical Informatics

In describing work conducted by medical-informatics researchers, Friedman and

Wyatt stated, “We study the collection, processing, and dissemination of health-care

information; and we build ‘information resources’—usually consisting of computer

hardware or software—to facilitate these activities” [Friedman 1997]. Browsers, editors,

and synchronization-support tools are software tools that developers use to build

vocabulary information resources; they facilitate directly or indirectly the collection,

processing, and dissemination of health-care information. Such activities rely on the

transmission of medical concepts from one processing system to another; controlled

medical vocabularies are essential in this process. Health-care workers are responsible for

180

transmitting medical concepts from human to human, from human to computer, from

computer to computer, and from computer to human. For communication to be effective,

system developers need effective methods for representing concepts and for managing

change in controlled medical vocabularies, since neither the language of medicine nor the

practice of medicine is static.

Developers of controlled medical vocabularies in the medical-informatics

community and ontology researchers in the computer-science community historically

have worked independently from each other; my work brings together their work with the

goal of improving vocabularies for computer-based patient-record systems. Although I

have not proved the value of my methods in real-world settings in which many different

users have diverse requirements, I defend my model on the basis of lessons learned from

studying what other people have done.

The problem of local variation of vocabularies is recognized by researchers and

developers who struggle to maintain vocabularies that serve the needs of many users.

Seldom, however, has local variation been studied in a formal way. I have introduced the

idea of synchronization, which has not been defined previously in the literature. I have

shown that the problem of synchronization is a difficult problem worthy of careful

thought and sophisticated methods. Organizations currently face the problem of

vocabulary divergence, and the problem may become more severe as health-care

institutions store increasing volumes of patient data on-line. By designing and testing one

solution, I identify and address key aspects of the problem.

Friedman and Wyatt cite several reasons for performing evaluation of information

systems in medicine, including (1) to encourage the use of particular systems; (2) to

uncover principles of medical informatics with regard to structure, function, and impact

of medical information resources; and (3) to help developers understand why certain

approaches succeed or fail [Friedman 1997]. My evaluation addresses the second reason.

The medical-informatics resource comprises the controlled vocabulary and the software

tools that support its use. I studied structure and function by developing and analyzing

use of the CONCORDIA model, and by performing a pilot test of the synchronization

process. Additional studies are needed to evaluate their impact.

In the struggle to develop standards, medical-informatics researchers and

developers have paid much attention to the standardization of content. In fact, most

evaluations of controlled medical vocabularies assess completeness of content [Chute

181

1996, Henry 1997, Humphreys 1996b, Humphreys 1997]. A smaller number of analyses

and evaluations concentrate on representation methods and comparisons of representation

methods [Rogers 1998, Rogers 1997, Spackman 1998, Spackman 1997]. Even less

attention has been paid to change. Sharability is impeded by lack of standards for

vocabulary structure, inconsistent structure, and inconsistent data formats. This research

brings to the forefront issues concerning change and local variation that must be solved

before the user community can truly share medical-vocabulary content.

7.4.2 Contributions to Computer Science

My work makes a contribution to the computer-science subdisciplines of

knowledge representation and ontological engineering. I have selectively chosen design

features from KL-ONE, CLASSIC, GRAIL, OKBC, and KRSS that are relevant for health-care

purposes. These systems emphasize the importance of formal approaches to managing

concept hierarchies and relationships among concepts, but do not emphasize the use of

synonyms and abbreviations to support search in large ontologies, do not recognize the

need for the association of unique constant meaningless identifiers with meaningful

unique names that may change, and do not acknowledge the importance of translation

among different coding systems or natural languages. Frame-based knowledge-

representation systems can handle these naming problems through the general notion of a

slot, but if constructs are limited to concepts, slots, slot values, facets, and facet values, it

is difficult to enforce constraints on naming conventions, and there will be no change

operations that reflect the user’s view of the world for manipulating unique meaningless

code identifiers, unique meaningful names, synonyms, abbreviations, and translation

codes.

My work also contributes to computer science because it takes a practical

approach to knowledge representation and ontologies. Medical informatics is an applied

discipline, and the advancement of theory and identification of new problems requires

application of ideas to practical domains. By building a system that contains medical

concepts from two different time periods, I have emphasized problems of maintenance

that historically inspired little interest in the knowledge-representation community.

7.4.3 Contributions to the Practice of Medicine

Clinicians and patients have higher expectations for computer systems that

provide clinical services and access to health-care information than they did just a few

182

years ago. There is increased interest on the part of hospital and clinic administrators to

improve the computer infrastructure of their health-care institutions to track services

rendered and resources utilized. In addition, pressure to reduce the cost of paperwork

associated with billing encourages electronic transmission of claims, which may require

inclusion of certain clinical data. Clinical data-entry systems, clinical databases, clinical

decision-support systems, information-retrieval systems, and claims transactions all make

use of controlled medical vocabularies. Goals of sharing data and knowledge among

systems cannot be realized without controlled medical vocabularies.

Controlled medical vocabularies are expensive to build and maintain. We need to

find ways to reuse systems built by different vocabulary developers, but it is probably not

possible for one vocabulary to serve everybody’s purposes. Therefore, it is important to

find ways to share vocabularies, but it is important to have flexibility that permits

modification for local purposes. The biggest challenge in sharing controlled vocabularies

for use in patient care is their integration into the local electronic medical record. Many

sites that deliver health care have legacy systems. It may be difficult to integrate legacy

systems with new software, and a painful mapping process must be accomplished at each

health-care site. In an ideal setting, standards for interfaces and content would exist, all

systems would be compliant with standards, and the vision of plug-and-play components

would be realized. Because the ideal may be difficult to achieve, the focus should be on

incremental advancement. Although my work does not solve the problem of legacy

systems, it offers an option for maintaining local differences if the local site is willing to

devote resources initially to map the legacy vocabulary to the standard vocabulary.

A perceived benefit of electronic medical records is the ability to provide decision

support and to catch errors before patients are adversely affected. Computer-based

clinical guidelines offer hope that computers can deliver these promises. There is a tight

coupling between guidelines and vocabulary. Communication about eligibility criteria,

conditions for decisions and actions, patient data that clinicians need to obtain, and

actions that clinicians need to perform requires conformance to a standard vocabulary. It

will be impossible to share the logic and knowledge of clinical guidelines unless it is

possible to share the names and identity of clinical concepts.

7.5 Unsolved Problems Related to this Research

Many problems arise when people build, maintain, and use vocabularies. I

concentrate on the representation of change and on the management of divergence of a

183

local version of a vocabulary from the evolving shared vocabulary from which the local

version was derived. However, for my ideas to be useful in a real-world setting, other

problems must be solved.

The following topics are areas in which future work is needed to address pertinent

questions.

1. Choice of content. What is the most useful sharable medical content to store in

shared controlled medical vocabularies if the goal is to support large numbers of

users for a wide variety of clinical applications? Who are the users, and what are

the applications?

2. Development by multiple authors. What problems are encountered when multiple

authors build and maintain a single vocabulary? Do differences in domain

modeling occur due to differences in domain expertise or due to differences in

how domain modelers prefer to use available structures in the modeling language?

If multiple authors work on the same vocabulary at the same time, what is the best

way to manage concurrency control? How is the vocabulary partitioned so that

different authors can work on different content areas with the least impact on the

work of one another?

3. Persistent storage. What are the best ways to maintain large numbers of concepts

in persistent storage media, yet provide immediate access to all concepts and

relationships when they are needed?

4. Distributed storage. If it is impractical to store and maintain a single vocabulary on

one server, should different subdomains of the vocabulary (e.g., drugs, laboratory

tests, and surgical equipment) be maintained by different expert developers on

separate servers? If subsets are maintained on separate servers, how are the

servers coordinated so that the vocabulary appears to be a single resource to a

user?

5. Iterative feedback about content and functionality from users. What processes

should support iterative feedback between end users of systems and vocabulary

maintainers? How do users make requests and receive responses from the shared-

vocabulary maintainers? How does the shared-vocabulary maintenance

organization handle large volumes of requests from thousands of users?

184

6. Compositional concept generation. What techniques support compositional

concept generation? If concepts are generated on the fly, how can their

uniqueness be guaranteed, and how are unique identifiers assigned?

7. User-interface design. What principles of user-interface design for browsers,

editors, and synchronization-support tools best support display, navigation, and

manipulation of concepts and attributes?

8. Scalability of concept search and display techniques. What techniques scale well

for search and display of concepts for a vocabulary of a million or more concepts?

9. Linkage to local legacy vocabularies. What methods would support linkages and

maintenance of linkages between local legacy vocabularies and newly adopted

shared vocabularies?

10. Coordination of shared vocabulary with clinical data entry. How are non-

subsumption hierarchies of terms required for structured data entry of the clinical

record coordinated with the subsumption hierarchy of concepts in the shared

controlled medical vocabulary? (An example of a hierarchy of terms that would

be reasonable in a physician’s note—but that is not a subsumption hierarchy—is

physical examination, HEENT, fundi, and discs sharp.)

11.Updating of patient data. How will patient data that are based on the shared

vocabulary be updated to incorporate changes made to that vocabulary?

13. Integration of vocabulary and guidelines. If a computer-based guideline depends

on a shared controlled vocabulary, how is guideline knowledge updated when the

shared vocabulary changes?

14.Boundaries of knowledge. Where is the boundary between knowledge that

belongs in a shared controlled vocabulary (maintained by a central shared-

vocabulary maintenance organization), and knowledge that belongs in separate

knowledge bases (maintained by other expert groups)?

15. Recursive local modification. How should recursive local modification be

managed? That is, what problems arise if a shared vocabulary is adopted by a

local site, where modifications are made and shared locally, and then a subgroup

at the local site makes its own additional modifications?

185

7.6 A Look Ahead

My work with CONCORDIA confronts the needs for a clear vocabulary structural

model, for formal change operations that make it possible to maintain these vocabularies,

and for a log model. If the community moves toward a common representation of change,

that move will encourage vocabulary developers to produce structured documentation of

change, will help developers of merged vocabularies (such as the UMLS) to manage

updates, and will facilitate the incorporation of updates from an evolving shared

vocabulary into divergent local versions of that shared vocabulary.

Explicit and detailed descriptions of a change model and a log model give

interested parties the opportunity to discuss the nuances of change. A shared

understanding of vocabulary structure and change operations enables vocabulary

developers, application developers, and end users to address the complexities of

vocabulary evolution in the same way. A common approach will lead to the production of

compatible software components that are developed independently. Lack of agreement on

structural models, change models, and log models will make it difficult for local

maintainers to update a clinical vocabulary to serve local needs, if the local site also

depends on shared resources.

If local sites undertake local modification, they must control divergence carefully

so that they do not lose the benefits of sharing. The challenges for developers of a

shared—and possibly a standard or mandated—health-care vocabulary are to identify a

vocabulary structural model that serves optimally the needs of its users, to create an

explicit change model that does not conflict with the goals of local sites, and to clarify a

log model. The challenge for local sites is to make choices that balance conformance and

autonomy. The burden of keeping up to date a locally modified version of a shared

health-care vocabulary will be theirs; techniques such as those offered by CONCORDIA

will make synchronization possible.

187

Appendix A: Shared-Vocabulary Structural Model

The shared-vocabulary structural model is specified by definitions for a

vocabulary concept, a shared-vocabulary root concept, a shared-vocabulary attribute, and

a shared vocabulary, and by axioms that form constraints. This appendix gives those

definitions and axioms, and also gives other relevant definitions.

Definition. A shared-vocabulary concept C is a structure that contains the following

required elements:

1. Concept unique identifier

2. Concept name

3. Usage status

4. Set of parents that contains at least one element

Concept C also contains the following elements, but these elements may have

values of null or the empty set:

1. Concept definition

2. Synonyms

3. Abbreviations

4. UMLS code

5. Children

6. Attribute–value pairs

7. Retired parents

8. Retired children

Concept C is represented by the set {C.concept_name, C.concept_id,

C.concept_definition, C.umls_code, C.synonyms, C.abbreviations, C.parents,

C.children, C.avpairs, C.retired_parents, C.retired_children}.

Definition. A shared-vocabulary root concept R is a shared-vocabulary concept whose

set of parents is empty and whose set of retired parents is empty (R.parents =

{}, R.retired_parents = {}).

188

Definition. A shared-vocabulary attribute A is a structure that contains the following

required elements:

1. Attribute unique identifier

2. Attribute name

3. Attribute usage status

Attribute A also may contain the following element, although it is not

required:

4. Attribute definition

Attribute A is represented by the set {A.attribute_id, A.attribute_name,

A.usage_status, A.attribute_definition}.

Definition. A shared-vocabulary concept C1 subsumes shared-vocabulary concept C2 if

C2 is a kind of C1, or C2 is a C1.

Definition. A shared-vocabulary concept P is a parent of shared-vocabulary concept C if

P subsumes C and P belongs to C.parents.

Definition. A shared-vocabulary concept Ch is a child of shared-vocabulary concept C if

C subsumes Ch and Ch belongs to C.children.

Definition. An ancestor of a concept is a parent of a concept or a parent of an ancestor of

a concept (recursive definition). The set of ancestors of a concept is a

collection that contains every ancestor of that concept, with duplicates

removed. (Ancestors of concept C are represented by C.ancestors.)

Definition. A descendant of a concept is a child of a concept or a child of a descendant

of a concept (recursive definition) The set of descendants of a concept is a

collection that contains every descendant of that concept, with duplicates

removed. (Descendants of concept C are represented by C.descendants.)

Definition. An attribute–value pair of shared-vocabulary concept C is a two-element set

containing a shared-vocabulary attribute A and a shared-vocabulary concept

V such that C is related to V by attribute A. An attribute–value pair is also

called an avpair and may be represented by the set {A, V}. An attribute-value

pair of C may be represented by AVC. If AVC is an attribute-value pair of C,

then the attribute of AVC (AVC.attribute) is AC, and the value of AVC

(AVC.value) is VC. The set of attribute–value pairs (or avpairs) of a concept

189

C is a collection that contains every attribute–value pair of C. (Attribute–

value pairs of concept C are represented by C.avpairs.)

Definition. An inherited attribute–value pair of a concept is an attribute–value pair that

belongs to the set of attribute–value pairs of an ancestor of that concept. For

all Ci belonging to C.ancestors and for all attribute–value pairs AVi belonging

to Ci.avpairs, AVi is an inherited attribute–value pair of C. The set of

inherited attribute–value pairs of concept C is a collection that contains

every attribute–value pair of every ancestor, with duplicates removed. (The

inherited attribute–value pairs of concept C may be represented by

C.inherited_avpairs.)

Definition. The set {R, C1, C2, C3, ... Cn, A1, A2, ... Am} is a shared vocabulary SV if:

1. R is a shared-vocabulary root concept.

2. C1, C2, C3, ... Cn are shared-vocabulary concepts.

3. A1, A2, ... Am are shared-vocabulary attributes.

4. For all concepts Ci belonging to SV and for all concepts Pj belonging to

Ci.parents, Pj belongs to SV.

5. For all concepts Ci belonging to SV and for all concepts Chj belonging to

Ci.children, Chj belongs to SV.

6. For all concepts Ci belonging to SV, for all attribute–value pairs AVj

belonging to Ci.avpairs, AVj.attribute is a shared-vocabulary attribute

that belongs to SV, and AVj.value is a shared-vocabulary concept that

belongs to SV.

7. For all concepts Ci belonging to SV, R belongs to Ci.ancestors.

8. The axioms in Axiom Set A are true for V = SV.

Definition. A current concept is a concept C such that C.usage_status = “current.”

Definition. A retired concept is a concept C such that C.usage_status = “retired.”

Definition. A cycle is a path of n parent–child relationships between concepts C1, C2, ...

Cn-1, Cn in V where C2 is a parent of C1, C3 is a parent of C2, ... , Cn is a parent

of Cn-1, and Cn is a parent of C1. (Axiom A15 forbids the presence of cycles.)

190

For each axiom listed below, the axiom is expressed first by a formal statement,

and second, by a simpler, less formal explanation.

Axiom A1. For every concept C belonging to V, and for all concepts Ci belonging to V

such that Ci ��C, C.concept_id ��Ci.concept_id.

A concept unique identifier is unique.

Axiom A2. For every concept C belonging to V, C.concept_id and for any two points in

time t1 and t2 after C is created, C.concept_id at t1 = C.concept_id at t2.

A concept unique identifier never changes.

Axiom A3. For every concept C belonging to V, and for all concepts Ci belonging to V

such that Ci �� C, C.usage_status = “current,” and Ci.usage_status =

“current,” C.concept_name ��Ci.concept_name.

A concept name is unique (i.e., it does not duplicate the name of any other

current concept).

Axiom A4. For every concept C belonging to V, and for all concepts Ci belonging to V

such that Ci �� C, C.usage_status = “current,” and Ci.usage_status =

“current,” if C.concept_definition �� ^`�� WKHQ� C.concept_definition �

Ci.concept_definition.

A concept definition is unique (i.e., it does not duplicate the definition of any

other current concept).

Axiom A5. For every concept C belonging to V, if C.umls_code ��^`��WKHQ�C.umls_code

belongs to the set of concept unique identifiers (CUIs) in the UMLS.

Every concept that has a UMLS code must have a valid UMLS code. There is no

requirement that the code must be unique.

Axiom A6. Let C belong to V and C.synonyms = {s1, s2, ... sn}. For i, j belonging to 1, 2,

... n, si ��sj.

A synonym is not listed more than once for a given concept.

Axiom A7. Let C belong to V and C.synonyms = {s1, s2, ... sn}. For i belonging to 1, 2, ...

n, si ��&�FRQFHSWBQDPH.

The concept name is not the same as any synonym name for the same

concept.

191

Axiom A8. Let C belong to V and C.abbreviations = {abbrev1, abbrev2, ... abbrevn}. For

i, j belonging to 1, 2, ... n, abbrevi ��DEEUHYj.

An abbreviation is not listed more than once for a given concept.

Axiom A9. For every attribute A belonging to V, and for all attributes Ai belonging to V

such that Ai ��A, A.attribute_id ��Ai.attribute_id.

An attribute unique identifier is unique (i.e., it does not duplicate the unique

identifier of any other attribute).

Axiom A10. For every attribute A belonging to V, A.attribute_id and for any two points

in time t1 and t2 after A is created, A.attribute_id at t1 = A.attribute_id at t2.

An attribute unique identifier never changes.

Axiom A11. For every attribute A belonging to V, and for all attributes Ai belonging to V

such that Ai ��A, A.usage_status = “current,” and Ai.usage_status = “current,”

A.attribute_name ��Ai.attribute_name.

An attribute name is unique (i.e., it does not duplicate the name of any other

current attribute).

Axiom A12. For every attribute A belonging to V, and for all attributes Ai belonging to V

such that Ai �� A and Ai.attribute_usage_status = “current,”

A.attribute_definition ��Ai.attribute_definition.

An attribute definition is unique (i.e., it does not duplicate the definition of

any other current attribute).

Axiom A13. If concept C belongs to shared vocabulary V, C.usage_status = “current” or

C.usage_status = “retired.”

A concept must be either current or retired.

Axiom A14. If attribute A belongs to shared vocabulary V, A.usage_status = “current” or

A.usage_status = “retired.”

An attribute must be either current or retired.

Axiom A15. For all concepts Ci (for i = 1, …, number of concepts in the vocabulary),

there is no path of n parent–child relationships (for any integer n > 0) from Ci

to Ci+n where Ci+1 is a parent of Ci, Ci+2 is a parent of Ci+1, Ci+3 is a parent of

Ci+2, ... Ci+n is a parent of Ci+n-1 and Ci+n is a parent of Ci; if there were such a

192

pair, a cycle would exist, and cycles are not allowed in a directed acyclic

graph.

No cycles are allowed.

Axiom A16. If P and C are current concepts, then P belongs to C.parents if and only if C

belongs to P.children.

If P is a parent of C, then C is a child of P, and vice versa.

Axiom A17. If attribute–value pair AV belongs to Ancestor.avpairs where Ancestor is a

concept that belongs to C.ancestors, then AV does not belong to C.avpairs.

An inherited avpair of concept C cannot also be an avpair of C itself.

Axiom A18. If attribute–value pair AVi belongs to C.avpairs, AVj belongs to

C.inherited_avpairs, and AVi.attribute = AVj.attribute, then AVi.value is a

descendant of AVj.value.

If an avpair of a concept has the same attribute that an inherited avpair of

that concept has, then that avpair has a value that is a descendant of the

value of the inherited avpair.

Axiom A19. If attribute–value pair AVi belongs to C.avpairs, AVj belongs to

C.inherited_avpairs, AVi.attribute = AVj.attribute, and AVi.attribute is an

attribute that reflects anatomic location, (e.g., has-location), then AVi.value

may be related to AVj.value by a partitive relationship (e.g., part-of). (Axiom

A19 modifies Axiom A18.)

If an avpair of a concept has the attribute has-location and also has an

inherited avpair has-location, then the concept’s avpair may have a value

that is related to the value of the inherited avpair by a part-of relationship.

193

Appendix B: Local-Vocabulary Structural Model

The local-vocabulary structural model is specified by definitions for a local-

vocabulary root concept, a local-vocabulary concept, a local-vocabulary attribute, and a

local vocabulary, and by axioms that form constraints. This appendix gives those

definitions and axioms, and also gives other relevant definitions.

Definition. A local-vocabulary concept C is a structure that contains the same required

and optional elements that are required or optional in a shared-vocabulary

concept. In addition, it contains a site of origin, a set of parents of the concept

in the shared vocabulary (SV parents), and a set of children of the concept in

the shared vocabulary (SV children).

Definition. A local-vocabulary root concept R is a structure that contains the same

required and optional elements that are required and optional in a shared-

vocabulary root concept. In addition, it must contain a site of origin. A local-

vocabulary root concept is, by definition, also a local-vocabulary concept, but

the set of parents is the empty set and the set of retired parents is the empty

set.

Definition. A local-vocabulary attribute A is a structure that contains the same required

and optional elements that are required or optional in a shared-vocabulary

concept. In addition, it contains a site of origin.

Definition. The set {R, C1, C2, C3, ... Cn, A1, A2, ... Am} is a local vocabulary LV

associated with a shared vocabulary SV if:

1. R is a local-vocabulary root concept.

2. C1, C2, C3, ... Cn are local-vocabulary concepts.

3. A1, A2, ... Am are local-vocabulary attributes.

4. For all concepts Ci belonging to LV and for all concepts Pj belonging to

Ci.parents, Pj belongs to LV.

5. For all concepts Ci belonging to LV and for all concepts Chj belonging to

Ci.children, Chj belongs to LV.

194

6. For all concepts Ci belonging to LV, for all attribute–value pairs AVj

belonging to Ci.avpairs, AVj.attribute is a local-vocabulary attribute that

belongs to LV, and AVj.value is a local-vocabulary concept that belongs

to LV.

7. For all concepts Ci belonging to LV, R belongs to Ci.ancestors.

8. The axioms in Axiom Set A (Axioms A1 through A19) are true for V = LV,

with modification of A13 and A14 by B3 and B4.

9. The axioms in Axiom Set B (Axioms B1 through B25) are true.

Definition. A hidden concept is a local-vocabulary concept LC such that

LC.usage_status = “hidden.”

Definition. A preserved concept is a local-vocabulary concept LC such that

LC.usage_status = “preserved.”

Definition. A shared concept is a local-vocabulary concept LC such that

LC.site_of_origin = “shared.”

Definition. A locally modified shared concept is a local-vocabulary concept LC such

that LC.site_of_origin = “locally modified shared.”

Definition. A local-only concept is a local-vocabulary concept LC such that

LC.site_of_origin = “local only.”

AXIOMS FOR CONCEPTS (Axioms B1 through B10)

Axiom B1. For all concepts LC belonging to local vocabulary LV, LC.usage_status =

“current,” “retired,” “hidden,” or “preserved.”

A local-vocabulary concept is current, retired, hidden, or preserved.

Axiom B2. For all concepts LC belonging to local vocabulary LV, LC.site_of_origin =

“shared,” “locally_modified_shared,” or “local_only.”

A local-vocabulary concept is shared, locally modified shared, or local only.

Axiom B3. If concept C is a local-vocabulary concept, and if C.site_of_origin = “shared”

or “locally_modified_shared”, then C.usage_status = “current”, “retired”,

“hidden”, or “preserved.”

195

A local-vocabulary concept that is shared or locally modified shared may be

current, retired, hidden, or preserved.

Axiom B4. If concept C is a local-vocabulary concept, and if C.site_of_origin =

“local_only”, then C.usage_status = “current” or “retired.”

A local-vocabulary concept that is local only may be current or retired.

Axiom B5. If concept LC is a local-vocabulary concept such that LC.site_of_origin =

“shared” or “locally_modified_shared,” and if LC.usage_status = “current”,

then there exists concept SC in the shared vocabulary such that

LC.concept_id = SC.concept_id and SC.usage_status = “current.”

A shared or locally modified shared concept that is current in the local

vocabulary is also current in the shared vocabulary.

Axiom B6. If concept LC is a local-vocabulary concept such that LC.site_of_origin =

“shared” or “locally_modified_shared,” and if LC.usage_status = “retired”,

then there exists concept SC in the shared vocabulary such that

LC.concept_id = SC.concept_id and SC.usage_status = “retired.”

A shared or locally modified shared concept that is retired in the local

vocabulary is also retired in the shared vocabulary.

Axiom B7. If concept LC is a local-vocabulary concept such that LC.site_of_origin =

“shared” or “locally_modified_shared,” and if LC.usage_status = “hidden”,

then there exists concept SC in the shared vocabulary such that

LC.concept_id = SC.concept_id and SC.usage_status = “current.”

A concept that is hidden in the local vocabulary is current in the shared

vocabulary.

Axiom B8. If concept LC is a local-vocabulary concept such that LC.site_of_origin =

“shared” or “locally_modified_shared,” and if LC.usage_status =

“preserved”, then there exists concept SC in the shared vocabulary such that

LC.concept_id = SC.concept_id and SC.usage_status = “retired.”

A concept that is preserved in the local vocabulary is retired in the shared

vocabulary.

Axiom B9. If concept LC belongs to local vocabulary LV, concept SC belongs to shared

vocabulary SV, and LC.concept_id = SC.concept_id, then LC.site_of_origin =

“shared” or “locally_modified_shared.”

196

If a concept belongs to both the local vocabulary and the shared vocabulary,

then that concept is shared or locally modified shared.

Axiom B10. If concept LC belongs to local vocabulary LV and there is no concept SC

that belongs to shared vocabulary SV such that LC.concept_id =

SC.concept_id, then LC.site_of_origin = “local_only.”

If a concept belongs to the local vocabulary, but not to the shared

vocabulary, then that concept is local only.

AXIOMS FOR ATTRIBUTES (Axioms B11 through B20)

Axiom B11. For all attributes LA belonging to local vocabulary LV, LA.usage_status =

“current,” “retired,” “hidden,” or “preserved.”

A local-vocabulary attribute is current, retired, hidden, or preserved.

Axiom B12. For all attributes LA belonging to local vocabulary LV, LA.site_of_origin =

“shared,” “locally_modified_shared”, or “local_only.”

A local-vocabulary attribute is shared, locally modified shared, or local only.

Axiom B13. If attribute A is a local-vocabulary attribute, and A.site_of_origin = “shared”

or “locally_modified”shared”, then A.usage_status = “current”, “retired”,

“hidden”, or “preserved.”

A local-vocabulary attribute that is shared or locally modified shared may be

current, retired, hidden, or preserved.

Axiom B14. If attribute LA is a local-vocabulary attribute, and LA.site_of_origin =

“local_only”, then LA.usage_status = “current” or “retired.”

A local-vocabulary attribute that is local only may be current or retired.

Axiom B15. If attribute LA is a local-vocabulary attribute such that LA.site_of_origin =

“shared” or “locally_modified”shared,” and if LA.usage_status = “current”,

then there exists attribute SA in the shared vocabulary such that

LA.attribute_id = SA.attribute_id and SA.usage_status = “current.”

A shared or locally modified shared attribute that is current in the local

vocabulary is also current in the shared vocabulary.

Axiom B16. If attribute LA is a local-vocabulary attribute such that LA.site_of_origin =

“shared” or “locally_modified”shared”, and if LA.usage_status = “retired”,

197

then there exists attribute SA in the shared vocabulary such that

LA.attribute_id = SA.attribute_id and SA.usage_status = “retired.”

A shared or locally modified shared attribute that is retired in the local

vocabulary is also retired in the shared vocabulary.

Axiom B17. If attribute LA is a local-vocabulary attribute such that LA.site_of_origin =

“shared” or “locally_modified”shared,” and if LA.usage_status = “hidden”,

then there exists attribute SA in the shared vocabulary such that

LA.attribute_id = SA.attribute_id and SA.usage_status = “current.”

An attribute that is hidden in the local vocabulary is current in the shared

vocabulary.

Axiom B18. If attribute LA is a local-vocabulary attribute such that LA.site_of_origin =

“shared” or “locally_modified”shared,” and if LA.usage_status =

“preserved”, then there exists attribute SA in the shared vocabulary such that

LA.attribute_id = SA.attribute_id and SA.usage_status = “retired.”

An attribute that is preserved in the local vocabulary is retired in the shared

vocabulary.

Axiom B19. If attribute LA is a local-vocabulary attribute, attribute SA is a shared-

vocabulary attribute, and LA.attribute_id = SA.attribute_id, then

LA.site_of_origin = “shared” or “locally_modified_shared.”

If an attribute belongs to both the local vocabulary and the shared

vocabulary, then that attribute is shared or locally modified shared.

Axiom B20. If attribute LA is a local-vocabulary attribute and there is no attribute SA

that belongs to shared vocabulary SV such that LA.attribute_id =

SA.attribute_id, then LA.site_of_origin = “local_only.”

If an attribute belongs to the local vocabulary, but not to the shared

vocabulary, then that attribute is local only.

NAMESPACE AXIOMS (Axioms B21 through B25)

Axiom B21. There exist two distinct namespaces: a local namespace and a shared

namespace. The intersection of the set of strings in the local namespace and

the set of strings in the shared namespace is null.

198

There is no overlap between the local namespace and the shared namespace.

Axiom B22. For all concepts SC belonging to SV, SC.concept_id belongs to the shared

namespace.

Concepts in the shared vocabulary have identifiers in the shared namespace.

Axiom B23. For all attributes SA belonging to SV, SA.attribute_id belongs to the shared

namespace.

Attributes in the shared vocabulary have identifiers in the shared namespace.

Axiom B24. For all concepts LC belonging to LV where LC.site_of_origin = “shared” or

“locally_modified_shared”, LC.attribute_id belongs to the shared namespace;

for all concepts LC belonging to LV where LC.site_of_origin = “local only,”

LC.concept_id belongs to the local namespace.

Concepts in the local vocabulary have identifiers in the shared namespace if

they are shared or locally modified shared, and in the local namespace if

they are local only.

Axiom B25. For all attributes LA belonging to LV where LA.site_of_origin = “shared” or

“locally_modified_shared”, LA.attribute_id belongs to the shared namespace;

for all concepts LA belonging to LV where LA.site_of_origin = “local only,”

LA,attribute_id belongs to the local namespace.

Attributes in the local vocabulary have identifiers in the shared namespace if

they are shared or locally modified shared, and in the local namespace if

they are local only.

199

Appendix C: Shared-Vocabulary Change Model

The shared-vocabulary change model is specified by definitions for change

operations and two requirements. The change operations may be performed on a shared

vocabulary SV, one change at a time. Formal specifications for the change operations are

given below.

In the descriptions that follow, SVi represents the state of the shared vocabulary

SV at time i, and SVi+1 represents the state of the shared vocabulary at time i+1. A data

element followed by SVi or SVi+1 in parentheses refers to that data element in the shared

vocabulary at time i, or at time i+1, respectively.

Definition. A change operation is a valid shared-vocabulary change operation if it is

one of the following:

1. Add concept

2. Retire concept

3. Merge two concepts into one of the two concepts

4. Merge two concepts into new concept

5. Split concept into two new concepts

6. Add attribute

7. Retire attribute

8. Merge two attributes into one of the two attributes

9. Merge two attributes into new attribute

10. Replace concept name

11. Correct concept name

12. Replace concept definition

13. Replace UMLS code

14. Add synonym

15. Delete synonym

16. Add abbreviation

200

17. Delete abbreviation

18. Add parent

19. Remove parent

20. Add child

21. Remove child

22. Add attribute-value pair

23. Delete attribute-value pair

24. Replace attribute value

25. Replace attribute name

26. Replace attribute definition

Definition. A vocabulary change operation is a change that affects the existence of one

or more concepts or attributes in the vocabulary. By definition, such a change

operation is one of change operations 1 through 9 above.

Definition. A concept change operation is a change that affects one or more elements in

a shared-vocabulary concept. By definition, such a change operation is one of

change operations 10 through 24 above.

Definition. An attribute change operation is a change that affects one or more elements

in a shared-vocabulary attribute. By definition, such a change operation is

change operation 25 or 26 above.

Requirement C1. If SVi fulfills the requirements of a shared vocabulary, and change_op is

a valid shared-vocabulary change operation, which causes the shared

vocabulary to be transformed from an initial state, SVi, to a subsequent state,

SVi+1, then SVi+1 also fulfills the requirements of a shared vocabulary.

 change_op

SVi ---------------> SVi+1

201

Requirement C2. If SVi fulfills the requirements of a shared vocabulary, change_op1,

change_op2, ...change_opn are valid shared vocabulary change operations,

and SVi+1, SVi+2, ...SVi+n are the states of the shared vocabulary after each

change operation respectively, then SVi+n also fulfills the requirements of a

shared vocabulary.

 change_op1 change_op2 change_opn

SVi -------------> SVi+1 -------------> SVi+2 . . . -------------> SVi+n

Notation used in the following descriptions of change operations include: (1) INT:

intersection, and (2) U: union.

Change Operation. Add concept

ASSUMPTIONS:

1. SV is a shared vocabulary

2. P is a shared-vocabulary concept

INPUT PARAMETERS:

1. String new_concept_name

2. Concept P

CONSTRAINTS:

1. For all concepts C belonging to SV such that C.usage_status = “current,”

C.concept_name ��new_concept_name

2. P belongs to SV

3. P.usage_status ��³UHWLUHG´

EFFECTS:

1. New concept C is created

2. C.concept_id = next integer concept identifier assigned by system

3. C.concept_name = new_concept_name

4. C.usage_status = “current”

5. C.parents(SVi+1) = {P}

202

6. SVi+1 = SVi U {C}

7. P.children(SVi+1) = P.children(SVi) U {C}

Change Operation. Retire concept

ASSUMPTIONS:

1. SV is a shared vocabulary

2. C is a shared-vocabulary concept

INPUT PARAMETERS:

1. Concept C

CONSTRAINTS:

1. C belongs to V

2. C.usage_status ��³UHWLUHG´

3. For all concepts C belonging to SV such that C.usage_status = “current” and

for all attribute–value pairs AV belonging to C.avpairs, AV.value ��C

EFFECTS:

1. C.usage_status = “retired”

2. For all concepts P belonging to C.parents,

P.retired_children(SVi+1) = P.retired_children(SVi) U {C}

3. For all concepts Ch belonging to C.children,

Ch.retired_parents(SVi+1) = Ch.retired_parents(SVi) U {C}

4. For all concepts P belonging to C.parents,

P.children(SVi+1) = P.children(SVi)

- {C}

U C.children

5. For all concepts Ch belonging to C.children,

Ch.parents(SVi+1) = Ch.parents(SVi)

- {C}

203

U C.parents

Change Operation. Merge two concepts into one of the two concepts

ASSUMPTIONS:

1. SV is a shared vocabulary

2. C1 is a shared-vocabulary concept

3. C2 is a shared-vocabulary concept

2. C_to_keep is a shared-vocabulary concept

3. C_to_retire is a shared-vocabulary concept

INPUT PARAMETERS:

1. Concept C1

2. Concept C2

3. Concept C_to_keep

4. Concept C_to_retire

CONSTRAINTS:

1. C1 belongs to SV

2. C2 belongs to SV

3. C1 is not the root of SV

4. C2 is not the root of SV

5. C1 ��C2

6. C1.usage_status ��³UHWLUHG´

7. C2.usage_status ��³UHWLUHG´

8. (C1 = C_to_keep) <=> (C2 = C_to_retire)

9. (C2 = C_to_keep) <=> (C1 = C_to_retire)

10. C_to_keep does not belong to (C_to_retire.ancestors – C_to_retire.parents)

11. C_to_retire does not belong to (C_to_keep.ancestors – C_to_keep.parents)

204

12. Ancestors of C_to_keep must have avpairs that are the same as or more

general than C_to_retire’s avpairs.

For all concepts A belonging to C_to_keep.ancestors, for all avpairs AVA

belonging to A.avpairs, and for all avpairs AVR belonging to

C_to_retire.avpairs, if AVA.attribute = AVR.attribute, then AVA.value =

AVR.value or AVA.value is ancestor of AVR.value.

13. Ancestors of C_to_retire must have avpairs that are the same as or more

general than C_to_keep’s avpairs.

 For all concepts Ai belonging to C_to_retire.ancestors, for all avpairs AVA

belonging to A.avpairs, and for all avpairs AVK belonging to

C_to_keep.avpairs, if AVA.attribute = AVK.attribute, then AVA.value =

AVK.value or AVA.value is ancestor of AVK.value.

14. Descendants of C_to_keep must have avpairs that are more specific than

C_to_retire’s avpairs.

 For all concepts D belonging to C_to_keep.descendants, for all avpairs AVD

belonging to D.avpairs, and for all avpairs AVR belonging to

C_to_retire.avpairs, if AVD.attribute = AVR.attribute, then AVD.value =

AVR.value or AVD.value is descendant of AVR.value.

15. Descendants of C_to_retire must have avpairs that are more specific than

C_to_keep’s avpairs.

 For all concepts D belonging to C_to_retire.descendants, for all avpairs AVD

belonging to D.avpairs, and for all avpairs AVK belonging to

C_to_keep.avpairs, if AVD.attribute = AVK.attribute, then AVD.value =

AVK.value or AVD.value is descendant of AVK.value.

EFFECTS:

1. Parents

a. If C_to_keep belongs to C_to_retire.parents (i.e., C_to_keep is a parent of

C_to_retire)

C_to_keep.parents = C_to_keep.parents U C_to_retire.parents

- (C_to_keep.ancestors INT C_to_retire.parents)

- C_to_keep}

205

b. Alternatively, if C_to_retire belongs to C_to_keep.parents (i.e.,

C_to_retire is a parent of C_to_keep)

C_to_keep.parents = C_to_keep.parents U C_to_retire.parents

- (C_to_keep.ancestors INT C_to_retire.parents)

- C_to_retire

c. Alternatively, if C_to_keep does not belong to C_to_retire.parents and

C_to_retire does not belong to C_to_keep.parents (i.e., there is no

parent–child relationship between C_to_keep and C_to_retire)

C_to_keep.parents = C_to_keep.parents U C_to_retire.parents

- (C_to_keep.ancestors INT C_to_retire.parents)

2. Children

a. If C_to_keep belongs to C_to_retire.parents (i.e., C_to_keep is a parent of

C_to_retire),

C_to_keep.children = C_to_keep.children U C_to_retire.children

- (C_to_keep.descendants INT C_to_retire.children)

- C_to_retire

b. Alternatively, if C_to_retire belongs to C_to_keep.parents (i.e.,

C_to_retire is a parent of C_to_keep)

C_to_keep.children = C_to_keep.children U C_to_retire.children

- (C_to_keep.descendants INT C_to_retire.children)

- C_to_keep

c. Alternatively, if C_to_keep does not belong to C_to_retire.parents and

C_to_retire does not belong to C_to_keep.parents (i.e., there is no

parent–child relationship between C_to_keep and C_to_retire)

C_to_keep.children = C_to_keep.children U C_to_retire.children

- (C_to_keep.children INT C_to_retire.children)

3. Attribute–value pairs

a. If C_to_keep belongs to C_to_retire.parents (i.e., C_to_keep is a parent of

C_to_retire),

206

C_to_keep.avpairs = C_to_keep.avpairs U C_to_retire.avpairs

- {AVR: AVR belongs to C_to_retire.avpairs and there exists AVK

belonging to C_to_keep.avpairs where AVR.attribute =

AVK.attribute and AVR.value is ancestor of AVK.value}

b. Alternatively, if C_to_retire belongs to C_to_keep.parents (i.e.,

C_to_retire is a parent of C_to_keep)

C_to_keep.avpairs = C_to_keep.avpairs U C_to_retire.avpairs

- {AVK: AVK belongs to C_to_keep.avpairs and there exists AVR

belonging to C_to_retire.avpairs where AVK.attribute =

AVR.attribute and AVK.value is ancestor of AVR.value}

c. Alternatively, if C_to_keep does not belong to C_to_retire.parents and

C_to_retire does not belong to C_to_keep.parents (i.e., there is no

parent–child relationship between C_to_keep and C_to_retire)

C_to_keep.avpairs = C_to_keep.avpairs U C_to_retire.avpairs

- (C_to_keep.avpairs INT C_to_retire.avpairs)

- {AVK: AVK belongs to C_to_keep.avpairs and there exists AVR

belonging to C_to_retire.avpairs where AVK.attribute =

AVR.attribute and AVK.value is ancestor of AVR.value}

- {AVR: AVR belongs to C_to_retire.avpairs and there exists AVK

belonging to C_to_keep.avpairs where AVR.attribute =

AVK.attribute and AVR.value is ancestor of AVK.value}

4. Synonyms

C_to_keep.synonyms = C_to_keep.synonyms

U C_to_retire.synonyms

- (C_to_keep.synonyms INT C_to_retire.synonyms)

- ({C_to_keep.concept name} INT C_to_retire.synonyms)

5. Abbreviations

C_to_keep.abbreviations = C_to_keep.abbreviations

U C_to_retire.abbreviations

- (C_to_keep.abbreviations INT C_to_retire.abbreviations)

207

6. Usage status

C_to_retire.usage_status = “retired”

7. Children of C_to_retire

For each Ch belonging to

(C_to_retire.children(SVi) –

(C_to_retire.children(SVi) INT C_to_keep.children(SVi))),

Ch.parents(SVi+1) = Ch.parents(SVi) U {C_to_keep} - { C_to_retire}

For each Ch belonging to

(C_to_retire.children(SVi) INT C_to_keep.children(SVi)),

Ch.parents(SVi+1) = Ch.parents(SVi) - {C_to_retire}

8. Parents of C_to_retire

For each P belonging to

(C_to_retire.parents(SVi) -

(C_to_retire.parents(SVi) INT C_to_keep.parents(SVi))),

P.children(SVi+1) = P.children(SVi) U {C_to_keep} - { C_to_retire}

For each P belonging to

(C_to_retire.parents(SVi) INT C_to_keep.parents(SVi)),

P.children(SVi+1) = P.children(SVi) - {C_to_retire}

9. Descendants of C_to_keep

For each D belonging to C_to_keep.descendants(SVi),

D.avpairs(SVi+1) = D.avpairs(SVi)

- (D.avpairs INT

- (C_to_retire.avpairs U C_to_retire.inherited_avpairs))

10. Descendants of C_to_retire

For each D belonging to C_to_retire.descendants(SVi),

D.avpairs(SVi+1) = D.avpairs(SVi)

- (D.avpairs INT

208

- (C_to_keep.avpairs U C_to_keep.inherited_avpairs))

Change Operation. Merge two concepts into new concept

ASSUMPTIONS:

1. SV is a shared vocabulary

2. C1 is a shared-vocabulary concept

3. C2 is a shared-vocabulary concept

4. P is a shared-vocabulary concept

INPUT PARAMETERS:

1. Concept C1

2. Concept C2

3. String new_concept_name

4. Concept P

CONSTRAINTS:

1. C1 belongs to SV

2. C2 belongs to SV

3. C1 is not the root of SV

4. C2 is not the root of SV

5. C1 ��C2

6. C1.usage_status ��³UHWLUHG´

7. C2.usage_status ��³UHWLUHG´

8. For all concepts C belonging to SV such that C.usage_status = “current,”

C.concept_name ��new_concept_name

9. C1 does not belong to (C2.ancestors – C2.parents)

10. C2 does not belong to (C1.ancestors– C1.parents)

11. P belongs to C1.parents or P belongs to C2.parents

12. Ancestors of C1 must have avpairs that are more general than C2’s avpairs.

209

For all concepts A belonging to C1.ancestors, all avpairs AVA belonging to

A.avpairs, and all avpairs AV2 belonging to C2.avpairs, if AVA.attribute =

AVk.attribute, then AVA.value = AV2.value or AVA.value is an ancestor of

AV2.value

13. Ancestors of C2 must have avpairs that are more general than C1’s avpairs.

 For all concepts A belonging to C2.ancestors, all avpairs AVA belonging to

A.avpairs, and all avpairs AV1 belonging to C1.avpairs, if AVA.attribute =

AV1.attribute, then AVA.value = AV1.value or AVA.value is an ancestor of

AV1.value.

14. Descendants of C1 must have avpairs that are more specific than C2’s

avpairs.

 For all concepts D belonging to C1.descendants, fall avpairs AVD belonging

to D.avpairs, and all avpairs AV2 belonging to C2.avpairs, if AVD.attribute =

AV2.attribute, then AVD.value = AV2.value or AVD.value is a descendant of

AV2.value

15. Descendants of C2 must have avpairs that are more specific than C1’s

avpairs.

 For all concepts D belonging to C2.descendants, all avpairs AVD belonging

to D.avpairs, and all avpairs AV1 belonging to C1.avpairs, if AVD.attribute =

AV1.attribute, then AVD.value = AV1.value or AVD.value is a descendant of

AV1.value

EFFECTS:

 1. Create concept C_new and add C_new to vocabulary

a. Concept C_new is created

b. C_new.concept_id = next integer concept identifier assigned by system

c. C_new.concept_name = new_concept_name

d. C_new.usage_status = “current”

e. C_new.parents = {P}

f. SVi+1 = SVi U {C_new}

g. P.children(SVi+1)= P.children(SVi) U {C_new}

210

2. Parents

a. If C1 belongs to C2.parents (i.e., C1 is a parent of C2),

C_new.parents = C1.parents U C2.parents

- (C1.parents INT C2.parents)

- C2

b. Alternatively, if C2 belongs to C1.parents (i.e., C2 is a parent of C1),

C_new.parents = C1.parents U C2.parents

- (C1.parents INT C2.parents)

- C1

c. Alternatively, if C1 does not belong to C2.parents and C2 does not belong

to C1.parents (i.e., there is no parent–child relationship between

C_to_keep and C_to_retire),

C_new.parents = C1.parents U C2.parents

- (C1.parents INT C2.parents)

3. Children

a. If C1 belongs to C2.parents (i.e., C1 is a parent of C2),

C_new.children = C1.children U C2.children

- (C1.children INT C2.children)

- C2

b. Alternatively, if C2 belongs to C1.parents (i.e., C2 is a parent of C1),

C_new.children = C1.children U C2.children

- (C1.children INT C2.children)

- C1

c. Alternatively, if C1 does not belong to C2.parents and C2 does not belong

to C1.parents (i.e., there is no parent–child relationship between

C_to_keep and C_to_retire),

C_new.children = C1.children U C2.children

- (C1.children INT C2.children)

211

4. Attribute–value pairs

C_new.avpairs = C1.avpairs U C2.avpairs

- (C1.avpairs INT C2.avpairs)

- {AV1: AV1 belongs to C1.avpairs and there exists AV2

belonging to C2.avpairs where AV1.attribute = AV2.attribute

and AV1.value is an ancestor of AV2.value}

- {AV2: AV2 belongs to C2.avpairs and there exists AV1

belonging to C1.avpairs where AV2.attribute = AV1.attribute

and AV2.value is an ancestor of AV1.value}

 5. Synonyms

C_new.synonyms = C1.synonyms U C2.synonyms

- (C1.synonyms INT C2.synonyms)

- (C_new.concept_name INT C1.synonyms)

- (C_new.concept_name INT C2.synonyms)

 6. Abbreviations

C_new.abbreviations = C1.abbreviations U C2.abbreviations

- (C1.abbreviations INT C2.abbreviations)

 7. Usage Status

C1.usage_status = “retired”

C2.usage_status = “retired”

 8. Parents of C1

For each P belonging to C1.parents in SVi,

P.children(SVi+1) = P.children(SVi) U {C_new} - { C1}

 9. Parents of C2

For each P belonging to C2.parents in SVi,

P.children(SVi+1) = P.children(SVi) U {C_new} - { C2}

 10. Children of C1

For each Ch belonging to C1.children in SVi,

212

Ch.parents(SVi+1) = Ch.parents(SVi) U {C_new} - {C1}

 11. Children of C2

For each Ch belonging to C2.children in SVi,

Ch.parents(SVi+1) = Ch.parents(SVi) U {C_new} - {C2}

 12. Descendants of C1

For each D belonging to C1.descendants in SVi,

D.avpairs(SVi+1) = D.avpairs(SVi)

- (D.avpairs INT C2.avpairs}

- (D.avpairs INT C2.inherited_avpairs)

 13. Descendants of C2

For each D belonging to C2.descendants in SVi,

D.avpairs(SVi+1) = D.avpairs(SVi)

- (D.avpairs INT C1.avpairs)

- (D.avpairs INT C1.inherited_avpairs)

Change Operation. Split concept into two new concepts

ASSUMPTIONS:

1. SV is a shared vocabulary

2. C is a shared-vocabulary concept

3. parents_to_add_to_first_concept is a set of concepts

4. children_to_add_to_first_concept is a set of concepts

5. avpairs_to_add_to_first_concept is a set of attribute–value pairs

6. synonyms_to_add_to_first_concept is a set of strings

7. abbreviations_to_add_to_first_concept is a set of strings

8. parents_to_add_to_second_concept is a set of concepts

9. children_to_add_to_second_concept is a set of concepts

10. avpairs_to_add_to_second_concept is a set of attribute–value pairs

213

11. synonyms_to_add_to_second_concept is a set of strings

12. abbreviations_to_add_to_second_concept is a set of strings

INPUT PARAMETERS:

1. Concept C

2. String new_concept_name1

3. String new_concept_name2

4. Set of concepts parents_to_add_to_first_concept

5. Set of concepts children_to_add_to_first_concept

6. Set of attribute–value pairs avpairs_to_add_to_first_concept

7. Set of strings synonyms_to_add_to_first_concept

8. Set of strings abbreviations_to_add_to_first_concept

9. Set of concepts parents_to_add_to_second_concept

10. Set of concepts children_to_add_to_second_concept

11. Set of attribute–value pairs avpairs_to_add_to_second_concept

12. Set of strings synonyms_to_add_to_second_concept

13. Set of strings abbreviations_to_add_to_second_concept

14. For all synonyms Syn belonging to (C.synonyms - synonyms_to_delete), Syn �

new_concept_name

CONSTRAINTS:

1. C belongs to SV

2. C.usage_status ��³UHWLUHG´

3. P1 belongs to SV and belongs to parents_to_add_to_first_concept

4. P1.usage_status ��³UHWLUHG´

5. P2 belongs to SV and belongs to children_to_add_to_second_concept

6. P2.usage_status ��³UHWLUHG´

7. new_concept_name1 ��new_concept_name2

214

8. For all concepts C belonging to SV such that C.usage_status = “current,”

C.concept_name �� new_concept_name1 and C.concept_name �

new_concept_name2

9. parents_to_add_to_first_concept is a subset of C.parents

10. children_to_add_to_first_concept is a subset of C.children

11. avpairs_to_add_to_first_concept is a subset of C.avpairs

12. synonyms_to_add_to_first_concept is a subset of C.synonyms

13. abbreviations_to_add_to_first_concept is a subset of C.abbreviations

14. parents_to_add_to_second_concept is a subset of C.parents

15. children_to_add_to_second_concept is a subset of C.children

16. avpairs_to_add_to_second_concept is a subset of C.avpairs

17. synonyms_to_add_to_second_concept is a subset of C.synonyms

18. abbreviations_to_add_to_second_concept is a subset of C.abbreviations

19. For all synonyms Syn belonging to (C.synonyms - synonyms_to_delete), Syn �

new_concept_name1 and Syn ��new_concept_name1

EFFECTS:

1. Concept C1_new is created

C1_new.concept_id = next integer concept identifier assigned by system

C1_new.concept_name = new_concept_name1

C1_new.usage_status = “current”

C1_new.parents = {P1}

SVi+1 = SVi U {C_new1}

P1.children(SVi+1) = P1.children(SVi) U {C_new1}

 2. Concept C2_new is created

C2_new.concept_id = next integer concept identifier assigned by system

C2_new.concept_name = new_concept_name2

C2_new.usage_status = “current”

C2_new.parents = {P2}

215

SVi+1 = SVi U {C_new2}

P2.children(SVi+1) = P2.children(SVi) U {C_new2}

3. C_new1.parents = parents_to_add_to_first_concept

4. C_new1.children = children_to_add_to_first_concept

5. C_new1.avpairs = avpairs_to_add_to_first_concept

6. C_new1.synonyms = synonyms_to_add_to_first_concept

7. C_new1.abbreviations = abbreviations_to_add_to_first_concept

8. C_new2.parents = parents_to_add_to_second_concept

9. C_new2.children = children_to_add_to_second_concept

10. C_new2.avpairs = avpairs_to_add_to_second_concept

11. C_new2.synonyms = synonyms_to_add_to_second_concept

12. C_new2.abbreviations = abbreviations_to_add_to_second_concept

13. C.usage_status = “retired”

14. For each P1st belonging to parents_to_add_to_first_concept,

P1st.children(SVi+1) = P1st.children(SVi) U {C_new1}

15. For each Ch1st belonging to children_to_add_to_first_concept,

Ch1st.parents(SVi+1) = Ch1st.parents(SVi) U {C_new1}

 16. For each P2nd belonging to parents_to_add_to_second_concept,

P2nd.children(SVi+1) = P2nd.children(SVi) U {C_new2}

 17. For each Ch2nd belonging to children_to_add_to_second_concept,

Ch2nd.parents(SVi+1) = Ch2nd.parents(SVi) U {C_new2}

Change Operation. Add attribute

ASSUMPTIONS:

1. SV is a shared vocabulary

2. A is a shared-vocabulary attribute

INPUT PARAMETER:

216

1. String new_attribute_name

CONSTRAINTS:

 1. For all attributes A belonging to SV such that A.usage_status = “current,”

A.attribute_name ��new_ attribute _name

EFFECTS:

1. New attribute A is created

2. A.attribute_id = next integer concept identifier assigned by system

3. A.attribute_name = new_ attribute _name

4. A.usage_status = “current”

5. SVi+1 = SVi U {A}

Change Operation. Retire attribute

ASSUMPTIONS:

1. SV is a shared vocabulary

2. A is a shared-vocabulary attribute

INPUT PARAMETER:

1. Attribute A

CONSTRAINTS:

1. A.usage_status ��³UHWLUHG´

2. For all concepts C belonging to SV such that C.usage_status = “current” and

for all AV belonging to C, AV.attribute ��A

EFFECTS:

1. A.usage_status = “retired”

Change Operation. Merge two attributes into one of the two attributes

ASSUMPTIONS:

1. SV is a shared vocabulary

217

2. A1 is a shared-vocabulary attribute

3. A2 is a shared-vocabulary attribute

2. A_to_keep is a shared-vocabulary attribute

3. A_to_retire is a shared-vocabulary attribute

INPUT PARAMETERS:

1. Attribute A1

2. Attribute A2

3. Attribute A_to_keep

4. Attribute A_to_retire

CONSTRAINTS:

1. A1 belongs to SV

2. A2 belongs to SV

3. A1 ��A2

4. A1.usage_status ��³UHWLUHG´

5. A2.usage_status ��³UHWLUHG´

6. (A1 = A_to_keep) <=> (A2 = A_to_retire)

7. (A2 = A_to_keep) <=> (A1 = A_to_retire)

EFFECTS:

1. A_to_retire.usage_status = “retired”

Change Operation. Merge two attributes into new attribute

ASSUMPTIONS:

1. SV is a shared vocabulary

2. A1 is a shared-vocabulary attribute

3. A2 is a shared-vocabulary attribute

INPUT PARAMETERS:

1. Attribute A1

218

2. Attribute A2

3. String new_attribute_name

CONSTRAINTS:

1. A1 belongs to SV

2. A2 belongs to SV

3. A1 ��A2

4. A1.usage_status ��³UHWLUHG´

5. A2.usage_status ��³UHWLUHG´

6. For all attributes A belonging to SV such that A.usage_status = “current,”

A.attribute_name ��new_attribute_name

EFFECTS:

 1. Create attribute A_new and add A_new to vocabulary

a. Attribute A_new is created

b. A_new.attribute_id = next integer attribute identifier assigned by system

c. A_new.attribute_name = new_attribute_name

d. A_new.usage_status = “current”

2. A1.usage_status = “retired”

3. A2.usage_status = “retired”

Change Operation. Replace concept name

ASSUMPTIONS:

1. SV is a shared vocabulary

2. C is a shared-vocabulary concept

3. old_name = C.concept_name

INPUT PARAMETERS:

1. Concept C

2. String new_name

219

CONSTRAINTS:

1. C belongs to SV

2. C.usage_status ��³UHWLUHG´

3. For all concepts C belonging to SV such that C.usage_status = “current,”

C.concept_name ��new_name

4. new_name ��old_name

EFFECTS:

1. C.concept_name = new_name

2. C.synonyms(SVi+1) = C.synonyms(SVi) U {old_name}

3. If C.synonyms contains new_name, then

C.synonyms(SVi+1) = C.synonyms(SVi) - {new_name}

Change Operation. Correct concept name

ASSUMPTIONS:

1. SV is a shared vocabulary

2. C is a shared-vocabulary concept

3. old_name = concept_name

INPUT PARAMETERS:

1. Concept C

2. String new_name

CONSTRAINTS:

1. C belongs to SV

2. C.usage_status ��³UHWLUHG´

3. For all concepts C belonging to SV such that C.usage_status = “current,”

C.concept_name ��new_name

4. new_name ��old_name

EFFECTS:

220

1. C.concept_name = new_name

2. If C.synonyms contains new_name, then

C.synonyms(SVi+1) = C.synonyms(SVi) - {new_name}

Change Operation. Replace concept definition

ASSUMPTIONS:

1. SV is a shared vocabulary

2. C is a shared-vocabulary concept

3. old_definition = C.concept_definition

INPUT PARAMETERS:

1. Concept C

2. String new_definition

CONSTRAINTS:

1. C belongs to SV

2. C.usage_status = “retired”

3. For all concepts C belonging to SV such that C.usage_status = “current,”

C.concept_definition ��new_definition

4. new_definition ��old_definition

EFFECTS:

1. C.concept_definition = new_definition

Change Operation. Add synonym

ASSUMPTIONS:

1. SV is a shared vocabulary

2. C is a shared-vocabulary concept

INPUT PARAMETERS:

1. Concept C

221

2. String new_synonym

CONSTRAINTS:

1. C belongs to SV

2. C.usage_status ��³UHWLUHG´

3. C.concept_name ��new_synonym

4. For all synonyms Syn belonging to C.synonyms, Syn ��new_synonym

EFFECTS:

1. C.synonyms(SVi+1) = C.synonyms(SVi) U {new_synonym}

Change Operation. Delete synonym

ASSUMPTIONS:

1. SV is a shared vocabulary

2. C is a shared-vocabulary concept

INPUT PARAMETERS:

1. Concept C

2. String synonym_to_delete

CONSTRAINTS:

1. C belongs to SV

2. C.usage_status ��³UHWLUHG´

3. synonym_to_delete belongs to C.synonyms

EFFECTS:

(1) C.synonyms = C.synonyms - {synonym_to_delete}

Change Operation. Add abbreviation

ASSUMPTIONS:

1. SV is a shared vocabulary

2. C is a shared-vocabulary concept

222

INPUT PARAMETERS:

1. Concept C

2. String new_ abbreviation

CONSTRAINTS:

1. C belongs to SV

2. C.usage_status ��³UHWLUHG´

3. Ci.concept_name ��new_abbreviation

4. For all abbreviations Abbrev belonging to C.abbreviations, Abbrev �

new_abbreviation

EFFECTS:

1. C.abbreviations = C.abbreviations U {new_abbreviation}

Change Operation. Delete abbreviation

ASSUMPTIONS:

1. SV is a shared vocabulary

2. C is a shared-vocabulary concept

INPUT PARAMETERS:

1. Concept C

2. String abbreviation _to_delete

CONSTRAINTS:

1. C belongs to SV

2. C.usage_status ��³UHWLUHG´

3. abbreviation_to_delete belongs to C.abbreviations

EFFECTS:

1. C.abbreviations = C.abbreviations - {abbreviation_to_delete}

Change Operation. Replace UMLS code

223

ASSUMPTIONS:

1. SV is a shared vocabulary

2. C is a shared-vocabulary concept

3. old_umls_code = C.umls_code

INPUT PARAMETERS:

1. Concept C

2. String new_umls_code

CONSTRAINTS:

1. C belongs to SV

2. C.usage_status ��³UHWLUHG´

3. C.umls_code ��new_umls_code

4. new_umls_code belongs to the set of concept unique identifiers in the UMLS

EFFECTS:

1. C.umls_code = new_umls_code

Change Operation. Add parent

ASSUMPTIONS:

1. SV is a shared vocabulary

2. C is a shared-vocabulary concept

3. P is a shared-vocabulary concept

INPUT PARAMETERS:

1. Concept C

2. Concept P

CONSTRAINTS:

1. C belongs to SV

2. C.usage_status ��³UHWLUHG´

3. C ��URRW�RI�SV

224

4. P belongs to SV

5. P.usage_status ��³UHWLUHG´

6. P ��C

7. C does not belong to P.ancestors

8. For every attribute–value pair or inherited attribute–value pair of P, AVP (where

AVP = {AP, VP}), and for any attribute–value pair of C, AVC, (where AVC =

{ AC, VC}), if AP = AC then VP = VC or VP is an ancestor of VC.

EFFECTS:

1. C.parents(SVi+1) = C.parents(SVi) U {P}

2. P.children(SVi+1) = P.children(SVi) U {C}

3. C.avpairs(SVi+1) = C.avpairs(SVi)

- ((P.avpairs U P.inherited-avpairs) INT C.avpairs)

4. For each D belonging to C.descendants,

D.avpairs(SVi+1) = D.avpairs(SVi)

- ((P.avpairs U P.inherited-avpairs) INT D.avpairs)

Change Operation. Remove parent

ASSUMPTIONS:

1. SV is a shared vocabulary

2. C is a shared-vocabulary concept

3. P is a shared-vocabulary concept

INPUT PARAMETERS:

1. Concept C

2. Concept P

CONSTRAINTS:

1. C belongs to SV

2. C ��URRW�RI�SV

225

3. C.usage_status ��³UHWLUHG´

4. P belongs to SV

5. P belongs to C.parents

6. C.parents - {P} ��^`��P is not the only parent of C}

EFFECTS:

1. C.parents(SVi+1) = C.parents(SVi) - {P}

2. P.children(SVi+1) = P.children(SVi) - {C}

Change Operation. Add child

ASSUMPTIONS:

1. SV is a shared vocabulary

2. C is a shared-vocabulary concept

3. Ch is a shared-vocabulary concept (not a root)

INPUT PARAMETERS:

1. Concept or C

2. Concept Ch

CONSTRAINTS:

1. C belongs to SV

2. Ch belongs to SV

3. C.usage_status ��³UHWLUHG´

4. Ch.usage_status ��³UHWLUHG´

5. Ch ��URRW�RI�SV

6. Ch ��C

7. Ch does not belong to C.ancestors

8. For every attribute–value pair or inherited attribute–value pair of C, AVC

(where AVC = {AC, VC}), and for any attribute–value pair of Ch, AVCh, (where

AVCh = {ACh, VCh}), if AC = ACh then VC = VCh or VC is an ancestor of VCh.

226

EFFECTS:

1. C.children(SVi+1) = C.children(SVi) U {Ch}

2. Ch.parents(SVi+1) = Ch.parents(SVi) U {C}

3. Ch.avpairs(SVi+1) = Ch.avpairs(SVi)

 - ((C.avpairs(SVi) U C.inherited-avpairs(SVi)) INT Ch.avpairs(SVi))

4. For each D belonging to Ch.descendants,

D.avpairs(SVi+1) = D.avpairs(SVi)

- ((C.avpairs(SVi) U C.inherited-avpairs(SVi)) INT D.avpairs(SVi))

Change Operation. Remove child

ASSUMPTIONS:

1. SV is a shared vocabulary

2. C is a shared-vocabulary concept

3. Ch is a shared-vocabulary concept

INPUT PARAMETERS:

1. Concept C

2. Concept Ch

CONSTRAINTS:

1. C belongs to SV

2. Ch belongs to SV

3. C.usage_status ��³UHWLUHG´

4. Ch belongs to C.children

5. Ch.parents - {C} ��^`��C is not the only parent of Ch}

EFFECTS:

1. C.children(SVi+1) = C.children(SVi) - {Ch}

2. Ch.parents(SVi+1) = Ch.parents(SVi) - {C}

227

Change Operation. Add attribute–value pair

ASSUMPTIONS:

1. SV is a shared vocabulary

2. C is a shared-vocabulary concept

3. A is a shared-vocabulary attribute

4. Val is a shared-vocabulary concept

INPUT PARAMETERS:

1. Attribute A

2. Concept Val

CONSTRAINTS:

1. C belongs to SV

2. A belongs to SV

3. Val belongs to SV

4. C.usage_status ��³UHWLUHG´

5. A.usage_status ��³UHWLUHG´

6. Val.usage_status ��³UHWLUHG´

7. For any attribute–value pair or inherited attribute–value pair of C, AVC, (where

AVC = {AC, VC}), if AC = A, then VC ��Val (cannot add the attribute–value pair

if it is already an attribute value pair or an inherited attribute value pair)

8. For any inherited attribute–value pair of C, AVC, (where AVC = {AC, VC}), if AC

= A, then VC is an ancestor of Val

9. For any attribute–value pair of D, AVD, where D belongs to C.descendants,

(where AVD = {AD, VD}), if AD = A, then Val = VD or VD is a descendant of

Val

EFFECTS:

Let AV be the avpair that belongs to C.avpairs in SVi such that AV.attribute = A

and AV.value = Val.

1. C.avpairs(SVi+1) = C.avpairs(SVi) U {AV}

228

2. For all D belonging to C.descendants, if D.avpairs contains avpair AV, then

D.avpairs(SVi+1) = D.avpairs(SVi) - {AV}

Change Operation. Delete attribute–value pair

ASSUMPTIONS:

1. SV is a shared vocabulary

2. C is a shared-vocabulary concept

3. A is a shared-vocabulary attribute

4. Val is a shared-vocabulary concept

INPUT PARAMETERS:

1. Attribute A

2. Concept Val

CONSTRAINTS:

1. C belongs to SV

2. A belongs to SV

3. V belongs to SV

4. C.usage_status ��³UHWLUHG´

5. A.usage_status ��³UHWLUHG´

6. V.usage_status ��³UHWLUHG´

7. There exists attribute–value pair AV belonging to C.avpairs such that

AV.attribute = A and AV.value = Val

EFFECTS:

1. C.avpairs(SVi+1) = C.avpairs(SVi) - {AV}

Change Operation. Replace attribute value

ASSUMPTIONS:

1. SV is a shared vocabulary

229

2. C is a shared-vocabulary concept

INPUT PARAMETERS

1. Attribute A

2. Concept oldVal

3. Concept newVal

CONSTRAINTS:

1. C belongs to SV

2. A belongs to SV

3. oldVal belongs to SV

4. newVal belongs to SV

5. C.usage_status ��³UHWLUHG´

6. A.usage_status ��³UHWLUHG´

7. oldVal.usage_status ��³UHWLUHG´

8. newVal.usage_status ��³UHWLUHG´

9. newVal ��oldVal

10. There exists attribute–value pair AV belonging to C.avpairs such that

AV.attribute = A and AV.value = oldVal

11. There does not exist attribute–value pair AV belonging to C.avpairs such that

AV.attribute = A and AV.value = newVal

12. For any inherited attribute–value pair of C, AVC, (where AVC = {AC, VC}), if

AC = A, then VC is an ancestor of Val

13. For any attribute–value pair of D, where D belongs to C.descendants, (AVD =

{ AD, VD}), if AD = A, then VD = newVal or VD is a descendant of Val

EFFECTS:

Let AV be the avpair that belongs to C.avpairs in SVi such that AV.attribute = A

and AV.value = oldVal

1. AV.value = newVal

2. For all D belonging to C.descendants, if D.avpairs contains avpair AV, then

230

D.avpairs(SVi+1) = D.avpairs(SVi) - {AV}

Change Operation. Replace attribute name

ASSUMPTIONS:

1. SV is a shared vocabulary

2. A is a shared-vocabulary attribute

3. old_attribute_name = A.attribute_name

INPUT PARAMETERS:

(1) Attribute A

(2) String new_attribute_name

CONSTRAINTS:

(1) A belongs to SV

(2) A.usage_status ��³UHWLUHG´

(3) new_attribute_name ��old_attribute_name

(4) For all attributes A belonging to SV such that A.usage_status = “current,”

A.attribute_name ��new_attribute_name

EFFECTS:

(1) A.attribute_name = new_attribute_name

Change Operation. Replace attribute definition

ASSUMPTIONS:

1. SV is a shared vocabulary

2. A is a shared-vocabulary attribute

3. old_attribute_definition = A.attribute_definition

INPUT PARAMETERS:

1. Attribute A

2. String new_attribute_definition

231

CONSTRAINTS:

1. A belongs to SV

2. A.usage_status ��³UHWLUHG´

3. new_attribute_definition ��old_attribute_definition

4. For all attributes A belonging to SV such that A.usage_status = “current,”

A.attribute_definition ��new_attribute_definition

EFFECTS:

1. A.attribute_definition = new_attribute_definition

233

Appendix D: Local-Vocabulary Change Model

The local-vocabulary change model comprises of a set of change operations and

three requirements. The change operations may be performed on local vocabulary LV,

one change at a time. Formal definitions for change operations that are defined in both

the shared vocabulary and the local vocabulary were given in Appendix C; these

definitions hold for the local-vocabulary change operations, but are modified by

assumptions that override assumptions for shared-vocabulary change operations, and may

have additional constraints and effects. There are four additional change operations that

exist in the local vocabulary, but that do not exist in the shared vocabulary. This appendix

gives specifications for the local modifications to shared-vocabulary–change operations,

and for the four additional change operations.

Definition. A change operation is a valid local-vocabulary change operation if it is one

of the following:

1. A valid shared-vocabulary change operation

2. Hide concept

3. Preserve concept

4. Hide attribute

5. Preserve attribute

Requirement D1. If LVi fulfills the requirements of a local vocabulary, and change_op is

a valid local-vocabulary change operation, which causes the local vocabulary

to be transformed from an initial state, LVi, to a subsequent state, LVi+1, then

LVi+1 also fulfills the requirements of a local vocabulary.

 change_op

LVi ---------------> LVi+1

234

Requirement D2. If LVi fulfills the requirements of a local vocabulary, change_op1,

change_op2, ...change_opn are valid local-vocabulary change operations, and

LVi+1, LVi+2, ...LVi+n are the states of the local vocabulary after each change

operation respectively, then LVi+n also fulfills the structural requirements of a

local vocabulary.

 change_op1 change_op2 change_opn

LVi -------------> LVi+1 -------------> LVi+2 . . . -------------> LVi+n

For each change operation that exists in both the shared vocabulary and the local

vocabulary, the description of the operation given in Appendix C applies to the operation

by the same name in the local vocabulary, but “SV” is replaced by “LV,” and the

following modifications hold.

Change Operation. Add concept (Local Vocabulary)

ASSUMPTIONS:

1. LV is a local vocabulary

2. P is a local-vocabulary concept

ADDITIONAL EFFECT:

1. C.site_of_origin = “local_only”

Change Operation. Retire concept (Local Vocabulary)

ASSUMPTIONS:

1. LV is a local vocabulary

2. C is a local-vocabulary concept

3. P1, P2, ... Pn are local-vocabulary concepts

4. Ch1, Ch2, ... Chm are local-vocabulary concepts

235

ADDITIONAL CONSTRAINTS:

1. C.site_of_origin = “local_only”

Change Operation. Merge two concepts into one of the two concepts (Local

Vocabulary)

ASSUMPTIONS:

1. LV is a local vocabulary

2. C1 is a local-vocabulary concept

3. C2 is a local-vocabulary concept

4. C_to_keep is a local-vocabulary concept

5. C_to_retire is a local-vocabulary concept

ADDITIONAL CONSTRAINT:

1. C_to_retire.site_of_origin = “local_only”

Change Operation. Merge two concepts into new concept (Local Vocabulary)

ASSUMPTIONS:

1. LV is a local vocabulary

2. C1 is a local-vocabulary concept

3. C2 is a local-vocabulary concept

4. P is a local-vocabulary concept

ADDITIONAL CONSTRAINTS:

1. C1.site_of_origin = “local_only”

2. C2.site_of_origin = “local_only”

EFFECTS:

1. If P.site_of_origin = “shared,” then P.site_of_origin =

“locally_modified_shared”

236

Change Operation. Split concept into two new concepts (Local Vocabulary)

ASSUMPTIONS:

1. LV is a local vocabulary

2. C is a local-vocabulary concept

3. P1 is a local-vocabulary concept

4. P2 is a local-vocabulary concept

ADDITIONAL CONSTRAINTS:

1. C.site_of_origin = “local_only”

EFFECTS:

1. If P1.site_of_origin = “shared,” then P1.site_of_origin =

“locally_modified_shared”

2. If P2.site_of_origin = “shared,” then P2.site_of_origin =

“locally_modified_shared”

3. For all concepts P belonging to parents_to_add_to_first_concept, if

P.site_of_origin = “shared,” then P.site_of_origin =

“locally_modified_shared”

4. For all concepts P belonging to parents_to_add_to_second_concept, if

P.site_of_origin = “shared,” then P.site_of_origin =

“locally_modified_shared”

5. For all concepts Ch belonging to children_to_add_to_first_concept, if

Ch.site_of_origin = “shared,” then Ch.site_of_origin =

“locally_modified_shared”

6. For all concepts Ch belonging to children_to_add_to_second_concept, if

Ch.site_of_origin = “shared,” then Ch.site_of_origin =

“locally_modified_shared”

Change Operation. Add attribute or retire attribute (Local Vocabulary)

ASSUMPTIONS:

1. LV is a local vocabulary

237

2. A is a local-vocabulary attribute

ADDITIONAL EFFECTS:

1. A.site_of_origin = “local_only”

Change Operation. Merge two attributes into one of the two attributes (Local

Vocabulary)

ASSUMPTIONS:

1. LV is a local vocabulary

2. A1 is a local-vocabulary attribute

3. A2 is a local-vocabulary attribute

4. A_to_keep is a local-vocabulary attribute

5. A_to_retire is a local-vocabulary attribute

ADDITIONAL CONSTRAINT:

1. A_to_retire.site_of_origin = “local_only”

Change Operation. Merge two attributes into new attribute (Local Vocabulary)

ASSUMPTIONS:

1. LV is a local vocabulary

2. A1 is a local-vocabulary attribute

3. A2 is a local-vocabulary attribute

ADDITIONAL CONSTRAINTS:

1. A1.site_of_origin = “local_only”

2. A2.site_of_origin = “local_only”

Change Operation. Replace concept name, correct concept name, replace concept

definition, add synonym, delete synonym, add abbreviation, delete abbreviation, or

replace UMLS code (Local Vocabulary)

ASSUMPTIONS:

238

1. LV is a local vocabulary

2. C is a local-vocabulary concept

ADDITIONAL EFFECT:

1. If C.site_of_origin = “shared,” then C.site_of_origin =

“locally_modified_shared”

Change Operation. Add child and remove child (Local Vocabulary)

ASSUMPTIONS:

1. LV is a local vocabulary

2. C is a local-vocabulary concept

3. Ch is a local-vocabulary concept

4. Ch is not a local-vocabulary root concept

ADDITIONAL EFFECT:

1. If C.site_of_origin = “shared,” then C.site_of_origin =

“locally_modified_shared”

Change Operation. Add attributeíYDOXH�SDLU��GHOHWH�DWWULEXWH±YDOXH�SDLU��or replace

attribute value (Local Vocabulary)

ASSUMPTIONS:

1. LV is a local vocabulary

2. C is a local-vocabulary concept

3. A is a local-vocabulary attribute

4. Val is a local-vocabulary concept

ADDITIONAL EFFECT:

1. If C.site_of_origin = “shared,” then C.site_of_origin =

“locally_modified_shared”

239

Change Operation. Replace attribute name or replace attribute definition (Local

Vocabulary)

ASSUMPTIONS:

1. LV is a local vocabulary

2. A is a local-vocabulary attribute

ADDITIONAL EFFECT:

1. If A.site_of_origin = “shared,” then A.site_of_origin =

“locally_modified_shared”

The following operation exists only in the local vocabulary. They do not exist in

the shared vocabulary.

Change Operation. Hide concept

ASSUMPTIONS:

1. LV is a local vocabulary

2. C is a local-vocabulary concept

INPUT PARAMETERS:

 1. Concept C

CONSTRAINTS:

1. C belongs to LV

2. C.usage_status = “current”

3. C.site_of_origin = “shared” or “locally_modified_shared”

EFFECTS:

1. C.usage_status = “hidden”

Change Operation. Preserve concept

ASSUMPTIONS:

1. LV is a local vocabulary

240

2. C is a shared-vocabulary concept

INPUT PARAMETERS:

1. Concept C

CONSTRAINTS:

1. C belongs to LV

2. C.usage_status = “retired”

3. C.site_of_origin = “shared” or “locally_modified_shared”

EFFECTS:

1. C.usage_status = “preserved”

Change Operation. Hide attribute

ASSUMPTIONS:

1. LV is a local vocabulary

2. A is a local-vocabulary attribute

INPUT PARAMETER:

1. Attribute A

CONSTRAINTS:

1. A belongs to LV

2. A.usage_status = “current”

3. A.site_of_origin = “shared” or “locally_modified_shared”

EFFECT:

1. A.usage_status = “hidden”

Change Operation. Preserve attribute

ASSUMPTIONS:

1. LV is a local vocabulary

2. C is a shared-vocabulary concept

241

INPUT PARAMETER:

 1. Attribute A

CONSTRAINTS:

1. A belongs to LV

2. A.usage_status = “retired”

3. A.site_of_origin = “shared” or “locally_modified_shared”

EFFECT:

1. A.usage_status = “preserved”

243

Appendix E: Shared-Vocabulary Log Model

The shared-vocabulary log model is specified by definitions and an axiom that

relate to documentation of changes completed in a shared vocabulary.

Definition. A change-operation record is the documentation of data elements for a

single change operation. The set of elements depends on the type of change

operation.

1. If the change is a vocabulary change operation, the set of data elements in

the change record includes universal data elements and change-specific

data elements.

2. If the change is a concept change operation, the set of data elements in the

change record includes universal data elements, concept–change-operation

data elements, and change-specific data elements.

3. If the change is an attribute change operation, the set of data elements in the

change record includes universal data elements, attribute–change-

operation data elements, and change-specific data elements.

The definitions of vocabulary change operations, concept-change operation, and

attribute-change operation were given in Section 3.2. The definitions of universal data

elements, concept–change-operation data elements, attribute–change-operation data

elements, and change-specific data elements are given in this appendix.

Definition. If CR1, CR2, ... CRn are change records that describe valid shared-vocabulary

change operations that have been applied to shared vocabulary SV in

sequence, then the ordered set {CR1, CR2, ... CRn} is a shared-vocabulary

log for SV.

Definition. The universal data elements for a change operation are the following:

1. Name of change operation (denoted change_name)

2. Timestamp

3. Author

4. Explanation

244

5. Sequence number assigned this change (denoted seq_num)

Definition. The concept–change-operation data elements are the following:

1. Current concept name

2. Concept identifier

Definition. The attribute–change-operation data elements are the following:

1. Current attribute name

2. Attribute identifier

For change record CR, these data elements are referred to as

CR.attribute_name and CR.attribute_id.

Definition. The change-specific data elements for add concept are the following:

1. Concept name of added concept

2. Concept identifier of added concept

3. Concept name of parent of added concept

4. Concept identifier of parent of added concept

Definition. The change-specific data elements for retire concept are the following:

1. Concept name of retired concept

2. Concept identifier of retired concept

Definition. The change-specific data elements for merge two concepts into one of the

two concepts are the following:

1. Concept name of first concept

2. Concept identifier of first concept

3. Concept name of second concept

245

4. Concept identifier of second concept

5. Concept name of concept to keep

6. Concept identifier of concept to keep

7. Concept name of concept to retire

8. Concept identifier of concept to retire

Definition. The change-specific data elements for merge two concepts into new

concept are the following:

1. Concept name of first concept

2. Concept identifier of first concept

3. Concept name of second concept

4. Concept identifier of second concept

5. Concept name of new concept

6. Concept identifier of new concept

7. Concept name of parent of new concept

8. Concept identifier of parent of new concept

Definition. The change-specific data elements for split concept into two new concepts

are the following:

1. Concept name of split concept

2. Concept identifier of split concept

3. Concept name of first new concept

4. Concept identifier of first new concept

5. Concept name of second new concept

6. Concept identifier of second new concept

7. Concept name of parent of first new concept

8. Concept identifier of parent of first new concept

246

9. Concept name of parent of second new concept

10. Concept identifier of parent of second new concept

Definition. The change-specific data elements for add attribute are the following:

1. Attribute name of added attribute

2. Attribute identifier of added attribute

Definition. The change-specific data elements for retire attribute are the following:

1. Attribute name of retired attribute

2. Attribute identifier of retired attribute

Definition. The change-specific data elements for merge two attributes into one of the

two attributes are the following:

1. Attribute name of first attribute

2. Attribute identifier of first attribute

3. Attribute name of second attribute

4. Attribute identifier of second attribute

5. Attribute name of attribute to keep

6. Attribute identifier of attribute to keep

7. Attribute name of attribute to retire

8. Attribute identifier of attribute to retire

Definition. The change-specific data elements for merge two attributes into new

attribute are the following:

1. Attribute name of first attribute

2. Attribute identifier of first attribute

3. Attribute name of second attribute

247

4. Attribute identifier of second attribute

5. Attribute name of new attribute

6. Attribute identifier of new attribute

Definition. The change-specific data elements for replace concept name are the

following:

1. New concept name

2. Old concept name

Definition. The change-specific data elements for correct concept name are the

following:

1. New concept name

2. Old concept name

Definition. The change-specific data elements for replace concept definition are the

following:

1. New concept definition

2. Old concept definition

Definition. The change-specific data elements for add synonym are the following:

1. Added synonym

248

Definition. The change-specific data elements for delete synonym are the following:

1. Deleted synonym

Definition. The change-specific data elements for add abbreviation are the following:

1. Added abbreviation

Definition. The change-specific data elements for delete abbreviation are the following:

1. Deleted abbreviation

Definition. The change-specific data elements for replace UMLS code are the following:

1. New UMLS code

2. Old UMLS code

Definition. The change-specific data elements for add parent are the following:

1. Added parent name

2. Added parent identifier

Definition. The change-specific data elements for remove parent are the following:

1. Removed parent name

2. Removed parent identifier

Definition. The change-specific data elements for add child are the following:

1. Added child name

2. Added child identifier

249

Definition. The change-specific data elements for remove child are the following:

1. Removed child name

2. Removed child identifier

Definition. The change-specific data elements for add attribute–value pair are the

following:

1. Attribute name of attribute in added attribute–value pair

2. Attribute identifier of attribute in added attribute–value pair

3. Concept name of value in added attribute–value pair

4. Concept identifier of value in added attribute–value pair

Definition. The change-specific data elements for delete attribute–value pair are the

following:

1. Attribute name of attribute in deleted attribute–value pair

2. Attribute identifier of attribute in deleted attribute–value pair

3. Concept name of value in deleted attribute–value pair

4. Concept identifier of value in deleted attribute–value pair

Definition. The change-specific data elements for replace attribute value are the

following:

1. Attribute name

2. Attribute identifier

3. New value name

4. New value identifier

5. Old value name

6. Old value identifier

250

Definition. The change-specific data elements for replace attribute name are the

following:

1. New attribute name

2. Old attribute name

Definition. The change-specific data elements for replace attribute definition are the

following:

1. New attribute definition

2. Old attribute definition

Axiom E1

Suppose:

1. SV is a shared vocabulary

2. SVLog is a shared log

3. n is the number of shared-vocabulary change operations applied to SV

4. sv_opi and sv_opj are the ith and jth shared-vocabulary change operations,

respectively, applied to SV (i, j = 1 to n)

5. {sv_op1, sv_op2, ... sv_opn} is the ordered set of n shared-vocabulary change

operations applied to SV

6. CRi and CRj are the ith and jth change records, respectively, in SVLog (i, j = 1

to n)

7. SVLog = {CR1, CR2, ... CRn}

If sv_opi was applied to SV before sv_opj was applied to SV, then CRi.seq_num <

CRj.seq_num in SVLog. (The order of change records in the log corresponds to the order

in which change records were applied to the shared vocabulary.)

251

Appendix F: Document Type Definition (DTD) for Shared
Vocabulary

<!DOCTYPE simple [

<!ELEMENT VOCABULARY (

ROOT,

ALL_ATTRIBUTES,

ALL_CONCEPTS,

ALL_LINKS)>

<!ELEMENT ROOT (

ROOT_NAME,

ROOT_ID,

ROOT_USAGE_STATUS)>

<!ELEMENT ROOT_NAME (#PCDATA)>

<!ELEMENT ROOT_ID (#PCDATA)>

<!ELEMENT ROOT_USAGE_STATUS (#PCDATA)>

<!ELEMENT ALL_CONCEPTS (

CONCEPT*)>

<!ELEMENT CONCEPT (

CONCEPT_NAME,

CONCEPT_ID,

CONCEPT_USAGE_STATUS,

CONCEPT_DEFINITION?,

UMLS_CODE?,

SYNONYM_SET?,

ABBREVIATION_SET?)>

<!ELEMENT CONCEPT_NAME (#PCDATA)>

<!ELEMENT CONCEPT_ID (#PCDATA)>

<!ELEMENT CONCEPT_USAGE_STATUS (#PCDATA)>

<!ELEMENT UMLS_CODE (#PCDATA)>

<!ELEMENT SYNONYM_SET (

SYNONYM*)>

<!ELEMENT SYNONYM (#PCDATA)>

<!ELEMENT ABBREVIATION_SET (

ABBREVIATION*)>

<!ELEMENT ABBREVIATION (#PCDATA)>

<!ELEMENT ALL_ATTRIBUTES (

ATTRIBUTE*)>

<!ELEMENT ATTRIBUTE (

252

ATTRIBUTE_NAME,

ATTRIBUTE_ID,

ATTRIBUTE_USAGE_STATUS,

ATTRIBUTE_DEFINITION?)>

<!ELEMENT ATTRIBUTE_NAME (#PCDATA)>

<!ELEMENT ATTRIBUTE_ID (#PCDATA)>

<!ELEMENT ATTRIBUTE_USAGE_STATUS (#PCDATA)>

<!ELEMENT ATTRIBUTE_DEFINITION (#PCDATA)>

<!ELEMENT ALL_LINKS (

LINKS_FOR_ROOT*,

LINKS_FOR_CONCEPT*)>

<!ELEMENT LINKS_FOR_ROOT (

ROOT_NAME,

ROOT_ID,

CHILD_SET)>

<!ELEMENT LINKS_FOR_CONCEPT (

CONCEPT_NAME,

CONCEPT_ID,

PARENT_SET,

CHILD_SET,

AVPAIR_SET)>

<!ELEMENT PARENT_SET (

PARENT+)>

<!ELEMENT PARENT (

PARENT_NAME,

PARENT_ID)>

<!ELEMENT PARENT_NAME (#PCDATA)>

<!ELEMENT PARENT_ID (#PCDATA)>

<!ELEMENT CHILD_SET (

CHILD*)>

<!ELEMENT CHILD (

CHILD_NAME,

CHILD_ID)>

<!ELEMENT CHILD_NAME (#PCDATA)>

<!ELEMENT CHILD_ID (#PCDATA)>

<!ELEMENT AVPAIR_SET (

AVPAIR*)>

<!ELEMENT AVPAIR (

AVPAIR_ATTRIBUTE,

AVPAIR_VALUE)>

253

<!ELEMENT AVPAIR_ATTRIBUTE (

AVPAIR_ATTRIBUTE_NAME,

AVPAIR_ATTRIBUTE_ID)>

<!ELEMENT AVPAIR_ATTRIBUTE_NAME (#PCDATA)>

<!ELEMENT AVPAIR_ATTRIBUTE_ID (#PCDATA)>

<!ELEMENT AVPAIR_VALUE (

AVPAIR_VALUE_NAME,

AVPAIR_VALUE_ID)>

<!ELEMENT AVPAIR_VALUE_NAME (#PCDATA)>

<!ELEMENT AVPAIR_VALUE_ID (#PCDATA)>

<!ELEMENT RETIRED_PARENT_SET (

RETIRED_PARENT*)>

<!ELEMENT RETIRED_PARENT (

RETIRED_PARENT_NAME,

RETIRED_PARENT_ID)>

<!ELEMENT RETIRED_PARENT_NAME (#PCDATA)>

<!ELEMENT RETIRED_PARENT_ID (#PCDATA)>

<!ELEMENT RETIRED_CHILDREN_SET (

RETIRED_CHILD*)>

<!ELEMENT RETIRED_CHILD (

RETIRED_CHILD_NAME,

RETIRED_CHILD_ID)>

<!ELEMENT RETIRED_CHILD_NAME (#PCDATA)>

<!ELEMENT RETIRED_CHILD_ID (#PCDATA)>

]>

Key:

Separated by commas (,): must appear in order listed

Plus (+): must appear at least once and possibly more

Asterisk (*): may appear any number of times, including zero times

Question mark (?): optional element, but if it appears, it can appear
only once

Vertical slash (|): means OR

255

Appendix G: Document Type Definition (DTD) for Log

<!DOCTYPE simple [

<!ELEMENT LOG (

(VOCABULARY_CHANGE |

CONCEPT_CHANGE |

ATTRIBUTE_CHANGE)*)>

<!ELEMENT VOCABULARY_CHANGE

(UNIVERSAL_CHANGE_FEATURES,

(CONCEPT_ADDITION |

CONCEPT_RETIREMENT |

ATTRIBUTE_ADDITION |

ATTRIBUTE_RETIREMENT |

CONCEPT_MERGE_INTO_EXISTING |

CONCEPT_MERGE_INTO_NEW |

CONCEPT_SPLIT |

ATTRIBUTE_MERGE_INTO_EXISTING |

ATTRIBUTE_MERGE_INTO_NEW))>

<!ELEMENT CONCEPT_CHANGE (

UNIVERSAL_CHANGE_FEATURES,

CONCEPT_CHANGE_FEATURES,

(CONCEPT_NAME_REPLACEMENT |

CONCEPT_DEFINITION_REPLACEMENT |

SYNONYM_ADDITION |

SYNONYM_DELETION |

ABBREVIATION_ADDITION |

ABBREVIATION_DELETION |

UMLS_CODE_REPLACEMENT |

PARENT_ADDITION |

PARENT_REMOVAL |

CHILD_ADDITION |

CHILD_REMOVAL |

AVPAIR_ADDITION |

AVPAIR_DELETION |

ATTRIBUTE_VALUE_REPLACEMENT))>

<!ELEMENT ATTRIBUTE_CHANGE (

UNIVERSAL_CHANGE_FEATURES,

ATTRIBUTE_CHANGE_FEATURES,

256

(ATTRIBUTE_NAME_REPLACEMENT |

ATTRIBUTE_DEFINITION_REPLACEMENT))>

<!ELEMENT UNIVERSAL_CHANGE_FEATURES (

SEQUENCE_NUMBER,

TYPE_OF_CHANGE,

TIME_STAMP,

AUTHOR?,

EXPLANATION?)>

<!ELEMENT SEQUENCE_NUMBER (#PCDATA)>

<!ELEMENT TYPE_OF_CHANGE (#PCDATA)>

<!ELEMENT TIME_STAMP (#PCDATA)>

<!ELEMENT AUTHOR (#PCDATA)>

<!ELEMENT EXPLANATION (#PCDATA)>

<!ELEMENT CONCEPT_CHANGE_FEATURES (

CURRENT_CONCEPT_NAME,

CONCEPT_ID)>

<!ELEMENT CURRENT_CONCEPT_NAME (#PCDATA)>

<!ELEMENT CONCEPT_ID (#PCDATA)>

<!ELEMENT ATTRIBUTE_CHANGE_FEATURES (

CURRENT_ATTRIBUTE_NAME,

ATTRIBUTE_ID)>

<!ELEMENT CURRENT_ATTRIBUTE_NAME (#PCDATA)>

<!ELEMENT ATTRIBUTE_ID (#PCDATA)>

<!ELEMENT CONCEPT_ADDITION (

ADDED_CONCEPT_NAME,

ADDED_CONCEPT_ID,

ADDED_CONCEPT_PARENT_NAME,

ADDED_CONCEPT_PARENT_ID)>

<!ELEMENT ADDED_CONCEPT_NAME (#PCDATA)>

<!ELEMENT ADDED_CONCEPT_ID (#PCDATA)>

<!ELEMENT ADDED_CONCEPT_PARENT_NAME (#PCDATA)>

<!ELEMENT ADDED_CONCEPT_PARENT_ID (#PCDATA)>

<!ELEMENT CONCEPT_RETIREMENT (

RETIRED_CONCEPT_NAME,

RETIRED_CONCEPT_ID)>

<!ELEMENT RETIRED_CONCEPT_NAME (#PCDATA)>

<!ELEMENT RETIRED_CONCEPT_ID (#PCDATA)>

<!ELEMENT ATTRIBUTE_ADDITION (

ADDED_ATTRIBUTE_NAME,

ADDED_ATTRIBUTE_ID)>

257

<!ELEMENT ADDED_ATTRIBUTE_NAME (#PCDATA)>

<!ELEMENT ADDED_ATTRIBUTE_ID (#PCDATA)>

<!ELEMENT ATTRIBUTE_RETIREMENT (

RETIRED_ATTRIBUTE_NAME,

RETIRED_ATTRIBUTE_ID)>

<!ELEMENT RETIRED_ATTRIBUTE_NAME (#PCDATA)>

<!ELEMENT RETIRED_ATTRIBUTE_ID (#PCDATA)>

<!ELEMENT CONCEPT_MERGE_INTO_EXISTING (

FIRST_CONCEPT_NAME,

FIRST_CONCEPT_ID,

SECOND_CONCEPT_NAME,

SECOND_CONCEPT_ID,

CONCEPT_TO_KEEP_NAME,

CONCEPT_TO_KEEP_ID,

CONCEPT_TO_RETIRE_NAME,

CONCEPT_TO_RETIRE_ID)>

<!ELEMENT CONCEPT_MERGE_INTO_NEW (

FIRST_CONCEPT_NAME,

FIRST_CONCEPT_ID,

SECOND_CONCEPT_NAME,

SECOND_CONCEPT_ID,

CREATED_CONCEPT_NAME,

CREATED_CONCEPT_ID,

PARENT_OF_CREATED_CONCEPT_NAME,

PARENT_OF_CREATED_CONCEPT_ID)>

<!ELEMENT FIRST_CONCEPT_NAME (#PCDATA)>

<!ELEMENT FIRST_CONCEPT_ID (#PCDATA)>

<!ELEMENT SECOND_CONCEPT_NAME (#PCDATA)>

<!ELEMENT SECOND_CONCEPT_ID (#PCDATA)>

<!ELEMENT CONCEPT_TO_KEEP_NAME (#PCDATA)>

<!ELEMENT CONCEPT_TO_KEEP_ID (#PCDATA)>

<!ELEMENT CONCEPT_TO_RETIRE_NAME (#PCDATA)>

<!ELEMENT CONCEPT_TO_RETIRE_ID (#PCDATA)>

<!ELEMENT CREATED_CONCEPT_NAME (#PCDATA)>

<!ELEMENT CREATED_CONCEPT_ID (#PCDATA)>

<!ELEMENT PARENT_OF_CREATED_CONCEPT_NAME (#PCDATA)>

<!ELEMENT PARENT_OF_CREATED_CONCEPT_ID (#PCDATA)>

<!ELEMENT CONCEPT_SPLIT (

SPLIT_CONCEPT_NAME,

SPLIT_CONCEPT_ID,

258

FIRST_CREATED_CONCEPT_NAME,

FIRST_CREATED_CONCEPT_ID,

SECOND_CREATED_CONCEPT_NAME,

SECOND_CREATED_CONCEPT_ID,

PARENT_OF_FIRST_CREATED_CONCEPT_NAME,

PARENT_OF_FIRST_CREATED_CONCEPT_ID,

PARENT_OF_SECOND_CREATED_CONCEPT_NAME,

PARENT_OF_SECOND_CREATED_CONCEPT_ID)>

<!ELEMENT SPLIT_CONCEPT_NAME (#PCDATA)>

<!ELEMENT SPLIT_CONCEPT_ID (#PCDATA)>

<!ELEMENT FIRST_CREATED_CONCEPT_NAME (#PCDATA)>

<!ELEMENT FIRST_CREATED_CONCEPT_ID (#PCDATA)>

<!ELEMENT SECOND_CREATED_CONCEPT_NAME (#PCDATA)>

<!ELEMENT SECOND_CREATED_CONCEPT_ID (#PCDATA)>

<!ELEMENT PARENT_OF_FIRST_CREATED_CONCEPT_NAME (#PCDATA)>

<!ELEMENT PARENT_OF_FIRST_CREATED_CONCEPT_ID (#PCDATA)>

<!ELEMENT PARENT_OF_SECOND_CREATED_CONCEPT_NAME (#PCDATA)>

<!ELEMENT PARENT_OF_SECOND_CREATED_CONCEPT_ID (#PCDATA)>

<!ELEMENT ATTRIBUTE_MERGE_INTO_EXISTING (

FIRST_ATTRIBUTE_NAME,

FIRST_ATTRIBUTE_ID,

SECOND_ATTRIBUTE_NAME,

SECOND_ATTRIBUTE_ID,

ATTRIBUTE_TO_KEEP_NAME,

ATTRIBUTE_TO_KEEP_ID,

ATTRIBUTE_TO_RETIRE_NAME,

ATTRIBUTE_TO_RETIRE_ID)>

<!ELEMENT ATTRIBUTE_MERGE_INTO_NEW (

FIRST_ATTRIBUTE_NAME,

FIRST_ATTRIBUTE_ID,

SECOND_ATTRIBUTE_NAME,

SECOND_ATTRIBUTE_ID,

CREATED_ATTRIBUTE_NAME,

CREATED_ATTRIBUTE_ID)>

<!ELEMENT FIRST_ATTRIBUTE_NAME (#PCDATA)>

<!ELEMENT FIRST_ATTRIBUTE_ID (#PCDATA)>

<!ELEMENT SECOND_ATTRIBUTE_NAME (#PCDATA)>

<!ELEMENT SECOND_ATTRIBUTE_ID (#PCDATA)>

<!ELEMENT ATTRIBUTE_TO_KEEP_ID (#PCDATA)>

<!ELEMENT ATTRIBUTE_TO_RETIRE_ID (#PCDATA)>

259

<!ELEMENT CREATED_ATTRIBUTE_NAME (#PCDATA)>

<!ELEMENT CREATED_ATTRIBUTE_NAME (#PCDATA)>

<!ELEMENT CONCEPT_NAME_REPLACEMENT (

NEW_CONCEPT_NAME,

OLD_CONCEPT_NAME)>

<!ELEMENT CONCEPT_DEFINITION_REPLACEMENT (

NEW_CONCEPT_DEFINITION,

OLD_CONCEPT_DEFINITION)>

<!ELEMENT SYNONYM_ADDITION (

ADDED_SYNONYM)>

<!ELEMENT SYNONYM_DELETION (

DELETED_SYNONYM)>

<!ELEMENT ABBREVIATION_ADDITION (

ADDED_ABBREVIATION)>

<!ELEMENT ABBREVIATION_DELETION (

DELETED_ABBREVIATION)>

<!ELEMENT UMLS_CODE_REPLACEMENT (

NEW_UMLS_CODE,

OLD_UMLS_CODE)>

<!ELEMENT PARENT_ADDITION (

ADDED_PARENT_NAME,

ADDED_PARENT_ID)>

<!ELEMENT PARENT_REMOVAL (

REMOVED_PARENT_NAME,

REMOVED_PARENT_ID)>

<!ELEMENT CHILD_ADDITION (

ADDED_CHILD_NAME,

ADDED_CHILD_ID)>

<!ELEMENT CHILD_REMOVAL (

REMOVED_CHILD_NAME,

REMOVED_CHILD_ID)>

<!ELEMENT AVPAIR_ADDITION (

ADDED_AVPAIR_ATTRIBUTE_NAME,

ADDED_AVPAIR_ATTRIBUTE_ID,

ADDED_AVPAIR_VALUE_NAME,

ADDED_AVPAIR_VALUE_ID)>

<!ELEMENT AVPAIR_DELETED (

DELETED_AVPAIR_ATTRIBUTE_NAME,

DELETED_AVPAIR_ATTRIBUTE_ID,

DELETED_AVPAIR_VALUE_NAME,

260

DELETED_AVPAIR_VALUE_ID)>

<!ELEMENT ATTRIBUTE_VALUE_REPLACEMENT (

ATTRIBUTE_FOR_VALUE_REPLACEMENT_NAME,

ATTRIBUTE_FOR_VALUE_REPLACEMENT_ID,

NEW_VALUE_NAME,

NEW_VALUE_ID,

OLD_VALUE_NAME,

OLD_VALUE_ID)>

<!ELEMENT ATTRIBUTE_NAME_REPLACEMENT (

NEW_ATTRIBUTE_NAME,

OLD_ATTRIBUTE_NAME)>

<!ELEMENT ATTRIBUTE_DEFINITION_REPLACEMENT (

NEW_ATTRIBUTE_DEFINITION,

OLD_ATTRIBUTE_DEFINITION)>

<!ELEMENT NEW_CONCEPT_NAME (#PCDATA)>

<!ELEMENT OLD_CONCEPT_NAME (#PCDATA)>

<!ELEMENT NEW_CONCEPT_DEFINITION (#PCDATA)>

<!ELEMENT OLD_CONCEPT_DEFINITION (#PCDATA)>

<!ELEMENT ADDED_SYNONYM (#PCDATA)>

<!ELEMENT DELETED_SYNONYM (#PCDATA)>

<!ELEMENT ADDED_ABBREVIATION (#PCDATA)>

<!ELEMENT DELETED_ABBREVIATION (#PCDATA)>

<!ELEMENT NEW_UMLS_CODE (#PCDATA)>

<!ELEMENT OLD_UMLS_CODE (#PCDATA)>

<!ELEMENT ADDED_PARENT_NAME (#PCDATA)>

<!ELEMENT ADDED_PARENT_ID (#PCDATA)>

<!ELEMENT REMOVED_PARENT_NAME (#PCDATA)>

<!ELEMENT REMOVED_PARENT_ID (#PCDATA)>

<!ELEMENT ADDED_CHILD_NAME (#PCDATA)>

<!ELEMENT ADDED_CHILD_ID (#PCDATA)>

<!ELEMENT REMOVED_CHILD_NAME (#PCDATA)>

<!ELEMENT REMOVED_CHILD_ID (#PCDATA)>

<!ELEMENT ADDED_AVPAIR_NAME (#PCDATA)>

<!ELEMENT ADDED_AVPAIR_ID (#PCDATA)>

<!ELEMENT ADDED_AVPAIR_VALUE_NAME (#PCDATA)>

<!ELEMENT ADDED_AVPAIR_VALUE_ID (#PCDATA)>

<!ELEMENT DELETED_AVPAIR_NAME (#PCDATA)>

<!ELEMENT DELETED_AVPAIR_ID (#PCDATA)>

<!ELEMENT DELETED_AVPAIR_VALUE_NAME (#PCDATA)>

<!ELEMENT DELETED_AVPAIR_VALUE_ID (#PCDATA)>

261

<!ELEMENT ATTRIBUTE_FOR_VALUE_REPLACEMENT_NAME (#PCDATA)>

<!ELEMENT ATTRIBUTE_FOR_VALUE_REPLACEMENT_ID (#PCDATA)>

<!ELEMENT NEW_VALUE_NAME (#PCDATA)>

<!ELEMENT NEW_VALUE_ID (#PCDATA)>

<!ELEMENT OLD_VALUE_NAME (#PCDATA)>

<!ELEMENT OLD_VALUE_ID (#PCDATA)>

<!ELEMENT NEW_ATTRIBUTE_NAME (#PCDATA)>

<!ELEMENT OLD_ATTRIBUTE_NAME (#PCDATA)>

<!ELEMENT NEW_ATTRIBUTE_DEFINITION (#PCDATA)>

<!ELEMENT OLD_ATTRIBUTE_DEFINITION (#PCDATA)>

]>

Key:

Separated by commas (,): must appear in order listed

Plus (+): must appear at least once and possibly more

Asterisk (*): may appear any number of times, including zero times

Question mark (?): optional element, but if it appears, it can appear
only once

Vertical slash (|): means OR

263

Appendix H: Synchronization Actions

Table H 1. Action choices for add concept.

Action Steps

Action 1 Step 1: Add concept

Action 2
(if local name conflicts)

Step 1: Rename local concept with conflicting name
Step 2: Add concept

Action 3
(if local name conflicts)

Step 1: Rename local concept with conflicting name
Step 2: Add concept
Step 3: Rename new concept
Step 4: Rename local concept back to original name

Action 4
(if local concept has same
meaning)

Step 1: Add concept
Step 2: Merge local concept into shared concept
Step 3: Retain local name as synonym

Action 5
(if local concept has same
meaning)

Step 1: Add concept
Step 2: Merge local concept into shared concept
Step 3: Rename concept with local name
Step 4: Retain shared name as synonym

Action 6
(if local concept has same
meaning)

Step 1: Add concept
Step 2: Merge local concept into shared concept
Step 3: Rename concept with local name

Action 7 Step 1: Add concept
Step 2: Hide concept

Table H 2. Action choices for retire concept.

Action Steps

Action 1 Step 1: Retire concept

Action 2 Step 1: Retire concept
Step 2: Preserve concept

264

Table H 3. Action choices for split concept into two new concepts.

Action Steps

Action 1 Step 1: Split concept into two new concepts

Action 2 Step 1: Split concept into two new concepts
Step 2: Preserve retired concept

Table H 4. Action choices for merge two concepts into one of the two concepts.

Action Steps

Action 1 Step 1: Merge two concepts into one of the two concepts

Action 2 Step 1: Merge two concepts into one of the two concepts
Step 2: Preserve retired concept

Action 3
(if one concept is non-
parent ancestor of other in
LV)

Step 1: Retire local-only concepts in subsumption path
between the two concepts

Step 2: Merge two concepts into one of the two concepts

Action 4
(if one concept is non-
parent ancestor of other in
LV)

Step 1: Retire local-only concepts in subsumption path
between the two concepts

Step 2: Merge two concepts into one of the two concepts
Step 3: Preserve retired concept

265

Table H 5. Action choices for merge two concepts into new concept.

Action Steps

Action 1 Step 1: Merge two concepts into new concept

Action 2 Step 1: Merge two concepts into new concept
Step 2: Preserve first retired concept
Step 3: Preserve second retired concept

Action 3 Step 1: Merge two concepts into new concept
Step 2: Preserve first retired concept

Action 4 Step 1: Merge two concepts into new concept
Step 2: Preserve second retired concept

Action 5
(if one concept is non-
parent ancestor of other in
LV)

Step 1: Retire local concepts in subsumption path
between the two concepts

Step 2: Merge two concepts into new concept

Action 6
(if one concept is non-
parent ancestor of other in
LV)

Step 1: Retire local concepts in subsumption path
between the two concepts

Step 2: Merge two concepts into new concept
Step 3: Preserve first retired concept
Step 4: Preserve second retired concept

Action 7
(if one concept is non-
parent ancestor of other in
LV)

Step 1: Retire local concepts in subsumption path
between the two concepts

Step 2: Merge two concepts into new concept
Step 3: Preserve first retired concept

Action 6
(if one concept is non-
parent ancestor of other in
LV)

Step 1: Retire local concepts in subsumption path
between the two concepts

Step 2: Merge two concepts into new concept
Step 3: Preserve second retired concept

266

Table H 6. Action choices for merge two attributes into one of the two attributes.

Action Steps

Action 1 Step 1: Merge two attributes into one of the two
attributes

Action 2 Step 1: Merge two attributes into one of the two
attributes

Step 2: Preserve retired attribute

Table H 7. Action choices for merge two attributes into new attribute.

Action Steps

Action 1 Step 1: Merge two attributes into new attribute

Action 2 Step 1: Merge two attributes into new attribute
Step 2: Preserve first retired attribute
Step 3: Preserve second retired attribute

Action 3 Step 1: Merge two attributes into new attribute
Step 2: Preserve first retired attribute

Action 4 Step 1: Merge two concepts into new attribute
Step 2: Preserve second retired attribute

267

Table H 8. Action choices for add attribute.

Action Steps

Action 1 Step 1: Add attribute

Action 2
(if local name conflicts)

Step 1: Rename local attribute with conflicting name
Step 2: Add attribute

Action 3
(if local name conflicts)

Step 1: Rename local attribute with conflicting name
Step 2: Add attribute
Step 3: Rename new attribute
Step 4: Rename local attribute back to original name

Action 4
(if local attribute has same
meaning)

Step 1: Add attribute
Step 2: Merge local attribute into shared attribute

Action 5
(if local attribute has same
meaning)

Step 1: Add attribute
Step 2: Merge local attribute into shared attribute
Step 3: Rename attribute with local name

Action 6 Step 1: Add attribute
Step 2: Hide attribute

Table H 9. Action choices for retire attribute.

Action Steps

Action 1 Step 1: Retire attribute

Action 2 Step 1: Retire attribute
Step 2: Preserve attribute

268

Table H 10. Action choices for replace concept name.

Action Steps

Action 1 Step 1: Change concept name to new name
Step 2: Add old name to synonym list

Action 2 Step 1: Change concept name to new name
(Step 2: Do not add old name to synonym list)

Action 3 (if new name
conflicts with name of an
existing local concept)

Step 1: Change name of conflicting local concept
Step 2: Change concept name to new name
Step 3: Add old name to synonym list

Action 4 (if new name
conflicts with name of an
existing local concept)

Step 1: Change name of conflicting local concept
Step 2: Change concept name to new name
(Step 3: Do not add old name to synonym list)

Action 5 (Step 1: Do nothing)

Table H 11. Action choices for correct concept name.

Action Steps

Action 1 Step 1: Change concept name to new name

Action 2
(if new name conflicts with
name of an existing local
concept)

Step 1: Change name of conflicting local concept
Step 2: Change concept name to new name

Action 3 (Step 1: Do nothing)

Table H 12. Action choices for replace concept definition.

Action Steps

Action 1 Step 1: Replace concept definition

Action 2 (Step 1: Do nothing)

269

Table H 13. Action choices for replace UMLS code.

Action Steps

Action 1 Step 1: Replace UMLS code

Action 2 (Step 1: Do nothing)

Table H 14. Action choices for add synonym.

Action Steps

Action 1 Step 1: Add synonym

Action 2 (if synonym
already exists or user
preference)

(Step 1: Do nothing)

Table H 15. Action choices for delete synonym.

Action Steps

Action 1 Step 1: Delete synonym

Action 2 (Step 1: Do nothing)

Table H 16. Action choices for add abbreviation.

Action Steps

Action 1 Step 1: Add abbreviation

Action 2 (Step 1: Do nothing)

270

Table H 17. Action choices for delete abbreviation

Action Steps

Action 1 Step 1: Delete abbreviation

Action 2 (Step 1: Do nothing)

Table H 18. Action choices for add parent.

Action Steps

Action 1 Step 1: Add parent
Step 2: Add parent to list of SV parents

Action 2
(if a cycle would result
from adding the parent)

Step 1: Break cycle
Step 2: Add parent
Step 3: Add parent to list of SV parents

Action 3
(if concept gaining new
parent is already subsumed
by parent)

Step 1: Add parent to list of SV parents

Table H 19. Action choices for add child.

Action Steps

Action 1 Step 1: Add child
Step 2: Add child to list of SV children

Action 2
(if a cycle would result
from adding the child)

Step 1: Break cycle
Step 2: Add child
Step 3: Add child to list of SV children

Action 3 (if concept
gaining new child already
subsumes child)

Step 1: Add child to list of SV children

271

Table H 20. Action choices for remove parent.

Action Steps

Action 1 Step 1: Remove parent
Step 2: Remove parent from list of SV parents

Action 2 Step 1: Remove parent from list of SV parents

Table H 21. Action choices for remove child.

Action Steps

Action 1 Step 1: Remove child
Step 2: Remove child from list of SV children

Action 2 Step 1: Remove child from list of SV children

Table H 22. Action choices for add attribute–value pair.

Action Steps

Action 1
(if no conflict)

Step 1: Add attribute–value pair

Action 2
(if conflict exists in
ancestor avpair, where
value is more specific than
new value)

Step 1: Remove conflicting attribute–value pair in
ancestor

Step 2: Add attribute–value pair

Action 3
(if conflict exists in
descendant avpair, where
value is more specific than
new value)

Step 1: Remove conflicting attribute–value pair in
descendant

Step 2: Add attribute–value pair

272

Table H 23. Action choices for delete attribute–value pair.

Action Steps

Action 1 Step 1: Delete attribute–value pair

Action 2 (Step 1: Do nothing)

Table H 24. Action choices for replace attribute value.

Action Steps

Action 1
(if no conflict)

Step 1: Replace attribute value

Action 1
(if conflict exists in
ancestor avpair, where
value is more specific than
new value)

Step 1: Remove conflicting attribute–value pair in
ancestor

Step 2: Replace attribute value

Action 1
(if conflict exists in
descendant avpair, where
value is more general than
new value)

Step 1: Remove conflicting attribute–value pair in
descendant

Step 2: Replace attribute value

273

Appendix I: Changes Made to Shared Vocabulary

Changes made to the shared vocabulary, SV-0, to create the modified shared vocabulary,
SV-1. See Figures 6.1 and 6.2 for SV-0 and SV-1, respectively.

1. Add concept: CONCEPT rickettsial disease, PARENT disease

2. Add concept: CONCEPT mite-borne spotted fever, PARENT rickettsial disease

3. Add concept: CONCEPT tick-borne spotted fever, PARENT rickettsial disease

4. Add concept: CONCEPT flea-borne rickettsial disease, PARENT rickettsial disease

5. Add concept: CONCEPT louse-borne rickettsial disease, PARENT rickettsial disease

6. Add concept: CONCEPT ehrlichiosis, PARENT rickettsial disease

7. Add concept: CONCEPT Q fever, PARENT rickettsial disease

8. Replace concept name: OLD tsutsugamushi, NEW scrub typhus

9. Add parent: CONCEPT scrub typhus, PARENT rickettsial disease

10. Remove parent: CONCEPT scrub typhus, PARENT tropical disease of disputed nature or
minor importance

11. Replace concept name: OLD spotted fever of the Rocky Mountains, NEW Rocky
Mountain spotted fever

12. Add parent: CONCEPT Rocky Mountain spotted fever, PARENT tick-borne spotted fever

13. Remove parent: CONCEPT Rocky Mountain spotted fever, PARENT tropical disease of
disputed nature or importance

14. Add concept: CONCEPT Mediterranean spotted fever, PARENT tick-borne spotted fever

15. Add concept: CONCEPT African tick-bite fever, PARENT tick-borne spotted fever

16. Add concept: CONCEPT Japanese spotted fever, PARENT tick-borne spotted fever

17. Add concept: CONCEPT Queensland tick typhus, PARENT tick-borne spotted fever

18. Add concept: CONCEPT Flinders Island spotted fever, PARENT tick-borne spotted fever

19. Add concept: CONCEPT rickettsialpox, PARENT mite-borne spotted fever

20. Replace concept name: OLD typhus fever, NEW epidemic typhus

21. Add parent: CONCEPT epidemic typhus, PARENT louse-borne rickettsial disease

22. Add concept: CONCEPT Brill-Zinsser disease, PARENT epidemic typhus

23. Add concept: CONCEPT murine typhus, PARENT flea-borne rickettsial disease

24. Remove parent: CONCEPT epidemic typhus, PARENT tropical disease of disputed
nature or minor importance

25. Add concept: CONCEPT human monocytic ehrlichiosis, PARENT ehrlichiosis

26. Add concept: CONCEPT human granulocytic ehrlichiosis, PARENT ehrlichiosis

27. Add parent: CONCEPT verruga peruviana, PARENT disease

28. Remove parent: CONCEPT verruga peruviana, PARENT tropical disease of disputed
nature or minor importance

274

29. Add parent: CONCEPT heat stroke, PARENT disease

30. Remove parent: CONCEPT heat stroke, PARENT tropical disease of disputed nature or
minor importance

31. Retire concept: CONCEPT tropical disease of disputed nature or minor importance

32. Add concept: CONCEPT living organism PARENT entity

33. Add concept: CONCEPT tick PARENT living organism

34. Add concept: CONCEPT mite PARENT living organism

35. Add concept: CONCEPT louse PARENT living organism

36. Add concept: CONCEPT chigger PARENT living organism

37. Add concept: CONCEPT Rickettsia, PARENT living organism

38. Add concept: CONCEPT Rickettsia rickettsii, PARENT Rickettsia

39. Add concept: CONCEPT Rickettsia conorii, PARENT Rickettsia

40. Add concept: CONCEPT Dermacentor variabilis, PARENT tick

41. Add concept: CONCEPT Dermacentor andersoni, PARENT tick

42. Add concept: CONCEPT Rhipicephalus sanguineus, PARENT tick

43. Add concept: CONCEPT Amblyomma cajennesne, PARENT tick

44. Add concept: CONCEPT Rickettsia japonica, PARENT Rickettsia

45. Add concept: CONCEPT Rickettsia australis, PARENT Rickettsia

46. Add concept: CONCEPT Rickettsia honei, PARENT Rickettsia

47. Add concept: CONCEPT Rickettsia akari, PARENT Rickettsia

48. Add concept: CONCEPT Rickettsia typhi, PARENT Rickettsia

49. Add concept: CONCEPT Rickettsia prowazekii, PARENT Rickettsia

50. Add concept: CONCEPT flea, PARENT living organism

51. Add concept: CONCEPT Xenopsylla cheopis, PARENT flea

52. Add concept: CONCEPT Pediculus humanus corporis, PARENT louse

53. Add concept: CONCEPT Orientia, PARENT living organism

54. Add concept: CONCEPT Orientia tsutsugamushi, PARENT Orientia

55. Add concept: CONCEPT Ctenocephalides felis, PARENT flea

56. Add concept: CONCEPT Ehrlichia, PARENT living organism

57. Add concept: CONCEPT Ehrlichia chaffeensis, PARENT Ehrlichia

58. Add concept: CONCEPT agent of human granulocytic ehrlichiosis, PARENT Ehrlichia

59. Add concept: CONCEPT Amblyomma americanum, PARENT tick

60. Add concept: CONCEPT Ixodes scapularis, PARENT tick

61. Add concept: CONCEPT Ixodes ricinus, PARENT tick

62. Add concept: CONCEPT Coxiella, PARENT living organism

63. Add concept: CONCEPT Coxiella burnettii, PARENT Coxiella

275

64. Add attribute: ATTRIBUTE has-etiology

65. Add attribute: ATTRIBUTE transmitted-by

66. Add attribute–value pair: CONCEPT tick-borne spotted fever, ATTRIBUTE transmitted-
by VALUE tick

67. Add attribute–value pair: CONCEPT Rocky Mountain spotted fever ATTRIBUTE
transmitted-by VALUE Dermacentor variabilis

68. Add attribute–value pair: CONCEPT Rocky Mountain spotted fever ATTRIBUTE has-
etiology VALUE Rickettsia rickettsii

69. Add synonym: CONCEPT Dermacentor variabilis SYNONYM American dog tick

70. Add abbreviation: CONCEPT Rocky Mountain spotted fever ABBREVIATION RMSF

71. Add attribute–value pair: CONCEPT Rocky Mountain spotted fever ATTRIBUTE
transmitted-by VALUE Dermacentor andersoni

72. Add attribute–value pair: CONCEPT Rocky Mountain spotted fever ATTRIBUTE
transmitted-by VALUE Rhipicephalus sanguineus

73. Add attribute–value pair: CONCEPT Rocky Mountain spotted fever ATTRIBUTE
transmitted-by VALUE Amblyomma cajennesne

74. Add attribute–value pair: CONCEPT Mediterranean spotted fever ATTRIBUTE
transmitted-by VALUE Rhipicephalus sanguineus

75. Add attribute–value pair: CONCEPT Mediterranean spotted fever ATTRIBUTE has-
etiology VALUE Rickettsia conorii

76. Add synonym: CONCEPT Mediterranean spotted fever SYNONYM boutonneuse fever

77. Add synonym: CONCEPT Mediterranean spotted fever SYNONYM Kenya tick typhus

78. Add synonym: CONCEPT Mediterranean spotted fever SYNONYM Indian tick typhus

79. Add synonym: CONCEPT Mediterranean spotted fever SYNONYM Israeli spotted fever

80. Add synonym: CONCEPT Mediterranean spotted fever SYNONYM Astrakhan spotted
fever

81. Add concept: CONCEPT Rickettsia africae PARENT Rickettsia

82. Add attribute–value pair: CONCEPT African tick-bite fever ATTRIBUTE has-etiology
VALUE Rickettsia africae

83. Add attribute–value pair: CONCEPT Japanese spotted fever ATTRIBUTE has-etiology
VALUE Rickettsia japonica

84. Add synonym: CONCEPT Japanese spotted fever SYNONYM Oriental spotted fever

85. Add attribute–value pair: CONCEPT Queensland tick typhus ATTRIBUTE has-etiology
VALUE Rickettsia australis

86. Add concept: CONCEPT Ixodes holocyclus, PARENT tick

87. Add parent: CONCEPT Ixodes holocyclus PARENT tick

88. Remove parent: CONCEPT Ixodes holocyclus PARENT Dermacentor variabilis

89. Add attribute–value pair: CONCEPT Flinders Island spotted fever ATTRIBUTE has-
etiology VALUE Rickettsia honei

90. Add attribute–value pair: CONCEPT Queensland tick typhus ATTRIBUTE transmitted-by
VALUE Ixodes holocyclus

276

91. Add attribute–value pair: CONCEPT mite-borne spotted fever ATTRIBUTE transmitted-
by VALUE mite

92. Add attribute–value pair: CONCEPT rickettsialpox ATTRIBUTE has-etiology VALUE
Rickettsia akari

93. Add attribute–value pair: CONCEPT flea-borne rickettsial disease ATTRIBUTE
transmitted-by VALUE flea

94. Add attribute–value pair: CONCEPT murine typhus ATTRIBUTE has-etiology VALUE
Rickettsia typhi

95. Add attribute–value pair: CONCEPT murine typhus ATTRIBUTE transmitted-by VALUE
Xenopsylla cheopis

96. Add attribute–value pair: CONCEPT murine typhus ATTRIBUTE transmitted-by VALUE
Ctenocephalides felis

97. Add synonym: CONCEPT murine typhus SYNONYM endemic typhus

98. Add synonym: CONCEPT murine typhus SYNONYM human murine typhus

99. Add synonym: CONCEPT Xenopsylla cheopis SYNONYM Oriental rat flea

100. Add synonym: CONCEPT Ctenocephalides felis SYNONYM cat flea

101. Add attribute–value pair: CONCEPT louse-borne rickettsial disease ATTRIBUTE
transmitted-by VALUE louse

102. Add attribute–value pair: CONCEPT epidemic typhus ATTRIBUTE has-etiology VALUE
Rickettsia prowazekii

103. Add attribute–value pair: CONCEPT epidemic typhus ATTRIBUTE transmitted-by
VALUE Pediculus humanus corporis

104. Add synonym: CONCEPT epidemic typhus SYNONYM epidemic louse-borne typhus

105. Add synonym: CONCEPT Pediculus humanus corporis SYNONYM human body louse

106. Add synonym: CONCEPT Brill-Zinsser disease SYNONYM recrudescent typhus

107. Add attribute–value pair: CONCEPT scrub typhus ATTRIBUTE has-etiology VALUE
Orientia tsutsugamushi

108. Add attribute–value pair: CONCEPT scrub typhus ATTRIBUTE transmitted-by VALUE
chigger

109. Add attribute–value pair: CONCEPT Q fever ATTRIBUTE has-etiology VALUE Coxiella
burnettii

110. Add attribute–value pair: CONCEPT ehrlichiosis ATTRIBUTE has-etiology VALUE
Ehrlichia

111. Add attribute–value pair: CONCEPT human monocytic ehrlichiosis ATTRIBUTE has-
etiology VALUE Ehrlichia chaffeensis

112. Add attribute–value pair: CONCEPT human monocytic ehrlichiosis ATTRIBUTE
transmitted-by VALUE Amblyomma americanum

113. Add attribute–value pair: CONCEPT human monocytic ehrlichiosis ATTRIBUTE
transmitted-by VALUE Dermacentor variabilis

114. Add attribute: ATTRIBUTE major-target-cell

115. Add concept: CONCEPT anatomic part PARENT entity

277

116. Add concept: CONCEPT cell PARENT anatomic part

117. Add concept: CONCEPT monocyte PARENT cell

118. Add concept: CONCEPT granulocyte PARENT cell

119. Add abbreviation: CONCEPT human monocytic ehrlichiosis ABBREVIATION HME

120. Add attribute–value pair: CONCEPT human monocytic ehrlichiosis ATTRIBUTE has-
etiology VALUE Ehrlichia chaffeensis

121. Add attribute–value pair: CONCEPT human monocytic ehrlichiosis ATTRIBUTE major-
target-cell VALUE monocyte

122. Add attribute–value pair: CONCEPT human granulocytic ehrlichiosis ATTRIBUTE has-
etiology VALUE agent of human granulocytic ehrlichiosis

123. Add abbreviation: CONCEPT human granulocytic ehrlichiosis ABBREVIATION HGE

124. Add attribute–value pair: CONCEPT human granulocytic ehrlichiosis ATTRIBUTE
transmitted-by VALUE Ixodes scapularis

125. Add attribute–value pair: CONCEPT human granulocytic ehrlichiosis ATTRIBUTE
transmitted-by VALUE Ixodes ricinus

126. Add attribute–value pair: CONCEPT human granulocytic ehrlichiosis ATTRIBUTE
major-target-cell VALUE granulocyte

127. Add synonym: CONCEPT Ixodes scapularis SYNONYM deer tick

128. Add synonym: CONCEPT Dermacentor variabilis SYNONYM dog tick

129. Add synonym: CONCEPT Amblyomma americanum SYNONYM Lone Star tick

279

Appendix J: Changes Made to Local Vocabulary

Changes made to the local vocabulary, LV-0, to create the modified local vocabulary,
LV-1. See Figures 6.1 and 6.3 for LV-0 and LV-1, respectively.

1. Add concept: CONCEPT rickettsial disease, PARENT disease

2. Add concept: CONCEPT typhus-like fever, PARENT rickettsial disease

3. Add concept: CONCEPT typhus-group disease, PARENT typhus-like fever

4. Add concept: CONCEPT murine typhus, PARENT typhus-group disease

5. Add concept: CONCEPT louse-borne epidemic typhus, PARENT typhus-group disease

6. Add concept: CONCEPT Brill-Zinsser disease, PARENT louse-borne epidemic typhus

7. Add concept: CONCEPT scrub typhus, PARENT typhus-like fever

8. Add concept: CONCEPT spotted-fever-group disease, PARENT typhus-like fever

9. Add concept: CONCEPT ehrlichiosis, PARENT spotted-fever-group disease

10. Replace concept name: OLD spotted fever of the Rocky Mountains, NEW Rocky
Mountain spotted fever

11. Add parent: CONCEPT Rocky Mountain spotted fever, PARENT spotted-fever-group
disease

12. Remove parent: CONCEPT Rocky Mountain spotted fever, PARENT tropical disease of
disputed nature or minor importance

13. Add concept: CONCEPT boutonneuse fever, PARENT spotted-fever-group disease

14. Add concept: CONCEPT rickettsialpox, PARENT rickettsial disease

15. Add concept: CONCEPT Q fever, PARENT rickettsial disease

16. Add concept: CONCEPT tick-borne rickettsiosis, PARENT rickettsial disease

17. Add concept: CONCEPT North Asian tick-borne rickettsiosis, PARENT tick-borne
rickettsiosis

18. Add concept: CONCEPT Queensland tick typhus, PARENT tick-borne rickettsiosis

19. Add parent: CONCEPT Rocky Mountain spotted fever, PARENT tick-borne rickettsiosis

20. Add parent: CONCEPT boutonneuse fever, PARENT tick-borne rickettsiosis

21. Add parent: CONCEPT ehrlichiosis, PARENT tick-borne rickettsiosis

22. Add concept: CONCEPT organism, PARENT entity

23. Add concept: CONCEPT Rickettsia, PARENT organism

24. Add concept: CONCEPT Rickettsia typhi, PARENT Rickettsia

25. Add concept: CONCEPT Rickettsia prowazekii, PARENT Rickettsia

26. Add concept: CONCEPT Ehrlichia, PARENT organism

27. Add concept: CONCEPT Ehrlichia chaffeensis, PARENT Ehrlichia

280

28. Add concept: CONCEPT Ehrlichia species of human granulocytic ehrlichiosis, PARENT
Ehrlichia

29. Add concept: CONCEPT Rickettsia siberica, PARENT Rickettsia

30. Add concept: CONCEPT Rickettsia akari, PARENT Rickettsia

31. Add concept: CONCEPT Rickettsia tsutsugamushi, PARENT Rickettsia

32. Add synonym: CONCEPT Rickettsia tsutsugamushi, SYNONYM Rickettsia orientalis

33. Add concept: CONCEPT Coxiella, PARENT organism

34. Add concept: CONCEPT Coxiella burnettii, PARENT Coxiella

35. Add concept: CONCEPT Amblyomma, PARENT organism

36. Add concept: CONCEPT Xenopsylla, PARENT organism

37. Add concept: CONCEPT Xenopsylla cheopis, PARENT Xenopsylla

38. Add synonym: CONCEPT Xenopsylla cheopis, SYNONYM rat flea

39. Add concept: CONCEPT Pediculus, PARENT organism

40. Add concept: CONCEPT Pediculus humanus humanus, PARENT Pediculus

41. Add synonym: CONCEPT Pediculus humanus humanus, SYNONYM human body louse

42. Add synonym: CONCEPT Pediculus humanus humanus, SYNONYM body louse

43. Add attribute: ATTRIBUTE etiology

44. Add attribute–value pair: CONCEPT murine typhus, ATTRIBUTE etiology, VALUE
Rickettsia typhi

45. Add attribute: ATTRIBUTE vector

46. Add attribute–value pair: CONCEPT murine typhus, ATTRIBUTE vector, VALUE
Xenopsylla cheopis

47. Add concept: CONCEPT Rickettsia prowazekii, PARENT Rickettsia

48. Add attribute–value pair: CONCEPT louse-borne epidemic typhus, ATTRIBUTE etiology,
VALUE Rickettsia prowazekii

49. Add attribute–value pair: CONCEPT louse-borne epidemic typhus, ATTRIBUTE vector,
VALUE Pediculus humanus humanus

50. Add synonym: CONCEPT louse-borne epidemic typhus, SYNONYM epidemic typhus

51. Add synonym: CONCEPT louse-borne epidemic typhus, SYNONYM louse-borne typhus

52. Add synonym: CONCEPT louse-borne epidemic typhus, SYNONYM classic typhus

53. Add synonym: CONCEPT louse-borne epidemic typhus, SYNONYM classic typhus fever

54. Add synonym: CONCEPT louse-borne epidemic typhus, SYNONYM European fever

55. Add synonym: CONCEPT louse-borne epidemic typhus, SYNONYM jail fever

56. Add synonym: CONCEPT louse-borne epidemic typhus, SYNONYM war fever

57. Add synonym: CONCEPT louse-borne epidemic typhus, SYNONYM camp fever

58. Add synonym: CONCEPT louse-borne epidemic typhus, SYNONYM ship fever

59. Add synonym: CONCEPT louse-borne epidemic typhus, SYNONYM typhus
exanthematique

281

60. Add synonym: CONCEPT louse-borne epidemic typhus, SYNONYM tifus exantematico

61. Add synonym: CONCEPT louse-borne epidemic typhus, SYNONYM tifus tabardillo

62. Add concept: CONCEPT Dermacentor, PARENT organism

63. Add concept: CONCEPT Dermacentor variabilis, PARENT Dermacentor

64. Add synonym: CONCEPT Dermacentor variabilis, SYNONYM dog tick

65. Add concept: CONCEPT Dermacentor andersoni, PARENT Dermacentor

66. Add concept: CONCEPT Amblyomma americanum, PARENT Amblyomma

67. Add synonym: CONCEPT Dermacentor andersoni, SYNONYM wood tick

68. Add concept: CONCEPT Dermacentor sylvarum, PARENT Dermacentor

69. Add concept: CONCEPT Dermacentor nuttallii, PARENT Dermacentor

70. Add concept: CONCEPT Leptotrombidium, PARENT organism

71. Add concept: CONCEPT Leptotrombidium deliensis, PARENT Leptotrombidium

72. Add synonym: CONCEPT Leptotrombidium deliensis, SYNONYM chigger

73. Add concept: CONCEPT Ixodes, PARENT organism

74. Add concept: CONCEPT Ixodes holocyclus, PARENT Ixodes

75. Add concept: CONCEPT Allodermanyssus, PARENT organism

76. Add concept: CONCEPT Allodermanyssus sanguineus, PARENT Allodermanyssus

77. Add synonym: CONCEPT Allodermanyssus sanguineus, SYNONYM mite

78. Add concept: CONCEPT Rickettsia rickettsii, PARENT Rickettsia

79. Add attribute–value pair: CONCEPT Rocky Mountain spotted fever, ATTRIBUTE
etiology, VALUE Rickettsia rickettsii

80. Add attribute–value pair: CONCEPT Rocky Mountain spotted fever, ATTRIBUTE vector,
VALUE Ixodes

81. Add attribute–value pair: CONCEPT Rocky Mountain spotted fever, ATTRIBUTE vector,
VALUE Dermacentor andersoni

82. Add attribute–value pair: CONCEPT Rocky Mountain spotted fever, ATTRIBUTE vector,
VALUE Dermacentor variabilis

83. Add attribute–value pair: CONCEPT Rocky Mountain spotted fever, ATTRIBUTE vector,
VALUE Amblyomma americanum

84. Add concept: CONCEPT Rhipicephalus, PARENT organism

85. Add concept: CONCEPT Rhipicephalus sanguineus, PARENT Rhipicephalus

86. Add attribute–value pair: CONCEPT Rocky Mountain spotted fever, ATTRIBUTE vector,
VALUE Rhipicephalus sanguineus

87. Add synonym: CONCEPT ehrlichiosis, SYNONYM spotless Rocky Mountain spotted
fever

88. Add attribute–value pair: CONCEPT ehrlichiosis, ATTRIBUTE etiology, VALUE Ehrlichia

89. Add concept: CONCEPT ehrlichiosis caused by Ehrlichia chaffeensis, PARENT
Ehrlichiosis

282

90. Add attribute–value pair: CONCEPT ehrlichiosis caused by Ehrlichia chaffeensis,
ATTRIBUTE etiology, VALUE Ehrlichia chaffeensis

91. Add attribute–value pair: CONCEPT ehrlichiosis caused by Ehrlichia chaffeensis,
ATTRIBUTE vector, VALUE Dermacentor variabilis

92. Add concept: CONCEPT human granulocytic ehrlichiosis, PARENT ehrlichiosis

93. Add attribute–value pair: CONCEPT human granulocytic ehrlichiosis, ATTRIBUTE
etiology, VALUE Ehrlichia species of human granulocytic ehrlichiosis

94. Add abbreviation: CONCEPT human granulocytic ehrlichiosis, ABBREVIATION HGE

95. Add concept: CONCEPT Rickettsia conorii, PARENT Rickettsia

96. Add attribute–value pair: CONCEPT boutonneuse fever, ATTRIBUTE etiology, VALUE
Rickettsia conorii

97. Add attribute–value pair: CONCEPT boutonneuse fever, ATTRIBUTE vector, VALUE
Rhipicephalus sanguineus

98. Add synonym: CONCEPT boutonneuse fever, SYNONYM Mediterranean spotted fever

99. Add synonym: CONCEPT boutonneuse fever, SYNONYM North African tick typhus

100. Add synonym: CONCEPT boutonneuse fever, SYNONYM Kenya tick-bite fever

101. Add synonym: CONCEPT boutonneuse fever, SYNONYM Indian tick typhus

102. Add attribute–value pair: CONCEPT North Asian tick-borne rickettsiosis, ATTRIBUTE
etiology, VALUE Rickettsia siberica

103. Add concept: CONCEPT Haemaphysalis, PARENT organism

104. Add concept: CONCEPT Haemaphysalis concinna, PARENT Haemaphysalis

105. Add attribute–value pair: CONCEPT North Asian tick-borne rickettsiosis, ATTRIBUTE
vector, VALUE Haemaphysalis concinna

106. Add attribute–value pair: CONCEPT North Asian tick-borne rickettsiosis, ATTRIBUTE
vector, VALUE Dermacentor sylvarum

107. Add attribute–value pair: CONCEPT North Asian tick-borne rickettsiosis, ATTRIBUTE
vector, VALUE Dermacentor nuttallii

108. Add concept: CONCEPT Rickettsia australis, PARENT Rickettsia

109. Add attribute–value pair: CONCEPT Queensland tick typhus, ATTRIBUTE etiology,
VALUE Rickettsia australis

110. Add attribute–value pair: CONCEPT Queensland tick typhus, ATTRIBUTE vector,
VALUE Ixodes holocyclus

111. Add attribute–value pair: CONCEPT rickettsialpox, ATTRIBUTE etiology, VALUE
Rickettsia akari

112. Add attribute–value pair: CONCEPT rickettsialpox, ATTRIBUTE vector, VALUE
Allodermanyssus sanguineus

113. Add attribute–value pair: CONCEPT scrub typhus, ATTRIBUTE etiology, VALUE
Rickettsia tsutsugamushi

114. Add attribute–value pair: CONCEPT scrub typhus, ATTRIBUTE vector, VALUE
Leptotrombidium deliensis

283

115. Add attribute–value pair: CONCEPT Q fever, ATTRIBUTE etiology, VALUE Coxiella
burnettii

116. Merge 2 concepts into one of the 2 concepts: CONCEPT1 tsutsugamushi, CONCEPT 2
scrub typhus, KEEP tsutsugamushi, RETIRE scrub typhus

117. Merge 2 concepts into one of the 2 concepts: CONCEPT1 typhus fever, CONCEPT 2
louse-borne epidemic typhus, KEEP typhus fever, RETIRE louse-borne epidemic
typhus

118. Replace concept name: OLD typhus fever, NEW louse-borne epidemic typhus

119. Replace concept name: OLD tsutsugamushi, NEW scrub typhus

285

Appendix K: Synchronization Report

REPORT OF CHANGES PERFORMED DURING SYNCHRONIZATION

DATE OF REPORT: Mon Dec 13 16:37:04 PST 1999
AUTHOR OF SYNCHRONIZATION: Diane E. Oliver

FILE NAMES:

Local vocabulary (input): E:\Development\Demo\Save Items
Local\LocalVocabTimeI
Shared vocabulary (input): E:\Development\Demo\Save
Items\SharedVocabTimeF
Local log (input): E:\Development\Demo\Save Items Local\LocalLogAToI
Shared log (input): E:\Development\Demo\Save Items\SharedLogAToF
Synchronized local vocabulary (output):
E:\Development\Demo\LocalVocabTime1Synch
Synchronization local log (output): E:\Development\Demo\LocalLogSynch
This report: E:\Development\Demo\AToFSynchReport.txt

LIST OF CHANGES:

Add concept: "rickettsial disease" with parent = "disease"
Merge 2 concepts into one of the 2 concepts: "rickettsial disease" into
"rickettsial disease"
Add concept: "mite-borne spotted fever" with parent = "rickettsial
disease"
Add concept: "tick-borne spotted fever" with parent = "rickettsial
disease"
Add concept: "flea-borne rickettsial disease" with parent =
"rickettsial disease"
Add concept: "louse-borne rickettsial disease" with parent =
"rickettsial disease"
Add concept: "ehrlichiosis" with parent = "rickettsial disease"
Merge 2 concepts into one of the 2 concepts: "ehrlichiosis" into
"ehrlichiosis"
Add concept: "Q fever" with parent = "rickettsial disease"
Merge 2 concepts into one of the 2 concepts: "Q fever" into "Q fever"
(Concept: scrub typhus) Add parent: "rickettsial disease"
(Concept: scrub typhus) Remove parent: "tropical disease of disputed
nature or minor importance"
(Concept: Rocky Mountain spotted fever) Add parent: "tick-borne spotted
fever"
Add concept: "Mediterranean spotted fever" with parent = "tick-borne
spotted fever"
Merge 2 concepts into one of the 2 concepts: "boutonneuse fever" into
"Mediterranean spotted fever"
Add concept: "African tick-bite fever" with parent = "tick-borne
spotted fever"
Add concept: "Japanese spotted fever" with parent = "tick-borne spotted
fever"
Add concept: "Queensland tick typhus" with parent = "tick-borne spotted
fever"
Merge 2 concepts into one of the 2 concepts: "Queensland tick typhus"
into "Queensland tick typhus"

286

Add concept: "Flinder’s Island spotted fever" with parent = "tick-borne
spotted fever"
Add concept: "rickettsialpox" with parent = "mite-borne spotted fever"
Merge 2 concepts into one of the 2 concepts: "rickettsialpox" into
"rickettsialpox"
(Concept: louse-borne epidemic typhus) Correct concept name: "louse-
borne epidemic typhus" with "epidemic typhus"
(Concept: epidemic typhus) Add parent: "louse-borne rickettsial
disease"
Add concept: "Brill-Zinsser disease" with parent = "epidemic typhus"
Merge 2 concepts into one of the 2 concepts: "Brill-Zinsser disease"
into "Brill-Zinsser disease"
Add concept: "murine typhus" with parent = "flea-borne rickettsial
disease"
Merge 2 concepts into one of the 2 concepts: "murine typhus" into
"murine typhus"
Add concept: "human monocytic ehrlichiosis" with parent =
"ehrlichiosis"
Add concept: "human granulocytic ehrlichiosis" with parent =
"ehrlichiosis"
Merge 2 concepts into one of the 2 concepts: "human granulocytic
ehrlichiosis" into "human granulocytic ehrlichiosis"
(Concept: verruga peruviana) Add parent: "disease"
(Concept: verruga peruviana) Remove parent: "tropical disease of
disputed nature or minor importance"
(Concept: heat stroke) Add parent: "disease"
(Concept: heat stroke) Remove parent: "tropical disease of disputed
nature or minor importance"
Retire concept: "tropical disease of disputed nature or minor
importance"
(Concept: epidemic typhus) Remove parent: "disease"
Add concept: "living organism" with parent = "entity"
Merge 2 concepts into one of the 2 concepts: "organism" into "living
organism"
Add concept: "tick" with parent = "living organism"
Add concept: "mite" with parent = "living organism"
Add concept: "louse" with parent = "living organism"
Add concept: "chigger" with parent = "living organism"
Add concept: "Rickettsia" with parent = "living organism"
Merge 2 concepts into one of the 2 concepts: "Rickettsia" into
"Rickettsia"
Add concept: "Rickettsia rickettsii" with parent = "Rickettsia"
Merge 2 concepts into one of the 2 concepts: "Rickettsia rickettsii"
into "Rickettsia rickettsii"
Add concept: "Rickettsia conorii" with parent = "Rickettsia"
Merge 2 concepts into one of the 2 concepts: "Rickettsia conorii" into
"Rickettsia conorii"
Add concept: "Dermacentor variabilis" with parent = "tick"
Merge 2 concepts into one of the 2 concepts: "Dermacentor variabilis"
into "Dermacentor variabilis"
Add concept: "Dermacentor andersoni" with parent = "tick"
Merge 2 concepts into one of the 2 concepts: "Dermacentor andersoni"
into "Dermacentor andersoni"
Add concept: "Rhipicephalus sanguineus" with parent = "tick"
Merge 2 concepts into one of the 2 concepts: "Rhipicephalus sanguineus"
into "Rhipicephalus sanguineus"
Add concept: "Amblyomma cajennesne" with parent = "tick"

287

Add concept: "Rickettsia japonica" with parent = "Rickettsia"
Add concept: "Rickettsia australis" with parent = "Rickettsia"
Merge 2 concepts into one of the 2 concepts: "Rickettsia australis"
into "Rickettsia australis"
Add concept: "Rickettsia honei" with parent = "Rickettsia"
Add concept: "Rickettsia akari" with parent = "Rickettsia"
Merge 2 concepts into one of the 2 concepts: "Rickettsia akari" into
"Rickettsia akari"
Add concept: "Rickettsia typhi" with parent = "Rickettsia"
Merge 2 concepts into one of the 2 concepts: "Rickettsia typhi" into
"Rickettsia typhi"
Add concept: "Rickettsia prowazekii" with parent = "Rickettsia"
Merge 2 concepts into one of the 2 concepts: "Rickettsia prowazekii"
into "Rickettsia prowazekii"
Add concept: "flea" with parent = "living organism"
Add concept: "Xenopsylla cheopis" with parent = "flea"
Merge 2 concepts into one of the 2 concepts: "Xenopsylla cheopis" into
"Xenopsylla cheopis"
Add concept: "Pediculus humanus corporis" with parent = "louse"
Merge 2 concepts into one of the 2 concepts: "Pediculus humanus
humanus" into "Pediculus humanus corporis"
Add concept: "Orientia" with parent = "living organism"
Add concept: "Orientia tsutsugamushi" with parent = "Orientia"
Merge 2 concepts into one of the 2 concepts: "Rickettsia tsutsugamushi"
into "Orientia tsutsugamushi"
Add concept: "Ctenocephalides felis" with parent = "flea"
Add concept: "Ehrlichia" with parent = "living organism"
Merge 2 concepts into one of the 2 concepts: "Ehrlichia" into
"Ehrlichia"
Add concept: "Ehrlichia chaffeensis" with parent = "Ehrlichia"
Merge 2 concepts into one of the 2 concepts: "Ehrlichia chaffeensis"
into "Ehrlichia chaffeensis"
Add concept: "agent of human granulocytic ehrlichiosis" with parent =
"Ehrlichia"
Merge 2 concepts into one of the 2 concepts: "Ehrlichia species of
human granulocytic ehrlichiosis" into "agent of human granulocytic
ehrlichiosis"
Add concept: "Amblyomma americanum" with parent = "tick"
Merge 2 concepts into one of the 2 concepts: "Amblyomma americanum"
into "Amblyomma americanum"
Add concept: "Ixodes scapularis" with parent = "tick"
Add concept: "Ixodes ricinus" with parent = "tick"
Add concept: "Coxiella" with parent = "living organism"
Merge 2 concepts into one of the 2 concepts: "Coxiella" into "Coxiella"
Add concept: "Coxiella burnetii" with parent = "Coxiella"
Merge 2 concepts into one of the 2 concepts: "Coxiella burnetii" into
"Coxiella burnetii"
Add attribute: "has-etiology"
Merge 2 attributes into one of the 2 attributes: "etiology" into "has-
etiology"
Add attribute: "transmitted-by"
Merge 2 attributes into one of the 2 attributes: "vector" into
"transmitted-by"
(Concept: tick-borne spotted fever) Add attribute-value pair:
"transmitted-by: tick"
(Concept: Dermacentor variabilis) Add synonym: "American dog tick"
(Concept: Rocky Mountain spotted fever) Add abbreviation: "RMSF"

288

(Concept: Rocky Mountain spotted fever) Add attribute-value pair:
"transmitted-by: Amblyomma cajennesne"
(Concept: Mediterranean spotted fever) Add synonym: "Kenya tick typhus"
(Concept: Mediterranean spotted fever) Add synonym: "Israeli spotted
fever"
(Concept: Mediterranean spotted fever) Add synonym: "Astrakhan spotted
fever"
Add concept: "Rickettsia africae" with parent = "Rickettsia"
(Concept: African tick-bite fever) Add attribute-value pair: "has-
etiology: Rickettsia africae"
(Concept: Japanese spotted fever) Add attribute-value pair: "has-
etiology: Rickettsia japonica"
(Concept: Japanese spotted fever) Add synonym: "Oriental spotted fever"
Add concept: "Ixodes holocyclus" with parent = "tick"
Merge 2 concepts into one of the 2 concepts: "Ixodes holocyclus" into
"Ixodes holocyclus"
(Concept: Ixodes holocyclus) Add parent: "tick"
(Concept: Flinder’s Island spotted fever) Add attribute-value pair:
"has-etiology: Rickettsia honei"
(Concept: mite-borne spotted fever) Add attribute-value pair:
"transmitted-by: mite"
(Concept: flea-borne rickettsial disease) Add attribute-value pair:
"transmitted-by: flea"
(Concept: murine typhus) Add attribute-value pair: "transmitted-by:
Ctenocephalides felis"
(Concept: murine typhus) Add synonym: "endemic typhus"
(Concept: murine typhus) Add synonym: "human murine typhus"
(Concept: Xenopsylla cheopis) Add synonym: "Oriental rat flea"
(Concept: Ctenocephalides felis) Add synonym: "cat flea"
(Concept: louse-borne rickettsial disease) Add attribute-value pair:
"transmitted-by: louse"
(Concept: epidemic typhus) Add synonym: "epidemic louse-borne typhus"
(Concept: Brill-Zinsser disease) Add synonym: "recrudescent typhus"
(Concept: scrub typhus) Add attribute-value pair: "transmitted-by:
chigger"
(Concept: human monocytic ehrlichiosis) Add attribute-value pair: "has-
etiology: Ehrlichia chaffeensis"
(Concept: human monocytic ehrlichiosis) Add attribute-value pair:
"transmitted-by: Amblyomma americanum"
(Concept: human monocytic ehrlichiosis) Add attribute-value pair:
"transmitted-by: Dermacentor variabilis"
Add attribute: "major-target-cell"
Add concept: "anatomic part" with parent = "entity"
Add concept: "cell" with parent = "anatomic part"
Add concept: "monocyte" with parent = "cell"
Add concept: "granulocyte" with parent = "cell"
(Concept: human monocytic ehrlichiosis) Add abbreviation: "HME"
(Concept: human monocytic ehrlichiosis) Add attribute-value pair:
"major-target-cell: monocyte"
(Concept: human granulocytic ehrlichiosis) Add attribute-value pair:
"transmitted-by: Ixodes scapularis"
(Concept: human granulocytic ehrlichiosis) Add attribute-value pair:
"transmitted-by: Ixodes ricinus"
(Concept: human granulocytic ehrlichiosis) Add attribute-value pair:
"major-target-cell: granulocyte"
(Concept: Ixodes scapularis) Add synonym: "deer tick"(Concept:
Amblyomma americanum)

289

Add synonym: "Lone Star tick"

291

References

1. AMIA (American Medical Informatics Association). Standards for medical

identifiers, codes, and messages needed to create an efficient computer-stored

medical record. Journal of the American Medical Informatics Association

1994;1(1):1–7.

2. Bailey PS, Read J. Software implementation of clinical terminologies: The use of

component technology (tutorial), AMIA '99 Annual Symposium. Washington,

DC; 1999.

3. Baorto DM, Cimino JJ, Parvin CA, Kahn MG. Using Logical Observation

Identifier Names and Codes (LOINC) to exchange laboratory data among three

academic hospitals. In: Masys DR, editor. Proceedings of the 1997 AMIA Annual

Fall Symposium; Philadelphia: Hanley & Belfus; 1997. p. 96–100.

4. Barnett G, Zielstorff R, Piggins J, McLatchey J, Morgan M, Barrett S, et al.

COSTAR: A comprehensive medical information system for ambulatory care. In:

Blum BI, editor. Proceedings of the Sixth Annual Symposium on Computer

Applications in Medical Care; Washington, DC: The Institute of Electrical and

Electronics Engineers; 1982. p. 8–18.

5. Bechhofer S. GALEN Documentation C1: GRAIL Frequently asked questions:

University of Manchester, October 1994.

6. Bennett JC, Plum F, editors. Cecil Textbook of Medicine. 20th edition.

Philadelphia: WB Saunders; 1996.

7. Bernauer J. Subsumption principles underlying medical concept systems and their

formal reconstruction. In: Ozbolt JG, editor. Proceedings of the 1994 Annual

Symposium on Computer Applications in Medical Care; Philadelphia: Hanley &

Belfus; 1994. p. 140–144.

8. Bernauer J. Formal classification of medical concept descriptions: Graph-oriented

operators. Methods of Information in Medicine 1998;37(4–5):510–517.

9. Brachman R, Schmolze J. An overview of the KL-ONE knowledge representation

system. Cognitive Science 1985;9:171–216.

292

10. Brachman RJ, Fikes R, Levesque H. Krypton: A functional approach to

knowledge representation. Computer 1983;16(10):67–73.

11. Brachman RJ, McGuinness DL, Patel-Schneider PF, Resnick LA, Borgida A.

Living with CLASSIC: When and how to use a KL-ONE-like language. In: Sowa

JF, editor. Principles of Semantic Networks: Explorations in the Representation of

Knowledge. San Mateo, CA: Morgan Kaufmann; 1991. p. 401–456.

12. Brown P, O'Neil M, Price C. Semantic definition of disorders in version 3 of the

Read codes. Methods of Information in Medicine 1998;37(4–5):415–419.

13. Campbell K, Cohn S, Chute C, Rennels G, Shortliffe E. Galapagos: Computer-

based support for evolution of a convergent medical terminology. In: Cimino JJ,

editor. Proceedings of the 1996 AMIA Annual Fall Symposium; Philadelphia:

Hanley & Belfus; 1996. p. 269–273.

14. Campbell K, Cohn S, Chute C, Shortliffe E, Rennels G. Scalable methodologies

for distributed development of logic-based convergent medical terminology.

Methods of Information in Medicine 1998a;37(4–5):426–439.

15. Campbell KE, Oliver DE, Spackman KA, Shortliffe EH. Representing thoughts,

words, and things in the UMLS. Journal of the American Medical Informatics

Association 1998b;5(5):421–431.

16. Chaudhri V, Farquhar A, Fikes R, Karp P, Rice J. Open knowledge base

connectivity 2.0. Stanford, CA: Knowledge Systems Laboratory, Stanford

University, 1998a, Technical Report KSL-98-06. p. 1–104.

 http://www-ksl.stanford.edu/KSL_Abstracts/KSL-98-06.html

17. Chaudhri VK, Farquhar A, Fikes R, Karp PD, Rice JP. OKBC: A programmatic

foundation for knowledge base interoperability. In: AAAI-98. Proceedings of the

Fifteenth National Conference on Artificial Intelligence; Madison, WI; July 26–

30, 1998b. p. 600–607.

18. Chute C, Elkin P, Sherertz D, Tuttle M. Desiderata of a clinical terminology

server. In: Lorenzi NM, editor. Proceedings of the AMIA ’99 Annual Symposium;

Philadelphia: Hanley & Belfus; 1999. p. 42–46.

19. Chute CG, Cohn SP, Campbell JR. A framework for comprehensive health

terminology systems in the United States: Development guidelines, criteria for

selection, and public policy implications. Journal of the American Medical

Informatics Association 1998;5(6):503–510.

293

20. Chute CG, Cohn SP, Campbell KE, Oliver DE, Campbell JR. The content

coverage of clinical classifications. Journal of the American Medical Informatics

Association 1996;3(3):224–233.

21. Cimino J. Desiderata for controlled medical vocabularies in the twenty-first

century. Methods of Information in Medicine 1998;37(4–5):394–403.

22. Cimino J, Johnson S, Hripcsak G, Hill C, Clayton P. Managing vocabulary for a

centralized clinical system. In: Greenes RA, Peterson HE, Protti DJ, editors.

MEDINFO ’95. Proceedings of the Eighth World Congress on Medical

Informatics; Vancouver, BC: Healthcare Computing & Communications Canada;

July 23–27, 1995. p. 117–120.

23. Cimino JJ. Formal descriptions and adaptive mechanisms for changes in

controlled medical vocabularies. Methods of Information in Medicine

1996a;35(3):202–210.

24. Cimino JJ. An approach to coping with the annual changes in ICD-9-CM.

Methods of Information in Medicine 1996b;35(3):220.

25. Cimino JJ. From data to knowledge through concept-oriented terminologies:

Experience with the Medical Entities Dictionary. Journal of the American

Medical Informatics Association 2000;7:288–297.

26. Cimino JJ, Clayton PD, Hripcsak G, Johnson SB. Knowledge-based approaches

to the maintenance of a large controlled medical terminology. Journal of the

American Medical Informatics Association 1994;1(1):35–50.

27. Connolly D. Extensible Markup Language (XML). Last updated April 7, 1997.

 http://www.w3.org/XML

28. Divita G, Browne A, Rindflesch T. Evaluating lexical variant generation to

improve information retrieval. In: Chute CG, editor. Proceedings of the AMIA ’98

Annual Symposium; Philadelphia: Hanley & Belfus; 1998. p. 775–779.

29. Elhanan G, Cimino JJ. Controlled vocabulary and design of laboratory results

displays. In: Masys DR, editor. Proceedings of the 1997 AMIA Annual Fall

Symposium; Philadelphia: Hanley and Belfus; 1997. p. 348–352.

30. Elhanan G, Socratous SA, Cimino JJ. Integrating DXplain into a clinical

information system using the World Wide Web. In: Cimino JJ, editor.

294

Proceedings of the 1996 AMIA Annual Fall Symposium; Philadelphia: Hanley and

Belfus; 1996.

31. Farquhar A, Fikes R, Rice J. The Ontolingua server: A tool for collaborative

ontology construction. International Journal of Human-Computer Studies

1997;46(6):707–727.

32. Fauci AS, Braunwald E, Isselbacher KJ, Wilson JD, Martin JB, Kasper DL, et al.,

editors. Harrison’s Principles of Internal Medicine. New York: McGraw-Hill;

1998.

33. Fikes R, Farquhar A, Rice J. Tools for assembling modular ontologies in

Ontolingua. In: AAAI-97. Proceedings of the Fourteenth National Conference on

Artificial Intelligence; Providence, RI; July 27–31, 1997. p. 436–441.

34. Flanagan D. Java in a Nutshell: A Desktop Quick Reference. 2nd edition.

Sebastopol, CA: O'Reilly; 1997.

35. Forrey AW, McDonald CJ, DeMoor G, Huff SM, Leavelle D, Leland D, et al.

Logical observation identifier names and codes (LOINC) database: A public use

set of codes and names of electronic reporting of clinical laboratory test results.

Clinical Chemistry 1996;42(1):81–90.

36. Fox J, Johns N, Rahmanzadeh A. Disseminating medical knowledge: The

PROforma approach. Artificial Intelligence in Medicine 1998;14:157–181.

37. Frances A, Pincus HA, First MB, editors. Diagnostic and Statistical Manual for

Mental Disorders, Fourth Edition: DSM-IV. Washington, DC: American

Psychiatric Association; 1994.

38. Fridsma D, Gennari J, Musen M. Making generic guidelines site-specific. In:

Cimino J, editor. American Medical Informatics Association Annual Fall

Symposium (formerly SCAMC): Hanley & Belfus; 1996. p. 597–601.

39. Friedman CP, Wyatt JC. Evaluation Methods in Medical Informatics. New York:

Springer-Verlag; 1997.

40. Genesereth M, Nilsson N. Logical Foundations of Artificial Intelligence. San

Mateo, CA: Morgan Kaufmann; 1987.

41. Giuse DA, Giuse NB, Miller RA. Evaluation of long-term maintenance of a large

medical knowledge base. Journal of the American Medical Informatics

Association 1995;2(5):297–306.

295

42. Gruber T. A translation approach to portable ontology specifications. Knowledge

Acquisition 1993;5(2):199–220.

43. Hammond W. Call for a standard clinical vocabulary. Journal of the American

Medical Informatics Association 1997;4(3):254–255.

44. Henry SB, Mead CN. Nursing classification systems: Necessary but not sufficient

for representing "what nurses do" for inclusion in computer-based patient record

systems. Journal of the American Medical Informatics Association

1997;4(3):222–232.

45. Hornick RB. Rickettsial diseases. In: Bennett JC, Plum F, editors. Cecil Textbook

of Medicine. 20th edition. Philadelphia: WB Saunders; 1996a. p. 1726–1736.

46. Hornick RB. Table 324-1. Summary of some epidemiologic features of selected

rickettsial diseases of humans. In: Bennett JC, Plum F, editors. Cecil Textbook of

Medicine. 14th edition. Philadelphia: WB Saunders; 1996b. p. 1727.

47. Hornick RB. Table 324-2. Rickettsia target cell relationships, pathologic lesions,

and clinical manifestations of human rickettsioses. In: Bennett JC, Plum F,

editors. Cecil Textbook of Medicine. 14th edition. Philadelphia: WB Saunders;

1996c. p. 1727.

48. Horrocks I, Sattler U. A description logic with transitive and inverse roles and

role hierarchies. Journal of Logic and Computation 1999;9(3):385–410.

49. Hripcsak G, Ludemann P, Pryor T, Wigertz O, Clayton P. Rationale for the Arden

Syntax. Computers in Biomedical Research 1994;27:291–324.

50. Humphreys BL. UMLS Knowledge Sources, 7th Experimental Edition

Documentation. Bethesda, MD: U.S. Department of Health and Human Services,

National Institutes of Health, National Library of Medicine; 1996a.

51. Humphreys BL, Hole WT, McCray AT, Fitzmaurice JM. Planned NLM/AHCPR

large-scale vocabulary test: Using UMLS technology to determine the extent to

which controlled vocabularies cover terminology needed for health care and

public health. Journal of the American Medical Informatics Association

1996b;3(4):281–7.

52. Humphreys BL, Lindberg DL. The UMLS project: Making the conceptual

connection between users and the information they need. Bulletin of the Medical

Library Association 1993;81(2):170–177.

296

53. Humphreys BL, McCray AT, Cheh M. Evaluating the coverage of controlled

health data terminologies: Report on the results of the NLM/AHCPR large scale

vocabulary test. Journal of the American Medical Informatics Association

1997;4(6):484–500.

54. ICD-9-CM. International Classification of Diseases, 9th Revision, Clinical

Modification, Fourth Edition. Los Angeles: Practice Management Information

Corporation; 1993.

55. Korth HF, Silberschatz A. Database System Concepts. 2nd edition. New York:

McGraw-Hill; 1991.

56. Larmouth J. ASN.1 Complete. Accessed April 9, 2000.

 http://www.nokalva.com/asn1/larmouth.html

57. Lennert K, Mohri N, Stein H, E K. The histopathology of malignant lymphoma.

British Journal of Haematology 1975;31(Suppl):193.

58. Lindberg DA, Humphreys BL, McCray AT. The Unified Medical Language

System. Methods of Information in Medicine 1993;32(4):281–291.

59. Loprinzi C, Alberts S, Christensen B, Hanson L, Farley D, Broers J, et al. History

of the development of antiemetic guidelines at Mayo Clinic Rochester. Mayo

Clinic Proceedings 2000;75:303–309.

60. Lukes RJ, Collins RD. Immunologic characterization of human malignant

lymphomas. Cancer 1974;34(4):1488–1503.

61. MacGregor RM. Inside the Loom description classifier. SIGART Bulletin

1991;2(3):88–92.

62. Mays E, Dionne R, Weida R. K-Rep system overview. SIGART Bulletin

1991;2(3):93–97.

63. Mays E, Weida R, Dionne R, Laker M, White B, Liang C, et al. Scalable and

expressive medical terminologies. In: Cimino JJ, editor. Proceedings of the 1996

AMIA Annual Fall Symposium; Philadelphia: Hanley & Belfus; 1996. p. 259–263.

64. McCray AT, Nelson SJ. The representation of meaning in the UMLS. Methods of

Information in Medicine 1995;34(1–2):193–201.

65. Metrowerks. CodeWarrior Integrated Development Environment, Professional

Release 4 [computer program]. Version 3.3. Austin, TX: Metrowerks Inc.; 1998.

297

66. Mitra P, Wiederhold G, Kersten M. A graph-oriented model for articulation of

ontology interdependencies. In: Zaniolo C, Lockemann PC, Scholl MH, Grust T,

editors. Advances in Database Technology - EDBT 2000, Sixth International

Conference on Extending Database Technology; Konstanz, Germany; March 27–

31, 2000. p. 86–100.

67. Musen MA. Domain ontologies in software engineering: Use of Protégé with the

EON architecture. Methods of Information in Medicine 1998;37(4–5):540–550.

68. Musen MA, Tu SW, Das AK, Shahar Y. EON: A component-based approach to

automation of protocol-directed therapy. Journal of the American Medical

Informatics Association 1996;3(6):367–88.

69. Musen MA, Wieckert KE, Miller ET, Campbell KE, Fagan LM. Development of

controlled medical terminology: Knowledge acquisition and knowledge

representation. Methods of Information in Medicine 1995;34(1–2):85–95.

70. Neches R, Fikes R, Finin T, Gruber T, Sanator T, Swartout W. Enabling

technology for knowledge sharing. AI Magazine 1991;12:36–56.

71. NLM (National Library of Medicine). 1997 Medical Subject Headings: Annotated

Alphabetic List. 1996.

72. NLM (National Library of Medicine). NLM. 1998 Medical Subject Headings:

Annotated Alphabetic List. 1997.

73. NLM (National Library of Medicine). NLM. MeSH vocabulary file: Data element

descriptions. Last updated October 20, 1998.

 http://www.nlm.nih.gov/mesh/elmesh99.pdf

74. NLM (National Library of Medicine). NLM. Medical Subject Headings files

available to download. Last updated October 21, 1999.

 http://www.nlm.nih.gov/mesh/filelist.html

75. Nowlan WA, Rector A, Kay S, Horan B, Wilson A. A patient care workstation

based on a user-centered design and a formal theory of medical terminology: PEN

& PAD and the SMK formalism. In: Clayton P, editor. Proceedings of the

Fifteenth Annual Symposium on Computer Applications in Medical Care; New

York: McGraw-Hill; 1991. p. 855–857.

76. Noy NF, Musen MA. An algorithm for merging and aligning ontologies:

Automation and tool support. In: Proceedings of the Workshop on Ontology

298

Management at the Sixteenth National Conference on Artificial Intelligence

(AAAI-99); Orlando, FL: AAAI Press, 1999a.

77. Noy NF, Musen MA. SMART: Automated support for ontology merging and

alignment. In: Gaines B, Kremer R, Musen M, editors. KAW 99. Proceedings of

the Twelfth Workshop on Knowledge Acquisition, Modeling and Management;

Banff, Alberta, Canada; October 16–21, 1999b. p. Track 4, No. 7, 1–20.

78. Ohno-Machado L, Gennari JH, Murphy SN, Jain NL, Tu SW, Oliver DE, et al.

The GuideLine Interchange Format: A model for representing guidelines. Journal

of the American Medical Informatics Association 1998;5:357–372.

79. Oliver DE, Shahar Y, Shortliffe EH, Musen MA. Representation of change in

controlled medical terminologies. Artificial Intelligence in Medicine

1999;15(1):53–76.

80. Olson NE, Erlbaum MS, Tuttle MS, Sherertz DD, Suarez-Munist O, Lipow SS, et

al. Exploiting the Metathesaurus update model. In: Cimino JJ, editor. Proceedings

of the 1996 AMIA Annual Fall Symposium; Philadelphia: Hanley & Belfus; 1996.

p. 902.

81. O'Neil M, Payne C, Read J. Read codes Version 3: A user-led terminology.

Methods of Information in Medicine 1995;34(1–2):187–192.

82. Osler W, McCrae T. The Principles and Practice of Medicine. 9th edition. New

York: D. Appleton and Company; 1923.

83. Patel-Schneider PF, Swartout B. Description-logic knowledge representation

system specification from the KRSS group of the ARPA knowledge-sharing

effort. November 1, 1993. p. 1–19.

 http://www.ida.liu.se/labs/iislab/people/patla/DL

84. Patil R, Fikes R, Patel-Schneider P, McKay D, Finin T, Gruber T, et al. The

DARPA knowledge-sharing effort: Progress report. In: Rich C, Nebel B, Swartout

W, editors. Principles of Knowledge Representation and Reasoning: Proceedings

of the Third International Conference; Cambridge, MA: Morgan Kaufmann; Oct.

25–29, 1992. p. 777–788.

85. Paty D, Studney D, Redekop K, Lublin F. MS COSTAR: A computerized patient

record adapted for clinical research purposes. Annals of Neurology 1994;36:134–

5.

299

86. Peltason C. The BACK system: An overview. SIGART Bulletin 1991;2(3):114–

119.

87. Rassinoux A, Miller R, Baud R, Scherrer J. Modeling concepts in medicine for

medical language understanding. Methods of Information in Medicine 1998;37(4–

5):361–372.

88. Rector A, Bechhofer S, Goble C, Horrocks I, Nowlan W, Solomon W. The

GRAIL concept modelling language for medical terminology. Artificial

Intelligence in Medicine 1997;9(2):139–171.

89. Rector A, Solomon W, Nowlan W, Rush T, Zanstra P, Claassen W. A

terminology server for medical language and medical information systems.

Methods of Information in Medicine 1995;34(1–2):147–157.

90. Resnick L, Borgida A, Brachman R, McGuinness D, Patel-Schneider P, Zalondek

K. CLASSIC Description and Reference Manual for the COMMON LISP

Implementation, Version 2.2. New Jersey: AT&T Bell Lab; 1993.

91. Robinson D, Schulz E, Brown P, Price C. Updating the Read codes: User-

interactive maintenance of a dynamic clinical vocabulary. Journal of the

American Medical Informatics Association 1997;4(6):465–472.

92. Rocha RA, Huff SM, Haug PJ, Warner HR. Designing a controlled medical

vocabulary server: The VOSER project. Computers and Biomedical Research

1994;27(6):472–507.

93. Rogers J, Price C, Rector A, Solomon W, Smejko N. Validating clinical

terminology structures: Integration and cross-validation of Read Thesaurus and

GALEN. In: Chute CG, editor. Proceedings of the AMIA ’98 Annual Symposium;

Philadelphia: Hanley & Belfus; 1998. p. 845–849.

94. Rogers JE, Rector AL. Terminological systems: Bridging the generation gap. In:

Masys DR, editor. Proceedings of the 1997 AMIA Annual Fall Symposium;

Philadelphia: Hanley & Belfus; 1997. p. 610–614.

95. Rothwell DJ. SNOMED-based knowledge representation. Methods of Information

in Medicine 1995;34(1–2):209–213.

96. Sargeaunt J, translator. Terence II: Phormio, The Mother-in-Law, The Brothers.

In: Goold GP, editor. Loeb Classical Library, No. 23. Cambridge, MA: Harvard

University Press; 1995, p. 50.

300

97. Schulz EB, Barrett JW, Price C. Semantic quality through semantic definition:

Refining the Read codes through internal consistency. In: Masys DR, editor.

Proceedings of the 1997 AMIA Annual Fall Symposium; Philadelphia: Hanley &

Belfus; 1997. p. 615–619.

98. Shahar Y, Miksch S, Johnson PD. The Asgaard project: A task-specific

framework for the application and critiquing of time-oriented clinical guidelines.

Artificial Intelligence in Medicine 1998;14(1–2):29–51.

99. Shahar Y, Musen MA. Plan recognition and revision in support of guideline-

based care. In: 1995 Spring Symposium Series, Stanford University: American

Association for Artificial Intelligence; March 27–29, 1995.

100. Spackman KA, Campbell KE. Compositional concept representation using

SNOMED: Towards further convergence of clinical terminologies. In: Chute CG,

editor. Proceedings of the AMIA ’98 Annual Symposium; Philadelphia: Hanley &

Belfus; 1998. p. 740–744.

101. Spackman KA, Campbell KE, Cote RA. SNOMED RT: A reference terminology

for health care. In: Masys DR, editor. Proceedings of the 1997 AMIA Annual Fall

Symposium; Philadelphia: Hanley & Belfus; 1997. p. 640–644.

102. Spitzer RL, Williams JBW, editors. Diagnostic and Statistical Manual for Mental

Disorders, Third Edition Revised: DSM-III-R. Washington, DC: American

Psychiatric Association; 1987.

103. Stitt E. The Diagnostics and Treatment of Tropical Diseases. 2nd edition.

Philadelphia: P. Blakiston's Son and Company; 1917.

104. Suarez-Munist ON, Tuttle MS, Olson NE, Erlbaum MS, Sherertz DD, Lipow SS,

et al. MEME-II supports the cooperative management of terminology. In: Cimino

JJ, editor. Proceedings of the 1996 AMIA Annual Fall Symposium; Philadelphia:

Hanley & Belfus; 1996. p. 84–88.

105. Swartout B, Patil R, Knight K, Russ T. Toward distributed use of large-scale

ontologies. In: Gaines B, Musen M, editors. KAW 96. Proceedings of the Tenth

Knowledge Acquisition for Knowledge-Based Systems Workshop; Banff, Alberta,

Canada; Nov. 9–14, 1996. p. 32.1–32.19.

106. Thurin A, Carlsson M, Gill H, Wigertz O. Arden Syntax and GALEN

terminology support: A powerful combination to represent medical knowledge.

In: Greenes RA, Peterson HE, Protti DJ, editors. MEDINFO ’95. Proceedings of

301

the Eighth World Congress on Medical Informatics; Vancouver, BC: Healthcare

Computing & Communications Canada; July 23–27, 1995. p. 110.

107. Topley K. CORE Java Foundation Classes. Upper Saddle River, NJ: Prentice

Hall; 1998.

108. Tuttle M, Nelson S. A poor precedent. Methods of Information in Medicine

1996;35(3):211–217.

109. Tuttle M, Olson N, Campbell K, DD S, SJ N, WG C. Formal properties of the

Metathesaurus. In: Safran C, editor. Proceedings of the Eighteenth Annual

Symposium on Computer Applications in Medical Care; 1994. p. 145–149.

110. Tuttle M, Suarez-Munist O, Olson N, Sherertz D, Sperzel W, Erlbaum M, et al.

Merging terminologies. In: Greenes RA, Peterson HE, Protti DJ, editors.

MEDINFO ’95. Proceedings of the Eighth World Congress on Medical

Informatics; Vancouver, BC: Healthcare Computing & Communications Canada;

July 23–27, 1995. p. 162–166.

111. Tuttle MS, Sherertz D, Erlbaum M, Sperzel W, Fuller L, Olson N. Adding your

terms and relationships to the UMLS Metathesaurus. In: Clayton PD, editor.

Proceedings of the Fifteenth Annual Symposium on Computer Applications in

Medical Care; New York: McGraw-Hill; 1991. p. 219–223.

112. Uschold M, Clark P, Healy M, Williamson K, Woods S. An experiment in

ontology reuse. In: Gaines B, Musen M, editors. KAW 96. Proceedings of the

Eleventh Knowledge Acquisition for Knowledge-Based Systems Workshop; Banff,

Alberta, Canada; April 18–23, 1998.

113. Valente A, Russ T, MacGregor R, Swartout W. Building and (re)using an

ontology of air-campaign planning. IEEE Intelligent Systems 1999;14(1):27–36.

114. Walker D, Raoult D, Brouqui P, Marie T. Rickettsial diseases. In: Fauci AS,

Braunwald E, Isselbacher KJ, Wilson JD, Martin JB, Kasper DL, et al., editors.

Harrison’s Principles of Internal Medicine. 14th edition. New York: McGraw-

Hill; 1998. p. 1045–1052.

115. Webster’s New Collegiate Dictionary. 9th edition. Springfield, MA: Merriam-

Webster; 1991. Ontology; p. 825.

116. Weinstein PC, Birmingham WP. Comparing concepts in differentiated ontologies.

In: Gaines B, Kremer R, Musen M, editors. KAW 99. Proceedings of the Twelfth

302

Workshop on Knowledge Acquisition, Modeling and Management; Banff, Alberta,

Canada; October 16–21, 1999. p. Track 5, No. 6, 1–22.

