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Preface

This dissertation explores new algorithmic approaches to simulation-based optimiza-

tion, game-tree search, and tree search for the control and analysis of hybrid systems.

Hybrid Systems are systems that evolve with both discrete and continuous behaviors.

Examples of hybrid systems include diverse mode-switching systems such as those

we have used as focus problems: stepper motors, magnetic levitation units, and sub-

marine detection avoidance scenarios. For hybrid systems with complex dynamics,

the designer may have little other than simulation as a tool to detect design aws

or inform o�ine or real-time control. In approaching control and analysis of such

systems, we thus limit ourselves to a black-box simulation of the system, assuming

as little as possible about the underlying dynamics and extending various types of

search algorithms to treat these diÆcult general cases.

Chapter 1 provides the reader with a more detailed overview, a summary of con-

tributions, background reading, and chapter dependencies.

Chapter 2 presents a stepper motor control design problem where the designer

wishes to use simulation to eÆciently detect rare stall scenarios in the space of pos-

sible system parameters and initial states if such scenarios exist. A survey of global

optimization techniques and extensions of such techniques are made, and we discover

the importance of novel information-based and multi-level optimization methods.

Chapters 3{6 focus on game-tree search and tree search problems where a series of

actions must be chosen under di�erent assumptions about the existence of a given ac-

tion or action timing discretization. If the search algorithm is given an action or action

timing discretization, we say that the search algorithm has \static action discretiza-

tion" or \static action timing discretization" respectively. If the search algorithm is
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not given an action or action timing discretization, we say the search algorithm has

\dynamic action discretization" or \dynamic action timing discretization" respec-

tively. Thus various assumptions about whether or not either discretization is given

de�ne four quadrants:

Action Timing

Discretization

Static Dynamic

Action Static SASAT SADAT

Discretization Dynamic DASAT DADAT

The acronyms in each quadrant are used in this dissertation to keep track of these

underlying assumptions about action and action timing discretization.

Chapter 3, SASAT game-tree search, presents a magnetic levitation control prob-

lem as an adversarial game for the purpose of robust control synthesis. We explore

the use of a game-graph (augmented cell-map) approximation and alpha-beta pruning

technique for fast adaptive online control.

Chapter 4, DASAT game-tree search, continues with the magnetic levitation con-

trol problem and instead focuses on the issue of action discretization for game-tree

search. A novel application of information-based optimization to alpha-beta search

is presented.

Chapter 5, SADAT tree search, presents a submarine detection avoidance prob-

lem as a solitaire game or search for the purpose of fast, real-time tactical planning

assistance. Assuming discretized actions, we focus on the problem of action timing

discretization. New iterative re�nement techniques and a variant of best-�rst search

are presented.

Chapter 6, DADAT tree search, continues with the submarine detection avoidance

problem and removes the assumption of discretized actions. Augmenting the algo-

rithms of the previous chapter, we explore random, information-based, and dispersed

dynamic discretization of actions in search.
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Chapter 1

Introduction

1.1 Motivation

This dissertation explores new algorithmic approaches to simulation-based optimiza-

tion, game-tree search, and tree search for the control and analysis of hybrid systems.

Hybrid Systems are systems that evolve with both discrete and continuous behaviors.

Examples of hybrid systems include diverse mode-switching systems such as those

we have used as focus problems: stepper motors, magnetic levitation units, and sub-

marine detection avoidance scenarios. For hybrid systems with complex dynamics,

the designer may have little other than simulation as a tool to detect design aws

or inform o�ine or real-time control. In approaching control and analysis of such

systems, we thus limit ourselves to a black-box simulation of the system, assuming

as little as possible about the underlying dynamics and extending various types of

search algorithms to treat these diÆcult general cases.

In fact, the system dynamics need not include both continuous and discrete

changes. For optimization, we are interested in systems that tend to have similar

behavior for similar initial conditions. For game-tree search and search, we are in-

terested in systems for which simulation and control actions can be used to explore

branching possibilities of system evolution in order to inform intelligent control action.

For each problem area, a representative problem was chosen to focus our work.

For global optimization, Chapter 2 presents a stepper motor control design problem

1



CHAPTER 1. INTRODUCTION 2

where the designer wishes to use simulation to eÆciently detect rare stall scenarios in

the space of possible system parameters and initial states if such scenarios exist. The

stepper motor system is hybrid in the sense that the system evolves with piecewise

continuous intervals separated by scheduled coil voltage changes modeled as discrete

events.

For game-tree search, Chapter 3 presents a magnetic levitation control problem

as an adversarial game for the purpose of robust control synthesis. The magnetic

levitation system is hybrid in the sense that the system evolves with piecewise con-

tinuous intervals separated by controlled input changes modeled as discrete events.

Both the stepper motor and magnetic levitation systems are essentially continuous

systems with fast controlled changes approximated as occurring instantaneously.

For tree search, Chapter 5 presents a submarine detection avoidance problem as a

solitaire game or search for the purpose of fast, real-time tactical planning assistance.

This problem is hybrid in the sense that the system evolves with piecewise continuous

intervals separated by controlled and autonomous discrete events1. For a thorough

review and uni�cation of hybrid system models, see Branicky's dissertation[5].

In each case, we have sought to avoid use of complex problem-domain-speci�c

knowledge. One can often trade o� generality for performance through the use of

domain-speci�c knowledge. As we formalize new problems and take �rst steps to

address them in this dissertation, we take care to minimize the assumed knowledge

of our problem domains so that the algorithms developed may serve as generally

applicable kernels from which future advances can grow.

Each of the following chapters begins with a formal de�nition of the problem of

interest. We now place these problems in perspective with one another.

1.2 Problem Characterizations

In Russell & Norvig's \Arti�cial Intelligence: a modern approach"[41], an agent-based

approach to problem de�nition is used, where an agent maps percepts to actions

1For this problem, controlled and autonomous discrete events are changes in submarine and ship
headings, speeds, and modes.



CHAPTER 1. INTRODUCTION 3

within a dynamical system. A PAGE description of an agent includes four basic

components:

� Percepts - what the agent is able to sense about its environment,

� Actions - what the agent is able to a�ect in its environment,

� Goals - what the agent wishes to achieve in its environment, and

� Environment - a description of the environment itself.

From an optimal control viewpoint, this would be like taking a controller-centric

approach to problem de�nition with each of these components respectively corre-

sponding to controller inputs, controllers outputs, performance index2, and plant.

Additionally, environment descriptions make the following distinctions:

� Accessible vs. Inaccessible - If the agent senses the entire state of the envi-
ronment relevant to achieving its goal, the environment is accessible. Otherwise

it is inaccessible. For example, chess as a game of perfect information is acces-

sible, whereas poker as a game of imperfect information is inaccessible.

� Deterministic vs. Nondeterministic - If the next state of the environment

is completely determined by the current state and the actions of the agents, the

environment is deterministic. Otherwise, it is nondeterministic. For example,

chess as a game without chance is deterministic, whereas poker as a game of

chance is nondeterministic. Such (non)determinism is usually de�ned with re-

spect to the agent's perspective. From the perspective of poker playing agents,

cards drawn are not determined by the agents themselves and are a source of

nondeterminism in game play.

� Episodic vs. Nonepisodic - If the agent's experience in the environment can

be divided into separate \episodes" (i.e. a single mapping from percepts to

2\Performance index" may also be called \objective function" or \utility function" in other
control contexts.
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actions) which have no inuence on the utility of actions in all other episodes,

the environment is episodic. Otherwise, it is nonepisodic. The single-shot chance

game of rock-scissors-paper is episodic, whereas the complex sequential nature

of chess is nonepisodic.

� Static vs. Dynamic - If the environment cannot change while the agent is

deliberating, the environment is static. Otherwise, the environment is dynamic.

Chess is static3, whereas baseball is dynamic.

� Discrete vs. Continuous - If there are a limited number of distinct percepts

and actions, then the environment is discrete. Otherwise, it is continuous. With

enumerable board positions, chess is discrete, whereas baseball is continuous.

We now characterize each of our problems in turn and discuss further particulars

of each.

1.2.1 Simulation-based Global Optimization for Initial Safety

Refutation of Hybrid Systems

For this problem, we are interested in detecting design aws within an initial time

period of simulation. Given a set of possible initial conditions (possible system pa-

rameters and initial states), we wish to know if a prede�ned controller remains within

a desired set of \safe" states for an initial time period. We call this property \initial

safety". Since the system is entirely prede�ned with no degrees of freedom for deci-

sion making, the controller is in this case a degenerate case of an agent, with neither

percepts nor actions which can be used to deliberate about or a�ect achievement of

the goal within the environment.

However, the task of refuting initial safety presents a more interesting study. A

PAGE description of the initial safety refutation agent is as follows:

� Percepts - The agent perceives the current possible initial condition under con-
sideration, and the evaluated heuristic measure of relative safety of a trajectory

3Or else the opponent's hand gets slapped for playing out of turn.
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simulated from that initial condition.

� Actions - The agent chooses the next possible initial condition to consider and
evaluates the heuristic measure of relative safety of the trajectory simulated

from this initial condition.

� Goals - The agent wishes to, with minimal actions, �nd an initial condition for

which simulation yields a trajectory with an unsafe state, thus refuting initial

safety of the system.

� Environment - An o�ine simulation testing environment which is:

{ Accessible - The agent may obtain a heuristic evaluation of the relative

safety of any possible initial condition.

{ Deterministic - Simulation and evaluation of the simulation is determin-

istic with respect to initial conditions.

{ Nonepisodic - Since the agent seeks to minimize the number of actions

needed for refutation (if a refutation exists), each action a�ects the per-

formance overall.

{ Static - The testing environment never changes.

{ Continuous - Perceived evaluations can include all non-negative real num-

bers. The range of possible actions is over a continuous space of possible

system parameters and initial states.

One might wonder why we have the agent seek to minimize the number of actions

rather than time. The reason is that we make the assumption that the computa-

tional cost of simulation and evaluation dominates the cost of the agent deliberation.

In doing so, we approximate the goal of minimizing overall computational time by

minimizing the number of calls to the most computationally expensive procedure.

We did not work with initial condition spaces with more than 6 dimensions. Such

problems are often addressed by performing successive searches in lower-dimensional

subspaces.
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1.2.2 Simulation-based Game-Tree Search for Robust Con-

trol Synthesis of Hybrid Systems

Control theorists have long posed control problems as games in order to treat multi-

agent control problems (e.g. pursuit-evasion games) or robust control problems (e.g.

where the adversary represents worst case external perturbation, error, etc.)[1, 7]. We

characterize these problems from the perspective of the �rst-player control agent as

follows:

� Percepts - The agent perceives the current state of the hybrid system.

� Actions - In Chapter 3, the agent chooses from a discrete set of possible actions.

In Chapter 4, the agent chooses from a set of possible closed, continuous action

parameter regions.

� Goals - The agent wishes to maximize its score (utility) with respect to a given

time horizon.

� Environment - A multi-agent hybrid dynamical system which is:

{ Accessible - The agent can perceive all hybrid state variables relevant to

achieving its goal.

{ Deterministic - The actions of the players completely determine the dy-

namics of the system.

{ Nonepisodic - Each action can a�ect the system dynamics thus a�ecting

the score/utility of future actions.

{ Dynamic - While a player is deliberating, another player can act and

change the environment.4

{ Continuous - Both percepts (all state variables) and actions (chosen from

action parameter regions) can be continuous.

4In Chapters 3 and 4, we simplify the problem by approximating the dynamic game as one
in which the players take turns at �xed times. We approach the dynamic problem with a static
approximation of the problem.
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Now that we have characterized the general features of the problem, it is important

to characterize problems for which game-tree search is a suitable approach. Beyond

the commonalities we have discussed, good game-tree search applications also share

informational/topological characteristics. In searching possible lines of play from

the current state, the game-tree formed must contain suÆcient information within a

limited depth, given a low branching factor, to indicate intelligent action under player

modeling assumptions:

1. Information - Like any process which works with information to form conclu-

sions, one can expect the adage \garbage in, garbage out" to hold. Whether

in the form of a utility function or a heuristic function estimating utility, one

must have a means of evaluating the desirability of one sequence of moves over

another. While such a function need not be perfect, poor information will lead

to poor decisions. At the other extreme, a perfect utility function obviates the

need for search. If the expected utility of performing a single move is perfectly

computable, one need only look ahead one move. Game-tree search is better

suited for games which bene�t from a combination of lookahead and imperfect

evaluation. Typically the expected utility of a move sequence is composed of

one or both of the following: (a) the utility of performing the sequence of actions

in the current state, and (b) an estimate of the utility of actions which will be

chosen thereafter. A search technique which makes use of (a) only is said to

exhibit \greedy" behavior.

2. Search Depth - Game-tree search can be thought of as an optimization in the

space of move sequences under player modeling assumptions (see (4)). Given

that such spaces can be vast for small, simple games, methods often assume that

search will cover a small subset of move sequences, generally biased towards the

shortest sequences. Often, such subsets of action sequences will have no path,

or no optimal path which leads to a goal state (victory). The time required to

perform search grows exponentially as O(bd), where b is the e�ective branching

factor of the tree, and d is the search depth. Obviously, even for small branching

factors, game-tree searches will only be successful in domains where limited
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lookahead is suÆcient to inform intelligent action.

3. Search Breadth - For the same reason, high branching factors can also render

search ine�ective. With players alternately placing pieces on a 19 � 19 grid,

the game of Go provides a good example of how a high branching factor can

make lookahead too computationally expensive for e�ective use. Game-tree

search is best applied to games where branching factor is not so high as to

prevent suÆcient lookahead to inform intelligent action. For a continuous or

hybrid game with in�nite possible moves de�ned by continuous action parameter

spaces, we can only sample a �nite number of moves. Feasibility of search for

approaching such problems depends on how well sampling can provide global

information about the quality of decisions.

4. Player Modeling Assumptions - Rational game-play is based on player mod-

eling assumptions. Although most game-theoretic research is focused on opti-

mal rational play, understanding of one's opponent allows better game play. For

instance, one can play chess well assuming that one's opponent approximates

perfect rational play. However, if one knows that the opponent strongly favors

material advantage, then one will do better to favor the strategy of sacri�ce.

Game-tree search techniques usually have very simple player models which are

computationally eÆcient. The minimax assumption is an example.

So information characteristics concerning (expected) utility of moves and player

modeling is intertwined with topological characteristic of search-tree depth and breadth.

Put simply, there must be suÆcient information in the possibilities we can consider

during search to make intelligent choices. Beyond environmental characteristics, these

form the core considerations for game-tree search applications.

One �nal important note is the distinction between the e�ect of the dimensional-

ity of the state space versus the e�ect of the dimensionality of the action parameter

regions. As the dimensionality of the state space increases, the computational com-

plexity of simulation is a�ected. As the dimensionality of action parameter regions
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increases, the e�ective branching factor of search increases exponentially to main-

tain the same granularity of discretization5. So long as the system can be simulated

quickly, dimensionality of the state space is not a concern for the complexity of the

search. Biologists have observed that complex behaviors in organisms with many

degrees of freedom in movement arise from superposition of very simple signals of

varying intensity[2]. If one can choose an appropriate low-dimensional parameter-

ization of action, search has the potential to inform intelligent action of complex

systems.

1.2.3 Simulation-Based Tree Search for Real-Time Control

Assistance of Hybrid Systems

Tree search (or simply \search") can be viewed as a special solitaire case of game-tree

search where there is only one player. The general challenge is to �nd a sequence of

actions which either maximizes a score/utility/payo�, minimizes a cost, or achieves

a desired state or set of states. We characterize these problems from the perspective

of the �rst-player control agent as follows:

� Percepts - The agent perceives the current state of the hybrid system.

� Actions - In Chapter 5, the agent chooses from a discrete set of possible actions.

In Chapter 6, the agent chooses from a set of possible closed, continuous action

parameter regions.

� Goals - We treat multiple di�erent goals in this context which take on some

combination of (1) minimizing cost with respect to a given time horizon, and

(2) achieving a desired goal state or set of states. Methods are presented which

pursue (1) only, pursue (1) and stop if (2) is achieved, and pursue (2) making

sure the cost is approximately optimal.

� Environment - A multi-agent hybrid dynamical system which is:

5Granularity is de�ned with respect to Euclidean distance of sampled action parameter points.
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{ Accessible - The agent can perceive all hybrid state variables relevant to

achieving its goal.

{ Deterministic - The actions of the agent completely determine the dy-

namics of the system.

{ Nonepisodic - Each action can a�ect the system dynamics thus a�ecting

the score/utility of future actions.

{ Static - The agent is the sole a�ector of the environment.

{ Continuous - Both percepts (all state variables) and actions (chosen from

action parameter regions) can be continuous.

In Chapters 5 and 6, we no longer assume a given action timing discretization. In

Chapter 5, we assume a given action discretization. In Chapter 6, we do not.

As a degenerate case of game-tree search, all preceding discussion of applicability

beyond environmental concerns is relevant except for discussion concerning player

modeling assumptions. To reiterate, in searching possible sequences of actions from

the current state, the tree searched must contain suÆcient information within a

limited depth, given a low branching factor, to indicate intelligent action.

1.3 Contributions

In this section, we summarize the algorithmic contributions of this research. Beyond

algorithmic contributions, Chapter 2 presents the de�nition of an initial safety prob-

lem and a novel reformulation of the problem to a specialization of global optimization.

Chapters 3{6 each formally de�ne hybrid system games and search problems under

di�ering assumptions of action and action timing discretizations.

In Chapter 2, we present the �rst multidimensional approach to information-based

optimization and the �rst local optimization application of the information-based

optimization approach. We generalized the multi-level local optimization architecture

of [10], and created two information-based multi-level optimization methods which

were the only algorithms we found able to reliably �nd design faults with our diÆcult
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stepper motor test problem. In addition, we created multi-level single-linkage[39]

variants which assumed local optimization determinism, used ordering heuristics, and

performed lazy objective function evaluation. Finally, we made constrained, epsilon-

descent variants of quasi-Newton and Yuret's local optimization[54].

In Chapters 3{6, we develop game-tree search and search techniques for control of

hybrid systems. In contrast to classical control techniques such as feedback lineariza-

tion, we do not constrain our system to a speci�c analytical form. For most of our

algorithms, we assume that a system simulator is given. However, the augmented cell-

map techniques of Chapter 3 require only suÆcient time-series data to approximate

system dynamics. Furthermore, simulation can be approximated through the interpo-

lation of time-series data (e.g. linear weighted regression from observed behavior[32]).

From this perspective, our techniques not only enable model-based control, but also

can be applied without explicit models given an appropriate means of interpolating

unseen system behavior.

In Chapter 3, we present a new synthesis of cell-map and minimax methods for fast

approximate control synthesis. We augmented a cell-map for multi-player evaluation,

calling it a game-graph. We present two algorithms which are respectively suited for

o�ine and online derivation of optimal control: Dynamic Programming on a Game-

Graph and Alpha-Beta Pruning on a Game-Graph.

In Chapter 4, we show that alpha-beta search naturally provides bounds for the ap-

plication of information-based optimization to the discretization of continuous action

parameter spaces. We call the resulting algorithm Information-Based Alpha-Beta

Search, and show empirically that it exceeds the good speed and pruning perfor-

mance of random discretization while matching the control policy quality of uniform

discretization.

In Chapter 5, we provide several new search approaches that do not rely on a given

�xed action timing discretization. Simple Iterative Re�nement successively searches

for a solution from the initial time to a �xed time horizon with increasingly �ner

granularity until a solution is found. SADAT Best-First Search, the �rst systematic

search that dynamically generates new internal nodes, was shown to exhibit a tradeo�
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of speed versus solution quality. Iterative Re�nement with Strong Pruning, Node Or-

dering, and Upper Bound yielded impressive performance given an appropriate time

horizon and a monotonic heuristic evaluation function. We next created an epsilon

variant of Korf's Recursive Best-First Search[25] and showed its extreme sensitivity

to the input delay parameters. We conclude the chapter with a successful synthesis

of � - Recursive Best-First Search with iterative re�nement ideas. Iterative Re�ne-

ment with � - Recursive Best First Search gave excellent results while behaving most

consistently with respect to a wide range of initial delay parameters.

In Chapter 6, we describe the augmentation of the best new searches from the pre-

vious chapter with three forms of dynamic discretization: random, information-based,

and dispersed. The previous chapter relied on a human-designed discretization which

was aligned with topological features and object motion of the test problem domain.

We repeated experiments from Chapter 5 with the given heading discretizations ran-

domly rotated. Dynamic random discretization performed similarly to the randomly

rotated static discretization. The computational complexity of information-based op-

timization made it unsuitable for the real-time requirements of the test problem. We

developed a compromise between the speed of random discretization and the princi-

pled approach of information-based discretization. The compromise, called dispersed

discretization, yielded performance far exceeding that of the randomly rotated static

discretization.

1.4 Vision

While one might argue that control and AI researchers intersect in the study of

neural networks, it appears that there is no signi�cant intersection between AI and

control game research. Constructing a program to make a computer play chess well

primarily a�ects a philosophical change in the world, necessitating new conclusions

about the nature of intelligence. However, constructing programs that think and act

intelligently in continuous physical domains a�ects a material change in the world,

creating new opportunities for practical application of computers.

We believe that the extension of discrete AI search techniques to hybrid control
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domains can be of great bene�t to both AI and control. By increasing the common

ground of common goals, we hope to facilitate the promising merge of AI discrete

system expertise and control continuous system expertise. Applications we envision

are described below.

� Design fault detection: While a discrete search of a hybrid space is not complete,

it can be an eÆcient means of detecting faulty behaviors without needing to

over-abstract or over-approximate the model. We imagine a control engineer

taking sources of error or uncertainty and modeling them as a player or players

that seek to work against the controller. The game-tree search would then be

an eÆcient means of searching for the most signi�cant possible deviations from

intended behavior.

� Robust control: In treating possible disturbances or errors as possible actions

of an adversarial player in a control game, the objective of optimal game play

is equivalent to the objective of robust control. We will see two di�erent search

approaches to robust control in Chapters 3 and 4. In one approach, we ap-

promixate the continuous system as a graph and apply various forms of dynamic

programming to compute optimal robust control for the approximated system.

In the other approach, we perform a tree search of a sample of possible system

trajectories. Since the discrete game-tree search of the continuous system is

incomplete, it can only be considered an approximation of robust control to the

extent that we can prove properties about the most that our sampling will miss

in the course of search.

� Online control: For applications where safety is not critical, the online use of

game-tree search or tree-search for control decisions may provide an immediate,

approximate model-in-controller-out methodology for control. Using simulation

to project the system state �t time units into the future, we search from the

projected point for �t time units and use the results of search to inform control

action. Such controllers would be especially useful in applications requiring ex-

ception versatility in adaptive control. Even if one cannot parameterize changes
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in the model, one would need only change the simulation and/or cost model in

order to adapt controller behavior to a new environment and/or goal.

� Rapid prototyping: In the design stage, we also believe that tree search (a soli-

taire game without adversaries) can be used to provide a rough initial control

policy which can provide valuable information to the designer. If the design

requirements are especially demanding, a fast approximate solution can be of

bene�t as an indication of what proven control techniques would be best ap-

plied. For instance, a designer might be able to use a straightforward simulation

of a complex system (without need for diÆcult abstraction) to derive an ap-

proximately optimal control policy. From analysis of the approximate control

policy, the designer might gain quick insight into the dynamics of the system,

such as state space regions that exhibit signi�cant nonlinearities.

Simulation is already a valuable tool in controller design validation. By providing

intelligent means to perform directed simulation, we hope these techniques will �nd

their place as powerful tools for control engineers.

1.5 Reading Guide

This dissertation assumes that the reader has an undergraduate-level background in

Computer Science, and has introductory-level knowledge of the following areas:

� Global Optimization - A good, brief introduction to the area can be found

in [38, Chapter 10]. [19, 39, 40] provide a more thorough survey of modern

methods.

� Game-Tree and Tree Search - A good introduction to this area can be found

in [41, Chapters 3{5]. In addition, the reader may want to read the relevant

article on recursive best-�rst search[25].

� Cell-Mapping Methods - The most basic ideas of [20] are suÆcient to un-

derstand Chapter 3.
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If the reader is interested in a particular chapter, dependencies between chapters

are shown in Figure 1.1.

Chapter 3: SASAT Game-Tree Search

Chapter 4: DASAT Game-Tree Search

Chapter 5: SADAT Tree Search

Chapter 6: DADAT Tree Search

Chapter 2: Information-Based Optimization

Figure 1.1: Chapter Dependencies



Chapter 2

Heuristic Optimization for Initial

Safety Refutation

2.1 Introduction

Given a simulated hybrid dynamical system S, a set of possible initial states I, and

a set of \unsafe" states U , we wish to verify nonexistence of an S-trajectory from I

to U within tmax time units. We call this the initial safety problem. Suppose we are

given an approximate measure of the relative safety of a trajectory. More speci�cally,

let f be a function taking an initial state i as input, and evaluating the S trajectory

from i such that f(i) = 0 if and only if the S-trajectory from i enters U within tmax

time units, and f(i) > 0 otherwise. Then veri�cation of the initial safety problem

can be transformed into the global optimization (GO) problem:

min
i2I

(f(i))
?

> 0

GO methods may therefore terminate when i is found such that f(i) = 0. Given

that f does not generally have an analytic form, we do not assume the availability

of derivatives. Since each evaluation of f may require a computationally expensive

simulation, we are particularly interested in GO methods which perform relatively few

evaluations of f . In this context, we compare several original variants of Simulated

16
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Annealing (SA) and Multi Level Single Linkage (MLSL) methods and assess their

suitability for our purposes. We discuss the use of knowledge of f gained in the

course of GO, and consider the extent to which some GO methods assume special

properties of the local optimization (LO) procedures they use.

Finally, we introduce the �rst multidimensional extension of information-based

optimization and show global and local applications of information-based optimiza-

tion in our multi-level local optimization architecture. These latter contributions are

shown to be both (1) competitive with evaluation counts of prominent global opti-

mization techniques, and (2) the most reliable means of �nding rare failure scenarios

for the motivating problem described in the next section.

2.2 Stepper Motor Stall Problem

Our research was largely motivated by the following safety veri�cation task: Given

bounds on the system parameters of a stepper motor (e.g. viscous friction, inertial

load), bounds on initial conditions (e.g. angular displacement and velocity), and an

open-loop motor acceleration control, verify that no scenario exists in which the motor

stalls. We model the motor's continuous dynamics using ODEs given in [26]:

_� = !

_! =
�iaNb sin(N�) + ibNb cos(N�)�D sin(4N�)� Fv! � Fcsign(!)� Fg

Jl + Jm

_ia =
Va � iaR + !Nb sin(N�)

L

_ib =
Vb � ibR� !Nb cos(N�)

L

where � and ! are motor shaft angular displacement and velocity, ia and ib are coil A

and B currents, Va and Vb are coil A and B voltages, R and L are coil resistance and

inductance, N is the number of rotor teeth, Nb is the maximum motor torque per

amp, D is the maximum detent torque, Fv is the viscous friction, Fc is the Coulomb

friction, Fg is the gravitational torque load, and Jl and Jm are load and motor shaft

inertia. For this system we classify a stall as deviation of �

N
or more radians from the
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Figure 2.1: Simple Stepper Motor Stepping

255 250 245 240 235 231 226 222 217 213 209 . . .
205 201 197 193 189 185 182 178 175 171 168 . . .
164 161 158 155 152 149 146 143 140 137 135 . . .
132 129 127 124 122 120 117 115 113 110 108 . . .
106 104 102 100 98 96 94 92 90 89 87 85

Table 2.1: Stepper Motor Acceleration Table

current desired � equilibrium.

The motor is stepped by reversing polarity of the coil voltages in alternation as

shown in Figure 2.1.

Changes to coil voltages occur on such a small time scale that their continuous

simulation is judged unnecessary for modeling dynamics relevant to the veri�cation

task. Voltage changes were therefore approximated as discrete events. Our acceler-

ation control is open-loop: At �xed intervals the motor is stepped according to an

acceleration table. The acceleration table is represented as a sequence of delays be-

tween each motor step. Each delay is measured in controller \ticks" where 1 tick =

2.9834e-5 sec. The acceleration table is shown in Table 2.1.

HyTech[15, 16] is a model checker for linear hybrid systems. To be more precise,

it proves safety of \geometrically linear" hybrid systems as opposed to \algebraically

linear" hybrid systems. Geometrically linear hybrid systems have constant continuous

variable derivatives. Thus, the set of reachable states can be computed as a set of

convex polyhedra using techniques from computational geometry. Algebraically linear

hybrid systems have ODEs which can be expressed in a linear algebraic form.
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In [17], Henzinger, Ho, and Wong-Toi suggest two approaches for creating linear

approximations of nonlinear hybrid systems: a clock translation and a rate transla-

tion. HyTech makes use of an automaton representation of a linear hybrid system.

As one increases the accuracy of the linear approximation, both clock and rate trans-

lations explode the size of the automaton representation exponentially. An approxi-

mation of our stepper motor system either (1) has too large a representation for the

computational complexity of the underlying computational geometric algorithms of

HyTech, or (2) is too inaccurate such that a conservative approximation that bounds

actual system behavior will always yield an \unsafe" verdict over the course of a long

stepper motor simulation.

So we �rst note that there is no apparent approximation of our system for the

tools that are currently available. Next, we note that our veri�cation is concerned

with a �xed initial time interval (i.e. during acceleration) and is therefore an initial

safety problem. Finally, we note that we can compute minimum angular displacement

from a stall state over all simulation states as a simple heuristic to numerically rate

the relative safety of safe trajectories. We can now ask, \For all possible system

parameters and initial states, are all simulation trajectories rated safe?" Put another

way, \Is the minimum heuristic evaluation of all possible simulations greater than

zero?" If we can answer this optimization question positively, we have veri�ed safety

of our hybrid system.

One could argue that such optimization is not veri�cation, that one cannot ex-

haustively simulate all possibilities and can therefore have no guarantees. One can

only use such optimization for refutation. To this, we o�er two responses: First, if one

has additional knowledge of characteristics of one's heuristic evaluation function (e.g.

Lipschitz conditions), then an intelligent optimization approach can utilize such char-

acteristics to guarantee a strictly positive minimum with suÆcient evaluation (e.g. of

a global solution set for a Lipschitzian global optimization problem[36]). The key is

to provide a heuristic evaluation that induces a helpful search landscape without itself

become overly burdensome computationally. Second, if one has no such knowledge

about the heuristic, the absence of veri�cation techniques well-suited to non-trivial

dynamics leaves good global optimization as the best assurance. Our desire is to
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develop an information-based GO method which, when halted without �nding an

unsafe trajectory, provides some measure of the thoroughness of its search.

This said, we have endeavored to study a number of representative global opti-

mization techniques in order to assess their suitability to our purpose and point the

way towards future innovation.

2.3 Algorithms and test problems

In this section, we describe the global optimization (GO) algorithms used in this

study, the local optimization procedures used by them, and the test functions to

be minimized. Author-supplied default settings were used for GO algorithms when

possible. Otherwise, reasonable parameters were held constant throughout testing.

Since our goal is to perform a computationally expensive optimization, we would

desire an algorithm which reliably and eÆciently gives the desired result without

tuning. Experienced users of such algorithms applying problem- and domain-speci�c

knowledge to the choice of options and parameters could expect to yield better results.

The �rst set of algorithms we consider are variants of simulated annealing (SA) [29,

22]. SA algorithms are theoretically guaranteed to �nd the global minimum of a func-

tion provided that the annealing schedule starts with suÆciently high temperature

and cools suÆciently slowly. However, this guarantee comes at great expense in

terms of function evaluations. Finding a suitable annealing schedule which balances

the tradeo� of reliability versus eÆciency is key to the practicality of SA for our

purposes.

AMEBSA [38, pp. 451-455] performs SA by modifying a downhill simplex method

[38, pp. 408-412] such that actual function values of simplex points and possible re-

placement points are perturbed according to the temperature parameter when making

move decisions. Since AMEBSA has no default annealing schedule, we have chosen to

use the one supplied in the authors' example [37, pp. 182-184]. ASA1 [21], \adaptive

simulated annealing", is a SA variant that relies on randomly importance-sampling

1ASA software developed by Lester Ingber and other contributors is available at URL
http://www.ingber.com/ or ftp://ftp.ingber.com.
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the search space and adapts separate annealing schedules for each parameter. The

automatic adaptation of the annealing schedule trades o� reliability for eÆciency.

SALO [10] seeks to combine the theoretical guarantees of SA with the eÆciency of

local optimization (LO). SALO on f is SA on f 0, where f 0 is f transformed by LO. At

each point that SA evaluates, LO takes place and the value of the local minimum is

returned. This is intended to \atten" f and speed convergence to the global min-

imum. In both implementations described here and in [10], ASA is used as the SA

method. In doing so, we again tradeo� reliability for eÆciency. When each of these

SA methods halts unsuccessfully, it is restarted from the lowest point found thus far.

The second set of algorithms we consider are variants of Multi Level Single Linkage

(MLSL) [40]. MLSL uniformly, iteratively samples the search space and performs LO

selectively. For each iteration, a new batch of points is evaluated. For each point sam-

pled, LO takes place if there exists no lower sampled point within a critical distance.2.

MLSL1 is the original algorithm[40]. MLSLD is our variant of MLSL1 which assumes that

the LO procedure is deterministic and should therefore never be repeated from the

same sampled point. MLSLO is another variant of ours that orders optimizations for

each iteration by ascending function value of sampled points. MLSLOD has both vari-

ations. Our fourth variant, MLSLSA, alternates iterations of MLSLOD with runs of ASA,

using the current minimum as the initial point for ASA. LMLSL is our variant of MLSL1

which performs \lazy" function evaluation. That is, the function value of a point is

only evaluated when it becomes necessary. This avoids the relatively large initial cost

when optimizing simple functions. LMLSL� is LMLSL using an �-descent LO procedure.

An epsilon-descent procedure guarantees that, for a step greater than �, the function

values at epsilon intervals are sequentially descending.

RANDLO simply performs random local optimizations and is intended to provide

a baseline for understanding how well LO knowledge is used by SALO and MLSL

methods. MONTE is a Monte Carlo method, the weakest method of those we consider.

We next describe the local optimization procedures used by some of these global

optimization algorithms. FMINU and CONSTR areMatlabTM optimization functions [13].

2We used the critical distance parameter � = 2 with 100 points generated per iteration.
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AMEBSA SA simplex method
ASA Adaptive Simulated Annealing
CONSTR Sequential quadratic programming method
FMINU Quasi-Newton LO
FMINU� FMINU with �-descent LO
LMLSL MLSL with lazy f evaluation
LMLSL� LMLSL with �-descent LO
MLSL Multi-Level Single Linkage
MLSL1 basic MLSL method
MLSLD MLSL assuming deterministic f
MLSLO MLSL with ordering heuristic
MLSLOD MLSLO + MLSLD
MLSLSA MLSLOD and SA in succession
MONTE Monte Carlo method
RANDLO Random LO
SA Simulated Annealing
SALO SA with LO
YURETMIN Yuret's LO

Table 2.2: Algorithm Quick Reference

FMINU performs unconstrained optimization using a quasi-Newton method with a

BFGS formula for updating the Hessian matrix approximation. FMINU� is our �-

descent modi�cation of FMINU. CONSTR performs constrained optimization using a

sequential quadratic programming method. We supply search space bounds and no

additional constraints. YURETMIN is our variant of Yuret's Masters thesis Procedure

4-1 [54, p.33] which allows speci�cation of search space bounds.

A quick reference table for algorithms is given in Table 2.2.

Finally, we reference the objective functions used for comparing the global op-

timization algorithms. The �rst part of our study uses functions selected from GO

literature and algorithm demonstrations in order to reveal their relative merits. RAST

is a scaled Rastrigin function [10]. HUMP is the six-hump camelback function [6]. G-P

is the Goldstein-Price function [6]. GW1 and GW100 are 6-dimensional Griewank func-

tions with bounds of each dimension [�1; 1] and [�100; 100] respectively [10]. SWISS
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CMMR 4-D paraboloid with troughs
G-P Goldstein-Price function
GW1 Griewank function with [�1; 1] bounds
GW100 Griewank function with [�100; 100] bounds
HUMP 6-hump camelback function
RAST Rastrigin function
STEP1 Stepper motor stall problem function
STEP2 STEP1 logarithmically scaled
SWISS 4-D paraboloid with pits

Table 2.3: Objective Function Quick Reference

is a 4-D paraboloid with a lattice of many circular pits [37]. CMMR is a 4-D paraboloid

with a grid of deep troughs [8]. GW100, SWISS, and CMMR have many local minima.

RAST has a moderate number. HUMP, G-P, and GW1 have few. RAST, GW100, SWISS,

and CMMR are generally paraboloid in shape with di�erent local minima \traps". All

slope up to the bounds of the search space.

The second part of our study concerns the motivating example for this research.

Test function STEP1 takes as input two parameters (viscous friction and load inertia)

of the stepper motor model, simulates acceleration of the motor, and performs a

simple heuristic evaluation of the trajectory by computing the minimum distance to

a stall state (0 if stalled). Such a heuristic function is often simple to construct. STEP2

is STEP1 logarithmically scaled so as to focus on the unsafe region of the parameter

space. These functions are shown in Figures 2.2 and 2.3.

A quick reference table for objective functions is given in Table 2.3.

2.4 Results

Our �rst tests made use of LO procedure FMINU where applicable. 100 optimization

trials were performed for each objective function with a maximum of 10000 function

evaluations permitted per trial. Each objective function was o�set (if necessary) to
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have a global minimum value of 0. A successful trial was one in which the optimiza-

tion routine found a point with function value less than .001 within 10000 function

evaluations. This simulates situations where one is seeking a rare failure case in f .

Each entry in the table of results (Table 2.4) shows the number of successful trials

(upper left) and the average number of function evaluations for such trials (lower

right).

RAST HUMP G-P GW1 GW100 SWISS CMMR

AMEBSA 16 100 90 100 0 100 2
39 40 222 86 N/A 1340 5674

ASA 100 100 100 100 2 100 100

404 225 1042 197 6003 903 3756

SALO 100 100 100 100 95 100 0
585 65 97 85 4501 163 N/A

MLSL1 100 100 100 100 47 100 0
872 154 170 185 4315 239 N/A

MLSLD 100 100 100 100 60 100 0
636 154 170 185 4492 238 N/A

MLSLOD 100 100 100 100 52 100 0
556 130 132 173 4370 253 N/A

MLSLSA 100 100 100 100 22 100 99
544 131 130 174 2609 254 5019

LMLSL 100 100 100 100 50 100 0
847 105 118 96 4508 187 N/A

LMLSL� 100 100 100 100 53 100 0
638 96 109 93 3864 192 N/A

RANDLO 100 100 100 100 58 100 0
706 70 96 85 4008 146 N/A

Table 2.4: Successful global optimization trials and average function evaluations

Giving the best performance in nearly half of the tests, RANDLO performed sur-

prisingly well, especially for SWISS which has a 4-D lattice of numerous \traps". As

RANDLO's LO procedure, FMINU is clearly rarely caught in such traps. Since both trap

and non-trap regions are paraboloid surfaces, they e�ectively \point" to the global

minimum for LO procedures such as FMINU. The simple but important observation

here is that local optimization does not necessarily �nd the nearest local optimum.

We next observe that both SALO and MLSL each rely somewhat on nearness of LO.

We will later turn our attention to the relationship between the global and local layers

of each. FMINU, which assumes f is continuous, behaved understandably poorly for
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highly discontinuous CMMR. Thus all methods dependent entirely on LO failed all CMMR

trials. Given that the characteristics of f may not be well understood, this means

that a less eÆcient LO procedure making fewer assumptions would likely be better

suited to our purposes.

SALO yielded performance similar to that of RANDLO where few LOs suÆced and sig-

ni�cantly better where more local optima trapped LO (e.g. in RAST and GW100). At the

heart of SALO's design is the following intention: \SA helps in locating good regions

of the search space, while the local optimizer is used to rapidly hit the optimum."[10]

It is clear from this comparison that SALO does indeed successfully apply SA on f 0 to

�nd good regions of f . When comparing ASA with SALO, it also appears that the cost

for transforming f
FMINU! f 0 is usually more than compensated for by the eÆciency

gained.

SALO was designed with hope that f 0 would be a \simpler" surface than f , reect-

ing the function value of the nearest optimum. Interestingly, the designers' experi-

ments utilized Yuret's LO procedure which has short term memory and takes increas-

ingly greater steps downhill as success allows. Such a LO procedure can possibly pass

over nearest local minima as step size becomes large. Also Yuret's procedure, being

stochastic, does not simply transform one surface to another. Nevertheless, their ex-

periments and ours indicate that ASA is able to handle such LO output gracefully in

the long run. The fact that SALO outperforms RANDLO for harder optimization prob-

lems is speci�cally a property of SA and more generally a form of learning. One can

view the changing state probability distribution of SA as a gradual accumulation of

knowledge about the location of the global minimum. While such learning is e�ective

given a suitable annealing schedule, it is also weak. Heavily traversed local minima

may be heavily traversed again. All but one of the function evaluations made in

LO are ignored. Much information is wasted. Nonetheless, SALO's performance was

impressive.

Performance of MLSL methods, though similar to that of RANDLO, yields little to

commend them over RANDLO. That selective uniform random LO should perform worse

than unselective uniform random LO suggests an assumption in MLSL which is not

met in our study. Following the analysis more closely in both [39] and [40], we see that
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MLSL's LO procedure is assumed to be an �-descent procedure such that the current

critical distance e�ectively bounds the step size of LO.3 We therefore modi�ed FMINU

to be an �-descent procedure and tested LMLSL� for comparison. Although LMLSL� is

somewhat of an improvement over LMLSL, it is still generally worse than RANDLO. �-

descent does not therefore appear to help us much. We conjecture that MLSL methods

dominate RANDLO for objective functions where LO is trapped in many minima, and

that SALO dominates MLSL methods for such objective functions in our study because

our f 0-surfaces are easily globally optimized with LO. To elucidate the latter point,

consider RAST, GW100, and SWISS. LO roughly transforms each into a paraboloid

of plateaus. LO of such LO-transformed functions can then eÆciently lead to the

global optimum. We can view the task of global optimization as multi-level local

optimization. The base-level LO0 takes advantage of whatever information about f

is available (continuity, gradients, etc.), the next level LO1 is suited to the class of

one's LO0-transformed function f 0, and so on. We may stop after arbitrarily many

(probably 2-3) LO levels and perform global optimization at the top level. The role

of each LO level is to enlarge the regions leading to global optima. Multi-Level local

optimization methods we have developed are presented in Section 2.7.3.

Regarding MLSL methods, let us also note that, like SALO, they all but ignore

information gained through LO. Uniformly sampled points are locally optimized based

only on the values of sampled points within a critical distance. Again we �nd great

waste of information gained at great expense.

AMEBSA gave mixed results which can likely be attributed to the lack of anneal-

ing schedule tuning. Perhaps an adaptive annealing schedule would make AMEBSA

more suitable for such problems. ASA's eÆciency was unpredictable, although it was

perhaps the most reliable method for this set of objective functions.

While these functions may give a general indication of the relative strengths of

these methods without tuning, the functions share a common property undesirable for

our purposes: The unconstrained global minimum is never located at or beyond the

bounds of the search space. Therefore, our optimization methods need not perform

3This is nowhere mentioned in survey [3] and is not emphasized elsewhere in the literature.
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STEP1 STEP2

ASA 0 2
N/A 497

SALO 10 5
80 202

MLSLOD 10 10
127 191

LMLSL 10 10

163 137

RANDLO 10 10
78 359

MONTE 0 6
N/A 469

(a) CONSTR

STEP1 STEP2

ASA 0 2
N/A 497

SALO 7 9
387 198

MLSLO 4 10
790 231

LMLSL 3 10

389 169

RANDLO 9 10
501 172

MONTE 0 6
N/A 469

(b) YURETMIN

Table 2.5: Results for STEP1 and STEP2

well along the bounds of our search space. It is for this reason that unconstrained

FMINU was suitable for use with such global optimizations. We used this as an oppor-

tunity to try two constrained LO procedures CONSTR and YURETMIN for the stepper

motor test problems STEP1 and STEP2. For this testing, we performed 10 trials to

�nd a function value of 0 with a maximum of 1000 function evaluations per trial. The

results appear in the tables of Table 2.5.

Since both STEP1 and STEP2 have a small number of local minima along the

bounds of the search space, behavior of LO again �gured most signi�cantly in our

results. Despite the fact that much of the search space slopes downward away from

the corner where failures occur, CONSTR had a bias towards looking in that particular

corner. It was thought that STEP2 (log-log scaled STEP1) would be an easier function

to optimize, but this was not the case. Not only was the global minimum basin

expanded, but nearby local minima also expanded, trapping LO more often.

ASA's function evaluation expenses were such that it was outperformed by MONTE.

The remaining LO-based methods performed similarly overall. The cost of computing

simple heuristic information about relative safety of trajectories is usually more than

compensated for by eÆciency in discovering unsafe trajectories through optimization.

For both LO procedures, RANDLO gave best performance for STEP1 and LMLSL gave
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best performance for STEP2. Although there was no universal \winner" among global

optimization procedures, it is encouraging to note that procedures such as SALO and

LMLSL could be run in parallel to achieve respectable, more reliable results. The choice

of LO procedure proved very signi�cant for performance, which again underscores

the importance of developing robust, eÆcient LO procedures suited to large classes

of functions.

2.5 Conclusions of Comparative Study

While no global optimization procedure was generally dominant in our comparative

study, random local optimization seemed best suited for objective functions with few

minima, and SALO with ASA seemed best suited for objective functions with many

minima. By making use of ASA for SA, one both avoids the need to specify an

annealing schedule and bene�ts from its relative eÆciency among SA algorithms.

Although one is encouraged to make use of ASA's options to improve performance, we

have not done so and have been pleased with most results nevertheless.

SALO and MLSL methods perform global optimization with global and local search

phases, and rely on local optimization for eÆciency. However, both methods make

little or no use of information gained in the course of local optimization. We believe

that great progress will be made in global optimization when global optimization and

local optimization are seamlessly integrated to share knowledge gained of f . Where

evaluation of f is computationally expensive, it is worth computational expense to

utilize such knowledge for the eÆciency of global optimization. To this end, we have

developed a set of information-based optimization techniques where each optimization

step is chosen with respect to the information gained thus far.

2.6 Information-based global optimization

In this section, we look at a particular class of global optimization techniques which

are suited to speci�c characteristics of our problem. We describe previous information

approaches to optimization, and present our own specialization of such techniques for
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initial safety refutation.

From the previous comparative study, we noted that most global optimization

methods throw away most of the information gained in the course of optimization.

For our purposes, each evaluation of f requires a simulation and an evaluation of that

simulation which may be computationally expensive, so we are particularly motivated

to make good use of such information in order to reduce the function evaluations

needed.

One approach is to characterize properties of the set of functions one wishes to

optimize and to use such information to construct an optimal decision procedure

for optimization. In the course of optimization, we use our current set of func-

tion evaluations to decide on the next best point to evaluate with respect to our

function set. Such is the strategy of Bayesian or information approaches to global

optimization[30, 31, 44, 49], which have optimal average-case behavior over the set of

functions for which each is designed.

2.6.1 Strongin's Information Approach

The information approach to optimization was proposed by Roman Strongin in [47, 48,

(in Russian)]. The �rst English publication of this work can be found in [49]. Most

optimization techniques rely on some form of assumptions of objective function prop-

erties. Some techniques assume a function is Lipschitzian in order to bound solu-

tions. Others assume the function is nearly parabolic near minima in order to claim

quadratic convergence. Rather than rely on a restrictive constraint language to de�ne

properties of the functions of interest, Strongin sought to instead use a probability

measure on the class of functions under consideration. Each step of his information

approach to global optimization consists of a maximum likelihood estimation based

on the results of previous iterations.

In [49], Strongin derives an implementation of the information approach for a
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one-dimensional root-�nding problem. Strongin's derivation is based on a probabilis-

tic preference for functions which satisfy a H�older condition4 at the root. He also

derives an implementation of the information approach for a one-dimensional global

optimization problem. The derivation, described as similar to that of the root-�nding

algorithm, is not given in [49], but rather appears in [47].

In dealing with multidimensional objective functions, Strongin applies his one-

dimensional approach through use of volume-�lling Peano curves. Simply put, a uni-

form grid of points in the volume is connected by a single line such that the line comes

within a certain distance � of every point in the volume. The successive re�nement

of a Peano curve in two dimensions is shown in Figure 2.4. One-dimensional opti-

mization is performed on this line as an approximation of the multidimensional global

optimization problem. The problem with this approach is that a simple, multidimen-

sional, global optimization with one optimum looks like a complex optimization along

the Peano curve with local optima increasing with each Peano curve re�nement. For a

small �, the curve must have such complexity that the corresponding one-dimensional

optimization problem becomes needlessly complex. This is the price paid for applying

one-dimensional optimization to multidimensional problems. In the next section, we

will introduce the �rst truly multi-dimensional information approach to optimization.

Yaroslav Sergeyev augmented Strongin's information approach to global optimiza-

tion with local tuning based on change in the local Lipschitz constant5 of the objective

function over di�erent segments of the search region. Sergeyev also recommended ap-

plication of the method using Peano curves. We implemented Sergeyev's information

approach with local tuning and used Peano curves to apply the approaches to mul-

tidimensional objective functions of our comparative study. The results were disap-

pointing. Not only was the success of results very sensitive to a reliability parameter

r, but sampling irregularities introduced by the Peano curve were clearly visible as

sharp sampling density contrasts were observed across quadrant and subquadrant

boundaries.

4A H�older condition is a Lipschitz condition jf(x)� f(y)j � A(y) jx� yj� of order � with Lips-
chitz constant A.

5A local Lipschitz constant is a real number c such that jf(x)� f(y)j � c jx� yj for all y local
to x.
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2.6.2 Information-Based Optimization for Refutation

Our information-based optimization approach to refutation is most strongly inu-

enced by the reasoning behind Strongin's approach. We desired a simple means of

characterizing objective functions which (1) gave rise to a computationally simple

optimal decision process, and (2) allowed discontinuities in objective functions. Fur-

thermore, the purpose of our optimization is not simply to �nd the global minimum.

Rather, we know we are seeking a zero of a non-negative, real-valued function. In-

stead of seeking the most likely minimum value, we speci�cally seek a zero in order

to refute initial safety of a hybrid system.

Our approach relies on two main assumptions about the probability measure on

the class of functions we consider. The �rst assumption is that the functions are more

often locally continuous than not. This does not preclude discontinuities in functions.

A zero is just as likely to occur anywhere in the class of discontinuous functions, so we

rely on there being some local continuity for the maximum likelihood approach to be

bene�cial. As we will see, this approach can be surprisingly robust to discontinuities

in the context of multi-level optimization techniques.

Our second assumption is that lower local Lipschitz constants are more likely than

higher local Lipschitz constants. The rami�cation of this likelihood assumption is that

zeros are most likely to occur where they require a minimal Lipschitz constant given

the sample points evaluated thus far. On a one-dimensional curve, the optimization

process is simple. First, both endpoints are evaluated. The next point most likely

to be a zero will be that which minimizes slope between itself and neighboring (i.e.

adjacent) evaluated points along the line. This most likely candidate is evaluated,

and the process is repeated until a zero is found or the optimization is terminated. In

the next section, we see that there are signi�cant diÆculties to overcome in applying

such an approach in more than one dimension.
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2.7 Multi-Dimensional, Multi-Level Information-

Based Optimization

Previous information-based methods have been limited to global optimization in one

dimension. In this section, we introduce two new information-based optimization

methods for multidimensional problems. We �rst introduce the decision procedure

used by these methods, thus explicating the class of functions for which the deci-

sion procedure is biased. Next we discuss the use of multi-level local optimization

for speeding convergence. Finally, we introduce the information-based optimization

algorithms themselves.

2.7.1 Decision procedure

At each iteration i of our algorithm, we wish to evaluate our heuristic function f at

the location xi for which f(xi) = 0 is most likely to occur. We base our notion of

likelihood on characteristics of a class of functions to which f belongs. Our deci-

sion procedure is then based on some decision ranking function gi which computes a

ranking corresponding to the relative likelihood of a zero occurring at an unevaluated

point xi given previous f -evaluations at x1; x2; : : : ; xi�1:

gi(xi)
def
= g(x1; x2; : : : ; xi�1; xi)

So for each iteration i, we could globally optimize gi to choose the next x for which

f is evaluated. However, a reliable global optimization of g for each iteration of a

global optimization of f is not only computationally prohibitive, but increasingly

very diÆcult as well. We instead desire to approximate an optimal decision with

respect to our assumptions about f , and we do so by uniformly, randomly sampling

g, returning the optimum of the samples. We call this DECISION1 (Algorithm 1).

The computational complexity of this decision procedure grows as the computational

complexity of evaluating gi (which we will see is O(i2)).
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Algorithm 1 Sampling information-based optimization decision function

DECISION1(L, lBound , uBound)
. Input: a list of fx,f(x)g pairs,

the lower bounding corner of the search space, and

the upper bounding corner of the search space
.Output: minimum point

min gx  1
for i  1 to maxPts do

x  uniformly random vector in space bounded by lBound and uBound

gx  g(L, x )
if (gx < min gx ) then

min gx  gx

min x  x
return min x

In order to construct g, we must make some assumptions over f 's class of func-

tions with regard to where we would most expect to �nd zeros. One assumption we

make is that f is continuous6. Another assumption concerns atness and smoothness

preferences: Given a set of points and their f-evaluations, a zero is more likely to

occur where it demands less slope between itself and previous points.

A �rst attempt at constructing gi might be to create a function which returns

gi(x) =
i�1
max
j=1

f(xj)

kxj � xk :

That is, we could rank the likelihood of f(x) = 0 by computing the maximum slope

between the hypothetical zero at x and other points we have already evaluated. The

lesser the g-value, the more likely a zero f -value. The global minimum of g would

then be the optimal point at which to next evaluate f given previous f evaluations.

Consider Figure 2.5.

Suppose we have evaluated the curve at points a, b, and c and are using such a

g as our decision ranking function. Intuitively, we would want g to return point d as

the next best point to evaluate. However, the slope between a and d will make d a

less preferable decision point than one to the right of d for which a zero would have

6This is not a trivial assumption for our general application, of course. Our stepper motor system
trajectories are continuous in the initial condition. Such continuity is preserved in our choice of f .
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Figure 2.5: Shadowing example

equal slopes to a and c for this simple function. We would like instead for point b to

\shadow" point d from point a. Our simple attempt to do so is shown as Algorithm 2.

A point a is \shadowed" from point d by point b for function g if jjd� bjj < jjd� ajj
and jg(a)� g(b)j=jja� bjj > jg(a)� g(d)j=jja� djj. That is, a is shadowed by b if b

is closer to d than a and the slope between a and b on g is greater than the slope

between a and d on g.

The average-case optimality of the information-based approach relies on maximum

likelihood assumptions over a class of objective functions. One of these assumptions is

a greater likelihood for lesser local Lipschitz constants. In one dimension, local Lips-

chitz constants are computed with respect to the adjacent previously evaluated points

along the curve. In more than one dimension, we must de�ne \local". If we include

all previously evaluated points in the computation of local Lipschitz constants, then

\local" really means \global" over the entire search space. In evaluating candidate

points with the shadowing approach, we restrict our attention to non-shadowed evalu-

ated points as we compute local Lipschitz constants. If, for any candidate point, lower

Lipschitz constants are more likely between a zero at that point and non-shadowed

evaluated points, then our approach retains average-case optimality. Shadowing is a

heuristic approach to relevance, and is helpful to the extent that it more accurately

reects maximum likelihood of zeros for problems of interest.
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Algorithm 2 g, the decision procedure function to be optimized

g(L, x)
. Input: a list of fx, f(x)g pairs,

the current decision point being evaluated
.Output: ranking of likelihood that x is a zero

for i  1 to length(L) do
dx[i]  kx � �rst(L[i])k

sort dx in ascending order and permute L accordingly
maxSlope  0
for i  1 to length(L) do

slope  second(L[i])=dx[i]
if (slope > maxSlope) then

newMaxSlope  true

for j  1 to i � 1 do
otherSlope  jsecond(L[i])� second(L[j])j=k�rst(L[i])� �rst(L[j])k
. Note: This otherSlope information may be cached.

if (otherSlope > slope) then
newMaxSlope  false

break from for loop (j)
if (newMaxSlope) then

maxSlope  slope
return maxSlope

2.7.2 Multi-Level Local Optimization

One might then construct the simple information-based global optimization procedure

given in Algorithm 3.

However, we note that one rami�cation of random sampling in our decision proce-

dure is that we do not achieve eÆcient convergence. This is illustrated in Figure 2.6,

which shows an information-based global optimization of a two-dimensional circular

paraboloid with a zero at the origin. From the initial random point in the lower left

corner, the procedure then checks points in the upper right, lower right, upper left,

and just left of the global minimum at the center. The cluster of 25 points that follows

gradually expands towards the center from the �fth point. In practice, where failures

do not occur in miniscule regions, this slow convergence is not a problem. However,

we also note that our decision procedure will have to deal with the computational

burden of small dense clusters of points which are not very informative globally. We
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Algorithm 3 Simple information-based global optimization

info-based-opt(lBound , uBound)
. Input: the lower bounding corner of the search space, and

the upper bounding corner of the search space
H  fg
newx  random point in search space
fx  f(newx )
if (fx = 0) then

terminate with success
H  append(H , fnewx , fxg)
while (true) do

newx1  DECISION1(H , lBound , uBound)
fx  f(newx )
if (fx = 0) then

terminate with success
H  append(H , fnewx , fxg)

may wish instead to apply a rapidly convergent local optimization procedure and pay

attention only to the �rst and last points of such an optimization.

In our previous comparative study, we note that this is a common approach

among the most successful methods of the study. A global search phase makes use

of a local optimization subroutine so that the global phase is, in e�ect, searching

f 0(x1)
def
= f(x2) where fx2; fming = LO(f; x1), where LO is a local optimization pro-

cedure. In SALO [10] (simulated annealing atop local optimization), for each point

evaluation in the global phase, a local optimization takes place and the function value

of the local minimum is associated with the original point. The e�ect can be roughly

described as a \attening" of a search space into many plateaux (with plateaux cor-

responding to local minimum values). This search paradigm may be generalized to

arbitrary levels where each level performs some optimizing transformation of its search

landscape to create a \simpler" one for the level above. Obviously, the work done to

simplify should be more than compensated for by the reduced search e�ort for the

level above. The top level performs a global optimization, and all lower levels perform

local optimization. We call this paradigm Multi-Level Local Optimization (MLLO).

We assert that information-based optimization is particularly well-suited to optimiz-

ing coarsely plateaued search landscapes. Now let us consider two information-based
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Figure 2.6: Information-based global optimization of 2-D circular paraboloid

applications of MLLO.

2.7.3 MLLO-IQ and MLLO-RIQ

MLLO-IQ (Algorithm 4) is a 2-level MLLO with a simple information-based approach

(Algorithm 3) atop quasi-Newton local optimization. With each iteration, MLLO-IQ

chooses a point x1, locally optimizes f from x1 to x2, and associates f(x2) with both

x1 and x2 in order to \plateau" the space. In doing so, we limit the number of

function values involved in decision making. Still, we may wish to further limit such

growth in computational complexity. By limiting our information-based search to a

hypersphere containing a maximum limit of previously evaluated points, we limit the

complexity to a constant. Such is the approach taken in MLLO-RIQ.

MLLO-RIQ (Algorithm 5) begins with a locally minimized random point and a
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Algorithm 4 MLLO-IQ

MLLO-IQ(lBound , uBound)
. Input: the lower bounding corner of the search space, and

the upper bounding corner of the search space
H  fg
newx1  random point in search space
fnewx2 , fxg  LO(f , newx1 )
if (fx = 0) then

terminate with success
H  concatenate(H , ffnewx1 , fxg, fnewx2 , fxgg)
while (true) do

newx1  DECISION1(H , lBound , uBound)
fnewx2 , fxg  LO(f , newx1 )
if (fx = 0) then

terminate with success
H  concatenate(H , ffnewx1 , fxg, fnewx2 , fxgg)

maximum search radius. Together these de�ne our initial hypersphere. With each it-

eration, a decision procedure (DECISION2) �nds an approximately optimal next point

to locally optimize within this hypersphere. If the new point has a lesser function

value than the center, it becomes the new center and the distance between the two

points becomes the new hypersphere radius. If too many points are being considered

in DECISION2, a lesser amount of points closest to center are retained and the search

radius is adjusted. This information-based local optimization terminates when the

number of times the center minimum is found by local optimization exceeds a thresh-

old. Then the process repeats with a new random point. Thus we perform a random

search of information-based local optimizations of quasi-Newton local optimizations.

2.8 Experimental results

We now compare our information-based approaches to those considered in our previ-

ous comparative study. Our �rst tests all made use of the same quasi-Newton local

optimization method where applicable. As before, 100 optimization trials were per-

formed for each objective function with a maximum of 10000 function evaluations
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Algorithm 5 MLLO-RIQ

MLLO-RIQ(lBound , uBound , maxRadius)
. Input: the lower bounding corner of the search space,

the upper bounding corner of the search space, and

maximum radius of local hypersphere search
H  fg
radius  maxRadius

while (true) do
x  random point in search space
fcenter , centerValg  LO(f , x )
if (centerVal = 0) then

terminate with success
H  concatenate(H , ffx , centerValg, fcenter , centerValgg)
sort pairs in H in ascending order of k�rst(pair)� centerk
H'  up to �rst minPts pairs of H
centerHits  0
while (centerHits > maxCenterHits) do

recenter  false

newx1  DECISION2(H' , center , radius)
fnewx2 , fxg  LO(f , newx1 )
if (fx = 0) then

terminate with success
if (knewx2 � centerk < tolerance1 ) then

centerHits  centerHits + 1
if (centerVal � fx > tolerance2 ) then

radius  min(maxRadius, knewx2 � centerk)
center  newx2

centerVal  fx

centerHits  0
recenter  true

H  concatenate(H , ffnewx1 , fxg, fnewx2 , fxgg)
H'  concatenate(H , ffnewx1 , fxg, fnewx2 , fxgg)
if (length(H' ) > maxPts) then

recenter  true

if (recenter) then
sort pairs in H in ascending order of k�rst(pair)� centerk
H'  up to �rst minPts pairs of H
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permitted per trial. Each entry in the table of results (Table 2.6) shows the number

of successful trials (upper left) and the average number of function evaluations for

such trials (lower right).

RAST HUMP G-P GW1 GW100 SWISS

AMEBSA 16 100 90 100 0 100
39 40 222 86 N/A 1340

ASA 100 100 100 100 2 100
404 225 1042 197 6003 903

SALO 100 100 100 100 95 100
585 65 97 85 4501 163

LMLSL 100 100 100 100 50 100
847 105 118 96 4508 187

RANDLO 100 100 100 100 58 100

706 70 96 85 4008 146

MLLO-IQ 100 100 100 100 57 100
286 71 97 83 4493 157

MLLO-RIQ 100 100 100 100 46 100
161 57 92 83 4536 148

Table 2.6: Successful global optimization trials and average function evaluations

Both MLLO-IQ and MLLO-RIQ perform very well in general. What is most in-

structive from these results are the cases where the strengths and weaknesses of

these methods are most prominently displayed. Let us �rst consider RAST, the Ras-

trigin function. RAST is a 2-D, sinusoidally-modulated, shallow paraboloid with 49

local minima within the search bounds. The quasi-Newton local optimization layer of

MLLO-IQ and MLLO-RIQ e�ectively transforms this objective function f into f 0, a shal-

low paraboloid of plateaux. MLLO-IQ's global information-based search of f 0 �nds the

lowest plateau very quickly, and the local information-based search of MLLO-RIQ does

a focused descent which leads it to the global minimum with even greater eÆciency.

This suggests that these searches are particularly well-suited to global optimization

of functions with a moderate number of local minima. For functions with fewer local

minima (HUMP, G-P, and GW1), there is little to be gained by such extra computation.

Random local optimization (RANDLO) will suÆce.

Now let us consider the weaknesses of these methods shown in failed cases with

GW100. Indeed the performance of these methods is worse than random local opti-

mization. Why? GW100 is a 6-D, sinusoidally-modulated, shallow paraboloid with
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about 4� 107 local minima. For this function, our quasi-Newton local optimization

exhibits interesting and unexpected behavior: In all but the lowest points of the

surface, local optimization most often leads to local minima that are far from those

nearby the initial point. In this example, we are reminded that \local" in \local

optimization" refers to properties of the optimum itself and not the \nearness" of

the optimum location. Without such nearness, the search landscape is not simply

transformed into a landscape of plateaux. Our quasi-Newton local optimization did

not optimize to near minima, and so created a landscape which was not suited for

information-based global optimization.

MLLO-RIQ also has diÆculty with GW100, but for di�erent reasons. After quickly

�nding the region containing the global minimum, the method spends much of the

remainder of its search e�ort �rst searching many points mutually far apart near the

boundary of the 6-D hypersphere. Perhaps randomly sampling f or f 0 within the

search hypersphere might encourage convergence. SALO remains our best option for

functions with a large number of local minima.

While these functions may give a general indication of the relative strengths of

these methods (without tuning), the functions share a common property undesirable

for our purposes: The unconstrained global minimum is never located at or beyond the

bounds of the search space. Therefore, our optimization methods need not perform

well along the bounds of our search space. It is for this reason that unconstrained

quasi-Newton local optimization was suitable for use with such global optimizations.

We used this as an opportunity to try two constrained LO procedures CONSTR and

YURETMIN for the stepper motor test problems STEP1 and STEP2. (See Figures 2.2

and 2.3.) For this testing, we performed 10 trials to �nd a function value of 0 with a

maximum of 1000 function evaluations per trial. The results appear in Table 2.7.

These results were very pleasing. MLLO-IQ is the �rst technique we have observed

that has succeeded in every STEP1 and STEP2 trial. It does so with excellent eÆciency

as well. Since the decision procedure computation time was also dominated by sim-

ulation time, it was also easily the fastest algorithm for these trials. MLLO-RIQ did

surprisingly well considering that most of the search space of these functions slopes

downward and away from the corner of the space where the rare failure cases occur.
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STEP1 STEP2

ASA 0 2
N/A 497

SALO 10 5
80 202

LMLSL 10 10

163 137

RANDLO 10 10
78 359

MONTE 0 6
N/A 469

MLLO-IQ 10 10
46 219

MLLO-RIQ 10 8
60 330

(a) CONSTR

STEP1 STEP2

ASA 0 2
N/A 497

SALO 7 9
387 198

LMLSL 3 10
389 169

RANDLO 9 10
501 172

MONTE 0 6
N/A 469

MLLO-IQ 10 10

108 109

MLLO-RIQ 8 9
301 239

(b) YURETMIN

Table 2.7: Results for STEP1 and STEP2

2.9 Conclusions

A powerful approach to initial safety veri�cation is to transform the problem into an

optimization problem and leverage the power of eÆcient optimization methods. This

is accomplished by

� providing a good heuristic evaluation function f ,

� choosing an eÆcient local optimization procedure well suited to f , and

� applying a global optimization procedure for which one's local optimization

procedure is well suited.

While no global optimization procedure in our studies was generally dominant,

we note that random local optimization seems best suited for heuristic functions with

few minima, SALO[10] seems best suited for heuristic functions with very many local

minima, and MLLO-IQ and MLLO-RIQ seem best suited for heuristic functions with a

moderate number of local minima. MLLO-IQ is better suited for problems where the

global minima are expected to occur at parameter extremes, whereas MLLO-RIQ is
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better suited to low-dimensional problems where global minima are found within the

space. Our decision procedure approximates an optimal sequence of trials over the

class of continuous heuristic functions for which lesser local Lipschitz constants are

more likely. Furthermore, we have empirically demonstrated their e�ective use with

functions having many discontinuities in the context of multi-level local optimization.

Finally, we note that the computational e�ort invested toward eÆcient optimiza-

tion should be compensated for by reduced overall runtime. For our problem, the

computational expense of our simulation justi�ed such e�ort. But what of initial

safety problems for which simulation requires less runtime? Setting maxpts = 0 for

Algorithm 17 yields random local optimization. As maxpts ! 1, our decisions ap-

proach optimality and the decision-making e�ort exceeds the search e�ort it saves.

Where is the happy medium in this tradeo�? In future research, we hope to investigate

means of dynamically adjusting the level of strategic e�ort of such information-based

algorithms in order to address a larger class of problems eÆciently.

7Algorithm 1 is called by Algorithm 3.



Chapter 3

SASAT Game-Tree Search

Extending discrete game-tree search to hybrid system game-tree search introduces

two new decisions in optimization: action discretization and action timing discretiza-

tion. These correspond to the decisions of how to act and when to act. When a

discretization is supplied to the search algorithm, we call it a \static" discretization,

i.e. the search algorithm cannot a�ect the discretization choice. We call such a search

a \SASAT Search", as it has both Static Action and Static Action Timing discretiza-

tions. A SASAT search is essentially a discrete search applied to a hybrid or piecewise

continuous system. Thus, we can bene�t directly from AI discrete game-tree search

techniques.

In this chapter, we will formally de�ne a SASAT Hybrid System Game and its

solitaire case, a SASAT Hybrid System Search Problem. A magnetic levitation con-

trol problem is introduced, and we show how the control problem may be posed as

a game to achieve robust control. We then examine three ways of using simulation

and game-tree search to inform robust control of a magnetic levitation controller. In

the �rst, we present a dynamic-programming approach with an augmented cell-map

or game-graph. Next, we discuss current techniques for alpha-beta search (with-

out approximation) and show the similarity of the resulting control policy of both

approaches.

Combining the best of both algorithms, we present a synthesis called Game-Graph

Alpha-Beta, which has a novel form of caching results of alpha-beta search for future

46
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reuse. This synthesis provides a more eÆcient means of online hybrid system control

for low-dimensional state spaces, assuming that a good discretization can be found.

We conclude with a summary and discussion of future directions.

3.1 SASATHybrid SystemGame and Search Prob-

lem

Formally, a SASAT Hybrid System Game is de�ned as a 7-tuple

fS; s0; A; p; l;m; dg

where

� S is the hybrid state space with a �nite number of �nite discrete variable do-

mains, and a �nite-dimensional continuous space,

� s0 2 S is the initial state,

� A is the �nite discrete action space,

� p is the number of players,

� l : S � f1; : : : ; pg ! fa1; : : : ; ang 2 A is a legal move function mapping from a

state and player number to a �nite set of legal actions that may be executed in

that state by that player,

� m : S�Ap ! S�<p is a move function mapping from a state and simultaneous

player actions to a resulting state and the utility of the combined actions for

each player,

� d : S ! S � <p is a delay function mapping from a state to the resulting state

and the utility of the trajectory segment for each player. This delay governs

the evolution of the system through time between moves.
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The total utility of any �nite trajectory is computed as the sum of the trajec-

tory move and delay utilities. In this time-invariant formalism, time can easily be

encoded in a continuous clock variable, and time invariant behavior could thus be

easily achieved.

Although not addressed in this chapter, a SASAT Hybrid System Search Problem

is a special case of the SASAT Hybrid System Game where we are interested in �nding

a trajectory from the initial state to a goal state. Usually such problems are stated

in terms of path cost rather than utility. Formally, a SASAT Hybrid System Search

Problem is de�ned as a 7-tuple

fS; s0; Sg; A; l;m; dg

where

� S is a hybrid state space with a �nite number of �nite discrete variable domains,

and a �nite-dimensional continuous space,

� s0 2 S is an initial state,

� Sg � S is a set of goal states,

� A is a �nite discrete action space,

� l : S ! fa1; : : : ; ang 2 A is a legal move function mapping from a state to a

�nite set of legal actions that may be executed in that state,

� m : S � A ! S � < is a move function mapping from a state and action to a

resulting state and cost of the action,

� d : S ! S � <p is a delay function mapping from a state to the resulting state

and the cost of the trajectory segment for each player. This delay governs the

evolution of the system through time between moves.

We next describe a SASAT Hybrid System Game in the domain of magnetic

levitation.
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Figure 3.1: Schematic of magnetic levitation system. Courtesy of Feng Zhao: phase-
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Figure 3.2: Block diagram of magnetic levitation system operation. Courtesy of Feng
Zhao: phase-space based magnetic levitation control experiment

3.2 Magnetic Levitation Problem

We seek to use simulation and game-theoretic techniques to design a safe control

policy for the magnetic levitation (maglev) system of [55, 28] in which the goal is

to suspend a metal ball beneath an electromagnet. This nonlinear, unstable sys-

tem requires an active controller for stabilization, and is representative of magnetic

levitation systems found on high-speed transportation systems such as the German

Transrapid system. The schematic for Zhao's maglev system is given in Figure 3.1.

Figure 3.2 shows a block diagram of maglev system operation. The system state is

estimated from photosensors and sampled at a rate of about 5000Hz. The controller

maps system state to the control power output which a�ects the electromagnetic
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coil current. This in turn a�ects the system state, so this is a closed loop system.

System state includes the distance x and velocity v from the electromagnetic solenoid

downward to the ball, and the coil current i. The di�erential equations describing

the dynamics of this system are

8<
:

dx

dt
= v

dv
dt

= g � L0x0I
2

2mx2

where

� g = 9:81m=s2 is gravitational acceleration,

� L0 = 0:00802H is the solenoid-ball system inductance at equilibrium,

� x0 = 0:0116m is the desired vertical gap between solenoid and ball,

� I is the coil current control parameter, and

� m = 0:008432Kg is the ball mass.

We take a game-theoretic approach for the purpose of synthesizing safe maglev

control in the face of external perturbation and error introduced through modeling

approximations and numerical simulation. The problem is thus described as a game

where the controller may change the magnetic coil current while the adversary may

perturb the behavior of the system in the period between controller actions. Specif-

ically, using a �fth-order Cash-Karp Runge-Kutta method to simulate x and v over

0.01 sec to x0 and v0 within the region 0:005m � x � 0:018m, �0:3m=s � v � 0:3m=s,

and 0:03A � I � 0:83A, the adversary may introduce relative error of at most 10%.

Since we assume that actions are discretized, we constrain the controller to a uniform

discretization of 20 currents from 0.03A to 0.83A, and we constrain the adversary

to 8 perturbations of 10% in uniformly-distributed directions in the position-velocity

plane of the state space.
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3.3 SASAT Dynamic Programming Game-Graph

Method

Cell mapping methods [20] have been used to perform state-space analysis of dy-

namical systems. In such methods the state-space is divided into cells. Each cell is

mapped to another cell to which it will evolve after a �xed time interval. The resulting

graph approximation of the system dynamics is then analyzed. One advantage of cell

mapping is that one can form an approximation of the state space according to com-

putational space limits, and perform an eÆcient, polynomial-time, global state-space

analysis.

Dynamic programming, cell-mapping techniques for computing optimal control

date back to the work of Wang[53] for systems described by �rst-order ordinary dif-

ferential equations. For each quantized control vector, di�erential equations specify

a directional �eld which can be discretized and used to compute cell-map transitions.

Wang used a dynamic programming approach for the computation of optimal control

policies. In this chapter, we augment his technique for multiple players, taking a more

general simulation-based approach to cell-map discretization, and allowing for both

discrete and continuous transition utilities.

In seeking to extend such methods to n-player games, we augment the cell map

with set-valued mappings from a fcell, playerg pair to a set of cells, circumscribing

the possible e�ects of a player's actions in that cell. For each player, each cell is now

mapped to a set of cells to which it may evolve after a �xed time interval. We refer

to this augmented cell-map as a game-graph. Rather than performing minimax on a

tree, we perform minimax on the approximating game-graph instead, thus reducing

the exponential complexity of a minimax tree search to the polynomial complexity

of a minimax graph search. Our generalization of minimax for n-players follows [27]

where each player seeks to maximize its component of a score vector.

Algorithm 6 is the core procedure for our dynamic programming game-graph

method. Following initialization, this procedure is iterated on the game-graph in
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Algorithm 6 Iteration of Dynamic Programming Game-Graph Method

DynamicProgrammingIteration(gameGraph, player)
. Input: game-graph (augmented cell-map),

current player number
.Output: game-graph with scores updated for one level of search

foreach cell in gameGraph do
cell.newScoreVector  negativeIn�nityVector

foreach destCell in cell.playerMap[player] do
newScoreVector  moveScore(cell , player , destCell) + destCell.scoreVector

if (newScoreVector[player] > cell.newScoreVector[player]) then

cell.newScoreVector  newScoreVector
foreach cell in gameGraph do

cell.scoreVector  cell.newScoreVector
return gameGraph

reverse turn order in the dynamic programming style1. To initialize, �rst zero the

game-graph score vectors. Then initialize the individual set-valued player maps which

indicate the possible actions of each player at each cell. In applying this method to

the maglev problem, the controller player map maps each cell to all other cells that

di�er only in controller input (current). The adversary player map maps each cell

to the set of cells possibly reachable during the continuous system evolution phase,

taking into account perturbation and error.

Since players need not necessarily alternate turns, let us for ease of analysis de�ne

b as the e�ective branching factor of the player mappings as used over successive calls

to Algorithm 6. Let c be the number of cells and p be the number of players. Then

the time and space complexity of Algorithm 6 are O(cb) and O(cpb), respectively.

With player maps compactly represented and/or conservatively approximated, the

space complexity may be reduced to O(cp).

What we have not �gured into this analysis is the \curse of dimensionality" in

the state-space. If we divide a state-space into a uniform grid of cells, the number of

cells will grow exponentially with the dimension of the space. Thus this method is

only applicable to systems with low-dimensional state-spaces.

1Evaluation takes place from terminal states at some time horizon backwards in time through
decision stages.
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This method also places the burden of cell-partitioning and time discretization on

the user. Too coarse a cell-partition, and such computation yields little information.

Too �ne a partition, and we violate computational space constraints. While adaptive

techniques for cell-decomposition are being developed [4], these discretization issues

are far from resolved.

The granularity of the cell-partition dictates the granularity of the approximated

control policy. For our maglev problem, it would be desirable to have a �ner dis-

cretization of the state space close to the desired goal state. Given that the goal

state is a single point in the space, we might use some distance measure from this

point to perform variable-size partitioning of the state space. We have not explored

domain-speci�c improvements in this research in the interest of generality, and such

domain-speci�c improvements are left as open problems.

The size of a simulation time-step used to build the augmented cell-map is another

burden on the user. If too large a time-step is chosen in sampling behavior, there

may be a number of undesirable consequences. A coarse sampling can result in an

uninformative and unhelpful mapping. In skipping over too many cells, single limit

cycles may appear to be multiple limit cycles, obscuring underlying system dynamics.

Also, a system that may be stabilized when sampled above a certain rate may not

be stabilizable below that rate. A coarse sampling can also result in an undesirably

inaccurate mapping as simulation numerical errors can compound exponentially with

simulation time. In choosing a small enough time step to avoid these problem, one

must be careful not to pick so small a time step that cells that actually evolve to

other cells begin mapping only to themselves. For further discussion of sample rate

selection issues, see [12, Ch. 11].

One assumption of these techniques is that each successive layer of a tree or graph

contains nodes that all occur at the same time. Search to a given depth is search to

a given time horizon. If adaptive discretization techniques were to be applied to the

choice of time-steps, then we would need to deal with evaluation of a tree without

uniform time horizons.

We note that this method is not suited for real-time online use. While such a

method could be used o�ine to form a control policy a priori, it is not designed
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to focus on an immediately relevant control decision. Rather, its computation is dis-

tributed across the entire game-graph. This limitation is addressed in the graph-based

negamax Algorithm 7. Negamax is an equivalent, alternate representation of mini-

max for two-player zero-sum games, where each player seeks a path that maximizes

the negated return values of the next deeper level of search.

Algorithm 7 Negamax on a Game-Graph

tbhGame-Graph-Negamax(node, player , depth)
. Input: current node (or cell) of game-graph (augmented cell-map),

current player number,

depth of search at node
.Output: score returned by search

if (depth = 0 or leafNode(node) or node.complete[depth][player]) then
return node.scoreVector[depth][player]

nextPlayer  (player + 1) mod 2
bestNode  null

bestScore  �1
foreach destNode in node.playerMap[player] do

score  moveScore(node, player , destNode)+
� Game-Graph-Negamax(destNode, nextPlayer , depth)

if (bestNode = null or score > bestScore) then
bestNode  destNode

bestScore  score
atomic:

node.scoreVector[depth][player]  bestScore

node.bestNode[depth][player]  bestNode

node.complete[depth][player]  true
return bestScore

As input, Algorithm 7 takes the current node, player, and depth of the search

below the current node. As output, it returns the value of the subtree of the given

depth at the given node for the given player. This algorithm could be used in real-

time as an interruptible anytime algorithm that is called with sequentially greater

depths as time remains. Over time, as more and more search results are cached, the

algorithm is able to reuse these results to achieve deeper search over time. Memory

would be preallocated and a depth limit set. As searches become complete to the

given depth limit, search can be directed to other areas of the state space.

In summary, the dynamic programming game-graph method has polynomial time
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and space complexity and is applicable to o�ine control design for low-dimensional

state spaces, assuming that a good discretization can be found. For real-time appli-

cations, one would want to focus search relevant to the current situation. For such

a situation, we describe a simple means of caching results from iteratively deepening

negamax searches. We now turn our attention to the generalized hybrid alpha-beta

methods in order to explore an even greater focusing of search along relevant lines of

game-play.

3.4 SASATGeneralized Hybrid Alpha-Beta Method

In minimax search, a game-tree is generated with two players MAX and MIN, al-

ternately maximizing and minimizing the score at alternating depths of the tree.

However, much of the tree need not be generated (i.e. it can be \pruned") since it is

provably irrelevant given information gained during search.

The origin of alpha-beta pruning is not clear. The following accounts of its early

history are taken from Nils Nilsson [34, pp. 151-152] and Judea Pearl [35, p. 286].

Nilsson claims that alpha-beta pruning is \usually thought to be a rather obvious

elaboration of the minimaxing technique" and conjectures that many people \discov-

ered" it independently. Pearl claims that John McCarthy was the �rst to \recognize

the potential for alpha-beta-type pruning" in 1956 and coined the name \alpha-beta".

Nilsson points to an article by Newell, Shaw, and Simon [33] as the �rst description

of alpha-beta, whereas Pearl points to a memorandum of McCarthy's students Hart

and Edwards [14] which includes description of \deep cuto�s". Pearl notes that the

1958 chess-playing program of Newell, Shaw, and Simon (and probably the 1959

checker-playing program of Samuel) used only shallow cuto�s. Pearl claims that a

full description of the algorithm with deep cuto�s was not published until Slagle and

Dixon in 1969 [45]. Nilsson additionally points to Samuel's second checkers paper [43].

The core idea is this: If, in evaluating a node of a game tree, one can prove that

a rational player will not choose the path to that node, one can avoid examination

of (i.e. \prune") the subtree rooted at that node. By simple dynamic bookkeeping

of the best score that each player can achieve, asymptotic optimality is gained for
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such searches. In [23], it was shown that the asymptotic branching factor of search is

b= log b, where b is the e�ective branching factor without pruning. Thus, the asymp-

totic time complexity of alpha-beta search is O((b= log b)d), where d is the search

depth.

A recent description of alpha-beta search can be found in [41]. Alpha-beta search

was generalized to n-players by Richard Korf in [24]. Korf proved that if one assumes

an upper bound on the sum of player scores and a lower bound on each individual

score, then deep pruning cannot occur for n > 2. Deep pruning of a node is based on

a scoring bound inherited from a great-grandparent or more distant ancestor2. Only

shallow pruning is possible for n > 2. In the best-case, shallow pruning reduces the

asymptotic branching factor to (1 +
p
4b� 3)=2. However, shallow pruning does not

reduce the asymptotic branching factor. Thus we focus our attention on two-player

alpha-beta search, noting that it can be generalized for n-players.

The zero-sum algebraic constraint over the scores provides the rational basis for

alpha-beta pruning, but what if the game is not zero-sum? Interestingly, knowledge of

one's problem domain may provide even more useful constraints. If it can be proved

that one player will choose a move in a state that is guaranteed to cause another

player to preclude the possibility of reaching that state out of preference for another

line of play, all search beyond that state may be pruned. For instance, consider a

cooperative form of the aircraft collision avoidance problem of [52], where all scores

are identically the minimum distance between any two aircraft over time. Once all

aircraft are receding from one another, we may obviously conclude that the scores

will remain �xed. This is an example of a constraint on future scores which enables

pruning without ever reaching cuto� states. Pruning constraints may take on other

forms as well. If, for instance, it can be proved that the best adversarial maglev

perturbation is a maximal perturbation, we reduce the dimensionality of relevant

adversary actions. In broadening the constraints one considers, one may introduce

far more signi�cant forms of pruning to minimax search.

2That is, three or more nodes towards the root.
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For real-time control, such an algorithm could be used within an iterative deep-

ening, or iterative re�nement anytime algorithm. By iterative re�nement, we mean

that we start with a coarse discretization of player decision points and compute an

approximate solution (recommended control action) with our hybrid alpha-beta algo-

rithm. We store the action, re�ne our discretization (i.e. allow more frequent turns),

and iterate, computing successively better approximate solutions until the algorithm

is halted and the stored action is returned. See Chapter 5 for a description of several

iterative re�nement approaches.

Although this approach does not require discretization of the state-space, the

user still has to supply discretizations of continuous ranges of actions and decision

times. Possible ways of dynamically choosing such discretizations are investigated in

all chapters that follow.

One limitation of this approach is one shared by all tree-based methods: High

branching factors quickly force shallow search. Since we are dealing with a minimax

search on a tree rather than a graph, the time complexity is O(bd), where b is the

e�ective branching factor and d is the maximum search depth. However, the space

complexity is O(d), so we have signi�cantly traded o� time for space. We have not

only under-utilized computational space resources, but we have saved no information

for future use and cannot expect search performance to improve over time. Given

the in�nite state-space of the search, and the approximate nature of simulation, it

would make sense to use approximation and/or abstraction in order to achieve better

performance over time. One possible step in this direction is to use alpha-beta with

iterative deepening on a game-graph, caching results of partial alpha-beta computa-

tions in order to speed-up future minimax searches and allow greater depth of search

over time. We introduce this new synthesis of techniques in Section 3.6.

3.5 Experimental Results

We have performed experimentation with the dynamic programming game-graph

method and the alpha-beta pruning method. In both cases, the results were qualita-

tively comparable to those of Zhao[55, 28].
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For the dynamic programming game-graph method, we chose to discretize the

position, velocity, and output current to a 20 � 20 � 20 uniform grid within the

bounds given earlier. The controller takes a turn every 0.01 sec. These discretization

choices were arbitrary. We have not experimented with other discretizations to see

how performance would be a�ected.

Figures 3.3{3.6 show the mapping from input state x, v to output current I

for the dynamic programming game-graph method iterated to depth 2, 4, 6, and

8. Figures 3.7{3.10 show trajectories from these respective control policies. As one

can see, the depth 2 mapping gives the general qualitative behavior desired, and the

depth 4 mapping is very similar to those for depth 6 and 8. For this problem, behavior

appears to converge quickly in a few iterations, so it seems fortunate to have chosen

such a time interval in our discretization. It would be interesting to experiment with

adaptive step sizing for this method.

To apply the resulting policy to a controller, we simply perform a nearest-neighbor

mapping at each time interval. Each input state is mapped to its corresponding cell,

and the cell is mapped to an output current. The current is maintained for the next

time interval3, and the process is repeated inde�nitely.

The front and back corners of these �gures are losing cells (i.e. states from which

the controller is guaranteed to lose), so 0.03A output current is as good as any other.

However, not all 0.03A current cell outputs indicate a losing cell. Figures 3.11 and

3.12 indicate the cell scores for di�erent cells. Since we have given cells that lead

outside the game-graph bounds an arbitrary large negative score, these �gures mainly

di�erentiate between winning and losing states, that is, those states that can be kept

within the game-graph region and those that cannot.

All states kept within the game-graph region are guaranteed to evolve to a small

subset of cells about the desired cell. In practice, one could bring the system to

the exact desired equilibrium state by switching to a control law derived by small-

signal linearization as soon as the state came within a neighboring region about the

3This is called a zero-order hold in control terminology.
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equilibrium state for which there exists a positive de�nite Lyapunov function4. Small-

signal linearization of a magnetic levitation controller is demonstrated in [11, x 2.6.1].
The alpha-beta method did not, of course, need to be generalized to n-players for

this problem domain. Our experimentation with it provided two signi�cant pieces of

information: (1) Memory allocation issues are signi�cant to the eÆciency of real-time

applications. In comparing two implementations with di�erent memory management,

we found that preallocating memory and managing it was signi�cantly faster than

the allocating and deallocating memory through normal means. (2) The state-space

discretization we used to approximate maglev system dynamics for the dynamic pro-

gramming game-graph method did not signi�cantly degrade performance, that is, we

chose a good approximation earlier. While there may be analytic means of deriving

appropriate discretizations for simple dynamical systems such as this, such choices are

not obvious for complex systems. Again, it would be interesting to research adaptive

discretization of the state space, so that the designer need not simply guess at what

might be correct for complex systems.

Sample trajectories of the alpha-beta method can be seen in Figures 3.13{3.14.

The arrows in the x-v plane are adversarial moves, while the vertical arrows are instan-

taneous controller current changes. These match up very nicely with Figures 3.3{3.4.

Figures 3.15{3.16 show piecewise continuous trajectory segments and more clearly

illustrate the global dynamics.

3.6 SASAT Alpha-Beta on a Game Graph

In this section, we introduce an algorithm for performing two-player alpha-beta on a

game-graph. It could be argued that alpha-beta has long since been applied to discrete

games with di�erent means of reaching the same states. However, this approach is

distinctive for a couple reasons.

First, alpha-beta search results are stored for each sequential depth of search pre-

viously performed. In literature on transposition tables, we have not found methods

4For an introduction to stability in dynamical systems, see [50, x 1.3].
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Figure 3.3: Maglev output currents from the SASAT dynamic programming game-
graph method, depth 2
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Figure 3.4: Maglev output currents from the SASAT dynamic programming game-
graph method, depth 4
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Figure 3.5: Maglev output currents from the SASAT dynamic programming game-
graph method, depth 6

0.006
0.008

0.01
0.012

0.014
0.016

−0.2

−0.1

0

0.1

0.2

0.3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

position (m)velocity (m/s)

cu
rr

en
t (

A
)

Figure 3.6: Maglev output currents from the SASAT dynamic programming game-
graph method, depth 8
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Figure 3.7: Maglev trajectories from the SASAT dynamic programming game-graph
method depth 2
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Figure 3.8: Maglev trajectories from the SASAT dynamic programming game-graph
method, depth 4
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Figure 3.9: Maglev trajectories from the SASAT dynamic programming game-graph
method, depth 6
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Figure 3.10: Maglev trajectories from the SASAT dynamic programming game-graph
method, depth 8



CHAPTER 3. SASAT GAME-TREE SEARCH 64

0

0.005

0.01

0.015

0.02

−0.4

−0.2

0

0.2

0.4
−10

−8

−6

−4

−2

0

x 10
29

position (m)velocity (m/s)

sc
or

e

Figure 3.11: Maglev trajectory scores from the SASAT dynamic programming game-
graph method, depth 2
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Figure 3.12: Maglev trajectory scores from the SASAT dynamic programming game-
graph method, depth 8
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Figure 3.13: Maglev trajectories from the SASAT alpha-beta method, depth 2 (with
current changes)
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Figure 3.14: Maglev trajectories from the SASAT alpha-beta method, depth 4 (with
current changes)
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Figure 3.15: Maglev trajectories from the SASAT alpha-beta method, depth 2 (with-
out current changes)

0.006
0.008

0.01
0.012

0.014
0.016

−0.2

−0.1

0

0.1

0.2

0.3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

position (m)velocity (m/s)

cu
rr

en
t (

A
)

Figure 3.16: Maglev trajectories from the SASAT alpha-beta method, depth 4 (with-
out current changes)
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that store more than the deepest search performed at a node. Generally, applications

of transposition tables are zero-sum games where players perform a sort of tug of war

around an even score. In such a case, a deeper search will yield more useful infor-

mation than a shallower search, so it makes sense to only store the deepest search

performed. Zero-sum games with monotonically increasing/decreasing scores are not

served well by such an approach. In this case, searches of equal depth should be

compared at each node. Comparing scores from searches of di�erent depths would

bias moves in poor directions. Put simply, moves for such games should be evaluated

with respect to a �xed time horizon.

The second distinctive feature of this search is our assumption that the entire

game-graph can be enumerated and stored in memory. This is unusual in that most

discrete games of interest to researchers do not have such small state spaces.

The pseudocode for our Game-Graph Alpha-Beta algorithm can be seen in Algo-

rithm 8. Given a zero-sum game, one player (usually called MAX) maximizes score

while their adversary (usually called MIN) minimizes score. Rather than write two

procedures for the two players, we again take a negamax approach.

As input, Algorithm 8 takes the current node and player, scores for each player

that can be guaranteed according to search so far, and depth of the search below the

current node. The guaranteed scores are a vector (�, ��), where � is the lower bound

and �� is the negated upper bound of relevant search values at that node. As output,

it returns the weakest pruning conditions used in the search. This algorithm is used in

real-time as an interruptible anytime algorithm that is called with sequentially greater

depths as time remains. Over time, as more and more search results are cached, the

algorithm is able to reuse these results to achieve deeper search over time. Memory

would be preallocated and a depth limit set. As searches become complete to the

given depth limit, search can be directed to other areas of the state space.

The Game-Graph Alpha-Beta algorithm begins by checking if (1) search is at its

depth limit, or (2) the current node is a leaf node. If so, a vector of worst possible

scores are returned, indicating that no pruning conditions were used from previous

search in searching the subtree at that node. Recall that both players are maximizing

the negated scores of the subtrees at each level.
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Algorithm 8 Alpha-Beta on a Game-Graph

Game-Graph-Alpha-Beta(node, player , prevGuaranteeVector , depth)
. Input: current node (or cell) of game-graph (augmented cell-map),

current player number,

guaranteed player scores from previous search (�, ��),
depth of search at node

.Output: weakest pruning conditions used in search

if (depth = 0 or leafNode(node)) then
return f�1;�1g

if (prevGuaranteeVector � node.pruneCondVector[depth][player]) then
return node.pruneCondVector[depth][player]

otherPlayer  (player + 1) mod 2
scoreGuaranteeVector  prevGuaranteeVector

pruneCondVector  f�1;�1g
bestNode  null

bestScore  �1
foreach destNode in node.playerMap[player] do

childPruneCondVector  Game-Graph-Alpha-Beta(destNode, otherPlayer ,
scoreGuaranteeVector,
depth)

pruneCondVector  max(pruneCondVector , childPruneCondVector)
s  moveScore(node, player , destNode) +�destNode.abScore[depth][otherPlayer]
if (bestNode = null or s > bestScore) then

bestNode  destNode

bestScore  s

if (s � �prevGuaranteeVector[otherPlayer]) then
pruneCondVector[otherPlayer]  max(pruneCondVector[otherPlayer] ,

prevGuaranteeVector[otherPlayer])
goto prune

if (s > scoreGuaranteeVector[player]) then
scoreGuaranteeVector[player]  s

prune:
if (s � pruneCondVector[player]) then

pruneCondVector[player]  �1
atomic:

node.abScore[depth][player]  bestScore

node.bestNode[depth][player]  bestNode

node.pruneCondVector[depth][player]  pruneCondVector

return pruneCondVector
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Next, we check the weakest preconditions of previous cached search information

to see if the results can be reused. If so, we return those weakest preconditions. The

weakest precondition for all searches must be initialized to the best possible scores

(1, 1) in order to ensure that an initial search occurs. When a search is completed

without relying on given score guarantees for pruning, the weakest pruning conditions

will be (�1, �1). Hence that search is complete and stored results will always be

reused.

After initialization of a number of variables, we then turn our attention to each

possible destination node for the player from the current node. For each, we perform

a recursive call to Game-Graph Alpha-Beta, record the strongest pruning conditions

used in the subtree search, and record the score. If the score is the best seen at this

node, we note the new best score and destination node. If the score violates a zero-sum

constraint with the guarantees, then we have proven that the rational adversary will

not allow the game to progress to this point and thus prune the remaining searches,

making note of the pruning condition. Otherwise, we update the current player score

guarantee if necessary.

After searching destination nodes as necessary, we check if the current player's

subtree search score satis�es the weakest pruning condition for that player in the

subtree search. If so, then no guarantees for the player's score above the subtree were

necessary for the pruning, and we set the weakest pruning condition for that player

to �1.

Finally, we record the results of the search. This block of code is marked \atomic"

to indicate that interruption of the algorithm within this block would potentially leave

the data in an erroneous state.

One straightforward heuristic for speeding up such search is to use the best node

of previous search (of similar depth) as the �rst node for exploration. By looking at

a strong potential best move �rst, we are more likely to set tighter pruning bounds

earlier in the search.

It should be noted that for a given node, player, and search depth, successive

calls with overlapping bounds would result in a search never being complete. One

could construct pathological global search and calling conditions such that asymptotic
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global behavior over time would be better served by avoiding pruning altogether. It

is not clear how often such situations could arise in practice. In Chapter 4, we will

see that pruning can yield such signi�cant search speedup in this domain, so that

even without storage and reuse of search results, alpha-beta pruning is well-applied

to this problem domain.

3.7 Relation to Memory-Based Techniques

In [32], Moore, Atkeson, and Schaal present a collection of memory-based techniques

for learning control. Of particular relevance to the work of this chapter is their

research into optimal control with nonlinear dynamics and costs[32, x7]. In this

section, we give an overview of their memory-based approach, compare and contrast

it with our own, and note possible directions for future work.

Developed independently, memory-based approaches explicitly remember all pre-

vious experiences and apply such knowledge to the problem of learning control. Pre-

diction and generalization are performed online in real-time by building a local model

to answer any query, where a query is a current state and desired resulting system

behavior, and an answer to a query is an action mapping the current state to the

desired behavior. Although the idea is more general, stored experiences are used to

build local models represented as polynomial approximations of system evolution.

Parameters for the polynomial are estimated using linear weighted regression (LWR).

Such techniques are said to provide explicit parameters to control smoothing, outlier

rejection, and forgetting. The last process is particularly important for the develop-

ment of memory-bounded variants.

Moore et al describe system dynamics as an unknown function

x(t + 1) = f(x(t);u(t)) + noise(t)

with a known cost function

c(t) = cost(x(t);u(t)):
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The task is minimization of one of the following cost summations:

1X
t=0

c(t) or
tmaxX
t=0

c(t) or
1X
t=0

tc(t) where 0 <  < 1 or lim
n!1

1

n

nX
t=0

c(t)

The authors note that there is a large literature on such problems in the context of

reinforcement learning. The state space is discretized into a multidimensional array

of cells, and system dynamics are approximated to cell centers as with cell map meth-

ods. They present the following basic approach, called Memory-Based Reinforcement

Learning which uses a dynamic programming value iteration to compute an optimal

value function:

1. Observe the current state x(t) and choose action u = �(x), where � is the

current estimated optimal control policy.

2. Perform action and observe next state x(t + 1).

3. Add (x(t);u)! x(t+ 1) to the memory base.

4. Recompute the optimal value function and policy using value iteration with the

new information.

Value iteration is computationally expensive, so this algorithmwould not be suited

to fast, real-time application. Experimentally, it was used with a simulated system

that had its state frozen while updating its policy. The authors suggest that for

normal usage one would update the value function and policy at the end of each trial

or in an incremental parallel process.

Convergence of reinforcement learning is dependent on the system visiting each

state-action pair in�nitely often. Memory-based reinforcement learning does not prob-

abilistically explore as do most reinforcement learning algorithms. The result of this

lack of exploration is that it converges to correct behaviors faster when the learned

model does not contain signi�cant errors. The authors point out that signi�cant noise

can introduce errors that steer the system in signi�cantly suboptimal directions while

such memory persists. Thus, the guarantee of convergence to an optimal solution is
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traded o� for speed of convergence to a solution, much the same way that simulated

quenching does in the context of simulated annealing. In practice, this can be quite

sensible. In fact, simulated quenching with random restarts is in popular use among

those who use simulated annealing. We suggest that one might combine the result-

ing policies of multiple runs of memory-based reinforcement learning to synthesize a

policy augmented with risk information.

Two experiments were performed with a simple nonlinear dynamical system in-

volving the positioning of a puck on a curved one-dimensional surface. In the �rst

experiment, unvisited states were assumed to have a cost of zero. In the second exper-

iment, transitions between cells were predicted using locally weighted linear regression

from previous observations. The second achieved behavior within 3% of optimal with

two orders of magnitude fewer steps than in the �rst experiment.

There are a number of similarities and di�erences between this approach and ours

that are worth noting. First, we note that the system model includes noise and is

nondeterministic. Our approaches assume determinism. However, this di�erence is

not so signi�cant when one considers that memory-based approaches treat system

behavior as deterministic. In not visiting state-action pairs in�nitely often, there is

an underlying assumption that what has been observed need not be re-observed for

di�erent behavior. In this sense there is little di�erence between how information is

treated in memory-based and simulation-based approaches. In contrast, we choose

to treat nondeterminism pessimistically. Rather than treating possible system per-

turbations or errors as random, we imbue such behavior with intelligence and design

for the worst case. Di�erent treatment of nondeterminism will be appropriate for

di�erent tasks. It would be interesting to see memory-based reinforcement learning

methods extended for Markov games and see how such approaches work in the context

of multi-player games.

The authors stress that memory-based approaches are model-free and only con-

struct local models of behavior as is necessary. Simulation-based techniques assume

a simulatable model is given. This would again seem to be a signi�cant di�erence.

However, we note that memory-based experiments relied on the use of simulations.

Modi�cations to such approaches (e.g. that decide when to perform computationally
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expensive dynamic programming) are necessary for physical experimental use. In our

SASAT work, we have focused on means of reducing the amount of and maximiz-

ing the immediate utility of dynamic programming computation between each action

in real-time. The algorithms described in [32, x7] are not so model-free as those

referenced in the same section. In practice, the authors suggest that dynamic pro-

gramming should be performed at the end of each trial, or as an incremental parallel

process.

What is perhaps most valuable and instructive from their approach is the powerful

use of prediction based on previous experience. Such predictive interpolation based

on previous experience could potentially �nd powerful application in the alpha-beta

approaches of this chapter if storage, retrieval, and local model construction did not

introduce too much computational overhead. For example, it is well known that node

ordering can signi�cantly increase pruning and thus the speed of alpha-beta search.

This will be seen experimentally in the next chapter. If such prediction can be

eÆciently used for intelligent node-ordering, then our approach could be signi�cantly

improved.

3.8 Summary and Discussion

In this chapter, we examined three ways of using simulation and game-tree search

to inform robust control of a magnetic levitation controller. In the �rst, we used

a dynamic-programming approach with an augmented cell-map or game-graph. In

searching a graph approximation of the dynamic game, we reduce search time com-

plexity from exponential to polynomial. Our dynamic programming method for aug-

mented cell maps has polynomial time and space complexity and is applicable to

o�ine control design for low-dimensional state spaces, assuming that a good dis-

cretization can be found.

Next, we discussed current techniques for alpha-beta search (without approxima-

tion) and showed that the resulting control policy of earlier approximation is indeed

close to that found using alpha-beta search. Alpha-beta pruning is a form of ir-

relevance reasoning which increases eÆciency of minimax search. We discussed the
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history of alpha-beta and the reason why it is best applied to two-player games.

Finally, we combined the best of both algorithms in an algorithm called Game-

Graph Alpha-Beta, which has a novel form of caching results of alpha-beta search for

future reuse. This provides a more eÆcient means of online hybrid system control for

low-dimensional state spaces, assuming that a good discretization can be found.

From our experimental results we note that our choice of discretization was for-

tunate, as a depth-four (two turn) game-tree search yields a control policy nearly

convergent with the optimal policy yielded by Algorithm 6 when iterated to conver-

gence. As this was accidental, we do believe that future work should be done to

dynamically adapt discretization stepsize. First steps in this direction are made in

the context of tree-search in Chapters 5 and 6.

One might ask where such techniques are most usefully applied. First, we observe

that search is a complex generalization of generate-and-test optimization. Global op-

timization techniques of the previous chapter are most usefully applied to functions

that do not have properties assumed by more specialized techniques that take advan-

tage of such problem-domain-speci�c knowledge. In the same way, game-tree or tree

search techniques are most usefully applied to informing intelligent control of systems

that do not have properties assumed by the more specialized techniques of classical

control.

Second, we note that many techniques of control require the system to have a

speci�c analytical form. In contrast to control techniques such as feedback lineariza-

tion, we do not constrain our system to a speci�c analytical form. For most of our

algorithms, we assume that a system simulator is given. However, the augmented

cell-map techniques we have presented require only suÆcient time-series data to ap-

proximate system dynamics. Furthermore, in reviewing the memory-based control

work of Moore, Atkeson, and Schaal, we note that simulation can be approximated

through the interpolation of time-series data. From this perspective, our techniques

not only enable model-based control, but can also be applied without explicit models

given an appropriate means of interpolating unseen system behavior.
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Two issues concerning minimax and alpha-beta motivate future research in rea-

soning about uncertainty and relevance in game-tree search. First, minimax search as-

sumes no uncertainty in node evaluations, so small errors in node-evaluations may sig-

ni�cantly misinform decisions. Second, alpha-beta pruning is concerned entirely with

provable irrelevance given such an assumption. Without the ability to focus search

direction according to probable relevance to the root decision, alpha-beta search is

ill-equipped to handle large branching factors, forcing an arbitrary, pre-determined

pruning or discretization (for continuous ranges of actions). Automatically choosing

state-space or action-space discretizations according to the task of real-time reasoning

about control is an open problem. Even given a good discretization of a hybrid sys-

tem control game, a large branching factor can force an impractically shallow search

and yield poor decisions.

Probabilistic game-playing methods [42] have been developed to handle uncer-

tainty and to direct search with relevance to maximizing expected utility of the de-

cision. This still leaves overarching discretization questions concerning continuous

state-spaces, ranges of actions, and decision points in intervals of time. In future

chapters, we show that previous work on information-based optimization (Chapter 2)

will be relevant in addressing such questions. Briey, information-based optimization

is concerned with using the information from previously sampled points to inform the

choice of future sample points. Using such optimization to dynamically choose the

sampling of actions and decision points provides an interesting study in the tradeo�

between cost and bene�t of metalevel reasoning in search.

As algorithms employ increasingly computationally complex meta-level reasoning,

computational overhead will grow to the point of diminishing returns in overall utility.

Over time, we expect to develop a suite of methods that lie along a spectrum of

computational complexities of meta-level reasoning, and describe their applicability

to di�erent classes of hybrid system control games. We hope that these will contribute

to development of algorithms for real-time control and bounded rationality.



Chapter 4

DASAT Game-Tree Search

Extending discrete search to hybrid system search introduces two new decisions in

optimization: action discretization and action timing discretization. In this chapter

we choose to address the former decision: How could a search algorithm choose how to

branch the search tree considering continuous spaces of possible actions parameters?

We will assume that action timing, i.e. when decisions are made, is already given.

From the perspective of the search algorithm, action discretizations are dynamic, i.e.

a sample of possible actions for each search node is chosen by the search algorithm.

However, from the perspective of the search algorithm, action timing discretizations

are static, i.e. the search algorithm cannot a�ect the action timing discretization.

For this reason, we will call such searches \DASAT searches" as they have Dynamic

Action and Static Action Timing discretization.

In this chapter, we formally de�ne a DASAT Hybrid System Game and its solitaire

case, a DASAT Hybrid System Search Problem. We continue to examine the magnetic

levitation problem of the previous chapter, and compare the relative merits of random,

uniform, and information-based discretizations in the context of alpha-beta search.

We present information-based alpha-beta search, a novel application of information-

based optimization which uses the � lower bound and � upper bound of alpha-beta

search to optimize for pruning. The resulting algorithm exceeds the good speed

and pruning performance of random discretization while matching the control policy

quality of uniform discretization.

76
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4.1 DASATHybrid SystemGame and Search Prob-

lem

Formally, a DASAT Hybrid System Game is de�ned as a 7-tuple

fS; s0;A; p; l;m; dg

where

� S is the hybrid state space with a �nite number of �nite discrete variable do-

mains, and a �nite-dimensional continuous space,

� s0 2 S is the initial state,

� A is a �nite set fA1; : : : ; Ang of continuous action regions indexed f1; : : : ; ng,

� p is the number of players,

� l : S � f1; : : : ; pg ! A0 where A0 � A is a legal move function mapping from a

state and player number to a �nite set of legal continuous action regions which

contain points representing all legal actions that may be executed in that state

by that player,

� m : S�ap ! S�<p is a move function mapping from a state and simultaneous

player actions (region index, region point pairs) to a resulting state and the

utility of the combined actions for each player,

� d : S ! S � <p is a delay function mapping from a state to the resulting state

and the utility of the trajectory segment for each player. This delay governs

the evolution of the system through time between moves.

The total utility of any �nite trajectory is computed as the sum of the trajec-

tory move and delay utilities. In this time-invariant formalism, time can easily be

encoded in a continuous clock variable, and time invariant behavior could thus be

easily achieved.
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Although not addressed in this chapter, a DASAT Hybrid System Search Problem

is a special case of the DASAT Hybrid System Game where we are interested in

�nding a trajectory from the initial state to a goal state. Usually such problems are

stated in terms of path cost rather than utility. Formally, a DASAT Hybrid System

Search Problem is de�ned as a 7-tuple

fS; s0; Sg;A; l; m; dg

where

� S is a hybrid state space with a �nite number of �nite discrete variable domains,

and a �nite-dimensional continuous space,

� s0 2 S is an initial state,

� Sg � S is a set of goal states,

� A is a �nite set fA1; : : : ; Ang of continuous action regions indexed f1; : : : ; ng,

� l : S ! A0 where A0 � A is a legal move function mapping from a state to a

�nite set of legal continuous action regions which contain points representing

all legal actions that may be executed in that state,

� m : S� a! S�< is a move function mapping from a state and action (region

index, region point pair) to a resulting state and cost of the action,

� d : S ! S � <p is a delay function mapping from a state to the resulting state

and the cost of the trajectory segment for each player. This delay governs the

evolution of the system through time between moves.

We next describe a DASAT Hybrid System Game in the domain of magnetic

levitation.
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4.2 DASAT Magnetic Levitation Problem

The DASAT version of the SASAT Magnetic Levitation Problem of Section 3.2 is

the same with only one modi�cation: action discretizations are no longer given. The

magnetic levitation unit can now choose any current between 0.03A and 0.83A. The

adversary can now perturb the system 10% in any direction in the position-velocity

plane of the state space.

In this chapter, we focus solely on comparisons of discretization quality in the

context of alpha-beta search. In all cases, we retain the same branching factors of

the discretization of the previous chapter, thus facilitating ease of comparison. Three

di�erent discretizations are studied: random, uniform, and information-based.

4.3 DASAT Alpha-Beta Search with Random Dis-

cretization

DASAT Alpha-Beta Search with Random Discretization is a simple augmentation of

SASAT Hybrid Alpha-Beta Search (Section 3.4) with moves being randomly chosen

rather than given as a �xed discretization of possible action parameter regions. We

globally �x a maximum number of samples for each action parameter region. For each

recursive call of the algorithm for a node, samples are randomly chosen from action

parameter regions. For each sampled move, a new child (possible future node) is

generated, recursively searched, and results of the search are returned. This continues

until either (1) we reach the maximum number of samples, or (2) the result of search

indicates that we can prune future search from this node.

Experimental results of DASAT Alpha-Beta Search with Random Discretization

on the magnetic levitation problem are shown in Table 4.1. Figures 4.1, 4.2, and 4.3

show the control policies (mappings from position and velocity to current) resulting

from searches to depths 2, 4, and 6, respectively. From the control policy, we see

that the outputs are rough. Results of the previous chapter indicate that much of

the control policy space should have currents at extreme values. Given the random

nature of discretization, we only approximate such extreme values.
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Figure 4.1: Maglev output currents from DASAT Alpha-Beta with Random Dis-
cretization, depth 2
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Figure 4.2: Maglev output currents from DASAT Alpha-Beta with Random Dis-
cretization, depth 4
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Average Average Average Average Average
Depth Trials Time (msec) Nodes Pct. Pruned Nodes/Sec Score

1 400 1 21 0.00 21,538 -1.59E-7
2 400 1 66 63.30 80,275 -1.59E-7
3 400 36 748 77.89 20,958 -3.43E-7
4 400 43 2,057 92.90 47,918 -3.42E-7
5 400 867 21,806 95.97 25,153 -5.73E-7
6 400 1,124 66,042 98.58 58,778 -5.70E-7

Table 4.1: Results for DASAT Alpha-Beta Search with Random Discretization
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Figure 4.3: Maglev output currents from DASAT Alpha-Beta with Random Dis-
cretization, depth 6
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4.4 DASAT Alpha-Beta Search with Uniform Dis-

cretization

In global optimization of Lipschitzian functions with an unknown constant, it has

been shown that a uniform grid on a compact feasible set provides the best selection

of candidate points for optimization[51]. In a sense, this is much like information-

based optimization over a compact feasible set where the functions are �nite-valued

and the target is in�nite. In this extreme case, each next best candidate point is the

point which is farthest from all previously evaluated points. Thus, from two points

of view, uniform discretization is the best approach to choosing a set of points for

evaluation when one lacks information about a function extreme.

DASAT Alpha-Beta Search with Uniform Discretization is another simple aug-

mentation of SASAT Hybrid Alpha-Beta Search (Section 3.4) with moves being uni-

formly chosen rather than given as a �xed discretization of possible action parameter

regions. In fact, this yields the same discretization which was used in the previous

chapter. A globally �xed maximum number of samples are uniformly chosen from the

lower bound to the upper bound of a one-dimensional action parameter region. The

general case of multidimensional, arbitrarily-shaped, closed regions is treated later in

Section 6.5. For each action region, the globally �xed maximum number of uniformly

sampled moves are generated. For each recursive call of the algorithm for a node, we

try each successive move sampled from each successive legal move region until either

(1) all moves have been considered, or (2) the result of a search indicates that we can

prune future search from this node.

Experimental results of DASAT Alpha-Beta Search with Uniform Discretization

on the magnetic levitation problem are shown in Table 4.2. Figures 4.4, 4.5, and 4.6

show the control policies (mappings from position and velocity to current) resulting

from searches to depths 2, 4, and 6, respectively. From the data, we can see that search

execution is slower and pruning is less than that achieved by random discretization.

Since the discretization is as in the previous chapter, the control policy is identical

to that of alpha-beta search of the previous chapter.

Pruning is considerably less than that achieved by the random discretization.
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Figure 4.4: Maglev output currents from DASAT Alpha-Beta with Uniform Dis-
cretization, depth 2
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Figure 4.5: Maglev output currents from DASAT Alpha-Beta with Uniform Dis-
cretization, depth 4
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Average Average Average Average Average
Depth Trials Time (msec) Nodes Pct. Pruned Nodes/Sec Score

1 400 1 21 0.00 19,047 -1.58E-7
2 400 1 113 37.34 92,395 -1.58E-7
3 400 51 1,957 42.11 38,154 -3.31E-7
4 400 69 7,156 75.31 103,378 -3.31E-7
5 400 1,598 81,678 84.90 51,125 -5.26E-7
6 400 2,145 264,020 94.31 123,112 -5.26E-7

Table 4.2: Results for DASAT Alpha-Beta Search with Uniform Discretization
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Figure 4.6: Maglev output currents from DASAT Alpha-Beta with Uniform Dis-
cretization, depth 6
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In the space of mappings, extreme current values are the most common output.

Pruning will naturally be greater for algorithms which sample both extremes in earlier

expansions. Information-based discretization checks extreme values �rst, random

discretization checks randomly, and uniform discretization checks uniformly from one

extreme to another. Uniform discretization will start checking possible moves at the

wrong extreme for pruning roughly half of the time that an extreme value will be

optimal for pruning. This accounts for the poor pruning results. For this problem

domain, we conjecture that a greedy node ordering heuristic would yield much better

pruning results. We will discuss this point further in the next section.

4.5 DASAT Information-Based Alpha-Beta Search

DASAT Information-Based Alpha-Beta Search is our third augmentation of SASAT

Hybrid Alpha-Beta Search (Section 3.4) with moves being chosen according to pre-

vious choices and their respective subtree search results. A pseudocode description

of this method is given in Algorithm 9. In alpha-beta search, � and � represent the

lower and upper bound of possible local game-tree search respectively. At the current

node under evaluation, we have a guarantee that MAX can score at least � while

MIN will limit MAX to scoring at most �. If we wish to maximize pruning, then �

and � provide appropriate target values for information-based discretization.

Uniform discretization provides the best discretization if our target is not bounded.

Indeed, in the extreme case where we have no guaranteed � or �, information-based

optimization becomes uniform discretization, always choosing the next point to be

farthest from those previously evaluated. However, if we are given bounds to possible

values for game-tree search, then we can use such target values to inform intelligent

search. Information-based optimization is a natural choice for this application for two

reasons: (1) The objective function (subtree evaluation) is computationally intensive

compared to information-based optimization1, and (2) We have natural target values

to inform optimization.

1This holds for the one-dimensional case. As we will see in Chapter 6, the computational com-
plexity of multidimensional information-based optimization can be overly burdensome.



CHAPTER 4. DASAT GAME-TREE SEARCH 86

Algorithm 9 Information-Based Alpha-Beta Search

Info-Based-Alpha-Beta(node, player , prevGuaranteeVector , depth)
. Input: current node,

current player number,

guaranteed player scores from previous search (�, ��),
depth of search at node

.Output: current node with search results

if (depth = 0 or leafNode(node)) then
node.abScore  score(node)
if (player = 1) then

node.abScore  �node.abScore
node.bestMove  null

return node
otherPlayer  (player + 1) mod 2
scoreGuaranteeVector  prevGuaranteeVector

bestMove  null

bestScore  �1
foreach region in legalMoveRegions(node, player) do

optimizer  new InfoBasedOptimizer(region,
�prevGuaranteeVector[otherPlayer])

for i  1 to regionSamples(region) do
point  nextPoint(optimizer)
move  createMove(region.index , point)
child  nextTurn(makeMove(clone(node), move), player)
child  Info-Based-Alpha-Beta(child, otherPlayer , scoreGuaranteeVector ,

depth � 1)
score  �child.abScore
if (bestMove = null or score > bestScore) then

bestMove  move

bestScore  score

if (bestScore � �prevGuaranteeVector[otherPlayer]) then
goto prune

if (bestScore > scoreGuaranteeVector[player]) then
scoreGuaranteeVector[player]  bestScore

addData(optimizer , point , score)

prune:
node.abScore  bestScore

node.bestMove  bestMove

return node
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Rather than write two procedures for the two players, Algorithm 9 uses negamax

representation. Algorithm 9 takes as input the current search node and player, the

guaranteed score bounds from previous search (represented as (�, ��)), and the depth
of search remaining. It returns the current node with search results (best score and

move). If the node is at terminal search depth or is a leaf node, then we evaluate the

node score (negated for the adversary) and return.

After initializing variables, we perform an information-based optimization on each

action parameter region for a prede�ned sample limit. If, before we reach that sample

limit, an evaluated subtree yields a score which indicates that a rational player will

not allow play through the current node (i.e. the lower bound exceeds the upper

bound), then all remaining search is unnecessary and we prune it.

For each information-based optimization, we pick a point in the action parameter

region, create a move and child node resulting from that move, and perform a recursive

call to search the subtree rooted at that child. The return results are negated because

of our negamax representation; each player maximizes negated scores of the other

player. If the return score is the best yet, we record it. If it also a�ects � or �, we

update the guarantees and prune if appropriate. At the end of each iteration, we

supply the return data to the information-based optimization for use in choosing a

move for the next iteration.

Experimental results of DASAT Information-Based Alpha-Beta Search on the

magnetic levitation problem are shown in Table 4.3. Figures 4.7, 4.8, and 4.9 show

the control policies (mappings from position and velocity to current) resulting from

searches to depths 2, 4, and 6, respectively. From the data, we can see that search ex-

ecution is faster and pruning is greater than that achieved by random discretization.

From the control policies, we see that the results are very similar to those achieved

by uniform discretization. The quality of control policies will be explored further in

the next section as we play these methods against one another.

One �nal important note about this chapter concerns a comparison to uniform dis-

cretization with node ordering. In practice, the heuristic of ordering subtree searches

according to the preferred score/utility of child nodes can be a source of signi�-

cant speedup. One might wonder when such a technique would be preferred to this
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Figure 4.7: Maglev output currents from DASAT Information-Based Alpha-Beta,
depth 2
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Figure 4.8: Maglev output currents from DASAT Information-Based Alpha-Beta,
depth 4
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Average Average Average Average Average
Depth Trials Time (msec) Nodes Pct. Pruned Nodes/Sec Score

1 400 1 21 0.00 18,667 -1.58E-7
2 400 1 52 71.14 35,354 -1.58E-7
3 400 30 497 85.30 16,295 -3.31E-7
4 400 40 1,243 95.71 31,157 -3.31E-7
5 400 719 16,787 96.90 23,347 -5.26E-7
6 400 1,081 55,185 98.81 51,032 -5.26E-7

Table 4.3: Results for DASAT Information-Based Alpha-Beta Search
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Figure 4.9: Maglev output currents from DASAT Information-Based Alpha-Beta,
depth 6
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information-based approach and vice versa. The answer is simple: If the problem do-

main is such that local scores are poor indicators of the relative quality of moves, then

information-based optimization would be preferred. Information-based optimization

chooses successive points based on full evaluations of subtrees so performance is not

degraded by poor local information. However, if the local scores of immediate children

provide good indication of the relative quality of moves, then uniform discretization

with node ordering may be simpler and preferable.

4.6 Comparison of Methods

In comparing these algorithms to one another, let us �rst turn our attention towards

e�ective branching factor reduction. The actual branching factor may vary consid-

erably when searching to a �xed depth d. In the case of the maglev problem, the

actual branching factor for a full search alternates between 20 and 8 on successive

levels. One desires a simple means of comparing the e�ective branching of search

given depth and node count.

The e�ective branching factor b is de�ned as the branching factor for which 1+b+

b2+: : :+bd equals the node count[34]. That is, b is the branching factor that e�ectively

results in the same search node count for a given search depth. A comparison of

e�ective branching factors for each algorithm on the maglev problem is given in

Table 4.4.

E�ective Branching Factor b % of Full b

Depth Random Uniform Info-Based No Prune Random Uniform Info-Based

1 20.00 20.00 20.00 20.00 100 100 100

2 7.58 10.09 6.66 12.93 59 78 52

3 8.72 12.16 7.56 14.66 60 83 52

4 6.46 8.93 5.66 12.78 51 70 44

5 7.16 9.39 6.78 13.81 52 68 49

6 6.17 7.83 5.99 12.74 48 61 47

Table 4.4: Comparison of E�ective Branching Factor Reduction
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Information-based Alpha-Beta Search yields signi�cantly lower e�ective branch-

ing factors than alpha-beta with either random or uniform discretization. Uniform

discretization yields the highest e�ective branching factors. As mentioned in the pre-

vious section, a node ordering heuristic would address this weakness for the maglev

problem since local information is a good indicator of relative long-term quality of

actions.

Previous experimentation is not adequate for comparing the relative quality of

the resulting control policies. If any search happened to perform a good controller

search and poor adversary search, it would appear to be a stronger game-tree search

algorithm than it is. For this reason, we have played each algorithm against each

other algorithm in order to give a true comparison of relative strength.

At each sampled position and velocity point in a uniform 20� 20 grid, we play a

game where each algorithm searches to depth four in choosing four successive moves.

One algorithm chooses moves for the controller and the other chooses moves for the

adversary. The two algorithms are switched and the process is repeated.

Results for random versus uniform discretization are given in Table 4.5. On av-

erage, search with random discretization takes 47% of the time taken using uniform

discretization while searching 26% of the nodes. Negative player scores are trajectory

costs. Search with uniform discretization yields lower cost trajectories on average and

thus better quality play.

Average Average Average Average Average
Player Trials Time (msec) Nodes Pct. Pruned Nodes/Sec Score

Random 400 99.87 2,946 89.83 29.50 -3.41E-7
Uniform 400 214.16 11,533 60.20 53.86 -3.31E-7

Table 4.5: Results for Random versus Uniform Discretization

Results for random versus information-based discretization are given in Table 4.6.

On average, search with information-based discretization takes 67% of the time taken

using random discretization while searching 92% of the nodes. Information-Based

Alpha-Beta Search yields better play than Alpha-Beta with Random Discretization.
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Average Average Average Average Average
Player Trials Time (msec) Nodes Pct. Pruned Nodes/Sec Score

Random 400 99.94 2,950 89.82 29.52 -3.40E-7
Info-Based 400 66.76 2,722 90.61 40.77 -3.31E-7

Table 4.6: Results for Random versus Information-Based Discretization

Results for uniform versus information-based discretization are given in Table 4.7.

On average, search with information-based discretization takes 34% of the time taken

using uniform discretization while searching 26% of the nodes. Information-Based

Alpha-Beta Search and Alpha-Beta Search with Uniform Discretization yield roughly

equivalent quality play.

Average Average Average Average Average
Player Trials Time (msec) Nodes Pct. Pruned Nodes/Sec Score

Uniform 400 218.99 11,341 60.87 51.79 -3.31E-7
Info-Based 400 73.68 2,924 89.91 39.68 -3.31E-7

Table 4.7: Results for Uniform versus Information-Based Discretization

4.7 Conclusions

In the beginning of this chapter, we formalized DASAT Hybrid System Games and

DASAT Hybrid Systems Search Problems. We continued study of the magnetic lev-

itation problem of Zhao, which takes a game-theoretic approach using an adversary

to model worst-case e�ects of bounded model error, numerical simulation error, envi-

ronmental perturbation, etc. In this chapter, we removed the assumption of having

given action parameter region discretizations, and studied three di�erent ways of

dynamically discretizing action parameter regions.

Information-based alpha-beta is a novel application of information-based opti-

mization which uses the � lower bound and � upper bound of alpha-beta search to
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optimize for pruning. The resulting algorithm exceeded the good speed and pruning

performance of random discretization while matching the control policy quality of

uniform discretization.

It should be noted that uniform discretization with a node ordering heuristic

should perform quite well in problem domains where local score information is a good

long-term indicator of relative move quality. In contrast, Information-Based Alpha-

Beta Search is not prone to poor local score information, as decisions are based on

the results of full subtree search.

We next address hybrid system search problems where action timing discretiza-

tions are not given.



Chapter 5

SADAT Search

Extending discrete search to hybrid system search introduces two new decisions in

optimization: action discretization and action timing discretization. In this chapter

we choose to address the latter decision: How could a search algorithm choose when

to branch the search tree and consider possible actions? We will thus assume that

continuous action spaces are already discretized. From the perspective of the search

algorithm, action discretizations are static, i.e. the search algorithm cannot a�ect the

action discretization. However, from the perspective of the search algorithm, action

timing discretizations are dynamic, i.e. branching points are chosen by the search

algorithm. For this reason, we will call such searches \SADAT searches" as they have

Static Action and Dynamic Action Timing discretization.

In this chapter, we will formally de�ne a SADAT Hybrid System Game and its

solitaire case, a SADAT Hybrid System Search Problem. A submarine detection

avoidance problem is introduced as a focus for designing real-time control delibera-

tion. We present iterative re�nement, a new search algorithm perhaps most simply

described as similar to iterative deepening search within a limited time interval. We

also present a new variation on best-�rst search which allows for more exible action

timing. Then, we show how iterative re�nement can work quite well under heuristic

monotonicity and admissibility assumptions. Finally, we introduce �-optimal Iterative

Re�nement Recursive Best-First Search.

94
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5.1 SADATHybrid SystemGame and Search Prob-

lem

Formally, a SADAT Hybrid System Game is de�ned as a 7-tuple

fS; s0; A; p; l;m; dg

where

� S is the hybrid state space with a �nite number of �nite discrete variable do-

mains, and a �nite-dimensional continuous space,

� s0 2 S is the initial state,

� A is the �nite discrete action space,

� p is the number of players,

� l : S � f1; : : : ; pg ! fa1; : : : ; ang 2 A is a legal move function mapping from a

state and player number to a �nite set of legal actions which may be executed

in that state by that player,

� m : S�Ap ! S�<p is a move function mapping from a state and simultaneous

player actions to a resulting state and the utility of the combined actions for

each player,

� d : S�<+ ! S�<p is a delay function mapping from a state and non-negative

time delay to the resulting state and the utility of the trajectory segment for

each player. We require that d(s; 0) = fs; f0; : : : ; 0gg. Letting d(s1; t1) =

fs2; fu1;1; : : : ; u1;pgg and d(s2; t2) = fs3; fu2;1; : : : ; u2;pgg, we also require that

d(s1; t1 + t2) = fs3; fu1;1 + u2;1; : : : ; u1;p + u2;pgg.

The total utility of any �nite trajectory is computed as the sum of the trajec-

tory move and delay utilities. In this time-invariant formalism, time can easily be

encoded in a continuous clock variable, and time invariant behavior could thus be

easily achieved.
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A SADAT Hybrid System Search Problem is a special case of the SADAT Hybrid

System Game where we are interested in �nding a trajectory from the initial state

to a goal state. Usually such problems are stated in terms of path cost rather than

utility. Formally, a SADAT Hybrid System Search Problem is de�ned as a 7-tuple

fS; s0; Sg; A; l;m; dg

where

� S is a hybrid state space with a �nite number of �nite discrete variable domains,

and a �nite-dimensional continuous space,

� s0 2 S is an initial state,

� Sg � S is a set of goal states,

� A is a �nite discrete action space,

� l : S ! fa1; : : : ; ang 2 A is a legal move function mapping from a state to a

�nite set of legal actions which may be executed in that state,

� m : S � A ! S � < is a move function mapping from a state and action to a

resulting state and cost of the action,

� d : S�<+ ! S�<p is a delay function mapping from a state and non-negative

time delay to the resulting state and the cost of the trajectory segment. We re-

quire that d(s; 0) = fs; f0; : : : ; 0gg. Letting d(s1; t1) = fs2; fu1;1; : : : ; u1;pgg and
d(s2; t2) = fs3; fu2;1; : : : ; u2;pgg, we also require that d(s1; t1+ t2) = fs3; fu1;1+
u2;1; : : : ; u1;p + u2;pgg.

We next describe a SADAT Hybrid System Search Problem in the domain of

submarine tactical planning for detection avoidance.
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5.2 Submarine Channel Problem

The Submarine Channel Problem is not unlike a SegaTM video game of the 1980's

called Frogger. A submarine seeks a path through a channel such that it avoids being

detected by a number of patrolling ships.

5.2.1 The Submarine Tactical Planning Assistant

The choice of this problem is motivated by the submarine tactical planning assistance

work of Thomas C. Smith and David P. Watson (Johns Hopkins Laboratory Applied

Physics Laboratory (JHUAPL)) and Peter W. Jacobus (SONALYSTS, Inc.)[46]. The

Generative Layer of their Tactical Planning Associate[46, x 2.4.2] uses Recursive Best-
First Search (RBFS)[25] to \produce an ordered set of way-points that inscribe an

optimal path through a �eld of predictably moving and stationary obstacles having

arbitrary avoidance areas." See Figure 5.1 for a screenshot of the interface.

Further details of the problem representation were obtained through personal

correspondence with Adam V. Peterson of JHUAPL. The action space is discretized

with 8 headings and 3 speeds (full speed, half speed, stop). The action timing space

is discretized as well according to a uniform simulation update interval. The problem

is formulated as a discrete search.

Enemy vessels each have inner and outer detection radii. Within the circle de-

�ned by the vessel position and inner detection radius, the submarine is detected and

penalized heavily. Beyond the circle de�ned by the outer detection radius, the sub-

marine is safe from detection. Between the circles, probability of detection increases

along with an associated penalty for such risk. Speed and patrol trajectories of enemy

vessels are known a priori. There is neither uncertainty nor change in enemy vessel

patrolling; this is a solitaire game of perfect information.

In using RBFS, the heuristic weight is set to 1.75, and the cost to the current state

is the sum of the time to the current state and a penalty calculated if the submarine

has passed within the outer radius of a ship.
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Figure 5.1: Tactical Planning Associate Man-Machine Interface illustrating Genera-
tive Layer, from [46, Figure 6]

5.2.2 The SADAT Submarine Channel Problem

We have chosen a speci�c class of submarine tactical planning problems for ease of

adjusting diÆculty. Just as the n2 � 1 sliding tile puzzle has served as a benchmark

for discrete search techniques, we have chosen a simple problem easily scaled and

modi�ed for greater diÆculty.

In the Submarine Channel Problem, the submarine starts at position (x; y) = (0; 0)

with eastward heading and at full stop. To the east along an east-west channel of

width w (centered along y = 0) are n ships patrolling across the width of the channel.

This is pictured in Figure 5.2.
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Figure 5.2: Submarine Channel Problem

Each ship j has an inner detection radius ri;j and an outer detection radius ro;j.

Within a proximity of ri;j, ship j will detect the submarine and the submarine will

be penalized with a detection penalty. Within a proximity of ro;j and beyond ri;j, the

submarine incurs a proximity penalty scaling linearly from 0 at the outer radius to

the full detection penalty at the inner radius. Beyond the outer radius, there is no

penalty. If the submarine collides with the sides of the channel, there is a collision

penalty. In the case of collision or detection, the submarine is halted and allowed

no further legal moves. The �rst ship patrols at an x-o�set xO�set1 of ro;1. Each

ship i thereafter has xO�seti = xO�seti�1 + 3ri;i�1 + ri;i. Ship i has a patrolling

route de�ned by cycling linearly between the following points: (xO�seti; w=2� ri;i),
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(xO�seti + 2ri;i; w=2� ri;i), (xO�seti + 2ri;i;�w=2 + ri;i), and (xO�seti;�w=2 + ri;i).

Each ship begins at a given percentage along this cycle. For n ships, the goal states

are all states within the channel with x > xO�seti+2ri;n+ ro;n, i.e. all channel points

to the right of the rightmost outer detection radius.

The submarine can travel in 8 headings (multiples of �=4 radians), and 3 speeds:

full speed, half speed, and full stop. Together these de�ne 17 distinct actions the sub-

marine can take at any point which it has incurred neither collision nor full detection

penalty.1 Each ship travels at a single prede�ned speed.

For this chapter, we have chosen w = 1 length unit. The outer radius of every

ship is 0:2w. The inner radius of each ship is 0:1w. The maximum velocity of the

submarine is w=(1 time unit). All ship velocities are also w=(1 time unit). Ships are

started at random percentages through their patrol cycles. The detection penalty

is set at 10000. Figure 5.3 shows a demonstration software animation frame from a

solution to an instance of the 4-ship problem.

Since we use SADAT Iterative Re�nement Search (x 5.3) as a baseline for com-

parison, we chose a number of ships such that it would be challenging for Iterative

Re�nement to �nd a solution within 10 seconds in our experimental context. All

programming was done in Java2, and all experimentation was done in MS-DOS using

a Dell Dimension XPS T450 with a 450 MHz Pentium CPU. It was found that the

10-ship problem (Figure 5.4) was suÆciently challenging for Iterative Re�nement so

as to serve as a useful challenge problem for SADAT and DADAT searches.

5.3 SADAT Iterative Re�nement Search

In this section, we limit search to a �xed time horizon tf . For these approaches, we

start with the simplest of search trees over the time interval: a search tree of depth

one with a root at the initial state, a branch for each legal action and leaves at t = tf .

1Since we assume discrete, instantaneous changes to headings and speeds, all full stop actions
are e�ectively equivalent.

2Programming was done with minimal optimization, since rapid prototyping and clarity were
desired.



CHAPTER 5. SADAT SEARCH 101

Figure 5.3: Submarine Channel Problem Demo, 4 Ships

This tree, pictured leftmost in Figure 5.5, represents the possible outcomes if the

agent were to only act at t = 0.

With standard tree search techniques, a search tree is grown by expanding leaf

nodes. One looks forward from leaf nodes to further inform one's action. Starting

with our simple search tree, there is no need to look forward. We are evaluating all

possible trajectories with respect to nodes at the search time horizon, and we have

already looked forward to the search time horizon. Rather, we wish to look within.

There are many ways one can choose action timings to search possible trajectories

from t = 0 to t = tf . We begin with a simple method called Iterative Re�nement

which is perhaps most simply described as similar to iterative deepening search within

a limited time interval.

Like iterative deepening, Iterative Re�nement consists of a series of searches. Each

search is a depth-�rst search where the tree is branched at a set of time points. In
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Figure 5.4: Submarine Channel Problem Demo, 10 Ships

Figure 5.5: Iterative Re�nement
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the ith iteration, iterative re�nement breaks the time interval [0; tf ] into i equal

time intervals and performs a search to depth i. The resulting search is pictured in

Figure 5.5. The algorithm pseudocode is shown in Algorithms 10 and 11. It has the

same computational time and space complexity as iterative deepening: O(bd) and

O(d) respectively, where b is e�ective branching factor, and d is maximum search

depth.

Algorithm 10 SADAT Iterative Re�nement Depth-First Search

SADATIterativeRefinementDFS(rootNode, initialDelay, re�nementLimit)
. Input: root node,

initial list of branching times,

limit on number of re�nement iterations
.Output: best leaf node at time horizon

bestNode  null

re�nement  1
while (not re�nement > re�nementLimit) do

newBestNode  SADAT-DFS(rootNode, initialDelay=re�nement, re�nement)
if (bestNode = null or g(newBestNode) < g(bestNode)) then

bestNode  newBestNode
re�nement  re�nement + 1

return bestNode

Algorithm 11 SADAT Depth-First Search

SADAT-DFS(node, delay, depthLimit)
. Input: search node,

simulation delay,

depth of search below node
.Output: best subtree leaf node at time horizon

if (depthLimit = 0) then

return node
bestNode  null

foreach move m[i] of legalMoves(node) do
child  wait(makeMove(clone(node), m[i]), delay)
newBestNode  SADAT-DFS(child , delay, depthLimit � 1)
if (bestNode = null or g(newBestNode) < g(bestNode)) then

bestNode  newBestNode
return bestNode

The results, shown in Table 5.1, are generally poor, ranging from 0 to 47 percent
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depending on the given time horizon. While the rate of nodes/sec is relatively much

higher than other approaches, the primary problem with such a search is that each

iteration searches the full tree. The branching factor and e�ective branching factor

of each search is the same. A lot of unnecessary search is done quickly, and the net

result is weak.

Time Time to Goal Cost to Goal

Horizon Results % Goal Min Avg Max Min Avg Max Nodes/Sec

4.20 100 0 N/A N/A N/A N/A N/A N/A 10,271

4.83 100 1 10.06 10.06 10.06 4.82 4.82 4.82 9,232

5.46 100 14 10.02 10.04 10.08 4.79 5.17 5.45 8,329

6.09 100 15 10.02 10.04 10.06 4.99 5.44 5.85 7,955

6.72 100 47 10.02 10.04 10.08 5.07 6.11 6.69 7,303

7.35 100 0 N/A N/A N/A N/A N/A N/A 7,831

Table 5.1: Results for SADAT Simple Iterative Re�nement DFS

If we modify Algorithm 10 such that search terminates as soon as a goal node is

found, we observe the results shown in Table 5.2. Although search returns with a goal

node much more frequently, the utility of the trajectory to the goal node is generally

poor. On average the submarine incurs high proximity penalties along the trajectory.

Without goal node termination, the algorithm returns the lowest cost trajectory to

the time horizon for the entire iterated search. Iterative re�nement depth-�rst search

with goal node termination o�ers no such solution quality guarantee. All future

algorithms of this chapter have some form of solution quality guarantee.

Simple iterative re�nement search is presented as a baseline for comparison for

the SADAT search techniques that follow. In each successive subsection, we make a

tradeo� of assumed a priori knowledge versus performance.

5.4 SADAT Best-First Search

In this section, we introduce a novel variation of Best-First Search (BFS) which allows

limited exibility in varying action timing. We begin by describing a simpli�ed version
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Time Time to Goal Cost to Goal

Horizon Results % Goal Min Avg Max Min Avg Max Nodes/Sec

4.20 100 4 0 0.01 0.03 2,090 5,745 8,911 9,470

4.83 100 33 0 1.23 4.93 5 6,661 9,906 8,608

5.46 100 84 0 1.01 9.05 5 6,313 10,001 7,646

6.09 100 89 0 2.22 9.91 5 6,851 9,927 7,234

6.72 100 100 0 1.62 7.32 5 6,714 10,000 6,513

7.35 100 60 0 0.73 2.92 2,090 7,793 9,996 7,362

Table 5.2: Results for SADAT Simple Iterative Re�nement DFS with Goal Node
Termination

of the algorithm in order to communicate both key concepts of the search and the

reason for the limitation in timing exibility.

As BFS is a heuristic search, we assume the existence of a heuristic evaluation

function to estimate the cost from any state to a goal state. Such information is

used to make the search selective, i.e. to direct search in the direction which is esti-

mated to have the \optimal" solution. The term \optimal" may be rightly used in

a discrete setting, but in this continuous problem domain, the search is generally in-

complete and therefore at most an approximation to optimal behavior. Theoretically,

given unbounded computing resources, as the step-size approaches zero, an admissible

(underestimating) heuristic function would give a solution approaching the optimal

solution.

For the Submarine Channel Problem, there is a very simple heuristic estimate of

cost to goal state: the x distance to the end of the patrolled region divided by the

maximum submarine speed.

5.4.1 Simple SADAT Best-First Search

A detailed description of Best-First Search (BFS) can be found in [41, x 4.1]. A

function f 0 is de�ned over all nodes as the sum of the cost function g and the heuristic

function h0. Whereas g(n) is the path cost from the root node to n, h0(n) is an estimate

of the minimum cost from n to a goal node. For each node n, f 0(n) = g(n) + h0(n).
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The accents of f 0 and h0 indicate that they are estimates of the unknown actual

evaluation functions f and h. Starting with a heap containing only the root, best-

�rst search iteratively selects the minimum node according to f 0 and checks to see if

that node is a goal node. If so, it terminates. If not, it evaluates all children of the

node, places them in the heap, and repeats the process.

In our variation of BFS, we (1) assume a given largest time-step between actions,

and (2) rede�ne node expansion to allow new open nodes along existing branches.

Regarding (1), we take as a parameter �t, a real-valued number of time units, which

serves as a default delay time between an expanded node and its new leaf children.

Regarding (2), we rede�ne node expansion for three cases: the root node case, leaf

node case, and internal node case. These cases correspond respectively to a node

having no parent and no children, having a parent and no children, and having a

parent and a child. One can prove inductively that these are the only three cases

which can occur for our method of expansion.

Simple SADAT Best-First Search pseudocode is given in Algorithms 12{15 . It

begins as normal BFS with the root node in the open heap. With each iteration,

the node with the lowest f 0(node) is extracted from the heap. If the node is a goal

node, the algorithm terminates with success. Otherwise, its children are generated

and placed on the open heap. The key di�erence is how new nodes are generated.

For a root node, we simply generate its children. Each child is computed by cloning

its parent, making the associated legal move, and simulating forward �t. The child

is then placed in a heap according to f 0(child). This is pictured in the �rst transition

of Figure 5.6.

For a leaf node, there is a slight di�erence. In addition to generating its children,

we also generate a new parent node halfway (with respect to time delay) between the

leaf node and its current parent node. This is pictured in the second transition of

Figure 5.6.

For an internal node, there is yet another di�erence. In addition to generating

new children, i.e. all children but its single existing child, and a new parent (as with

the leaf node), it generates a new child halfway between itself and its pre-existing

child. This is pictured in the third transition of Figure 5.6.
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Algorithm 12 SADAT Simple Best-First Search

SADAT-Simple-BFS(root)
. Input: root node

.Output: goal node if one exists, otherwise no termination

node  root

node.parent  null

node.child  null

while (not isGoal(node)) do
if (node.parent = null) then

. Root node case

simple-expand-root(node, empty-heap)
else

if (node.child = null) then
. Leaf node case

simple-expand-leaf(node, heap)
else

. Internal node case

simple-expand-internal-node(node, heap)
node  extractMin(heap)

return node

Algorithm 13 Simple Expansion of Root

Simple-Expand-Root(node, heap)
. Input: root node,

heap of unexpanded nodes
.Output: none

foreach move m[i] of legalMoves(node) do
child  wait(makeMove(clone(node), m[i]), delay)
child.parent  node

child.child  null

child.previousDelay  delay

insert(heap, child , f(child))
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Algorithm 14 Simple Expansion of Leaf

Simple-Expand-Leaf(node, heap)
. Input: leaf node,

heap of unexpanded nodes
.Output: none

foreach move m[i] of legalMoves(node) do
child  wait(makeMove(clone(node), m[i]), delay)
child.parent  node

child.child  null

child.previousDelay  delay

insert(heap, child , f(child))
newParent  wait(clone(node.parent), node.previousDelay=2)
newParent.parent  node.parent

newParent.child  node

newParent.previousDelay  node.previousDelay=2
node.parent.child  newParent

node.parent  newParent

insert(heap, newParent , f(newParent))

Figure 5.6: SADAT Best-First Search
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Algorithm 15 Simple Expansion of Internal Node

Simple-Expand-Internal-Node(node, heap)
. Input: internal node,

heap of unexpanded nodes
.Output: none

foreach non-null move m[i] of legalMoves(node) do
child  wait(makeMove(clone(node), m[i]), delay)
child.parent  node

child.child  null

child.previousDelay  delay

insert(heap, child , f(child))
newParent  wait(clone(node.parent), node.previousDelay=2)
newParent.parent  node.parent

newParent.child  node

newParent.previousDelay  node.previousDelay=2
node.parent.child  newParent

node.parent  newParent

insert(heap, newParent , f(newParent))
newChild  wait(clone(node), node.child.previousDelay=2)
newChild.parent  node

newChild.child  node.child

newChild.previousDelay  node.child.previousDelay=2
node.child.parent  newChild

node.child  newChild

insert(heap, newChild , f(newChild))
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The �rst important thing to note about this algorithm is that it allows a more

re�ned temporal search than best-�rst search with a �xed delay. This is both a

strength and a weakness under di�erent circumstances. While it can sometimes better

approximate optimal solutions or �nd solutions which cannot be found without such

re�nement, one can easily generate pathological cases where SADAT Simple Best-

First Search cannot �nd solutions which can be found using best-�rst search with a

�xed delay.

The second important thing to note is one such signi�cant pathological case which

motivates the �nal piece of the full algorithm. Suppose we have the case where our

cost function g monotonically increases along any path of the search tree, and our

function f 0 always underestimates actual cost to a goal node through any non-goal

node. Without looking far, we easily �nd an example: any submarine channel problem

with h0(n) = 0 for all n.

Given an f 0 with such characteristics, then for any open (non-expanded) node n1

preceding another open node n2 along a path, f 0(n1) < f 0(n2). Put simply, earlier

possibilities always look better along a path in the tree. The rami�cation of this fact

and our method of node expansion, is that this case will result in in�nite re�nement

from a root child back toward the root.

Given these characteristics, the best node generated by the best root child will

be the new parent between the root and that child. The best node generated by the

new parent will be its new parent, and so forth in�nitely. Clearly, such a method has

need of some means to restrict path re�nement so that such in�nite re�nement does

not trap the search in a local minimum.

5.4.2 SADAT Best-First Search with Re�nement Limits

One simple means of restricting re�nement is to limit the number of re�nements per-

formed along any path. More speci�cally, we keep count of the number of times a new

internal node was introduced in order to make a given path possible. Algorithmically,

we associate with each node n a re�nement level n.re�nementLevel. The root has a re-

�nement level of 0. A new leaf child inherits the re�nement level of its parent. A new
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internal node n0 generated by node n has a re�nement level of n.re�nementLevel+1.

The full algorithm of SADAT Best-First Search (Algorithms 16{19) is Simple SA-

DAT Best-First Search augmented with the node re�nement levels and the restriction

that new nodes with re�nement levels which would exceed a given re�nement limit

are not generated. The worst-case computational time and space complexity of SA-

DAT Best-First Search is bounded by that of a Best-First Search performed on the

full SADAT Best-First Search tree with maximal re�nement. If f never overesti-

mates the cost to a goal node, then Best-First Search is called A� and is known to

be both optimal[9] and complete3[41] in searching the tree. However, computational

time complexity is still exponential unless error in the heuristic function has a growth

rate less than the logarithm of the actual path cost[35]. However, the most important

complexity issue for modern computing is that of computational space complexity.

Exponential growth of the heap exhausts memory resources in little time for mod-

ern computers. One way of dealing with exponential complexity is use of recursive

best-�rst search, which is discussed in Section 5.6.

Results for the 10-Ship Submarine Channel Problem are shown in Table 5.3. For

these trials, �t was arbitrarily set to 1=4 of the initial distance to goal divided by

the maximum submarine speed. The general tradeo� to note here is that of quality

versus speed of solution. While more re�nement yields better average solutions, fewer

such solutions are found within the allotted 10-second time limit.

Re�nement Time to Goal Cost to Goal

Limit Results % Goal Min Avg Max Min Avg Max Nodes/Sec

0 100 82 0.01 1.31 9.60 4.88 7.14 9.17 268

1 100 77 0.02 1.24 8.32 4.88 6.75 8.15 418

2 100 78 0.03 1.71 7.12 4.88 6.36 7.44 458

3 100 57 0.06 1.75 6.09 4.81 5.92 6.64 455

Table 5.3: Results for SADAT Best-First Search, �t = 1:05

What this data does not show is how sensitive the performance is to the choice of

3Completeness is proven on locally �nite graphs.
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Algorithm 16 SADAT Best-First Search

SADAT-BFS(root)
. Input: root node

.Output: goal node if one exists, otherwise no termination

node  root

node.parent  null

node.child  null

node.re�nementLevel  0
while (not isGoal(node)) do

if (node.parent = null) then
. Root node case

expand-root(node, empty-heap)
else

if (node.child = null) then
. Leaf node case

expand-leaf(node, heap)
else

. Internal node case

expand-internal-node(node, heap)
node  extractMin(heap)

return node

Algorithm 17 Expansion of Root

Expand-Root(node, heap)
. Input: root node,

heap of unexpanded nodes
.Output: none

foreach move m[i] of legalMoves(node) do
child  wait(makeMove(clone(node), m[i]), delay)
child.parent  node

child.child  null

child.previousDelay  delay

child.re�nementLevel  node.re�nementLevel

insert(heap, child , f(child))
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Algorithm 18 Expansion of Leaf

Expand-Leaf(node, heap)
. Input: leaf node,

heap of unexpanded nodes
.Output: none

foreach move m[i] of legalMoves(node) do
child  wait(makeMove(clone(node), m[i]), delay)
child.parent  node

child.child  null

child.previousDelay  delay

child.re�nementLevel  node.re�nementLevel

insert(heap, child , f(child))
newParent  wait(clone(node.parent), node.previousDelay=2)
newParent.parent  node.parent

newParent.child  node

newParent.previousDelay  node.previousDelay=2
newParent.re�nementLevel  node.re�nementLevel + 1
node.parent.child  newParent

node.parent  newParent

insert(heap, newParent , f(newParent))
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Algorithm 19 Expansion of Internal Node

Expand-Internal-Node(node, heap)
. Input: internal node,

heap of unexpanded nodes
.Output: none

foreach non-null move m[i] of legalMoves(node) do
child  wait(makeMove(clone(node), m[i]), delay)
child.parent  node

child.child  null

child.previousDelay  delay

child.re�nementLevel  node.re�nementLevel

insert(heap, child , f(child))
newParent  wait(clone(node.parent), node.previousDelay=2)
newParent.parent  node.parent

newParent.child  node

newParent.previousDelay  node.previousDelay=2
newParent.re�nementLevel  node.re�nementLevel + 1
node.parent.child  newParent

node.parent  newParent

insert(heap, newParent , f(newParent))
newChild  wait(clone(node), node.child.previousDelay=2)
newChild.parent  node

newChild.child  node.child

newChild.previousDelay  node.child.previousDelay=2
newChild.re�nementLevel  node.re�nementLevel + 1
node.child.parent  newChild

node.child  newChild

insert(heap, newChild , f(newChild))
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�t. Looking at Tables 5.4 and 5.5, we see that performance is very dependent on the

choice of �t.

Re�nement Time to Goal Cost to Goal

Limit Results % Goal Min Avg Max Min Avg Max Nodes/Sec

0 100 100 0.01 0.40 7.09 5.10 7.08 10.99 186

1 100 100 0.02 0.43 7.29 5.10 6.83 9.59 353

2 100 99 0.00 0.70 7.75 5.10 6.53 8.60 359

3 100 97 0.03 1.03 7.57 5.10 6.31 7.62 359

Table 5.4: Results for SADAT Best-First Search, �t = 1:40

Re�nement Time to Goal Cost to Goal

Limit Results % Goal Min Avg Max Min Avg Max Nodes/Sec

0 250 0.8 0.04 0.04 0.04 7.22 7.60 7.98 348

1 250 0.8 0.05 0.07 0.09 7.22 7.60 7.98 359

2 250 1.6 0.12 1.70 6.11 6.51 8.05 10.48 109

3 250 2.0 0.13 1.02 4.07 5.05 6.56 8.78 215

Table 5.5: Results for SADAT Best-First Search, �t = 1:51

SADAT Best-First Search provides a novel means of �nding better solutions than

can be found with Best-First Search with a �xed delay. This comes at a cost of time

to solution, however, so that this algorithm is better suited to o�ine applications

than real-time control. It should also be noted that both of these best-�rst search

algorithms have exponential computational space complexity.

5.5 SADAT Iterative Re�nement with Strong Prun-

ing, Node Ordering, and Upper Bound

In previous experimentation with Iterative Re�nement, we saw that performance was

poor, but not as sensitive to choice of time horizon as SADAT Best-First Search. As
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long as the goal was within the time horizon and the time horizon did not extend too

far, the algorithm was more forgiving of an uninformed parameter choice.

In this section, we introduce a variant of Iterative Re�nement which trades o�

generality for performance. By making a few simple assumptions about our problem

domain for pruning, and applying heuristic node ordering, we achieve considerable

speedup. The main novelty lies in how information from one iteration is used for

pruning in the next.

Weak and Strong Pruning: Unlike iterative deepening and other standard

search algorithms, the root node evaluation we are approximating through search is

the minimum f 0-value of all nodes on the horizon. After the �rst path to a leaf is

searched, we have a best path ending with a best leaf nbest.

If we assume that our cost function g is monotonically increasing, then we can

prune subtrees rooted at any node n such that g(n) > f 0(nbest). Further, such pruning

conditions can be carried from one iteration to the next, since all searches are with

respect to the same time horizon. Put simply, each better path we �nd focuses the

search thereafter through all iterations.

In this context, we refer to the assumption that g is monotonically increasing as

a \weak" assumption. We refer to the associated pruning as \weak" pruning. The

stronger assumption that can be made is that f 0 is monotonically increasing. Then

we can prune subtrees rooted at any node n such that f 0(n) > f 0(nbest). We refer to

this assumption and pruning as \strong".

Node Ordering: A standard technique for speeding up search is called node

ordering. The basic intuition is that one orders the expansion of nodes in such a way

as to have greater probability of �nding a goal node sooner. In order for the cost of

such ordering to be bene�cial, the ordering technique must incur little computational

cost. A common technique which is used here is to simply expand a node's children

in increasing order of their f 0-values. Note that this heuristic complements our desire

to increase pruning.

Upper Bound: Finally, we note that for this problem domain, not every solution

is a good solution. While the simulator halts the movement of the submarine when

it passes within any inner radius of a ship, it does not halt the submarine when it
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has passed within the outer radius and received a proximity penalty. Thus, some

solutions are poor solutions.

Specifying an allowable upper bound on solution cost not only ensures that It-

erative Re�nement will not stop with an undesired solution, it also aids search by

providing pruning conditions from the beginning of search.

Iterative Re�nement with Strong Pruning, Node Ordering, and Upper Bound is

described in pseudocode in Algorithms 20 and 21.

Algorithm 20 SADAT Iterative Re�nement with Strong Pruning, Node Ordering,
and Upper Bound

SADATIRwSPNOUB(rootNode, initialDelay, re�nementLimit , upperBound)
. Input: root node,

initial list of branching times,

limit on number of re�nement iterations,

upper bound on solution cost
.Output: goal node with cost beneath upper bound if found,

best leaf node found otherwise
globalUpperBound  upperBound

globalGoalFound  false

globalBestNode  null

re�nement  1
while (not globalGoalFound and not re�nement > re�nementLimit) do

SADAT-DFS-SPNOUB(rootNode, initialDelay=re�nement , re�nement)
re�nement  re�nement + 1

return globalBestNode

Trials for the 10-Ship Submarine Channel Problem were performed with an upper

bound cost of 10. This would mean that allowable solutions could only pass a very

small amount within the outer radius of a ship on the way to a solution. Results are

given in Table 5.6.

One key point to observe from these results is the tradeo� of generality in the

form of domain knowledge for performance. However, this tradeo� should be made

when it can, as such assumptions about f 0 can often be either proven or enforced

in the design of f 0. Solutions tend to be found more quickly with this technique

than other techniques seen so far, so it is well suited to real-time tactical planning

assistance. Compared to the computational gains, we have traded o� little in the way
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Algorithm 21 SADAT Depth-First Search with Strong Pruning, Node Ordering,
and Upper Bound

SADAT-DFS-SPNOUB(node, delay , depthLimit)
. Input: search node, simulation delay, and depth of search below node

.Output: none

if (isGoal(node)) then
globalGoalFound  true

globalBestNode  node

return
if (depthLimit = 0 or numOfChildren(node) = 0) then

if (f(node) < f(globalBestNode)) then
globalBestNode  node

return
foreach move m[i] of legalMoves(node) do

child[i]  wait(makeMove(clone(node), m[i]), delay)
Sort child[i] in increasing order of f(child[i])
i  1
done  false

while (not done and not globalGoalFound) do
. Do not expand a node with f-value exceeding the global upper bound

if (f(child[i]) > globalUpperBound) then

done  true
else

SADAT-DFS-SPNOUB(child[i] , delay, depthLimit � 1)
i  i + 1
if (i > numOfChildren(node)) then

done  true
return

Time to Goal Cost to Goal

Time Horizon Results % Goal Min Avg Max Min Avg Max Nodes/Sec

4.20 500 0.0 N/A N/A N/A N/A N/A N/A 938

4.83 500 57.4 0.06 2.08 10.40 4.29 4.68 4.83 598

5.46 500 88.2 0.04 1.73 10.06 4.40 5.05 5.45 411

6.09 500 93.6 0.11 2.21 10.30 4.40 5.46 6.09 315

6.72 500 95.6 0.07 1.35 10.20 4.73 6.01 6.72 281

7.35 500 92.8 0.06 1.87 10.46 4.99 6.36 7.35 281

Table 5.6: Results for SADAT Iterative Re�nement with Strong Pruning, Node Or-
dering, and Upper Bound
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of generality.

Another key point to observe are the conditions under which the algorithm can

reliably �nd a solution. We must choose an appropriate time horizon for which

solutions are not so rare that our search is likely to �nd one. From this data one

might think that one has only to choose a large enough time horizon to guarantee

good results. However, it is also the case that one can choose too large a time horizon.

Considering this Submarine Channel Problem, assuming that there is no straight-line

solution through the patrolling ships, then there is a search delay parameter above

which no solution exists. Given a time limit, one may set the time horizon suÆciently

high as to have all search within the time limit performed with delay parameters too

high to �nd a solution. Put simply, if the time horizon is too high, then the granularity

of search is too high, and there is a performance penalty.

5.6 SADAT Iterative Re�nement with Recursive

Best-First Search

In Section 5.4, we saw that Best-First Search techniques have unfavorable, exponen-

tial space complexity. In [25], Richard Korf introduced a linear space complexity

algorithm called Recursive Best-First Search (RBFS) which expands new nodes in

same order as Best-First Search and thus has the same optimality guarantees. RBFS

was the technique of choice for the Submarine Tactical Planning Assistant described

in Section 5.2.1.

In this Section, we introduce an approximately optimal version of RBFS for SA-

DAT problems, called SADAT �-RBFS. We show that its performance is very sensi-

tive to the input delay parameter. We then introduce SADAT Iterative Re�nement

�-RBFS. Compared to other general-applicability SADAT algorithms which do not

require a monotonicity assumption, SADAT Iterative Re�nement �-RBFS yields the

best behavior with the least sensitivity to initial parameters.
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5.6.1 SADAT � - Recursive Best-First Search with Fixed De-

lay

In order to apply Recursive Best-First Search (RBFS) to continuous domains, there

are two issues which must �rst be addressed. The �rst concerns action timing dis-

cretization. In this section, we choose the simplest solution and assume that for any

call to RBFS, a �xed delay is used to generate children.

The second issue to address is the nature of oating point node evaluations. This

was not an issue in Best-First Search, because nodes are only expanded once. RBFS

uses a local cost threshold for each recursive depth-�rst search call. The cost threshold

is updated using the least cost value of frontier nodes beyond the threshold. If the

same subtree is searched again, it is with this updated value. In this way, nodes are

expanded in best-�rst order, using a depth-�rst technique which can expand the same

node many times. This is a tradeo� of computational time for space.

The fact that so many nodes will have distinct oating-point costs means that

nodes will be expanded many times more than in discrete domains where evaluations

are integer-valued and in a concentrated distribution. This same issue arises when

applying iterative deepening search to continuous domains.

The way this issue is dealt with for iterative deepening techniques in complex

domains is to increase the iterative deepening cost limit by a �xed amount � on each

iteration. Then the total number of iterations is proportional to 1=� and the algorithm

is called �-admissible[41, x 4.3, IDA*].
We can do something similar for RBFS. When each subtree is searched and the

child is replaced in the heap, we make sure that its evaluation is increased by at least

�. �-RBFS is given in pseudocode in Algorithm 22.

The result of applying �-RBFS to the 10-Ship Submarine Channel Problem is

shown in Table 5.7. Observing these results, one is struck by the extreme sensitivity

of the search success to the �xed delay parameter.
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Algorithm 22 SADAT � - Recursive Best-First Search

SADATeRBFS(node, nodeF , bound , delay, espilon)
. Input: node, calling stored search value of node, local cost upper bound,

simulation delay, and epsilon minimum bound increment
.Output: return stored search value of node

if (f(node) > bound) then
return f(node)

if (isGoal(node)) then
goalNode  node

exit algorithm
if (numOfChildren(node) = 0) then

return 1
foreach move m[i] of legalMoves(node) do

c[i]  wait(makeMove(clone(node), m[i]), delay)
if (f(node) < nodeF ) then

cF[i]  max(nodeF , f(c[i]))
else

cF[i]  f(c[i])
insert(heap, c[i] , cF[i])

fc, cFg  extractMin(heap)
while (cF � bound and cF <1) do

. The new local upper bound must increase by at least epsilon.

if (numofChildren(node) > 1) then
cF  max(SADATeRBFS(c, cF , min(bound , minValue(heap))), cF + epsilon)

else

cF  max(SADATeRBFS(c, cF , bound), cF + epsilon)
insert(heap, c, cF )
fc, cFg  extractMin(heap)

return cF

5.6.2 SADAT Iterative Re�nement with � - Recursive Best-

First Search

The sensitivity of the success of �-RBFS to the delay parameter motivates an attempt

to use �-RBFS with di�erent delays. In this section, we apply the idea of iterative

re�nement to �-RBFS and �nd that the resulting algorithm has excellent performance

across a broad range of initial parameters.

In Section 3.2 of [25], Korf directs the user of RBFS to make a top-level call to

RBFS with an upper bound of1. Indeed, an upper bound of1 makes perfect sense



CHAPTER 5. SADAT SEARCH 122

Time to Goal Cost to Goal

Delay Results % Goal Min Avg Max Min Avg Max Nodes/Sec

1.00 500 99.4 0.00 0.41 10.02 4.70 6.28 8.99 496.12

1.25 500 91.0 0.01 0.29 4.93 5.01 7.13 9.90 423.40

1.50 500 0.2 0.05 0.05 0.05 7.95 7.95 7.95 349.71

1.75 500 0.4 0.03 0.06 0.10 5.95 7.70 9.45 234.24

Table 5.7: Results for SADAT � - Recursive Best-First Search, � = 0:25

when one has only one possible search space. In our case, we have in�nite ways of

discretizing action timing, and therefore in�nite possible spaces to explore.

Keeping with the principle of trying simple solutions �rst, we seek to reapply the

idea of Iterative Re�nement to �-RBFS. However, if we use an upper-bound of1, the

�rst iteration with the initial delay will never terminate if it does not �nd a solution.

Fortunately, Korf's algorithm is designed such that it also makes sense to use values

other than 1 in the top-level call.

If we simply provide an upper bound on cost as we did with Iterative Re�nement

with Strong Pruning, Node Ordering, and Upper Bound, then we have an algorithm

which does an �-admissible search of all nodes within the cost upper bound on each

iteration, successively re�ning until the granularity is �ne enough for a solution to be

found within that bound if it exists. Iterative Re�nement with �-RBFS is described

in pseudocode in Algorithm 23.

Algorithm 23 SADAT Iterative Re�nement with � - Recursive Best-First Search

SADATIReRBFS(rootNode, bound , initialDelay, espilon, re�nementLimit)
. Input: root node, upper bound on solution cost,

initial simulation delay, epsilon minimum bound increment,

limit on number of re�nement iterations
.Output: goal node if solution found, null if not

goalNode  null

re�nement  1
while (goalNode = null and not re�nement > re�nementLimit) do

SADATeRBFS(rootNode, f(rootNode), bound , initialDelay=re�nement, espilon)
re�nement  re�nement + 1

return goalNode
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The result of applying Iterative Re�nement with �-RBFS to the 10-Ship Submarine

Channel Problem is shown in Table 5.8. Now we are able to achieve excellent results

across a broad range of initial delay values.

Initial Time to Goal Cost to Goal

Delay Results % Goal Min Avg Max Min Avg Max Nodes/Sec

4.20 100 99 0.08 0.28 3.66 5.10 7.03 9.63 379.62

4.83 100 91 0.11 0.73 4.75 4.98 7.16 9.74 421.16

5.46 100 100 0.17 0.51 5.92 5.08 7.06 9.98 357.03

6.09 100 92 0.27 0.64 5.82 4.99 7.09 9.86 419.84

6.72 100 95 0.20 0.58 6.05 5.07 6.96 9.77 401.76

7.35 100 95 0.37 0.82 9.64 4.99 7.18 10.00 403.07

Table 5.8: Results for SADAT Iterative Re�nement with � - Recursive Best-First
Search, � = 0:25

In contrast to Iterative Re�nement with Strong Pruning, Node Ordering, and

Upper Bound, we do not need to make any assumptions about properties of f 0 for

this algorithm to be applicable. We also do not need to be concerned with picking a

large enough time horizon, since our search is not limited to a time horizon.

Furthermore, Iterative Re�nement with �-RBFS provides a guarantee for the qual-

ity of the solution: Given initial delay �t and admissible f 0, then any solution returned

by the algorithm on iteration i will have a cost at most � above the optimal solution

in the full tree with delay �t=i. If one can further prove a bound on the approxi-

mate optimality of the search tree of each iteration, then one can skip overly coarse

iterations and set local �i parameters for �ner iterations such that one can guarantee

�-optimal solutions.

SADAT Iterative Re�nement with � - Recursive Best-First Search provides a gen-

eral, eÆcient, and successful method for SADAT search provided one can supply a

useful heuristic evaluation function f 0 and an initial delay parameter which does not

make search overly coarse or overly �ne. As one can see in Table 5.8, the initial delay

parameter can vary considerably and still allow excellent performance.
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5.7 Summary and Conclusions

In the beginning of this chapter, we formalized SADAT Hybrid System Games and

SADAT Hybrid Systems Search Problems. After describing the current Submarine

Tactical Planning Assistance work of Smith, Jacobus, and Watson, we de�ned a class

of problems for use as a benchmark in comparing approaches to SADAT search.

We �rst introduced SADAT Iterative Re�nement Search, a generally applicable

method which limits search to a time horizon with iteratively �ner timing granularity.

While performance is relatively poor with respect to the other algorithms of this

chapter, this non-selective, brute-force search serves as a good baseline for comparison.

In contrast to the research of this and the next chapter, almost all tree-based search

research assumes a �xed action timing discretization. A small amount of research

concerning search with di�erent timing granularities has been presented within the

abstraction, reformulation, and approximation research community. However, after

searching literature and talking with several experts in robotics search and AI, it

appears that iterative re�nement with respect to a time horizon is unique.

SADAT Best-First Search is a novel variation of Best-First Search. Although one

could argue that Genetic Algorithms allow branches to be split through mutation,

SADAT Best-First Search appears to be the �rst systematic search to split branches

and dynamically generate new internal nodes. This is contrasted with hierarchical

decomposition in planning where such \internal" nodes are prede�ned. While per-

forming much better than SADAT Iterative Re�nement, SADAT Best-First Search

showed a tradeo� of time to solution versus quality of solution. As such, it is bet-

ter suited to o�ine design applications than real-time control applications. Unlike

SADAT Iterative Re�nement, SADAT Best-First Search and all the following algo-

rithms of this chapter require a heuristic evaluation function f 0 which takes each node

as input and returns an estimate of the cost to reach a goal node through that node.

For our problem domain, a simple heuristic is easy to come by, but in general a good

heuristic is not necessarily straightforward.

Next, we augmented SADAT Iterative Re�nement Search with strong pruning,
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node ordering, and an upper bound on solution cost. Strong pruning and node or-

dering are standard search speedup techniques. However, our use of the upper bound

is novel and interesting. Since this tree search is unusual in that all iterations search

with respect to the same time horizon, the upper bound does not merely focus search

within an iteration as increasingly better leaf nodes are found. It also focuses search

across all searches in future iterations. Ability to �nd solutions to the 10-Ship Subma-

rine Channel Problem was excellent for a broad selection of time horizons. However,

this algorithm assumes that (1) one knows a good time horizon a priori, and (2)

that f 0 monotonically increases and is admissible. Generality of applicability is again

traded o� for performance.

Finally, we presented a new �-admissible variant of Recursive Best-First Search

(�-RBFS). Seeing that its performance is very sensitive to the initial time delay, we

make novel use of the �-RBFS upper bound input parameter and again apply iter-

ative re�nement, The resulting algorithm, Iterative Re�nement with �-RBFS, had

excellent performance across a broad range of input parameters. Furthermore, the

solution comes with a guarantee that it has a cost at most � greater than the optimal

solution in the full tree of the last iteration. All of this comes without the monotonic-

ity assumption of SADAT Iterative Re�nement Search with Strong Pruning, Node

Ordering, and Upper Bound.

Thus, we have made a series of novel forays into a new and challenging class of

search problems. Notice that these approaches make very few assumptions about

the problem domain beyond the simulation model. Most robotics navigation and

motion planning algorithms make good use of the structure and constraints of the

robot and environment. Generally speaking, the more one can eÆciently make use

of knowledge and structure of a problem domain, the greater the performance of

the approach. \Knowledge is power." These algorithms seek to make minimal use

of domain-speci�c knowledge in order to provide general kernels from which many

future advances can grow.

One possible future direction is to dynamically discretize action timing according

to a measure of \quiescence", or lack of immediate change in score. If the problem
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domain can provide an indication of the importance of action frequency (e.g. dis-

tance to a threat for the submarine problem), then we have an additional source of

knowledge to levy for search eÆciency. In the future, we hope to identify simple ways

of improving dynamic discretization without con�ning ourselves to narrow problem

domains.

In the next chapter, we apply these same general action timing discretization ideas

to problems where we do not assume a given action discretization.



Chapter 6

DADAT Search

Extending discrete search to hybrid system search introduces two new decisions in

optimization: action discretization and action timing discretization. In this chapter

we choose to address both decisions: How could a search algorithm choose both when

and how to branch the search tree in order to consider possible actions? From the

perspective of the search algorithm, both action discretization and action timing dis-

cretization are dynamic, i.e. both discretizations are chosen by the search algorithm.

For this reason, we will call such searches \DADAT searches" as they have Dynamic

Action and Dynamic Action Timing discretization.

In this chapter, we formally de�ne a DADAT Hybrid System Game and its solitaire

case, a DADAT Hybrid System Search Problem. We continue to examine the subma-

rine channel problem, and compare the relative merits of random, information-based,

and dispersed discretizations in augmenting the iterative re�nement searches of the

previous chapter. The dispersed discretization is presented as a compromise between

the fast speed of random discretization, and the intelligent, slow decision procedure

of information-based discretization. We �nd that the orientation of the headings in

the given discretization of the previous chapter is very signi�cant to performance.

Dispersed discretization yields far better results than the given discretization of the

previous chapter with randomly-rotated submarine headings.

127
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6.1 DADATHybrid SystemGame and Search Prob-

lem

Formally, a DADAT Hybrid System Game is de�ned as a 7-tuple

fS; s0;A; p; l;m; dg

where

� S is the hybrid state space with a �nite number of �nite discrete variable do-

mains, and a �nite-dimensional continuous space,

� s0 2 S is the initial state,

� A is a �nite set fA1; : : : ; Ang of continuous action regions indexed f1; : : : ; ng,

� p is the number of players,

� l : S � f1; : : : ; pg ! A0 where A0 � A is a legal move function mapping from a

state and player number to a �nite set of legal continuous action regions which

contain points representing all legal actions that may be executed in that state

by that player,

� m : S�ap ! S�<p is a move function mapping from a state and simultaneous

player actions (region index, region point pairs) to a resulting state and the

utility of the combined actions for each player,

� d : S�<+ ! S�<p is a delay function mapping from a state and non-negative

time delay to the resulting state and the utility of the trajectory segment for

each player. We require that d(s; 0) = fs; f0; : : : ; 0gg. Letting d(s1; t1) =

fs2; fu1;1; : : : ; u1;pgg and d(s2; t2) = fs3; fu2;1; : : : ; u2;pgg, we also require that

d(s1; t1 + t2) = fs3; fu1;1 + u2;1; : : : ; u1;p + u2;pgg.

An action is represented by the index f1; : : : ; ng of the relevant action space, and

a point within the space. The total utility of any �nite trajectory is computed as the
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sum of the trajectory move and delay utilities. In this time-invariant formalism, time

can easily be encoded in a continuous clock variable, and time invariant behavior

could thus be easily achieved.

A DADAT Hybrid System Search Problem is a special case of the DADAT Hybrid

System Game where we are interested in �nding a trajectory from the initial state

to a goal state. Usually such problems are stated in terms of path cost rather than

utility. Formally, a DADAT Hybrid System Search Problem is de�ned as a 7-tuple

fS; s0; Sg;A; l; m; dg

where

� S is a hybrid state space with a �nite number of �nite discrete variable domains,

and a �nite-dimensional continuous space,

� s0 2 S is an initial state,

� Sg � S is a set of goal states,

� A is a �nite set fA1; : : : ; Ang of continuous action regions indexed f1; : : : ; ng,

� l : S ! A0 where A0 � A is a legal move function mapping from a state to a

�nite set of legal continuous action regions which contain points representing

all legal actions that may be executed in that state,

� m : S� a! S�< is a move function mapping from a state and action (region

index, region point pair) to a resulting state and cost of the action,

� d : S�<+ ! S�<p is a delay function mapping from a state and non-negative

time delay to the resulting state and the cost of the trajectory segment. We re-

quire that d(s; 0) = fs; f0; : : : ; 0gg. Letting d(s1; t1) = fs2; fu1;1; : : : ; u1;pgg and
d(s2; t2) = fs3; fu2;1; : : : ; u2;pgg, we also require that d(s1; t1+ t2) = fs3; fu1;1+
u2;1; : : : ; u1;p + u2;pgg.
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6.2 DADAT Submarine Channel Problem

The DADAT version of the SADAT Submarine Channel Problem of Section 5.2 is

the same with only one modi�cation. The submarine may now turn to any heading

and travel at any speed up to its maximum speed. Thus the sole legal action region

is a circle centered at the origin with radius equal to the magnitude of the maximum

speed. Any point within the circle de�nes a legal heading and speed for the submarine.

As the algorithms in this chapter are variations of previous SADAT search algo-

rithms with di�erent means of selecting actions, we will be judging such means with

respect to the previous results where an explicit action discretization is given. In all

cases, we will use the previous branching factor of 17 so that in comparing DADAT

search results to SADAT search results, we can learn something of the quality of the

dynamic action discretizations.

6.3 DADAT Iterative Re�nement with Random

Action Discretization

In this section, we introduce a simple variation of SADAT Iterative Re�nement with

Strong Pruning, Node Ordering, and Upper Bound (x 5.5) in which we randomly

sample actions from the legal action regions. In addition to the previous parameters,

we require the caller to indicate the number of samples used to sample each action

region. Thus, the pseudocode is as shown in Algorithms 24 and 25.

In comparing the results of DADAT Iterative Re�nement with Random Action

Discretization in Table 6.1 with the algorithm's SADAT counterpart in Table 5.6, the

most noticable di�erence is that a larger time horizon is needed for the algorithm to

achieve comparable success. This is due in part to two main reasons.

First, the given SADAT discretization had eight actions at full speed in di�er-

ent headings. If one were to compare maximum speeds and headings of paths in

our SADAT searches and this DADAT search, one would notice a much di�erent

distribution. The SADAT search will search faster trajectories than those randomly

generated from possible legal moves.
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Algorithm 24 DADAT Iterative Re�nement with Strong Pruning, Node Ordering,
Upper Bound, and Random Discretization

DADAT-IR-SPNOUB-Random(rootNode, initialDelay, re�nementLimit ,
upperBound , sampleVector)

. Input: root node,

initial list of branching times,

limit on number of re�nement iterations,

upper bound on solution cost,

vector of samples for each possible action parameter region
.Output: goal node with cost beneath upper bound if found,

best leaf node found otherwise
globalUpperBound  upperBound

globalGoalFound  false

globalBestNode  null

re�nement  1
while (not globalGoalFound and not re�nement > re�nementLimit) do

DADAT-DFS-SPNOUB-Random(rootNode, initialDelay=re�nement,
re�nement, sampleVector)

re�nement  re�nement + 1
return globalBestNode

Time Time to Goal Cost to Goal
Horizon Results % Goal Min Avg Max Min Avg Max Nodes/Sec

4.20 100 0 N/A N/A N/A N/A N/A N/A 1,231.64
4.83 100 1 0.30 0.30 0.30 4.76 4.76 4.76 1,200.95
5.46 100 38 0.07 3.27 10.06 4.96 5.29 5.46 928.31
6.09 100 61 0.10 2.26 10.07 5.01 5.77 6.09 770.25
6.72 100 73 0.08 2.74 10.06 5.14 6.24 6.71 656.71
7.35 100 84 0.16 3.09 10.08 5.38 6.79 7.35 584.01

Table 6.1: Results for DADAT Iterative Re�nement with Random Action Discretiza-
tion
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Algorithm 25 DADAT Depth-First Search with Strong Pruning, Node Ordering,
Upper Bound, and Random Discretization

DADAT-DFS-SPNOUB-Random(node, delay, depthLimit , sampleVector)
. Input: search node,

simulation delay,

depth of search below node, and

vector of samples for each possible action parameter region
if (isGoal(node)) then

globalGoalFound  true

globalBestNode  node

return
if (depthLimit = 0 or legalMoveRegions(node) = null) then

if (f(node) < f(globalBestNode)) then
globalBestNode  node

return
childCount  0
foreach move region r[i] of legalMoveRegions(node) do

for i  1 to sampleVector[r[i].index] do
childCount  childCount + 1
child[childCount]  wait(makeMove(clone(node), randomMove(r[i])), delay)

Sort child[i] in increasing order of f(child[i])
i  1
done  false

while (not done and not globalGoalFound) do
. Do not expand a node with f-value exceeding the global upper bound

if (f(child[i]) > globalUpperBound) then

done  true
else

DADAT-DFS-SPNOUB-Random(child[i] , delay, depthLimit � 1)
i  i + 1
if (i > childCount) then

done  true
return
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Second, most solutions found by SADAT searches tend to run due east along the

top bank, varying speed as necessary to time passing between patrolling ships just as

a person walks through an automatic revolving door. In previous experimentation,

optimal trajectories often contained segments where the submarine was heading due

east at full speed. In randomly generating headings and speeds, the search will not

always be presented with a similar action, and thus will not �nd solutions as optimal

or as often.

It would be desirable to see how much the decrease in performance of these results

is due to not having the SADAT discretization's full-speed actions versus not having

the SADAT discretization's due-east actions. One way would be to randomly rotate

the SADAT discretization and see the resulting performance. Another way would be

to add an additional linear move region consisting of di�erent speeds with a due-east

heading. Allotting samples to a second move region would amount to providing

additional domain knowledge for search. In keeping with a desire for maximum

generality, we will use the former means rather than the latter.

The results of using SADAT Iterative Re�nement with Strong Pruning, Node

Ordering, and Upper Bound with random rotations of the original action discretiza-

tion are shown in Table 6.2. From these results, it is immediately apparent that the

orientation of our original discretization was very signi�cant. Neither approach is

better for all chosen time horizons. While random discretization is clearly dominated

by the original discretization, it is roughly comparable to the randomly rotated dis-

cretization. The random discretization success rate for �nding solutions peaks at a

greater time horizon than that of the randomly rotated discretization. With ran-

dom discretization, the average action speed will be less than that of the rotated

discretization, necessitating a greater time horizon on average for solutions.
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Time Time to Goal Cost to Goal
Horizon Results % Goal Min Avg Max Min Avg Max Nodes/Sec

4.20 100 0 N/A N/A N/A N/A N/A N/A 1,120.86
4.83 100 26 0.12 4.63 10.04 4.43 4.74 4.83 923.82
5.46 100 61 0.24 3.35 10.04 4.71 5.26 5.45 740.12
6.09 100 73 0.23 3.71 9.87 4.44 5.67 6.08 599.26
6.72 100 67 0.09 3.94 9.94 4.91 6.11 6.72 538.88
7.35 100 49 0.17 4.42 10.04 4.88 6.50 7.33 513.83

Table 6.2: Results for SADAT Iterative Re�nement with Strong Pruning, Node Or-
dering, Upper Bound, and Randomly Rotated Action Discretization

6.4 DADAT Iterative Re�nement with Information-

Based Action Discretization

In this section, we take a di�erent approach to the selection of actions for search.

Rather than selecting them randomly, we apply information-based optimization. The

pseudocode is given in Algorithms 26{29.

When applied to the DADAT Submarine Channel Problem, this algorithm was not

able to solve any of the 100 problem instances with any of the 6 di�erent time horizons.

In the DASAT work of Chapter 4, we saw the bene�t of applying Information-Based

Optimization to the choice of actions in alpha-beta search. In the Magnetic Levitation

Problem, we were interested in o�ine design where a single one-dimensional action

region de�ned possible control actions, i.e. possible solenoid current settings. In one

dimension, information-based optimization allows for direct calculation of the next

best point to evaluate.

In this DASAT Submarine Channel Problem, the action space is two-dimensional.

Thus we must use the candidate-sampling multidimensional version of Information-

Based Optimization which selects random candidate points and performs calculations

with respect to every previously evaluated point to check for shadowing and slope to a

goal value at the candidate point. To review details of the algorithm, see Section 2.7.
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Algorithm 26 DADAT Iterative Re�nement with Strong Pruning, Node Ordering,
Upper Bound, and Information-Based Discretization

DADAT-IR-SPNOUB-IB(rootNode, initialDelay, re�nementLimit,
upperBound , sampleVector)

. Input: root node,

initial list of branching times,

limit on number of re�nement iterations,

upper bound on solution cost,

vector of samples for each possible action parameter region
.Output: goal node with cost beneath upper bound if found,

best leaf node found otherwise
globalUpperBound  upperBound

globalGoalFound  false

globalBestNode  null

re�nement  1
while (not globalGoalFound and not re�nement > re�nementLimit) do

DADAT-DFS-SPNOUB-IB(rootNode, initialDelay=re�nement,
re�nement, sampleVector)

re�nement  re�nement + 1
return globalBestNode

Algorithm 27 DADAT Depth-First Search with Strong Pruning, Node Ordering,
Upper Bound, and Information-Based Discretization

DADAT-DFS-SPNOUB-IB(node, delay, depthLimit , sampleVector)
. Input: search node,

simulation delay,

depth of search below node, and

vector of samples for each possible action parameter region
.Output: exact or lower bound value through node

if (isGoal(node)) then
globalGoalFound  true

globalBestNode  node

return f(node)
if (depthLimit = 0 or legalMoveRegions(node) = null) then

if (f(node) < f(globalBestNode)) then
globalBestNode  node

return f(node)
foreach move region r[i] of legalMoveRegions(node) do

init-IB-Optimizer(optimizer[i] , r[i] , sampleVector[r[i].index], globalTargetValue)
fmoveChoice[i], child[i]g  IB-NextChild(node, optimizer[i] , delay)

return DADAT-DFS-SPNOUB-IB-expand(node, optimizer , moveChoice,
child , delay)
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Algorithm 28 IB-NextChild Procedure for Algorithms 27 and 29

IB-NextChild(node, optimizer , delay)
. Input: parent node,

information-based optimizer for move region, and

simulation delay
.Output: chosen move parameters, and

best next child node to expand accord to info-based optimization
. nextChoice returns null when optimizer sample limit is reached

moveChoice  nextChoice(optimizer[i])
if (not moveChoice = null) then

move  createMove(optimizer.region.index , moveChoice)
child  wait(makeMove(clone(node), move), delay)

else

child  null
return fmoveChoice, childg
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Algorithm 29 Child Expansion Procedure for Algorithm 27

DADAT-DFS-SPNOUB-IB-expand(node, optimizer , moveChoice, child , delay)
. Input: current node,

information-based optimizers for move regions,

candidate move choices for move regions,

associated child choices for move regions, and

simulation delay
.Output: goal node with cost beneath upper bound if found,

best leaf node found otherwise
nextBestF  1
childNum  -1
foreach child[i] do

if (not child[i] = null and f(child[i]) < nextBestF ) then
nextBestF  f(child[i])
childNum  i

done  childNum = -1
fMin  1
while (not done and not globalGoalFound) do

. Do not expand a node with f-value exceeding the global upper bound

if (nextBestF > globalUpperBound) then
. If pruned, use f-value as return value

returnValue  nextBestF
else

returnValue  DADAT-DFS-SPNOUB-IB(child[childNum], delay,
depthLimit � 1)

if (returnValue < fMin) then
fMin  returnValue

addData(optimizer[childNum] , moveChoice[i], returnValue)
fmoveChoice[childNum], child[childNum]g
 IB-NextChild(node, optimizer[childNum] , delay)

nextBestF  1
childNum  -1
foreach child[i] do

if (not child[i] = null and f(child[i]) < nextBestF ) then
nextBestF  f(child[i])
childNum  i

done  childNum = -1
return fMin
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Multidimensional information-based optimization has greater computational com-

plexity than that of the one dimensional case because of the check for shadowing. The

high computational overhead expended in the intelligent selection of actions for search

outweighed the bene�t of the intelligent selection for our real-time problem. However,

this algorithm may prove useful in problem domains with smaller branching factors

where intelligent sampling has a high payo� in search eÆciency or solution quality.

6.5 DADAT Iterative Re�nement with Dispersed

Action Discretization

We have seen that random sampling is computationally inexpensive, yet the sam-

pling is inferior to the given action discretization for the SADAT Submarine Channel

Problem. We have also seen that information-based optimization makes intelligent

choices, yet the computational complexity of information-based optimization makes

it unsuitable for this real-time problem domain. We are presented with a tradeo� be-

tween computational eÆciency and the utility of such computation. One would desire

a compromise between the strengths of random and information-based discretization

which would echo the intuition behind the choice of the SADAT discretization without

incurring such computational cost for each node expansion.

In seeking a compromise, we note that information-based minimization of a �nite-

valued function with a target value of �1 will yield a set of points, each of which is as

far as possible from the previous points. See Figure 6.1. If one were to perform such

an optimization for a circular area with the �rst point on the edge of the circle, the

second point would be directly across the circle. The third and fourth points would

be directly across from each other rotated 90 degrees from the �rst and second points.

The �fth point would be farthest from the previous four in the center. The following

four points would be chosen in positions rotated 45 degrees from the �rst four. The

following eight would be chosen at centers of circles circumscribing triangles formed

by the center point and closest pairs of edge points.

Given a starting point on the edge of the circular move region, the �rst 17 points
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Figure 6.1: Information-Based Optimization point choices for a �nite values and an
in�nite target, con�ned to a circular region

of information based minimization with a target of �1 look remarkably like the

SADAT action discretization. One needs only to slightly increase the speeds of the

half-speed moves and rotate their headings 22.5 degrees. The point here is that the

intuitive choice of the SADAT action discretization echoes a mathematically well-

founded choice of information-based optimization with an in�nite target.

If we could have our algorithm dynamically and eÆciently compute a discretiza-

tion with points as far away from each other as possible, we would expect much

improvement. While a detailed investigation of such techniques is beyond the scope

of this dissertation, we have implemented a simple point dispersion technique based

on simulating repulsive electrical forces.

The basic idea of \dispersed" discretization is to take a number of randomly

sampled points from the action region and simulate them as if they were point charges

mutually repelling each other with force proportional to the inverse square of their

distance. The point dispersion algorithm pseudocode is given in Algorithm 30. We use

a repulsion factor of 0.008 and a repulsion factor decay of 0.93 for 20 iterations. These

values were chosen empirically based on a small number of trials with the submarine

action region. In future work, we would desire these dispersion parameters to be

rapidly self-adapting to the size of the region and the number of sampled points.

In pseudocode Algorithms 31{32, we present a variation on SADAT Iterative
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Algorithm 30 Dispersed Discretization

disperse-points(region, samples, weight , decay, iterations)
. Input: move parameter region,

number of points to sample,

weight of change for �rst iteration,

decay of change for following iterations,

number of iterations
.Output: an array of dispersed points within the region

for i  1 to samples do

x[i]  randomPoint(region)
for i  1 to iterations do

for j  1 to samples do
dx[j]  0
for k  1 to j do

di�erence x[k] � x[j]
distance 

q
x[j]

2 + x[k]
2

dx[j]  dx[j] � di�erence=(distance3)
dx[k]  dx[j] + di�erence=(distance3)

for j  1 to samples do
dx[j]  weight � dx[j]
x[j]  x[j] + dx[j]

if (not inRegion(x[j] , region)) then
. Reassign to closest point on region border

containInRegion(x[j] , region)
weight  weight � decay

return x

Re�nement with Strong Pruning, Node Ordering, and Upper Bound (x 5.5) where
we lazily compute dispersed discretization for move regions. That is, as a move

discretization is needed, we look to a list of discretizations indexed by region. If

a discretization has not yet been computed, we compute it, otherwise we use the

precomputed global discretization for that move region.

Using this dispersed discretization, we obtain excellent results for the 10-Ship

DADAT Submarine Channel Problem as shown in Table 6.3. As before, we note

that good performance requires the time horizon parameter to be suÆciently high.

Particularly surprising is the fact that the results are better than those with the given

SADAT discretization.

Looking over a number of dispersed discretizations, one quickly notices that more
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Algorithm 31 DADAT Iterative Re�nement with Strong Pruning, Node Ordering,
Upper Bound, and Random Discretization

DADAT-IR-SPNOUB-Dispersed(rootNode, initialDelay, re�nementLimit ,
upperBound , sampleVector ,
dispersionWeight, dispersionDecay,
dispersionIterations)

. Input: root node,

initial list of branching times,

limit on number of re�nement iterations,

upper bound on solution cost,

vector of samples for each possible action parameter region,

weight of change for �rst dispersion iteration,

decay of change for following dispersion iterations,

number of dispersion iterations
.Output: goal node with cost beneath upper bound if found,

best leaf node found otherwise
globalUpperBound  upperBound

globalGoalFound  false

globalBestNode  null

re�nement  1
while (not globalGoalFound and not re�nement > re�nementLimit) do

DADAT-DFS-SPNOUB-Dispersed(rootNode, initialDelay=re�nement,
re�nement, sampleVector ,
dispersionWeight,
dispersionDecay,
dispersionIterations)

re�nement  re�nement + 1
return globalBestNode
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Algorithm 32 DADAT Depth-First Search with Strong Pruning, Node Ordering,
Upper Bound, and Dispersed Discretization

DADAT-DFS-SPNOUB-Dispersed(node, delay, depthLimit , sampleVector ,
dispWeight , dispDecay, dispIterations)

. Input: search node, simulation delay, depth of search below node,

vector of samples for each possible action parameter region,

weight of change for �rst dispersion iteration,

decay of change for following dispersion iterations,

number of dispersion iterations
if (isGoal(node)) then

globalGoalFound  true

globalBestNode  node

return
if (depthLimit = 0 or legalMoveRegions(node) = null) then

if (f(node) < f(globalBestNode)) then
globalBestNode  node

return
childCount  0
foreach move region r[i] of legalMoveRegions(node) do

index  r[i].index

if (dispersedMoves[index] = null) then
dispersedPoints
 disperse-points(r[i] , sampleVector[index], dispWeight ,

dispDecay, dispIterations)
for j  1 to sampleVector[index] do

dispersedMove[index][j]  createMove(index , dispersedPoint[j])
for j  1 to sampleVector[index] do

childCount  childCount + 1
child[childCount]
 wait(makeMove(clone(node), dispersedMove[index][j]),

delay)
Sort child[i] in increasing order of f(child[i])
i  1
done  false

while (not done and not globalGoalFound) do
. Do not expand a node with f-value exceeding the global upper bound

if (f(child[i]) > globalUpperBound) then

done  true
else

DADAT-DFS-SPNOUB-Dispersed(child[i] , delay , depthLimit � 1)
i  i + 1
if (i > childCount) then

done  true
return
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points are repelled to the edge than in the given SADAT discretization. Although

not a probable con�guration, any number of points placed at even intervals around

the edge would be in equilibrium. With repulsion parameters given above, it was

typical to see 12 or more points along the edge of the circle with 5 or fewer points

dispersed internally. As noted in the previous discussion, the extreme parameters

represented by the edge of the circular action region are more likely to appear in

optimal solutions. We hypothesize that having extra edge action choices aids in

�nding better approximations to optimal solutions.

Furthermore, in this problem domain, searches of faster submarine trajectories (i.e.

with discretizations having more maximal velocities) will have lesser search depths

to solutions if such speedy solution trajectories exist. Since search depth a�ects

search time complexity exponentially, we likely bene�t from a discretization with

more maximal velocity values.

Time Time to Goal Cost to Goal
Horizon Results % Goal Min Avg Max Min Avg Max Nodes/Sec

4.20 100 0 N/A N/A N/A N/A N/A N/A 911.98
4.83 100 92 0.04 1.32 10.07 4.32 4.69 4.83 1,107.76
5.46 100 97 0.04 0.57 10.06 4.27 5.09 5.46 829.24
6.09 100 98 0.05 0.78 9.94 4.27 5.52 6.09 694.12
6.72 100 98 0.06 0.68 4.04 4.30 5.94 6.72 591.83
7.35 100 100 0.03 1.33 10.06 4.20 6.48 7.35 539.47

Table 6.3: Results for DADAT Iterative Re�nement with Dispersed Action Discretiza-
tion

6.6 DADAT Iterative Re�nement with Dispersed

�-RBFS

In this section, we apply dispersed discretization to SADAT Iterative Re�nement

with �-RBFS to create another DADAT search algorithm we call DADAT Iterative
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Re�nement with Dispersed �-RBFS. The algorithm is given in pseudocode in Algo-

rithms 33{34.

Algorithm 33 DADAT Iterative Re�nement with � - Recursive Best-First Search
and Dispersed Discretization

DADAT-IR-eRBFS-dispersed(rootNode, bound , initialDelay, espilon,
re�nementLimit , sampleVector ,
dispWeight , dispDecay, dispIterations)

. Input: root node,

upper bound on solution cost,

initial simulation delay,

epsilon minimum bound increment,

limit on number of re�nement iterations,

vector of samples for each possible action parameter region,

weight of change for �rst dispersion iteration,

decay of change for following dispersion iterations,

number of dispersion iterations
.Output: goal node if solution found, null if not

goalNode  null

re�nement  1
while (goalNode = null and not re�nement > re�nementLimit) do

DADAT-eRBFS-dispersed(rootNode, f(rootNode), bound , initialDelay=re�nement ,
espilon, sampleVector , dispWeight , dispDecay,
dispIterations)

re�nement  re�nement + 1
return goalNode

The quality of the results for the 10-Ship DADAT Submarine Channel Problem

are good, but not so good as DADAT Iterative Re�nement with Dispersed Action

Discretization, Strong Pruning, Node Ordering, and Upper Bound. However, this

algorithm commends itself for use where f 0 is not monotonic, or where a good time

horizon is not known. Consider the broad range of initial delay parameters over which

we have good results in Table 6.4. The parameters for dispersed discretization were

as follows: dispWeight = 0.008, dispDecay = 0.93, dispIterations = 20,

To again see how the dispersed discretization is an improvement over the randomly

rotated given discretization of the SADAT version of the problem, consider the results

of Table 6.5. For the same problems, the dispersed discretization increases the number

of solutions found by about 33%.
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Initial Time to Goal Cost to Goal
Delay Results % Goal Min Avg Max Min Avg Max Nodes/Sec

1.00 100 76 0.01 1.89 9.50 4.32 7.71 9.53 491.39
2.00 100 71 0.02 1.61 9.37 5.02 7.77 9.65 490.55
3.00 100 74 0.03 1.89 8.10 4.31 7.71 9.63 502.99
4.00 100 69 0.04 1.89 8.91 5.70 7.94 9.77 491.30
4.20 100 72 0.01 1.82 8.77 4.46 8.16 10.00 454.78
4.83 100 77 0.03 3.10 9.56 4.70 8.07 9.84 471.74
5.46 100 70 0.03 2.80 9.92 4.29 8.15 9.98 461.75
6.09 100 69 0.05 2.45 9.86 4.31 7.98 9.98 465.63
6.72 100 73 0.02 3.01 10.04 4.20 8.07 9.98 448.34
7.35 100 68 0.04 2.93 9.21 4.89 8.46 9.94 453.53

Table 6.4: Results for DADAT Iterative Re�nement with Dispersed �-RBFS

Initial Time to Goal Cost to Goal
Delay Results % Goal Min Avg Max Min Avg Max Nodes/Sec

4.20 100 47 0.06 2.76 8.78 5.95 8.18 9.80 477.43
4.83 100 34 0.04 3.67 9.51 6.17 8.20 9.96 460.03
5.46 100 39 0.17 2.69 7.57 5.58 8.26 10.00 464.32
6.09 100 38 0.22 5.31 10.02 5.53 8.11 9.99 456.96
6.72 100 33 0.03 2.97 9.53 6.00 8.25 9.82 452.57
7.35 100 40 0.17 4.94 9.99 5.95 8.16 9.95 448.07

Table 6.5: Results for SADAT Iterative Re�nement with �-RBFS and Randomly
Rotated Action Discretization
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Algorithm 34 DADAT � - Recursive Best-First Search with Dispersed Discretization

DADAT-eRBFS-dispersed(node, nodeF , bound , delay , espilon, sampleVector ,
dispWeight , dispDecay, dispIterations)

. Input: node, calling stored search value of node, local cost upper bound,

simulation delay, epsilon minimum bound increment,

vector of samples for each possible action parameter region,

weight of change for �rst dispersion iteration,

decay of change for following dispersion iterations,

number of dispersion iterations
.Output: return stored search value of node

if (f(node) > bound) then
return f(node)

if (isGoal(node)) then
goalNode  node

exit algorithm
if (numOfChildren(node) = 0) then

return 1
foreach move region r[i] of legalMoveRegions(node) do

index  r[i].index

if (dispersedMoves[index] = null) then
dispersedPoints  disperse-points(r[i] , sampleVector[index], dispWeight ,

dispDecay, dispIterations)
for j  1 to sampleVector[index] do

dispersedMove[index][j]  createMove(index , dispersedPoint[j])
for j  1 to sampleVector[index] do

childCount  childCount + 1
c  wait(makeMove(clone(node), dispersedMove[index][j]), delay)
if (f(node) < nodeF ) then

cF  max(nodeF , f(c))
else

cF  f(c)
insert(heap, c, cF )

fc, cFg  extractMin(heap)
while (cF � bound and cF <1) do

. The new local upper bound must increase by at least epsilon.

if (childCount > 1) then
cF  max(DADAT-eRBFS-dispersed(c, cF , min(bound , minValue(heap))),

cF + epsilon)
else

cF  max(DADAT-eRBFS-dispersed(c, cF , bound), cF + epsilon)
insert(heap, c, cF )
fc, cFg  extractMin(heap)

return cF
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Dispersed discretization parameters were tuned across several runs. While the

chosen dispersed discretization parameters were reasonably well chosen for the sub-

marine action parameter region, they would obviously not be generally suited for all

regions one might encounter. In future work, it would be good to have such parame-

ters be adaptively tuned much as step size is tuned in local optimization. If one could

reliably get convergence to a good dispersion, then dispersion parameters could be

removed from these algorithms and their use would be simpli�ed.

6.7 Conclusions

In this chapter, we gave formal de�nitions of DADAT Hybrid System Games and DA-

DAT Hybrid System Search Problems. We de�ned the DADAT Submarine Channel

Problem as the SADAT Submarine Channel problem without a given action dis-

cretization. The submarine instead is allowed any heading and any speed up to its

maximum speed.

We then investigated means of augmenting SADAT search techniques of the previ-

ous chapter such that action discretizations are performed dynamically. We observed

that the percentage of solutions found for random discretization is comparable to

those achieved with SADAT action discretization when headings are uniformly ro-

tated by a random angle. However, cost to goal of such solutions is increased. This is

due to the fact that optimal submarine path solutions often involve extreme values,

especially full speed. The random discretization will, on average, have considerably

fewer actions near full speed than the SADAT discretization.

We next observed the unsuccessful application of information-based optimization

to action discretization. While making good decisions in principle, the overhead

of performing a multidimensional information-based optimization at each node is too

burdensome for this real-time task. Thus the computational bene�t of more intelligent

node expansion is outweighed by the computational cost of computing such choices.

Between random discretization and information-based optimization based on sound

mathematical principles, we wished to �nd a compromise: a discretization which

would reect informed choices while being very simple to compute. We observed that
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an extreme case of information-based optimization, where the function is �nite-valued

and the target is in�nite, yields a discretization where each point is as far away as pos-

sible from preceding points. In fact, one such information-based optimization yields

a discretization remarkably similar to the SADAT discretization we were given.

Based on the extreme case of information-based optimization, and imitating the

natural phenomenon of electrostatic repulsion of \point" charges, we developed a

dispersion algorithm which yielded discretizations with considerably better goal �nd-

ing performance than was achieved with the given SADAT action discretization with

headings uniformly rotated by a random angle.

It should be noted that a good representation of the problem is necessary to

the success of search applications. Two speci�c characteristics are of special note.

First, one should keep the representation as simple as possible. Complex behaviors

need not have complex underlying decisions, and keeping the dimensionality of action

parameter regions low is important given the limited sampling one can perform.

Second, one should represent the action parameter regions in such a way as to

uniformly distribute parameters according to likelihood of utility of such actions.

For example, one could represent possible submarine actions as a rectangle with

sides bounding possible headings and speeds. Compared to uniform sampling of

the circular representation, uniform sampling of the rectangular representation gives

greater importance to moves with slower speeds. Of course, this issue could also be

avoided at the action parameter representation level if we specialize our discretization

methods to vary importance of sampling over action parameter regions.

The main point is that at some level, one encodes a notion of sampling importance

over possible action parameters. Choosing low dimensional action parameter region

representations which uniformly distribute the likely importance of parameters is

important in representing a problem for successful use with these techniques.

In summary, if a good time horizon is known and the heuristic evaluation func-

tion f 0 is known to be monotonic, then among our algorithms, DADAT Iterative

Re�nement with Strong Pruning, Node Ordering, Upper Bound, and Dispersed Dis-

cretization is preferred. Otherwise, if one can provide a decent heuristic evaluation
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function, then DADAT Iterative Re�nement with �-RBFS and Dispersed Discretiza-

tion is preferred.

Thus, we have introduced a collection of algorithms which perform dynamic dis-

cretization of action and action timing in search. There is much yet to be done in this

area, yet we hope that these �rst steps will bring Arti�cial Intelligence and Control

researchers closer to fruitful common work.
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