
A Type System for Object Initialization

In the JavaTM Bytecode Language�

Stephen N. Freund John C. Mitchell

Department of Computer Science

Stanford University

Stanford, CA 94305-9045

ffreunds, mitchellg@cs.stanford.edu

Phone: (415) 723-8634, Fax: (415) 725-4671

April 17, 1998

Abstract

In the standard Java implementation, a Java language program is compiled to Java bytecode.

This bytecode may be sent across the network to another site, where it is then interpreted by

the Java Virtual Machine. Since bytecode may be written by hand, or corrupted during network

transmission, the Java Virtual Machine contains a bytecode veri�er that performs a number of

consistency checks before code is interpreted. As illustrated by previous attacks on the Java

Virtual Machine, these tests, which include type correctness, are critical for system security.

In order to analyze existing bytecode veri�ers and to understand the properties that should be

veri�ed, we develop a precise speci�cation of statically-correct Java bytecode, in the form of a

type system. Our focus in this paper is a subset of the bytecode language dealing with object

creation and initialization. For this subset, we prove that for every Java bytecode program that

satis�es our typing constraints, every object is initialized before it is used. The type system is

easily combined with a previous system developed by Stata and Abadi for bytecode subroutines.

Our analysis of subroutines and object initialization reveals a previously unpublished bug in the

Sun JDK bytecode veri�er.

�Supported in part by NSF grants CCR-9303099 and CCR-9629754, ONR MURI Award N00014-97-1-0505, and a

NSF Graduate Research Fellowship.

1

Contents

1 Introduction 3

2 Object Initialization 5

3 JVMLi 7

4 Operational and Static Semantics 8

4.1 Notation . 8
4.2 Values and Types . 9
4.3 Operational Semantics . 9
4.4 Static Semantics . 12

5 Soundness 12

6 Extensions 14

6.1 JVMLc . 15
6.2 JVMLs . 17
6.3 Other Basic Types and Instructions . 19

7 The Sun Veri�er 20

7.1 The Sun JDK 1.1.4 Veri�er . 20
7.2 The Corrected Sun Veri�er . 20

8 Related Work 21

9 Conclusions and Future Work 22

A JVMLi Soundness 23

A.1 Useful Lemmas . 23
A.2 One-step Soundness . 29
A.3 Progress . 36
A.4 Soundness . 37

B Soundness of Extensions 39

B.1 JVMLc . 39
B.2 JVMLs . 40
B.3 Primitive Types and Basic Operations . 44

2

Java

Compiler
Loader

Bytecode

Interpreter

class file

B.class

- - -

?

?

?

>

. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
.g

g

class A f
void f() f

...

A.java A.class

class file

Java Virtual Machine

Veri�er

Linker

network

Trusted CodeUntrusted Code

Figure 1: The Java Virtual Machine

1 Introduction

The Java programming language is a statically-typed general-purpose programming language with
an implementation architecture that is designed to facilitate transmission of compiled code across a
network. In the standard implementation, a Java language program is compiled to Java bytecode and
this bytecode is then interpreted by the Java Virtual Machine. While many previous programming
languages have been implemented using a bytecode interpreter, the Java architecture di�ers in that
programs are commonly transmitted between users across a network in compiled form.

Since bytecode may be written by hand, or corrupted during network transmission, the Java
Virtual Machine contains a bytecode veri�er that performs a number of consistency checks before
code is interpreted. Figure 1 shows the point at which the veri�er checks a program during the
compilation, transmission, and execution process. After a class �le containing Java bytecodes is
loaded by the Java Virtual Machine, possibly from across the network, it must pass through the
bytecode veri�er before being linked into the execution environment and interpreted. Thus, only
trusted bytecode is used by the linker and interpreter. This protects the receiver from certain
security risks and various forms of attack. The veri�er rejects any program that uses an uninitialized
value, jumps to invalid code, performs operations on values of the wrong type, and so on. Fairly
conservative static analysis techniques are used to check these conditions, meaning that not only
all faulty programs are rejected, but also many programs that would never execute an erroneous
sequence of instructions. However, any bytecode program generated by a conventional compiler is
accepted. The need for conservative analysis stems from the undecidability of the halting problem,
as well as e�ciency considerations. Speci�cally, since most bytecode is the result of compilation,
there is very little bene�t in developing complex analysis techniques to recognize patterns that do

3

not occur.
The intermediate bytecode language, which we refer to as JVML, is a typed, machine-independent

form of assembly language with some low-level instructions that re
ect speci�c high-level Java source
language constructs. For example, classes are a basic notion in JVML, and there is a form of
\local subroutine" call and return designed to allow e�cient implementation of the source language
try-finally construct. While some amount of type information is included in JVML to make
type-checking possible, there are some high-level properties of Java source code that are not easily
detected in the resulting bytecode. One example is the last-called �rst-returned property of the
local subroutines. While this property will hold for every JVML program generated by compiling
Java source, some e�ort is required to con�rm this property in bytecode programs [SA98a]. Another
example is the initialization of objects before use. While it is clear from the Java source language
statement

A x = new A(hparametersi)

that the A class constructor will be called before any methods can be invoked through the pointer
x, this is not obvious from a simple scan of the resulting JVML program. One reason is that many
bytecode instructions may be needed to evaluate the parameters for the call to the constructor. In
the bytecode, these will be executed after space has been allocated for the object and before the
object is initialized. Another reason, discussed in more detail in Section 2, is that the structure of
the Java Virtual Machine requires copying of pointers to uninitialized objects. Therefore, some form
of aliasing analysis is needed to make sure that an object is initialized before it is used.

Several published attacks on early forms of the Java Virtual Machine illustrate the importance
of the bytecode veri�er for system security. To cite one speci�c example, a bug in an early version of
Sun's bytecode veri�er allowed applets to create certain system objects which they should not have
been able to create, such as class loaders [DFW96]. The problem was caused by an error in how
constructors were veri�ed and resulted in the ability to potentially compromise the security of the
entire system. Clearly, problems like this give rise to the need for a correct and formal speci�cation of
the bytecode veri�er. However, for a variety of reasons, there is no established formal speci�cation;
the primary speci�cation is an informal English description that is occasionally at odds with current
veri�er implementations. In this paper, we develop a speci�cation for a fragment of the bytecode
language that includes object creation (allocation of memory) and initialization. This work is based
on a prior study of the bytecodes for local subroutine call and return [SA98a].

In brief, we develop a speci�cation of statically-correct bytecode for a fragment of JVML that
includes object creation and initialization. This speci�cation has the form of a type system, although
there are several technical ways in which a type system for low-level code with jumps and type-
varying use of stack locations (or registers) di�ers from conventional high-level type systems. We
prove soundness of the type system by a traditional method using operational semantics. It follows
from the soundness theorem that any bytecode program that passes the static checks will initialize
every object before it is used. We examined a broad range of alternatives for specifying type
systems capable of identifying that kind of error. In some cases, we found it possible to simplify
our speci�cation by being more or less conservative than current veri�ers. However, we generally
resisted the temptation to do so since we hoped to gain some understanding of the strength and
limitations of existing veri�er implementations.

In addition to proving soundness for the simple language, we have structured the main lemmas
and proofs so that they apply to any additional bytecode commands that satisfy certain general
conditions. This makes it relatively straightforward to combine our analysis with the prior work
of Abadi and Stata, showing type soundness for bytecode programs that combine object creation
with subroutines. In analyzing the interaction between object creation and subroutines, we have

4

identi�ed a previously unpublished bug in the Sun implementation of the bytecode veri�er. This
bug allows a program to use an object before it has been initialized; details appear in Section 7. Our
type-based framework also made it possible to evaluate various repairs to �x this error and prove
correctness for a modi�ed system.

The work described in this paper opens several promising directions. One major task, which
we are currently undertaking, is to extend the speci�cation and correctness proof to the entire Java
Virtual Machine language (JVML), including the method call stack and a full object system. We also
believe it will be feasible to generate an implementation of a bytecode veri�er from a speci�cation
proven to be correct. This speci�cation could be expressed in the kind of typing rules we use here, or
some variant of this notation. Finally, we expect that in the long run, it will be useful to incorporate
additional properties into the static analysis of Java programs. If Java is to become a popular
and satisfactory general-purpose programming language, then for e�ciency reasons alone, it will
be necessary to replace some of the current run-time tests by conservative static analysis, perhaps
reverting to run-time tests when static analysis fails.

Section 2 describes the problem of object initialization in more detail, and Section 3 presents
JVMLi, the language which we formally study in this paper. The operational semantics and type
system for this language is presented in Section 4. Some sound extensions to JVMLi, including
subroutines, are discussed in Section 6, and Section 7 describes how this work relates to Sun's
implementation. Section 8 discusses some other projects dealing with bytecode veri�cation, and
Section 9 gives directions for future work and concludes.

2 Object Initialization

As in many other object-oriented languages, the Java implementation creates new objects in two
steps. The �rst step is to allocate space for the object. This usually requires some environment-
speci�c operation to obtain an appropriate region of memory. In the second step, user-de�ned code
is executed to initialize the object. In Java, the initialization code is provided by a constructor
de�ned in the class of the object. Only after both of these steps are completed can a method be
invoked on an object:

In the Java source language, allocation and initialization are combined into a single statement.
This is illustrated in the following code fragment.

Point p = new Point(3);

p.Print();

The �rst line indicates that a new Point object should be created and calls the Point constructor
to initialize this object. The second line invokes a method on this object and therefore can only be
allowed if the object has been initialized. Since every Java object is created by a statement like the
one in the �rst line here, it does not seem di�cult to prevent Java source language programs from
invoking methods on objects that have not been initialized. While there are a few subtle situations
to consider, such as when a constructor throws an exception, the issue is essentially clear cut.

It is much more di�cult to recognize initialization-before-use in bytecode. This can be seen by
looking at the �ve lines of bytecode that are produced by compiling the preceding two lines of source
code:

1: new #1 <Class Point>

2: dup

3: iconst_3

4: invokespecial #4 <Method Point(int)>

5: invokevirtual #5 <Method void Print()>

5

The most striking di�erence is that memory allocation (line 1) is separated from the constructor
invocation (line 4) by two lines of code. The �rst intervening line, dup, duplicates the pointer to
the uninitialized object. The reason for this instruction is that a pointer to the object must be
passed to the constructor. A convention of parameter passing for the stack-based architecture is
that parameters to a function are popped o� the stack before the function returns. Therefore, if
the address were not duplicated, there would be no way for the code creating the object to access it
after it is initialized. The second line, iconst 3 pushes the constructor argument 3 onto the stack.
If p were used again after line 5 of the bytecode program, another dup would have been needed prior
to line 5. Depending on the number and type of constructor arguments, many di�erent instruction
sequences may appear between object allocation and initialization. For example, suppose that several
new objects are passed as arguments to a constructor. In this case, it is necessary to create each
of the argument objects and initialize them before passing them to the constructor. In general, the
code fragment between allocation and initialization may involve substantial computation, including
allocation of new objects, duplication of object pointers, and jumps to or branches from other
locations in the code.

Since pointers may be duplicated, some form of aliasing analysis must be used. More speci�cally,
when a constructor is called, there may be several pointers to the object that is initialized as a
result, as well as pointers to other uninitialized objects. In order to verify code that uses pointers
to initialized objects, it is therefore necessary to keep track of which pointers are aliases (name the
same object). Some hint for this is given by the following bytecode sequence:

1: new #1 <Class Point>

2: new #1 <Class Point>

3: dup

4: iconst_3

5: invokespecial #4 <Method Point(int)>

6: invokevirtual #5 <Method void Print()>

When line 5 is reached during execution, there will be two di�erent uninitialized Point objects.
If the bytecode veri�er is to check object initialization statically, it must be able to determine
which references point to the object that is initialized at line 5 and which point to the remaining
uninitialized object. Otherwise, the veri�er would either prevent use of an initialized object or allow
use of an uninitialized one.

Sun's Java Virtual Machine Speci�cation [LY96] describes the alias analysis used by the Sun
JDK veri�er. For each line of the bytecode program, some status information is recorded for every
local variable and stack location. When a location points to an object that is known not to be
initialized in all executions reaching this statement, the status will include not only the property
uninitialized, but also the line number on which the uninitialized object would have been created.
As references are duplicated on the stack and stored and loaded in the local variables, the analysis
also duplicates these line numbers, and all references having the same line number are assumed to
refer to the same object. When an object is initialized, all pointers that refer to objects created at
the same line number are set to initialized. In other words, all references to uninitialized objects of a
certain type are partitioned into equivalence classes according to what is statically known about each
reference, and all references that point to uninitialized objects created on the same line are assumed
to be aliases. Since aliasing is irrelevant for initialize-before-use analysis of objects that have been
initialized, it is not necessary to track aliasing once a reference leads to an initialized object. This
is a very simple and highly conservative form of aliasing analysis; far more sophisticated methods
might be considered. However, the approach can be implemented e�ciently and it is su�ciently
accurate to accept bytecode produced by standard compilers.

6

Our speci�cation of statically-correct Java bytecode in Section 4 uses the same form of aliasing
analysis as the Sun JDK veri�er. Since our approach is type based, the status information associated
with each reference is recorded as part of its type.

One limitation of aliasing analysis based on line numbers is that no veri�able program can ever
be able to reference two objects allocated on the same line, without �rst initializing at least one
of them. If this situation were to occur, references would exist to two di�erent objects from the
same static aliasing-equivalence class. Unfortunately, there was an oversight in this regard in the
development of the Sun veri�er, which allowed such a case to exist (as a version 1.1.4). As discussed
in Section 7, aliasing based on line numbers makes it problematic for a subroutine to return an
uninitialized object.

3 JVMLi

This section describes the JVMLi language, a subset of JVML encompassing basic constructs and
object initialization. Although this language is much smaller than JVML, it is su�cient to study
object initialization and formulate a sound type system encompassing the static analysis described
above. The run-time environment for JVMLi consists only of an operand stack and a �nite set
of local variables. We do not model the object heap since, as we demonstrate below, this is not
necessary to study the problem of object initialization. A JVMLi program will be a sequence of
instructions drawn from the following list:

instruction ::= push 0 j inc j pop

j if L

j store x j load x

j new � j init � j use �

j halt

where x is a local variable name, � is an object type, and L is an address of another instruction
in the program. As a simple example, Figure 8 shows a program written in an extended form of
JVMLi. These instructions are de�ned as follows:

push 0: pushes integer 0 onto the stack.

inc: adds one to the value on the top of the stack, if that value is an integer.

pop: removes the top element from the stack, provided that the stack is not empty.

if L: if the top element on the stack is not 0, execution jumps to instruction L. Otherwise,
execution steps to the next sequential instruction. This assumes that the top element is an
integer.

store x: removes a value from the top of the stack and stores it into local variable x.

load x: loads the value from local variable x and places it on the top of the stack.

halt: terminates program execution.

new �: allocates a new, uninitialized object of type �.

7

init �: initializes a previously uninitialized object of type �. This represents calling the constructor
of an object. In this model, we assume that constructors always properly initialize their argu-
ment and return. However, as described in Section 6, there are several additional properties
which must be checked to verify that constructors do in fact behave correctly.

use �: performs an operation on an initialized object of type �. This corresponds to several op-
erations in JVML, including method invocation (invokevirtual), accessing an instance �eld
(putfield/getfield), etc.

Any cases not covered by the de�nitions above are illegal. For example, a pop instruction cannot
be executed if the stack is empty. Although dup does not appear in JVMLi for simplicity, aliasing
may arise by storing and loading object references from the local variables.

4 Operational and Static Semantics

4.1 Notation

This section brie
y reviews the framework developed by Stata and Abadi in [SA98a] for studying
JVML. A program is formally modeled as a partial function from addresses to instructions. We
refer to the set of all possible instruction addresses as Addr. Although we shall use integers to
represent elements of this set, we will distinguish elements of Addr from integers. The set of local
variables accessible by a program is Var. Dom(P) represents the set of addresses used in program
P , and P [i] is the ith instruction in program P . Dom(P) will always include address 1 and is usually
a range f1; : : : ; ng for some n.

Equality on partial maps is de�ned as

f = g i� Dom(f) = Dom(g) ^ 8y 2 Dom(f): f [y] = g[y]

Update and substitution operations are also de�ned. 8y 2 Dom(f):

(f [x 7! v])[y] =

�
v if x = y

f [y] otherwise

([b=a]f)[y] = [b=a](f [y]) =

�
b if f [y] = a

f [y] otherwise

where a, b, and v range over the codomain of f . This notation for partial maps will be used
throughout this paper.

Sequences will also be used. The empty sequence is �, and v � s represents placing v on the
front of sequence s. A sequence of one element, v � �, will sometimes be abbreviated to v. When
convenient, we shall also treat sequences as partial maps from positions to elements of the sequence.
For a sequence s, Dom(s) is the set of indices into s, and s[i] is the ith element in s from the right.
Also, 8y 2 Dom(s): (v � s)[y] = s[y]. Appending one sequence to another is written as s1 � s2. This
operation can be de�ned by the two equations � � s = s and (v � s1) � s2 = v � (s1 � s2). One �nal
operation on sequences is substitution:

([b=a]�) = �

[b=a](v � s) = ([b=a]v) � ([b=a]s) =

�
b � ([b=a]s) if v = a

v � ([b=a]s) otherwise

where a, b, and v are of the same kind as what is being stored in sequence s.

8

4.2 Values and Types

The types will be integers and object types. For objects, we assume there is some set T of possible
object types. These types, for example, could correspond to all possible object type names to which
a program may refer. In addition, there is a set T̂ of types for uninitialized objects. The contents
of this set is de�ned in terms of T :

�̂i 2 T̂ i� � 2 T ^ i 2 Addr

The type �̂i is used for an object of type � allocated on line i of a program, until it has been
initialized. Given these de�nitions, JVMLi types are generated by the grammar:

� ::= Int j � j �̂i j Top

where � 2 T and �̂i 2 T̂ . The type Int will be used for integers. We discuss the addition of other
basic types in Section 6. The type Top is the super type of all types, with any value of any type
also having type Top. This type will represent unusable values in our static analysis. In general, a
type variable such as � may refer to any type, including those of the form � or �̂i. In the case that a
type variable is known to refer to some uninitialized object type, we will write it as �̂ , for example.

Each object type and uninitialized object type has a corresponding in�nite set of values which
can be distinguished from values of any other type. For any object type �, this set of values is A� .
Likewise, there is a set of values A�̂i for all uninitialized object types �̂i. Values of the form â or b̂
will refer to values known to be of some uninitialized object type. The basic type rules for values
are:

v is a value
v : Top

n is an integer
n : Int

a 2 A� ; � 2 T [T̂

a : �

We also extend values and types to sequences:

� : �
a : � s : �
a � s : � � �

s1 : �1 s2 : �2
s1 � s2 : �1 � �2

4.3 Operational Semantics

The bytecode interpreter for JVMLi is modeled using the standard framework of operational seman-
tics. Each instruction is characterized by a transformation of machine states, where a machine state
is a tuple of the form hpc; f; si, which has the following meaning:

� pc is a program counter, indicating the address of the instruction that is about to be executed.

� f is a total map from Var, the set of local variables, to the values stored in the local variables
in the current state.

� s is a stack of values representing the operand stack for the current state in execution.

The machine begins execution in state h1; f0; �i. In this state, the �rst instruction in the program
is about to be executed, the operand stack is empty, and the local variables may contain any values.
This means that f0 may map the local variables to any values.

Each bytecode instruction yields one or more rules in the operational semantics. These rules use
the judgment

P ` hpc; f; si ! hpc0; f 0; s0i

9

P [pc] = inc

P ` hpc; f; n � si ! hpc + 1; f; (n+ 1) � si

P [pc] = pop

P ` hpc; f; v � si ! hpc + 1; f; si

P [pc] = push 0

P ` hpc; f; si ! hpc + 1; f; 0 � si

P [pc] = load x

P ` hpc; f; si ! hpc + 1; f; f [x] � si

P [pc] = store x

P ` hpc; f; v � si ! hpc + 1; f [x 7! v]; si

P [pc] = if L

P ` hpc; f; 0 � si ! hpc + 1; f; si

P [pc] = if L

n 6= 0

P ` hpc; f; n � si ! hL; f; si

P [pc] = new �

â 2 A�̂pc ;Unused(â; f; s)

P ` hpc; f; si ! hpc + 1; f; â � si

P [pc] = init �

â 2 A�̂j

a 2 A�;Unused(a; f; s)

P ` hpc; f; â � si ! hpc + 1; [a=â]f; [a=â]si

P [pc] = use �

a 2 A�

P ` hpc; f; a � si ! hpc + 1; f; si

Figure 2: JVMLi operational semantics.

to indicate that a program P in state hpc; f; si can move to state hpc0; f 0; s0i in one step. The
complete one-step operational semantics for JVMLi is shown in Figure 2. In that �gure, n is any
integer, v is any value, L and j are any addresses, and x is any local variable. These operational
semantic rules, with the exception of those added to study object initialization, are discussed in
detail in [SA98a]. The rules have been designed so that a step cannot be made from an illegal state,
such as pop when there is an empty stack.

The rules for object initialization use the additional judgment Unused, de�ned by

(unused)

a 62 s

8y 2 Var: f [y] 6= a

Unused(a; f; s)

This will allow the virtual machine to pick any value that is currently not used by the program.
The only values being used are those which appear on the operand stack or in the local variables.
When a new object is created, a currently unused value of an uninitialized object type is placed
on the stack. The type of that value is determined by the object type named in the instruction
and the line number of the instruction. When the value for an uninitialized object is initialized by
an init � instruction, all occurrences of that value are replaced by a new value corresponding to
an initialized object. Also, the new value is required to be unused. This allows the program to
distinguish between di�erent objects of the same type after they have been initialized, but this fact
is not necessarily needed to study the properties addressed by this paper.

10

(inc)

P [i] = inc

F i+1 = F i

Si+1 = Si = Int � �

i+ 1 2 Dom(P)

F ; S; i ` P
(if)

P [i] = if L

F i+1 = FL = F i

Si = Int � Si+1 = Int � SL

i+ 1 2 Dom(P)

L 2 Dom(P)

F; S; i ` P

(pop)

P [i] = pop

F i+1 = F i

Si = � � Si+1

i+ 1 2 Dom(P)

F ; S; i ` P
(push 0)

P [i] = push 0

F i+1 = F i

Si+1 = Int � Si

i+ 1 2 Dom(P)

F; S; i ` P

(load)

P [i] = load x

x 2 Dom(Fi)

F i+1 = F i

Si+1 = F i[x] � Si

i+ 1 2 Dom(P)

F ; S; i ` P
(store)

P [i] = store x

x 2 Dom(Fi)

F i+1 = F i[x 7! �]

Si = � � Si+1

i+ 1 2 Dom(P)

F; S; i ` P

(halt)
P [i] = halt

F ; S; i ` P
(new)

P [i] = new �

F i+1 = F i

Si+1 = �̂i � Si

�̂i 62 Si

8y 2 Dom(F i): F i[y] 6= �̂i
i+ 1 2 Dom(P)

F; S; i ` P

(init)

P [i] = init �

F i+1 = [�=�̂j]F i

Si = �̂j � �

Si+1 = [�=�̂j]�

j 2 Dom(P)

i+ 1 2 Dom(P)

F ; S; i ` P
(use)

P [i] = use �

F i+1 = F i

Si = � � Si+1

i+ 1 2 Dom(P)

F; S; i ` P

Figure 3: Static semantics.

11

4.4 Static Semantics

A program P is well typed if there exist F and S such that

F ; S ` P ,

where F is a map from Addr to functions mapping local variables to types, and S is a map from
Addr to stack types such that Si is the type of the operand stack at location i of the program. As
described in [SA98a], elements in a map over Addr are accessed as F i instead of F [i]. Thus, F i[y]
is the type of local variable y at line i of a program. The judgment which allows us to conclude that
a program P is well typed by F and S is

(wt prog)

F 1 = FTop
S1 = �

8i 2 Dom(P): F ; S; i ` P

F; S ` P

where FTop is a function mapping all variables in Var to Top. The �rst two lines of (wt prog)
constrain the initial conditions for the program's execution to match the type of the values given
to the initial state in the operational semantics. The third line requires that each instruction in the
program is well typed according to the local judgments presented in Figure 3.

The static type rules for (new) and (use) are straightforward. The (new) rule requires that the
type of the object allocated by the new instruction is left on top of the stack. The rule for (use)
requires that an initialized object type be on top of the stack. The (init) rule implements the static
analysis method described in Section 2. That rule requires that all occurrences of the type on the
top of the stack are replaced by an initialized type. This will change the types of all references to
the object that is being initialized since all those references will be in the same static equivalence
class, and, therefore, have the same type.

The Java Virtual Machine Speci�cation [LY96] describes the veri�er as both computing the type
information stored in F and S and checking it. However, we assume that the information stored in
F and S has already been computed prior to the type checking stage. This simpli�es matters since
it separates the two tasks and prevents the type synthesis from complicating the static semantics. In
other words, we do not need to trust the implementation of the type inferencing part of the analysis.
Only the type checker itself must be trusted. If the two stages are combined, as they are in current
implementations, a bad program could be accepted due to an error in the process of computing type
information. However, separating the two tasks prevents the type checker from accepting a bad
program due to such an error.

5 Soundness

This section outlines the soundness proof for JVMLi. The main soundness theorem states that no
well-typed program will cause a run-time type error. Before stating the main soundness theorem, a
one-step soundness theorem is presented. One-step soundness implies that any valid transition from
a well-formed state leads to another well-formed state.

12

Theorem 1 (One-step Soundness) Given P , F , and S such that F ; S ` P :

8pc; f; s; pc0; f 0; s0:

P ` hpc; f; si ! hpc0; f 0; s0i

^ s : Spc

^ 8y 2 Var: f [y] : Fpc [y]
^ ConsistentInit(F pc ; Spc ; f; s)

) s0 : Spc0

^ 8y 2 Var: f 0[y] : F pc0 [y]
^ ConsistentInit(F pc0 ; Spc0 ; f 0; s0)
^ pc0 2 Dom(P)

This theorem lists the four factors which dictate whether or not a state is well formed. The
values on the operand stack must have the types expected by the static type rules, and the local
variable contents must match the types in F . In addition, the program counter must always be
in the domain of the program. This can be assumed on the left-hand side of the implication since
the operational semantics guarantee that transitions can only be made if P [pc] is de�ned. If the
program counter were not in the domain of the program, no step could be made.

The �nal requirement for a state to be well formed is that it has the ConsistentInit property.
Informally, this property means that the machine state cannot access two di�erent uninitialized
objects created on the same line of code. As mentioned in Section 2, this invariant is critical for the
soundness of this static analysis. The ConsistentInit property is based on a unique correspondence
between uninitialized object types and run-time values.

This paragraph describes the formal de�nition of ConsistentInit, which appears in Figure 4.
For each possible uninitialized object type, the (cons init) rule guarantees that there is some value
corresponding to every occurrence of that type in the local variables and on the stack. More precisely,
for every uninitialized object type �̂ , there is a b̂, a value of type �̂ , such that every occurrence of �̂
in the static types for the local variables is matched by b̂ in the current state. This condition is line
1 of the (corr) rule. The stack case is covered by line 2, which de�nes the correspondence between
values and uninitialized object types inductively.

The proof of Theorem 1 is by case analysis on all possible instructions at P [pc]. The proof of
this theorem and those that follow appear in Appendix A. A complementary theorem is that a step
can always be made from a well-formed state, unless the program has reached a halt instruction.
This progress theorem can be stated as:

Theorem 2 (Progress) Given P , F , and S such that F ; S ` P :

8pc; f; s:

s : Spc

^ 8y 2 Var: f [y] : Fpc [y]
^ ConsistentInit(F pc; Spc; f; s)
^ pc 2 Dom(P)
^ P [pc] 6= halt

) 9pc0; f 0; s0: P ` hpc; f; si ! hpc0; f 0; s0i

Theorem 1 and Theorem 2 can be used to prove inductively that a program beginning in a
valid initial state will always be in a well-formed state, regardless of how many steps are made. In
addition, a program will never get stuck unless it reaches a halt instruction. When it does reach a
halt instruction, the stack will have the correct type, which is important since the return value for
a program, or method in the full JVML, is returned as the top value on the stack. The following
theorem captures this soundness property:

13

(cons init)
8�̂ 2 T̂ : 9b̂ : �̂ : Corresponds (F i; Si; f; s; b̂; �̂)

ConsistentInit(F i; Si; f; s)

(corr)

8x 2 Dom(F i): F i[x] = �̂ =) f [x] = b̂

StackCorresponds(S i; s; b̂; �̂)

Corresponds(F i; Si; f; s; b̂; �̂)

(sc 0)
StackCorresponds (�; �; b̂; �̂)

(sc 1)
StackCorresponds (Si; s; b̂; �̂)

StackCorresponds (�̂ � Si; b̂ � s; b̂; �̂)

(sc 2)

� 6= �̂

StackCorresponds (Si; s; b̂; �̂)

StackCorresponds (� � Si; v � s; b̂; �̂)

Figure 4: The ConsistentInit judgement.

Theorem 3 (Soundness) Given P , F , and S such that F; S ` P :

8pc; f0; f; s:�
P ` h1; f0; �i !

�

hpc; f; si

^ :9pc0; f 0; s0: P ` hpc; f; si ! hpc0; f 0; s0i

�

) P [pc] = halt ^ s : Spc

If a program executing in our machine model attempts to perform an operation leading to a type
error, it would get stuck since those operations are not de�ned by our operational semantics. If we
prove that well-typed programs only get stuck when a halt instruction is reached, then we know
that those programs will not attempt to perform any illegal operations. Thus, this theorem implies
a form of correctness for our static analysis by showing that no erroneous programs are accepted.

6 Extensions

Several extensions to the JVMLi framework and proofs described in the previous sections have been
studied. As mentioned previously, there are additional static checks which must be performed on
constructors in order to guarantee that they do properly initialize objects. Section 6.1 presents
JVMLc, an extension of JVMLi modeling constructors. Another extension, JVMLs, combining
object initialization and subroutines, is described in Section 6.2. Section 6.3 shows how any of these
languages may be easily extended with other basic operations and primitive types. The combination
of these features yields a sound type system covering the most complex pieces of the JVML language.

14

P [i] 2 finc; pop; push 0; load x; store x; new �; init �; use �g

Zi+1 = Zi

Z; i ` P constructs '

P [i] = if L

Zi+1 = ZL = Zi

Z; i ` P constructs '

P [i] = super '

Zi+1 = true

Z; i ` P constructs '

P [i] = halt

Zi = true

Z; i ` P constructs '

Figure 5: Rules checking that a super class constructor will always be called prior to reaching a
halt instruction.

6.1 JVMLc

The typing rules in Section 4 are adequate to check code which creates, initializes, and uses objects,
assuming that calls to init � do in fact properly initialize objects. However, since initialization is
performed by user-de�ned constructors, the veri�er must check that these constructors do correctly
initialize objects when called. This section studies veri�cation of JVML constructors using JVMLc,
an extension of JVMLi.

The rules for checking constructors are de�ned in [LY96] and can be summarized by three basic
points:

� When a constructor is invoked, local variable 0 contains a reference to the object that is being
initialized.

� A constructor must apply either a di�erent constructor of the same class or a constructor
from the parent class to the object that is being initialized before the constructor exits. For
simplicity, we may refer to either of these actions as invoking the super class constructor.

� The only deviation from this requirement is for constructors of class Object. Since, by the
Java language de�nition, Object is the only class without a superclass, constructors for Object
need not call any other constructor. This one special case has not been modeled by our rules,
but would be trivial to add.

JVMLc programs are sequences of instructions containing any instructions from JVMLi plus one
new instruction, super '. This instruction represents calling a constructor of the parent class of
class ' (or a di�erent constructor of the current class). To model the initial state of a constructor
invocation for class ', a JVMLc program is assumed to begin in a state in which local variable 0
contains an uninitialized reference. This corresponds to the argument of the constructor. Prior to
halting, the program must call super on that object reference. This represents calling the super
class constructor.

For simplicity, the rest of this section assumes that we are describing a constructor for object
type ', for any ' in T . We will use '̂0 as the type of the object that is stored in local variable 0

15

at the start of execution. The value in local variable 0 must be drawn from the set A'̂0 . We now
assume Addr includes 0, although 0 will not be in the domain of any program. Also, machine state
in the operational semantics is augmented with a fourth element, z, which indicates whether or not
a super class constructor has been called on the object that is being initialized. The rules for all
instructions other than super ' do not a�ect z, and are derived directly from the rules in Figure 2.
For example, the rule for inc is:

P [pc] = inc

P c̀ hpc; f; n � s; zi ! hpc + 1; f; (n+ 1) � s; zi

As demonstrated in Theorem 4 below, the initial state for execution of a constructor for ' is
h1; f0[0 7! â']; �; falsei where â' 2 A'̂0 .

For super, the operational semantics rule is:

P [pc] = super �

â 2 A�̂0

a 2 A� ;Unused(a; f; s)
P c̀ hpc; f; â � s; zi ! hpc + 1; [a=â]f; [a=â]s; truei

The typing rule for super is very similar to the rule for init �, and is shown below with the
judgment for determining whether a program is a valid constructor for objects of type '. All the
other typing rules are the same as those appearing in Figure 3.

(super)

P [i] = super �

� 2 T

F i+1 = [�=�̂0]F i

Si = �̂0 � �

Si+1 = [�=�̂0]�
i+ 1 2 Dom(P)

F ; S; i ` P
(wt constructor)

F 1 = FTop
S1 = �

Z1 = false

' 2 T

8i 2 Dom(P): F ; S; i ` P

8i 2 Dom(P): Z; i ` P constructs '

F ; S ` P constructs '

The (wt constructor) rule is analogous to (wt prog) from Section 4. However, this rule places an
additional restriction on the structure of well-typed programs. The judgment

Z; i ` P constructs '

is a local judgment which gives Zi the value true or false depending on whether or not all possible
execution sequences reaching instruction i would have called super ' or not. The local judgments
are de�ned in Figure 5. As seen by those rules, one can only conclude that a program is a valid
constructor for ' if every path to each halt instruction has called super '. The existence of
unreachable code may cause more than one value of Z to conform to the rules in Figure 5. To make
Z unique for any given program, we assume that, for program P , there is a unique canonical form
ZP . Thus, ZP;i will be a unique value for instruction i.

The main soundness theorem for constructors includes a guarantee that constructors do call
super on the uninitialized object:

Theorem 4 (Constructor Soundness) Given P , F , S, ', and â' such that F; S ` P constructs '
and â' : '̂0 :

8pc; f0; f; s; z:�
P c̀ h1; f0[0 7! â']; �; falsei !

�

hpc; f; s; zi

^ :9pc0; f 0; s0; z0: P c̀ hpc; f; s; zi ! hpc0; f 0; s0; z0i

�

) P [pc] = halt ^ z = true

16

P [pc] = jsr L

P ` hpc; f; si ! hL; f; (pc + 1) � si

P [pc] = ret x

P ` hpc; f; si ! hf [x]; f; si

Figure 6: Operational semantics for jsr and ret.

The main di�erence in the proof of Theorem 4, in comparison with Theorem 3, is that the correspond-
ing one-step soundness theorem requires an additional invariant. The invariant states that when
program P is in state hpc; f; s; zi, z = ZP;pc. The proof of this theorem appears in Appendix B.1.

This analysis for constructors is combined with the analysis of normal methods in a more complete
JVML model currently being developed.

6.2 JVMLs

The JVML bytecodes for subroutines have also been added to JVMLi and are presented in another
extended language, JVMLs. While this section will not go into all the details of subroutines, detailed
discussions of bytecode subroutines can be found in several other works [SA98a, LY96]. Subroutines
are used to compile the finally clauses of exception handlers in the Java language. Subroutines
share the same activation record as the method which uses them, and they can be called from
di�erent locations in the same method, enabling all locations where finally code must be executed
to jump to a single subroutine containing that code. The
exibility of this mechanismmakes bytecode
veri�cation di�cult for two main reasons:

� Subroutines are polymorphic over local variables which they do not use.

� Subroutines may call other subroutines, as long as a call stack discipline is preserved. In other
words, the most recently called subroutine must be the �rst one to return. This is a slight
simpli�cation of the rules for subroutines de�ned in [LY96], which do allow a subroutine to
return more than one level up in the implicit subroutine call stack in certain cases, but does
match the de�nitions presented in [SA98a].

JVMLs programs contain the same set instructions as JVMLi programs and, also, the following:

jsr L: jumps to instruction L, and pushes the return address onto the stack. The return address
is the instruction immediately after the jsr instruction.

ret x: jumps to the instruction address stored in local variable x.

The operational semantics and type rules for these instructions are shown in Figure 6 and Fig-
ure 7. These rules are based on the rules used by Stata and Abadi [SA98a]. The meaning of
RP;i = fLg in (ret) is de�ned in their paper and basically means that instruction i is an instruction
belonging to the subroutine starting at address L. All other rules are the same as those for JVMLi.

The main issue which must be addressed in the type rules for jsr and ret is the Consistent-

Init invariant. A type loophole could be created by allowing a subroutine and the caller of that
subroutine to exchange references to uninitialized objects in certain situations. An example of this
behavior is described in Section 7.

17

(jsr)

P [i] = jsr L

Dom(F i+1) = Dom(F i)

Dom(FL) � Dom(F i)

8y 2 Dom(F i): F i[y] 62 T̂

8y 2 Dom(Si): Si[y] 62 T̂

8y 2 Dom(F i)nDom(FL): F i+1[y] = F i[y]

8y 2 Dom(FL): FL[y] = F i[y]

SL = (ret-from L) � Si

(ret-from L) 62 Si

8y 2 Dom(FL): FL[y] 6= (ret-from L)

i+ 1 2 Dom(P)

L 2 Dom(P)

F ; S; i ` P

(ret)

P [i] = ret x

RP;i = fLg

x 2 Dom(F i)

F i[x] = (ret-from L)

8y 2 Dom(F i): F i[y] 62 T̂

8y 2 Dom(Si): Si[y] 62 T̂

8j: P [j] = jsr L)

�
8y 2 Dom(F i): F j+1[y] = F i[y]

^ Sj+1 = Si

�

F ; S; i ` P

Figure 7: Type rules for jsr and ret.

18

When subroutines are used to compile finally blocks by a Java compiler, uninitialized object
references will never be passed into or out of a subroutine. The Java language prevents a program
from splitting allocation and initialization of an object between code inside and outside of a finally
clause since both are part of the same Java operation, as described in Section 2. Either both steps
occur outside of the subroutine, or both steps occur inside the subroutine. We restrict programs not
to have uninitialized objects accessible when calling or returning from a subroutine. For (ret), the
following two lines are added. These prevent the subroutine from allocating a new object without
initializing it:

8y 2 Dom(F i): F i[y] 62 T̂

8y 2 Dom(Si): Si[y] 62 T̂

Similar lines are added to (jsr). The discussion of the interaction between subroutines and unini-
tialized objects in the Java Virtual Machine speci�cation is vague and inconsistent with current
implementations, but the rules we have developed seem to �t the general strategy described in the
speci�cation.

This is certainly not the only way to prevent subroutines and object initialization from causing
problems. For example, slightly less restrictive rules could be added to (jsr):

8y 2 Dom(FL): FL[y] 62 T̂

8y 2 Dom(Si): Si[y] 62 T̂

These lines still allow uninitialized objects to be present when a subroutine is called, but those
objects cannot be touched since they are stored in local variables which are not accessed in the body
of the subroutine. This would allow for type rules to accept more programs, but these programs
could not have been created by a compiler for any valid Java program.

The main soundness theorem, Theorem 3, has been proved for JVMLs, and for JVMLc with
subroutines, by combining the proof of JVMLi soundness with the work of Stata and Abadi. These
proofs appear in Appendix B.2.

6.3 Other Basic Types and Instructions

Many JVML instructions are variants of operations for di�erent basic types. For example, there are
four add instructions corresponding to addition on values of type Int, Float, Long, and Double.
Likewise, many other simple operations have several di�erent forms. These instructions and other
basic types can be added to JVMLi, or any of the extended languages, easily. These instructions
do not complicate any of the soundness proofs since they only operate on basic types and do not
interfere with object initialization or subroutine analysis. An example showing how these simple
instructions can be added to our framework appears in the Appendix.

The only tricky case is that Long and Double values take up two local variables or two stack
slots since they are stored as two-word values. Although this requires an additional check in the
rules for load and store to prevent the program from accessing a partially over-written two-word
value, this does not pose any serious di�culty.

Of the 200 bytecode instructions in JVML, all but approximately 40 fall into this category and
may be added to JVMLi without trouble, although a full presentation of the operational and type
rules for these instructions is beyond the scope of this paper. With these additions, and the methods
described in the previous subsections, the JVMLi framework can be extended to cover the whole
bytecode language, except for a full object system and concurrency. Considering objects and classes
requires the addition of an object heap and a method call stack, as well as a typing environment
containing class declarations.

19

1: jsr 9 9: store 0

2: store 1 10: new P

3: jsr 9 11: ret 0

4: store 2

5: load 2

6: init P

7: load 1

8: use P

Figure 8: A program that uses an uninitialized object but is accepted by Sun's veri�er.

7 The Sun Veri�er

This section describes the relationship between the rules we have developed for object initialization
and subroutines and the rules implicitly used to verify programs in Sun's implementation. We �rst
describe a mistake we have found in Sun's rules and then compare their corrected rules with our
rules for JVMLs.

7.1 The Sun JDK 1.1.4 Veri�er

As a direct result of the insight gained by carrying out the soundness proof for JVMLs, a previously
unpublished bug was discovered in Sun's JDK 1.1.4 implementation of the bytecode veri�er. A
simple program exhibiting the incorrect behavior is shown in Figure 8. Line 8 of the program uses
an uninitialized object, but this code is accepted by this speci�c implementation of the veri�er.
Basically, the program is able to allocate two di�erent uninitialized objects on the same line of code
without initializing either one, violating the ConsistentInit invariant. The program accomplishes
this by allocating space for the �rst new object inside the subroutine and then storing the reference
to that object in a local variable over which the subroutine is polymorphic before calling it again.
After initializing only one of the objects, it can use either one.

The bug can be attributed to the veri�er not placing any restrictions on the presence of uninitial-
ized objects at calls to jsr L or ret x. The checks made by Sun's veri�er are analogous to the (jsr)
and (ret) rule in Figure 7 as they originally appeared in [SA98a], without the additions described in
the previous section. Removing these lines allows subroutines to return uninitialized objects to the
caller and to store uninitialized values across subroutine calls, which clearly leads to problems.

Although this bug does not immediately create any security loopholes in the Sun Java Virtual
Machine, it does demonstrate the need for a more formal speci�cation of the veri�er. It also demon-
strates that even a fairly abstract model of the bytecode language is extremely useful at examining
the complex relationships between di�erent parts of the language, such as uninitialized objects and
subroutines.

7.2 The Corrected Sun Veri�er

After describing this bug to the Sun development team, they have taken steps to repair their veri-
�er implementation. While they did not use the exact rules we have presented in this paper, they
have changed their implementation to close the potential type loophole. This section brie
y de-
scribes the di�erence in their approach and ours. The Sun implementation may be summarized as
follows [Lia97]:

20

� Uninitialized objects may appear anywhere in the local variables or on the operand stack at
jsr L or ret x instructions, but they can not be used after the instruction has executed. In
other words, their static type is made Top in the post-instruction state. This di�erence does
not a�ect the ability of either Sun's rules or our rules to accept code created for valid Java
language programs.

� The static types assigned to uninitialized objects pass into constructors, i.e. any value whose
type is of the form �̂0 in our framework, are treated di�erently from other uninitialized objects
types in the Sun veri�er. Values with these types may still be used after being present at a
call to or an exit from a subroutine. Also, the superclass constructor may be called anywhere,
including inside a subroutine.

Treating the uninitialized object types for constructor arguments di�erently than other uninitialized
types allows the veri�er to accept programs where a subroutine must be called prior to invoking the
super class constructor. Since the Java language speci�cation requires the superclass constructor
to be called prior to the start of any code protected by an exception handler, this
exibility is not
required to correctly check valid Java programs, and it makes the analysis much more di�cult. In
fact, several published attacks, including the one described in Section 1, may be attributed to errors
in this part of the veri�er.

The di�erences in the two veri�cation techniques would only become apparent in handwritten
bytecodes using uninitialized object types in unusual ways. Since our method, while slightly more
restrictive, makes both veri�cation and our soundness proofs much simpler, we believe that our
method is reasonable.

8 Related Work

There are several other projects currently examining bytecode veri�cation and the creation of correct
bytecode veri�ers. This section describes some of these projects, as well as related work in contexts
other than Java. There have also been many studies of the Java language type system [Sym97,
DE97, NvO98], but we will mostly focus on bytecode level projects. Although the other studies are
certainly useful, and closely related to this work in some respects, they do not address the unique
way in which the bytecode language is used and the special structures in JVML.

In addition to the framework developed by Stata and Abadi [SA98a] and used in this paper, there
are several di�erent strategies being developed to describe the JVML type system and bytecode
veri�cation formally. The most closely related work is [Qia97], which presents a static type system
for a larger fragment of JVML than is presented here. While that system uses the same general
approach as we do, we have attempted to present a simpler type system by abstracting away some
of the unnecessary details left in Qian's framework, such as di�erent forms of name resolution in the
constant pool and varying instruction lengths. Also, our model of subroutines, based on the work
of Stata and Abadi, is very di�erent. The rules for object initialization used in the original version
of Qian's paper were similar to Sun's faulty rules, and they incorrectly accepted the program in
Figure 8. After announcing our discovery of Sun's bug, a revised version of Qian's paper containing
rules more similar to our rules was released.

Another approach using concurrent constraint programming is also being developed [Sar97]. This
approach is based on transforming a JVML program into a concurrent constraint program. While
this approach must also deal with the di�culties in analyzing subroutines and object initialization
statically, it remains to be seen whether it will yield a better or worse framework for studying JVML,
and whether the results can be easily translated into a veri�er speci�cation.

21

A completely di�erent approach has been taken by Cohen, who is developing a formal execu-
tion model for JVML which does not require bytecode veri�cation [Coh97]. Instead, safety checks
are built into the interpreter. Although these run-time checks make the performance of his de-
fensive JVM too slow to use in practice, this method is useful for studying JVML execution and
understanding the checks required to safely execute a program.

The Kimera project has developed a more experimental method to determine the correctness
of existing bytecode veri�ers [SMB97]. After implementing a veri�er from scratch, programs with
randomly inserted errors were fed into that veri�er, as well as several commercially produced veri�ers.
Any di�erences among implementations meant a potential
aw. While this approach is fairly good at
tracking down certain classes of implementation mistakes and is e�ective from a software engineering
perspective, it does not lead to the same concise, formal model like some of the other approaches,
including the approach presented in this paper. It also may not �nd JVML speci�cation errors or
more complex bugs, such as the one described in Section 7.

Other recent work has studied type systems for low-level languages other than JVML: These
studies include the TIL intermediate languages for ML [TMC+96], and the more recent work on
typed assembly language [MCGW98]. The studies touch on some of the same issues as this study.
However, these languages do not contain some of the constructs found in JVML, and they do not
require aspects of the static analysis required for JVML, such as the alias analysis required for object
initialization.

9 Conclusions and Future Work

Given the need to guarantee type safety for mobile Java code, developing correct type checking
and analysis techniques for JVML is crucial. However, there is no existing speci�cation which fully
captures how Java bytecodes must be type checked. We have built on the previous work of Stata
and Abadi to develop such a speci�cation by formulating a sound type system for a fairly complex
subset of JVML which covers both subroutines and object initialization. This is one step towards
developing a sound type system of the whole bytecode language. Once this type system for JVML
is complete, we can describe a formal speci�cation of the veri�er and better understand what safety
and security guarantees can be made by it.

Although our model is still rather abstract, it has already proved e�ective as a foundation for
examining both JVML and existing bytecode veri�ers. Even without a complete object model or
notion of an object heap, we have been able to study initialization and the interaction between it
and subroutines. In fact, a previously unpublished bug in Sun's veri�er implementation was found
as a result of the analysis performed while studying the soundness proofs for this paper.

While the study to date has examined the most complex areas of JVML, there are still several
important issues to address in more detail, including issues of scale and adding a full object system
to our model. The methods described in Section 6 allow most variants of simple instructions to be
added in a standard, straightforward way, and we are also examining methods to factor JVML into
a complete, yet minimal, set of instructions. In addition, the Java object system has been studied
and discussed in other contexts [AG96, Sym97, DE97, Qia97], and these previous results can be used
as a basis for objects in our JVML model. Currently, we are in the process of �nishing a soundness
proof for a language encompassing all of the issues presented in this paper plus objects, interfaces,
classes, and exceptions. Other issues that have not been addressed to date are concurrency and
dynamic loading, both of which are key concepts in the Java Virtual Machine.

We also intend to develop a synthesis method for generating an executable bytecode veri�er
from our type rules. This will provide a way to generate veri�ers guaranteed to check our type rules

22

correctly. In addition, our work may serve as a basis for adding new static checks to the veri�er to
examine both more complicated safety properties and help eliminate some of the currently necessary
run-time checks. For example, we may eventually be able to eliminate some run-time checks for array
bounds and pointer casts, or statically check that certain locking conventions are used in a concurrent
JVML model.

Acknowledgments: Thanks to Mart��n Abadi and Raymie Stata (DEC SRC) for their assistance on
this project. Also, we thank Frank Yellin and Sheng Liang for several useful discussions.

A JVMLi Soundness

A.1 Useful Lemmas

This section will state and prove some lemmas used in the rest of the appendix. We begin with
two lemmas that conclude the correspondence between speci�c values and types based, �rst, on the
contents of the top of the stack, and then on the contents of a speci�c local variable.

Lemma 1

8F i; Si; f; s; �̂ ; b̂:

�̂ 2 T̂

^ b̂ : �̂

^ ConsistentInit(F i; �̂ � Si; f; b̂ � s)

) Corresponds(F i; �̂ � Si; f; b̂ � s; b̂; �̂)

Proof Assume that all the hypotheses of the implication are satis�ed for some F i, Si, f , s, �̂ , b̂.
Since ConsistentInit(F i; �̂ �Si; f; b̂�s), there is some ĉ such that Corresponds(F i; �̂ �Si; f; b̂�s; ĉ; �̂). We

proceed to show that ĉ = b̂ by contradiction. Suppose ĉ 6= b̂. StackCorresponds(�̂ �Si; b̂ � s; ĉ; �̂) must

be true to have concluded Corresponds(F i; �̂ � Si; f; b̂ � s; ĉ; �̂), and the only way by which we could

have concluded this is using rule (sc 1). However, this rule cannot be applied if ĉ 6= b̂. Thus, we

cannot conclude StackCorresponds(�̂ �Si; b̂�s; ĉ; �̂), violating our assumption that ĉ and �̂ correspond,

and our assumption must be incorrect. Therefore b̂ = ĉ, and Corresponds(F i; �̂ � Si; f; b̂ � s; b̂; �̂). 2

Lemma 2

8F i; Si; f; s; x:

x 2 F i

^ F i[x] 2 T̂

^ ConsistentInit(F i; Si; f; s)
) Corresponds(F i; Si; f; s; f [x]; F i[x])

Proof Assume that all the hypotheses of the implication are satis�ed for some F i, Si, f , s, b̂.
Since ConsistentInit(F i; Si; f; s), there is some ĉ such that Corresponds(F i; Si; f; s; ĉ; F i[x]). We
proceed to show that ĉ = f [x] by contradiction. Suppose ĉ 6= f [x]. Then a contradiction exists
because we could not have concluded that Corresponds(F i; Si; f; s; ĉ; F i[x]) since there exists a local
variable in the domain of F i which has type F i[x] but not value ĉ. Therefore, our assumption must
be wrong and ĉ = f [x]. 2

The next three lemmas show that ConsistentInit is preserved when values are popped o� the
stack. We �rst show that Corresponds is preserved for a single pop.

23

Lemma 3

8F i; Si; f; s; v; �; b̂; �̂ :

Corresponds(F i; � � Si; f; v � s; b̂; �̂)

) Corresponds(F i; Si; f; s; b̂; �̂)

Proof Assume that the hypotheses of the implication are satis�ed. Since we assumed Corres-

ponds(F i; � � Si; f; v � s; b̂; �̂), we know that:

8x 2 Dom(F i): F i[x] = �̂ =) f [x] = b̂ (1)

Also, StackCorresponds(� � Si; v � s; b̂; �̂). If this is true, we must be able to conclude this by either

(sc 1) or (sc 2). In both cases, StackCorresponds(Si; s; b̂; �̂) must be true. From this and (1), Cor-

responds(F i; Si; f; s; b̂; �̂) follows from rule (corr). 2

Using this, we may state the same notion for ConsistentInit.

Lemma 4

8F i; Si; f; s; v; �:

ConsistentInit(F i; � � Si; f; v � s)
) ConsistentInit(F i; Si; f; s)

Proof Assume that the hypotheses of the implication are satis�ed for some choice of F i, Si, f , s, v,
� . For any �̂ , choose b̂ such that Corresponds(F i; � �Si; f; v �s; b̂; �̂). Such a b̂ exists by our assumption

that ConsistentInit(F i; � �Si; f; v �s). For this choice of b̂ and �̂ , Corresponds(F i; Si; f; s; b̂; �̂) follows

from and Lemma 3. Since a b̂ may be chosen for every �̂ in this way, ConsistentInit(F i; Si; f; s)
follows. 2

The previous lemma may be generalized to popping any number values o� the stack, has shown
in the next to lemma.

Lemma 5

8F i; �1; �2; f; s1; s2:

s1 : �1
^ s2 : �2
^ ConsistentInit(F i; �1 � �2; f; s1 � s2)

) ConsistentInit(F i; �2; f; s2)

Proof The proof is by induction on the length of �1. If j�1j = 0, then �1 = � and s1 = �, making
�1 � �2 = �2 and s1 � s2 = s2. Given these equalities, ConsistentInit(F i; �2; f; s2) follows from the
assumption ConsistentInit(F i; �1 � �2; f; s1 � s2).

For the inductive case, assume that the implication holds for any �1 such that j�1j = n. Suppose
j�1j = n + 1. In this case, �1 = � � �01, where j�

0

1j = n, and �1 � �2 = (� � �01) � �2 = � � (�01 � �2).
Likewise, since s1 : �1, s1 � s2 = v � (s01 � s2) for some v : � and s01 : �01. The conclusion that
ConsistentInit(F i; �

0

1 � �2; f; s
0

1 � s2) is reached by applying Lemma 4, and the inductive hypothesis
then allows us to conclude ConsistentInit(F i; �2; f; s2). 2

In a fashion similar to the previous three lemmas, we also prove that pushing any number of
values does not a�ect ConsistentInit, as long as the new values are not uninitialized objects. Again,
we start with Corresponds:

24

Lemma 6

8F i; Si; f; s; v; �; b̂; �̂ :

� 6= �̂

^ v : �

^ Corresponds(F i; Si; f; s; b̂; �̂)

) Corresponds(F i; � � Si; f; v � s; b̂; �̂)

Proof Assume that the hypotheses of the implication are satis�ed. Since we assumed Corres-

ponds(F i; Si; f; s; b̂; �̂), the following equation holds:

8x 2 Dom(F i): F i[x] = �̂ =) f [x] = b̂ (2)

Also, StackCorresponds(S i; s; b̂; �̂) must be true. Given that � 6= �̂ , StackCorresponds(� �Si; v �s; b̂; �̂)

follows from rule (sc 2). Using this and (2), Corresponds(F i; � � Si; f; v � s; b̂; �̂) follows by (corr). 2

Lemma 7

8F i; Si; f; s; v; �:

� 62 T̂

^ v : �
^ ConsistentInit(F i; Si; f; s)
) ConsistentInit(F i; � � Si; f; v � s)

Proof Assume that the hypotheses of the implication are satis�ed. For any �̂ 2 T̂ , choose
b̂ such that Corresponds(F i; Si; f; s; b̂; �̂). Such a b̂ exists by our assumption that ConsistentIn-

it(F i; Si; f; s). For this choice of b̂ and �̂ , we prove Corresponds(F i; � �Si; f; v �s; b̂; �̂) using Lemma 6.
Since � 62 T̂ , we know that � 6= �̂ . All other conditions of Lemma 6 are satis�ed, implying Corres-

ponds(F i; � � Si; f; v � s; b̂; �̂). Since a b̂ can be chosen in this way for all �̂ , we conclude Consistent-
Init(F i; � � Si; f; v � s) by (cons init). 2

Lemma 8

8F i; �1; �2f; s1; s2:

s1 : �1
^ 8y 2 Dom(�1): �1[y] 62 T̂

^ ConsistentInit(F i; �2; f; s2)
) ConsistentInit(F i; �1 � �2; f; s1 � s2)

Proof The proof is by induction on the length of �1. Assume that the hypotheses of the impli-
cation are satis�ed. If j�1j = 0, then �1 = � and s1 = �, making �1 � �2 = �2 and s1 � s2 = s2.
Given these equalities, ConsistentInit(F i; �1 ��2; f; s1 � s2) follows from the assumption Consistent-

Init(F i; �2; f; s2).
For the inductive case, assume that the implication holds for any �1 such that j�1j = n. Suppose

j�1j = n + 1. In this case, �1 = � � �01, where j�
0

1j = n, and �1 � �2 = (� � �01) � �2 = � � (�01 � �2).
Likewise, since s1 : �1, s1 � s2 = v � (s01 � s2) for some v : � and s01 : �

0

1. By the inductive hypothesis,
ConsistentInit(F i; �

0

1 � �2; f; s
0

1 � s2). Since � 62 T̂ is guaranteed by the assumption about �1,
Lemma 7 can be applied to conclude ConsistentInit(F i; � � (�

0

1 � �2); f; v � (s
0

1 � s2)), and this is the
same as ConsistentInit(F i; �1 � �2; f; s1 � s2). 2

The next lemma shows that a value known to correspond to a certain uninitialized object type
may be stored in a local variable without breaking the correspondence.

25

Lemma 9

8F i; Si; f; s; b̂; �̂ ; x:

x 2 Dom(F i)

^ Corresponds(F i; Si; f; s; b̂; �̂)

) Corresponds(F i[x 7! �̂]; Si; f [x 7! b̂]; s; b̂; �̂)

Proof Assume that the hypotheses of the implication are satis�ed. Since we assumed Corres-

ponds(F i; Si; f; s; b̂; �̂), we know that:

StackCorresponds(Si; s; b̂; �̂)

In order to use (corr) to prove the conclusion of this lemma, we must also show that 8y 2

Dom(F i[x 7! �̂]),

(F i[x 7! �̂])[y] = �̂ =) (f [x 7! b̂])[y] = b̂ (3)

Before proving this, note that Dom(F i) = Dom(F i[x 7! �̂]). There are two cases to consider for
each y:

� x 6= y: In this case, (F i[x 7! �̂])[y] = F i[y]. Likewise, (f [x 7! b̂])[y] = f [y]. Since Corres-

ponds(F i; Si; f; s; b̂; �̂) is true, equation (3) must be true for this choice of y.

� x = y: In this case, (F i[x 7! �̂])[y] = �̂ and (f [x 7! b̂])[y] = b̂. Thus, (3) is satis�ed when
x = y.

Thus, the conditions for (corr) are satis�ed, and we may conclude that the lemma holds. 2

Similarly, a value known not to be an uninitialized object of a certain type may be stored in a
local variable without breaking any known correspondence between that type and some other value.

Lemma 10

8F i; Si; f; s; v; �; b̂; �̂ ; x:

x 2 Dom(F i)

^ b̂ : �̂
^ � 6= �̂

^ Corresponds(F i; Si; f; s; b̂; �̂)

) Corresponds(F i[x 7! �]; Si; f [x 7! v]; s; b̂; �̂)

Proof Assume that the hypotheses of the implication are satis�ed. Since we assumed Corres-

ponds(F i; Si; f; s; b̂; �̂), we know that:

StackCorresponds(Si; s; b̂; �̂)

In order to use (corr) to prove the conclusion of this lemma, we must also show that for all y 2

Dom(F i[x 7! �]),

(F i[x 7! �])[y] = �̂ =) (f [x 7! v])[y] = b̂ (4)

Before proving this, note that Dom(F i) = Dom(F i[x 7! �]). There are two cases to consider for
each y:

26

� x 6= y: In this case, (F i[x 7! �])[y] = F i[y]. Likewise, (f [x 7! v])[y] = f [y]. Since Corres-

ponds(F i; Si; f; s; b̂; �̂) is true, equation (4) must be true for this choice of y.

� x = y: In this case, (F i[x 7! �])[y] 6= �̂ , and (4) is satis�ed when x = y.

Thus, the conditions for (corr) are satis�ed and we may conclude that the lemma holds. 2

The next two lemmas in this section concern substitutions. The �rst shows that substitution of an
initialized object type for an uninitialized object type, and an initialized object for the corresponding
uninitialized object, preserves the stack type. Also, the correspondence between the uninitialized
object type and value on the stack is preserved by the substitution.

Lemma 11

8Si; s; a : �; â : �̂:
s : Si

^ StackCorresponds(Si; s; â; �̂)
^ � 6= �̂

^ �̂ 2 T̂

) [a=â]s : [�=�̂]Si

^ StackCorresponds([�=�̂]Si; [a=â]s; â; �̂)

Proof Assume that all the hypotheses of the implication are satis�ed. We prove the conclusions
by induction on the proof of StackCorresponds(Si; s; â; �̂). There is one base case and two inductive
cases to consider, depending on which judgment is used in the �nal step of the proof:

� (sc 0): If this is the case, s = � and Si = �. The conclusions follow trivially.

� (sc 1): In this case, s = â � s0 and Si = �̂ � S0

i for some s0 and S0

i. We also know that s0 : S0

i

and StackCorresponds(S 0

i; s
0; â; �̂) must be true, allowing us to conclude that

[a=â]s0 : [�=�̂]S0

i (5)

and
StackCorresponds([�=�̂]S0

i; [a=â]s
0; â; �̂) (6)

by the inductive hypothesis. It is also clear that the following two equations hold:

[a=â]â = a (7)

[�=�̂]�̂ = � (8)

These allow us to conclude that [a=â]â : [�=�̂]�̂. Combining this fact and equation (5), we
know that ([a=â]â) � ([a=â]s0) : ([�=�̂]�̂) � ([�=�̂]S0

i), and [a=â](â �s0) : [�=�̂](�̂ �S0

i) follows. Thus,
the �rst half of the conclusion is satis�ed.

StackCorresponds(� � [�=�̂]S0

i; a � [a=â]s
0; â; �̂) follows by (sc 2) and (6), plus the fact that

� 6= �̂. Using equations (7) and (8) above, this can be rewritten as StackCorresponds([�=�̂](�̂ �
S0

i); [a=â](â � s
0); â; �̂) using the distributive nature of substitution over sequences.

� (sc 2): In this case, s = v � s0 and Si = � � S0

i for some s0 and S0

i where � 6= �̂. Since s : Si,
we know that v : � . We proceed as in the previous case to conclude that [a=â]s0 : [�=�̂]S0

i and
StackCorresponds([�=�̂]S0

i; [a=â]s
0; â; �̂) by the inductive hypothesis. There are two cases for

v:

27

{ v 6= â: Since we also know that � 6= �̂, we may conclude that [a=â]v : [�=�̂]� and
([a=â]v) �([a=â]s0) : ([�=�̂]�) �([�=�̂]S0

i) are true. This means that [a=â](v �s0) : [�=�̂](�̂ �Si)
is true. In addition, StackCorresponds(([�=�̂]�) �([�=�̂]S0

i); ([a=â]v) �([a=â]s
0); â; �̂) follows

from rule (sc 2) since [�=�̂]� 6= �̂. This may be rewritten as StackCorresponds([�=�̂](� �
S0

i); [a=â](v � s
0); â; �̂), and the second half of the conclusion follows.

{ v = â: In this case, � must be Top since the only valid types for â are Top and �̂. The
latter is ruled out because we used (sc 2) as the �nal step in the proof of StackCorres-
ponds(� � S0

i; v � s
0; â; �̂). Since any value has type Top and [�=�̂]Top = Top, we may

conclude that [a=â]v : [�=�̂]� is true. The assertion that [a=â]s : [�=�̂]Si follows directly
from this, as above. StackCorresponds(([�=�̂]�) �([�=�̂]S0

i); ([a=â]v) �([a=â]s
0); â; �̂) follows

from rule (sc 2) since [�=�̂]� 6= �̂, and StackCorresponds([�=�̂](� �S0

i); [a=â](v � s
0); â; �̂) is

true.

2

The next lemma is analogous to the previous for a speci�c local variable y.

Lemma 12

8F i; a : �; â : �̂; y:
y 2 Dom(F i)
^ f [y] : F i[y]
^ F i[y] = �̂ =) f [y] = â

^ � 6= �̂

^ �̂ 2 T̂

) ([a=â]f)[y] : ([�=�̂]F i)[y]
^ ([�=�̂]F i)[y] = �̂ =) ([a=â]f)[y] = â

Proof Assume that the hypotheses of the implication are satis�ed. There are two cases for F i[y]:

� F i[y] = �̂: Thus, f [y] = â. Also, we know that [a=â](f [y]) = a and [�=�̂](F i[y]) = �. Since
a : � by our assumptions, the �rst clause of the conclusion is true. Since � 6= �̂, the second
clause is also true.

� F i[y] 6= �̂: First, we know that [�=�̂](F i[y]) = F i[y]. In this case, there are two possibilities
for f [y]:

{ f [y] 6= â: In this case, [a=â](f [y]) = f [y], and given that f [y] : F i[y] and F i[y] 6= �̂, the
conclusions are satis�ed.

{ f [y] = â: In this case, F i[y] = Top since the only valid types for â are �̂ and Top. Since
a : Top is also true, [a=â](f [y]) : Top, making the �rst clause of the conclusion true.
Since �̂ 6= Top, the second clause of the conclusion also follows.

2

The next lemma shows that initializing an object of one uninitialized object type does not a�ect
the correspondence between other uninitialized object types and values.

28

Lemma 13

8Si; s; a : �; â : �̂; b̂ : �̂ :
s : Si

^ StackCorresponds(Si; s; b̂; �̂)
^ �̂ 6= �

^ �̂ 6= �̂

) StackCorresponds([�=�̂]Si; [a=â]s; b̂; �̂)

Proof We show that StackCorresponds([�=�̂]Si; [a=â]s; b̂; �̂) is true by induction on the proof of

StackCorresponds(Si; s; b̂; �̂). There is one base case and two inductive cases to consider, depending
on which judgment is used in the �nal step of the proof:

� (sc 0): If this is the case, s = � and Si = �, and the conclusion follows easily.

� (sc 1): Assume Si = �̂ � S0

i and s = b̂ � s0 where StackCorresponds([�=�̂]S0

i; [a=â]s
0; b̂; �̂) is true

by the inductive hypothesis. StackCorresponds(�̂ � [�=�̂]S0

i; b̂ � [a=â]s
0; b̂; �̂) follows by rule (sc 1),

and since �̂ 6= �̂ and b̂ 6= â, we may rewrite this as StackCorresponds([�=�̂]Si; [a=â]s; b̂; �̂).

� (sc 2): Assume Si = � � S0

i and s = v � s0 where v : � and �̂ 6= � . By the inductive hypothesis,

StackCorresponds([�=�̂]S0

i; [a=â]s
0; b̂; �̂) is true. Also, [�=�̂]� 6= �̂ since � 6= � and �̂ 6= � .

Therefore, by rule (sc 2), StackCorresponds(([�=�̂]�) �([�=�̂]S0

i); ([a=â]v) �([a=â]s
0); b̂; �̂) is true.

This can be rewritten as StackCorresponds([�=�̂]Si; [a=â]s; b̂; �̂).

2

A.2 One-step Soundness

In order to prove Theorem 1, we prove that each of the four required invariants is preserved by a
program step. For each invariant, we �rst state a general property of instruction behavior, based
on the operational and static semantics, that guarantees the invariant will not be violated by any
instruction exhibiting the property. These properties will allow us to easily reason about which
instructions preserve the global invariants in the common case. For example, the following property
describes behavior easily proved to guarantee that the stack is well typed after the instruction is
executed.

Property 1 For some instruction I, we state that I preserves StackType according to the following

relation:

I preserves StackType if

8P; F ; S; pc; f; s; pc0; f 0; s0:

F ; S ` P

^ P ` hpc; f; si ! hpc0; f 0; s0i

^ s : Spc

^ P [pc] = I
) 9s1 : �1; s2 : �2; s3 : �3:
s = s1 � s2
^ s0 = s3 � s2
^ Spc = �1 � �2
^ Spc0 = �3 � �2

29

The following instructions have this property: inc, pop, push 0, store x, new �, use �, and if L.

Proof Two representative cases are shown. In each case, assume that we have P , F , S, pc, f , s,
pc0, f 0, and s0 which satisfy all the hypotheses:

� inc: By the operational semantics, pc0 = pc + 1, s = n � s00, and s0 = (n + 1) � s00 for some
s00. By (inc), Spc = Spc0 = Int � � for some �. Choose s1 = n, s2 = s00, s3 = n + 1, and
�1 = Int, �2 = �, �3 = Int. Clearly, s1 : �1 and s3 : �3 since n and n + 1 are integers. By
the assumption that s : Spc , we may conclude that n � s00 : Int � � and s00 : �, meaning s2 : �2.

� if L: By the operational semantics, pc0 2 fpc +1; Lg. Also, s = n � s00 for some integer n and
stack s00. In addition, by (if), Spc = Int � Spc0 . Choose s1 = n, s2 = s00, s3 = �, �1 = Int,
�2 = Spc0 , and �3 = �. We know that s1 : �1 since n : Int. By the assumption that s : Spc,
we conclude that n � s00 : Int � Spc0 and s00 : Spc0 , meaning that s2 : �2. The type judgment
� : � implies that s3 : �3.

2

With this property, we may now prove part of Theorem 1, grouping all instructions exhibiting
Property 1 into a single case.

Lemma 14 Given P , F , and S such that F ; S ` P :

8pc; f; s; pc0; f 0; s0:

P ` hpc; f; si ! hpc0; f 0; s0i

^ s : Spc

^ 8y 2 Var: f [y] : Fpc [y]
^ ConsistentInit(F pc; Spc ; f; s)

) s0 : Spc0

Proof Assume that the hypotheses of the implication are satis�ed. We proceed by examining the
possible instructions at P [pc], noting that P [pc] 6= halt since a transition is made from the current
state:

� P[pc] preserves StackType: By Property 1, we may choose s2, s3, �2, and �3 such that
s0 = s3 � s2, Spc0 = �3 � �2, s3 : �3, and s2 : �2. Thus, s

0 : Spc0 .

� P [pc] = load x: By the operational semantics, we know that s0 = f [x] � s. By rule (load)
and the fact that pc 0 = pc + 1, we also know that Spc0 = F pc[x] � Spc must be true. Given
the assumption that 8y 2 Var: f [y] : F pc[y], we know that f [x] : F pc [x]. In addition, since
s : Spc , f [x] � s : F pc [x] � Spc must be true, allowing us to conclude that s0 : Spc0 .

� P [pc] = init �: By the operational semantics, pc0 = pc + 1, s = â � s00, and s0 = [a=â]s00

for some s00, â, and a 2 A� . By rule (init), Spc = �̂j � � and Spc0 = [�=�̂j]� are true. To
prove s0 : Spc0 , we �rst note that s : Spc and ConsistentInit(F pc; F pc; f; s) imply that Corres-
ponds(F pc ; F pc; f; s; â; �̂j) by Lemma 1. This means that StackCorresponds(Spc; s; â; �̂j), and
in order to have proved this,

StackCorresponds(�; s00; â; �̂j) (9)

must be true. Also, � and �̂j must be di�erent types since the �rst is an initialized object
type and the second is an uninitialized object type. Also, s00 : �, a : � and â : �̂j . Thus, we
may apply Lemma 11 to (9) to conclude s0 : Spc0 .

30

2

Property 2 captures a behavior of all instructions known not to alter the local variables.

Property 2 For some instruction I, we state that I preserves VariableType according to the fol-

lowing relation:

I preserves VariableType if

8P; F ; S; pc; f; s; pc0; f 0; s0:

F ; S ` P

^ P ` hpc; f; si ! hpc0; f 0; s0i

^ P [pc] = I
) f 0 = f

^ F pc0 = F pc

The following instructions have this property: inc, pop, push 0, load x, new �, use �, and if L.

Proof Two representative cases are shown. In each case, assume that we have P , F , S, pc, f , s,
pc0, f 0, and s0 which satisfy all the hypotheses:

� inc: By the operational semantics, pc0 = pc + 1, and f 0 = f . By (inc), F pc = F pc+1. From
these pieces of information, it is clear that F pc = F pc0 is also true.

� if L: By the operational semantics, pc0 2 fpc + 1; Lg. Also, f 0 = f . In addition, by (if)
F pc = F pc+1 = FL. Given the possible values for pc0, we can conclude that F pc = F pc0 .

2

Lemma 15 Given P , F , and S such that F ; S ` P :

8pc; f; s; pc0; f 0; s0:

P ` hpc; f; si ! hpc0; f 0; s0i

^ s : Spc

^ 8y 2 Var: f [y] : Fpc [y]
^ ConsistentInit(F pc; Spc ; f; s)

) 8y 2 Var: f 0[y] : F pc0 [y]

Proof Assume that the hypotheses of the implication are satis�ed. We proceed by examining the
possible instructions at P [pc]. Note that, as before, P [pc] 6= halt:

� P[pc] preserves VariableType: By Property 2, f 0 = f and F pc0 = F pc, and we assumed
8y 2 Var: f [y] : Fpc [y]. By substitution using the two equalities, 8y 2 Var: f 0[y] : Fpc0 [y].

� P [pc] = store x: From the operational and static semantics, we know that pc0 = pc + 1,
f 0 = f [x 7! v], and F pc0 = F pc[x 7! �] where s = v � s0 and Spc = � �Spc0 . There are two cases
to consider to prove that f 0[y] : F pc0 [y] for all y 2 Var:

{ y 6= x: In this case, f 0[y] = f [y] and F pc0 [y] = F pc [y]. From the hypotheses of the
implication, f 0[y] : F pc0 [y] is true.

{ y 6= x: f 0[x] = v and F pc0 [x] = � . Since s : Spc, we know that v : � . Thus, f 0[x] : F pc0 [x].

31

Thus, 8y 2 Varf 0[y] : F pc0 [y] .

� P [pc] = init �: In this case, we know that pc0 = pc + 1, and the static and operational
semantics imply that f 0 = [a=â]f and F pc0 = [�=�̂j]F pc where s = â � s00 and Spc = �̂j � �.

Also, �̂j 2 T̂ and � 2 T . In addition, Corresponds(F pc; Spc; f; s; â; �̂j) follows from Lemma 1,
meaning that F pc [y] = �̂j implies f [y] = â for all y 2 Var. Using these facts, Lemma 12
may be applied to conclude ([a=â]f)[y] : ([�=�̂j]F [pc])[y] for all y 2 Var, and the conclusion
is satis�ed.

2

Property 3 is more complex than the previous properties. The behavior captured is that an
instruction will not touch the local variables, but it may pop o� any number of values from the stack
and push any number of new values, as long as the new ones are not uninitialized objects. While
there are many parts to the conclusion in the implication of this property, the truth of each one of
these may be obtained by a simple examination of the JVMLi semantics.

Property 3 For some instruction I, we state that I preserves ConsistentInit according to the fol-

lowing relation:

I preserves ConsistentInit if

8P; F ; S; pc; f; s; pc0; f 0; s0:

F ; S ` P

^ P ` hpc; f; si ! hpc0; f 0; s0i

^ s : Spc

^ 8y 2 Var: f [y] : Fpc [y]
^ ConsistentInit(F pc; Spc ; f; s)
^ P [pc] = I

) 9s1 : �1; s2 : �2; s3 : �3:
s = s1 � s2
^ s0 = s3 � s2
^ Spc = �1 � �2
^ Spc0 = �3 � �2
^ 8y 2 Dom(�3): �3[y] 62 T̂

^ f 0 = f

^ F pc0 = F pc

The following instructions have this property: inc, pop, push 0, use �, if L.

Proof Two representative cases are shown. In each case, assume that we have P , F , S, pc, f , s,
pc0, f 0, and s0 which satisfy all the hypotheses:

� inc: By the operational semantics, we know that pc0 = pc + 1, f = f 0, s = n � s00 for some
s00, and s0 = (n+ 1) � s00. By (inc), Spc = Spc0 = Int � � for some � and F pc = F pc0 . Choose
s1 = n, s2 = s00, s3 = n+1, and �1 = Int, �2 = a, �3 = Int. Clearly, s1 : �1 and s3 : �3 since
n and n+1 are integers. By the assumption that s : Spc , we may conclude that n � s00 : Int ��

and s00 : �, meaning s2 : �2. Finally, Int 62 T̂ , implying that 8y 2 Dom(�3): �3[y] 62 T̂ .

� if L: By the operational semantics, pc0 2 fpc + 1; Lg and f = f 0. Also, s = n � s00 for some
integer n and stack s00. In addition, (if) implies that Spc = Int �Spc0 and F pc = F pc0 . Choose

32

s1 = n, s2 = s00, s3 = �, �1 = Int, �2 = Spc0 , and �3 = �. s1 : �1 since n : Int. By the
assumption that s : Spc, we conclude that n � s

00 : Int �Spc0 and s00 : Spc0 meaning that s2 : �2.
The type judgment � : � implies that s3 : �3. Finally, �3 = �, so there is no uninitialized object
type in �3.

2

We now show that ConsistentInit is preserved by all instructions.

Lemma 16 Given P , F , and S such that F ; S ` P :

8pc; f; s; pc0; f 0; s0:

P ` hpc; f; si ! hpc0; f 0; s0i

^ s : Spc

^ 8y 2 Var: f [y] : Fpc [y]
^ ConsistentInit(F pc ; Spc ; f; s)

) ConsistentInit(F pc0 ; Spc0 ; f 0; s0)

Proof Assume that we have P , F , S, pc, f , s, pc0, f 0, and s0 which satisfy all the hypotheses.
We proceed by case analysis on P [pc], where the �rst case will contain all instructions that satisfy
Property 3. We know that P [pc] is not a halt instruction.

� P[pc] preserves ConsistentInit: By Property 3, we may choose s1 : �1, s2 : �2, and s3 : �3
such that all the conditions listed in Property 3 are satis�ed. Note that this ensures s = s1 �s2
and Spc = �1 � �2. Since ConsistentInit(F pc; Spc; f; s), Lemma 5 proves that ConsistentIn-

it(F pc; �2; f; s2). Since we also know s3 : �3 and no uninitialized types appear in �3, Lemma 8
may be applied to prove that ConsistentInit(F pc; �3 � �2; f; s3 � s2). Also, since F pc0 = F pc

and f 0 = f , ConsistentInit(F pc0 ; Spc0 ; f 0; s0) is true.

� P [pc] = new �: By the operational semantics, s0 = â � s, and we know that Spc0 = �̂j � Spc by

rule (init) and the fact that pc0 = pc + 1. This means that â : �̂j . For each �̂ 2 T̂ , we must

choose a b̂ : �̂ such that Corresponds(F pc0 ; Spc0 ; f 0; s0; b̂; �̂) to conclude that the lemma is true.
There are two cases to consider for each �̂ :

{ �̂ = �̂j : Choose b̂ = â. Given that �̂j 62 Spc is true by the static semantics, it is obvious
that StackCorresponds(Spc; s; â; �̂j) is true since it may be proved using only rules (sc 0)
and (sc 2). By this and rule (sc 1), we also know that

StackCorresponds(Spc0 ; s0; â; �̂j) (10)

will be true. We also know from the operational and static semantics that f 0 = f and
F pc0 = F pc are true. In addition, we know that

8y 2 Dom(F pc): F pc[y] 6= �̂j

Thus, we know the following is true:

8y 2 Dom(F pc0): F pc0 [y] = �̂j =) f 0[y] = â (11)

By (10) and (11), Corresponds(F pc0 ; Spc0 ; f 0; s0; b̂; �̂) is true by rule (corr).

33

{ �̂ 6= �̂j : Choose b̂ such that Corresponds(F pc; Spc; f; s; b̂; �̂). By our assumption that

ConsistentInit(F pc; Spc; f; s), there is such a b̂. From this, we know that the following
two equations are true:

8y 2 Dom(F pc): F pc[y] = �̂ =) f [y] = b̂ (12)

StackCorresponds(Spc ; s; b̂; �̂) (13)

Since F pc0 = F pc and f 0 = f ,

8y 2 Dom(F pc0): F pc0 [y] = �̂ =) f 0[y] = b̂

is also true. Given that �̂j 6= �̂ ,

StackCorresponds(�̂j � Spc; â � s; b̂; �̂)

follows by rule (sc 2) applied to (13), and Corresponds(F pc0 ; Spc0 ; f 0; s0; b̂; �̂) follows by
(corr).

� P [pc] = init �: By the operational semantics, pc0 = pc + 1, s = â � s00, f 0 = [a=â]f , and
s0 = [a=â]s00 for some s00, â, and a : �. By rule (init), Spc = �̂j � � for some �, meaning that
s00 : � and â : �̂j follow from the assumption s : Spc. Also, we know that Spc0 = [�=�̂j]�

and F pc0 = [�=�̂j]F pc from this rule. For each �̂ 2 T̂ , we must �nd b̂ such that Corres-

ponds(F pc0 ; Spc0 ; f 0; s0; b̂; �̂). If we can, then ConsistentInit(F pc0 ; Spc0 ; f 0; s0) follows by rule
(cons init). There true cases for each �̂ :

{ �̂ = �̂j : Choose b̂ = â. First, note that � 6= �̂j is true since � is an initialized object type
and �̂j is an uninitialized object type. By Lemma 11 and Lemma 12,

8y 2 Dom([�=�̂j]F pc): ([�=�̂j]F pc)[y] = �̂j =) ([a=â]f)[y] = â

StackCorresponds([�=�̂j]Spc ; [a=â]s; â; �̂j)

are true. These two lemmas may be applied since the hypotheses of the implication
and the facts about a, â, �, and �̂j satisfy the conditions for those lemmas. Corres-

ponds(F pc0 ; Spc0 ; f 0; s0; â; �̂j) follows directly from these two equations using rule (corr).

{ �̂ 6= �̂j : Choose b̂ such that Corresponds(F pc; Spc; f; s; b̂; �̂). By our assumption that

ConsistentInit(F pc; Spc; f; s), there is such a b̂. We now show that

Corresponds(F pc0 ; Spc0 ; f 0; s0; b̂; �̂)

is true. First,

8y 2 Dom([�=�̂j]F pc): ([�=�̂j]F pc)[y] = �̂ =) ([a=â]f)[y] = b̂ (14)

must be true. Suppose it were not. There would exist a y 2 Dom([�=�̂j]F pc) such that

([�=�̂j]F pc)[y] = �̂ and ([a=â]f)[y] 6= b̂. However, in this case, ([�=�̂j]F pc)[y] = F pc[y]

since �̂ 6= �̂j . Also, f [y] does not equal b̂ because if it did, then ([a=â]f)[y] would

be b̂, violating the statement that ([a=â]f)[y] 6= b̂. Therefore f [y] 6= b̂ and F pc [y] =
�̂ . However, since y is also in Dom(F pc), this contradicts the assumption that Corres-

ponds(F pc; Spc; f; s; b̂; �̂). Therefore, no such y exists and (14) must hold.

34

We also know that
StackCorresponds([�=�̂j]�; [a=â]s

00; b̂; �̂) (15)

is true by Lemma 13. Therefore, Corresponds(F pc0 ; Spc0 ; f 0; s0; â; �̂j) is true by rule (corr)
applied to (14) and (15).

� P [pc] = store x: By the operational semantics, pc0 = pc + 1, s = v � s0, and f 0 = f [x 7! v]
for some v. By rule (store), Spc = � � Spc0 and F pc0 = F pc[x 7! �] for some � . Since we

assumed s : Spc, we know that v : � . For each �̂ 2 T̂ , we must �nd b̂ such that Corres-

ponds(F pc0 ; Spc0 ; f 0; s0; b̂; �̂). If we can, then ConsistentInit(F pc0 ; Spc0 ; f 0; s0) follows by rule
(cons init). There are two cases for each �̂ :

{ � 6= �̂ : Choose b̂ such that Corresponds(F pc; Spc; f; s; b̂; �̂). We are guaranteed that
this will exist by the assumption that ConsistentInit holds. Since (store) ensures x 2

Dom(F pc), Lemma 10 may be applied to conclude Corresponds(F pc [x 7! �]; Spc; f [x 7!

v]; s; b̂; �̂). Simplifying this and appealing to Lemma 3, we conclude that

Corresponds(F pc0 ; Spc0 ; f 0; s0; b̂; �̂)

{ � = �̂ : Choose b̂ = v In this case, Corresponds(F pc; Spc; f; s; v; �̂) must be true by
Lemma 1. We may apply Lemma 9 to this to conclude that Corresponds(F pc[x 7!

�̂]; Spc; f [x 7! v]; s; v; �̂). Finally, we know that Corresponds(F pc0 ; Spc0 ; f 0; s0; v; �̂) is true
using Lemma 3.

� P [pc] = load x: By the operational semantics, pc0 = pc + 1, s0 = f [x] � s, and f 0 = f . By
rule (store), Spc0 = F pc[x] � Spc and F pc0 = F pc. We know that f [x] : F pc[x]. For each �̂ 2 T̂ ,

we must �nd b̂ such that Corresponds(F pc0 ; Spc0 ; f 0; s0; b̂; �̂). If we can, then ConsistentIn-

it(F pc0 ; Spc0 ; f 0; s0) follows by rule (cons init). There are two cases for each �̂ :

{ F pc[x] 6= �̂ : Choose b̂ such that Corresponds(F pc ; Spc; f; s; b̂; �̂). From this, we know

that StackCorresponds(Spc; s; b̂; �̂). Therefore, StackCorresponds(F pc [x] �Spc; f [x] �s; b̂; �̂)

follows directly from rule (sc 2), and Corresponds(F pc0 ; Spc0 ; f 0; s0; b̂; �̂) is true.

{ F pc[x] = �̂ : Choose b̂ = f [x]. Since ConsistentInit(F pc ; Spc ; f; s), we conclude Corres-

ponds(F pc; Spc; f; s; f [x]; F pc[x]) and StackCorresponds(Spc; s; f [x]; F pc[x]) by Lemma 2.
Applying (sc 1) to this, we know that StackCorresponds(F pc[x] �Spc ; f [x] � s; f [x]; F pc[x])

is true, and Corresponds(F pc0 ; Spc0 ; f 0; s0; b̂; �̂) is true.

2

Although the following property is trivial for JVMLi, we include both for symmetry with the
previous three invariants and also because it will be useful in the proofs of extensions of JVMLi.

Property 4 For some instruction I, we state that I preserves ProgramDomain according to the

following relation:

I preserves ProgramDomain if

8P; F ; S; pc; f; s; pc0; f 0; s0:

F ; S ` P

^ P ` hpc; f; si ! hpc0; f 0; s0i

^ P [pc] = I
) pc0 2 Dom(P)

35

The following instructions have this property: inc, pop, push 0, load x, store x, new �, use �,
init �, and if L.

Proof Two representative cases are shown. In each case, assume that we have P , F , S, pc, f , s,
pc0, f 0, and s0 which satisfy all the hypotheses:

� inc: By the operational semantics, pc0 = pc + 1. By (inc), pc + 1 2 Dom(P).

� if L: By the operational semantics, pc0 2 fpc + 1; Lg. By (if), both of these possible values
for pc0are in the domain of P .

2

Lemma 17 Given P , F , and S such that F ; S ` P :

8pc; f; s; pc0; f 0; s0:

P ` hpc; f; si ! hpc0; f 0; s0i

^ s : Spc

^ 8y 2 Var: f [y] : Fpc [y]
^ ConsistentInit(F pc; Spc ; f; s)

) pc0 2 Dom(P)

Proof We are guaranteed that P[pc] preserves ProgramDomain since all instructions in JVMLi

exhibit is property. Thus, this lemma follows directly from Property 4. 2

We may now prove Theorem 1:

Restatement of Theorem 1 Given P , F , and S such that F ; S ` P :

8pc; f; s; pc0; f 0; s0:

P ` hpc; f; si ! hpc0; f 0; s0i

^ s : Spc

^ 8y 2 Var: f [y] : Fpc [y]
^ ConsistentInit(F pc ; Spc ; f; s)

) s0 : Spc0

^ 8y 2 Var: f 0[y] : F pc0 [y]
^ ConsistentInit(F pc0 ; Spc0 ; f 0; s0)
^ pc0 2 Dom(P)

Proof This theorem follows directly from Lemmas 14,15,16, and 17. 2

A.3 Progress

The proofs in this section and the next are based on the corresponding proofs of Stata and Abadi.
The Progress Theorem is easily proved by showing that any instruction, except halt, will allow a
program to take a step from a well formed state. For each instruction, we must simply show how to
construct the state to which the program can step.

36

Restatement of Theorem 2 Given P , F , and S such that F ; S ` P :

8pc; f; s:

s : Spc

^ 8y 2 Var: f [y] : Fpc [y]
^ ConsistentInit(F pc; Spc; f; s)
^ pc 2 Dom(P)
^ P [pc] 6= halt

) 9pc0; f 0; s0: P ` hpc; f; si ! hpc0; f 0; s0i

Proof Assume that all the hypotheses of the implication are satis�ed for some pc, f , and s. We
proceed by case analysis on possible instructions P [pc]. The proof of each case will simply choose
values of pc0, f 0, and s0 such that a step may be taken by the program according to the operational
semantics.

� P [pc] = push 0: Choose s0 = 0 � s, f 0 = f , and pc0 = pc + 1.

� P [pc] = inc: Since we assumed s : Spc, and Spc = Int � Spc+1 follows from (inc), s = n � s00

for some n and s00. Therefore, choosing s0 = (n + 1) � s00, f 0 = f , and pc0 = pc + 1 will allow
progress to be made.

� P [pc] = pop: Since s : Spc , and Spc = � � � follows from (pop), s = v � s00 for some v and s00.
Therefore, choose s0 = s00, f 0 = f , and pc0 = pc + 1.

� P [pc] = if L: Since we assumed s : Spc and Spc = Int�Spc+1 = SL follows from (if), s = n�s00

for some n and s00. Therefore, choosing s0 = s00, f 0 = f , and pc0 = pc + 1 if n = 0, or pc0 = L

otherwise, will allow progress to be made.

� P [pc] = store x: Since s : Spc, and Spc = � � Spc+1 follows from (pop), s = v � s00 for some v
and s00. Therefore, choose s0 = s00, f 0 = f [x 7! v], and pc0 = pc + 1.

� P [pc] = load x: Choose s0 = f [x] � s, f 0 = f , and pc0 = pc + 1.

� P [pc] = new �: A�̂pc contains an in�nite number values, meaning that there is at least one
value â such that Unused(â; f; s). Choose s0 = â � s, f 0 = f , and pc0 = pc + 1.

� P [pc] = init �: Since s : Spc, and Spc = �̂j � Spc+1 for some j from rule (init), s = â � s00 for
some â 2 A�̂j and s00. Also, A� contains an in�nite number values, meaning that there is at
least one value a such that Unused(a; f; s). Therefore, choose s0 = [a=â]s00, f 0 = [a=â]f , and
pc0 = pc + 1.

� P [pc] = use �: Since s : Spc and Spc = � �Spc+1 follows from (use), s = a �s00 for some a 2 A�

and s00. Therefore, choose s0 = s00, f 0 = f [x 7! v], and pc0 = pc + 1.

2

A.4 Soundness

We �rst extend the one-step soundness theorem to execution sequences of any length:

37

Lemma 18 Given P , F , and S such that F ; S ` P :

8pc; f0; f; s:

P ` h1; f0; �i !
�

hpc; f; si

) s : Spc

^ 8y 2 Var: f [y] : Fpc [y]
^ ConsistentInit(F pc; Spc ; f; s)
^ pc 2 Dom(P)

Proof The proof of this is by induction on n, the number of execution steps. The base case is
when n = 0. In this case, hpc; f; si = h1; f0; �i. The conclusions of the implication follows from the
initial machine state, the assumption that all programs have at least one line, and the constraints
on S1 and F 1 in rule (wt prog).

To prove the inductive step, we assume the lemma to be true for sequences of length n and prove
the lemma for execution sequences of length n+ 1. In this case, the execution sequence must be

P ` h1; f0; �i !
�

hpc0; f 0; s0i ! hpc; f; si

for some pc0, f 0 and s0. Since n steps were taken from h1; f0; �i to reach hpc0; f 0; s0i, we may apply
the inductive hypothesis to conclude that

s0 : Spc0

^ 8y 2 Var: f 0[y] : Fpc0 [y]
^ ConsistentInit(F pc0 ; Spc0 ; f 0; s0)
^ pc0 2 Dom(P)

Applying Theorem 1 to these four conditions and the execution step from hpc0; f 0; s0i to hpc; f; si,
we conclude

s : Spc

^ 8y 2 Var: f [y] : Fpc[y]
^ ConsistentInit(F pc; Spc; f; s)
^ pc 2 Dom(P)

Thus, this lemma is true for execution sequences of any length. 2

Restatement of Theorem 3 Given P , F , and S such that F ; S ` P :

8pc; f0; f; s:�
P ` h1; f0; �i !

�

hpc; f; si

^ :9pc0; f 0; s0: P ` hpc; f; si ! hpc0; f 0; s0i

�

) P [pc] = halt ^ s : Spc

Proof Assume that all the hypotheses of the implication are satis�ed. We �rst prove the �rst
clause of the conclusion. Suppose P ` h1; f0; �i !

�

hpc; f; si and P [pc] 6= halt but no further step
can be taken by the program. By Lemma 18, the following are true:

s : Spc

8y 2 Var: f [y] : Fpc [y]
ConsistentInit(F pc; Spc ; f; s)
pc 2 Dom(P)

38

However, these four assertions and the assumption that P [pc] 6= halt mean that, by Theorem 2,
there does exist a state into which the program a step. This contradicts the assumption that the
program is stuck at hpc; f; si, and we conclude that our assumption about P [pc] is wrong. Thus,
P [pc] = halt.

We can conclude that the second half of the conjunction, s : Spc, is true directly from the
application of Lemma 18 to the assumptions of the implication. 2

B Soundness of Extensions

B.1 JVMLc

This section gives a brief overview of the soundness proof for JVMLi with constructors. As previously
described, the one-step soundness theorem must be augmented with another global invariant stating
the equivalents of z in the run-time state and ZP :

Theorem 5 (Constructor One-step Soundness) Given P , F , and S such that F ; S ` P :

8pc; f; s; pc0; f 0; s0:

P ` hpc; f; s; zi ! hpc0; f 0; s0; z0i

^ s : Spc

^ 8y 2 Var: f [y] : Fpc [y]
^ ConsistentInit(F pc ; Spc ; f; s)
^ z = ZP;pc

) s0 : Spc0

^ 8y 2 Var: f 0[y] : F pc0 [y]
^ ConsistentInit(F pc0 ; Spc0 ; f 0; s0)
^ z0 = ZP;pc0

^ pc0 2 Dom(P)

Proof Sketch With the exception of proving that this one new invariant is preserved by all in-
structions, proof of this theorem may be obtained with minor modi�cations to the proof of Theorem 1
in Appendix A. To prove that z0 = ZP;pc0 , we �rst de�ne a new property:

Property 5 For some instruction I, we state that I preserves Constructor according to the fol-

lowing relation:

I preserves Constructor if

8P; F ; S; pc; f; s; pc0; f 0; s0:

F ; S ` P

^ P ` hpc; f; s; zi ! hpc0; f 0; s0; z0i

^ P [pc] = I
) z0 = z

^ ZP;pc0 = ZP;pc

Note that all instructions except super � guarantee this property. Given that the hypotheses of
Theorem 5 are satis�ed,

z0 = ZP;pc0 (16)

39

can be proved by case analysis on P [pc]. If P[pc] preserves Constructor then (16) follows from
Property 5 and the assumption that z = ZP;pc. For super �, the only other possible instruction,
z0 = true follows from the operational semantics, and ZP;pc0 = true follows from the de�nition of
ZP and the fact that pc0 = pc + 1. Therefore, equation (16) holds for all possible instructions, and
Theorem 5 is true. 2

Extending the previously described progress theorem from Appendix A.3 to cover constructors
is also relatively straightforward, and the constructor soundness theorem then follows:

Restatement of Theorem 4 Given P , F , S, ', and â' such that F ; S ` P constructs ' and

â' : '̂0 :

8pc; f0; f; s; z:�
P c̀ h1; f0[0 7! â']; �; falsei !

�

hpc; f; s; zi

^ :9pc0; f 0; s0; z0: P c̀ hpc; f; s; zi ! hpc0; f 0; s0; z0i

�

) P [pc] = halt ^ z = true

Proof Sketch The �rst half of the conclusion follows from reasoning similar to that the proof
presented in Appendix A.4. The second half is true given the facts that z will be equal to ZP;pc and
that the static semantics guarantees that ZP;pc = true if P [pc] = halt. 2

B.2 JVMLs

This section outlines the soundness proof for JVMLi with subroutines. We refer the reader to the
extended version of [SA98b] for many of the details omitted from this section. The proof sketch
consists of three basic steps. We �rst de�ne JVMLi with subroutines in terms of a structured
operational semantics based on the semantics presented in Section 5 of [SA98a], and we present
additional de�nitions needed for the proof. Next, we state and discuss the one-step soundness
theorem for the structured semantics. The third step relates the structured semantics to the stackless
semantics for JVMLs, shown previously in Figure 2 and Figure 6. This part uses a simulation
between the structured and stackless semantics. Once this is complete, the steps leading to the
main soundness theorem for JVMLs follow easily from our proofs in Appendix A and the proofs of
Stata and Abadi.

Figure 9 shows the structured operational semantics for JVMLs. The machine state has a fourth
component, �, representing the subroutine call stack, which is implicit in the real virtual machine.
The only instructions which change � are jsr L and ret x. The static type rules for the structured
operational semantics are the same rules presented in Figure 3 and Figure 7. The judgment to
conclude that a program is well typed is:

(wt prog sub)

F 1 = FTop
S1 = �

R1 = fg

8i 2 Dom(P): R; i ` P labeled
8i 2 Dom(P): F ; S; i ` P

F ; S s̀ P

The map R is described in Figure 10 and relates a line of the program to the subroutine to which
that line belongs. RP represents the canonical R for program P .

Before stating the one-step soundness theorem, several additional de�nitions are needed. We
�rst de�ne a function that assigns types to local variables taking into account the subroutine call

40

P [pc] = inc

P s̀ hpc; f; n � s; �i ! hpc + 1; f; (n+ 1) � s; �i

P [pc] = pop

P s̀ hpc; f; v � s; �i ! hpc + 1; f; s; �i

P [pc] = push 0

P s̀ hpc; f; s; �i ! hpc + 1; f; 0 � s; �i

P [pc] = load x

P s̀ hpc; f; s; �i ! hpc + 1; f; f [x] � s; �i

P [pc] = store x

P s̀ hpc; f; v � s; �i ! hpc + 1; f [x 7! v]; s; �i

P [pc] = if L

P s̀ hpc; f; 0 � s; �i ! hpc + 1; f; s; �i

P [pc] = if L

n 6= 0

P s̀ hpc; f; n � s; �i ! hL; f; s; �i

P [pc] = jsr L

P s̀ hpc; f; s; �i ! hL; f; (pc + 1) � s; (pc + 1) � �i

P [pc] = ret x

P s̀ hpc; f; s; pc
0 � �i ! hpc0; f; s; �i

P [pc] = new �

â 2 A�̂pc ;Unused(â; f; s)

P s̀ hpc; f; s; �i ! hpc + 1; f; â � s; �i

P [pc] = init �

â 2 A�̂j

a 2 A�;Unused(a; f; s)

P s̀ hpc; f; â � s; �i ! hpc + 1; [a=â]f; [a=â]s; �i

P [pc] = use �

a 2 A�

P s̀ hpc; f; a � s; �i ! hpc + 1; f; s; �i

Figure 9: JVMLs structured operational semantics.

stack. The type F(F ; pc; �)[x] is de�ned by the rules:

(tt 0)
x 2 Dom(F pc)

F(F ; pc; �)[x] = F pc [x]

(tt 1)

x 62 Dom(F pc)
F(F ; p; �)[x] = �

F(F ; pc; p � �)[x] = �

As we will see below, as long as � satis�es some well-formedness conditions, F(F ; pc; �) will be
de�ned on all local variables. This de�nition matches the de�nition given in [SA98a]. We also need
the WFCallStack judgment, which ensures that a subroutine call stack is well-formed:

(wf 0)
Dom(F pc) = Var

WFCallStack(P; F ; pc; �)

(wf 1)

P [p� 1] = jsr L

L 2 RP;pc

Dom(F pc) � Dom(F p)
WFCallStack(P; F ; p; �)

WFCallStack(P; F ; pc; p � �)

41

P [i] 2 finc; pop; push 0; load x; store x; new �; init �; use �g

Ri+1 = Ri

R; i ` P labeled

P [i] = if L

Ri+1 = RL = Ri

R; i ` P labeled

P [i] = jsr L

Ri+1 = Ri

RL = fLg

R; i ` P labeled

P [i] 2 fhalt; ret xg

R; i ` P labeled

Figure 10: Rules labeling instructions with subroutines

In the presence of subroutines, the ConsistentInit invariant described in Section 5 is insu�cient
for guaranteeing that uninitialized objects are not used and must be strengthened. We de�ne the
new invariant ConsistentInitWithSub as:

ConsistentInitWithSub(P; F ; S; pc; f; s; p) �
ConsistentInit(F pc; Spc; f; s)

^ 8y 2 Var nDom(F pc): :9�: F(F ; pc; �)[y] = � ^ � 2 T̂

The �rst line of the de�nition ensures the necessary correspondence between values and uninitialized
object types, taking into account the subroutine call stack. In addition, we guarantee that unini-
tialized objects are not hidden in variables inaccessible to the program at the current instruction.

With these de�nitions, we may now state the one-step soundness theorem.

Theorem 6 (Structured One-step Soundness) Given P , F , and S such that F ; S s̀ P :

8pc; f; s; �; pc0; f 0; s0; �0:

P s̀ hpc; f; s; �i ! hpc0; f 0; s0; �0i

^ s : Spc

^ 8y 2 Var: 9�: F(F ; pc; �)[y] = � ^ f [y] : �
^ WFCallStack(P; F ; pc; �)
^ ConsistentInitWithSub(P; F ; S; pc; f; s; p)

) s0 : Spc0

^ WFCallStack(P; F ; pc0; �0)
^ 8y 2 Var: 9� 0: F(F ; pc0; �0)[y] = � 0 ^ f 0[y] : � 0

^ ConsistentInitWithSub(P; F ; S; pc0; f 0; s0; p0)
^ pc0 2 Dom(P)

Proof Sketch The full details of this proof are beyond the scope of this paper, and only a sketch
of the actual proof is presented. We proceed by brie
y justifying each of the �ve invariants listed in
the theorem:

42

� s0 : Spc0 : This follows the proofs similar to Lemma 14, where that lemma and Property 1 are
augmented with �.

� pc0 2 Dom(P): This follows from a proof similar to Lemma 17 for all instructions in the
language. The one complicated case, ret x, is proved by Stata and Abadi.

� WFCallStack(P; F ; pc0; �0): Appendix A:1 of [SA98b] proves this invariant. All instructions
other than jsr and ret satisfy the conditions of Lemma 1 in that paper and preserve this
invariant simply because they do not a�ect the subroutine call stack or the domain of visible
local variables.

� 8y 2 Var: 9� 0: F(F ; pc0; �0)[y] = � 0 ^ f 0[y] : � 0: This is proved by Stata and Abadi for all
instructions except those added to study object initialization. Although new � and use �

are trivial to prove, init � is fairly tricky. We cannot rely on our previous proofs since they
do not take into account the polymorphism of local variables. For this case, the following
equations are derived from the operational and static semantics:

pc0 = pc + 1
�0 = �

f 0 = [a=â]f
F pc0 = [�=�̂j]F pc

for some â, a, �, and j. From these, we know that Corresponds(F pc; Spc ; f; s; â; �̂j) by
Lemma 1. To prove that

8y 2 Var: 9� 0: F(F ; pc0; �0)[y] = � 0 ^ f 0[y] : � 0

we �nd such a � 0 for each y:

{ y 2 Dom(F pc): We know that F(F ; pc; �)[y] = F pc[y]. By Lemma 12, ([a=â]f)[y] :
([�=�̂j]F pc)[y] must be true, meaning that f 0[y] : F pc0 [y]. Since Dom(F pc0) = Dom(F pc),
we know that F(F ; pc0; �0)[y] = F pc0 [y]. Thus, choose � 0 = F pc0 [y].

{ y 62 Dom(F pc): In this case, F(F ; pc0; �0)[y] = F(F ; pc; �)[y]. Also, from our assump-
tion that ConsistentInitWithSub(P; F ; S; pc; f; s; p), we know that F(F ; pc; �)[y] 6= �̂j .
If f [y] 6= â, then we are done since local variable y is not a�ected. If f [y] = â, then
F(F ; pc0; �)[y] = Top, and since a : Top, this case still holds. Thus, choose � 0 such that
F(F ; pc; �)[y] = � 0.

� ConsistentInitWithSub(P; F ; S; pc0; f 0; s0; p0): If we know that �0 = � and Dom(F pc0) =
Dom(F pc), both clauses may be proved to be true by restricting our proofs from Appendix A.2
to consider only variables in Dom(F pc) and noting that no variables outside of the domain of
the current instruction are a�ected by executing that instruction. This takes care of all cases
except jsr L and ret x.

For jsr L, we know that for all y 2 Var n Dom(F pc), F(F ; pc; �)[y] is not in T̂ by Consis-

tentInitWithSub(P; F ; S; pc; f; s; p). Also, we know that that 8y 2 Dom(F pc), F pc [y] 62 T̂ by
(jsr). That rule also guarantees that:

8y 2 Dom(SL): SL[y] 62 T̂

8y 2 Dom(FL): FL[y] 62 T̂

8y 2 Dom(F pc+1) nDom(FL): F pc+1[y] = F pc [y]

43

Since there are no uninitialized object types present in FL and SL, it is clear that Consistent-
Init(F pc0 ; Spc0 ; f 0; s0) is true. Also, we know that F(F ;L; (pc + 1) � �)[y] will be the same as
F(F ; pc + 1; �)[y] for all y 2 Var n Dom(FL) from (tt 1), and from the statements above, we
know that F(F ; pc + 1; �)[y] is not a type in T̂ , making the second half of ConsistentInitWith-

Sub(P; F ; S; pc0; f 0; s0; p0) true.

For ret x, we know that � = pc0 � �0. The types stored in F pc0 are constrained in two ways.
Those variables also in the domain of the subroutine from which we are returning must have
the same type at pc0 as at pc, and these types do not belong to T̂ , as constrained by (ret).
Those variables in Dom(F pc0) but not in Dom(F pc) must also not contain uninitialized object
types since those local variables must have the same types in F pc0 as in F pc0

�1. This is true
because P [pc0 � 1] = jsr L for some L, and the (jsr) rule will constrain these variables to
not belong to T̂ . Thus, 8y 2 Dom(F pc0): F pc0 [y] 62 T̂ is true. As before, no uninitialized
object types appear in F pc and Spc, making ConsistentInit(F pc0 ; Spc0 ; f 0; s0) trivially true.
The second half of ConsistentInitWithSub(P; F ; S; pc0; f 0; s0; p0) easily follows from the above
statements as well.

2

The third step for proving soundness for JVMLi with subroutines is to show a simulation between
the structured and stackless semantics. While we do not describe the details, much of the proof
follows directly from Appendix B of Stata and Abadi, and the insight that new �, init �, and
use � neither change the subroutine call stack nor touch any value or type corresponding to a
return address. Once the simulation has been shown, the main soundness theorem is easily proved.

B.3 Primitive Types and Basic Operations

One of the bene�ts of the proof style used in Appendix A is that it relates very simple properties of
instruction execution to the preservation of the global invariants required by the one-step soundness
theorem. For example, any instruction whose operational and static semantics exhibit Property 1 is
guaranteed to preserve the invariant that the operand stack is well typed.

Using these properties, we can add many more instructions and basic types to JVMLi with very
little e�ort. Instead of reasoning about the global invariants directly, we may reason in terms of the
much simpler properties.

As an example, we add the instruction iadd. The operational and static semantics for this
instruction are:

P [pc] = iadd

P ` hpc; f; n1 � n2 � si ! hpc + 1; f; (n1 + n2) � si

(iadd)

P [i] = iadd

F i+1 = F i

Si = Int � Int � �

Si+1 = Int � �

i+ 1 2 Dom(P)

F ; S; i ` P

To show that the soundness theorems proved for JVMLi also apply to JVMLi with iadd, its su�ces
to prove that the four properties from Appendix A apply to iadd, and also that progress can always
be made if that instruction is about to be executed in a well-formed state. We �rst prove the four
properties:

44

� iadd preserves StackType: Assume that the hypotheses of Property 1 are satis�ed. Since
s : Spc and pc0 = pc + 1, we know that s = n1 � n2 � s

00 for some s00, and integers n1 and n2.
Choose s1 = n1 � n2, s2 = s00, s3 = (n1 + n2), �1 = Int � Int, �2 = �, and �3 = Int.

� iadd preserves VariableType: From the operational and static semantics, we know that pc0 =
pc + 1, f 0 = f , and F pc0 = F pc.

� iadd preserves ConsistentInit: Choose s1, s2, s3, �1, �2, and �3 as in the stack case. Also
note that f 0 = f , F pc0 = F pc , and Int 62 T̂ follow from the operational and static semantics,
given that pc0 = pc + 1.

� iadd preserves ProgramDomain: From the operational semantics, pc0 = pc + 1 and (iadd)
ensures i+ 1 2 Dom(P).

To show that progress can always be made, assume that hypotheses of Theorem 2 are satis�ed and
P [pc] = iadd. As above, we know that s = n1 � n2 � s

00 for some values of n1, n2, and s00. Choose
pc0 = pc + 1, f 0 = f , and s0 = (n1 + n2) � s

00.

References

[AG96] Ken Arnold and James Gosling. The Java Programming Language. Addison-Wesley, 1996.

[Coh97] Rich Cohen. Defensive Java Virtual Machine Version 0.5 alpha Release. available from

http://www.cli.com/software/djvm/index.html, November 1997.

[DE97] S. Drossopoulou and S. Eisenbach. Java is type safe | probably. In European Conference On

Object Oriented Programming, pages 389{418, 1997.

[DFW96] Drew Dean, Edward W. Felten, and Dan S. Wallach. Java security: from HotJava to netscape

and beyond. In Proceedings of the IEEE Computer Society Symposium on Research in Security

and Privacy, pages 190{200, 1996.

[Lia97] Sheng Liang. personal communication, November 1997.

[LY96] Tim Lindholm and Frank Yellin. The Java Virtual Machine Speci�cation. Addison-Wesley,

1996.

[MCGW98] Greg Morrisett, Karl Crary, Neal Glew, and David Walker. From system F to typed assembly

language. In Proc. 25th ACM Symposium on Principles of Programming Languages, January

1998.

[NvO98] Tobias Nipkow and David von Oheimb. Javalight is Type-Safe - De�nitely. In Proc. 25th ACM

Symposium on Principles of Programming Languages, January 1998.

[Qia97] Zhenyu Qian. A Formal Speci�cation of Java(tm) Virtual Machine Instructions (draft). available

from http://www.informatik.uni-bremen.de/~qian/abs-fsjvm.html, November 1997.

[SA98a] Raymie Stata and Mart��n Abadi. A type system for Java bytecode subroutines. In Proc. 25th

ACM Symposium on Principles of Programming Languages, January 1998.

[SA98b] Raymie Stata and Mart��n Abadi. A type system for Java bytecode subroutines (extended

version). submitted for publication, January 1998.

[Sar97] Vijay Saraswat. The Java bytecode veri�cation problem. available from

http://www.research.att.com/~vj, November 1997.

[SMB97] Emin G�un Sirer, Sean McDirmid, and Brian Bershad. Kimera: A Java system architecture.

available from http://kimera.cs.washington.edu, November 1997.

[Sym97] Don Syme. Proving Java type soundness. Technical Report 427, University of Cambridge

Computer Laboratory Technical Report, 1997.

45

[TMC+96] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: A type-directed

optimizing compiler for ML. ACM SIGPLAN Notices, 31(5):181{192, May 1996.

Sun, Sun Microsystems, and Java are trademarks or registered trademarks of Sun Microsystems, Inc. in the United

States and other countries.

46

