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Abstract

We solve the vaiant of facility location problem in which the costs of facilities depend

on the demand served, more speci�cally decrease with the demand served. We show

application of this problem to generalized clustering problems which does not penalize

large clusters.

1 Introduction

In this paper we investigate the facility location problem where the costs of facilities are

dependent on the demands served. We will concentrate on the subproblem where the costs

actually decrease with the demand served. Some techniques are known for the complimentary

case where the costs of facilities increase with demand served, but none of these techniques

extend to the decreasing case. An interesting application of the problem with decreasing is

the case of negotiable facility costs, where when we are leasing facilities we can negotiate a

lower price due to associated business generated by attracting larger number of customers.

This is easy to observe in cases of renting spaces from retail chains, or opening facilities in

locations where there are possibility of associated business.

As another interesting application of the facility location problem with decreasing costs we

investigate the problem of clustering. Most known clustering criterion for which approximate

heuristics are known penalize large clusters, the minsum clustering for example. The facility

location with decreasing costs allow us to solve for clustering scenarios that prefer larger

clusters.
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1.1 Previous Results

Several techniques were developed for the case where the costs increase with demand served.

However in all the capacitated facility location problems we require that more than one copy

of a facility be placed, or the capacity constraint relaxed. It can also be shown that without

such the integrality gap of the problem even on very simple problems is unbounded. One

such example where multiple copies are allowed, is solved in [5]. Although the paper does

not explicitly mention such, their techniques extend to \buy at bulk" versions of the facility

location problem, in which buying two facilities at the same location may be cheaper than

twice the cost of one facility, but more than the cost of a single facility. However we will

be interested in is the case that buying two copies is actually cheaper than buying a single

copy. No previously known technique can be applied to this version.

1.2 Organization of the paper

We will require using a facility location variant which involves lower bounds on the demand

serviced by a facility. This problem was solved in [4] in the context of hierarchical network

design problems. We present the results mostly for the sake of completeness. Also in [4] we

did not require the lower bounds to be di�erent for each facility, but we do in the present

application. The algorithm however extends to the more general case. This problem is

discussed in Section 2.

The application to facility location is dicussed in Section 3. In Section 4 we discussion

the application to clustering.

2 Facility Location with Lower Bounds

This problem is a variant of the classical facility location problem. We are given a network

G(V;E) with a distance function d(�) on the edges and a set of demand points. The cost of

opening a facility at location i is fi. In addition, there is a lower bound of Li on the demand

a facility opened at i must satisfy. The goal is to open facilities and allocate the demands

to the open facilities so that an open facility at i has at least Li demand routed to it. The

cost of our solution is the sum of the average distance traveled by the demands and the cost

of the open facilities. We wish to minimize this cost.

Since this problem is a generalization of the classical facility location problem, it is

Max-SNP hard [3]. We are therefore interested in �nding an approximation algorithm for

this problem. Also note that if we could obtain a solution in which we satis�ed the lower

bounds exactly, we could solve the partition problem, which is NP-hard. Hence, we have to

approximate the lower bounds as well.

De�nition 2.1 An approximation algorithm for load balanced facility location is a (�; �)

approximation for some � � 1 and � � 1 if the cost of the solution is within � times the

optimal cost and facility i, if opened, serves at least Li

�
demand.
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Let us denote by r the best known approximation ratio for classical facility location. We

present a (2r; 3) approximation to this problem. This generalizes to a (1+�
1��

r; 1
�
) approxima-

tion for � < 1.

Minimize
X
i

X
j

djcijxij +
X
i

fiyi

P
i xij � 1 8j

xij � yi 8i; jP
j djxij � Liyi 8i

xij; yi 2 f0; 1g 8i; j

We can write an integer program for this problem. Unlike facility location [7, 2, 5], the

lower bound makes it hard to round the linear relaxation directly. This arises from the fact

that the �ltering steps of Lin and Vitter in [6] do not work. Thus fractional solutions cannot

be rounded by previous approaches.

2.1 The Algorithm

The algorithm proceeds in two basic steps. Our transformations work for the fractional

solution obtained from the linear relaxation of the integer program discussed above, so our

�nal approximation guarantee is against the fractional solution.

Facility Location: For facility i, we add the cheapest way to route at least Li units of

demand to i to the facility cost fi. We next solve regular facility location with these

facility costs. Finally, we show that the optimum solution to this problem is within a

factor 2 of the optimum to the original problem.

Rounding to Remove Facilities: Consider any open facility i that serves less than Li

3

amount of demand. We close the facility and route the demands it serves to their

closest open facilities. This transformation does not increase the cost of our solution.

2.2 Analysis

We now describe the two steps of the algorithm in detail.

Firstly, we construct a regular facility location instance from this problem. Each potential

facility location i is now assigned a new cost f 0i , which is the sum of fi and the minimum cost

of routing exactly Li amount of demand to that location. For doing this, we take demand

points in increasing order of distance to i till we have collected Li amount of demand.

Lemma 2.1 Consider any feasible fractional solution to the load balanced facility location

problem of cost C. We can construct a feasible instance of the regular facility location problem

of cost at most 2C.
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Proof: Look at any fractional facility i. Since the feasible solution is routing at least Li

amount of demand to any open facility, the facility cost we assign in the new problem is at

most the routing cost of the demand connected to that facility. Thus the total additional

facility cost is at most C.

We now solve the facility location instance mentioned above. The cost of the solution we

obtain is within a factor of r = 1:728 to the optimal solution for that instance.

Therefore the total cost in the solution we compute is bounded in terms of the routing

cost of the original fractional solution to within a factor of 2r. Also note that facility location

guarantees that each demand point goes to the closest open facility.

We now consider the open facilities in arbitrary order. Suppose facility i serves less than
Li

3
amount of demand, we close the facility and route the demands it serves to their closest

open facilities. At the end of this process, we are guaranteed that each open facility i serves

at least Li

3
amount of demand, and each demand goes to the closest open facility.

We have to show that removing a facility does not increase the total facility plus routing

cost of the solution. For this, we show a feasible way to route the demands it serves so that

the cost does not increase.

Lemma 2.2 Removing a facility i serving less than Li

3
amount of demand cannot increase

the cost of our solution.

Proof: Suppose we are closing facility i. Consider the closest demand point j which does

not send demand to this facility. Suppose d(i; j) = D, where d is the distance metric. If j is

being served by i0, d(i0; j) < D, as each demand point goes to the closest open facility.

Also, the facility cost f 0i �
2Li

3
D. This follows because the facility serves only Li

3
amount

of demand, while the facility cost f 0i is fi plus the cost of serving at least Li units of demand.

When we close the facility, we can a�ord to use f 0i towards re-routing the demand it

serves. We send the demand to i0, the facility serving j. The extra cost for doing this is at

most the cost of taking the demand from i to j and from there to i0. This distance is at most

2D, and the demand is at most Li

3
, and so the total re-routing cost is at most 2Li

3
D.

The above can be summarized in the following theorem,

Theorem 2.1 The load balanced facility location problem has a (2r; 3) approximation where

each demand is served by its closest open facility.

We can scale the facility costs to improve the lower bounds. We will state the following

tradeo� theorem.

Theorem 2.2 The load balanced facility location problem has a (1+�
1��

r; 1
�
) approximation for

� < 1 where each demand is served by its closest open facility.

Proof: We start o� by adding � times the cheapest way to serve Li units of demand to

facility i to its cost. It is immediate that the approximation is ((�+1)r; 1
�
), where � = 2�

1��
.
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3 Decreasing Facility Costs

We will now consider a variant of facility location where the facility cost is a non-increasing

positive function of the amount of demand the facility serves. This model is appropriate

in some situations where there is a startup operating cost for a facility (for example, a

supermarket), but this cost decreases because of pro�ts made with increasing number of

customers.

Let us denote the cost function for facility i as fi so that the cost of serving demand d is

fi(d). Fix constants � and � larger than 1.

We assume the function fi satis�es the following \nice" property. Let � and � be some

constants larger than 1. For all demands d, fi(d)

fi(�d)
� �. Note that all rational functions

satisfy this property.

We also assume that all demands are larger than 1.

We can obtain a constant approximation for this problem by converting it to an instance

of load balanced facility location. For each facility i, we create many copies i0; i1; : : : of this

facility. Copy ij has lower bound �j and cost fi(�
j). The metric and the demand points

remain the same.

We now solve the modi�ed instance as a load balanced facility location instance. In our

solution, we will lose a factor of � because of scaling of the demands. Also, if we insist

the lower bound is at least 1

�
times the original bounds, our approximation ratio for the

algorithm is �+1
��1

r. Since the actual cost is the cost of routing 1

�
fraction less demand to the

facility, our facility costs go up by another factor of �. Therefore the �nal approximation

ratio is �2(�+1)

��1
r, which is a constant.

4 Generalized Clustering Problems

In this section, we de�ne a generalization of the regular clustering problem, and show how

to solve it using load balanced facility location.

In generalized k-clustering, we are given n points in a metric space with distance function

d. The goal is to partition the points into k clusters, C1; C2; : : : ; Ck so that the following

objective function is minimized:

kX
l=1

1

jClj


X
i;j2Cl

d(i; j)

It is easy to see that an equivalent formulation to a factor of 2 is the following. We wish

to partition the points into k clusters C1; C2; : : : ; Ck with centers c1; c2; : : : ; ck so that the

following objective function is minimized:

kX
l=1

1

jClj
�1

X
i2Cl

d(i; cl)
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Note that for 
 = 0, this is min-sum clustering, while for 
 = 1, this is the k-median

problem upto constant factors.

De�nition 4.1 A bicriteria approximation algorithm for generalized k-clustering is a (p; q)

approximation if the cost of the solution is within a factor of p of the optimal cost, and the

number of clusters produced is qk.

The technique in [1] gives a constant bicriteria approximation for the case when 
 is

a constant less than 1. We show how to extend the result to constant 
 � 1, thereby

generalizing it to all constant 
. Our approximation factor will however be exponential in 
.

For every point i, we create n copies of the point and denote them i(1); i(2); : : : ; i(n). We

will use the copy i(r) if the point i is the center of a cluster of size r. We can now formulate

generalized k-clustering for 
 � 1 as an integer program. Let y
(r)

i denote whether i is the

center of a cluster of size r. Let x
(r)

ij be set to 1 if point j is in a cluster of size r with center

at i.

Minimize
X
i

X
j

X
r

x
(r)

ij d(i; j)
1

r
�1

x
(r)

ij � y
(r)

i 8i; j; rP
i

P
r x

(r)

ij � 1 8jP
j x

(r)
ij � ry

(r)
i 8i; rP

i

P
r y

(r)

i � k

We can now formulate this as a facility location problem with lower bounds. Every point

j has demand 1. Facility location i(r) has cost 1 and lower bound r. The new integer program

formulation is therefore:

Minimize
X
i

X
j

X
r

x
(r)

ij d(i; j)
1

r
�1
+
X
i

y
(r)

i

x
(r)

ij � y
(r)

i 8i; j; rP
i

P
r x

(r)

ij � 1 8jP
j x

(r)

ij � ry
(r)

i 8i; r

Let F � and S� denote the optimum facility cost and service cost respectively. Note that

F � = k for our problem.

For facility i(r), we add � times the cheapest way to ship r amount of demand to that

facility. The optimum solution pays F � + �S� for the facility cost, and S� for the service

cost.

Note that the distance from j to i(r) is d(i;j)

r
�1 , and this is not a metric. But, note that

the distances are multiplied by a number that depends only on the facility and not on the
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demand point. It is shown in [1] that the Jain-Vazirani algorithm [5] can be modi�ed so that

it works even if the metric is multiplied by a number that depends just on the facility.

We can therefore perform the �rst step of the load balanced facility location algorithm

just as before. For the second step where we close facilities, we consider facilities which do

not satisfy the lower bound in increasing order of r.

Lemma 4.1 If we close facilities in Step 2 of the load balanced facility location algorithm

in increasing order of r, then, the cost of our solution does not go up.

Proof: Suppose we close a facility i(r) because it did not have enough demand coming to it.

Let D be the distance in the modi�ed metric to the closest point j which was not connected

to i(r). Then, j went to some facility l(r
0
) which was less than D distance in the modi�ed

metric, and r0 � r. We therefore have: d(i; j) = Dr
�1 and d(l; j) � Dr0
�1.

Let the cost of routing the demands to i be C, and that to l be C 0. If x is the amount of

demand routed to i, we have:

C 0 � C

�
r

r0

�
�1
+ xD + xD

�
r

r0

�
�1
� C + 2Dx

Therefore, when we add � times the cheapest service cost for satisfying the lower bound,

we can obtain a constant approximation so that every open facility i(r) serves at least r �

2+�

demand.

Now, the algorithm in [5] gives the following approximation:

3F + S � 3(F � + S�)

We have modi�ed the facility costs so that F � becomes F � + �S�. We therefore have:

3F + S � 3(F � + S�(1 + �))

Also, every open facility i(r) serves at least r �

2+�
demand. Now, we apply Lagrangian

relaxation. We scale the facility costs by a factor of � and then solve the modi�ed problem.

In the �nal solution, we scale back the facility costs. We will therefore have:

3�F + S � 3(�F � + S�(1 + �))

We now guess the value of � as S�

�F �
. We therefore have:

F � (1 + (1 + �)�)F �

S � 3(1 + � + 1

�
)S�

Now, we are paying a routing cost which is scaled for a cluster of size r, while the actual

cluster size could be r �

2+�
. This causes our service cost to go up by a factor of

�
1 + 2

�

�
�1
.

We therefore have the following theorem:

Theorem 4.1 For any 
 � 1, generalized k-clustering has a
�
3(1 + � + 1

�
)(1 + 2

�
)
�1; 1 + (1 + �)�

�
bicriteria approximation.
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