
Improved Combinatorial Algorithms for Single Sink Edge

Installation Problems

Sudipto Guha� Adam Meyersony Kamesh Munagalaz

June 2, 2000

Abstract

We present the �rst constant approximation to the single sink buy-at-bulk network design
problem, where we have to design a network by buying pipes of di�erent costs and capacities
per unit length to route demands at a set of sources to a single sink. The distances in the
underlying network form a metric. This result improves the previous bound of O(log jSj), where
S is the set of sources. We also present an improved constant approximation to the related
Access Network Design problem. Our algorithms are randomized and fully combinatorial. They
can be derandomized easily at the cost of a constant factor loss in the approximation ratio.

�Department of Computer Science, Stanford University CA 94305. Research Supported by IBM Research Fellow-

ship, NSF Grant IIS-9811904 and NSF Award CCR-9357849, with matching funds from IBM, Mitsubishi, Schlum-

berger Foundation, Shell Foundation, and Xerox Corporation. Email: sudipto@cs.stanford.edu.
yDepartment of Computer Science, Stanford University CA 94305. Supported by ARO DAAG-55-97-1-0221.

Email: awm@cs.stanford.edu.
zDepartment of Computer Science, Stanford University CA 94305. Supported by ONR N00014-98-1-0589. Email:

kamesh@cs.stanford.edu.



1 Introduction

The problem of designing networks using trunks to route demands has received considerable atten-

tion. In this problem, commonly known as Buy-at-Bulk Network Design [11, 2, 1, 10], we are given

demands at nodes in a network which have to be routed to their respective destinations using pipes

of certain capacities and costs per unit length. The costs obey economies of scale, in the sense that

it is cheaper to buy a pipe of larger capacity than many pipes (which sum to the same capacity)

of a smaller capacity. The goal is to optimize the total cost of the pipes we buy to route the

demands. Andrews and Zhang [1] de�ne a special case of this problem called the Access Network

Design problem, where all demands need to be routed to a central core network and the costs and

capacities of the pipes obey certain common constraints. They show applications of this problem

in designing telephone networks.

The problem of buy-at-bulk network design was �rst de�ned in [11]. Awerbuch and Azar [2]

obtain an O(log2 n) approximation to this problem even when all demands have di�erent sinks.

Their work is based on techniques to approximate any metric by tree metrics [4]. The approximation

factor can be improved to O(logn log logn) using Bartal's result in [5] and derandomized using the

results of [6, 7]. For single sink buy-at-bulk, Salman et al [11] show a constant approximation

when there is only a single pipe type. Their method is based on the technique of balancing Steiner

and shortest path trees [3, 9]. Andrews and Zhang [1] de�ne the Access Network Design problem,

which is a special case of single sink buy-at-bulk where the pipe costs and capacities obey certain

common constraints, and provide an O(K) approximation, where K is the number of pipe types.

Guha et al [8] give a constant approximation to this problem. Meyerson et al [10] provide an

O(log n) approximation to single sink network design where the costs on the edges are arbitrary

non-decreasing concave functions of demand.

We present a constant approximation to the single sink buy-at-bulk network design problem,

improving the previous result of O(log n). Our algorithm is randomized and combinatorial, but can

be derandomized easily. We also present an improved constant approximation to Access Network

Design.

In Section 2, we state the single sink buy-at-bulk problem formally, and discuss some structural

properties of the optimal solution. In Section 3, we discuss a scaling idea to remove similar pipe

types, and show how it improves the structure of the optimum solution in Section 4. We then

present the constant factor approximation algorithm in Section 5 and analyze it. We show how

to improve the approximation ratio for Access Network Design in Section 6. We conclude by

mentioning some open problems.

2 Problem Statement

We are asked to construct a network on an underlying graph of distances. We are given K types of

connections (pipes) each with a �xed cost and a capacity. The cost of placing a pipe of �xed cost

�k along a path of length L will be �kL. We are given a set S1 of demand nodes and a single sink

s. Each demand node v 2 S1 needs to transport some amount of demand dv to the sink. We are

asked to buy a set of pipes as cheaply as possible so as to route all demands to the sink. We are

allowed to buy multiple copies of a pipe along the same link.

We will use an alternate formulation of this problem, introduced by Andrews and Zhang. Instead

1



of each pipe having a capacity uk, the pipes will have incremental cost de�ned by Æk = �k=uk. This

represents the per-unit-
ow cost of the pipe. If we transport d units of demand along a path of

length L using pipe k, we will pay a total of L(�k+ Ækd). It's not hard to see that a solution under

this formulation costs at least as much as the same solution under the capacitated model, and at

most twice as much as the solution under the capacitated model.

If we number the pipes in increasing order of capacity, we observe the following conditions:

�1 < �2 < � � � < �K , and Æ1 > Æ2 > � � � > ÆK . We will de�ne fk(D) = �k + ÆkD to be the

per-unit-distance cost of routing demand D along a pipe of type k. The capacity of pipe k is

uk = �k=Æk.

The Access Network Design problem is a special case of Single Sink buy-at-bulk with additional

restrictions on the costs of the pipe types. The main restriction is that a type k pipe is cheaper

only when it routes signi�cant demand. Formally, the restrictions can be stated as follows:

1. For 2 � k � K, if d < �k
Æk
, then dÆk�1+�k�1 < dÆk+�k. For this to make any physical sense,

we would actually require d < � �k
Æk

for some � < 1. Since it will not e�ect our proofs, we will

simplify our notation by assuming � = 1.

2. The smallest demand looks like the smallest pipe capacity, or more precisely, d � Æ1 > �1.

3.
P

�<k �� = O(�k).

The reason for enforcing these properties will become clear when we discuss the structure of

the optimum solution in Section 6.

2.1 Layered Structure of Optimum Solution

First, observe that as we increase demand along an edge, there are break-points at which it becomes

cheaper to use the next larger pipe type. Let 
k be the demand for which it becomes cheaper to

use a pipe of type k + 1 compared to a pipe of type k. Assume without loss of generality that

0 = 
0 < u1 < 
1 < u2 < 
2 < � � � < uK < 
K =1.

Observe now that if the demand amount is in the range [
i�1; ui], we can ignore the incremental

cost with a factor 2 loss in cost, and the cost of the edge will just be �i times the length of the

edge, independent of the demand. If on the other hand, the demand is in the range [ui; 
i], we can

ignore the �xed cost with a factor 2 loss in cost, and the cost of the edge per unit length is Æi times

the demand.

This implies that the optimum solution can be converted with a factor 2 loss in cost to a layered

solution. Layer i has a Steiner forest using pipes of type i followed by a forest of shortest path

trees using pipes of the same type. Each pipe in the Steiner forest has at least 
i�1 demand and

each pipe in the shortest path forest has at least ui amount of demand.

3 Removing Similar Pipes

Our algorithm will progressively construct partial solutions using each pipe type in turn. In order

to bound the total cost, we must guarantee that pipes are very di�erent from one another in terms

of �xed and incremental costs. We will eliminate various pipe types in order to guarantee the

following conditions for some positive � < 1=2.

2



1. For any k < K, we have �k < ��k+1.

2. For any k < K, we have �Æk > Æk+1.

We need to prove that we can guarantee these conditions without increasing the cost of the

optimum solution by too much.

Lemma 3.1 We can eliminate pipes in order to guarantee that among the remaining pipes we have

�k < ��k+1 while increasing the �xed cost of the optimum solution by at most 1=�. The incremental

cost of the optimum solution can only decrease.

Proof: We �nd the largest pipe k such that �k � ��k+1. We eliminate this pipe, replacing it in

the optimum solution with pipe k + 1. We renumber the pipes and repeat. Notice that if at some

point some pipe type is replaced by pipes of type k, then we will always keep pipes of type k in

the �nal solution (since every higher pipe type than k is at least � higher �xed cost). When this

�nishes, we will have the desired property. The original optimum solution with pipe replacements

has �xed cost at most 1=� larger since any pipe which was replaced was replaced by a pipe with at

most 1=� bigger �xed cost. The incremental cost can only decrease, since higher �xed cost implies

smaller incremental cost.

A similar process allows us to guarantee the second condition.

Lemma 3.2 We can eliminate pipes in order to guarantee that among the remaining pipes we have

�Æk > Æk+1 while increasing the incremental cost of the optimum solution by at most 1=�. The

�xed cost of the optimum solution can only decrease.

Combining these two lemmas, we can guarantee the two conditions with only a constant increase

in the cost of the solution.

Theorem 3.1 There exists a solution which uses only the remaining pipes after elimination, and

which has cost at most 1=� times the cost of the original optimum solution.

4 Properties of the Near-Optimum Solution

We will de�ne bk to be such that fk+1(bk) = 2�fk(bk). In essence, bk is suÆcient demand that it

becomes considerably cheaper to use a pipe of type k + 1 rather than a pipe of type k. We �rst

show that uk � bk � uk+1.

Lemma 4.1 bk � uk+1.

Proof: From the de�nition of bk, we can write:

�k+1 + Æk+1bk = 2�(�k + Ækbk)

Solving this equation for bk yields:

3



bk =
�k+1 � 2��k

2�Æk � Æk+1
�

�k+1

2�Æk � Æk+1
�

�k+1

Æk+1
= uk+1

.

Lemma 4.2 bk � uk

Proof: When we have bk 
ow, it is cheaper to use a pipe of type k + 1 rather than a pipe of type

k. It follows that �k+1 + Æk+1bk < �k + Ækbk. Solving this for bk, we can see that

bk >
�k+1 � �k

Æk � Æk+1

Since � < 1=2, it follows that �k+1 > 2�k and we can conclude that bk > uk.

Lemma 4.3 For any demand D � bk, fk+1(D) � 2�fk(D).

Proof: Suppose D = bk + x for some x � 0. Then,

fk+1(D) = �k+1 + Æk+1(bk + x) = 2�(�k + Ækbk) + Æk+1x

Noting that Æk+1 � �Æk, it immediately follows that fk+1(D) � 2�fk(D).

There exists a near-optimum solution which uses pipe type k + 1 only if at least bk demand is

being routed. This solution also routes all demand which enters a node using pipes of type k out

of that node using pipes of types k or k + 1. This structural observation about a nearly (within

constant factor) optimum solution will be important in our proof of the approximation ratio.

Theorem 4.1 There exists a solution which uses pipe type k+1 on a link only if at least bk demand

is being routed across that link, and which routes all demand which entered a node using pipe k out

of that node using pipes k and k + 1. This solution pays at most 2
�
+ 1 times the optimum.

Proof: We consider the nodes of the optimum solution tree from the bottom up. Suppose a node

has 
ow outgoing on a pipe of type k. We can conclude that all incoming 
ow was on pipes of

type k or less, since otherwise we could improve the optimum solution by changing one of the pipe

types. Consider the 
ow incoming on pipes of type i in increasing order of i. Either the total 
ow

incoming on pipes of type i is at least bi or it is not. If it is at least bi, then we add a pipe of

length zero from this node to itself; this pipe has type i+1 and carries the 
ow which was incoming

on pipes of type i. Adding this pipe does not increase the cost of the solution, since the pipe has

length zero. If there is not bi demand incoming on pipes of type i, then we add a new pipe of

type i from the node to its parent which will carry all the 
ow which was incoming on pipes of

type i. The total 
ow traveling from this node to its parent has not changed. We can see that

the new solution constructed will have the desired properties; we must guarantee that it is within

a constant of optimum. Consider an edge in the optimum tree. The original optimum placed a

pipe of type k here. We may have placed an additional pipe of each type 1 through k � 1 along

this edge. The pipe of type i routes at most bi 
ow. The total cost of these additional pipes is

therefore at most
Pi=k�1

i=1 fi(bi). Using Lemma 4.1 and the de�nition of bi, we can guarantee that

4



fi(bi) =
1
2�
fi+1(bi) �

1
2�
fi+1(ui+1) =

2�i+1
2�

. Substituting this into the equation, the additional pipe

cost is at most 2
2�

Pi=k
i=2 �i. Because each �xed cost is at most half the next higher �xed cost, we

can bound this sum by 4
2��k and the total cost of the solution has increased by at most a factor of

2
�
+ 1.

This breaks down only at the sink itself, where we may have less than bk 
ow arriving on pipes

of type k yet there is no \parent node" to which we can route. Suppose that this is the case, but

that the total 
ow in the network is at least bk (if the total 
ow in the network is less than bk
we can simply discard pipes of type higher than k). Since not all the 
ow has reached the sink

on pipes of type k, it follows that somewhere there exists a pipe of type k + 1. This means some

location gathered at least bk 
ow. Suppose we route downward from the sink along the graph to

this location using pipes of type k. If any edge now has pipes of type k traveling in both directions,

we simply remove the pipe towards the sink. We stop when we reach a node where we have more

than bk 
ow; this must happen eventually because we're routing towards a node with suÆcient


ow. We maintain the property that we have introduced at most one additional pipe of type k on

top of pipes of type k + 1 and up, and that these pipes route at most bk 
ow. We have already

accounted for the cost of this modi�cation.

We will de�ne C�
k to be the total cost which this near-optimum solution pays using pipes of

type k. The total cost of the solution is therefore
Pk=K

k=1 C�
k = C�.

5 The Algorithm

We will now present an algorithm for single sink buy-at-bulk based on the structural observations

we made above. The scaling idea from the previous section measures that we can compare the cost

of our solution in each layer against the respective costs of the optimum solution, similar to the

analysis used in [8] for Access Network Design.

Let s denote the sink node. Our algorithm constructs forests in layers. We will illustrate the

construction for layer i. Let Si be the set of demand points we have at this stage. S1 is the original

set of demand points. Layer i will use pipe type i exclusively.

We will use the load balanced facility location problem [8] as a sub-routine below. This problem

is a variant of the classical facility location problem, where we have a lower bound on the amount of

demand any open facility must serve. We can approximate this to a constant factor of �r provided

we relax the lower bound by factor � = ��1
�+1

. Here, r is the best known approximation for facility

location, and can be taken as 1:728.

Steiner Trees Construct a Steiner tree on Si. The edge cost per unit length is �i. Transport the

demands from Si upwards along the tree. If on any edge, the amount of demand is larger

than ui, we \cut" the tree at that edge. This gives us a forest on Si where each edge has at

most ui demand through it.

Consolidate Consider any root in this forest. This has at least ui amount of demand coming to it

from nodes in Si. Let the set of demand points sending demand to some root j be Sij. Pick

a node at random from Sij in proportion to its demand and send all the demand at j to this

node.

Shortest Path Trees We solve a load balanced facility location instance on S1 with the facility

lower bound bi on all nodes and the edge cost per unit length Æi. If there does not exist bi

5



total demand, then we instead route directly to the sink. We get a forest of shortest path

trees. We route our current demands along these trees to their roots.

Consolidate Consider any root in this forest. Some set of nodes from S1 were assigned to this

root, and their (original) total demand is at least �bi. We choose one such node at random,

in proportion to their original demands. We send all the demand from the root to the chosen

node We set Si+1 to these new demand locations.

Our solution will route the demands through the forests of increasing pipe types. This solution

need not be a tree, but can easily be converted to one of no greater cost.

5.1 Analysis

We de�ne dv to be the demand of node v in the original (S1) demands. We de�ne Dv to be the

demand at node v in the current stage of the algorithm.

Let T I
i be the incremental cost of the Steiner Tree at layer i and TF

i be its �xed cost. The total

cost of the Steiner Tree at layer i is Ti = T I
i + TF

i .

Let P I
i be the incremental cost of the shortest path tree at layer i and PF

i be its �xed cost.

The total cost of the shortest path tree at layer i is Pi = P I
i + PF

i .

Let Ni be the total cost of the consolidation steps for layer i. The total cost of our solution is

therefore
P

i(Ti + Pi +Ni).

At each layer we will construct an overall solution to the problem on the nodes Si. Let Ci(j)

represent the total cost which this solution on the nodes Si pays using pipes of type j.

Lemma 5.1 At the end of any consolidation step, every node has E[Dv] = dv.

Proof: We will prove this by induction on the steps i. Suppose that the statement is true at some

step. We will show that it is true at the next step.

Suppose that the demand at node v after the previous consolidation step was xv. By the

induction hypothesis, E[xv] = dv. There are two cases to consider; either we performed a Steiner

Tree step or a Shortest Path Tree step.

Suppose we have just performed a Steiner Tree step. The current node is routed to some root

with total demand D. We then choose a node for consolidation. The probability that we choose

node v is xv=D. If we choose v, demand D will be placed there; otherwise no demand can be placed

there. Thus the expected amount of demand placed at v is xv; by induction we can claim that

E[Dv] = E[xv] = dv as desired.

Suppose we have just performed a Shortest Path Tree step. The current node is routed to some

root which would have demand D if the demands were as in the S1 stage. The probability we

consolidate to v is dv=D; if we do, the total demand at v will be the total of the current demands

of all the nodes routed to this root. Let V be the set of nodes routed to v. E[Dv] is therefore

E[dv
D

P
w2V xw]. Observe now that:

E[
X

w2V

xw] =
X

w2V

E[xw] =
X

w2V

dw = D

Thus E[Dv] = dv.

6



Lemma 5.2 E[Ni] � Ti + Pi.

Proof: The consolidation step following a tree construction always has expected cost at most the

cost of the tree construction.

Lemma 5.3 E[P I
i ] � �r

Pj=i
j=1 �

i�jC�
j .

Proof: Suppose the demands at the sources were those from S1. Then one possible solution would

be the optimum problem solution up until pipes of type i+1 were used. We know that the optimum

solution must gather the desired bi 
ow before using pipes of type i+1. It follows that we can �nd

a solution with cost at most �r times the incremental cost of the optimum using pipes of type 1

through i. Since we will always pay the incremental cost Æi, and the incremental costs scale by �,

we can guarantee a total cost of at most
Pj=i

j=1 �
i�jC�

j for this solution. Our actual demand at each

node has expected value equal to the original demand, so the expected value of P I
i is bounded as

above.

Lemma 5.4 PF
i � P I

i .

Proof: The Steiner Tree stage guarantees at least uk demand or zero everywhere. If an edge has

zero demand 
owing on it, we will pay zero for that edge. Otherwise there is at least uk demand

on the edge and we pay an incremental cost which exceeds the �xed cost.

Lemma 5.5 Let Dv be the demand at v 2 Si. Then, E[Dv] � �bi�1.

Proof: We obtain the nodes Si by solving a load balanced facility location instance on S1 with lower

bounds bi�1. In this solution, each node in Si except s has demand at least �bi�1. Consider any

node w in S1, and suppose that the demand our solution so far has there is xw. Then, E[xw] = dw.

Let V be the set of nodes which get routed to v. Then, E[Dv ] = E[
P

w2V xw] =
P

w2V E[xw] =P
w2V dw � �bi�1.

Lemma 5.6 At stage i we can construct a solution which uses only pipes i and higher. This

solution has cost Ci(j) using pipes of type j, where E[Ci(j)] � C�
j for j > i, Ci(j) = 0 for j < i,

and E[Ci(i)] �
Pj=i

j=1
1
�
(2�)i�jC�

j .

Proof: For i = 1 we use the near-optimum solution itself and the claim follows immediately.

Consider stage i. If we use the pipes as in the near-optimum solution, our expected cost using

each pipe type j would be equal to C�
j . For each pipe of type j < i, we remove the pipe if the

total demand 
owing across it is zero. Otherwise we replace the pipe with a pipe of type i. The

cost of this replacement pipe is fi(D) where D is the demand 
owing across it. Given that the

demand is nonzero, the node must lie along the path from one of the chosen consolidation nodes

from the previous stage. Each of these nodes has expected demand at least �bi�1. It follows that

E[fi(D)] � 1
�
(2�)i�jfj(D). We can therefore bound the cost of this modi�ed solution using pipes

of type i by an expected
Pj=i

j=1
1
�
(2�)i�jC�

j .

Lemma 5.7 E[TF
i ] � 2

Pj=K
j=i+1 �

j�iC�
j + 2

Pj=i
j=1

1
�
(2�)i�jC�

j .

7



Proof: The solution given in Lemma 5.6 is one possible Steiner tree. The �xed cost of this Steiner

tree is bounded by the following expected cost:

j=KX

j=i+1

�j�iC�
j +

j=iX

j=1

1

�
(2�)i�jC�

j

This holds because the cost on a pipe of type i+ k will be reduced by �k since we pay only for

a pipe of type i. We can �nd a Steiner Tree of at most twice this cost, so the claim follows.

Lemma 5.8 T I
i � TF

i .

Proof: Since we cut the tree at any edge with more than uk demand along it, we guarantee that

the �xed cost paid on any edge we actually use exceeds the incremental cost.

Theorem 5.1 There is a constant-approximation for single-sink buy-at-bulk.

Proof: The total cost of our solution is bounded by
P

i 2(2T
F
i +2P I

i ). Using Lemmas 5.3 and 5.7,

we conclude that the expected cost of our solution is bounded by the following:

4
X

i

(2

j=KX

j=i+1

�j�iC�
j + 2

j=iX

j=1

1

�
(2�)i�jC�

j + �r

j=iX

j=1

�i�jC�
j )

By reversing orders of summation, we can bound this by:

4(
2

1� �
+

2

�(1� 2�)
+

�r

1� �
)C�

This is our approximation against the near-optimum solution. Using Theorem 4.1 allows us to

bound our overall approximation ratio by:

(
4

�
)(1 +

2

�
)(

2

1� �
+

2

�(1� 2�)
+

�r

1� �
)

6 Improved Algorithm for Access Network Design

For the Access Network Design problem, Andrews and Zhang [1] show a strong property. They

show that there exists a near-optimal (within a constant multiplier on the cost) solution which is

a tree satisfying the following properties:

1. Each demand is routed through pipes of consecutive types, i.e. types 1; 2; : : : ; �. (� � k).

2. For all pipe types k, any pipe of that type has at least uk = �k
Æk

amount of demand 
owing

through it.

8



This means that for Access Network Design, the optimal solution can be converted to a layered

solution using shortest path forests of increasing pipe types.

We will therefore compare ourselves against the optimal solution that satis�es the above men-

tioned structural properties.

We can improve the analysis of the algorithm in Section 5 for Access Network Design. As shown

in [8], for the Access Network Design we have a layered solution with a reduction in cost at each

layer. We can prove the following theorem:

Theorem 6.1 There exists a solution to the Access Network Design problem in which we only use

pipe types satisfying the condition �i =
Æi+1
Æi

� �, and in which any pipe of type i has at least ui
amount of demand 
owing through it. The �xed and incremental costs of this solution are each

within 1
�
of the original optimum which used all pipe types and which had at least uk demand in

any pipe of type k.

Proof: Note that since we are using pipes of larger types in increasing layers, the incremental cost

Æ per unit of traÆc keeps decreasing. In fact, we can make sure that Æ goes down by a constant

fraction � < 1 with a 1
�
increase in cost. The way we do this is the following:

Consider pipes of increasing types starting at type 1. Let �i =
Æi+1
Æi

. Let k0 be the largest

number such that
Qk0

i=1 �i � �. We remove all pipe types 2; : : : ; k0 + 1 and use only pipe of type 1

instead of all these pipes. We next consider pipes starting at type k0 + 2 and repeat this �ltering

process. This is the same as in hierarchical placement problems.

When the above is completed, we are left with a set of pipe types satisfying the following

properties. For consecutive pipe types i and i+ 1,
Æi+1
Æi
� �. If we used a pipe of type i instead of

a pipe of type j, then Æj > �Æi and �j > �i.

Let �k =
Æk
Æk�1

. We can assume with a loss of 1
�
in the approximation ratio that all �k � � < 1.

Our algorithm will lay pipes in increasing order of types.

Let Si denote the demand points at stage i. We maintain the invariant that every demand point

has at least �ui demand. We solve the load balanced facility location instance on Si with lower

bound ui+1 (except on the sink s). We route the demands to the open facilities using pipes of type

i. For every open facility, we choose one of the demand points sending demand to it at random in

proportion to its demand, and route all the demand to this point using pipes of type i + 1. Let

Si+1 be the �nal set of demand points to where we route the demands. Note that every demand

point has at least �uk+1 demand.

Let P I
i be the routing cost at stage i, and let PF

i be the �xed cost. Note that PF
i � 1

�
P I
i

because of the invariant on the demands.

We de�ne C�
i to be the total incremental cost incurred by the optimal solution using pipes of

type i. Note that the total cost of the optimal solution is C� �
P

iC
�
i .

Lemma 6.1 E[P I
i ] � �r(1 + �)(

Pj=i�1
j=1 �i�j�1C�

i ).

Proof: The routing cost that the optimum solution pays in routing the original demand points

till stage i using pipes of type i is at most
Pj=i�1

j=1 �i�j�1C�
i . This follows from [8] and from the

analysis in Section 5. This is an instance of the load balanced facility location problem, and so the

9



expected cost of our solution is within �r times this solution. For routing back to randomly chosen

nodes, we pay � times this cost in the expected sense, as we use a pipe of larger type.

It is now easy to see the following.

Lemma 6.2 E[
P

i(P
I
i + PF

i )] � (1 + 1
�
)�r 1+�1��C

�.

Note that we lost a factor of 1
�
up front in the routing cost because of scaling the pipe types.

Our approximation ratio is therefore 2r�2

��1
1+�

�(1��)
. Choosing � = 2 and � =

p
2�1, we have a 80:566

approximation.

Theorem 6.2 We have a randomized constant approximation for Access Network Design.

7 Derandomization

The algorithms mentioned above can be derandomized as follows. Instead of constructing the trees

starting from S1, we construct it from the nodes in Si�1 and do not route back. The cost we pay

in layer i has geometrically decreasing contribution from previous layers. We omit the details.

8 Open Problems

It would be interesting to see if we can do something better than O(log n log log n) on chosen pairs

buy-at-bulk network design, where the sink node for each demand point could be di�erent. Another

interesting direction is to see if the techniques here work even if only a subset of pipe types are

available on each edge.

10



References

[1] Matthew Andrews and Lisa Zhang. The access network design problem. 39th IEEE Symposium

on Foundations of Computer Science, pages 40{49, 1998.

[2] B. Awerbuch and Y. Azar. Buy-at-bulk network design. Proceedings of the 38th IEEE Sym-

posium on Foundations of Computer Science, pages 542{47, 1997.

[3] B. Awerbuch, A. Baratz, and D. Peleg. Cost-sensitive analysis of communication protocols.

Proceedings of the Ninth Annual ACM Symposium on Principles of Distributed Computing,

pages 177{87, 1990.

[4] Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic applications. 37th

IEEE symposium on Foundations of Computer Science, pages 184{193, 1996.

[5] Y. Bartal. On approximating arbitrary metrics by tree metrics. 30th ACM Symposium on

Theory of Computing, 1998.

[6] M. Charikar, C. Chekuri, A. Goel, and S. Guha. Rounding via trees: Deterministic approxi-

mation algorithms for group steiner trees and k-median. 30th ACM Symposium on Theory of

Computing, 1998.

[7] M. Charikar, C. Chekuri, A. Goel, S. Guha, and S. Plotkin. Approximating a �nite metric by

a small number of tree metrics. 39th IEEE Symposium on Foundations of Computer Science,

1998.

[8] Sudipto Guha, Adam Meyerson, and Kamesh Munagala. Hierarchical placement and network

design problems. Stanford University Tech. Note., STAN-CS-TN-00-93, 2000.

[9] S. Khuller, B. Raghavachari, and N. Young. Balancing minimum spanning and shortest path

trees. Algorithmica, 14(4):305{321, 1994.

[10] Adam Meyerson, Kamesh Munagala, and Serge Plotkin. Cost-Distance: Two metric net-

work design. Stanford University Tech. Note., STAN-CS-TN-00-92, 2000.

[11] F. S. Salman, J. Cheriyan, R. Ravi, and S. Subramanian. Buy-at-bulk network design: Ap-

proximating the single-sink edge installation problem. Proceedings of the Eighth Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 619{628, 1997.

i


