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Big Data: What’s Different? 

Most of the data does not look 
like this 

 
 
 
 

It looks more like this 

Or even like this 



Statistical Relational Learning (SRL) 
¢  AI/DB representations + statistics for multi-relational data 

l  Entities can be of different types 
l  Entities can participate in a variety of relationships 
l  examples: Markov logic networks, relational dependency networks, 

Bayesian logic programs, probabilistic relational models, many 
others….. 

¢  Key ideas 
l  Relational feature construction 
l  Collective reasoning 
l  ‘Lifted’ representation, inference and learning 

 

http://linqs.cs.umd.edu/projects//Tutorials/nips2012.pdf 
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Probabilistic Soft Logic (PSL) 
Declarative language based on logics to express 

collective probabilistic inference problems 
-  Predicate = relationship or property 
-  Atom = (continuous) random variable 
-  Rule = capture dependency or constraint 
-  Set = define aggregates 

PSL Program = Rules + Input DB 
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Probabilistic Soft Logic (PSL) 
Declarative language based on logics to express 

collective probabilistic inference problems 
-  Predicate = relationship or property 
-  Atom = (continuous) random variable 
-  Rule = capture dependency or constraint 
-  Set = define aggregates 

PSL Program = Rules + Input DB 
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   

Collective Classification 

? 
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   

Voter Opinion Modeling 

? 
$ $ 

Tweet 
Status 
update 
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     

Voter Opinion Modeling 

  

        
spouse 

spouse 

colleague 

colleague 

spouse friend 

friend 

friend 

friend 
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     

Voter Opinion Modeling 

  

        

vote(A,P) ∧ spouse(B,A) à vote(B,P) : 0.8 

vote(A,P) ∧ friend(B,A) à vote(B,P) : 0.3 

spouse 

spouse 

colleague 

colleague 

spouse friend 

friend 

friend 

friend 
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Link Prediction 
§  Entities 

-  People, Emails 

§  Attributes 
-  Words in emails 

§  Relationships 
-  communication, work 

relationship 

§  Goal: Identify work 
relationships 

-  Supervisor, subordinate, 
colleague 

 #

  
  
  

  

  

      
  
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Link Prediction 
§ People, emails, words, 

communication, relations 
§ Use rules to express 

evidence 
-  “If email content suggests type X, it 

is of type X” 
-  “If A sends deadline emails to B, 

then A is the supervisor of B” 
-  “If A is the supervisor of B, and A is 

the supervisor of C, then B and C are 
colleagues” 

 #

  
  
  

  

  

      
  
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Link Prediction 
§ People, emails, words, 

communication, relations 
§ Use rules to express 

evidence 
-  “If email content suggests type X, it 

is of type X” 
-  “If A sends deadline emails to B, 

then A is the supervisor of B” 
-  “If A is the supervisor of B, and A is 

the supervisor of C, then B and C are 
colleagues” 

 #

  
  
  

  

  

      
  

complete by 

due 

HasWord(E, “due”) => Type(E, deadline) : 0.6 



http://psl.umiacs.umd.edu 

Link Prediction 
§ People, emails, words, 

communication, relations 
§ Use rules to express 

evidence 
-  “If email content suggests type X, it 

is of type X” 
-  “If A sends deadline emails to B, 

then A is the supervisor of B” 
-  “If A is the supervisor of B, and A is 

the supervisor of C, then B and C are 
colleagues” 

 #

  
  
  

  

  

      
  

Sends(A,B,E) ^ Type(E,deadline) => Supervisor(A,B)  : 0.8 
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Link Prediction 
§ People, emails, words, 

communication, relations 
§ Use rules to express 

evidence 
-  “If email content suggests type X, it 

is of type X” 
-  “If A sends deadline emails to B, 

then A is the supervisor of B” 
-  “If A is the supervisor of B, and A is 

the supervisor of C, then B and C are 
colleagues” 

 #

  
  
  

  

  

      
  

Supervisor(A,B) ^ Supervisor(A,C) => Colleague(B,C)  : 1.0 
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Entity Resolution 
§ Entities 

-  People References 

§ Attributes 
-  Name 

§ Relationships 
-  Friendship 

§ Goal: Identify 
references that denote 
the same person 

A B 

John Smith J. Smith 

name name 

C 

E 

D F G 

H 

friend friend 

= 

= 
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Entity Resolution 
§ References, names, 

friendships 
§ Use rules to express 

evidence 
-  ‘’If two people have similar names, 

they are probably the same’’ 
-  ‘’If two people have similar friends, 

they are probably the same’’ 
-  ‘’If A=B and B=C, then A and C must 

also denote the same person’’ 

A B 

John Smith J. Smith 

name name 

C 

E 

D F G 

H 

friend friend 

= 

= 
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Entity Resolution 
§ References, names, 

friendships 
§ Use rules to express 

evidence 
-  ‘’If two people have similar names, 

they are probably the same’’ 
-  ‘’If two people have similar friends, 

they are probably the same’’ 
-  ‘’If A=B and B=C, then A and C must 

also denote the same person’’ 

A B 

John Smith J. Smith 

name name 

C 

E 

D F G 

H 

friend friend 

= 

= 

A.name ≈{str_sim} B.name => A≈B : 0.8 
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Entity Resolution 
§ References, names, 

friendships 
§ Use rules to express 

evidence 
-  ‘’If two people have similar names, 

they are probably the same’’ 
-  ‘’If two people have similar friends, 

they are probably the same’’ 
-  ‘’If A=B and B=C, then A and C must 

also denote the same person’’ 

A B 

John Smith J. Smith 

name name 

C 

E 

D F G 

H 

friend friend 

= 

= 

{A.friends} ≈{} {B.friends} => A≈B : 0.6 
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Entity Resolution 
§ References, names, 

friendships 
§ Use rules to express 

evidence 
-  ‘’If two people have similar names, 

they are probably the same’’ 
-  ‘’If two people have similar friends, 

they are probably the same’’ 
-  ‘’If A=B and B=C, then A and C must 

also denote the same person’’ 

A B 

John Smith J. Smith 

name name 

C 

E 

D F G 

H 

friend friend 

= 

= 

A≈B ^ B≈C => A≈C : ∞ 
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Logic Foundation 



http://psl.umiacs.umd.edu 

“Lifted” Rules 

 
§ Will be instantiated for every x  X in the input 
§ Atoms are real valued 

-  Interpretation I, atom A: I(A)   [0,1] 
-  We will omit the interpretation and write A   [0,1] 

H1(X) ∨... ∨	
 Hm(X) ← B1(X) ∧ … ∧ Bn (X) 

[Broecheler, et al., UAI ‘10] 

 Atoms 
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Combination Functions 
§ ∨, ∧: [0,1]n →[0,1] 
§ Here, we use Lukasiewicz T-norm 

§ A ∨ B = min(1, A + B) 
§ A ∧	
 B = max(0, A + B – 1) 
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Rule Satisfaction 

§ Establish Satisfaction 

H1(X) ←    B1(X)∧ B2(X) 

H1(x) ← B1(x):0.7 ∧ B2(x):0.8 ≥0.5   
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Distance to Satisfaction 

§ Distance to Satisfaction 
-  Max(∧(B1(X) ,..,Bn(X)) - ∨(H1(X) ,..,Hm(X)), 0) 

H1(x):0.7 ←  B1(x):0.7 ∧ B2(x):0.8  

H1(x):0.2 ←  B1(x):0.7 ∧ B2(x):0.8  

0.0 
0.3 

H1(X) ∨... ∨	
 Hm(X) ← B1(X) ∧ … ∧ Bn(X) 
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Distance to Satisfaction 

§ Distance to Satisfaction 
-  Max(∧(B1(X) ,..,Bn(X)) - ∨(H1(X) ,..,Hm(X)), 0) 

§ Weighted Rules 

H1(X) ∨... ∨	
 Hm(X) ← B1(X) ∧ … ∧ Bn(X) 

§ Weighted Distance to Satisfaction 
Wr � max(∧(B1(x),..,Bn(x))-∨(H1(x),..,Hm(x)), 0) 

Wr: H1(X)∨... Hm(X) ←    B1(X) ∧ … ∧ Bn(X)  
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So far…. 

§ Given a data set and a PSL program, we can 
construct a set of ground rules. 

§ Some of the atoms have fixed truth values 
and some have unknown truth values. 

§ For every assignment of truth values to the 
unknown atoms, we get a set of weighted 
distances from satisfaction. 

§ How to decide which is best? 
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Probabilistic Foundation 
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Probabilistic Model 
Probability 

density over 
interpretation I 

Normalization 
constant 

Ground rules 
Distance 
exponent 
(in {1, 2}) 

Ground rule’s distance to satisfaction 
 
 

Rule weight 

P (I) =
1

Z
exp

"
�
X

r2R

wr(dr(I))
pr

#
dr(I) = max{Ir,body � Ir,head, 0}
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Hinge-loss MRFs 
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Hinge-loss Markov Random Fields 

P (Y |X) =

1

Z
exp

2

4�
mX

j=1

wj max{`j(Y,X), 0}pj

3

5

§ Continuous variables in [0,1] 
§ Potentials are hinge-loss functions 
§ Subject to arbitrary linear constraints 
§ Log-concave! 
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Inference as Convex Optimization 
§ Maximum Aposteriori Probability (MAP) Objective: 
 
 
 

§ This is convex! 
§ Can solve using off-the-shelf convex optimization 

packages 
§ … or custom solver 

argmax

Y
P (Y |X)

= argmin

Y

mX

j=1

wj max{`j(Y,X), 0}pj
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Consensus Optimization 
§  Idea: Decompose problem and solve 

sub-problems independently (in 
parallel), then merge results 

-  Sub-problems are ground rules 
-  Auxiliary variables enforce consensus across 

sub-problems 

§  Framework: Alternating direction method of multipliers 
(ADMM) [Boyd, 2011] 

§  Inference with ADMM is fast, scalable, and straightforward 
to implement [Bach et al., NIPS 2012, UAI 2013] 
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Inference Algorithm 
Initialize local copies 

of variables and 
Lagrange multipliers 

Begin inference 
iterations 

Simple updates 
solve subproblems 
for each potential... 

...and each 
constraint 

Average to update 
global variables and 

clip to [0,1] 

Algorithm 1 MPE Inference for HL-MRFs

Input: HL-MRF(Y,X,⇤,�, C, E , I), ⇥ > 0

Initialize yj as copies of the variables Yj that appear
in ⇤j , j = 1, . . . ,m

Initialize yk+m as copies of the variables Yk+m

that appear in Ck, k = 1, . . . , r
Initialize Lagrange multipliers ↵i corresponding to

variable copies yi, i = 1, . . . ,m+ r

while not converged do

for j = 1, . . . ,m do

↵j ⇥ ↵j + ⇥(yj �Yj)
yj ⇥ Yj �↵j/⇥
if ⌅j(yj ,X) > 0 then

yj ⇥ argminyj

⇥
�j [⌅j(yj ,X)]pj + ⇥

2⇤yj �Yj +
1
⇥↵j⇤22

⇤

if ⌅j(yj ,X) < 0 then

yj ⇥ Proj⇤j=0(Yj)
end if

end if

end for

for k = 1, . . . , r do

↵k+m ⇥ ↵k+m + ⇥(yk+m �Yk+m)
yk+m ⇥ ProjCk

(Yk+m)
end for

for i = 1, . . . , n do

Yi ⇥ 1
|copies(Yi)|

P
yc�copies(Yi)

⇣
yc +

�c
⇥

⌘

Clip Yi to [0,1]
end for

end while

Bach et al., UAI 2013 
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Speed 

§  Inference in HL-MRFs is orders of magnitude faster than in 
discrete MRFs which use MCMC approximate inference 

§  In practice, scales linearly with the number of potentials 

  Cora	
   Citeseer	
   Epinions	
   Ac/vity	
  
Discrete	
  MRF	
   110.9	
  s	
   184.3	
  s	
   212.4	
  s	
   344.2	
  s	
  
HL-­‐MRF	
   0.4	
  s	
   0.7	
  s	
   1.2	
  s	
   0.6	
  s	
  

Variables	
   10k	
   10k	
   1k	
   8k	
  
Poten/als	
   14k	
   19k	
   18k	
   75k	
  

Bach et al., UAI 2013; London et al., 2013 

Average running time 
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Document Classification 

	



	


	



	


	

2 

2 
2 

2 
2 A 

B 

A or B? 

A or B? A or B? 

§  Given a networked collection of documents 
§  Observe some labels 
§  Predict remaining labels using 

§  link direction 
§  inferred class label 

Citeseer Cora

HL-MRF-Q (MLE) 0.729 0.816
HL-MRF-Q (MPLE) 0.729 0.818
HL-MRF-Q (LME) 0.683 0.789

HL-MRF-L (MLE) 0.724 0.802
HL-MRF-L (MPLE) 0.729 0.808
HL-MRF-L (LME) 0.695 0.789

MLN (MLE) 0.686 0.756
MLN (MPLE) 0.715 0.797
MLN (LME) 0.687 0.783

Accuracy for collective classification. The label accuracy of the highest-scoring
category for various HL-MRFs and MLNs. Scores statistically equivalent to the
best scoring method are typed in bold.



Distributed MAP Inference	

§  ADMM consensus optimization problem can be implemented 

naturally in distributed setting 
§  For k+1 iteration, it consists three steps in which sub problems 

can run independently (1st and 2nd step): 
1.  Update Lagrangian multiplier 
 
 

2.  Update each sub problem 

 
3.  Update the global variables	


.

.

.

.

.

.

.

.

.

.

.

.

OR 

Miao, Liu, Huang, Getoor, IEEE Big Data 2013 



Distributed MAP: MapReduce	


z1z1 zq zqz1 z2

����

z2 zp

��sub
problem

local 
variable 

copy

Mapper

z1 z2z1 z1 z2 zq zq zp���� ����

Reducer
update 
global 

component

load global variable 
X as side dataJob Bootstrap

HDFS or 
HBase

read/write 
subproblem

write new 
global variable

read global 
variable X

Pros: 	


•  Straightforward Design	


	


Cons:	


•  Job bootstrapping cost 

between iterations	


•  Difficult to schedule 

subset of nodes to run. 



Distributed MAP: GraphLab	


.

.

.

.

.

.

.

.

.

.

.

.

sub
problem

node

global 
variable 
component

gather
   get z

apply
   update y
   update x

scatter
   notify z

gather
   get local z,y

apply
   update z

scatter
   unless converge
       notify X

update i update i+1

Advantages: 	


•  No need to touch disk, no 

job bootstrapping cost	


•  Easy to express local 

convergence conditions to 
schedule only subset of 
nodes. 



Experimental Results	

§  Using PSL for knowledge graph cleaning task 

-  16M+ vertices, 22M+ edges, for small running instances 
-  Takes 100 minutes to finish in Java single machine 

implementation using 40G+ memory   
-  Distributed GraphLab implementation takes less than 15 

minutes using 4 smaller machines 
-  Possible to use commodity machines on large models! 



Experimental Results 
Voter model using commodity machines	


Name	
 |Subproblem|	
 |Consensus|	
 |Edge|	
 Fit in One 
Machine?	


Run time (sec) 
 |m| = 8 	


SN1M	
 3.3M	
 1.1M	
 6M	
 Yes	
 2230	


SN2M	
 6.6M	
 2.1M	
 12M	
 No	
 3997	


SN3M	
 10M	
 3.1M	
 18M	
 No	
 4395	


SN4M	
 13M	
 4.2M	
 24M	
 No	
 5376	


 2000
 3000
 4000
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 6000
 7000
 8000
 9000

 2  4  6  8

R
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Hyper
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Weak scaling with increasing size 

 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000
 5500

 2  4  6  8

R
un

ni
ng

 ti
m

e 
(s

ec
)

Number of Machines (SN2M)

Hyper
Greedy

Strong scaling with fixed dataset 

Machine: Intel Core2 Quad CPU 2.66GHz machines ���
                  with 4GB RAM running Ubuntu 12.04 Linux 	



Miao, Liu, Huang, Getoor, BigData 2013 
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Weight Learning 
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Weight Learning 
§ Learn from training data  

§ No need to hand-code rule-weights 

§ Various methods:  
-  approximate maximum likelihood   

 
- maximum pseudo-likelihood  

-  large-margin estimation 
 Bach, Huang, London, UAI 2013 

[Broecheler, Mihalkova, Getoor, UAI 2010] 
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Weight Learning 
§ State-of-the-art supervised-learning 
performance on 
-  Collective classification 
-  Social-trust prediction 
-  Preference prediction 
-  Image reconstruction 
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Example PSL Program 
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Collective Activity Detection 

Talking 
Talking Waiting 

Walking 

§  Objective: Classify actions of individuals in a video sequence 
-  Requires tracking the multiple targets, performing ID maintenance 
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Incorporate Low-level Detectors 
Histogram of Oriented Gradients 
(HOG) [Dalal & Triggs, CVPR 2005] 

Action Context Descriptors 
(ACD) [Lan et al., NIPS 2010] 

For each action a, define PSL rule: 

wlocal,a : Doing(X, a) ← Detector(X, a) 

wlocal,walking : Doing(X, walking) ← Detector(X, walking) e.g., 
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Easily Encode Intuitions 
§  Proximity: People that are close (in frame) 

are likely doing the same action 
 

-  Closeness is measured via a radial basis function 

§  Continuity: People are likely to continue 
doing the same action 

 

-  Requires tracking & ID maintenance rule: 

wprox,a : Doing(X, a) ← Close(X, Y) ∧ Doing(Y, a)  

wpersist,a : Doing(Y, a) ← Same (X, Y) ∧ Doing(X, a)  

wid : Same(X, Y) ← Sequential(X, Y) ∧ Close(X, Y) 	
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Other Rules 
§ Action transitions 
§ Frame/scene consistency 
§ Priors 
§ (Partial-)Functional Constraints 
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Collective Activity Detection Model 

wid : Same(X, Y) ← Sequential(X, Y) ∧ Close(X, Y)  

widprior : ~SamePerson(X, Y) 

For all actions a: 

wlocal,a : Doing(X, a) ← Detector(X, a) 

wframe,a : Doing(X, a) ← Frame(X, F) ∧ FrameAction(F, a)  

wprox,a : Doing(X, a) ← Close(X, Y) ∧ Doing(Y, a)  

wpersist,a : Doing(Y, a) ← SamePerson(X, Y) ∧ Doing(X, a)  

wprior,a : ~Doing(X, a)  

[London et al., 2013] 
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PSL Code 

6
9	
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PSL Code 

7
0	
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PSL Code 

7
1	
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CVPR
#3

CVPR
#3

CVPR 2013 Submission #3. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

is used for identity maintenance and tracking. It essentially
says that if two bounding boxes occur in adjacent frames
and their positions have not changed significantly, then they
are likely the same actor. We then reason, in R5, that if two
bounding boxes (in adjacent frames) refer to the same actor,
then they are likely to be doing the same activity. Note that
rules are defined for each action, such that we can learn dif-
ferent weights for different actions. We define priors over
the predicates SAME and DOING, which we omit for space.
We also define (partial) functional constraints (not shown),
such that the truth-values over all actions (respectively, over
all adjacent bounding boxes), sum to (at most) one. We
train the weights for these rules using 50 iterations of voted
perceptron, with a step size of 0.1.

Note that we perform identity maintenance only to im-
prove our activity predictions. During prediction, we do not
observe the SAME predicate, so we have to predict it. We
then use these predictions to inform the rules pertaining to
activities.

4.3. Experiments

To illustrate the lift one can achieve on low-level predic-
tors, we evaluate two versions of our model: the first uses
activity beliefs from predictions on the HOG features; the
second uses activity beliefs predicted on the AC descrip-
tors. Essentially, this determines which low-level predic-
tions are used in the predicates LOCAL and FRAMELA-
BEL. We denote these models by HL-MRF + HOG and HL-
MRF + ACD respectively. We compare these to the pre-
dictions made by the first-stage predictor (HOG) and the
second-stage predictor (ACD).

The results of these experiments are listed in Table 1. We
also provide recall matrices (row-normalized confusion ma-
trices) for HL-MRF + ACD in Figure 2. For each dataset,
we use leave-one-out cross-validation, where we train our
model on all except one sequence, then evaluate our predic-
tions on the hold-out sequence. We report cumulative ac-
curacy and F1 to compensate for skew in the size and label
distribution across sequences. This involves accumulating
the confusion matrices across folds.

Our results illustrate that our models are able to achieve
significant lift in accuracy and F1 over the low-level detec-
tors. Specifically, we see that HL-MRF + HOG achieves a
12 to 20 point lift over the baseline HOG model, and HL-
MRF + ACD obtains a 1.5 to 2.5 point lift over the ACD
model.

5. Conclusion
We have shown that HL-MRFs are a powerful class of

models for high-level computer vision tasks. When com-
bined with PSL, designing probabilistic models is easy and
intuitive. We applied these models to the task of collec-
tive activity detection, building on local, low-level detectors

Table 1. Results of experiments with the 5- and 6-activity datasets,
using leave-one-out cross-validation. The first dataset contains 44
sequences; the second, 63 sequences. Scores are reported as the
cumulative accuracy/F1, to account for size and label skew across
folds.

5 Activities 6 Activities
Method Acc. F1 Acc. F1
HOG .474 .481 .596 .582
HL-MRF + HOG .598 .603 .793 .789
ACD .675 .678 .835 .835
HL-MRF + ACD .692 .693 .860 .860

Figure 2. Recall matrices (i.e., row-normalized confusion matri-
ces) for the 5- and 6-activity datasets, using the HL-MRF + ACD
model.

to create a global, relational model. Using simple, inter-
pretable first-order logic rules, we were able to improve the
accuracy of low-level detectors.
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Sample Applications 
§ Social Trust Prediction 
§ Latent Group Modeling 
§ Learner Engagement in MOOCs 
§ Knowledge Graph Identification 



Social Trust Prediction 
§ Competing models from social psychology of 

strong ties 
-  Structural balance [Granovetter ’73]  
-  Social status [Cosmides et al., ’92] 

§ Effects of both models present in online 
social networks  

-  [Leskovec, Huttenlocher, & Kleinberg, 2010] 



Structural Balance vs. Social Status"
§  Structural balance: strong ties are governed 

by tendency toward balanced triads 
 
"
-  e.g., the enemy of my enemy..."

§  Social status: strong ties indicate 
unidirectional respect, “looking up to”, 
expertise status 
 
"
-  e.g., patient-nurse-doctor, advisor-advisee"
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Fig. 1. Implied structures according to competing theories of structural balance and status. The
positive trust relationships from A to B and B to C imply opposite relationships from C to A in
the two models.

illustrates examples of such stable structures. If A strongly trusts B, and B strongly
trusts C, then triadic closure implies that A will likely trust C (and vice versa). On the
other hand, if A does not trust B, B does not trust C, and C does not trust A, this
represents an unstable state that structural balance theory suggests should be less likely
to occur, as the theory prefers triads with one or three strong trust links.

A competing idea is that these social systems are governed by status or reputation.
This is related to ideas from social psychology on reputation [4], where individuals are
trusted based on their expertise in a particular area. In a social status model, the notion
of trust is that the trustee (i.e., the person being trusted) is of higher status than the
truster (i.e., the person who is trusting). Thus, under a status model, individuals exist
in a hierarchy from the most trustworthy to the least trustworthy, along which trust
propagates in triangular structures. As for structural balance, if A strongly trusts B, and
B strongly trusts C, then status also implies that A will likely trust C. However, as
illustrated in Figure 1(b), in contrast to structural balance, status predicts that C will
likely not trust A in this case. Similarly, if A does not trust B and B does not trust C,
then status disagrees with structural balance and implies that A likely does not trust C.

1.1 Related Work

A large community of research focuses on computational modeling of social trust.
Methods for analyzing trust include graph-based approaches [5,6,7], probabilistic mod-
els [8,9,10], as well as other logic-based approaches [11]. These contributions tend to
be fixed computational models based on particular theories of trust, whereas in this pa-
per, we propose PSL as a general tool that provides the flexibility to explore various
models without the need to adapt and redesign inference algorithms.

The foundations for many of these computational approaches stem from the vast
sociological and psychological literature on human behavior. Recent studies have ana-
lyzed some of these theories in the context of social media data, specifically comparing
the structural balance- and status-based models we emulate in this work [12,13]. Trust is
also an important topic in business analytics; for example, modeling of trust is a useful
component for effective viral marketing and e-commerce [14].
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Structural Balance in PSL 

Knows(A,B) ^ Knows(B ,C ) ^ Knows(A,C )

^Trusts(A,B) ^ Trusts(B ,C ) ) Trusts(A,C ),

Tr(A,B) ^ Tr(B ,C ) ) Tr(A,C ),

Tr(A,B) ^ ¬Tr(B ,C ) ) ¬Tr(A,C ),

¬Tr(A,B) ^ Tr(B ,C ) ) ¬Tr(A,C ),

¬Tr(A,B) ^ ¬Tr(B ,C ) ) Tr(A,C )

[Huang, Kimmig & Getoor, SBP ‘13] 



Structural Balance in PSL 

[Huang, Kimmig & Getoor, SBP ‘13] 



Social Status in PSL 

[Huang, Kimmig & Getoor, SBP ‘13] 



Social Status in PSL 

[Huang, Kimmig & Getoor, SBP ‘13] 



Evaluation"
§  User-user trust ratings from two different 

online social networks"

§  Observe some ratings, predict held-out"

§  Eight-fold cross validation on two data sets:"

-  FilmTrust - movie review network,  
trust ratings from 1-10"

-  Epinions - product review network,  
trust / distrust ratings {-1, 1}"

[Huang, Kimmig & Getoor, SBP ‘13] 



Compared Methods"
§  TidalTrust: graph-based propagation of trust"

-  Predict trust via breadth-first search to 
combine closest known relationships"

§  EigenTrust: spectral method for trust"

-  Predict trustworthiness of nodes based on 
eigenvalue centrality of weighted trust 
network"

§  Average baseline: predict average trust score 
for all relationships"

[Huang, Kimmig & Getoor, SBP ‘13] 



FilmTrust Experiment"
§  Normalize [1,10] rating to [0,1]"
§  Prune network to largest connected-component"
§  1,754 users, 2,055 relationships"
§  Compare mean average error, Spearman’s rank coefficient, and 

Kendall-tau distance"

* measured on only non-default predictions"

[Huang, Kimmig & Getoor, SBP ‘13] 



Epinions Experiment"
§  Snowball sample of 2,000 users from 

Epinions data set "
§  8,675 trust scores normalized to {0,1}"
§  Measure area under precision-recall curve for 

distrust edges (rarer class)"

[Huang, Kimmig & Getoor, SBP ‘13] 



Learning Latent Groups 
§  Can we better understand political discourse in social 
media by learning groups of similar people? 
§  Case study: 2012 Venezuelan Presidential Election 
§  Incumbent: Hugo Chávez 
§  Challenger: Henrique Capriles 

Left: This photograph was produced by Agência Brasil, a public Brazilian news agency. This file is licensed under the Creative 
Commons Attribution 3.0 Brazil license. Right: This photograph was produced by Wilfredor. This file is licensed under the 
Creative Commons Attribution-Share Alike 3.0 Unported license. 

[Bach, Huang, Getoor, ICML WS 2013] 



Learning Latent Groups 
§  South American tweets collected from 48-hour 
window around election. 
§  Selected 20 top users 
§  Candidates, campaigns, media, and most 
retweeted 

§  1,678 regular users interacted with (mentioned 
or retweeted) at least one top user and used at 
least one hashtag in another tweet 
§  Those regular users had 8,784 interactions with     
non-top users 



Learning Latent Groups 
wh,g : UsedHashtag(U, h) �InGroup(U, g)

⇤h ⇥ H, ⇤g ⇥ G
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Learning Latent Groups 
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‘RT @loriselc: #6AñosMas De pobreza, marginalidad, 
anarquía, delincuencia, corrupción, división, odio, 

impunidad, muerte.’ 
     -elchongo 



Learning Latent Groups 



Learner Engagement in MOOCs 
§ MOOCs boast large number of registrants, but 

high dropout rate one of the key challenges 
§ Understanding student engagement essential  

-  To understand student activity patterns  
-  To suggest interventions to improve learning 

outcomes, retention and completion 

[Ramesh, Goldwasser, Huang, Daume III, Getoor, NIPS WS 2013] 



Latent Engagement Model in PSL 
§  Leverage behavioral, linguistic, structural and temporal 

features  
§  Engagement-types – active and passive as latent variables 
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PSL Learner Performance Models  

-  Simple PSL Model 
-  Infers learner performance from 

features 

§  Latent Engagement PSL Model 
-  Features grouped into engagement 

indicators and performance indicators 
-  Infers learner engagement as hidden 

variable to predict learner 
performance 

Modeling Learner Engagement in MOOCs 
using Probabilistic Soft Logic

Learner Engagement in MOOCs

Probabilistic Soft Logic

Evaluation

Discussion/Future Work

Supported by National Science Foundation under Grant No. CCF0937094

PSL Learner Performance Models

http://linqs.cs.umd.edu

▪ Massive Open Online Courses (MOOCs): online courses aimed 
at unlimited participation and open access

Experimental Results

▪ Student engagement can be modeled as complex interaction 
of behavioral, linguistic and social cues

▪ Model can be extended to facilitate instructor intervention by 
identifying user groups and sentiment from forum posts

Latent PSL Model provides insight about types of learner 
engagement and their relationship to performance

Motivation

Goal

▪ Low completion rate one of the biggest challenges

⁃ Identify two types of learner engagement: active and passive

⁃ Develop PSL models for predicting learner performance

Declarative language for probabilistic models using first-order logic 
Truth values are relaxed to soft truth in [0,1]
Efficient inference: convex optimization in continuous space

Features

Latent PSL Model outperforms Simple PSL Model

behavioral : postactivity(U) ^ reputation(U) ) perf(U)

linguistic : posts(U,P ) ^ positive(P ) ) perf(U)

structural : posts(U1, P1) ^ posts(U2, P2) ^ perf(U1) ^ samethread(P1, P2) ) perf(U2)

temporal : lastquiz(U1, T1) ^ lastpost(U1, T1) ^ lastlecture(U1, T1) ) ¬perf(U1)

▪ Quantifying and measuring engagement key to understanding 
learner performance

▪ Formulate engagement as a latent variable and learn student 
engagement level from online behavior

Simple PSL Model

Latent Engagement PSL Model

Engaged learner (positive sentiment)
performance = 0.7508; disengagement = 0.0
"Prof. Lucas, Thank you for a great course! And thank you 
Coursera!"

Engaged learner (negative sentiment)
performance = 0.8032; disengagement = 0.0
"I have also received a 9, the most disappointing thing is that I have 
only received good or passing comments from my peers, 3 of 5 did 
not post any comment about my work."

Disengaged learner (negative sentiment)
performance = 0.5; disengagement = 0.675
"I agree completely. I used a lot of time on my assignment and got 
7.5, think the evaluation criteria were wrong, it shouldn't be rated on 
whether you have 3 or 4 innovations in your description but on a 
subjective measure."

Examples of Forum Posts

Point-estimate "hard" expectation maximization for partially-
supervised data with latent variables

⁃ Distinguish between engagement types and how that relates 
to learner performance

Example PSL Rules

Datasets : Disruptive Technogies & Women Civil Rights courses

behavioral : postactivity(U) ^ submitsquiz(U) ) eactive(U)

linguistic : posts(U,P ) ^ positive(P ) ) eactive(U)

structural : posts(U1, P1) ^ posts(U2, P2) ^ eactive(U1) ^ samethread(P1, P2) ) eactive(U2)

temporal : lastquiz(U, T1) ^ lastlecture(U, T1) ^ lastpost(U, T1) ) disengaged(U)

inference : eactive(U) ^ reputation(U) ) perf(U)

Infers learner performance from 
features

Features as PSL predicates

behavioral

linguistic

structural

temporal

latent 
variables

target 
variable

postActivity
voteActivity

submitsLecture
submitsQuiz
sameThread
sameForum
onTopicForum
positive
subjective
lastQuiz
lastLecture
lastPost
lastView

eActive

ePassive

disengaged

perf

viewActivity
reputation
posts

PSL Models

Features grouped into engagement 
indicators and performance 
indicators

Infers learner engagement as 
hidden variable to predict learner 
performance

Simple PSL Model

Latent Engagement PSL Model
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PSL Learner Performance Models: 
Example PSL rules  
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▪ Massive Open Online Courses (MOOCs): online courses aimed 
at unlimited participation and open access

Experimental Results

▪ Student engagement can be modeled as complex interaction 
of behavioral, linguistic and social cues

▪ Model can be extended to facilitate instructor intervention by 
identifying user groups and sentiment from forum posts

Latent PSL Model provides insight about types of learner 
engagement and their relationship to performance

Motivation

Goal

▪ Low completion rate one of the biggest challenges

⁃ Identify two types of learner engagement: active and passive

⁃ Develop PSL models for predicting learner performance

Declarative language for probabilistic models using first-order logic 
Truth values are relaxed to soft truth in [0,1]
Efficient inference: convex optimization in continuous space

Features

Latent PSL Model outperforms Simple PSL Model

behavioral : postactivity(U) ^ reputation(U) ) perf(U)

linguistic : posts(U,P ) ^ positive(P ) ) perf(U)

structural : posts(U1, P1) ^ posts(U2, P2) ^ perf(U1) ^ samethread(P1, P2) ) perf(U2)

temporal : lastquiz(U1, T1) ^ lastpost(U1, T1) ^ lastlecture(U1, T1) ) ¬perf(U1)

▪ Quantifying and measuring engagement key to understanding 
learner performance

▪ Formulate engagement as a latent variable and learn student 
engagement level from online behavior

Simple PSL Model

Latent Engagement PSL Model

Engaged learner (positive sentiment)
performance = 0.7508; disengagement = 0.0
"Prof. Lucas, Thank you for a great course! And thank you 
Coursera!"

Engaged learner (negative sentiment)
performance = 0.8032; disengagement = 0.0
"I have also received a 9, the most disappointing thing is that I have 
only received good or passing comments from my peers, 3 of 5 did 
not post any comment about my work."

Disengaged learner (negative sentiment)
performance = 0.5; disengagement = 0.675
"I agree completely. I used a lot of time on my assignment and got 
7.5, think the evaluation criteria were wrong, it shouldn't be rated on 
whether you have 3 or 4 innovations in your description but on a 
subjective measure."

Examples of Forum Posts

Point-estimate "hard" expectation maximization for partially-
supervised data with latent variables

⁃ Distinguish between engagement types and how that relates 
to learner performance

Example PSL Rules

Datasets : Disruptive Technogies & Women Civil Rights courses

behavioral : postactivity(U) ^ submitsquiz(U) ) eactive(U)

linguistic : posts(U,P ) ^ positive(P ) ) eactive(U)

structural : posts(U1, P1) ^ posts(U2, P2) ^ eactive(U1) ^ samethread(P1, P2) ) eactive(U2)

temporal : lastquiz(U, T1) ^ lastlecture(U, T1) ^ lastpost(U, T1) ) disengaged(U)

inference : eactive(U) ^ reputation(U) ) perf(U)

Infers learner performance from 
features

Features as PSL predicates

behavioral

linguistic

structural

temporal

latent 
variables

target 
variable

postActivity
voteActivity

submitsLecture
submitsQuiz
sameThread
sameForum
onTopicForum
positive
subjective
lastQuiz
lastLecture
lastPost
lastView

eActive

ePassive

disengaged

perf

viewActivity
reputation
posts

PSL Models

Features grouped into engagement 
indicators and performance 
indicators

Infers learner engagement as 
hidden variable to predict learner 
performance

Simple PSL Model

Latent Engagement PSL Model
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Preliminary Experimental Results 
§ Modeling latent student engagement helps 

in predicting student performance 
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Engagement and sentiment in forum-
posts 
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Knowledge Graph Identification 
§ Problem: Collectively reason about noisy, 

inter-related fact extractions 
§ Task: NELL fact-promotion (web-scale IE)  

-  Millions of extractions, with entity ambiguity 
and confidence scores  

-  Rich ontology: Domain, Range, Inverse, 
Mutex, Subsumption 

§ Goal: Determine which facts to include in 
NELL’s knowledge base 

Pujara, Miao, Getoor, Cohen, ISWC 2013 
Best Student Paper Award 



Knowledge Graph Identification 

§  Performs graph identification: 
-  entity resolution 
-  collective classification 
-  link prediction 

§  Enforces ontological constraints 
§  Incorporates multiple uncertain sources 

   Noisy 
extraction
s from the 

Web 

Joint reasoning	


Knowledge Graph	



=	



Problem:	



Solution: Knowledge Graph Identification (KGI)	



Pujara, Miao, Getoor, Cohen, ISWC 2013 



Graph Identification in KGI 

𝑆𝐴𝑀𝐸𝐸𝑁𝑇(𝐸1, 𝐸2)  ⋀.  𝐿𝐵𝐿(𝐸1, 𝐿)               ⟹     𝐿𝐵𝐿(𝐸2, 𝐿)	
  	
  
𝑆𝐴𝑀𝐸𝐸𝑁𝑇(𝐸1, 𝐸2)  ⋀.  𝑅𝐸𝐿(𝐸1, 𝐸, 𝑅)     ⟹     𝑅𝐸𝐿(𝐸2, 𝐸, 𝑅)	
  	
  
𝑆𝐴𝑀𝐸𝐸𝑁𝑇(𝐸1, 𝐸2)  ⋀.  𝑅𝐸𝐿(𝐸, 𝐸1, 𝑅)     ⟹     𝑅𝐸𝐿(𝐸, 𝐸2, 𝑅)	
  	
  

Noisy Extractions:	



Entity Resolution:	



Pujara, Miao, Getoor, Cohen, ISWC 2013 



KGI Representation of Ontological Rules 

Adapted from Jiang et al., ICDM 2012	





Illustra/on	
  of	
  KGI	
  

Ontology: 
Dom(hasCapital, country) 
Mut(country, bird) 

Extractions: 
Lbl(Kyrgyzstan, bird) 
Lbl(Kyrgyzstan, country) 
Lbl(Kyrgyz Republic, country) 
 

Rel(Kyrgyz Republic, Bishkek,  
  hasCapital)	
  

Entity Resolution: 
SameEnt(Kyrgyz Republic,  
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Datasets & Metrics 
§  Data from Never-ending Language 

Learner (NELL) from iteration 165 
§  Consists of over 1M extractions 

and a rich ontology 
§  Evaluation set from (Jiang, 

ICDM12) with 4.5K labeled 
extractions 

§  Report AUC-PR and running time 

Inputs 

Candidate Labels 1.2M 

Candidate Relations 100K 

Types 

Unique Labels 235 

Unique Relations 221 

Ontology 

Dom 418 

Rng 418 

Inv 418 

Sub 288 

RSub 461 

Mut 17.4K 

RMut 48.5K 



NELL Evaluation: two settings 
Complete: Infer full knowledge graph 

•  Open-world model	


•  All possible entities, relations, labels	



•  Inference assigns truth value to 
each variable	



?

Query Set: restrict to a subset of KG 
(Jiang, ICDM12) 

•  Closed-world model	


•  Uses a target set, subset of KG	



•  Derived from 2-hop neighborhood	


•  Excludes trivially satisfied variables	



?



NELL experiments  

Method Query Set Complete 

AUC F1 AUC F1 

Baseline .873 .828 

NELL .765 .673 .765 .673 

MLN (Jiang, 12) .899 .836 

PSL-KGI .904 .853 .892 .848 

•  Task: Use 1.3M NELL extractions and 68K ontology relations to 
predict a query set or build a complete knowledge graph	



•  Comparisons: baseline (confidence values), NELL (consistency 
heuristics), MLN (marginals with MC-SAT), KGI using PSL	



•  Performance: PSL improves F1/AUC; takes just 10 seconds 
on query set; builds complete KG (4.3M facts) in 130 minutes	



Pujara, Miao, Getoor, Cohen, ISWC 2013 



Additional Application Domains 
§  Computer Vision 

-  Low-level image reconstruction 
-  Activity recognition in Video 

§  Computational Biology & Health Informatics 
-  Drug-target prediction  
-  Event discovery in EMR data 

§  Computational Social Science 
-  Inferring bias in political discourse 
-  Psychological modeling on online social networks 

§  Information Integration & Extraction 
-  Entity resolution 
-  Ontology alignment & schema mapping 

§  Upcoming: climate graphs, discourse analysis, more! 



Theory 



Theoretical Guarantees? 
§  Questions: 

-  Are there theoretical guarantees for learning templated models 
(e.g. HL-MRFs)? 

-  Which models come with good guarantees? 
-  What makes a “good” model? 

§  These questions are often answered by studying 
generalization 



Generalization Bounds 
§  Learning setting: 

-  Learner gets random sample from distribution over structured 
examples 

•  Possibly gets only one large example! 

-  Learner minimizes empirical error on training set 

§  What is the expected error on future examples? 
 

  
§  Analysis of generalization gives bounds on future error 

-  Typical bound: 

(future error) ≤ (empirical error) + ? 

(future error) ≤ (empirical error) + 
√(model complexity) 

√(size of data) 



Generalization Bounds 
§  What is “size of data” for structured data? 

-  Traditional learning theory says: # of i.i.d. structured examples 
-  But each example is typically very large, relative to # of model 

parameters 
-  Why not (# examples) x (size of example) ? 

•  Careful! Variables are no longer i.i.d. 

§  New theory: 

(future error) ≤ (empirical error) 

√(model complexity) 

√( (# examples) x (size of example) ) 
+ 

[London, Huang, Taskar & Getoor, ICML‘13] 



Generalization Bounds 
§  New theory says that generalization can happen from very 

few training examples – even just one! 
-  Common scenario in structured prediction 

§  Bounds depend on properties of the model/data: 
-  # of parameters 
-  collective stability: “smoothness” of inference function 
-  network structure 
-  amount of dependence in distribution 

§  Gives new insight into when models generalize 
-  Example: templated models with strongly convex inference, 

when data has “weak” dependence 

[London, Huang, Taskar & Getoor, ICML‘13] 



Ongoing Research 
§  Many open questions! 

§  Examine generalization of different classes of structured 
predictors 

§  Analyze transductive learning setting 
-  Data is fixed (i.e., no distribution on future examples) 
-  Training data sampled randomly from fixed pool 
-  Learned model predicts on remaining data 
-  Very common setting for relational data! 

§  Accommodate weaker dependence/structural assumptions  



http://psl.umiacs.umd.edu 

Conclusion 



http://psl.umiacs.umd.edu 

Closing Comments 
§ Great opportunities to do good work and 

do useful things in the current era of big 
data, data analytics, and network science 
– ‘entity-oriented data science’ 

§ Statistical relational learning provides 
some of the tools, much work still 
needed, developing theoretical bounds for 
relational learning, scalability, etc. 

§ Compelling applications abound! 

 

Looking for 
students & 
postdocs 

@UCSC 
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