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Abstract

A new cascade basis reduction method of computing the optimal least-squares set

of basis functions steering a given function is presented. The method combines the

Lie group-theoretic and the singular value decomposition approaches in such a way

that their respective strengths complement each other. Since the Lie group-theoretic

approach is used, the set of basis and steering functions computed can be expressed

analytically. Because the singular value decomposition method is used, this set of

basis and steering functions is optimal in the least-squares sense. Furthermore, the

computational complexity in designing basis functions for transformation groups with

large numbers of parameters is signi�cantly reduced. The e�ciency of the cascade basis

reduction method is demonstrated by designing a set of basis functions that steers a

Gabor function under the four-parameter linear transformation group.



1 Introduction

A function is called steerable if transformed versions of this function can always be expressed

as linear combinations of a �xed set of basis functions. These functions have been used widely

in image processing [2, 13, 12, 11, 7], computer vision [4, 8, 15, 6, 1, 14], and recently, even

in computer graphics [3, 10]. One of the main problems in designing steerable functions lies

in determining the set of basis functions that is most suited to steer a given function within

the family of transformations.

Existing solutions to this problem fall into two categories: (a) Lie group-theoretic ap-

proaches, and (b) techniques involving the singular value decomposition. The latter category

of techniques, originally proposed by Perona [11], computes the optimal (in a least-squares

sense) set of basis functions to steer a given function under an arbitrary (compact) transfor-

mation. In practice, the general solution involves computing the singular value decomposition

(SVD) of a particular matrix that is made up of transformed replicas of the given function.

Each replica represents a particular sample of the transform parameters; the replicas are

computed so that the sampling over the desired range of transform parameters is su�ciently

dense. As a result of this decomposition, the optimal set of n basis functions are then the

�rst n left singular vectors corresponding to the n largest singular values. Although e�cient

methods for computing the SVD of a matrix exist, the computational complexity of this

scheme increases exponentially with the number of transform parameters. Hence, using this

method even for groups of moderate number of parameters, like the four-parameter group

of linear image transformations, tends to be infeasible.

With Lie group-theoretic methods, the function to be steered is �rst approximated by a

linear combination of a set of basis functions (called equivariant functions [5]) that are known

to be steerable under the same transformation group. The given function is then steered by

steering these basis functions. Although Lie group-theoretic methods are restricted to Lie

transformation groups, such a limitation is not too severe as Lie transformation groups in-

clude common image transformations such as translation, rotation and non-uniform scaling.

The main shortcoming of these group-theoretic approaches, however, is that the steerability

property is enforced globally; that is, the function is designed to be steered by any trans-

formation in the group. For non-compact groups (like translation and scaling), these basis

functions have in�nite support. If the function to be steered has compact-support, then an

in�nite number of these non compactly-supported functions are needed to approximate it.

In practice, however, it is reasonable to assume that only transformations over some

range of parameters can be expected. The common technique employed to circumvent
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the above problem is to impose the arti�cial condition that the function being steered is

periodic in some sense [13, 9, 5]. For one-parameter groups and multi-parameter groups

composed of commutative one-parameter subgroups, this condition is not too di�cult to

impose. For arbitrary multi-parameter transformation groups, however, imposing such a

periodicity condition may not be as straightforward. Recently, Hel-or et. al. [5] proposed an

alternative solution to the problem. The authors observed that if the function being steered

is compactly-supported and steerability is required only over a compact range of transform

parameters, then the given function has to be accurately approximated (by the equivariant

functions) only over a compact domain. This implies that a smaller, �nite number of equiv-

ariant functions is often su�cient to approximate the given function. Unlike the previous

approach, this technique does not impose any additional conditions on the function (other

than it is compactly-supported). For a small range of transform parameters, the number of

basis functions required is manageable. However, when this range is increased, the number

of basis functions increases quite signi�cantly. Unfortunately, even when this range is small,

the number of basis functions needed is still larger than that determined by the singular

value decomposition approaches (for the same amount of error).

In this paper, we present a new method of computing the optimal least-squares set of

basis functions to steer a given function. The method combines the Lie group-theoretic and

the singular value decomposition approaches in such a way that their respective strengths

complement each other. The hybrid method comprises two steps. First, the local Lie group-

theoretic approach is used to compute the basis functions to steer the given function. Since

these basis functions (equivariant functions) are already known to be steerable under the

given transformation group, the computational complexity of this step is independent of

the number of transform parameters. In the second step, the singular value decomposition

technique is used to determine the optimal least-squares set of basis functions and thereby

reduce the current number of basis functions. The computational complexity of this second

stage is shown to be only dependent on the number of basis functions used in the �rst

stage. This number is often much smaller than the number of samples required to densely

sample the range of transform parameters. Since the original basis functions (and their

steering functions) are available analytically, an analytic description of the optimal set of

basis functions (and their steering functions) can also be derived.

The rest of the paper is organized as follows. In Section 2, the property of global steer-

ability is de�ned and the equivariant functions under di�erent transformation groups are

identi�ed. In Section 3, local steerability is discussed in the context of how it might be

achieved with globally steerable equivariant functions. Following that, the basis reduction
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technique employing the singular value decomposition is described in Section 4. In Section 5,

an example of steering an odd-phased Gabor �lter under the four-parameter linear transfor-

mation group is presented along with a comparison of the hybrid method with the original

singular value decomposition technique. The paper is concluded in Section 6.

2 Global Steerability

In this section, we identify the functions spaces that are globally steerable under di�erent

transformation groups. The mathematical machinery of the Lie group-theoretic approach is

omitted in this exposition as it is not of central importance. The interested reader is referred

to [5] for a derivation of these function spaces. Before describing these function spaces, we

formalize the notion of steerability in a global sense with a de�nition.

In the following, we adopt an operator notation for the group of transformations G;

i.e., T (g)f refers to the transformation of f by a particular transformation in the group

G. In practice, the group G takes on some parameterization. For example, the group of

x-translations can be parameterized: Ttx(� )f(x; y) = f(x � �; y).

De�nition 1 (Global Steerability) : A function f : Rm 7! R is globally steerable

under a k-parameter Lie transformation group G if any transformation T (g) of f by any

element g 2 G can be written as a linear combination of a �xed, �nite set of basis functions

fi : R
m 7! R:

T (g) f =
nX

i=1

�i(g) fi: (1)

The functions �i are known as the steering functions and depend solely on the transform

parameters. We will further assume that n is the minimumnumber of basis functions required

and these basis functions are linearly independent. Clearly, the set of basis functions required

to steer a given function is not unique; any (non-singular) linear transformation of the set

of basis functions could also be used.

If a function f is globally steerable with a set of basis functions fi, then each of the basis

functions fi are themselves globally steerable with the same basis functions. This is true

since each basis function can be rewritten as a linear combination of transformed replicas of

f (chosen to be linearly independent). Thus, transforming a basis function is equivalent to

linearly combining the set of transformed replicas of f , which are globally steerable. We will

see, in the next section, that this is not true in the case of local steerability.
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Group Operator Equivariant

Function Space

x-translation Ttx(�) f(x; y) = f(x� �; y) fh(y)xpe�xg
x-scaling Tsx(�) f(x; y) = f(e��x; y) fh(y)x�(log x)pg

x-projective Tpx(�) f(x; y) = f(x=(1 + �x); y) fh(y)x�pe�=xg

y-translation Tty(�) f(x; y) = f(x; y � �) fh(x)ype�yg
y-scaling Tsy(�) f(x; y) = f(x; e��y) fh(x)y�(log y)pg

y-projective Tpy(�) f(x; y) = f(x; y=(1+ �y)) fh(x)y�pe�=yg
Rotation Tr(�) f(x; y) = f(x cos� � y sin �; x sin� + y cos �) fh(r)e��g

Uniform scaling Ts(�) f(x; y) = f(e��x; e��y) fh(�)r�(log r)pg

Table 1: Several examples of continuous transformation groups and their equivariant function

spaces. The parameter p is an integer from 0 � p � k while the parameter � is any
complex exponential. The function h is any arbitrary function. The variables r; � refer
polar coordinates. Multi-parameter groups can be constructed by combining several of these
groups.

Since global steerability of the given function f implies global steerability of its basis

functions fi as well, it is more natural to express global steerability in terms of a function

space. For example, in terms of the space spanned by the basis functions fi.

De�nition 2 (Equivariant Function Space) : An n-dimensional function space F =

spanff1; : : : ; fng is equivariant under a k-parameter Lie transformation group G if every

f 2 F is globally steerable with respect to the basis ff1; : : : ; fng.

This means that transformed replicas of any function belonging to an equivariant func-

tion space are themselves members of the function space. Putting it yet another way, an

equivariant function space is a function space that is closed under the transformation group.

Table 1 lists the equivariant function spaces under di�erent one-parameter transformation

groups. Multi-parameter groups can be constructed by combining several of these groups.

The details can be found in [5].

For example, consider the function space F = spanfcos �; sin �g under the one-parameter

group of rotations: T (� )f(�) = f(� � � ). It is easy to verify the following two relations:

cos(� � � ) = cos � cos � + sin � sin �;

sin(� � � ) = � sin � cos � + cos � sin �:

Thus, rotated versions of any basis function can always be expressed as linear combinations

of the basis functions.
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More generally, steering any function f 2 F , an equivariant function space, can be

achieved by steering any basis of F :

T (g) f =
nX

i=1

ci

0
@

nX
j=1

�i;j(g)fj

1
A

where f =
Pn

i=1 cifi and ff1; : : : ; fng are the basis of F such that F = spanff1; : : : ; fng.

The steering functions can be collected together into a matrix: A(g) = (�i;j(g)).

As a result, any function f is globally steerable under a k-parameter transformation

group if and only if it belongs to some function space that is also equivariant under the

same transformation group. Thus, steering an arbitrary function f amounts to being able

to represent f in an appropriate equivariant function space. For example, an equivariant

function space under 2D rotation is the space spanned by fh(r)ei�j�g (in polar coordinates)

where �j is a set of arbitrary constants, usually integers. This function space is dense in L2.

Therefore, any function could be steered in rotation by �rst representing it in this function

space.

3 Local Steerability

In this section, we introduce the concept of local steerability to allow functions to be steered

under compact subsets of the family of transformations. We also show that a compactly-

supported function can be steered locally with a set of equivariant basis functions by ap-

proximating it with these basis functions over an appropriate compact domain.

De�nition 3 (Local Steerability) : A function f : Rm 7! R is locally steerable under

a k-parameter Lie transformation group G if any transformation T (g) of f by any element

g 2 G0 � G can be written as a linear combination of a �xed, �nite set of basis functions

fi : R
m 7! R:

T (g) f =
nX

i=1

�i(g) fi (2)

In practice, we will also assume that the region over which g 2 G0 is compact in some

parameterization. Also, this subset G0 need not be a subgroup of G. If G0 were a subgroup

of G, then the function f would simply be globally steerable under the new subgroup.

If a function f is locally steerable with a set of basis functions fi, then arbitrary linear

combinations of fi (or even the basis functions themselves) are not necessarily locally steer-

able. Unlike the situation with global steerability, the function f is only steerable within a
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Figure 1: A function (solid line) with a compact support [a; b]. The function is approximated

(dotted line) over a wider region [aapp; bapp] outside of which the approximation might be poor.

The integration of this approximation is performed over the integration region [aint; bint].

Note that if the approximated function is x-translated by �d to d units, the approximation

is always acceptable within the integration region.

local range of parameter space; thus, each basis function fi is only locally steerable within

a di�erent, possibly smaller, range of parameter space. Hence, the property of local steer-

ability cannot be associated with function spaces but has to be discussed with respect to a

particular function.

Local Steerability from Equivariant Function Spaces A compactly-supported func-

tion is a function that is non-zero only over some compact region of its domain, and zero

everywhere else. A non-compact transformation group refers to a group whose parameter

space is non-compact. For example, the group of translations is non-compact since its pa-

rameter space is R while the group of rotations whose parameter space is S1 is compact. For

compactly-supported functions, there are no �nite-dimensional function spaces that can be

used to globally steer these functions under a non-compact transformation group. The sim-

ple example of steering a raised cosine under translation is illustrative of this point: in order

to steer a raised cosine under translation, an in�nite number of raised cosines are needed.

Fortunately, if only local steerability is desired, then a �nite number of functions might

be su�cient to steer a compactly-supported function. As before, the function to be steered

is �rst approximated using an appropriate equivariant function space. This approximation is

then steered by steering the basis functions spanning the space. Since only local steerability

is desired, the domain over which the function is approximated need only be a subset of its

actual domain; the size of this subset depends on the range of parameter space over which

local steerability is expected.

Intuitively, we need to approximate the function over a large enough subset of its domain
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such that all transformed replicas of it will also be adequately approximated. For example,

consider the problem of steering a one-dimensional raised cosine under translation. The

raised cosine is compactly-supported over the interval [�1; 1]. The range of translations over

which it is to be steered is [�1; 1]. Thus, the union of the support of all possible translated

raised cosines is [�2; 2]. We refer to this interval as the integration region as this is the (�xed)

interval of integration for a corresponding steerable �lter. Clearly, then, the original raised

cosine needs to be well approximated over this interval [�2; 2]. Unfortunately, approximating

it over this interval is not enough. When the raised cosine is translated to the left by �1, for

example, the interval [2; 3] (the right tail) of the original raised cosine's domain enters the

integration interval. If the original raised cosine is poorly approximated in this region, then

the interval [1; 2] of this translated raised cosine will be poorly approximated as well. The

same holds when the raised cosine is translated to the right by 1. Hence, the original raised

cosine needs to be well approximated over the interval [�3; 3]. We refer to this interval as

the approximation region. The integration region is a subset of the approximation region;

the compact support of the original function is, in turn, a subset of the integration region.

Figure 1 illustrates the approximation and integration regions for a one-dimensional function

steered under translation.

The integration and approximation can also be de�ned mathematically. We assume

that the transformations are smooth and locality of steerability implies steerability within a

compact region of parameter space. Let Rf be the compact support of the original function

outside of which it is zero. The integration region is therefore:

Rint =
[
g2G0

T (g) Rf

where the union is taken over the compact region of parameter space. The application of

the group operator to the region Rf produces the corresponding region of the transformed

function. The approximation region is de�ned in terms of the inverse of the group operator:

Rapprox =
[

g2G0

T (g�1) Rint

where T (g�1) T (g) = I for all g 2 G.
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4 Basis Reduction

4.1 General

In this section, we describe a method of computing the optimal least-squares set of basis

functions to locally steer a given function f under a k-parameter transformation group. The

problem, therefore, is to �nd an ordered set of functions such that the �rst n elements of the

set represent the optimal least-squares set of basis functions (of size n) needed to steer f .

Perona [11] showed that this problem could be solved numerically by computing the

singular value decomposition (SVD) of a particular matrix F whose column vectors are

transformed replicas of a discretely sampled version of the function f . Thus, each column in

F corresponds to a speci�c sample of the parameter space over which the function is to be

steered and the each row in F corresponds to a speci�c sample of the function's domain.1

The SVD decomposes the matrix F into a product of three matrices:

F =

2
66664

...

T (g1)f
...

� � �

...

T (gs)f
...

3
77775
= UF SF VF

T = UF WF (3)

where UF
T
UF = I , VF

T
V = I, and SF is a diagonal matrix of non-negative singular

values, in decreasing order of magnitude. It can be shown that since S is in decreasing order

of magnitude, the �rst n columns of UF represents the optimal least-squares set of basis

functions (of size n) needed to steer f . The �rst n rows of the matrix WF tabulate the

weights of the linear combination.

The SVD of matrix F could also be computed by �rst computing the eigenvalues and

1Actually, Perona also observed that the SVD of F can be more e�ciently computed (and derived analyt-
ically, for the case of rotation). His solution essentially involves solving for the eigenvalues and eigenvectors
of F T

F , which correspond to the square root of the singular values and the right singular vectors of the SVD
of F . In the case of rotation, the matrix F T

F is circulant. In fact, each row of the matrix F T
F is essentially

a sampled version of the autocorrelation of the original �lter over rotation (and is shift-invariant). Thus,
Perona proposes using the discrete Fourier transform to compute the eigenvalues and eigenvectors. Once the
singular values and the right singular vectors have been computed, the left singular vectors can readily be
computed. Perona's analytic solution involves (analytically) deriving the discrete Fourier transform of the
autocorrelation of the original �lter and identifying the frequencies in the spectrum with non-zero magni-
tudes. The right singular vectors are then the complex exponentials at these frequencies while the singular
values are the square roots of their corresponding magnitudes. (A discrete spectrum is guaranteed because of
the compactness of the operator corresponding to F ). In practice, a numerical scheme is used to design these
steerable �lters. Also, for more general groups, the discrete Fourier transform may not be applicable and
an actual singular value decomposition of F T

F needs to be performed. Unfortunately, the computational
complexity of computing the SVD of F T

F grows exponentially with the number of transform parameters.
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eigenvectors of F 2 :
= F T

F :

(F T
F ) VF2 = VF2 SF2

where VF2 are the eigenvectors of F T
F and SF2 is a diagonal matrix containing the cor-

responding eigenvalues. The eigenvalues of this matrix are non-negative because F T
F is

symmetric and positive semide�nite. We assume that the eigenvalues in SF2 and their

corresponding eigenvectors in VF2 are sorted in decreasing order of magnitude. Since

F
T
F = VFSF

2
VF

T , the singular values and vectors of F are related to the eigenvalues

and eigenvectors of F T
F : SF = S

1

2

F2 and VF = VF 2. Knowing SF and VF , the matrix

UF can be computed as FVFS
#
F where S

#
F is the pseudo-inverse of SF . Assuming that the

number of domain sampling is sd and the number of parameter sampling is sp, the dimension

of matrix F is sd � sp. If sp < sd, it is computationally more e�cient to compute the SVD

of F in this manner as the size of F T
F is smaller than the size of F . Conversly, if sd < sp,

then a similar method using FF T could be derived. Thus, the computational complexity of

computing the SVD of F is upper-bounded by the smaller of the row and column dimensions

of F . For one or two-parameter groups, sd often exceeds sp. Moreover, sp is also manageably

small. As a result, the SVD of F could be computed from the eigenvalues and eigenvectors

of F T
F . However, sp increases exponentially with the number of parameters. For example,

with a four parameter group and a discretization of only ten samples per dimension, the

number of columns would be 104. Computing the eigenvalues and eigenvectors of a square

matrix this size is computationally infeasible.

Alternatively, the matrix F could be written as a product of sd�m matrixB and m�sp

matrix H such that columns of B are a set of m appropriately chosen, discretely sampled,

basis functions (not necessarily orthogonal) and columns in H contains the weights needed

to reconstruct each column T (gi)f in F . Typically, if appropriate basis functions are chosen,

then m < sd and m < sp. Thus, although the dimensionality of matrix F (sd � sp) is quite

large, its rank is only m which is much smaller than sd and sp. When the matrix F can be

decomposed into the product of B and H, the SVD of F can be computed economically

by a sequence of two singular value decompositions, each of which involve computing the

eigenvalues and eigenvectors of square matrices of size equal to m. From the decomposition
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of F , we have

F = BH

(a)
= (UBSBVB

T )H

= UBH
0

(b)
= UB (UH0SH0VH0

T )

= (UBUH0) SH0 VH0

T

= UF SF VF
T :

Thus, the SVD of F is such that UF = UBUH0, SF = SH0 and VF = VH0. Two singular

value decompositions need to be computed: one at (a) involving B and a second at (b)

involving H 0. These decompositions could be obtained by computing the eigenvalues and

eigenvectors of BT
B and HHT respectively. Each of these matrix products are square

matrices of size m. If the basis functions are orthonormal, then BT
B = I. Thus, UF =

BUH, SF = SH and VF = VH . That is, only the SVD of H needs to be computed.

Alternatively, if the steering functions are orthonormal, then HHT = I and only the SVD

of B needs to be computed.

4.2 From Local Steerability using Equivariant Function Spaces

In the previous section, we saw that the optimal least-squares set of n basis functions to steer

a function f under any k-parameter transformation group could be e�ciently computed if

an appropriate set of basis functions B were available. These basis functions have to be

chosen so that they span the column space of F ; i.e., these basis functions are su�cient to

locally steer the function f within the local parameter space of the k-parameter group.

In Section 3, we saw how globally steerable functions could be used to locally steer any

function f under the same transformation group. Essentially, the function f is approximated

with linear combinations of the globally steerable equivariant functions Bglob (within some

appropriate domain of approximation). Steering the function f then amounts to steering

the equivariant functions:

T (g) f = BglobA(g) c (4)

where c is a vector of weights that approximate f with Bglob. The matrix A(g) is the

matrix of steering functions used to steer each equivariant function. Thus, these equivariant

functions are suitable candidates for the basis functions of B such that B = Bglob and

H =
h
(A(g1) c) � � � (A(gs) c)

i
:
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The columns ofH correspond to a discrete sampling of a local range of the parameter space

�1; : : : ; �k. Likewise, the rows of B correspond to a discrete sampling of the domain of the

globally steerable basis functions. The SVD of B andH (and thus of F ) are then computed

from the eigenvalues and eigenvectors of BT
B and HHT respectively.

Since the globally steerable basis functions and their corresponding steering functions

are, in fact, analytic, the new basis and steering functions computed from the SVD of F can

also be described analytically. To obtain an analytic description of the new basis functions,

we need to write them in terms of the globally steerable functions in B. Observe that

B = UBSBVB
T and UF = UBUH0. Thus, UF = B(VBS

#
BUH0). However, each column

of B is simply a sampled version of a basis function. Therefore, the vector of the new basis

functions (described analytically) is:

uF (x; y) = (VBS
#
BUH0)T b(x; y) (5)

where b(x; y) is the vector of the original basis functions (described analytically). Likewise,

to obtain an analytic description of the new steering functions WF = SFVF
T , we need

to write them in terms of the original steering functions in H. Since H 0 = SBVB
T
H,

H
0 = UH0SH0VH0

T , and SFVF
T = SH0VH0

T , we haveWF = SFVF
T = (UH0

T
SBVB

T )H.

Again, each column of the matrix H is simply a sampled version of the steering function.

Therefore, the vector of the new steering functions (described analytically) is:

wF (g) = (UH0

T
SBVB

T ) h(g) (6)

where h(g) is the vector of the original steering functions (described analytically); i.e., h(g) =

A(g) c. Denoting � = UH0SBVB
T , we can write the overall analytic steering equation as

T (g) f(x; y) = (b(x; y)T�#) (� A(g) c): (7)

This equation is essentially the same as Equation 4. To compute the optimal least squares

set of n basis functions, only the �rst n columns of UH0 in � (and correspondingly, in �#)

are retained; the rest are set to zero.

5 Results

In this section, we present some empirical results of the method. First, we compare the results

of using the new method to design a set of basis functions to steer a narrow Gaussian under
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Figure 2: Reconstructions of translated replicas of the original �lter using 10 basis �lters.

translation to that obtained by using the singular value decomposition in the conventional

way. We also show that the analytically determined basis functions and steering functions

interpolate their numerically computed counterparts very well. Second, we show the set of

basis �lters designed by the new method to steer a narrow Gabor function under a restricted

range of linear transformations (rotations, independent scalings and skew-transformations).

To the best of the authors' knowledge, this is the �rst time that optimal basis functions

have been designed to steer a given function under linear transformation. This is made

possible by combining the Lie group-theoretic approach with the conventional singular value

decomposition method.

5.1 Comparison with Conventional SVD

In this experiment, a one-dimensional Gaussian function (exp(�((x+4x)=�)2=2); � = 0:1)

was steered in translation over the parameter range �0:5 � 4x � 0:5. The domain of the

function was discretized using 128 evenly-spaced samples from [�1; 1]. The parameter range

was also discretized using 128 evenly-spaced samples. Thus, using the conventional SVD

method, the singular value decomposition of a 128 � 128 matrix was computed.

For the cascade basis reduction method, the sinusoids (and co-sinusoids) with integer

frequencies over the domain [�1; 1] were used as the equivariant functions (see Table 1). A

total of 21 were required to approximate the Gaussian over this interval (one DC component,

and 10 pairs of sinusoids and co-sinusoids of increasing integral frequencies). The SVD of

the matrix F was then computed via two consecutive SVD's. Thus, computing the SVD's

of only 21 � 21 matrices were involved. In both methods, we selected the optimal 10 basis

functions and used them to steer the Gaussian. Figure 2 shows examples of translated

replicas of the original function computed by steering the basis functions obtained using the
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Figure 3: Basis �lters corresponding to the three largest singular values. Graph (a) plots
the basis �lters that were computed by �rst projecting the function to be steered onto a
sinusoidal basis. Graph (b) plots the basis �lters obtained using the conventional SVD
method.
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Figure 4: Graph (a) plots the analytic basis function with the largest singular value. The
asterisks represent the corresponding discretely sampled basis function computed using the

conventional SVD method. Graph (b) plots the analytic steering function of the basis

function with the largest singular value. The asterisks represent the corresponding discretely

sampled steering function computed using the conventional SVD method.
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i b1(i)

0 0.06201554216672

1 0.08619004213797

2 0.02148843148085

3 -0.00592107156039

4 -0.00220013136418

5 0.00159834908126

6 0.00028553521796

7 -0.00035877640688

8 -0.00003061938543

9 0.00005855376940

10 0.00000225692409

i s1(i)

0 0.99487943335468

1 1.31611981440320

2 0.28297516998134

3 -0.06092366973839

4 -0.01602556470287

5 0.00746710404379

6 0.00077516282824

7 -0.00051279841652

8 -0.00002087592194

9 0.00001725310640

10 0.00000026039311

(a) (b)

Table 2: Coe�cients of the analytic basis function with the largest singular value and co-
e�cients of its corresponding steering function. Table (a) lists the coe�cients of the basis
function such that B1(x) =

P10
i=0 b1(i) cos(i�x). Table (b) lists the coe�cients of the steering

function such that A1(�x) =
P10

i=0 s1(i) cos(i��x).

cascade basis reduction method. The results using the conventional method were identical.

Figures 3 (a) and (b) show the corresponding �rst three basis functions obtained by using

the cascade basis reduction method and the conventional method respectively. Again, the

results are identical. Figures 4 (a) and (b) plot the analytically derived �rst basis and steering

functions. The asterisks denote the numerically computed basis and steering functions. The

analytically derived functions interpolate the numerically computed sample points very well.

The analytic basis and steering functions are linear combinations of the original 21 basis and

steering functions. The weights of the linear combinations are listed in Tables 2 (a) and (b)

respectively.

5.2 Steering a Gabor under General Linear Transformation

In this experiment, a two-dimensional Gabor function (sin(x=�x) exp(�((x=�x)
2+(y=�y)

2)=2),

�x = �y = 0:2) was steered over a range of linear transformations (combinations of rota-

tions, independent scalings along each axis, and skew-transformations). The domain was

sampled uniformly over [�1; 1] � [�1; 1] with 64 � 64 samples. The linear transformation
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Figure 5: Graph (a) plots the magnitude of the singular values for each singular vector.
Each singular vector corresponds to a single basis �lter. A total of 231 singular vectors were
present but only the largest 30 of them are plotted. Graph (b) plots the cumulative sum
of the squared magnitudes of the singular values. The squared magnitudes of the singular

values have been normalized so that their sum equals one.

was parameterized in a unique way:

A = R(�2) Sx(sx) Sy(sy) R(�1)

where R(�1);R(�2) are rotation matrices and Sx;Sy represent pure scaling in the x- and

y- directions respectively. Thus, we are disallowing re
ections. The validity of this parame-

terization can be understood in terms of the singular value decomposition of A. The range

of parameter space over which the Gabor function was steered was: �1; �2 2 [0; 2�) and

sx; sy 2 [1; 5=3]. The Legendre polynomials over the interval [�1; 1] � [�1; 1] were used as

the equivariant basis functions to approximate the Gabor function. A total of 231 Legendre

polynomials were used. This set included all tensor products of one-dimensional Legen-

dre polynomials whose total degree was less than or equal to 20; i.e.,
S
0�d�20 P

d
x;y where

P d
x;y

:
= fP dx

x P dy
y jdx + dy = d; dx � 0; dy � 0g.

The results of using the cascade basis reduction method to compute the basis functions

are shown in Figures 5, 6 and 7. Figure 5 plots the singular values of the singular value

decomposition in decreasing order of magnitude. The singular values decrease rather rapidly

such that a total of 11 basis functions were found to be su�cient to steer the Gabor function.

Figure 6 shows the �rst ten of these eleven basis functions. Figure 7 shows replicas of the

Gabor function steered to various linear transformations. A total of 22; 500 samples of

the parameter space were used in this experiment. Since the domain was sampled with
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Figure 6: Ten out of the eleven basis �lters computed to steer the given �lter under any local

linear transformation. The basis �lters are arranged in descending order of the magnitudes
of their singular values from left to right and from top to bottom.

(a) (b) (c) (d) (e)

Figure 7: Image (a) shows a reconstruction of the original �lter. Image (b) shows a re-
construction of the �lter rotated by 60 degrees. Image (c) shows a reconstruction of the

�lter scaled along the x-axis. Image (d) shows a reconstruction of the �lter scaled along the

y-axis. Image (e) shows a reconstruction of the �lter skewed along the x-axis and uniformly
scaled. The skew-transformation was computed as a composition of two rotations and two
independent scalings along the axes. All of these �lters were reconstructed using 11 basis

�lters.
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64 � 64 = 4096 samples, applying the conventional method would have required computing

the SVD of a 4096 � 4096 matrix! The cascade basis reduction method, however, required

the calculation of the SVD of two 231 � 231 matrices.

6 Conclusion

We have presented a new method of computing the optimal least-squares set of basis functions

to steer any given function under any Lie transformation group. The method combines the

Lie group-theoretic and singular value decomposition approaches in such a way that their

respective strengths complement each other. In particular, the computational complexity of

the singular value decomposition technique in designing basis functions for transformation

groups with large numbers of parameters is signi�cantly reduced. This is achieved by �rst

designing the basis functions using the Lie group-theoretic approach and then reducing this

set of basis functions. It was shown that the computational complexity of the new method

is equivalent to that of performing two singular value decompositions on square matrices of

sizes equal to the number of basis functions. Since the basis and steering functions derived

using the Lie group-theoretic approach are analytical, we have also shown that the optimal

least-squares set of basis functions and steering functions can be expressed analytically as

linear combinations of these original basis and steering functions.
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