
Precision and Recall of GlOSS Estimators for Database Discovery

Luis Gravano
�

H�ector Garc��a-Molina
y

Anthony Tomasic
z

Abstract

The availability of large numbers of network information sources has led to a new problem:
�nding which text databases (out of perhaps thousands of choices) are the most relevant to
a query. We call this the text-database discovery problem. Our solution to this problem,
GlOSS{Glossary-Of-Servers Server, keeps statistics on the available databases to decide which
ones are potentially useful for a given query. In this paper we present di�erent query-result
size estimators for GlOSS and we evaluate them with metrics based on the precision and recall
concepts of text-document information-retrieval theory. Our generalization of these metrics
uses di�erent notions of the set of relevant databases to de�ne di�erent query semantics.

1 Introduction

On-line information vendors o�er access to multiple databases. In addition, the advent of a va-
riety of INTERNET tools [SEKN92, ODL93] has provided easy, distributed access to many more
databases. The result is thousands of text databases from which a user may choose for a given
information need (a user query). This paper presents a framework for (and analyzes a solution to)
this problem, which we call the text-database discovery problem.

Our solution to the text-database discovery problem is to build a service that can suggest
potentially good databases to search. Then, a user's query will go through two steps: �rst, the
query is presented to our server (dubbed GlOSS, for Glossary-Of-Servers Server) to select a set of
promising databases to search. During the second step, the query is actually evaluated at the chosen
databases. As an intermediate step, GlOSS could show the chosen databases to the user, who would
in turn select which ones to actually search. GlOSS gives a hint of what databases might be useful
for the user's query, based on word-frequency information for each database. This information
indicates, for each database and each word in the database vocabulary, how many documents at
that database actually contain the word. For example, a Computer-Science library could report
that the word Knuth occurs in 180 documents, the word computer, in 25,548 documents, and so
on. This information is orders of magnitude smaller than a full index (see [GGMT94]) since for
each word we only need to keep its frequency, as opposed to the identities of the documents that
contain it.

Example 1.1 Consider three databases, A, B, and C, and suppose that GlOSS has collected the
statistics of Figure 1. If GlOSS receives a query q=\�nd retrieval ^ discovery" (this query searches
for documents that contain both words, \retrieval" and \discovery"), GlOSS has to estimate the

�Stanford University, Computer Science Dept., Margaret Jacks Hall, Stanford, CA 94305{2140. E-mail:

gravano@cs.stanford.edu. Phone: (415) 723-0872. Fax: (415) 725-2588.
yStanford University, Computer Science Dept., Margaret Jacks Hall, Stanford, CA 94305{2140. E-mail:

hector@cs.stanford.edu
zPrinceton University, Department of Computer Science. Current Address: Stanford University, Computer Sci-

ence Dept., Margaret Jacks Hall, Stanford, CA 94305{2140. E-mail: tomasic@cs.stanford.edu

1

number of matching documents in each of the three databases. Figure 1 shows that database C
does not contain any documents with the word \discovery," and so, there cannot be any documents
in C matching query q. For the other two databases, GlOSS has to \guess" what the number of
documents matching query q is. There are di�erent ways in which this can be done. An estimator

for GlOSS uses the GlOSS information to make this guess. One of the estimators for GlOSS that
we study in this paper, Ind, estimates the result size of the given query in each of the databases in
the following way. Database A contains 100 documents, 40 of which contain the word \retrieval."
Therefore, the probability that a document in A contains the word \retrieval" is 40

100
. Similarly,

the probability that a document in A contains the word \discovery" is 5

100
. Under the assumption

that words appear independently in documents, the probability that a document in database A

has both the words \retrieval" and \discovery" is 40

100
� 5

100
. Consequently, we can estimate the

result size of query q in database A as f(q; A) = 40

100
� 5

100
� 100 = 2 documents. Similarly,

f(q; B) = 500

1000
� 40

1000
� 1000 = 20, and f(q; C) = 10

200
� 0

200
� 200 = 0.

The Ind estimator chooses those databases with the highest estimates as the databases where to
direct the given query. So, Ind will return fBg as the answer to q (see Figure 2). This may or may
not be a \correct" answer, depending on di�erent factors. Firstly, it is possible that some of the
result-size estimates given by Ind are wrong. For example, it could be the case that database B did
not contain any matching document for q, while Ind predicted there would be 20 such documents
in B. Furthermore, if database A did contain matching documents, then Ind would fail to pick any
database with matching documents (since its answer was fBg).

Secondly, even if the estimates given by Ind are accurate, the correctness of the produced
answer depends on the user's semantics for the query. Assume in what follows that the result-
size estimates given above are correct (i.e., there actually are two documents matching query q in
database A, 20 in database B, and none in database C). Given a query q and a set of databases,
the user may be interested in one out of (at least) two di�erent sets of databases over which to
evaluate query q:

� Matching, the set of all of the databases containing matching documents for the query. For
the sample query, this set is fA, Bg, whereas Ind produced fBg as its answer. Therefore,
if the semantics intended by the query submitter are \recall oriented," in the sense that all
of the databases in Matching should be searched, then Ind's answer is not correct. Such
a user is interested in getting exhaustive answers to the queries. (Section 7.2 presents the
Bin estimator, aimed at addressing these semantics.) If, on the other hand, the intended
semantics are \precision oriented," in the sense that only databases in Matching should be
searched, then Ind's answer is correct. In this case, the user is in \sampling" mode, and
simply wants to obtain some matching documents, without searching useless databases.

� Best, the set of all of the databases containing more matching documents than any other
database. Searching these databases yields the highest payo� (i.e., the largest number of
documents). For the sample query, this set is fBg, which is also the answer produced by
Ind. Again, users might be interested in emphasizing \precision" or \recall," in the sense
described for the Matching-set case. 2

To evaluate the set of databases that GlOSS returns for a given query, we present a framework
based on the precision and recall metrics of information-retrieval theory. In that theory, for a given
query q and a given set S of relevant documents for q, precision is the fraction of documents in
the answer to q that are in S, and recall is the fraction of S in the answer to q. We borrow these
notions to de�ne metrics for the text-database discovery problem: for a given query q and a given
set of \relevant databases" S, P is the fraction of databases in the answer to q that are in S, and

2

Database A B C

Number of documents 100 1000 200

Number of documents
with the word \retrieval" 40 500 10

Number of documents
with the word \discovery" 5 40 0

Figure 1: A portion of the database frequency information that GlOSS keeps for three databases.

A

GlOSS

B C

find retrieval and discovery

with the Ind estimator

Database Database Database

documentsdocuments
2 relevant no relevant

documents
20 relevant

Figure 2: The Ind estimator for GlOSS chooses the most promising databases for a given query. In
the example, database B, which is actually the database containing the highest number of matching
documents, is chosen.

R is the fraction of S in the answer to q. We further extend our framework by o�ering di�erent
de�nitions for a \relevant database." We have performed experiments using query traces from the
FOLIO library information-retrieval system at Stanford University, and involving six databases
available through FOLIO. As we will see, the results obtained for GlOSS and several estimators
are very promising. Even though GlOSS keeps a small amount of information about the contents
of the available databases, this information proved to be su�cient to produce very useful hints on
where to search.

Another advantage of GlOSS is that its frequency information can be updated mechanically,
that is, sources can periodically extract word counts and send them to GlOSS. Other approaches
(see Section 2) require human-generated summaries of the contents of a database, and are prone
to errors or very out-of-date information. Also, GlOSS's storage requirements are low: a rough
estimate suggested that 22.29 MBytes were enough to keep all of the data needed by GlOSS for
the six databases we studied [GGMT94], or only 2:15% of the estimated size of a full index of
the six databases. Therefore, it is straightforward to replicate the service at many sites. Thus, a
user may be able to consult GlOSS at the local machine or cluster, and immediately determine the
candidate databases for a given query.

In [GGMT94] we focused on the storage requirements of GlOSS. We also studied the perfor-
mance of a single estimator for GlOSS, namely the Ind estimator, for a set of evaluation criteria
di�erent from the P and R parameters we use in this paper. The contributions of this paper are:

� The de�nition ofMin and Bin, two new estimators that GlOSSmay use for making decisions.

� An experimental evaluation of GlOSS according to modi�ed precision and recall parameters

3

from information-retrieval theory. This evaluation uses:

{ several di�erent query semantics, corresponding to di�erent de�nitions of the \right set"
of databases where to evaluate each query, and

{ two di�erent real-user query traces.

� The introduction of a more-
exible version of the Ind estimator, and of more-
exible evalu-
ation metrics.

Of course, GlOSS is not the only solution to the text-database discovery problem, and in practice
we may wish to combine it with other complementary strategies. These strategies are described
in Section 2. Incidentally we note that, to the best of our knowledge, experimental evaluations of
these other strategies for the text-database discovery problem are rare: in most cases, strategies are
presented with no statistical evidence as to how good they are at locating sites with documents
of interest for actual user queries. Thus, we view the experimental methodology and results of
this paper (even though they still have limitations) as an important contribution to this emerging
research area.

Section 3 introduces GlOSS and the concept of an estimator. In particular, Section 3.4 describes
Ind, the �rst estimator forGlOSS that we will evaluate in the paper. Section 4 de�nes our evaluation
metrics, based on the precision and recall parameters [SM83]. Section 5 describes the experiments
performed to assess the e�ectiveness of GlOSS. Section 5.3 identi�es three di�erent \right" sets
of databases where users might want to evaluate their queries. Section 6 reports the experimental
results, including experiments on two query traces to assess how dependent our results are on a
speci�c query trace (Section 6.4). Section 7.1 introduces variants to Ind and to our evaluation
metrics. Section 7.2 presents Min and Bin, two new estimators for GlOSS. Finally, Section 8
summarizes our work.

2 Related work

Many solutions have been presented recently for the text-database discovery problem, or, more
generally, for the resource-discovery problem: the text-database discovery problem is a subcase of
the resource-discovery problem, since the latter generally deals with a larger variety of types of
information [SEKN92, ODL93].

One solution to the text-database discovery problem is to let the database selection be driven by
the user. Thus, the user will be aware of and an active participant in this selection process. Di�er-
ent systems follow di�erent approaches to this: one such approach is to let users \browse" through
information about the di�erent databases. Examples include Gopher [SEKN92], where users nav-
igate through the network following a hierarchy of indexes, and World-Wide Web [BLCGP92],
which uses a hypertext interface to do this. Various search facilities are being created for these sys-
tems, like the Veronica Service [Fos92] for Gopher, for example. The Prospero File System [Neu92]
lets users organize information available in the INTERNET through the de�nition (and sharing) of
customized views of the di�erent objects and services available to them.

A di�erent approach is to keep a database of \meta-information" about the available databases
and have users query this database to obtain the set of databases to search. For example,
WAIS [KM91] provides a \directory of servers." This \master" database contains a set of doc-
uments, each describing (in English) the contents of a database on the network. The users �rst
query the master database, and once they have identi�ed potential databases, direct their query
to these databases. One disadvantage is that the user typically needs two di�erent queries. Also,
the master-database documents have to be written by hand to cover the relevant topics, and have

4

to be manually kept up to date as the underlying database changes. However, freeWAIS [FW+93]
automatically adds the 50 most frequently occurring words in an information server to the as-
sociated description in the directory of servers. Another drawback is that in general, databases
containing relevant documents might be missed if they are not chosen during the database-selection
phase. [DS93] shows sample queries for which very few of the existing relevant servers are found
by querying the WAIS directory of servers (e.g., only 6 out of 223 relevant WAIS servers).

[Sch90] follows a probabilistic approach to the resource-discovery problem. A resource-discovery
protocol is presented that conceptually consists of two phases: a dissemination phase, during which
information about the contents of the databases is replicated at randomly chosen sites, and a search
phase, where several randomly chosen sites are searched in parallel. Also, sites are organized into
\specialization subgraphs." If one node of such a graph is reached during the search process, the
search proceeds \non-randomly" in this subgraph, if it corresponds to a specialization relevant to
the query being executed. See also [Sch93].

In Indie (shorthand for \Distributed Indexing") [DLO92], information is indexed by \Indie
brokers," each of which has associated, among other administrative data, a boolean query (called a
\generator rule"). Each broker indexes (not necessarily local) documents that satisfy its generator
rule. Whenever a document is added to an information source, the brokers whose generator rules
match the new document are sent a descriptor of the new document. The generator objects
associated with the brokers are gathered by a \directory of servers," that is queried initially by
the users to obtain a list of the brokers whose generator rules match the given query. See also
[DANO91]. [SA89], [BC92], and [OM92] are other examples of this type of approach in which users
query \meta-information" databases.

A \content-based routing" system is used in [SDW+94] to address the database-discovery prob-
lem. The \content routing system" keeps a \content label" for each information server (or collection
of objects, more generally), with attributes describing the contents of the collection. Users assign
values to the content-label attributes in their queries until a su�ciently small set of information
servers is selected. Also, users can browse the possible values of each content-label attribute.

The WHOIS++ directory service [WS93] organizes the WHOIS++ servers into a distributed
\directory mesh" that can be searched: each server automatically generates a \centroid" listing
the words it contains (for the di�erent attributes). Centroids are gathered by index servers, that in
turn must generate a centroid describing their contents. The index server centroids may be passed
to other index servers, and so on. A query that is presented to an index server is forwarded to the
(index) servers whose centroids match the query.

The master-database idea can be enhanced if we can use the semantics of queries and databases.
In particular, assume we can automatically extract the semantic \concepts" involved in a user query.
Also assume that we can extract the semantic concepts appearing in a collection of documents (in
a database). Assuming that the number of concepts is much smaller than the number of words
appearing in documents, then the concepts can be used for distributed indexing. That is, the
user query is processed to extract the concepts; these are matched against the set of concepts and
the potential sites identi�ed. With our sample query \�nd retrieval ^ discovery," the processing
could extract the concept computer science and the index would determine that documents on this
concept appear in the Computer Science and the Medical databases. A related approach has been
followed in [GS93].

In [FY93], every site keeps statistics about the type of information it receives along each link
connecting to other sites. When a query arrives in a site, it is forwarded through the most promising
link according to these statistics.

References [MTD92], [MDT93], and [ZC92] follow an expert-systems approach to solving the
related problem of selecting online business databases.

5

Other approaches to solving the resource-discovery problem guarantee exhaustive answers to
the users' queries. For example, the archie system [ED92] periodically obtains a recursive listing
of the contents of all the available FTP sites in order to answer users' queries.

A complementary approach to GlOSS is taken by Chamis [Cha88]. Brie
y, the approach this
paper takes is to expand a user query with thesaurus terms. The expanded query is compared with
a set of databases, and the query terms with exact matches, thesauri matches, and \associative"
matches are counted for each database. Each database is then ranked as a function of these counts.
We believe that this approach is complementary in its emphasis on thesauri to expand the meaning
of a user query.

3 GlOSS: Glossary-Of-Servers Server

Consider a query q (permissible queries are de�ned in Section 3.1) that we want to evaluate over a
set of databases DB. GlOSS selects a subset of DB consisting of \good candidate" databases for
actually submitting q. To make this selection, GlOSS uses an estimator (Section 3.3), that assesses
how \good" each database in DB is with respect to the given query, based on the word-frequency
information on each database (Section 3.2).

3.1 Query representation

In this paper, we will only consider boolean \and" queries, that is, queries that consist of positive
atomic subqueries connected by the boolean \and" operator (denoted as \^" in what follows). An
atomic subquery is a keyword �eld-designation pair. An example of a query is:

\�nd author Knuth ^ subject computer."

This query has two atomic subqueries: \author Knuth" and \subject computer." In \author Knuth,"
author is the �eld designation, and Knuth the corresponding keyword 1.

We consider only boolean queries so far because this model is used by library systems and
information vendors worldwide. Also, the system we had available to perform our experiments
uses only boolean queries (see Section 5.1). Nevertheless, we should stress that we can generalize
this paper's approach to the vector-space retrieval model [SM83]2. The reason why we restrict our
study to \and" queries is that we want to understand a simple case �rst. Also, most of the queries
in the trace we studied (see Section 5.1) are \and" queries. However, we can extend our approach
to include \or" queries in a variety of di�erent ways. For example, in [GGMT94] we analyze a
limited form of \or" queries, showing how GlOSS can handle this type of queries.

3.2 Database word-frequency information

GlOSS keeps the following information about the databases:

� DBSize(db), the total number of documents in database db, 8 db 2 DB, and

� freq(t; db), the number of documents in db that contain t, 8 db 2 DB, and for all keyword
�eld-designation pairs t. Note that GlOSS does not have available the actual \inverted lists"

1Uniform �eld designators for all the databases we considered (see Section 5.1) were available for our experiments.

However, GlOSS does not rely completely on this, and could be adapted to the case where the �eld designators are

not uniform across the databases, for example.
2For example, we could extend GlOSS with a \dot product" estimator that would produce a ranking of all

databases given a query.

6

corresponding to each keyword-�eld pair and each database, but just the length of these
inverted lists. The value freq(t; db) is the size of the result of query \�nd t" in database db.

If freq(t; db) = 0, GlOSS does not need to store this explicitly, of course. Therefore, if GlOSS
�nds no information about freq(t; db), then freq(t; db) will be assumed to be 0.

A real implementation of GlOSS would require that each database cooperate and periodically
submit these frequencies to the GlOSS server following some prede�ned protocol.

In [GGMT94], we modify the frequency information that GlOSS keeps on each database so as
to reduce its size.

3.3 Estimators

Given freq and DBSize for a set of databases DB, GlOSS uses an estimator EST to select the
set of databases to which to submit the given query. An estimator consists of a function ESizeEST

that estimates the result size of a query in each of the databases, and a \matching" function
(the max function below) that uses these estimates to select the set of databases (ChosenEST
below) to which to submit the query. Once ESizeEST (q; db) has been de�ned, we can determine
ChosenEST (q;DB) in the following way:

ChosenEST (q;DB) = fdb 2 DBjESizeEST (q; db)> 0 ^

ESizeEST (q; db) = max
db02DB

ESizeEST (q; db
0)g (1)

Equation 1 may seem targeted to identifying the databases containing the highest number of
matching documents. However, Section 7.2 shows how we can de�ne ESizeEST (q; db) so that
ChosenEST (q; db) becomes the set of all of the databases potentially containing matching docu-
ments, when we present the Bin estimator. Instances of ESizeEST are given in Sections 3.4 and
7.2, while a di�erent \matching" function is used in Section 7.1.

3.4 The Ind estimator

This section describes Ind, the estimator that we will use for most of our experiments. Ind (for
\independence") is an estimator built upon the (possibly unrealistic) assumption that keywords
appear in the di�erent documents of a database following independent and uniform probability
distributions. Under this assumption, given a database db, any n keyword �eld-designation pairs
t1; : : : ; tn, and any document d 2 db, the probability that d contains all of t1; : : : ; tn is:

freq(t1; db)

DBSize(db)
� : : :�

freq(tn; db)

DBSize(db)

So, according to Ind, the estimated number of documents in db that will satisfy the query \�nd
t1 ^ : : :^ tn" is [SFV83]:

ESizeInd(find t1 ^ : : :^ tn; db) =

Qn
i=1 freq(ti; db)

DBSize(db)n�1
(2)

The ChosenInd set is then computed with Equation 1. Thus, Ind chooses those databases with
the highest estimates (as given by ESizeInd).

To illustrate these de�nitions, let DB =fINSPEC, PSYCINFOg (INSPEC and PSYCINFO are
databases that we will use in our experiments, see Section 5). Also, let:

q = �nd author D. Knuth ^ title computer

7

INSPEC PSYCINFO

DBSize() 1,416,823 323,952

freq(author D. Knuth;) 13 0

freq(title computer;) 24,086 2704

Figure 3: Information Ind needs for DB = fINSPEC, PSYCINFOg and q= \�nd author D. Knuth

^ title computer."

Figure 3 shows the statistics available to Ind. From this, Ind computes: ESizeInd(q; INSPEC) =
13�24;086
1;416;823

' 0:22. Incidentally, the actual result size of the query q in INSPEC, RSize(q; INSPEC),
is one document.

Since \D. Knuth" is not an author in the PSYCINFO database, and due to the boolean se-
mantics of the query representation, the result size of query q in the PSYCINFO database must
be zero. This agrees with what Equation 2 predicts: ESizeInd(q;PSYCINFO) =

0�2704
323;952

= 0. This
holds in general for boolean queries: if freq(ti; db) = 0 for some 1 � i � n, then

ESizeInd(find t1 ^ : : :^ tn; db) = RSize(find t1 ^ : : :^ tn; db) = 0

As we have seen, when all frequencies are non-zero, ESizeInd can di�er from RSize. Section 6.1
analyzes how well ESizeInd approximates RSize.

To continue with our example, since DB =fINSPEC, PSYCINFOg, and INSPEC is the only
database with a non-zero result-size estimate, as given by ESizeInd, it follows that ChosenInd(q;DB)
= fINSPECg. So, Ind chooses the only database in the pair that might contain some matching
document for q. In fact, since RSize(q; INSPEC) = 1, Ind succeeds in selecting the only database
that actually contains a document matching query q.

4 Evaluation parameters

Let DB be a set of databases and q a query. In order to evaluate an estimator EST , we need to
compare its prediction against what actually is Right(q;DB), the \right subset" of DB to query.
There are several notions of what the right subset means, depending on the semantics the query
submitter has in mind. Section 5.3 examines some of these options. For example, Right(q;DB)
can be de�ned as the set of all the databases in DB that contain documents that match query
q. Once we have de�ned the Right set for a query q and a database set DB, we evaluate how
well ChosenEST (q;DB) approximates Right(q;DB). (In general, we will drop the parameters of
functions when this will not lead to confusion. For example, we refer to Right(q;DB) as Right,
whenever q and DB are clear from the context.)

To evaluate ChosenEST , we adapt the well-known precision and recall parameters from information-
retrieval theory [SM83] to the text-database discovery framework. If we regard Right as the set of
\items" (databases in this context) that are relevant to a given query q, and ChosenEST as the set
of items that is actually retrieved, we can de�ne the following functions PEST

Right and REST
Right, based

upon the precision and recall parameters:

PEST
Right(q;DB) =

(
jChosenEST (q;DB)\Right(q;DB)j

jChosenEST (q;DB)j
if jChosenEST (q;DB)j > 0

1 otherwise
(3)

REST
Right(q;DB) =

(
jChosenEST (q;DB)\Right(q;DB)j

jRight(q;DB)j
if jRight(q;DB)j> 0

1 otherwise
(4)

8

Database DBSize Area

INSPEC 1,416,823 Physics, Elect. Eng., Computer Sc., etc.

COMPENDEX 1,086,289 Engineering

ABI 454,251 Business Periodical Literature

GEOREF 1,748,996 Geology and Geophysics

ERIC 803,022 Educational Materials

PSYCINFO 323,952 Psychology

Figure 4: Summary of the characteristics of the six databases considered.

Intuitively, P is the fraction of selected databases that are Right ones, and R is the fraction
of the Right databases that are selected. For example, suppose that the set of databases is DB =
fA;B;Cg, and that for a given query q, Right(q;DB) is de�ned to be fA;Bg (this could be the
case if only A and B contained documents matching query q, as in Example 1). Furthermore, if
ChosenEST (q;DB) = fBg, then PEST

Right(q;DB) = 1, since the only chosen database, B, is in the

Right set. On the other hand, REST
Right(q;DB) = 0:5, since only half of the databases in Right are

included in ChosenEST .
Note that PEST

Right(q;DB) = 1 whenever ChosenEST = ;, to capture the fact that no database

in ChosenEST is not in Right. Similarly, REST
Right(q;DB) = 1 if Right = ;, since all of the Right

databases are included in ChosenEST .
Di�erent users will be interested in di�erent semantics for the queries. One way to de�ne

di�erent semantics is through the de�nition of Right (see Section 5.3). Even for a �xed Right set
of databases, some users may be interested in emphasizing \precision" (databases not in Right

should be avoided, even if this implies missing some of the \right" databases), while some others
may want to emphasize \recall" (at least all of the databases in Right should be included in the
answer to query q). Therefore, high values of PEST

Right should be the target in the former case, and

high values of REST
Right in the latter.

In this paper, we evaluate di�erent estimators in terms of the average value, over a set of user
queries, of the P and R parameters de�ned above, for di�erent Right sets of databases.

5 Experimental framework

In order to evaluate the performance of di�erent GlOSS estimators according to the P and R

parameters of Section 4, we performed experiments using query traces from the FOLIO library
information-retrieval system at Stanford University.

5.1 Databases and the INSPEC query trace

Stanford University provides on-campus access to its information-retrieval system FOLIO from
terminals in libraries and from workstations via telnet sessions. FOLIO gives access to several
databases. Figure 4 summarizes some characteristics of the six databases we chose for our exper-
iments. Six is a relatively small number, given our interest in exploring hundreds of databases.
However, we were limited to a small number of databases by their accessibility and by the high
cost of our experiments. Thus, our results will have to be taken with caution, indicative of the
potential bene�ts of this type of estimators.

A trace of all user commands for the INSPEC database was collected from 4/12/1993 to
4/25/1993. This set of commands contained 8392 queries. As discussed in Section 3.1, we only

9

considered correctly formed \and" queries3. Also, we did not consider the so-called \phrase"
queries (e.g., \�nd titlephrase knowledge bases"). The �nal set of queries, TRACEINSPEC , has
6897 queries, or 82.19% of the original set.

5.2 Database-frequency-information construction

In order to perform our experiments, we evaluated each of the TRACEINSPEC queries in the six
databases described in Figure 4. This is the data we need to build the di�erent Right sets (see
Section 5.3) for each of the queries.

Also, to build the database word-frequency information needed by GlOSS (Section 3.2) we
evaluated, for each query of the form �nd t1 ^ : : : ^ tn, the n queries �nd t1; : : : ; �nd tn in each
of the six databases. Note that the result size of the execution of �nd ti in database db is equal
to freq(ti; db) as de�ned in Section 3. This is exactly the information an estimator EST needs to
de�ne ChosenEST , for each query in TRACEINSPEC

4. It should be noted that this is just the
way we gathered the data in order to perform our experiments. An actual implementation of such
a system would require that each database communicate the number of postings for each word to
GlOSS.

5.3 Di�erent \right" sets of databases

Section 4 introduced the notion of the Right set of databases for a given query. Di�erent de�ni-
tions for the Right set determine di�erent instantiations of the P and R parameters de�ned by
Equations 3 and 4. To illustrate the issues involved in determining Right, consider the following
example:

Example 5.1 Figure 5 shows three databases: A, B, and C. Consider a query q issued by a user.
Each database produces a set of matching documents as the answer to q. Figure 5 shows that
database A gives document 4 as the answer to q, database B, documents 5, 6, and 7, and database
C, documents 8 and 9. Also, each database contains a set of documents that are relevant to the
user that issued query q, that is, are actually of interest to the user. These documents may or
may not match the answer to q. Thus, database A has three relevant documents: documents 1,
2, and 3, database B has one relevant document: document 5, and database C has two relevant
documents: documents 8 and 9. Furthermore, assume that the user is interested in evaluating the
query in one database only. The question is how to de�ne the Right set given this scenario. There
are three alternatives:

� Right = fAg, since A is the database with the highest number of documents (three) relevant
to the user's information need. However, the answer produced by database A when presented
with query q consists of document 4 only, which is not a relevant document. Therefore, the
user would not bene�t from the fact thatA contains the highest number of relevant documents
among the three available databases, making this de�nition for Right not very useful.

� Right = fCg, since C is the database that produces the highest number of relevant documents
in the answer to query q. This is an interesting de�nition. However, we believe that it is
unreasonable to expect a service like GlOSS to guess this type of Right set of sites. Since the
information kept by GlOSS about each database is necessarily much less detailed than that
kept by the search engine at each database, it would be very hard for GlOSS to accurately
guess the number of relevant documents in the answer to a query given by a database.

3A limited form of \or" queries is implicit whenever the \subject" index is used (see [GGMT94]).
4In fact, we are not retrieving all of the word frequencies, but only those that are needed for the queries in

TRACEINSPEC .

10

set of matching documents

1
2

3

4

5

6 7

8

9

Database A Database B Database C

set of relevant documents

Figure 5: The documents relevant to a given query vs. the documents actually given as the answer
to the query, for three di�erent databases. Documents are represented by numbers in this �gure.

� Right = fBg, since B is the database that produces the largest number of matching doc-
uments for q. Presumably, if the individual databases retrieve a reasonable approximation
of the set of documents relevant to the given query, the Right database according to this
de�nition would yield the highest number of useful documents. Also, the semantics of this
de�nition are easily understood by the users, since they do not depend on relevance judge-
ments, for example. 2

In our �rst two de�nitions of the Right set, we will take the third approach illustrated in the
example. That is, the goodness of a database db with respect to a query q will be determined by
the number of documents that db returns when presented with q (i.e., the number of documents
matching q in db). Our �rst de�nition forRight(q;DB) isMatching(q;DB), the set of all databases
in DB containing at least one document that matches query q. More formally,

Right(q;DB) = Matching(q;DB) = fdb 2 DBjRSize(q; db)> 0g (5)

There are (at least) two types of users that may specify Matching(q;DB) as their right set of
databases. One is users that want an exhaustive answer to their query. They are not willing to
miss any of the matching documents. We will refer to these users as \recall-oriented" users. On
the other hand, \precision-oriented" users may be in \sampling" mode: they simply want to obtain
some matching documents without searching useless databases.

Our second de�nition for Right(q;DB) is Best(q;DB), the set of those databases that contain
more matching documents than any other database. More formally,

Right(q;DB) = Best(q;DB)

= fdb 2 DBjRSize(q; db) > 0^ RSize(q; db) = max
db02DB

RSize(q; db0)g (6)

Again, users that de�ne Best(q;DB) as their right set of databases for query q might be classi�ed
as being \recall oriented" or \precision oriented." \Recall-oriented" users want all of the best
databases for their query. These users are willing to miss some databases, as long as they are
not the best ones. That is, the users recognize that there are more databases that could be
examined, but want to ensure that at least those having the highest payo� (i.e., the largest number
of documents) are searched. On the other hand, \precision-oriented" users want to examine (some)

11

Database set (DB) fINSPEC, COMPENDEX, ABI,
GEOREF, ERIC, PSYCINFOg

Estimator Ind

Query set TRACEINSPEC

Query sizes All
considered

�C 0

�B 0

Figure 6: Basic con�guration of the experiments.

best databases. Due to limited resources (e.g., time, money) the users only want to submit their
query at databases that will yield the highest payo�.

Our third de�nition for Right(q;DB), MatchingI(q;DB), is speci�c for the case INSPEC
2 DB, and for queries q 2 TRACEINSPEC . (This de�nition will be useful in the experiments we
describe starting in Section 6.2.) In this case, we assume that INSPEC is the right database to
search, regardless of the number of matching documents in the other databases, because the users
issued the TRACEINSPEC queries to the INSPEC database, and perhaps they knew what the right
database to search was. This is somewhat equivalent to regarding each query q 2 TRACEINSPEC

as augmented with the extra conjunct \^ database INSPEC." So, our third de�nition for Right
is:

Right(q;DB) = MatchingI(q;DB)

=

(
fINSPECg if INSPEC 2 DB ^ RSize(q; INSPEC) > 0
; otherwise

(7)

5.4 Con�guration of the experiments

There are a number of parameters to our experiments. Figure 6 shows an assignment of values
to these parameters that will determine the basic con�guration. In later sections, some of these
parameters will be changed, to produce alternative results. The parameters �C and �B will be
de�ned in Section 7.1.

6 Ind results

In this section, we evaluate Ind by �rst studying how well it can predict the result size of a query and
a database (Section 6.1). After this, we analyze Ind's ability to distinguish between two databases
(Section 6.2) and then we generalize the experiments to include six databases (Section 6.3). Finally,
we repeat some of the experiments for a di�erent set of queries to see how dependent our results
are on the query trace used (Section 6.4).

6.1 Ind as a predictor of the result size of the queries

The key to Ind is its estimation function ESizeInd(q; db), which predicts how many documents
matching query q database db has. Before seeing how accurate Ind is at selecting a good subset
of databases, let us study its estimation function ESizeInd. An important question is whether
ESizeInd is a good predictor of the result size of a query in absolute terms, that is, whether the

12

0

500

1000

1500

2000

0 500 1000 1500 2000

E
S

iz
e_

In
d

RSize

Figure 7: Ind as an estimator of the result size of the queries.

following holds:

ESizeInd(q; db) � RSize(q; db)

If we analyze the data we collected, as explained in Section 5, the answer is no, unfortunately.
In general, Ind tends to underestimate the result size of the queries. The more conjuncts in a
query, the worse this problem becomes. Figure 7 shows a plot of the pairs:

< RSize(q; INSPEC);ESizeInd(q; INSPEC) >

for the queries in TRACEINSPEC (see Section 5). The accumulation of points on the y = x axis
corresponds to the one-atomic-subquery queries (e.g., \�nd author Knuth"), for which ESizeInd =
RSize (this follows from Equation 2).

Nevertheless, Ind will prove to be good at discriminating between useful and less useful databases
according to the P and R parameters of Section 4. The reason for this is that even though
ESizeInd(q; db) will in general not be a good approximation of RSize(q; db), it is usually the case
that ESizeInd(q; db

0) < ESizeInd(q; db) if database db contains more documents matching query q

than database db0 does.

6.2 Evaluating Ind over pairs of databases

In this section, we report some results for the basic con�guration (Figure 6), but with DB, the set
of available databases, set to just two databases. Figures 8 and 9 show two matrices classifying the
6897 queries in TRACEINSPEC for the cases DB =fINSPEC, PSYCINFOg and DB =fINSPEC,
COMPENDEXg. The sum of all of the entries of each matrix equals 6897. Consider for example
Figure 8, for DB =fINSPEC, PSYCINFOg. Each row of the matrix represents an outcome for
Matching and Best. The �rst row, for instance, represents queries where both INSPEC and
PSYCINFO had matching documents (Matching =fINSPEC, PSYCINFOg) but where INSPEC

13

had the most matching documents (Best =fINSPECg). On the other hand, each column represents
the prediction made by Ind. For example, the number 2678 means that for 2678 of the queries
in TRACEINSPEC, Best =fINSPECg, Matching =fINSPEC, PSYCINFOg, and Ind selected
INSPEC as its prediction (ChosenInd =fINSPECg). In the same row, there were 26 other queries
where Ind picked a matching database (PSYCINFO) but not the best one. In the �rst two rows,
we see that for most of the queries (5614 out of 6897), INSPEC was the best database. This is not
surprising, since the queries used in the experiments were originally issued by users to the INSPEC
database.

The two matrices of Figures 8 and 9 show that ChosenInd = ; only if Matching = ;. From
Equations 1 and 2 it follows that this relationship holds in general, that is, as long as there is at least
one database that contains matching documents, ChosenInd will be non-empty. Also, note that
very few times (15 for fINSPEC, PSYCINFOg and 92 for fINSPEC, COMPENDEXg) does Ind
determine a tie between the two databases (and so, ChosenInd consists of both databases). This
is so since it is unlikely that ESizeInd(q; db1) will be exactly equal to ESizeInd(q; db2) if db1 6= db2.
With the current de�nition of ChosenInd, if for some query q and databases db1 and db2 it is the case
that, say, ESizeInd(q; db1) = 9 and ESizeInd(q; db2) = 8:9, then ChosenInd(q; fdb1; db2g) = fdb1g.
We might want in such a case to include db2 also in ChosenInd. We address this issue in Section 7.1,
where we relax the de�nition of ChosenInd and Best.

Figures 10 and 11 report the values of the P and R parameters for the three di�erent target sets
de�ned in Section 5.3. For example, in the second row of Figure 10, RIndBest= 0.9910. This means that
for the average query, ChosenInd includes 99:10% of the Best databases when DB =fINSPEC,
PSYCINFOg. Therefore, for most of the TRACEINSPEC queries, Best � ChosenInd: from
Figure 8, Best � ChosenInd for 6831 queries. Also, for 6328 queries, ChosenInd was exactly equal
to Best. The reason for such high values is that INSPEC and PSYCINFO cover very di�erent
topics (see Figure 4). Therefore, for each query there is likely to be a clear \winner" (generally
INSPEC for the queries in TRACEINSPEC). On the other hand, INSPEC and COMPENDEX

cover somewhat overlapping areas, thus yielding a lower (0:9216) value for RIndBest (see Figure 11),
for example.

The values for RIndMatching are lower in both the PSYCINFO and COMPENDEX cases: this
is not surprising since Ind chooses the most promising databases, not all of the ones potentially
containing matching documents. Therefore, some matching databases may be missed. Section 7.2
introduces a di�erent estimator for GlOSS, Bin, aimed at optimizing the case Right =Matching.
Notice that RIndMatching is particularly low (0:6022) for the pair fINSPEC, COMPENDEXg, since
for most of the queries, there are matching documents in both databases (see the rows of Figure 9
corresponding to Matching =fINSPEC, COMPENDEXg), and very rarely does Ind choose more
than one database, as explained above.

From Figure 10, P IndBest= 0.9187, showing that for each query, an average of 91:87% of the
databases in ChosenInd are among the Best databases. So, for most of the queries, ChosenInd �

Best: from Figure 8, ChosenInd � Best for 6336 queries. In general, the values for P IndBest and

P IndMatching are relatively high for both pairs of databases, showing that in most cases ChosenInd
consists only of matching databases (high P IndMatching) and in many of these cases, ChosenInd consists

only of \best" databases (high P IndBest). Furthermore, it is always the case that P IndBest(q;DB) �

P IndMatching(q;DB), since Best(q;DB) �Matching(q;DB).

Finally, note that the values of P IndMatchingI
and RIndMatchingI

are higher for the fINSPEC, PSYCINFOg
pair than for the fINSPEC, COMPENDEXg pair: for the fINSPEC, PSYCINFOg pair, INSPEC
is almost always clearly the best database (see Figure 8), whereas this is true to a lesser extent for
the fINSPEC, COMPENDEXg pair (see Figure 9).

14

ChosenInd
Best Matching fIg fPg fI, Pg ;

fIg fI, Pg 2678 26 0 0

fIg fIg 2894 16 0 0

fPg fI, Pg 11 224 0 0

fPg fPg 5 34 0 0

fI, Pg fI, Pg 3 5 15 0

; ; 462 41 0 483

Figure 8: Results corresponding toDB = fINSPEC (I), PSYCINFO (P)g and Ind as the estimator.

ChosenInd
Best Matching fIg fCg fI, Cg ;

fIg fI, Cg 4053 247 0 0

fIg fIg 382 43 0 0

fCg fI, Cg 144 743 0 0

fCg fCg 23 100 0 0

fI, Cg fI, Cg 125 43 92 0

; ; 319 173 0 410

Figure 9: Results corresponding to DB = fINSPEC (I), COMPENDEX (C)g and Ind as the
estimator.

Right P IndRight RIndRight

Matching 0.9240 0.7833

Best 0.9187 0.9910

MatchingI 0.8810 0.9607

Figure 10: Parameters P and R for DB =fINSPEC, PSYCINFOg and Ind as the estimator.

Right P IndRight RIndRight

Matching 0.9191 0.6022

Best 0.8624 0.9216

MatchingI 0.7482 0.8440

Figure 11: Parameters P and R for DB =fINSPEC, COMPENDEXg and Ind as the estimator.

15

Right P IndRight RIndRight

Matching 0.9126 0.4044

Best 0.8438 0.9010

MatchingI 0.5966 0.7012

Figure 12: Parameters P and R for the basic con�guration of the experiments.

[GGMT93] reports experimental results for all the pairs of databases that can be obtained
from fINSPEC, COMPENDEX, ABI, GEOREF, ERIC, PSYCINFOg. The two pairs of databases
analyzed in this section, fINSPEC, PSYCINFOg and fINSPEC, COMPENDEXg, are among the
best and the worst, respectively, for Ind, among all possible pairs: in general, the more unrelated
the subject domains of the two databases considered were, the better Ind behaved in distinguishing
the databases.

6.3 Evaluating Ind over six databases

In this section we report some results for the basic con�guration, as de�ned in Figure 6. Figure 12
summarizes the results corresponding to the three de�nitions of the Right set of Section 5.3. This
�gure shows that the same phenomena described in Section 6.2 prevail, although in general the
values are lower. For example, RIndMatching is much lower (0.4044), since Ind chooses only the most
promising databases, not all of the ones that might contain matching documents (see Section 7.2).

Still, RIndBest is high (0:9010), showing Ind's ability to predict what the best databases are. Also,

P IndMatching and P IndBest are high (0:9126 and 0:8438, respectively), making Ind useful for exploring
some of the matching/best databases. This is particularly signi�cant for Ind: ChosenInd(q;DB)
will be non-empty as long as there is some database in DB that contains some document matching
query q.

Another interesting piece of information that we gathered in our experiments is the fact that
for only 96 out of the 6897 TRACEINSPEC queries does ChosenInd consist of more than one
database. Furthermore, 95 out of these 96 queries are one-atomic-subquery queries, for which
ChosenInd = Best necessarily (this follows from Equations 1 and 2). So, revisiting the results of

Figure 12, since RIndBest=0.9010, for most of the TRACEINSPEC queries not only does Ind narrow
down the search space to one database (out of the six available ones), but it also manages to select
the best database when there is one.

6.4 Impact of using other traces

So far, all of our experiments were based on the set of 6897 TRACEINSPEC queries. To analyze
how dependent the results are on the trace used, we ran our experiments using a di�erent set of
queries. Real users issued these queries to the ERIC database between 3/28/1993 and 4/10/1993.
We processed the trace in the same way as the INSPEC trace (see Section 5). The �nal set of
queries, TRACEERIC, has 2404 queries, or 78:82% of the original 3050 query set.

Figure 13 shows the results for the di�erent instances of the P and R parameters, for the basic
con�guration (Figure 6) but using TRACEERIC. The de�nition of theMatchingE set of databases
is analogous to that of MatchingI (see Equation 7), using ERIC instead of INSPEC. The results
obtained di�er only slightly from the ones in Figure 12 for TRACEINSPEC . This suggests that
our results are not sensitive to the type of trace used.

16

Right P IndRight RIndRight

Matching 0.8960 0.4621

Best 0.8498 0.9384

MatchingE 0.5485 0.6876

Figure 13: Parameters P and R for the basic con�guration, but using the TRACEERIC queries.

7 Improving GlOSS

In this section we introduce variations to the de�nition of the ChosenEST and Best sets in order to
make them more
exible (Section 7.1), and present two new estimators,Min and Bin (Section 7.2).

7.1 Making ChosenEST and Best more
exible

The de�nitions of ChosenEST and Best given by Equations 1 and 6 are sometimes too \rigid."
Consider the following example. Suppose fdb1; db2g is our set of databases, and let q be a query such
that RSize(q; db1) = 1; 000, and RSize(q; db2) = 1; 001. According to Equation 6, Best(q;DB) =
fdb2g. But this is probably too arbitrary, since both databases are almost identical regarding the
number of matching documents they have for query q. Also, if an estimator EST predicts that the
two databases contain a very similar number of documents satisfying a query, though not exactly
equal, it might be preferable to choose both databases as the answer instead of picking the one
with absolute highest estimated size.

In this section, we extend the de�nitions of ChosenEST and Best, through the introduction
of two parameters, �B and �C . Parameter �B will make the de�nition of Best looser, by letting
databases with a number of documents close but not exactly equal to the maximum be considered as
\best" databases also. Parameter �C changes the \matching" function (Section 3.3) of an estimator
EST by making it able to choose databases that are close to the predicted optimal ones. The new
de�nitions for ChosenEST and Best are, for given �B ; �C � 0:

ChosenEST (q;DB) = fdb 2 DBjESizeEST (q; db)> 0 ^

����ESizeEST (q; db)� hest

hest

���� � �Cg (8)

Best(q;DB) = fdb 2 DBjRSize(q; db) > 0^

����RSize(q; db)� hreal

hreal

���� � �Bg (9)

where
hest = max

db02DB
ESizeEST (q; db

0) and hreal = max
db02DB

RSize(q; db0):

Therefore, the larger �B and �C , the more databases will be included in Best and ChosenEST ,
respectively. Note that Equations 1 and 6 coincide with Equations 8 and 9 for �B = �C = 0. Also,
if �C = 1, Ind becomes the Bin estimator described in Section 7.2: ChosenInd(q;DB) thus consists
of all of the databases in DB that might contain some matching documents for query q.

Figures 14 and 15 show the average values of the P and R parameters, respectively, for the basic
con�guration of the experiments (�C = 0), but for di�erent values of �B . Thus, our Ind estimator
remains �xed (since �C = 0) and so do Matching and MatchingI , since they do not depend on

the parameter �B. This is why the curves corresponding to P IndMatching, R
Ind
Matching, P

Ind
MatchingI

, and

RIndMatchingI
are
at. On the other hand, the set of best databases, Best, varies as �B does. By

varying �B alone, we are leaving the estimator �xed, and we change the semantics of our evaluation
criteria, because we are modifying (i.e., making more
exible) our Best \target" set.

17

In Figure 15 we see that parameter RIndBest worsens as �B grows, since Best tends to contain

more databases, while ChosenInd remains �xed. This is exactly why P IndBest (Figure 14) improves

with higher values of �B. Note that for �B = 1, Best = Matching, and so, P IndMatching and RIndMatching

coincide with P IndBest and RIndBest, respectively.
As mentioned above, parameter �B is not a parameter of our estimator, but of the semantics of

the queries. The submitter of a query does not give an �B value to GlOSS. Instead, higher values
for �B yield more comprehensive Best sets. Therefore, parameter �B should be �xed according
to the desired \meaning" for Best. For example, suppose that we are evaluating Ind for a user
that wants to locate Best databases, but is willing to search at sites that have 90% or more of the
number of matching documents than the overall Best sites have. Then, the experimental results
that are relevant to this user are those obtained for �B = 0:1.

Figures 16 and 17 show the average values of the P and R parameters, respectively, for the
basic con�guration of the experiments (�B = 0), but for di�erent values of �C . Here, the Matching

and MatchingI sets do not change (they do not depend on �C), and neither does Best (since
�B = 0). Ind is a�ected, since �C is variable. Since ChosenInd tends to cover more databases as �C
grows, RIndMatching, R

Ind
Best, and RIndMatchingI

improve for higher values of �C . For �C = 1, RIndMatching=

RIndBest= RIndMatchingI
= 1, since ChosenInd contains all of the potentially matching databases: as

mentioned above, Ind becomes the Bin estimator (Section 7.2) for �C = 1. This is also why P IndBest

and P IndMatchingI
worsen as �C grows. Parameter P IndMatching remains basically unchanged for higher

values of �C , but worsens for �C close to one, for the same reasons P IndBest and P IndMatchingI
get lower.

Note that for �C = 1, P IndBest 6= P IndMatching , since Best and Matching di�er (�B = 0).
From Figures 16 and 17 we can conclude that the value for �C should be set according to

whether precision or recall should be emphasized (in the sense of Section 4). Users can set the
value for �C to be used by Ind according to the query semantics they are interested in: in general,
higher values for �C make the R parameters improve, while the P parameters worsen. However,
when the Right set of databases is equal to the Best set, �C = 0 is a good compromise to obtain
both high P and high R values, since RIndBest is already high for �C = 0 (and so is P IndBest).

7.2 Other estimators

So far, all of our experiments involved Ind as the estimator for GlOSS. In this section, we consider
two other estimators, and compare their performance with that of Ind.

Ind is based upon the assumption that the occurrence of query keywords in documents follows
independent and uniform probability distributions. We can build alternative estimators by depart-
ing from this assumption. For example, we can adopt the \opposite" assumption, and assume that
the keywords that appear together in a user query are strongly correlated. So, we de�ne another
estimator for GlOSS, Min (for \minimum"), by letting:

ESizeMin(find t1 ^ : : :^ tn; db) =
n

min
i=1

freq(ti; db) (10)

ESizeMin(q; db) is an upper bound of the actual result size of query q:

RSize(q; db)� ESizeMin(q; db)

ChosenMin follows from the de�nition of ESizeMin, using Equation 1.
If our goal is to maximize REST

Matching, then we should be very conservative in dropping databases
from the ChosenEST set. With this motivation we de�ne another estimator for GlOSS, Bin (for

18

0

0.2

0.4

0.6

0.8

1

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

P

�B

PMatching 3

3 3 3 3 3 3 3 3 3

PBest +

+ + + + + + + + +

PMatchingI 2

2 2 2 2 2 2 2 2 2

Figure 14: The average P parameters as a function of �B for the Ind estimator (�C = 0).

0

0.2

0.4

0.6

0.8

1

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

R

�B

RMatching 3

3 3 3 3 3 3 3 3 3

RBest +

+
+

+
+

+
+

+
+

+

RMatchingI 2

2 2 2 2 2 2 2 2 2

Figure 15: The average R parameters as a function of �B for the Ind estimator (�C = 0).

19

0

0.2

0.4

0.6

0.8

1

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

P

�C

PMatching 3

3 3 3 3 3 3 3 3

3

PBest +

+
+

+
+

+
+

+
+

+

PMatchingI 2

2 2 2
2

2
2

2
2

2

Figure 16: The average P parameters as a function of �C for the Ind estimator (�B = 0).

0

0.2

0.4

0.6

0.8

1

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

R

�C

RMatching 3

3
3

3
3

3

3

3

3

3

RBest +

+ + + + + + + + +

RMatchingI 2

2
2

2
2

2
2

2
2

2

Figure 17: The average R parameters as a function of �C for the Ind estimator (�B = 0).

20

Right PMin
Right RMin

Right P IndRight RIndRight

Matching 0.9077 0.4031 0.9126 0.4044

Best 0.8356 0.8938 0.8438 0.9010

MatchingI 0.6261 0.7316 0.5966 0.7012

Figure 18: The average P and R parameters for the basic con�guration with Min as the estimator.
The last two columns show the corresponding values for the basic con�guration, using Ind as the
estimator.

Right PBin
Right RBin

Right P IndRight RIndRight

Matching 0.7757 1 0.9126 0.4044

Best 0.2739 1 0.8438 0.9010

MatchingI 0.2494 1 0.5966 0.7012

Figure 19: The average P and R parameters for the basic con�guration with Bin as the estimator.
The last two columns show the corresponding values for the basic con�guration, using Ind as the
estimator.

\binary"):

ESizeBin(find t1 ^ : : :^ tn; db) =

(
0 if 9i, 1 � i � n j freq(ti; db) = 0
1 otherwise

(11)

Again, ChosenBin follows from the de�nition of ESizeBin, using Equation 1. So, we are guaranteed
that RBin

Matching= RBin
Best= RBin

MatchingI
= 1 (at the expense of likely low values for the P parameters).

Figures 18 and 19 show the results obtained for the basic con�guration (Figure 6) using the
Min and Bin estimators, respectively. The results for Min are very similar to the corresponding
results for Ind, with no signi�cant di�erences. Note that the de�nition of ESizeMin(q; db) does not
depend on the size of the db database, unlike the de�nition of ESizeInd(q; db). This does not seem
to have played an important role for the queries and databases we considered in the experiments,
since the results we obtained for Ind and Min are very similar.

As expected, although Bin gets much higher values for the R parameters (in fact, RBin
Matching=

RBin
Best= RBin

MatchingI
= 1), it performs much worse for the P parameters than Ind and Min. For

example, PBin
Best is very low: 0.2739. Note that PBin

MatchingI
is also low (0.2494), since Bin tends to

produce overly conservative ChosenBin sets, so as not to miss any of the databases with matching
documents.

Consequently, a user might indicate what the query semantics are to GlOSS. GlOSS would then
choose one of the estimators to answer the user query accordingly. Thus, if the user is interested
in high values of the P parameters, then the Ind estimator would be used, whereas Bin would be
the choice if high values of R are of interest. If, on the other hand, the user wants both high values
of P and R, then Ind would be chosen for Right = Best, and Bin for Right = Matching.

8 Conclusions

In this paper we presented several estimators for GlOSS, a solution to the text-database discovery
problem. We also developed a formal framework for this problem and de�ned di�erent \right sets"
of databases for evaluating a user's query. We used this framework to evaluate the e�ectiveness
of the GlOSS estimators using real-user query traces. The experimental results we obtained,

21

although involving only six databases, are encouraging. Furthermore, we believe that our results
are independent of the query traces we used, since we obtained very similar results using two
di�erent query traces.

The storage cost of GlOSS is relatively low and was analyzed in [GGMT94]: a rough estimate
suggested that 22:29 MBytes would be enough to keep all the data needed for the six databases
we studied. In contrast, a full index of the six databases was estimated to require 1035.84 MBytes.
Given its low space requirement, we can replicate GlOSS to increase its availability.

Our approach to solving the text-database discovery problem could also deal with information
servers that would charge for their use. Since we are selecting what databases to search according
to a quantitative measure of their \goodness" for a query (given by ESizeEST), we could easily
incorporate this cost factor into the computation of ESizeEST so that, for example, given two
equally promising databases, a higher value would be assigned to the least expensive of the two.

We are currently implementing a GlOSS server that will keep information on databases having
WAIS [KM91] indexes. These databases can correspond to WAIS servers, or to World-Wide Web
servers [BLCGP92] with WAIS indexes, for example. The GlOSS server will be available through
World-Wide Web.

9 Acknowledgments

This research was sponsored by the Advanced Research Projects Agency (ARPA) of the Department of Defense
under Grant No. MDA972-92-J-1029 with the Corporation for National Research Initiatives (CNRI). The views
and conclusions contained in this document are those of the authors and should not be interpreted as necessarily
representing the o�cial policies or endorsement, either expressed or implied, of ARPA, the U.S. Government or
CNRI. This work was supported by an equipment grant from Digital Equipment Corporation.
We would also like to thank Jim Davis and Daniela Rus for their helpful comments on an earlier version of this
paper.

References

[BC92] Daniel Barbar�a and Chris Clifton. Information Brokers: Sharing knowledge in a heterogeneous
distributed system. Technical Report MITL-TR-31-92, Matsushita Information Technology
Laboratory, October 1992.

[BLCGP92] Tim Berners-Lee, Robert Cailliau, Jean-F. Gro�, and Bernd Pollermann. World-Wide Web:
The Information Universe. Electronic Networking: Research, Applications and Policy, 1(2),
1992.

[Cha88] Alice Y. Chamis. Selection of online databases using switching vocabularies. Journal of the

American Society for Information Science, 39(3), 1988.

[DANO91] Peter B. Danzig, Jongsuk Ahn, John Noll, and Katia Obraczka. Distributed indexing: a
scalable mechanism for distributed information retrieval. In Proceedings of the 14th Annual

SIGIR Conference, October 1991.

[DLO92] Peter B. Danzig, Shih-Hao Li, and Katia Obraczka. Distributed indexing of autonomous
INTERNET services. Computer Systems, 5(4), 1992.

[DS93] Andrzej Duda and Mark A. Sheldon. Content routing in networks of WAIS servers, 1993.
Unpublished material.

[ED92] Alan Emtage and Peter Deutsch. archie{an electronic directory service for the INTERNET. In
Proceedings of the Winter 1992 USENIX Conference, January 1992.

[Fos92] Steve Foster. About the Veronica service, November 1992. Message posted in
comp.infosystems.gopher.

[FW+93] Jim Fullton, Archie Warnock, et al. Release notes for freeWAIS 0.2, October 1993.

22

[FY93] David W. Flater and Yelena Yesha. An information retrieval system for network resources. In
Proceedings of the International Workshop on Next Generation Information Technologies and

Systems, June 1993.

[GGMT93] Luis Gravano, H�ector Garc��a-Molina, and Anthony Tomasic. The e�cacy of GlOSS

for the text-database discovery problem. Technical Report STAN-CS-TN-93-002, Stan-
ford University, November 1993. Available by anonymous ftp from db.stanford.edu in
/pub/gravano/1993/stan.cs.tn.93.002.ps.

[GGMT94] Luis Gravano, H�ector Garc��a-Molina, and Anthony Tomasic. The e�ectiveness of GlOSS
for the text-database discovery problem. In Proceedings of the 1994 ACM SIGMOD

Conference, May 1994. Also available by anonymous ftp from db.stanford.edu in
/pub/gravano/1994/stan.cs.tn.93.002.sigmod94.ps.

[GS93] Ran Giladi and Peretz Shoval. Routing queries in a network of databases driven by a meta
knowledge-base. In Proceedings of the International Workshop on Next Generation Information

Technologies and Systems, June 1993.

[KM91] Brewster Kahle and Art Medlar. An information system for corporate users: Wide Area
Information Servers. Technical Report TMC199, Thinking Machines Corporation, April 1991.

[MDT93] Anne Morris, Hilary Drenth, and Gwyneth Tseng. The development of an expert system for
online company database selection. Expert Systems, 10(2):47{60, May 1993.

[MTD92] Anne Morris, Gwyneth Tseng, and Hilary Drenth. Expert systems for online business database
selection. Library Hi Tech, 10(1-2):65{68, 1992.

[Neu92] B. Cli�ord Neuman. The Prospero File System: A global �le system based on the Virtual
System model. Computer Systems, 5(4), 1992.

[ODL93] Katia Obraczka, Peter B. Danzig, and Shih-Hao Li. INTERNET resource discovery services.
IEEE Computer, September 1993.

[OM92] Joann J. Ordille and Barton P. Miller. Distributed active catalogs and meta-data caching in de-
scriptive name services. Technical Report #1118, University of Wisconsin-Madison, November
1992.

[SA89] Patricia Simpson and Rafael Alonso. Querying a network of autonomous databases. Technical
Report CS-TR-202-89, Dept. of Computer Science, Princeton University, January 1989.

[Sch90] Michael F. Schwartz. A scalable, non-hierarchical resource discovery mechanism based on
probabilistic protocols. Technical Report CU-CS-474-90, Dept. of Computer Science, University
of Colorado at Boulder, June 1990.

[Sch93] Michael F. Schwartz. INTERNET resource discovery at the University of Colorado. IEEE

Computer, September 1993.

[SDW+94] Mark A. Sheldon, Andrzej Duda, Ron Weiss, James W. O'Toole, and David K. Gi�ord. A
content routing system for distributed information servers, 1994. To appear in EDBT '94.

[SEKN92] Michael F. Schwartz, Alan Emtage, Brewster Kahle, and B. Cli�ord Neuman. A comparison
of INTERNET resource discovery approaches. Computer Systems, 5(4), 1992.

[SFV83] G. Salton, E. A. Fox, and E. Voorhees. A comparison of two methods for boolean query
relevance feedback. TR 83-564, Cornell University, July 1983.

[SM83] Gerard Salton and Michael J. McGill. Introduction to modern information retrieval. McGraw-
Hill, 1983.

[WS93] Chris Weider and Simon Spero. Architecture of the WHOIS++ Index Service, October 1993.
Working draft.

[ZC92] Sajjad Zahir and Chew Lik Chang. Online-Expert: An expert system for online database
selection. Journal of the American Society for Information Science, 43(5):340{357, June 1992.

23

