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Big Data: What's Different?

Most of the data does not look

like this

Or even like this O\ /(\ /7\ /O\
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Statistical Relational Learning (SRL)

o Al/DB representations + statistics for multi-relational data
Entities can be of different types
Entities can participate in a variety of relationships

examples: Markov logic networks, relational dependency networks,
Bayesian logic programs, probabilistic relational models, many
others.....

o Key ideas
Relational feature construction

Collective reasoning
‘Lifted’ representation, inference and learning

http://lings.cs.umd.edu/projects//Tutorials/nips2012.pdf
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Probabilistic Soft Logic (PSL)

Declarative language based on logics to express
collective probabilistic inference problems

- Predicate = relationship or property
- Atom = (continuous) random variable
- Rule = capture dependency or constraint
- Set = define aggregates
PSL Program = Rules + Input DB
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Collective Classification
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Voter Opinion Modeling
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Voter Opim’on Modeling
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Voter Opinion Modeling
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Link Prediction .

= Entities - In' -
- People, Emails
= Attributes _

|
- Words in emails w ' _r
<=
= Relationships =
- communication, work > : -
relationship

» Goal: Identify work - _ _
relationships = ==

- Supervisor, subordinate, v
colleague # .
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Link Prediction

(]
= People, emails, words, _ w “
communication, relations

= Use rules to express . =

° h —
evidence w - ‘

- “If email content suggests type X, it 0

is of type X” I

O
> -

- “If A sends deadline emails to B, Inl
then A is the supervisor of B”

- “If A'is the supervisor of B, and A is = 0 =
the supervisor of C, then B and C are
colleagues”

'%_
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L] n k P red]Ctlon HasWord(E, “due”) => Type(E, deadline) : 0.6

* People, emails, words, _ w -
communication, relations = [ [Lcomplete by

= Use rules to express . due 1=
evidence w - ‘

- “If email content suggests type X, it =
is of type X” t — . -

- “If A sends deadline emails to B, Inl
then A is the supervisor of B”

- “If A'is the supervisor of B, and A is = ~—m|[ =
the supervisor of C, then B and C are — — —
colleagues”

\4
#




http://psl.umiacs.umd.edu

Link Prediction

(]
= People, emails, words, _ w “
communication, relations

= Use rules to express . =

|
. je—
evidence w - ‘
- “If email content suggests type X, it B
. 144 .
is of type X 1 -
- “If A sends deadline emails to B, Inl
then A is the supervisor of B”

- “If A'is the supervisor of B, and A is = m| =
the supervisor of C, then B and C are —
colleagues”

\ 4
Sends(A,B,E) ~ Type(E,deadline) => Supervisor(A,B) : 0.8 %
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Link Prediction

(]
= People, emails, words, _ w “
communication, relations

= Use rules to express . =

|
. e—
evidence w - ‘
- “If email content suggests type X, it B
. 144 .
is of type X 1 -
- “If A sends deadline emails to B, Inl
then A is the supervisor of B”

- “If A'is the supervisor of B, and A is = m| =
the supervisor of C, then B and C are —
colleagues”

\4
Supervisor(A,B) ~ Supervisor(A,C) => Colleague(B,C) : 1.0 %
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Entity Resolution

= Entities
- People References [_3ohn Smith | (2. smith |
= Attributes il il
- Name E’Q EBj

= Relationships

- Friendship [C][D][:]

= Goal: Identify S~ -T
E —
references that denote ‘ _ B @
the same person -
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Entity Resolution

= References, names,

friendsh]’ps [ John Smith ] [ J. Smith ]
= Use rules to express e e
evidence E’Q EBj

- ""If two people have similar names,

they are probably the same’’ | N
- “If two people have similar friends, [ C] [ D] [ 3 ]

they are probably the same’’ v 7

~ /
- “If A=B and B=C, then A and C must = l H I

also denote the same person’
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Entity Resolutio?

A.name = . gm B.name => A=zB : 0.8

= References, names, \
friendsh]’ps [ John Smith ] [ J. Smith ]

= Use rules to express il il
evidence E@ EBj

- ""If two people have similar names,

they are probably the same’’ | N
- “If two people have similar friends, [ C] [ D] [ 3 ]

they are probably the same’’ v 7

~ /
- “If A=B and B=C, then A and C must = l H I

also denote the same person’
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Entity Resolution

= References, names,
friendsh]’ps [ John Smith ] [ J. Smith ]

name name
= Use rules to express
evidence EBj
- ""If two people have similar names, _friend
|\

they are probably the same’”’

- "If two people have similar friends
they are probably the same’”’

- “If A=B and B=C, then A and C must
also denote the same person’’

{A.friends} = {}{B.friends}_=> A=B : 0.6
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Entity Resolution

= References, names,

friendsh]’ps [ John Smith ] [ J. Smith ]
= Use rules to express = =
evidence E@ EBj

- ""If two people have similar names,

they are probably the same’’ | N
- “If two people have similar friends, [ C] [ D] [ 3 ]

they are probably the same’’ v 7

~ /
- “If A=B and B=C, then A and C must = l H I

also denote the same person’




Logic Foundation
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[Broecheler, et al., UAI “10]

Atoms

“Lifted” Rules
vV’
H,(X) V... V H_(X) < B,(X) A ... A B (X)

= Will be instantiated for every xeX in the input
= Atoms are real valued

- Interpretation I, atom A: I1(A) € [0,1]

- We will omit the interpretation and write A€ [0,1]
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Combination Functions

=V, A:[0,1]" —[0,1]

= Here, we use Lukasiewicz T-norm
=AYV B =min(1, A + B)
A A B=max(0, A+B-1)
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Rule Satisfaction

Hy(X) < Bi(X)A By(X)

= Establish Satisfaction

_—]

0.5 H,(X) < B,(x):0.7 A B,(x):0.8
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Distance to Satisfaction
H,(X) V... V H_(X) < B,(X) A ... A B.(X)

= Distance to Satisfaction
B MaX(A(B1(X) ,“)Bn(x)) ) V(H1(X) )“)Hm(x))) O)

]

‘Hl(x):0.7 < B,(x):0.7 A B,(x):0.8 ‘ 0.0

‘Hl(x):O.Z < B4(x):0.7 A B,(x):0.8 ‘ 0.3
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Distance to Satisfaction
H,(X) V... V H_(X) < B,(X) A ... A B(X)
= Distance to Satisfaction

- MaX(A(B1(X) ,“)Bn(x)) ) V(H1(X) )“)Hm(x))) O)

= Weighted Rules
W.:: H,(X)V...H (X) < B;(X) A ... A B,(X)

» Weighted Distance to Satisfaction
W ° maX(/\(B1(X),..,Bn(X))'v(H1(X),..,Hm(X)), O)

r
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So far....

» Given a data set and a PSL program, we can
construct a set of ground rules.

= Some of the atoms have fixed truth values
and some have unknown truth values.

» For every assignment of truth values to the
unknown atoms, we get a set of weighted
distances from satisfaction.

= How to decide which is best?




Probabilistic Foundation
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Probabilistic Model

Ground rule’s distance to satisfaction
dr (I) — maX{Ir,body — ]fr,heada O}

Probability

density over
interpretation /

- Z wy(dr (1))

. reRr

. Rule weight
Normalization

constant
Distance

exponent

(in {1, 2})



Hinge-loss MRFs




http://psl.umiacs.umd.edu

Hinge-loss Markov Random Fields

1 ™m
P(Y|X) = exp [~ 3 wymax{;(Y,X), 017
i=1

= Continuous variables in [0,1]

= Potentials are hinge-loss functions

= Subject to arbitrary linear constraints
» Log-concave!
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Inference as Convex Optimization
= Maximum Aposteriori Probability (MAP) Objective:
arg max P(Y | X)
= arg min Z w,; max{l;(Y,X), 0}

71=1
= This is convex!

= Can solve using off-the-shelf convex optimization
packages

= .. or custom solver
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Consensus Optimization

» |dea: Decompose problem and solve
sub-problems independently (in
parallel), then merge results

- Sub-problems are ground rules

- Auxiliary variables enforce consensus across
sub-problems

= Framework: Alternating direction method of multipliers
(ADMM) [Boyd, 2011]

= [nference with ADMM is fast, scalable, and straightforward
to implement [Bach et al., NIPS 2012, UAI 2013]




Inference Algorithm

http://psl.umiacs.umd.edu
Bach et al., UAI 2013

Algorithm 1 MPE Inference for HL-MRFs

Initialize local copies

of variables and
Lagrange multipliers

Begin inference
iterations

Simple updates
solve subproblems
for each potential...

...and each
constraint

Average to update
global variables and

clip to [0,1]

Input: HL-MRF(Y, X, ¢, A\, C,E,Z), p > 0

Initialize y; as copies of the variables Y; that appear
ing;,j=1....m

Initialize yjy,, as copies of the variables Yy,
that appear in Cy, k=1,...,r

Initialize Lagrange multipliers «; corresponding to
variable copies y;, i =1,....,m+r

while not converged do

for j=1,...,mdo
a; < a;+p(y; = Y;)
yj < Y —a;/p
if Kj(yj,X) > 0 then
y; < argming [ Aj[¢;(y;, X7 + §lly; — Y+ Seyll3 ]
if Ej(yj, X) < 0 then
y; < Proj,, _o(Y})
end if
end if
end for

for k=1,...,r do
Qpm & Qi + p(yk-l-m - Yk+m)

Yitm < Proje, (Yiqm)
end for

fori=1,...,ndo
1 C
Y;' < [copies (V)| ZZ'Jcecc)pies(Yi) (yc + %)

Clip Y; to [0,1]
end for

end while




Bach et al., UAI 2013; London et al., 2013

Speed

Average running time

Cora Citeseer Epinions Activity

Discrete MRF 1109s 184.3s 212.4s 344.2s
HL-MRF 0.4s 0.7 s 1.2s 0.6s
Variables 10k 10k 1k 8k
Potentials 14k 19k 18k 75k

* Inference in HL-MRFs is orders of magnitude faster than in
discrete MRFs which use MCMC approximate inference

* |n practice, scales linearly with the number of potentials
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Document Classification

= Given a networked collection of documents
= Observe some labels
» Predict remaining labels using

= link direction \

= inferred class label A or B?

>
i
|

1

A or B?

Citeseer  Cora f

HL-MRF-Q (MLE)  0.729  0.816
HL-MRF-Q (MPLE) 0.729  0.818
HL-MRF-Q (LME) 0.683  0.789

HL-MRF-L (MLE) 0.724  0.802 Aor B? [= <
HL-MRF-L (MPLE)  0.729  0.808 =
HL-MRF-L (LME) 0.695  0.789

MLN (MLE) 0.686  0.756 S
MLN (MPLE) 0.715  0.797
MLN (LME) 0.687  0.783 B

Accuracy for collective classification. The label accuracy of the highest-scoring
category for various HL-MRFs and MLNs. Scores statistically equivalent to the
best scoring method are typed in bold.




Miao, Liu, Huang, Getoor, IEEE Big Data 2013

Distributed MAP Inference

= ADMM consensus optimization problem can be implemented
naturally in distributed setting

= For k+1 iteration, it consists three steps in which sub problems
can run independently (15t and 2" step):

1. Update Lagrangian multiplier

K+l k k_yk $i(x1)

Yi €yitp (-‘,’ ‘Xj) @
2. Update each sub problem |

C . p - ] 1 ? (/)m(xm) )

X e—argmin A, ¢, (x;) + > |% -XE 4 — ! ‘

X; l) s )
p 1 2 II[CI(XNHI)] @

X e—argmin ;| C; (,\})J+? X -XE+ — !
X; /) ,

3. Update the global variables

L[C.(x,:,)] —

IJ':+1

/ )
S+l o +1, <
e G

g Glij)=g P




Distributed MAP: MapReduce

Job Bootstrap load global variable

Mapper

sub

problem

local

variable

copy

Reducer

update

global

component

V4

X as side data

read global
variable X
read/write
subproblem
7 m+1 . m+r

\

5% db

-
-
-
-
-
-
-
-

-
-
-
-
-
-

-_
-
-
-
-
-
-
-
-

-

u)

G%GPP it

L0

Pros:

Straightforward Design

Cons:

Job bootstrapping cost
between iterations
Difficult to schedule
subset of nodes to run.

-

HDFS or
HBase

write new
global variable




Distributed MAP: GraphlLab A

* No need to touch disk, no
job bootstrapping cost
* Easy to express local

sub global convergence conditions to
problem variabl schedule only subset of
node Xy compo nodes.
gather gather
get z get local z,y
X
“m
apply apply
update y update z
update x .
"‘m-l-l g scatter
scatter unless converge
notify z notify X
"‘m-{-r

update i update i+1




Experimental Results

= Using PSL for knowledge graph cleaning task

16M+ vertices, 22M+ edges, for small running instances

Takes 100 minutes to finish in Java single machine
implementation using 40G+ memory

Distributed GraphLab implementation takes less than 15
minutes using 4 smaller machines

Possible to use commodity machines on large models!



Miao, Liu, Huang, Getoor, BigData 2013

Experimental Results
Voter model using commodity machines

Voter Opinion Modeling

htn'ﬁ‘ [vote(A,P) /\-frlend(B A) > vote(B P):0.3 | m ISubproblem| m II\:IIIt in Ong Run time (sec)
o . H'I, achine? Im| =
.

spose * — SN,y 3.3M 1.1M 2230
wﬂd Ad spouse SN, 6.6M 2.1M 12M No 3997
frlen\ . - coueague SNjpm 10M 3.1M 18M No 4395
Spouse m w SN, 13M 4.2M 24M No 5376
m|vote(A,p) A spouse(B,A) > vote(B,P) : 0.8 Machine: Intel Core2 Quad CPU 2.66GHz machines

with 4GB RAM running Ubuntu 12.04 Linux

5500 I I I T T

5000 - Hyper . 9000 GHypgl’ IV
S 4500 Greedy - _ —~ K-o oreedy —moeo
3 " S 8000 |- . e i
£ 4000 - 7 = 7000 - §
e 3500 [ . E 5000
= 3000 |- - =
£ 2500 IR £ 5000
E 2000 - T - 5 4000 -
@ 1500 -

1000 |- - 3000

| | | | 2000 | |
%00 2 4 6 8 2 4 6 8

Number of machines

Number of Machines (SNy),)

Weak scaling with increasing size

Strong scaling with fixed dataset




Weight Learning
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Weight Learning

»Learn from training data
* No need to hand-code rule-weights

= Various methods:

- approximate maximum likelihood
Broecheler, Mihalkova, Getoor, UAI 2010

- maximum pseudo-likelihood

- large-margin estimation
Bach, Huang, London, UAI 2013
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Weight Learning

= State-of-the-art supervised-learning
performance on

- Collective classification

- Social-trust prediction
- Preference prediction
- Image reconstruction




Example PSL Program
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Collective Act1v1ty Detectlon

= Objective: Classify actions of individuals in a video sequence
- Requires tracking the multiple targets, performing ID maintenance

’—
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Incorporate Low-level Detectors

Histogram of Oriented Gradients Action Context Descriptors
(HOG) [Dalal & Triggs, CVPR 2005] (ACD) [Lan et al., NIPS 2010]

For each action a, define PSL rule:
Doing(X, a) < Detector(X, a)

Wlocal,a .

€.8.,  WicaLwaking - DOING(X, walking) < Detector(X, walking)
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Easily Encode Intuitions

= Proximity: People that are close (in frame)
are likely doing the same action

: Doing(X, a) « Close(X, Y) A Doing(Y, a)

Wp rox,a

- Closeness is measured via a radial basis function

= Continuity: People are likely to continue
doing the same action

w

: Doing(Y, a) «— Same (X, Y) A Doing(X, a) 5 =" =

persist,a

- Requires tracking & ID maintenance rule:

w4 : Same(X,Y) < Sequential(X,Y) A Close(X,Y)
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Other Rules

= Action transitions

* Frame/scene consistency

" Priors

= (Partial-)Functional Constraints
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Collective Activity Detection Model

w,: Same(X, Y) «— Sequential(X, Y) A Close(X, Y)

W, : ~SamePerson(X, Y)

idprior *
For all actions a:

: Doing(X, a) < Detector(X, a)

: Doing(X, a) « Frame(X, F) A FrameAction(F, a)

WIocal a-

Wframe a’

: Doing(X, a) < Close(X, Y) A Doing(Y, a)

prox a°*

: Doing(Y, a) « SamePerson(X, Y) A Doing(X, a)

per5|st a’

w_. . :~Doing(X,a)

prior,a

[London et al., 2013]
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PSL Code

/*%% MODEL DEFINITION ¥¥*/
PSLModel m = new PSLModel(this, data);
/* PREDICATES */

// target
m.add predicate: "doing", types: [ArgumentType.UniquelD,ArgumentType.Integer];
m.add predicate: "sameObj", types: [ArgumentType.UniquelID,ArgumentType.UniquelD];

// observed

.add predicate: "inframe", types: [ArgumentType.UniquelID,ArgumentType.Integer,ArgumentType.Integer];
.add predicate: "inSameframe”, types: [ArgumentType.UniquelD,ArgumentType.UniquelD];

.add predicate: "inSeqgframes”, types: [ArgumentType.UniquelD,ArgumentType.UniquelD];

.add predicate: "dims", types: [ArgumentType.UniquelD,ArgumentType.Integer,ArgumentType.Integer];
.add predicate: "detector", types: [ArgumentType.UniquelID,ArgumentType.Integer];

.add predicate: "frameAction”, types: [ArgumentType.Integer,ArgumentType.Integer];

/* FUNCTIONAL PREDICATES */

m.add function: "close”, implementation: new ClosenessFunction(d, le6, 0.1, true);
m.add function: "seqClose”, implementation: new ClosenessFunction(100, 4.9, 0.7, true);
m.add function: "notMoved", implementation: new ClosenessFunction(10, 1.0, 0.0, false);




http://psl.umiacs.umd.edu

PSL Code

/* TRACKING RULES */

// ID maintenance
m.add rule: ( inSeqFrames(BB1,BB2) & dims(BB1,X1,Y1) & d
& seqClose(X1,X2,Y1,Y2) ) >> sameOb](g__ 2), welght 1.9;

// Prior on sameQObj
m.add rule: ~sameObj(BB1,BB2), weight: 0.01;

/* ACTION RULES */

def actions = ["crossing","standing","queueing”,"walking","talking"];
for (int a : actions) {

// Local detectors
m.add rule: detector(BB,a) >> doing(BB,a), weight: 1.0;

// Frame consistency
m.add rule: ( inFrame(BB,S,F) & framelLabel(F,a) ) >> doing(BB,a), weight: 0.1;

// Persistence

m.add rule: ( sameObj(BB1,BB2) & doing(BBl,a) ) >> doing(BB2,a), weight: 1.0;

// Proximity
m.add rule: ( inSameFrame(BB1,BB2) & doing(BB1
& close(X1,X x;,xg) ) >>d

dims(BB1,X1,Y1) & d

,a ms(BB2,X2,Y2)
oing(BB2,a), weight: 0.1;

// Prior on doing
m.add rule: ~doing(BB,a), weight: 0.01;




http://psl.umiacs.umd.edu

PSL Code

/* FUNCTIONAL CONSTRAINTS */

// Functional constraint on doing means that it should sum to 1 for each BB
m.add PredicateConstraint. Functional, on: doing;

// (Inverse) Partial functional constraint on sameObj
m.add PredicateConstraint.PartialFunctional, on: sameQbj;
m.add PredicateConstraint.PartiallnversefFunctional, on: sameQbj;




[London, et al., CVPR WS 2013]

Results on Activity Recognition

f;\(\% CrAb N 4.30% 2.50% 0.50%
") °
“ oo e 0| RECaAll matrix between
o . o o
= 4.20% 17.70% fCRLLY 0.80% 050% 0.10% d]fferent aCt]V]ty types
0\\)6 .(\% 060% 6.09% 11.79% EPys Y 090% 3.40%
\\(\\
© (',\(\% 0.40% 0.30% 1.10% EEMIEE 0.10%
2
%%;\(\% 0.10%
\0
dog;\o%\ﬂa-\(\o":\\)e $°° . 2e® " O o %@0%
5 Activities | 6 Activities
. Method Acc. | F1 | Acc. | FlI
Accuracy metrics  [HoG 474 | 481 | 596 | 582
Compared against HL-MRF+HOG | .598 | .603 | .793 | .789
. ACD 675 | .678 | .835 | .835
baseline features | i\ ik, acp | 692 | 1693 | 860 | 860

’—



PSL Applications
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Sample Applications

= Social Trust Prediction
» Latent Group Modeling

» _earner Engagement in MOOCs
» Knowledge Graph Identification



Social Trust Prediction

= Competing models from social psychology of
strong ties

- Structural balance [Granovetter " 73]
- Social status [Cosmides et al., " 92]

= Effects of both models present in online
social networks

- [Leskovec, Huttenlocher, & Kleinberg, 2010]




Structural Balance vs. Social Status

= Structural balance: strong ties are governed
by tendency toward balanced triads

B
. +/V’\+ . A +/V°\_ .
.{ + \5. .{ - \5.

- e.g., the enemy of my enemy...

= Social status: strong ties indicate
unidirectional respect, “looking up to”,

expertise status i
o£+/'o—+\—>o

B C

- e.g., patient-nurse-doctor, advisor-advisee




[Huang, Kimmig & Getoor, SBP "13]

Structural Balance in PSL

B

AN

Knows(A, B) A Knows(B, C) A Knows(A, C)
ATrusts(A, B) A Trusts(B, C) = Trusts(A, C),

Tr
Tr
= Tr
—Tr

A B)ANTr(B,C) = Tr(A C),
A B)AN=Tr(B, C) = —Tr(A, C),
A B)YATr(B,C) = —Tr(A C),
A B)A=Tr(B, C) = Tr(A, C)

AN N N N



[Huang, Kimmig & Getoor, SBP "13]

Structural Balance in PSL

B B

VAN as
Tr(A, B)ATr(B,C) = Tr(A, C), Tr(B,A)ATr(B,C) = Tr(A, C),
Tr(A, B) A =Tr(B, C) = —Tr(A, C), Tr(B,A) A =Tr(B, C) = —Tr(A, C),
~Tr(A, B)ATr(B,C) = —Tr(A, C), —Tr(B,A)ATH(B,C) = —Tr(A C),
~Tr(A, B) A =Tr(B, C) = Tr(A, C),  —Tr(B, A) A=Tr(B, C) = Tr(A, C),
Tr(A,B)ATr(C,B) = Tr(A, C), Tr(B,A) ATr(C,B) = Tr(A, C),
Tr(A, B) A =Tr(C, B) = —Tr(A, C), Tr(B,A) A =Tr(C, B) = —Tr(A, C),
-Tr(A,B)ATr(C,B) = —Tr(A C), —Tr(B,A)ATr(C,B) = —Tr(A, C),
~Tr(A, B) A =Tr(C, B) = Tr(A, C),  —Tr(B, A) A —=Tr(C, B) = Tr(A, C)



[Huang, Kimmig & Getoor, SBP “13]

Social Status in PSL

-
-—
-— -~

Tr(X, Y) ATH(Y, Z) = Tr(X, Z)
~Tr(X, Y) A =Tr(Y, Z) = —Tr(X, Z)




[Huang, Kimmig & Getoor, SBP “13]

Social Status in PSL

—— -——
- -~ - - —

AR S— ) i —o— e
X Y z X Y v
Tr( X, Y)ANTHY,Z) = Tr(X, 2), Tr(Y,X) A=Tr(Y, Z) = =Tr(X, Z),

-Tr( X, Y)A=Tr(Y,Z) = =Tr(X, Z2), —Tr(Y,.X)ATr(Y,Z2) = Tr(X,2),

Tr(X,Y)ATr(Z,Y) = Tr(X, 2), Tr(Y,X)ANTr(Z,Y) = —Tr(X, 2),
-Tr(X,Y)ATr(Z,Y) = -Tr(X,Z), —-Tr(Y,X)A=Tr(Z,Y)= Tr(X, 2)




[Huang, Kimmig & Getoor, SBP “13]

Evaluation

= User-user trust ratings from two different
online social networks

» Observe some ratings, predict held-out
= Eight-fold cross validation on two data sets:

- FilmTrust - movie review network,
trust ratings from 1-10

- Epinions - product review network,
trust / distrust ratings {-1, 1}




[Huang, Kimmig & Getoor, SBP “13]

Compared Methods

= TidalTrust: graph-based propagation of trust

- Predict trust via breadth-first search to
combine closest known relationships

= EigenTrust: spectral method for trust

- Predict trustworthiness of nodes based on
eigenvalue centrality of weighted trust
network

= Average baseline: predict average trust score
for all relationships




[Huang, Kimmig & Getoor, SBP “13]

FilmTrust Experiment

= Normalize [1,10] rating to [0,1]
= Prune network to largest connected-component
= 1,754 users, 2,055 relationships

= Compare mean average error, Spearman’s rank coefficient, and
Kendall-tau distance

Method MAE T p MAE* T* p*
Average n/a n/a n/a n/a n/a
EigenTrust 0339 —-0.054 —0.074 0.339 —0.054 —0.074
TidalTrust - 0.229 0.059 0.078 0.236 0.089 0.117
PSL-Balance 0.207 0.136 0.176 0.193 0.235 0.314
PSL-Balance-Recip | 0.207 0.139 0.188 0.193 0.241 0.318
PSL-Status 0224 |0.112 0.144 0.230 0.205 0.277
PSL-Status-Inv 0.224 0.065 0.085 0.238 10.143 0.189

* measured on only non-default predictions




[Huang, Kimmig & Getoor, SBP “13]

Epinions Experiment
= Snowball sample of 2,000 users from
Epinions data set
= 8,675 trust scores normalized to {0,1}

= Measure area under precision-recall curve for
distrust edges (rarer class)

Method AUC
Average 0.070
PSL-Balance 0.317
PSL-Balance-Recip  0.343
PSL-Status 0.297
PSL-Status-Inv 0.280
EigenTrust 0.131

Tidal Trust 0.130




[Bach, Huang, Getoor, ICML WS 2013]

Learning Latent Groups

= Can we better understand political discourse in social
media by learning groups of similar people?
= Case study: 2012 Venezuelan Presidential Election

* [Incumbent: Hugo Chavez

= Challenger: Henrique Capriles

Left: This photograph was produced by Agéncia Brasil, a public Brazilian news agency. This file is licensed under the Creative
Commons Attribution 3.0 Brazil license. Right: This photograph was produced by Wilfredor. This file is licensed under the
Creative Commons Attribution-Share Alike 3.0 Unported license.




Learning Latent Groups

= South American tweets collected from 48-hour
window around election.
= Selected 20 top users
» Candidates, campaigns, media, and most
retweeted
» 1,678 regular users interacted with (mentioned
or retweeted) at least one top user and used at
least one hashtag in another tweet
* Those regular users had 8,784 interactions with
non-top users




Learning Latent Groups

wp, g+ USEDHASHTAG(U, h) =INGROUP(U, g)
Vh € HVgeg

Wsocial : REGULARUSERLINK (U7, Us)
A REGULARUSERLINK (Us, U3) A Uy # Us
A INGrOUP (U1, G) — INGROUP(Us, G)

wy ¢ : INGROUP(U, g) = TOPUSERLINK(U, ?)
Vge g, VteT




Learning Latent Groups
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Learning Latent Groups
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[Ramesh, Goldwasser, Huang, Daume Ill, Getoor, NIPS WS 2013]

Learner Engagement in MOOCs

= MOOCs boast large number of registrants, but
high dropout rate one of the key challenges

= Understanding student engagement essential

- To understand student activity patterns

- To suggest interventions to improve learning
outcomes, retention and completion

coursera .\ % \\ . Codecademy
X | \/59 ?G\
/ .\g;ﬂ:’ =5 |




Latent Engagement Model in PSL

= | everage behavioral, linguistic, structural and temporal
features

= Engagement-types - active and passive as latent variables

Structural @
posting in same — Forum —
thread/forum — Thread A——
—

Post 1
1 )=Post 2
* Post 3

Linguistic Post n )
polarity and ¢ Thread B— Lectyres Assgssments
subjectivity in posts \ﬁv ~
g Behavioral

view lectures
take assessments

Thread N—)
C J | post, view and vote in forums]




PSL Learner Performance Models

- Simple PSL Model [A"features ]:>
- Infers learner performance from

features

Engagement i?
@
Performance :’>
@

= Latent Engagement PSL Model

- Features grouped into engagement
indicators and performance indicators

- Infers learner engagement as hidden
variable to predict learner
performance




PSL Learner Performance Models:

Example PSL rules

behavioral : POSTACTIVITY(U) A REPUTATION(U) = PERF(U)

linguistic : POSTS(U, P) A POSITIVE(P) = PERF(U)

structural : POSTS(Uy, Pr) A POSTS(Us, P2) A PERF(Uy) A SAMETHREAD(Py, Py) = PERF(Uy)
temporal : LASTQUIZ(Uy, T) A LASTPOST(Uy,T1) A LASTLECTURE(Uy, T1) = —PERF(U)

Latent Engagement PSL Model
behavioral : POSTACTIVITY(U) A SUBMITSQUIZ(U ) = EACTIVE(U)

linguistic : POSTS(U, P) A POSITIVE(P) = EACTIVE(U)

structural : POSTS(Uy, P) A POSTS(Us, Py) A EACTIVE(U; ) A SAMETHREAD( Py, Py) = EACTIVE(U:)
temporal : LASTQUIZ(U, T1) A LASTLECTURE(U, T ) A LASTPOST(U, T} ) = DISENGACGED(U)

inference : EACTIVE(U) A REPUTATION(U) = PERF(U)

V4
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Preliminary Experimental Results

* Modeling latent student engagement helps
in predicting student performance

AUC-PR Pos. AUC-PR Neg.

AUC-ROC

Disruptive Technologies Course
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Engagement and sentiment in forum-
posts

Engaged learner (positive sentiment)

performance = 0.7508; disengagement = 0.0

"Prof. Lucas, Thank you for a great course! And thank you
Coursera!"

Engaged learner (negative sentiment)

performance = 0.8032; disengagement = 0.0

"I have also received a 9, the most disappointing thing is that | have
only received good or passing comments from my peers, 3 of 5 did
not post any comment about my work."

Disengaged learner (negative sentiment)

performance = 0.5; disengagement = 0.675

"I agree completely. | used a lot of time on my assignment and got
7.5, think the evaluation criteria were wrong, it shouldn't be rated on
whether you have 3 or 4 innovations in your description but on a

subjective measure." I



Pujara, Miao, Getoor, Cohen, ISWC 2013
Best Student Paper Award

Knowledge Graph ldentification

* Problem: Collectively reason about noisy,
inter-related fact extractions
» Task: NELL fact-promotion (web-scale IE)

- Millions of extractions, with entity ambiguity
and confidence scores

- Rich ontology: Domain, Range, Inverse,
Mutex, Subsumption

» Goal: Determine which facts to include in
NELL’ s knowledge base




Pujara, Miao, Getoor, Cohen, ISWC 2013

Knowledge Graph ldentification

Problem:

Noisy
extraction
s from the

Knowledge Graph @
Joint reasoning o-0

Solution: Knowledge Graph Identification (KGI)

= Performs graph identification:
- entity resolution
- collective classification
- link prediction

= Enforces ontological constraints
» |Incorporates multiple uncertain sources




Pujara, Miao, Getoor, Cohen, ISWC 2013

Graph Identification in KGI

Noisy Extractions: .
CR
CANDRELT(El, Ez, R) :’1; REL(El, Ez, R)

WCLT
CanpLBLr(E,L) — LBL(E,L)

Entity Resolution:

SaMEENT(E{,E,) NLBL(E{,L) = LBL(E,,L)
SameEnT(E;,E,) AREL(E;,E,R) = REL(E,, E,R)
SameENT(E,E,) A REL(E,E;,R) = REL(E,E,,R)

’—



KGI Representation of Ontological Rules
Dom(R,L) AREL(E{,E,,R) = LBL(E{ L)
Rne(R,L) AREL(E{,E,,R) = LBL(E,, L)
Inv(R,S) AREL(E{,E,,R) = REL(E,, E{,R)

Sus(L,P) A LBL(E,L) = LBL(E,P)
RSuB(R,S) AREL(E{,E,,R) = REL(E{ E»,S)

Mut(L{,L,) ALBL(E,L;) = =LBL(E,L,)
RMur(Ry,R,) A REL(E{,E,,R) = =REL(E{, E,,R,)

Adapted from Jiang et al., ICDM 2012
V4 —



Illustration of KGI

Representation as a noisy knowledge graph

Extractions: SameEnt
Lbl( , bird) Kyrgyzstan ——— Kyrgyz Republic
LbL( , country) ol
Lbl( , country) lb/ \,‘0\ ;_g_
Rel( , ) ﬂ =

hasCapital) e D &
Ontology 3 C_ country D e
Dom(hasCapital, country) <.
Mut(country, bird) =
Entity Resolution Bisr;kek
SameEnt( ,

) /

After Knowledge Graph Identification

Kyrgyzstan Rel(hasCapital)
Lbl . ; = , Bishkek

Kyrgyz Republic




Datasets & Metrics

Data from Never-ending Language
Learner (NELL) from iteration 165

Consists of over 1M extractions
and a rich ontology

Evaluation set from (Jiang,
ICDM12) with 4.5K labeled
extractions

Report AUC-PR and running time

Inputs

Candidate Labels 1.2M
Candidate Relations 100K
Types

Unique Labels 235
Unique Relations 221
Ontology

Dom 418
Rng 418




NELL Evaluation: two settings

Query Set: restrict to a subset of KG Complete: Infer full knowledge graph
(Jiang, ICDM12)

® O
@ QOO@
O

OOOO .
Q% 0%, 0
®

* Closed-world model * Open-world model
* Uses a target set, subset of KG * All possible entities, relations, labels
* Derived from 2-hop neighborhood * Inference assigns truth value to

* Excludes trivially satisfied variables each variable




Pujara, Miao, Getoor, Cohen, ISWC 2013

NELL experiments

 Task: Use |.3M NELL extractions and 68K ontology relations to
predict a query set or build a complete knowledge graph

 Comparisons: baseline (confidence values), NELL (consistency
heuristics), MLN (marginals with MC-SAT), KGI using PSL

* Performance: PSL improves FI/AUC; takes just 10 seconds
on query set; builds complete KG (4.3M facts) in 130 minutes

Method Query Set Complete
AUC  F1 AUC  F1

Baseline 873 .828

NELL 765 673 765 673

MLN (Jiang, 12) .899 .836

PSL-KGI 904 .853 .892 .848 ‘



Additional Application Domains

= Computer Vision
- Low-level image reconstruction
- Activity recognition in Video
Computational Biology & Health Informatics
- Drug-target prediction
- Event discovery in EMR data
Computational Social Science
- Inferring bias in political discourse
- Psychological modeling on online social networks

Information Integration & Extraction
- Entity resolution
- Ontology alignment & schema mapping

= Upcoming: climate graphs, discourse analysis, more!







Theoretical Guarantees?

= Questions:

- Are there theoretical guarantees for learning templated models
(e.g. HL-MRFs)?

- Which models come with good guarantees?

- What makes a “good” model?

= These questions are often answered by studying
generalization



Generalization Bounds

* | earning setting:
- Learner gets random sample from distribution over structured
examples

» Possibly gets only one large example!
- Learner minimizes empirical error on training set

= What is the expected error on future examples?

(future error) < (empirical error) + ?

= Analysis of generalization gives bounds on future error

- Typical bound:

. J(model complexity)
(future error) < (empirical error) +

/(size of data)




[London, Huang, Taskar & Getoor, ICML"13]

Generalization Bounds

= What is “size of data” for structured data?
- Traditional learning theory says: # of i.i.d. structured examples

- But each example is typically very large, relative to # of model
parameters

- Why not (# examples) x (size of example) ?
« Careful! Variables are no longer i.i.d.

= New theory:

(future error) < (empirical error)

. J(model complexity)

I( (# examples) x (size of example) )




[London, Huang, Taskar & Getoor, ICML"13]

Generalization Bounds

= New theory says that generalization can happen from very
few training examples - even just one!

- Common scenario in structured prediction

= Bounds depend on properties of the model/data:
- # of parameters
- collective stability: “smoothness” of inference function
- network structure
- amount of dependence in distribution

= Gives new insight into when models generalize

- Example: templated models with strongly convex inference,
when data has “weak” dependence




Ongoing Research

= Many open questions!

= Examine generalization of different classes of structured
predictors

= Analyze transductive learning setting

Data is fixed (i.e., no distribution on future examples)
Training data sampled randomly from fixed pool
Learned model predicts on remaining data

Very common setting for relational data!

= Accommodate weaker dependence/structural assumptions







http://psl.umiacs.umd.edu

Closing Comments

» Great opportunities to do good work and
do useful things in the current era of big
data, data analytics, and network science
- ‘entity-oriented data science’

= Statistical relational learning provides
some of the tools, much work still
needed, developing theoretical bounds for
relational learning, scalability, etc.

= Compelling applications abound!




= Probabilistic

Soft

= Logic

psl.umiacs.umd.edu




